SERVICING & STORMWATER MANAGEMENT REPORT MICROTEL INN & SUITES

Project No.: CP-17-0199 – 340 Huntmar Drive, Ottawa, ON

City File No.: D07-12-17-0158

Prepared for:

MasterBUILT Hotels Ltd. c/o ACTIVAR 2-107 Fourth Avenue Ottawa, ON K1S 2L1

Prepared by:

McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, ON K0A 1L0

September 19, 2018

TABLE OF CONTENTS

1.0	PROJ	ECT DESCRIPTION	1
1.1	Pur	rpose	1
1.2	Site	e Description	2
2.0	BACK	ROUND STUDIES	3
3.0	PRE-0	CONSULTATION SUMMARY	4
4.0	EXIST	TING SERVICES	4
4.1	Wa	nter Servicing	4
4.2	Sar	nitary Sewer	5
4.3	Sto	orm Sewer	5
5.0	PROP	POSED SERVICING	5
5.1	Wa	nter Servicing	5
5.2	Sar	nitary Sewer	7
5.3	Sto	orm Sewer	8
6.0	STOR	RMWATER MANAGEMENT	9
6.1	Des	sign Criteria and Methodology	9
6.2	Rur	noff Calculations	9
6	.2.1	Pre-Development Drainage	10
6	.2.2	Post-Development Drainage	10
6.3	Qua	antity Control	11
6.4	Qua	ality Control	13
6.5	Soa	akaway Pit	13
1	.1.1	Soakaway Pit Design	13
1	.1.2	Storage Configuration	14
1	.1.3	Maintenance Design Parameters	15
7.0	SEDIN	MENT & EROSION CONTROL	15
8.0	SUMI	MARY	16
9.0	RECO	OMMENDATION	17
10.0	STAT	EMENT OF LIMITATIONS	18

LIST OF FIGURES

Figure 1: Key Map: 340 Huntmar Drive, Ottawa	2
LIST OF TABLES	
Table 1: Water Demands	5
Table 2: Pre-Development Runoff Summary	10
Table 3: Post-Development Runoff Summary	10
Table 4: Allowable Release Rate Summary	11
Table 5: Post-Development Restricted Runoff Summary	12
Table 6: Storage Summary	12
Table 7: Soakaway Pit - MOECC Requirements	14

APPENDICES

APPENDIX A: Background Documents

APPENDIX B: City of Ottawa Pre-Consultation Notes and MVCA Correspondence

APPENDIX C: Watermain Flow and Fire Calculations

APPENDIX D: Sanitary Sewer Calculation

APPENDIX E: Pre-Development Drainage Plan

APPENDIX F: Post-Development Drainage Plan

APPENDIX G: Stormwater Management Calculations

APPENDIX H: City of Ottawa Design Checklist

APPENDIX I: Design Brief - Arcadia Commercial by IBI Group

1.0 PROJECT DESCRIPTION

1.1 Purpose

McIntosh Perry (MP) has been retained by Activar c/o Microtel Inn and Suites by Wyndham to prepare this Servicing and Stormwater Management Report in support of the Site Plan Control process for the proposed Microtel Inn & Suites, located at 340 Huntmar Drive within the City of Ottawa (City File No. D07-12-17-0158).

The main purpose of this report is to present a servicing design for the development in accordance with the recommendations and guidelines provided by the City of Ottawa (City), the Mississippi Valley Conservation Authority (MVCA), the Ministry of the Environment and Climate Change (MOECC) and the Ministry of Transportation (MTO). This report will address the water, sanitary and storm sewer servicing for the development, ensuring that existing and available services will adequately service the proposed development.

This report should be read in conjunction with the following drawings:

- · CP-17-0199, C101 Site Grading and Drainage Plan,
- CP-17-0199, C102 Site Servicing Plan, and
- CP-17-0199, C103 Sediment & Erosion Control Plan.

1.2 Regulatory Approvals

This report is subject to approval by the Ministry of the Environment and Climate Change (MOECC), City of Ottawa, Mississippi Valley Conservation Authority (MVCA) and the Ministry of Transportation (MTO). A table describing the required regulatory approvals and permits subject to this site has been provided below.

Table 1: Regulatory Authority Process/Permit(s)

Regulatory Authority	Process/Permit	Status
City of Ottawa	Building Permit	Submission pending.
City of Ottawa	Site Plan Approval (D07-12-17-0158)	Submitted; approval in-progress.
City of Ottawa – Committee of Adjustment	Consent (B-00294)	Complete/approved.
City of Ottawa – Committee of Adjustment	Minor Variance (D08-02-17/A-00352)	Complete/approved.
Ministry of Environment and	Environmental Compliance Approval	Submission pending City of
Climate Change		Ottawa Staff authorization.
Mississippi Valley Conservation Authority	Permit under Ontario Regulation 153/06 "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses"	Submission pending.
Ministry of Transportation	Building and Land Use Permit (BL- 2018-420-00000017)	Approved; permit issuance subject to payment.

1.3 Site Description

The subject property is located in the City of Ottawa within Ward 4-Kanata North. The forms part of the Kanata West Concept Plan Lands and is a part of the Arcadia Commercial Development. See Figure 1 - Site Location from the *Design Brief – Arcadia Commercial* by IBI Group in Appendix 'A' of this report for more details.

The property is part of Block 1 on registered plan 4M-1563. The subject property has been subdivided from the Arcadia Commercial Development (Block 1) as part of a severance application. The subject property is described as Parts 1-3 on registered plan 4R-30733. See Appendix 'A' of this report for copies of the registered plans. The site has an area of approximately 0.64ha. It is currently undeveloped and consists mostly of grass and vegetation. The site is bound by Huntmar Drive to the west, Country Glen Way to the east and Feedmill Creek/undeveloped land to the south. See *Figure 1 - Key Map: 340 Huntmar Drive, Ottawa*.

The subject property is a severed parcel that was previously part of an approved Site Plan proposal for the Arcadia Commercial Development. The Site Plan approval was completed for City File No.: D07-12-14-0014.

The proposed development consists of a standalone 1,470m² hotel building. Parking and drive aisles will be provided throughout the site along with landscaping. There will be two site entrances to both Country Glen Way and to a proposed internal access road (by others). See drawing *A1 - Site Plan* by Dredge Leahy Architects Inc. within Appendix 'A' of this report for more details.

It is anticipated that the work for this project will occur prior to the development of the adjacent retained lands. Due to the difference in schedule, barrier curb along with 3:1 grading to match existing ground elevations will be provided on the retained lands as temporary works to restrict vehicular access to the retained lands. Minto is in the process of issuing a letter acknowledging and agreeing to the temporary works. All service infrastructure required to support the proposed development has already been installed, as corroborated by IBI's as-built drawings for Country Glen Way and site visits by McIntosh Perry staff. Minto's private access and Country Glen Way also have been paved with base course asphalt and barrier curbs to support the proposed development and shall be completed by Minto to approved conditions as per the Site Plan Agreement between Minto and the City of Ottawa.

Figure 1 - Key Map: 340 Huntmar Drive, Ottawa

2.0 BACKROUND STUDIES

Background studies that have been completed for the proposed site include City of Ottawa as-built drawings, a topographical survey, a geotechnical report and a Phase I & II Environmental Site Assessment (ESA).

As-built drawings of existing services within the vicinity of the proposed site were reviewed in order to determine accurate servicing and stormwater management schemes for the site.

A topographic survey of the site was completed by McIntosh Perry Surveying Inc.

The following reports have previously been completed and are available under separate cover:

- Kanata West Master Servicing Study completed by Stantec/Cumming Cockburn Ltd./IBI Group, dated June 2006.
- Phase I Environment Site Assessment 370 Huntmar Drive completed by Paterson Group Inc., dated October 24th, 2013.
- Arcadia Retail Development Transportation Impact Study completed by Delcan, dated November 2013.
- Environmental Impact Statement Minto Arcadia Commercial Development completed by Kilgour & Associates Ltd., dated May 21st, 2014.
- Geotechnical Investigation 370 Huntmar Drive completed by Paterson Group Inc., dated June 26th, 2014.
- Design Brief Arcadia Commercial 370 Huntmar Drive completed by IBI Group, dated October 2014.

The following MOECC Environmental Compliance Application Approvals have been completed for the Arcadia Commercial development and existing stormwater management pond are available in Appendix 'A':

- Environmental Compliance Approval Number: 1359-8XNNKL Arcadia Development Phase 1 –
 Stormwater Management Pond
- Environmental Compliance Approval Number: 5440-9W3SZT Country Glen Way Ward 4 Kanata North Storm/Sanitary Sewer Country Glen Way

2.1 Geotechnical Considerations

In reference to the *Geotechnical Investigation Report by Paterson Group Inc. dated June 13, 2018*, some notable points have been identified in regards to the civil work to be completed on the site.

Primarily, the sites subsurface soil characteristic is described as hard to stiff, brown silty clay atop stiff to firm, grey silty clay. Due to the impervious nature of the material, it has been recommended that 3m long orthogonally placed subdrains be included in each catchbasin to improve parking area subbase drainage. Also, due to the nature of the subsurface material a permissible grade raise restriction of 2 m is recommended within 5 m of the building footprint and a 3 m in parking areas and drive aisles.

Secondly, groundwater is anticipated to be at 2.4 to 4 m depth, determined from standpipes installed in the boreholes.

Tertiarily, to reduce long-term groundwater lowering, Paterson Group recommended clay seals be placed within the service trench(s) at the site boundaries and at strategic locations not more than 60 m intervals.

Lastly, when backfilling service trenches where hard surface is proposed Paterson Group recommends that the backfill should match the soils exposed by the trench walls to limit the possibility of differential frost heaving.

3.0 PRE-CONSULTATION SUMMARY

A pre-consultation meeting was conducted on June 16th, 2017 regarding the proposed site. The notes, including specific design parameters from the City of Ottawa, can be found in Appendix 'B'.

4.0 EXISTING SERVICES

The proposed site will connect to existing services that were constructed as part of the Arcadia Commercial Development. An as-built drawing for Country Glen Way and Arcadia Commercial Development internal access road have been included within the appendix for reference.

See drawing *C-100 - Site Servicing Plan* and drawing *C-101 - Plan and Profile Country Glen Way* by IBI Group in Appendix 'A' of this report for more details.

4.1 Water Servicing

The Arcadia Commercial Development access road located along the northern property line of the proposed site has an existing 200mm diameter watermain including valves and hydrants. There is an existing 200mm diameter service stub for the proposed site. Country Glen Way has an existing 300mm diameter watermain including valve chambers and hydrants. No connection to this main is proposed.

4.2 Sanitary Sewer

The Arcadia Commercial Development access road has an existing 250mm diameter sanitary sewer. There is an existing 250mm diameter service stub extending from EX MH212A for the proposed site. Country Glen Way has a 300mm diameter trunk sanitary sewer servicing the Arcadia Commercial Development. The proposed site will flow to this sewer, however the connection will be made via the access road.

4.3 Storm Sewer

The Arcadia Commercial Development access road has an existing storm sewer network ranging in size from 600mm diameter to 975 mm diameter. There is an existing 375mm diameter service stub extending from EX MH212 for the proposed site. Country Glen Way has an existing 1350mm diameter trunk storm sewer servicing for the Arcadia Commercial Development. There is an existing 375mm diameter service stub extending from EX MH205 for the proposed site.

5.0 PROPOSED SERVICING

5.1 Water Servicing

A new 200mm PVC diameter water service will be connected to the existing 200mm diameter stub within the Arcadia Commercial Development internal access road. The water service will tee into the 200mm watermain (200x150mm diameter) and be extended to service the proposed hotel. Two private hydrants will be located on curb islands across from the entrance to the hotel. The watermain has also been looped to the existing 300 mm diameter watermain within Country Glen Way.

The proposed building will be equipped with a sprinkler system for fire protection. The required fire protection from the Ontario Building Code (OBC) is 9,000 L/min (See Appendix 'C' for calculation). The required fire protection from the Fire Underwriters Survey (FUS) is 11,000 L/min (provided for information purposes only).

The water demands for the proposed building have been calculated to adhere to the *Ottawa Design Guidelines* – *Water Distribution* manual and can be found in Appendix 'C'. The results have been summarized below:

Table 2: Water Demands

Water Demand Rate (Hotel)	225 L/(bed-space/d)
Suites	108
Average Day Demand (L/s)	0.28
Maximum Daily Demand (L/s)	0.42
Peak Hourly Demand (L/s)	0.76
FUS Fire Flow Requirement (L/s)	183.33
Max Day + Fire Flow (L/s)	183.98

A water model was previously competed for the Arcadia Commercial Development by IBI Group. The water demands assigned for the site (AC180 (Blks 100,200)) were calculated as follows: the average and maximum daily demands are 0.03 L/s and 0.04 L/s respectively. The peak hourly demand was calculated as 0.08 L/s and a fire demand of 183.33 L/s. See *Design Brief – Arcadia Commercial* by IBI Group in Appendix 'I' of this report for more details. As per correspondence with IBI Group it has been confirmed that a watermain loop is not required to service the hotel on an interim basis (prior to full buildout of the development). See Appendix 'C' for correspondence.

Boundary conditions have been provided by the City of Ottawa for the current conditions and are available in Appendix 'C'. The subject site is located in pressure zone 1W. A water model was completed using Bentley's WaterCAD based on the interim conditions of the Arcadia Commercial Development. The results determined that the proposed 200mm/150mm watermain can adequately service the proposed development and provide sufficient fire flow since Hydrant H-1 produced available fire flows of 11,158 L/min. Refer to drawing for more details. The results are available in Appendix 'C' of this report.

Prior to connecting to the municipal water distribution system, it is essential to determine whether the system has adequate capacity and that the overall impact to the existing system is minimal. A WaterCAD model was generated to determine the capacity, pressure and size of pipes required to service the proposed site. Three (3) different scenarios were analyzed within the model, namely average daily, maximum day + fire flow and peak hourly demands.

When modelling the proposed water distribution system for 340 Huntmar Drive, it was necessary to determine which scenario produced a greater demand: the maximum day + fire flow or peak hourly. It was concluded that the maximum day + fire flow scenario would govern the design process, since it produced the higher demand. A layout of the WaterCAD model has been attached in Appendix C.

The normal operating pressure range is anticipated to be 493 kPa to 680 kPa and will not be less than 275 kPa (40 psi) or exceed 689 kPa (100 psi). The proposed watermain will meet the minimum required 20 psi (140 kPa) at the ground level under maximum day demand and fire flow conditions. A pressure reducing valve is required for the site since the subject site is located in pressure zone 1W and the pressure will exceed 552 kPa (80 psi) in the peak hourly and average day scenarios.

Table 3: Water Pressure at Junctions per Scenario

Junction	Average Day (psi)	Peak Hourly (psi)	Max. Day + Fire Flow (psi)
J-5	92.59	86.91	72.43
J-6 (BLDG)	91.73	86.05	71.57
J-4	92.29	86.61	72.14
J-2	96.18	90.50	76.03
J-3	94.24	88.56	74.08
J-1	98.65	92.97	78.50

5.2 Sanitary Sewer

A new 200 mm diameter gravity sanitary service will be connected to the existing 250 mm diameter service stub within the internal access road for the Arcadia Commercial Development. Two sanitary manholes will be installed to service the site. A maintenance manhole (MH2A) will be installed just inside the property line as per the *City of Ottawa – Sewer Design Guidelines*.

A sanitary sewer design was previously completed for the Arcadia Commercial Development. See *Design Brief – Arcadia Commercial* by IBI Group in Appendix 'I' of this report for more details. Sanitary flows from the building drain to the connection on the internal access road for the Arcadia Commercial Development then to the sanitary sewer within Country Glen Way. From there, the flows are directed down Campeau Drive to Didsbury Road. The sanitary sewer within Didsbury Road then outlets to the Signature Ridge Pump Station. As per the IBI design brief the Signature Ridge Pump Station was upgraded to accommodate the Arcadia Commercial Development, including the subject site.

As noted within the IBI design Brief, the subject property falls within portions of drainage areas BLK200, BLK100, 213A, 214A and 205C. A flow of 0.76 L/s was calculated for the subject property. See Appendix 'D' for the existing sanitary design sheet and drainage area plan highlighting the specific site area and relative sanitary sewers.

The subject site is proposed to be a Microtel Inn & Suites hotel. Within the building there are a total 108 rooms along with a breakfast area and swimming pool. Based on Ontario Building Code (OBC) the suggested occupancy for the building is 216. The peak design flows for the proposed building were calculated using criteria from the *City of Ottawa – Sewer Design Guidelines, October 2012.* The proposed site (0.64ha) will generate a flow of 0.986 L/s, see the *Sanitary Flow Calculation* and *Sanitary Sewer Design Sheet* in Appendix 'D' for more details.

It is acknowledged that, from time to time, the indoor swimming pool within proposed hotel will require backwashing/flushing through routine maintenance periods. The discharge will be permitted at a determined controlled rate as determined by the Mechanical Engineer. Correspondence relating to the discharge rate can be found in Appendix 'C'. The pool will only be permitted to discharge backwash to the sanitary sewer system during off-peak hours (100:00PM to 5:00AM).

The existing 250 mm diameter sanitary sewer extended from EX. MH212A, to which the proposed service is connected, has a capacity 48.85 L/s with a 0.61% slope. Therefore, it is anticipated that there is sufficient capacity for the sanitary sewer within the Arcadia Commercial Development internal access road. Although the sanitary flow is slightly higher for the proposed development, the existing sanitary sewers will adequately service the proposed site.

5.3 Storm Sewer

A new sewer system will be extended from two existing 375 mm diameter storm stubs; Country Glen Way and the Arcadia Commercial Development Access Road. The new onsite pipe network will collect storm flows and restrict runoff prior to leaving the site. The storm service from the proposed building will be connected to the existing 375mm diameter stub along the internal access road. Proposed manhole (MH1) will collect both the weeping tile subdrain and the overflow pipe from the soakaway pit which will be further detailed in Section 6.0.

Runoff from the proposed site will be collected and directed towards the entrance on Country Glen Way where it will be connected to the existing 375mm diameter stub. A catchbasin (CB1) and catchbasin manhole (CBMH2) will collect flows form the parking lot prior to outletting to the existing stub. The storm sewers will range from 250 mm to 375 mm in diameter throughout the subject property.

The minor storm sewers will be sized for the 5-year flow without any restriction. A storm sewer design sheet was created using the rational method and City of Ottawa 5-year storm event. Storm flows will be controlled by an inlet control device (ICD) to limit flows to specified release rate as per the *Design Brief – Arcadia Commercial* by IBI Group.

The storm design sheet calculates the proper sizing of the storm pipes within the development. Drainage area information, along with respective pipe slopes and other necessary information was utilized to evaluate the performance of the storm sewer network. The time of concentration calculated for the storm sewer system is based on a 10 minute inlet time at the uppermost sewer run. Within the design sheet, pipe capacities and associated full flow velocities have been calculated. The design flow (peak flow) was checked against the theoretical capacity to ensure that each storm sewer pipe can convey the 5-year unrestricted flow.

Based on the storm sewer design completed by IBI Group for the Arcadia Commercial Development, the existing 375mm diameter stub on the internal access road has a capacity of 143.09 L/s for the 5-year storm event which is adequate for the portion of subject site draining to the outlet (37.92 L/s). The existing 375mm stub on Country Club Way has a capacity of 179.22 L/s for the 5-year storm event which is adequate for the portion of subject site draining to the outlet (122.40 L/s).

See *CP-17-0199 - POST* and *Storm Sewer Design Sheet* in Appendix 'F' of this report for more details. The Stormwater Management design for the subject property will be outlined in Section 6.0.

6.0 STORMWATER MANAGEMENT

6.1 Design Criteria and Methodology

Stormwater management for the proposed site will be maintained through positive drainage away from the proposed building and into a new underground storm sewer system. The storm system will capture the parking lot runoff and direct the flow to a restriction device located within CBMH2. The restricted flow will then release into the existing trunk sewer located in Country Glen Way. Similarly the emergency overland flow route for the proposed site will be directed to the entrance at Country Glen Way. Also, as per the Kanata West Master Servicing Study (KWMSS), the site will require a soakaway pit to be incorporated into the design. The City of Ottawa has requested at the pre-consultation meeting, that the roof of the proposed building will need to be captured and directed to the soakaway pit. The quantitative and qualitative properties of the storm runoff for both the pre & post development flows are further detailed below.

6.2 Runoff Calculations

Runoff calculations presented in this report are derived using the Rational Method, given as:

$$Q = 2.78CIA \text{ (L/s)}$$

Where C = Runoff coefficient

= Rainfall intensity in mm/hr (City of Ottawa IDF curves)

A = Drainage area in hectares

It is recognized that the Rational Method tends to overestimate runoff rates. As a result, the conservative calculation of runoff ensures that any stormwater management facility sized using this method is expected to function as intended.

The following coefficients were used to develop an average C for each area:

Roofs/Concrete/Asphalt	0.90
Gravel	0.60
Undeveloped and Grass	0.20

As per the *City of Ottawa - Sewer Design Guidelines*, the 5-year balanced 'C' value must be increased by 25% for a 100-year storm event to a maximum of 1.0.

As per the pre-consultation meeting with the City of Ottawa the time of concentration (Tc) used for predevelopment shall be calculated using a Tc of 20 minutes and post-development flows shall be calculated using a Tc of 10 minutes.

6.2.1 Pre-Development Drainage

The existing site drainage limits are demonstrated on the Pre-Development Drainage Area Plan See *CP-17-0199* - *PRE* in Appendix 'E' of this report for more details. A summary of the Pre-Development Runoff Calculations can be found below.

Table 4: Pre-Development Runoff Summary

Drainage Area	Area (ha)	Runoff Coefficient (2/5-Year)	Runoff Coefficient (100-Year)	2-year Peak Flow (L/s)	5-year Peak Flow (L/s)	100-year Peak Flow (L/s)
A1	0.64	0.20	0.25	18.38	24.81	52.96
Total	0.64			18.38	24.81	52.96

See Appendix 'G' for calculations.

6.2.2 Post-Development Drainage

The proposed site drainage limits are demonstrated on the Post-Development Drainage Area Plan. See *CP-17-0199 - POST* in Appendix 'F' of this report for more details. A summary of the Post-Development Runoff Calculations can be found below.

Table 5: Post-Development Runoff Summary

Drainage Area	Area (ha)	Runoff Coefficient (2/5-Year)	Runoff Coefficient (100-Year)	2-year Peak Flow (L/s)	5-year Peak Flow (L/s)	100-year Peak Flow (L/s)				
B1	0.15	0.90	1.00	28.25	38.33	72.98				
B2	0.21	0.87	0.96	39.70	53.86	101.85				
В3	0.20	0.81	0.90	34.77	47.17	89.83				
B4	0.01	0.48	0.55	1.51	2.05	4.03				
B5	0.07	0.41	0.47	5.74	7.79	15.31				
Sub-Total	0.64			109.99	149.21	283.99				
	External Drainage Areas									
EX1	0.10	0.90	1.00	18.76	25.45	48.47				
EX2	0.02	0.90	1.00	2.93	3.98	7.57				
Total	0.76			131.68	178.64	340.04				

Runoff for area B1 will be restricted before outletting to the existing storm system within Arcadia Commercial Development access road. The flow will be controlled within roof drains for area B1. Runoff for area B2 & B3 and external drainage areas EX1 will be restricted before outletting to the existing storm system within Country Glen Way. The flow will be controlled by an inlet control device located within CBMH2. The restriction device

will account for the unrestricted flow (Area B4, B5 & EX.2) leaving the site. See Appendix 'G' for calculations. This restriction and quality control will be further detailed in Sections 6.3 and 6.4.

6.3 Quantity Control

The total post-development runoff for the proposed site has been restricted to match the outlet flows calculated in the *Design Brief – Arcadia Commercial* by IBI Group. The subject property is located within 9 different drainage areas as per the *Design Brief*. A total of 6 ICD's/Roof Drains were utilized within the site area. The allocated flow for the drainage areas have been outlined below. The drainage areas associated with the subject property have been allocated total flows of 134.17 L/s and 142.85 L/s for the 5- and 100-year storm events, respectively.

Table 6: Allowable Release Rate Summary

					1	
*Existing Drainage	Area (ha)		Rate as per ef - Arcadia nercial	ICD # / Roof Drain #		
Area		5-Year	100-Year			
206A/206B	206A/206B 0.38 85.00		.00	206A		
206C	0.07	10.00		206B		
206D	0.04	14.00		206C	5	
BLK100	0.06	2.00		Roof 100	Restricted	
BLK200	0.04	1.00		Roof 200		
215	0.04	10	.00	215		
216A/216B	0.07	12.17* 20.85^			Unrestricted	
Total	0.70	134.17	142.85			

See Appendix 'G' for calculations.

As the ultimate stormwater design has two areas outletting to the subject site from the Design Brief by IBI Group, areas EX1 and EX2 have been accounted for within the stormwater management design. Reducing site flows will be achieved using flow restrictions and will create the need for onsite storage. Runoff from areas B1, B2, B3 & EX1 will be restricted as shown in the table below.

^{*}As per Design Brief - Arcadia Commercial by IBI Group.

^{**}Area 216A/216B have been accounted for as unrestricted flow within the previous design.

^{***}Extrapolated from * Appendix C, page 5, Outlet EX MH 303 100-yr Design, Uncontrolled Runoff (Q100).

[^] As per * Appendix C, page 3, Storm Sewer Design Sheet.

Table 7: Post-Development Restricted Runoff Summary

Drainage Area	Post Development Unrestricted Flow (L/s)			Post Development Restricted Flow (L/s)			
	2-Year	5-Year	100-Year	2-Year	5-Year	100-Year	
B1	28.25	38.33	72.98	3.12	4.68	7.80	Restricted - Roof Drains
B2	39.70	53.86	101.85				
В3	34.77	47.17	89.83	96.17	108.14	108.14	Restricted - CBMH2
EX1	18.76	25.45	48.47				ODIVII 12
B4	1.51	2.05	4.03	1.51	2.05	4.03	
B5	5.74	7.79	15.31	5.74	7.79	15.31	Unrestricted
EX2	2.93	3.98	7.57	2.93	3.98	7.57	
Total	131.68	178.64	340.04	109.48	126.64	142.85	

See Appendix 'G' for calculations.

Runoff from Area B1 will be restricted through thirteen (13) roof drains before discharging to the new storm sewer downstream of MH#1. The total flow leaving the roof will be 3.12 L/s, 4.68 L/s and 7.80 L/s during the 2, 5 and 100-year storm events, respectively. This will result in ponding depths of 20, 30 and 50 mm for the 2, 5 and 100-year storm events, respectively. All of the storage required for this area will be located on the proposed roof, and emergency roof scuppers will be installed to ensure ponding does not exceed the proposed ponding limits.

Runoff from Areas B2 and B3 will be restricted at CBMH#2 through an IPEX Tempest HF Type E or an approved equivalent (Design Head of 2.42 m). This orifice plug will restrict areas B2 and B3 to 108.14 L/s for both the 5 and 100-year storm events. The restriction creates a water surface elevation (WSEL) of 97.74 m for the 5-year storm event and 97.90 m for the 100-year storm event. The storage for this area will be provided above the parking lot structures CB#1 and CBMH#2. See below table for details of the required and provided storage volumes.

Table 8: Storage Summary

Drainage Area	Storage Required (m³)	Storage Available (m³)	Depth of Ponding (m)	Storage Required (m³)	Storage Available (m³)	Depth of Ponding (m)	Storage Required (m³)	Storage Available (m³)
	2-Year		· /	5-Year		, ,	100-Year	
B1	21.56	22.05	0.030	27.79	33.08	0.050	55.13	55.07

B2 & B3	N/A	0.14	12.96	11.01	0.30	84.78	79.24
	-			_			

See Appendix 'G' for calculations.

In the event that there is a rainfall above the 100yr storm event, or a blockage within the storm sewer system, an emergency overland flow route has been provided so that the storm water runoff will be conveyed towards the east entrance at Country Glen Way.

6.4 Quality Control

As per the Kanata West Master Servicing Study (KWMSS), a soakaway pit is required for the proposed site. See Appendix 'A' for the applicable excerpt. This will be furthered detailed in Section 6.5.

The development of will employ Best Management Practices (BMP's) wherever possible. The intent of implementing stormwater BMP's is to ensure that water quality and quantity concerns are addressed at all stages of development. Lot level BMP's include directing the runoff from the roof into a soakaway pit. Each proposed catch basin will be equipped with a sump, which will provide an opportunity for initial filtration of any sediment by means of particle settlement.

An IPEX Tempest HF inlet control device will restrict flows from the site, causing temporary ponding. There will be an opportunity for particle settlement during this process; however the full benefits of a larger scale end-of-pipe facility will only be realized at the downstream Stormwater Management Pond. The existing SWM facility will provide the required quality control for the site. As per the *Design Brief- Arcadia Commercial by IBI Group* (S.4.3, p.9), the existing storm sewer within the Arcadia Commercial Development outlets to the Campeau Drive storm sewer which outlets to an interim SWM Pond (future Pond 1 as per KWMSS) which provides the required quality control for the development prior to outletting to the Carp River. This facility has been designed to accommodate runoff from the Arcadia Commercial Development where the subject property is located. Quality control will be provided within this SWM facility, therefore no additional on-site quality treatment has been provided.

6.5 Soakaway Pit

As per the Kanata West Master Servicing Study (KWMSS) an infiltration target of 50-70mm/yr is required to be achieved on the subject site. The percolation rate from the geotechnical engineering consultant can be found in Appendix 'A' and was estimated to be between 12mm/hr to 17mm/hr for the site. An infiltration rate of 15mm/hr was used within the calculations. As per the *Geotechnical Investigation - 370 Huntmar Drive* by Paterson Group Inc., BH4 and BH5 had groundwater elevations of 97.12 m and 96.63 m respectively. Averaging those two values gives an average groundwater elevation of 96.88 that has been used as a reference for the subject site.

1.1.1 Soakaway Pit Design

A Soakaway Pit has been designed for the site in order to meet the required infiltration target as per the Ministry of the Environment (MOE) Stormwater Management Planning and Design Manual March 2003 Section

4.5.6 Roof Leader Discharge to Soakaway Pits. The Soakaway Pit will be constructed at the east side of the site within the parking area. Storm runoff from the flat roof will be collected within the storm network and discharge into the soakaway pit. The pit has been designed to meet the criteria noted in the following table:

Table 9: Soakaway Pit - MOECC Requirements

No.	Design Element	Criteria	Proposed Works
1	Water Table Depth	The seasonally high water depth should be greater than 1m below the bottom of the soakaway pit	The water table depth is greater than 1m below the bottom of the soakaway as per the geotechnical report. (97.12 – 96.88)
2	Depth to Bedrock	The depth to bedrock should be greater than 1m below the bottom of the soakaway pit	Depth of bedrock is greater than 1m below the bottom of the soakaway pit
3	Soils	Soil percolation rate should be greater than 15mm/hr	As per the correspondence with the Geotechnical Engineer the soil percolation is between 12-17 mm/hr.
4	Storage Volume	A minimum storage volume of 5 mm over the rooftop area should be accommodated in the soakaway pit without overflowing. The maximum target storage volume should be 20 mm over the rooftop area.	The maximum target storage of 20mm over the rooftop area will be used to ensure the required infiltration is met.
5	Location	>4m from the building	Soakaway pit is >4m from the building
6	Storage Media	Trench is comprised of clear stone (50 mm dimeter) with non-woven filter cloth lining the trench	Soakaway pit is specified to have 50mm clear stone and to be lined with geotextile.
7	Conveyance Pipe	The roof leader should extend into the soakaway pit for the full length of the pit. The extension of the roof leader should be perforated to allow water to fill the pit along the length of the pipe. The perforated pipe should be located near the surface of the trench.	The roof leader has been extended to run the full length of the soakaway pit and is perforated and is located near the top of the trench.

1.1.2 Storage Configuration

The length of the trench will be maximized as the direction of flow is parallel with the Soakaway Pit. This will ensure proper distribution of water into the entire trench.

Maximum Allowable Soakaway Pit Depth

d = PT/1000

d = maximum allowable depth of the soakaway pit (m)

P = percolation rate (mm/h) T = drawdown time (24 - 48 h) (h)

See Appendix 'G' for calculations.

1.1.3 Maintenance Design Parameters

Maintenance will be required to ensure effective operation, longevity and aesthetic functioning of the SWMP and may include: sediment removal, trash removal, maintenance of vegetation and inspection of the inlet(s) and outlet(s).

Estimates of the longevity of infiltration SWMPs are based on professional opinion. Equation 7.1 and Table 7.4 from the MOE Stormwater Management Planning and Design Manual may be used as guidance for estimating longevity (based on monitoring results in literature and the native soil permeability). Recognizing the subjectiveness of Equation 7.1, there needs to be flexibility in assessing the lifespan of infiltration SWMPs based on site-specific information. As the majority of the site is made up of the proposed roof the runoff entering the SWM Area will have limited opportunity for carrying sediments to the infiltration structure.

Our recommendation for the SWM Area is to have annual inspections completed for the Soakaway pit including a CCTV of the pipe network within the SWM area. The inspection should note any sediment build-up, standing water or any trash on the within the structure. Based on the reviews maintenance may be required to ensure the SWM Area is functioning as designed.

7.0 SEDIMENT & EROSION CONTROL

Before construction begins, temporary silt fence, straw bale or rock flow check dams will be installed at all natural runoff outlets from the property. It is crucial that these controls be maintained throughout construction and inspection of sediment and erosion control will be facilitated by the Contractor or Contract Administration staff throughout the construction period.

Silt fences will be installed where shown on the final engineering plans, specifically along the downstream property limits. The Contractor, at their discretion or at the instruction of the City, MVCA or the Contract Administrator shall increase the quantity of sediment and erosion controls on-site to ensure that the site is operating as intended and no additional sediment finds its way off site. The rock flow, straw bale & silt fence check dams and barriers shall be inspected weekly and after rainfall events. Care shall be taken to properly remove sediment from the fences and check dams as required. Fibre roll barriers are to be installed at all existing curb inlet catchbasins and filter fabric is to be placed under the grates of all existing catchbasins and manholes along the frontage of the site and any new structures immediately upon installation. The measures for the existing/proposed structures is to be removed only after all areas have been paved. Care shall be taken at the removal stage to ensure that any silt that has accumulated is properly handled and disposed of. Removal of silt fences without prior removal of the sediments shall not be permitted.

Although not anticipated, work through winter months shall be closely monitored for erosion along sloped areas. Should erosion be noted, the Contractor shall be alerted and shall take all necessary steps to rectify the

situation. Should the Contractor's efforts fail at remediating the eroded areas, the Contractor shall contact the City and/or MVCA to review the site conditions and determine the appropriate course of action. As the ground begins to thaw, the Contractor shall place silt fencing at all required locations as soon as ground conditions both warrant and permit. Please see the *Site Grading, Drainage and Sediment & Erosion Control Plan* for additional details regarding the temporary measures to be installed and their appropriate OPSD references.

8.0 SUMMARY

- A new 1,470m² hotel will be constructed along the west property line at 340 Huntmar Drive.
- A new watermain, ranging in diameter from 150 mm to 200 mm watermain will be installed to service the site, connecting to the watermain on the Arcadia Commercial Development internal access road and the existing watermain within Country Glen Way.
- A new 250mm sanitary sewer will be installed to service the proposed hotel and connect to the Arcadia Commercial Development internal access road.
- The proposed storm sewer, ranging in diameter from 250 mm to 3750 mm, will be installed throughout the site and drain to the existing storm sewers on Country Glen Way and the internal access road.
- Storage for the 5- through 100-year storm events will be provided within the parking lot areas above the proposed storm structures and on the proposed flat roof.
- An approved downstream SWM Facility (has been previously constructed to provide appropriate quality control for the Carp River.

9.0 RECOMMENDATION

Based on the information presented in this report, we recommend that City of Ottawa approve this Servicing and Stormwater Management Report in support of the proposed Microtel Inn & Suites.

This report is respectfully being submitted for approval.

Regards,

McIntosh Perry Consulting Engineers Ltd.

Ryan Kennedy, P.Eng. Practice Area Lead, Land Development

T: 613.836.2184 x 2243

E: <u>r.kenndy@mcintoshperry.com</u>

Tyler Ferguson, E.I.T.

Engineering Intern, Land Development

T: 613.836.2184 x 2242

E: t.ferguson@mcintoshperry.com

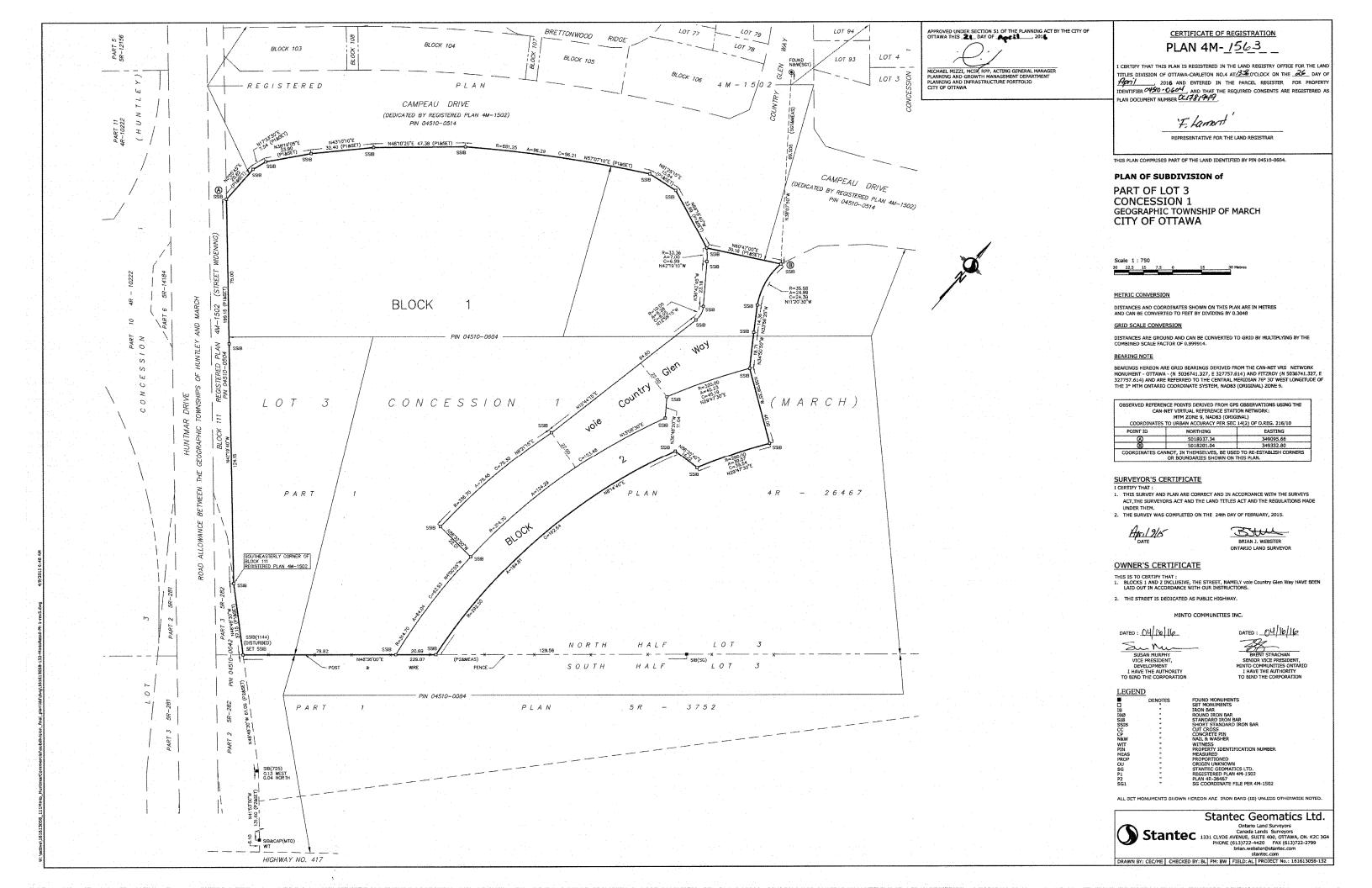
October 27, 2017 Revised: May 9, 2018 Revised: August 22, 2018 Revised: September 19, 2018

10.0 STATEMENT OF LIMITATIONS

This report was produced for the exclusive use of MasterBUILT Hotels Ltd c/o Activar. The purpose of the report is to assess the existing stormwater management system and provide recommendations and designs for the post-construction scenario that are in compliance with the guidelines and standards from the Ministry of the Environment and Climate Change, City of Ottawa and local approval agencies. McIntosh Perry reviewed the site information and background documents listed in Section 2.0 of this report. While the previous data was reviewed by McIntosh Perry and site visits were performed, no field verification/measures of any information were conducted.

Any use of this review by a third party, or any reliance on decisions made based on it, without a reliance report is the responsibility of such third parties. McIntosh Perry accepts no responsibility for damages, if any, suffered by any third party as a result of decisions or actions made based on this review.

The findings, conclusions and/or recommendations of this report are only valid as of the date of this report. No assurance is made regarding any changes in conditions subsequent to this date. If additional information is discovered or becomes available at a future date, McIntosh Perry should be requested to re-evaluate the conclusions presented in this report, and provide amendments, if required.


APPENDIX A BACKGROUND DOCUMENTS

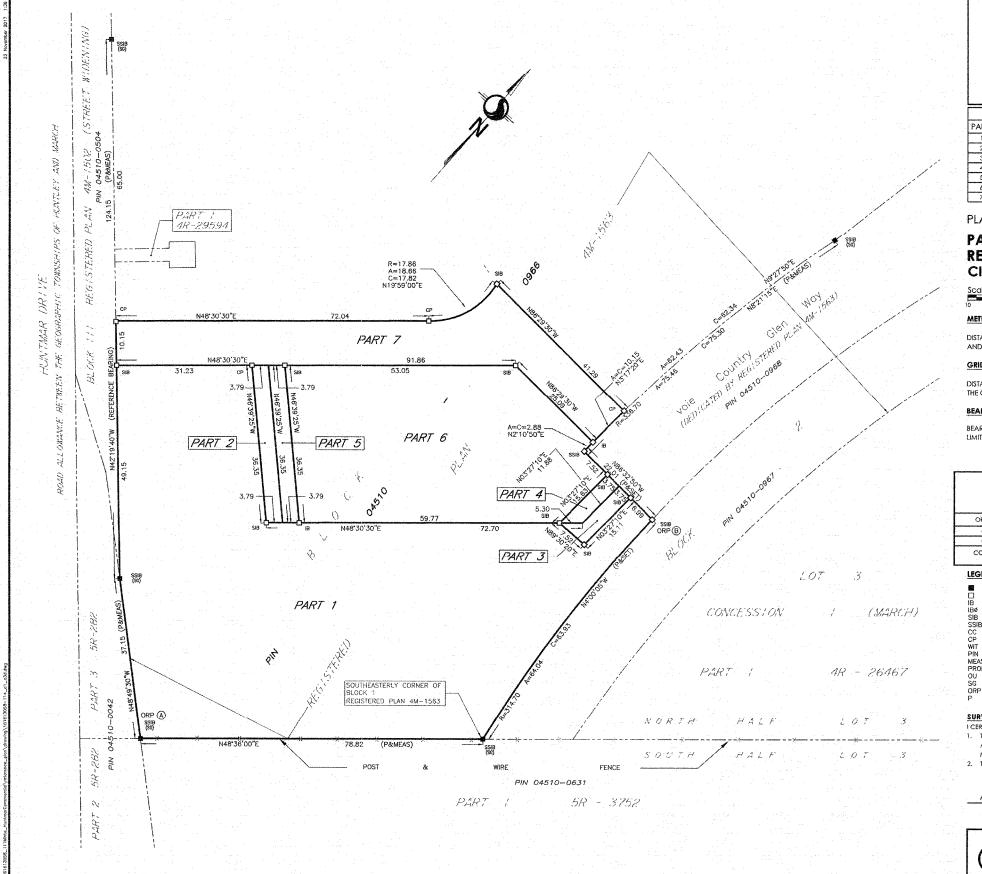

SITE LOCATION

FIGURE 1

GROUP

DESIGN BRIEF ARCADIA RETAIL DEVELOPMENT

I REQUIRE THIS PLAN TO BE DEPOSITED UNDER THE LAND TITLES ACT.

DATE: Nov 23/17

DATE: NOVEMber 23, 2017

PLAN 4R-30733

BRIAN J. WEBSTER ONTARIO LAND SURVEYOR

REPRESENTATIVE FOR THE LAND
REGISTRAR FOR THE LAND THLES DIVISION
OF OTTAWA-CARLETON NO. 4

		SCHEDULE	
PART	BLOCK	PLAN	PIN
1			
3			
4	PART OF 1	4M-1563	PART OF 04510-0966
5			
7			

PLAN OF SURVEY of

PART OF BLOCK 1 **REGISTERED PLAN 4M-1563** CITY OF OTTAWA

METRIC CONVERSION

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

GRID SCALE CONVERSION

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999914.

BEARINGS SHOWN HEREON ARE MTM GRID AND ARE REFERRED TO THE WESTERLY LIMIT OF REGISTERED PLAN 4M-1563, HAVING A BEARING OF N42°19'40"W

OBSERVED REFERENCE POINTS DERIVED FROM GPS OBSERVATIONS USING THE CAN-NET VIRTUAL REFERENCE STATION NETWORK: 3° MTM ZONE 9, NAD83 (ORIGINAL) (1997.0). COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10

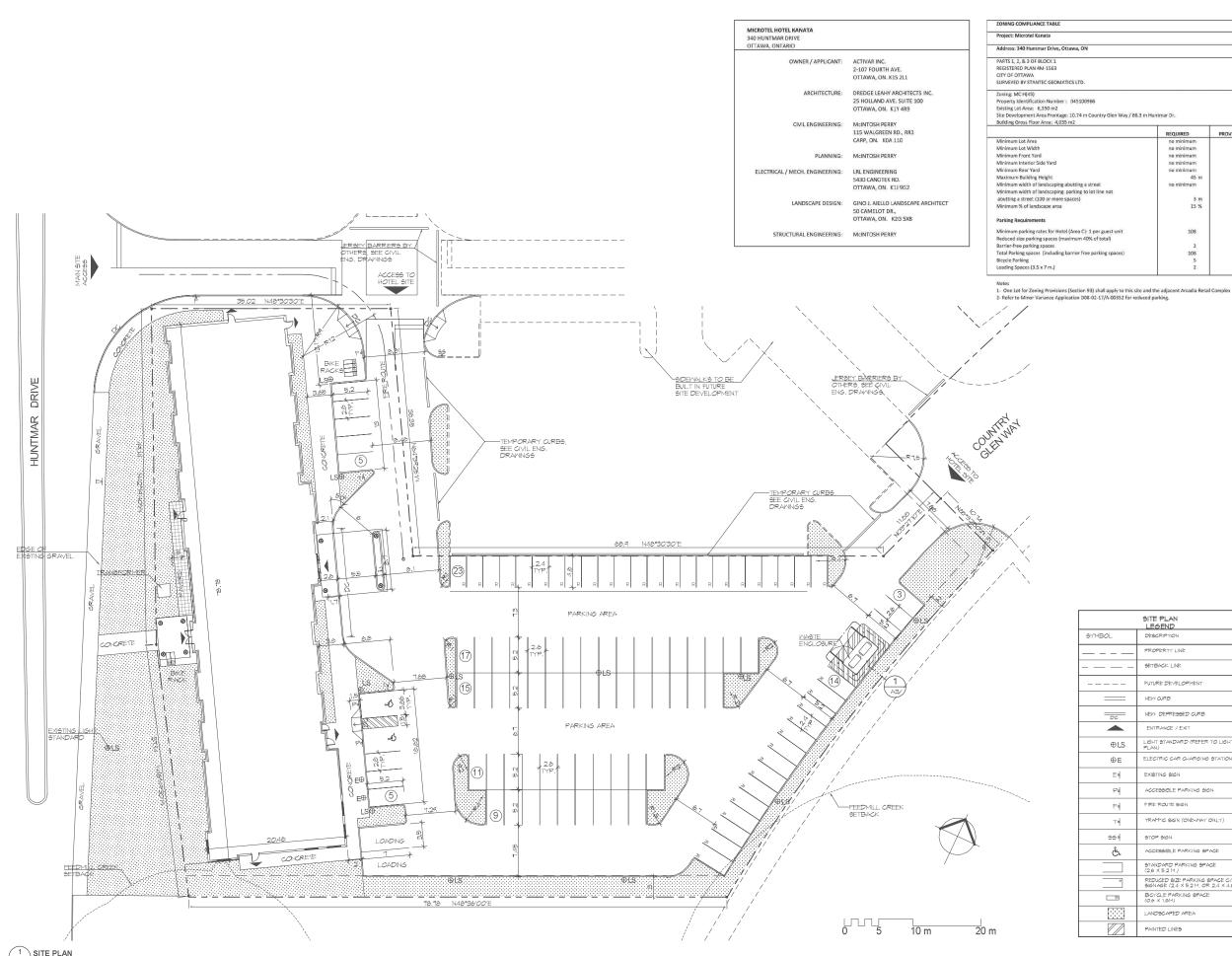
ORPID	NORTHING	EASTING
8	5017851.66	349257.73
®	5017981.56	349312.39
COOPDINATE	S CANINOT IN THE MEDITIES DE	POST TO BE ESTABLISH CORNERS

ANNOT, IN THEMSELVES, BE USED TO RE-E. OR BOUNDARIES SHOWN ON THIS PLAN.

	DENOTES		FOUND MONUMENTS
			SET MONUMENTS
IB			IRON BAR
IBØ			ROUND IRON BAR
SIB			STANDARD IRON BAR
SSIB	11		SHORT STANDARD IRON BAR
CC	7	to the	CUT CROSS
CP	a		CONCRETE PIN
WIT			WITNESS
PIN			PROPERTY IDENTIFICATION NUMBER
MEAS	и .		MEASURED
PROP			PROPORTIONED
OU	i		ORIGIN UNKNOWN
SG			STANTEC GEOMATICS LTD.
ORP	и		OBSERVED REFERENCE POINT
P			REGISTERED PLAN 4M-1563

SURVEYOR'S CERTIFICATE

- 1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS
- 2. THE SURVEY WAS COMPLETED ON THE 16th DAY OF NOVEMBER, 2017



Stantec Geomatics Ltd.

CANADA LANDS SURVEYORS ONTARIO LAND SURVEYORS 1331 CLYDE AVENUE, SUITE 400 FEL, 613,722,4420 FAX, 613,722,2799 stantec.com

DRAWN: CEC CHECKED: FP PM: FP/BW FIELD: CA PROJECT No.: 161613058-114

Project: Microtel Kanata		
Address: 340 Huntmar Drive, Ottawa, ON		
PARTS 1. 2. & 3 OF BLOCK 1		
REGISTERED PLAN 4M-1563		
CITY OF OTTAWA		
SURVEYED BY STANTEC GEOMATICS LTD.		
Zoning: MC H(45)		
Property Identification Number: 045100966		
Existing Lot Area: 6,350 m2		
Site Development Area Frontage: 10.74 m Country Glen Way / 86.3	m Huntmar Dr.	
Building Gross Floor Area: 4,035 m2		
	REQUIRED	PROVIDED
Minimum Lot Area	no minimum	6,350 m
Minimum Lot Width	no minimum	86 m
Minimum Front Yard	no minimum	2 m
Minimum Interior Side Yard	no minimum	0.5 m
Minimum Rear Yard	no minimum	58 m
Maximum Building Height	45 m	17 m
Minimum width of landscaping abutting a street	no minimum	>3 m
Minimum width of landscaping: parking to lot line not		
abutting a street (100 or more spaces)	3 m	3 m
Minimum % of landscape area	15 %	15 %
Parking Requirements		
Minimum parking rates for Hotel (Area C): 1 per guest unit	108	102
Reduced size parking spaces (maximum 40% of total)		37
Reduced size parking spaces (maximum 40% or total)	2	2
Barrier-free parking spaces		
	108	102
Barrier-free parking spaces	108 5	102 6

SITE PLAN LEGEND DESCRIPTION

SETBACK LINE

NEW CURB

EXISTING SIGN

STOP SIGN

FUTURE DEVELOPMENT

NEW DEPRESSED CURB

LIGHT STANDARD (REFER TO LIGHTI

ELECTRIC CAR CHARGING STATION

TRAPPIC SIGN (ONE-MAY ONLY)

ACCESSIBLE PARKING SPACE

STANDARD PARKING SPACE (2,6 × 5,2 M.)

LANDSCAPED AREA PAINTED LINES

REDUCED SIZE PARKING SPACE CAN SIGNAGE (2.4 X 5.2 M, OR 2.4 X 4.6) BICYCLE PARKING SPACE (0.6 × 1.6M)

SYMBOL

- -- --

⊕LS

⊕Е

Εd

Pd

Fd

554

Ë

В

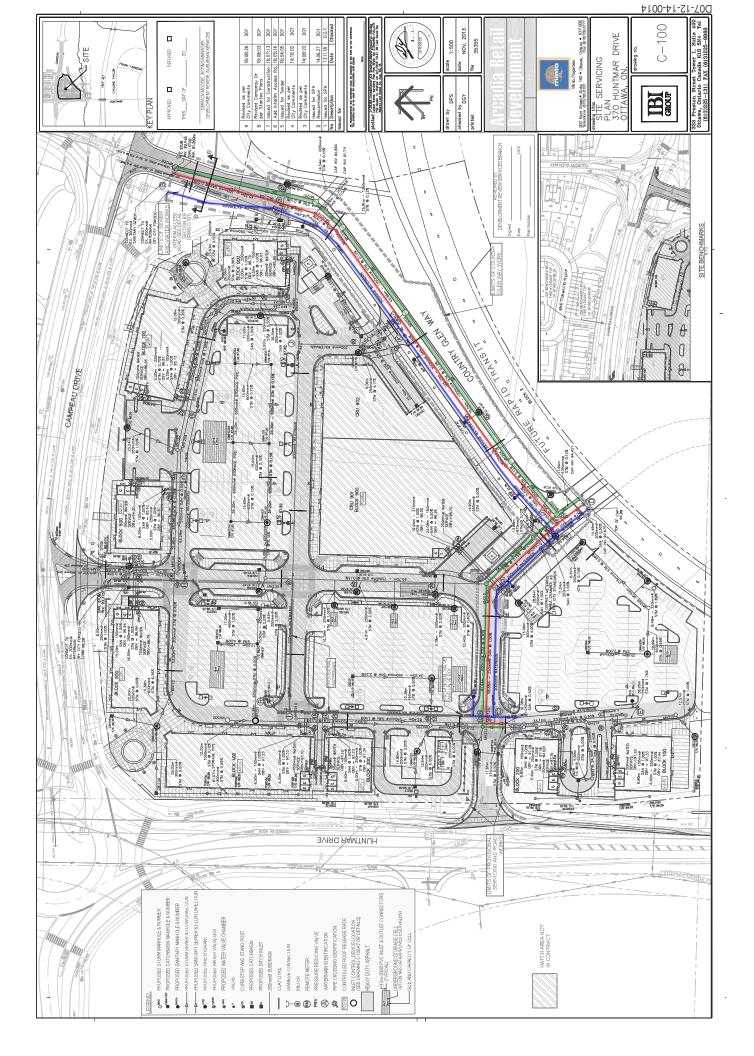
,	

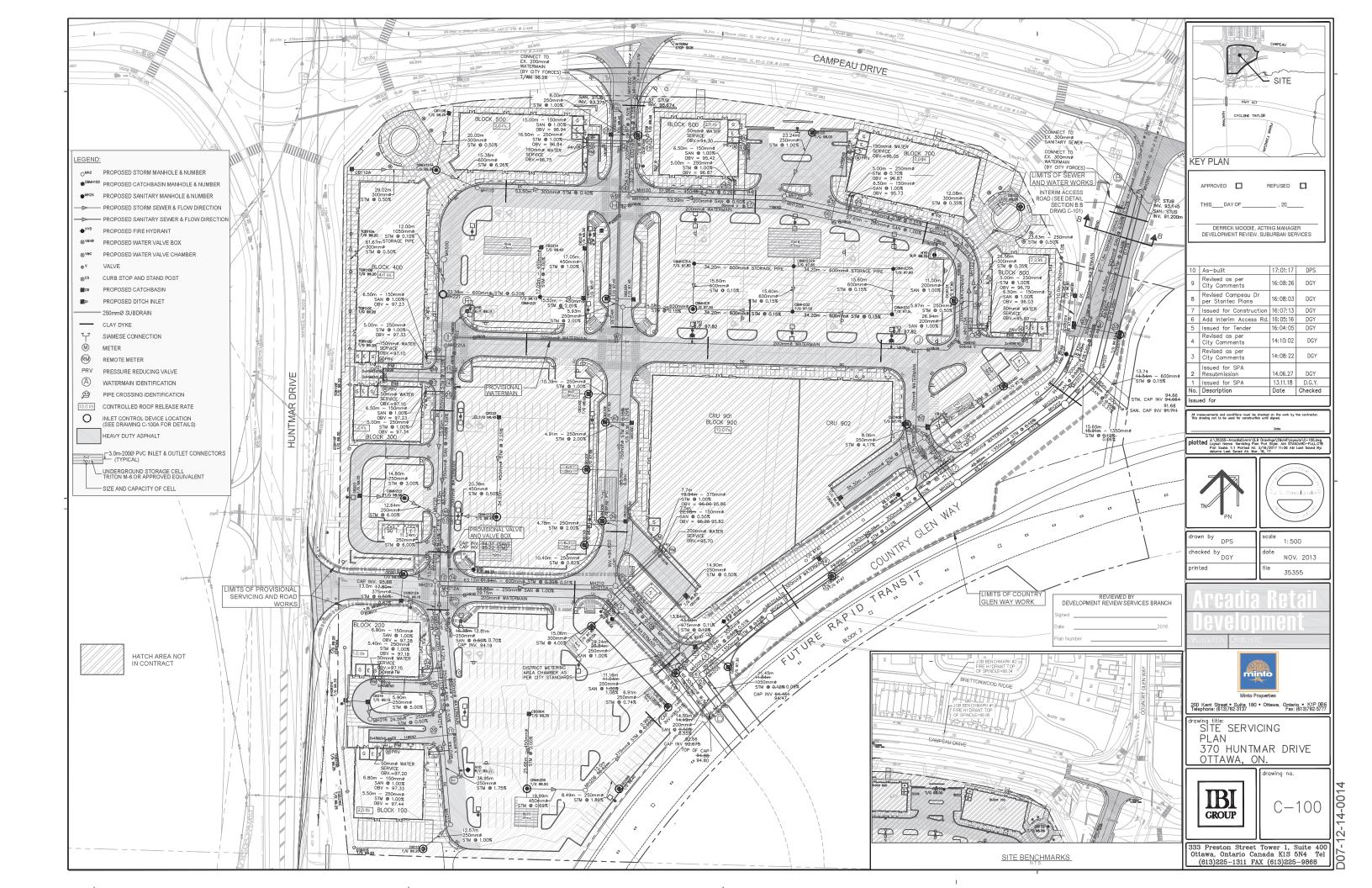
-1	B :	0 1 1	
ı	Issue:		Date:
ı	1	ISSUED FOR SITE PLAN APPLICATION	10/27/2017
ı	2	ISSUED FOR COORDINATION	04/12/2018
ı	3	RE-ISSUED FOR SITE PLAN APPLICATION COMMENTS	05/09/2018
- 1			

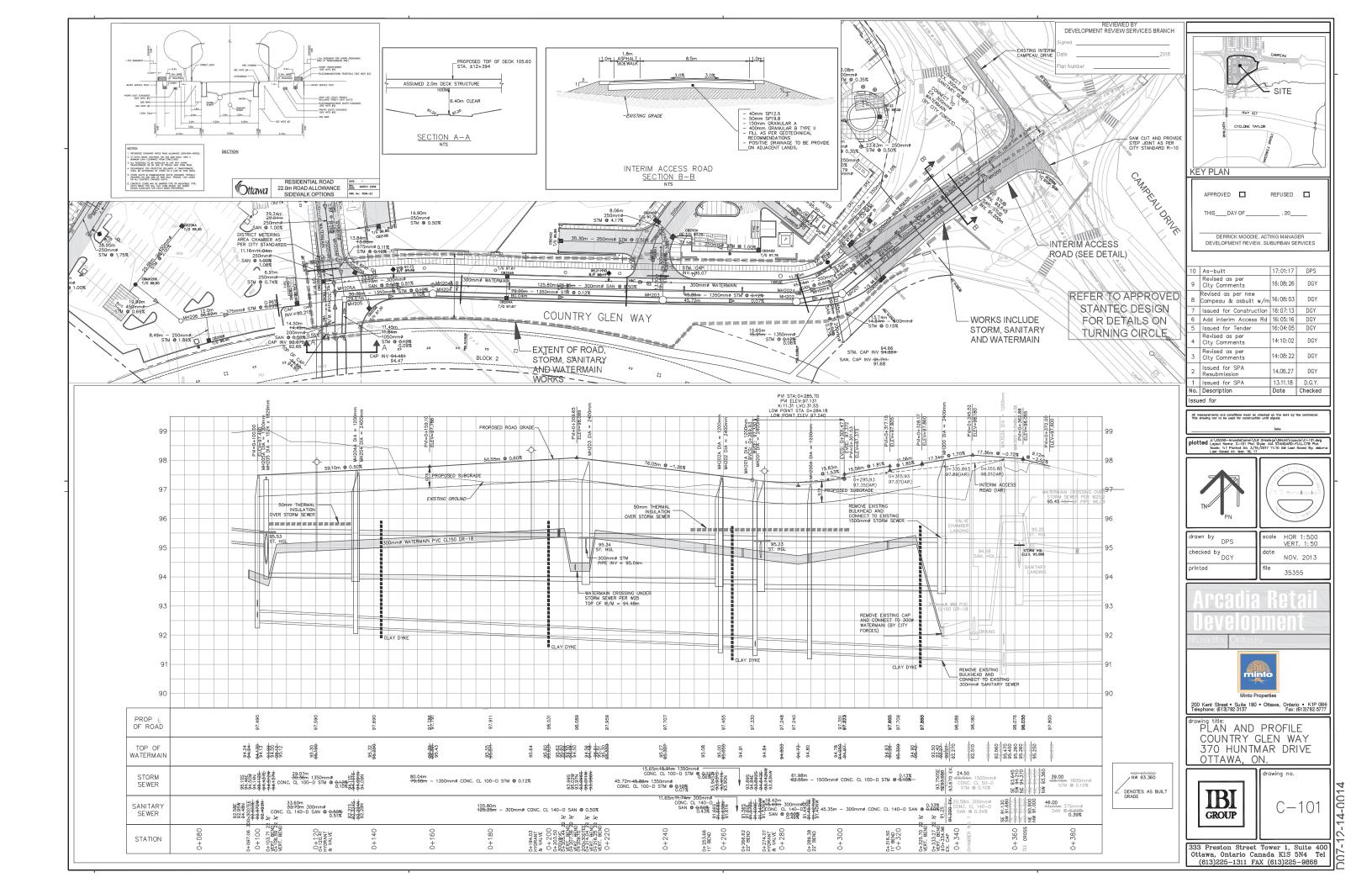
100 - 25 Holland Ave. Ottawa, ON K1Y 4R9 613.724.9865

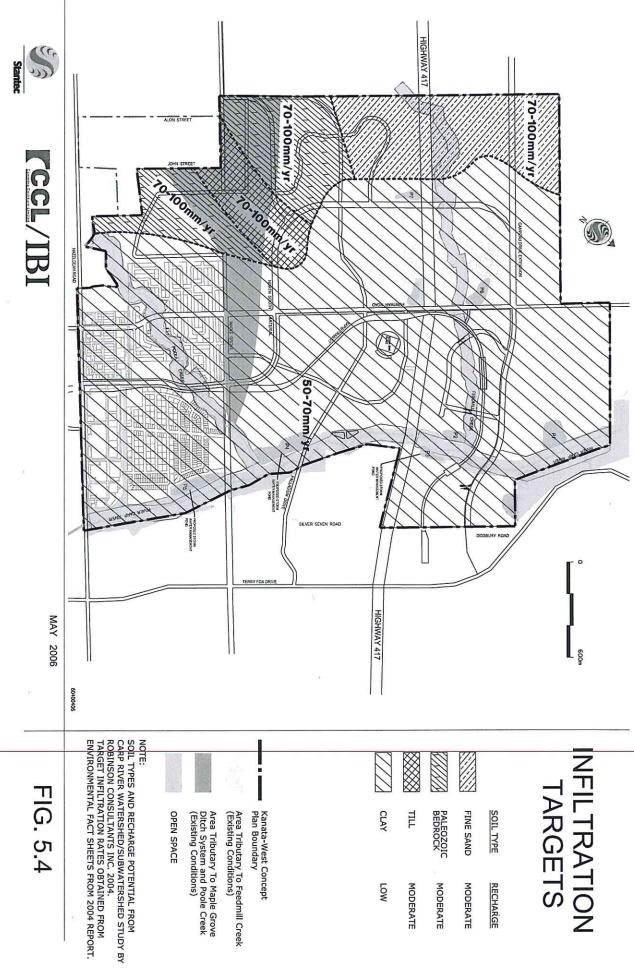
SED 🗆
20

MICROTEL KANATA - 340 HUNTMAR DRIVE, KANATA, ON


340 HUNTMAR DRIVE, KANATA, ON


SITE PLAN


Scale: Échelle:
As indicated
Date: 10/25/17
Client Project No. No. du Projet du Client:
Project No.: No. du Projet: 1394



A1

MOT

MODERATE RECHARGE

MODERATE

MODERATE

that global climatic change may have on the stormwater infrastructure of Ontario. In this area:

- Surface storage on streets and parking lots is used in the stormwater management system during storms less frequent than the five-year storm
- ponds for water quality control only
- utilizes some of the most modern stormwater quantity control mechanisms including, orifices in the catchbasins, local infiltration, and by directing roof runoff to the lawns

Since effort has been taken to reduce the flows entering the sewer system there are few options to retrofit the existing sewer system to cope with climatic change. The study considered how the minor system might be redesigned if the design storm were to increase by 15 per cent. Existing sewer pipes would surcharge under this scenario of increased rainfall. Therefore, to convey the increased peak flows, the diameter of these pipes would need to be increased. The incremental cost of installing larger diameter pipe was estimated at about two percent of the total system cost. The additional cost of larger sewers to accommodate the increased flows expected under climate change is not large in relative terms.

Similar studies concur with this approach (Infrastructure Canada December 2006). "A study in North Vancouver found that drainage infrastructure could be "adapted to more intense rainfall events by gradually upgrading key sections of pipe during routine, scheduled infrastructure maintenance. When changes to infrastructure such as pipe size *are* necessary, it is predicted to be less costly than the possible losses due to failed infrastructure"

Changes in the Upper Carp Subwatershed

This is a large subwatershed, approximately 5000 hectares. Of this, 3000 hectares is approved for urban development in the City's Official Plan, in Stittsville and Kanata, including Kanata West.

The Kanata West Development Area is planned to be implemented over a 20 +/- year period allowing any new policies and information to be incorporated as development proceeds. As part of the Carp River Restoration Project, one of the few permanent water flow monitoring systems in Ottawa has been put in place for Kanata West. The results from this monitoring will be beneficial in determining the effects of climate change over time and the adaptive management measures that can be put in place to accommodate increased flows and assist in developing municipal policies.

Continuous monitoring of water level and/or streamflow (year round) will occur at three locations in the upper Carp River watershed: Carp River at Richardson Side Road, Carp River at Maple Grove Road, and Poole Creek at Maple Grove Road. All of these streamflow monitoring stations will be permanent gauges as part of the ongoing MVC long term monitoring program. Data from the Kinburn gauge may also be useful in assessing long term trends.

While the imperviousness of Kanata West development is expected to be typical or slightly higher than historic urban development (due to intensification requirements in the Provincial Policy Statement), both the Carp River Subwatershed Study and the Master Servicing Study require that infiltration rates be maintained. This requirement is being implemented with each development application and also moderates the increase in runoff resulting from urbanization.

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

Natural Environment (NE) 20%

All three alternatives will have essentially the same impact on the natural environment. Alternative I has a minor increased impact due to the number of ponds (8) and there location within the KWCP.

5.5.2 Selection of Stormwater Management Alternatives

Based on the above evaluation, Alternative III is selected as the preferred stormwater management alternative. This option offers the greatest amount of flexibility for phasing opportunities while providing an economical servicing solution that meets the objectives of the Carp River Watershed/Subwatershed Study.

5.6 Best Management Practices

The Carp River Watershed/Subwatershed Study (Robinson Consultants, November 2004) proposes target infiltration rates of 104 mm/yr and 73 mm/yr for areas of moderate and low recharge, respectively, within the KWCP. To meet the identified infiltration targets suggested the following best management practices (BMP's) were recommended and are shown on Figures 7.3.3 through 7.3.7 in Appendix 3.4.

- Subsurface Infiltration;
- Biofilters;
- · Wet ponds; and
- Dry ponds.

A water balance and subsurface hydrogeological investigation at the detailed design stage will dictate which of the proposed BMPs will be selected for specific developments.

Given the establishment of the dominant soil associations that exist in the Study area (see Figure 5.4), and considering the extent of the poorly draining soils within the nearly flat topography, it is apparent that drainage in the Study area is primarily governed by the characteristics of the poorly draining silty clay to clay soils underlying all but a small percentage of the Study area. As a result, the establishment of the infiltration rates of the soils can be simplified to reflect the silty clay to clay soils and the till material over bedrock. Table 5.6 below summarizes the anticipated infiltration rates of these two principal soil groups, based on soil characteristics and borehole data regarding degree of compaction.

Table 5.6 -Summary of Infiltration Rates of Principal Soil Groups

Soil Groups	Estimated Infiltration Rates ¹ (mm/yr)	Percent of Annual Rainfall Infiltrated
Castor, Dalhousie, North Gower (silty clay to clay)	50-70 mm/yr	5-7
Anstruther, Farmington, Nepean (sandy loams to till)	70-100 mm/yr	7-11

Content Copy Of Original

Ministry of the Environment Ministère de l'Environnement

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 1359-8XNNKL

Issue Date: September 17, 2012

Minto Communities Inc. 180 Kent St, No. 200 Ottawa, Ontario K1P 0B6

Site Location: Arcadia Development - Phase I

450 Huntmar Drive City of Ottawa, ON

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

the establishment of stormwater management *Works* for the collection, transmission, treatment and disposal of stormwater runoff from a catchment area of approximately 9 hectares, to provide Normal Level of water quality protection and to attenuate post-development peak flows to pre-development levels, discharging to the Carp River, for all storm events up to and including the 100-year return storm, consisting of the following:

Stormwater Management System

an interim stormwater management system to service the Arcadia Development Phase I, located to the east of Phase I and II developments, relying on the following:

- An interim wetland having a design minimum liquid retention volume of approximately 4,377m³ at elevation 94.22m, which includes Phase II drainage area and external arterial and commercial lands for a total drainage area of 36 hectares, with a controlled discharge flow rate of 8.03m³/sec.
- The wetland is equipped with a forebay of approximately 12m wide average and 113m in length and a bottom elevation of 92.45m with a permanent pool elevation of 93.00m, draining to the wet cell through a submerged permeable rock check dam.
- An outlet structure comprised of two components, a 400mm diameter 10m in length corrugated steel pipe (CSP) outlet pipe and an overflow weir of 4m in length with an overflow invert at 94.00m and rip rap protection.
- A baseflow drain to provide extended release of flow from the facility with a drain invert at 93.00m, 12 m in length comprised of clear stone trench wrapped in geotextile fabric.
- An outlet ditch of approximately 330m length with an upstream invert of 92.60m and a downstream invert of 91.70m, discharging to the Carp River.

The above, including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned *Works*.

For the purpose of this environmental compliance approval, the following definitions apply:

"Approval" means this entire document and any schedules attached to it, and the application;

"Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;

"District Manager" means the District Manager of the Ottawa District Office;

"EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;

"Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;

"Owner" means Minto Communities Inc. and its successors and assignees;

"OWRA" means the Ontario Water Resources Act , R.S.O. 1990, c. O.40, as amended;

"Regional Director" means the Regional Director of the Eastern Region of the Ministry;

"Source Protection Plan" means a drinking water source protection plan prepared under the Clean Water Act, 2006; and

"Works" means the sewage works described in the Owner's application, and this Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

- (1) The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Works* is notified of this *Approval* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Approval*, and the application for approval of the Works.
- (3) Where there is a conflict between a provision of any document in the schedule referred to in this *Approval* and the conditions of this *Approval*, the Conditions in this *Approval* shall take precedence, and where there is a conflict between the documents in the schedule, the document bearing the most recent date shall prevail.
- (4) Where there is a conflict between the documents listed in the Schedulesubmitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The Conditions of this *Approval* are severable. If any Condition of this *Approval*, or the application of any requirement of this *Approval* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *Approval* shall not be affected thereby.

2. EXPIRY OF APPROVAL

The approval issued by this *Approval* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Approval*.

3. CHANGE OF OWNER

The *Owner* shall notify the *District Manager* and the *Director*, in writing, of any of the following changes within thirty (30) days of the change occurring:

- (a) change of Owner;
 - (b) change of address of the Owner;
 - (c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the Business Names Act, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*; and
 - (d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the Corporations Information Act, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*.

4. OPERATION AND MAINTENANCE.

- (1) The *Owner* shall ensure that the design minimum liquid retention volume(s) is maintained at all times .
- (2) TThe *Owner* shall conduct visual inspections of the SWM facility at the time of conducting the monitoring sampling required in Condition 6, prepare a photo record of the facility and, if necessary, clean and maintain the *Works* to prevent the excessive buildup of sediments and/or vegetation.
- (3) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the Owner's offices for inspection by the *Ministry*. The logbook shall include the following:
 - (a) the name of the Works; and
 - (b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

5. RECORD KEEPING

The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance and monitoring

6. MONITORING PROGRAM

(1) Upon commencement of operation of the *Works*, the *Owner* shall implement a monitoring program based on water levels and effluent discharge from the site during the following number of events until such time when the works are decommissioned and/or replaced with the ultimate stormwater management facility.

Table 1 - Monitoring Program				
Parameter	Frequency	Sample Type		
(milligrams per litre unless				
otherwise indicated)				
Sample point: Pond's				
influent				
Total Suspended Solids	as per subsection (2)	Composite (*)		
Sample point: Pond's				
effluent				
Flow drawdown estimate	as per subsection (2)	field		
(m³/sec)				
Total Suspended Solids	as per subsection (2)	three equal volume grab		
		samples		
Total Phosphorus	as per subsection (2)	three equal volume grab		
		samples		
Temperature (°C)	as per subsection (2)	field		
Pond and Carp River water	as per subsection (2)	field		
levels (m)				

- Note: (*) Composite samples collected utilizing automated equipment or a minimum of three equal volume grab samples per sample event.
- (2) The *Owner* shall implement the monitoring program with the following minimum sample event frequency:
 - (a) Two (2) small rainfall events (less than 7mm);
 - (b) Two (2) medium rainfall events (7-15 mm); and
 - (c) Three (3) large rainfall events (greater than 15 mm).
- (3) The *Owner* shall submit an annual stormwater monitoring report to the *District Manager* by March 31 of each calendar year and provide a copy to the City of Ottawa's Infrastructure Approvals Division Planning Branch and to the Planning and Growth Management Department so the City can review and include results in the Kanata West Overall Monitoring Report. The annual reports shall cover the monitoring period for the previous calendar year.
- (4) The Owner shall provide a copy of the annual monitoring reports and its associated data to the City of Ottawa, so that the City can review it and include those results in the City's Annual Overall

Monitoring Report in accordance with the Implementation Plan for the Kanata West Development Area.

- (5) The *Owner* shall include in the annual monitoring reports for the reporting period the following:
 - (a) a description of the physical works, its location, and how it is designed to function;
 - (b) monitoring results and interpretation of data for acuracy or deviation from the design quality and quantity controls and confirm the current hydrological and hydraulic models and an estimate of baseflow from the stormwater management (SWM) facility;
 - (c) an evaluation of the pond's performance and its ability to meet the design performance criteria of 70% TSS removal (during the monitoring period);
 - (d) an estimate of the percentage of build out for the contributing drainage area of the SWM facility;
 - (e) an estimate of the SWM facility's baseflow and flow drawdown characteristics;
 - (f) a description of any consideration that may need to be implemented upon transition and/or decommissioning of the interim facility once an ultimate SWM facility is provided;
 - (g) estimated of the flow drawdown characteristics of the SWM facility;
 - (h) a description of any operating problems encountered and corrective actions taken during the reporting period and the need to further investigation in the following reporting period for pond refinements or ways of improving the performance of the facility to meet the performance target;
 - (i) any need for modifications of the monitoring program;
 - (j) a summary of any complaints received during the reporting period and any steps taken to address the complaints;
 - (k) inspection logs and facility photos taken at time of monitoring events; and
 - (I) any other information as required by the District Manager from time to time.

7. SOURCE WATER PROTECTION

The *Owner* shall, within sixty (60) calendar days of the Minister of the Environment posting approval of a *Source Protection Plan* on the environmental registry established under the Environmental Bill of Rights, 1993 for the area in which this *Approval* is applicable, apply to the *Director* for an amendment to this *Approval* that includes the necessary measures to conform with all applicable policies in the approved *Source Protection Plan*.

Schedule A

- 1. Application for the Approval of Municipal and Private Water and Sewage Works submitted by Fairouz Wahab, P.Eng., Project Manager of Minto Communities Inc, dated June 7, 2012 and supporting documentation.
- 2. Technical Memo from the Model Keeper, Greenland International Consulting to Don Herweyer of the City of Ottawa, dated June 20, 2012.
- 3. Arcadia Phase I Stormwater Management Report, Rev 2- MOE Submission, prepared by IBI Group of Ottawa, ON, dated June 2012.
- 4. Arcadia Interim SWMF Design Brief, Rev 3 MOE Submission, prepared by IBI Group of Ottawa, ON, dated June 2012.
- 5. Letter from Peter Spal, P.Eng. of IBI Group to Edgar Tovilla, P.Eng. of the MOE, dated September 4, 2012, in response to information requested.
- 6. City of Ottawa's Kanata West Overall Monitoring Plan, City of Ottawa's website printout dated September 4, 2012.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Approval* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment..
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved *Works* and to ensure that subsequent owners of the works are made aware of the *Approval* and continue to operate the works in compliance with it.
- 4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected .
- 5. Condition 5 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.
- 6. Condition 6 is included to enable the *Owner* to evaluate and demonstrate the performance of the *Works*, on a continual basis, so that the *Works* are properly operated and maintained at a level which is consistent with the Implementation Plan Kanata West Development Area report, the Carp River Overall Monitoring Program and requirements specified in the Minister's Decision Letter of March 30, 2011, and that the *Works* does not cause any impairment to the receiving watercourse.
- 7. Condition 7 is included to ensure that the works covered by this *Approval* will conform to the significant threat policies and designated Great Lakes policies in the *Source Protection Plan*.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and:
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 17th day of September, 2012

Mansoor Mahmood, P.Eng.
Director
appointed for the purposes of Part II.1 of
the Environmental Protection Act

ET/ c: District Manager, MOE Ottawa Peter Spal, P. Eng., IBI Group

Content Copy Of Original

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 5440-9W3SZT Issue Date: May 1, 2015

Minto Communities Inc. 180 Kent Street West, No. 200 Ottawa, Ontario K1P 0B6

Site Location: Country Glen Way - Ward 4 Kanata North

Lot Part of 3, Concession 1 March

City of Ottawa

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

Installation of storm and sanitary sewers to provide service for the Arcadia Retail Development site in the Community of Kanata West, City of Ottawa. The proposed works are as follows:

Storm sewers (250-1500mm dia.) on Country Glen Way, from the parking lot near the southeast entrance of the mall, discharging to existing storm sewers on Campeau Drive;

Sanitary sewers (200-300mm dia.) on Country Glen Way, from the southeast entrance of the mall, discharging to existing sanitary sewers on Campeau Drive;

including control measures during construction and all other appurtenances essential for the proper operation of the aforementioned works;

all in accordance with the supporting documents listed in Schedule "A" forming part of this Approval.

Schedule "A"

Applications for Environmental Compliance Approval, dated February 12, 2015, received April 15, 2015, submitted by Minto Communities Inc.;

Engineering Drawings dated November 2013, prepared by Demetrius Yannoulopoulos of IBI Group;

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number:
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 1st day of May, 2015

Edgardo Tovilla, P.Eng.
Director
appointed for the purposes of Part II.1 of
the Environmental Protection Act

HZ/

c: District Manager, MOECC Ottawa
Demetrius Yannoulopoulos, IBI Group

Content Copy Of Original

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 3488-9W3RBH Issue Date: May 1, 2015

Minto Communities Inc. 180 Kent Street W, No. 200 Ottawa, Ontario K1P 0B6

Site Location: 370 Huntmar Drive - Ward 4 Kanata North

City of Ottawa

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

Installation of storm and sanitary sewers to provide service for the Arcadia Retail Development site in the Community of Kanata West, City of Ottawa. The proposed works are as follows:

Storm sewers (250-600mm dia.) providing drainage from TCB110D located at the west limit of the site to Block 800 near the east limit with inlets at Blocks 500, 600, and 700, discharging northerly towards existing 600mm dia. storm sewers on Campeau Drive;

Storm sewers (250-975mm dia.) providing drainage for the central and western areas of the site with inlets at Blocks 100, 200, 300, 400, and 900, discharging southeast towards 1350mm dia. storm sewers on Country Glen Way;

Sanitary sewers (150-200mm dia.) providing service for Blocks 500, 600, 700, 800, discharging northerly towards existing 200mm dia. sanitary sewers on Campeau Drive;

Sanitary sewers (150-250mm dia.) providing service for Blocks 100, 200, 300, 400, and 900, discharging easterly towards existing 300mm dia. sanitary sewers on Country Glen Way;

including control measures during construction and all other appurtenances essential for the proper operation of the aforementioned works;

all in accordance with the supporting documents listed in Schedule "A" forming part of this Approval.

Schedule "A"

Applications for Environmental Compliance Approval, dated February 2, 2015, received April 14, 2015, submitted by Minto Communities Inc.;

Engineering Drawings dated November 2013, prepared by Demetrius Yannoulopoulos of IBI Group;

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice

requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 2 St. Clair Avenue West, Floor 12A Toronto, Ontario

* Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 1st day of May, 2015

Edgardo Tovilla, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

M4V 1L5

HZ/

c: District Manager, MOECC Ottawa Demetrius Yannoulopoulos, IBI Group

Tyler Ferguson

Subject: RE: 340 Huntmar - Percolation Rate

From: Scott Dennis <sdennis@Patersongroup.ca>

Sent: Thursday, April 26, 2018 4:13 PM

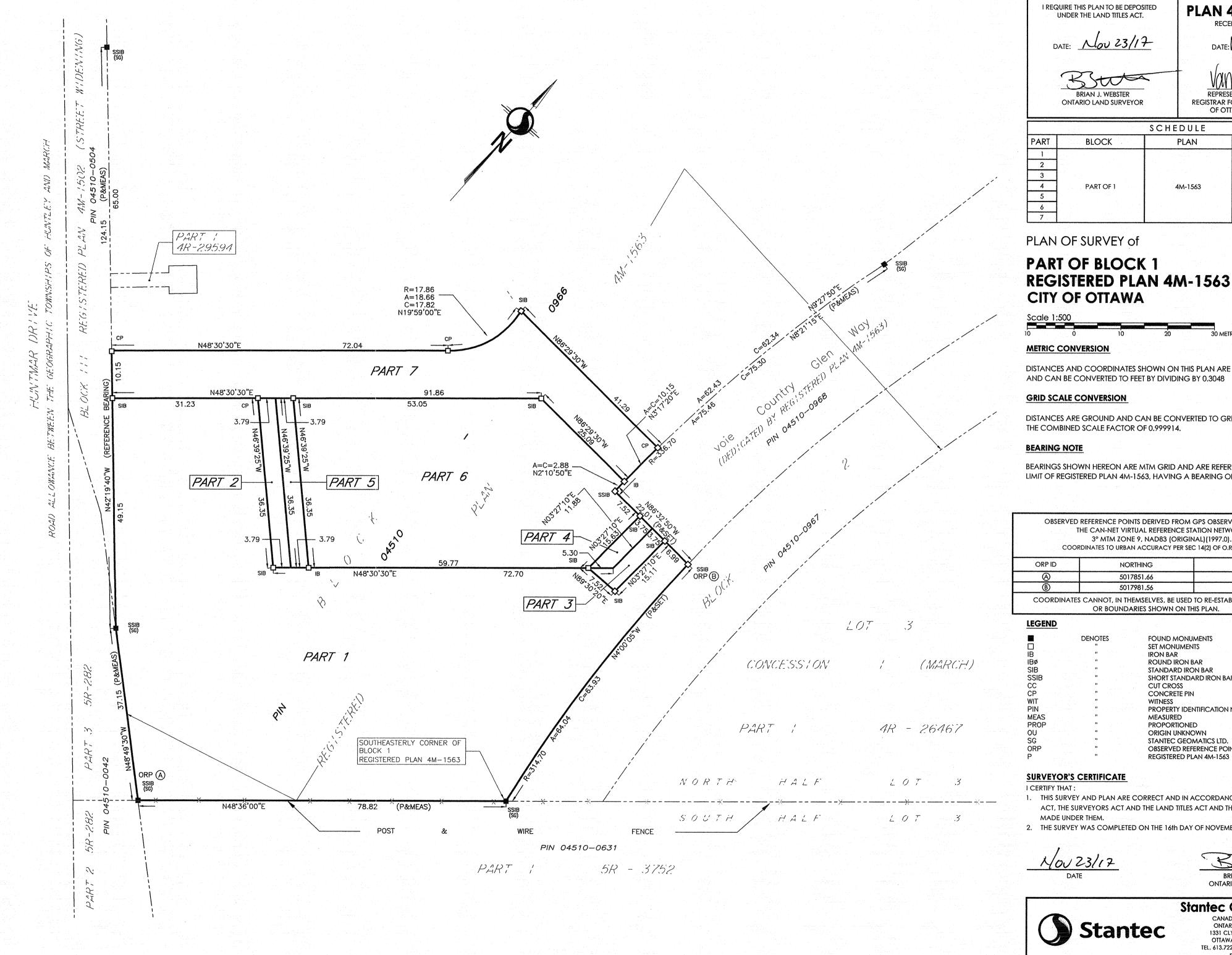
To: Curtis Melanson < c.melanson@mcintoshperry.com>

Cc: Mat Mault (mat.mault@activar.ca) <mat.mault@activar.ca>; Benjamin Clare <b.clare@mcintoshperry.com>; David

Gilbert < DGilbert@Patersongroup.ca >

Subject: RE: 340 Huntmar - Percolation Rate

Curtis,

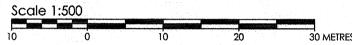

The estimated percolation rate for the silty clay at the 340 Huntmar Site is 35 to 50 mins/cm. This is based on data from a nearby site on Palladium Drive. Please let me know if you require additional information.

Regards, Scott Dennis Geotechnical Engineer

patersongroup

Solution Oriented Engineering

T: (613) 226-7381 ext. 332 154 Colonnade Road South Ottawa, Ontario K2E 7J5


PLAN 4R-30733 RECEIVED AND DEPOSITED

DATE: NOVEMBER 23, 201

REPRESENTATIVE FOR THE LAND
REGISTRAR FOR THE LAND TITLES DIVISION
OF OTTAWA-CARLETON No. 4

		SCHEDULE	
PART	BLOCK	PLAN	PIN
1			
2			
3			
4	PART OF 1	4M-1563	PART OF 04510-0966
5			
6			
7			

REGISTERED PLAN 4M-1563

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY

BEARINGS SHOWN HEREON ARE MTM GRID AND ARE REFERRED TO THE WESTERLY LIMIT OF REGISTERED PLAN 4M-1563, HAVING A BEARING OF N42°19'40"W.

THE CAN-NET VIRTUAL REFERENCE STATION NETWORK: 3° MTM ZONE 9, NAD83 (ORIGINAL)(1997.0). COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10							
		FACTINO					
ORP ID	NORTHING	EASTING					
ORP ID	NORTHING 5017851.66	349257.73					

DENO.	res	FOUND MONUMENTS
"		SET MONUMENTS
IB "		IRON BAR
IBØ "		ROUND IRON BAR
SIB "		STANDARD IRON BAR
SSIB "		SHORT STANDARD IRON BAR
CC "		CUT CROSS
CP "		CONCRETE PIN
WIT "		WITNESS
PIN "		PROPERTY IDENTIFICATION NUMBER
MEAS "		MEASURED
PROP "		PROPORTIONED
OU "		ORIGIN UNKNOWN
SG "		STANTEC GEOMATICS LTD.
ORP "		OBSERVED REFERENCE POINT
D "		DECISTEDED DI ANI AM 1542

- 1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS
- 2. THE SURVEY WAS COMPLETED ON THE 16th DAY OF NOVEMBER, 2017.

Stantec Geomatics Ltd.

CANADA LANDS SURVEYORS
ONTARIO LAND SURVEYORS
1331 CLYDE AVENUE, SUITE 400 OTTAWA, ONTARIO, K2C 3G4 TEL. 613.722.4420 FAX. 613.722.2799 stantec.com

DRAWN: CEC CHECKED: FP PM: FP/BW FIELD: CA PROJECT No.: 161613058-114

APPENDIX B CITY OF OTTAWA PRE-CONSULTATION NOTES

McINTOSH PERRY

Peter Kirkimtzis

From: McCreight, Laurel < Laurel.McCreight@ottawa.ca>

Sent: Monday, June 26, 2017 2:26 PM

To: 'Mat Mault'

Cc: Curtis Melanson; m.dredge@dl-arch.ca
Subject: Pre-Consultation Follow-Up: 340 Huntmar

Attachments: RE: Pre-consultation Request for Kanata Microtel Inn & Suites; Plan & Study List.pdf

Hi Mat,

Sorry for the delay in following up on our pre-consultation meeting on Friday June 16th regarding 340 Huntmar Drive. Please find a summary of our meeting below, as well as a Plan and Study list attached.

General

- Proposal for a Microtel Inn & Suites
- Land is part of a previously approved Minto for Arcadia Retail Complex
- Will sever off parcel for hotel
 - o Will require a Severance application to the Committee of Adjustment
 - o Please consult with Amanda Marsh (<u>amanda.marsh@ottawa.ca</u>) the Committee of Adjustment Planner on the severance application
- Possibly short on parking
 - o Review <u>Section 106(3)</u> of the Zoning By-law for requirements on small car parking to potentially meet parking requirements
 - If parking requirements cannot be met, a <u>Minor Variance</u> can be applied for at the Committee of Adjustment
- Please use the address of 340 Huntmar and not 370
 - o The Committee of Adjustment will assign a new address as part of the severance process
- A new <u>Site Plan Control application</u> (New- Manager Approval, Public Consultation) will be required as a result of the severance
- Please refer to the link for "Guide to Preparing Studies and Plans" in the attached plan/study list for proper submission requirements

Engineering

- Looking for verification regarding as-builts by Minto in order to support servicing through their site
- Water age analysis required
- An infiltration gallery will be required for the site, as this was missed in the previous Arcadia Site Plan and is required through the Kanata West Master Servicing Study
 - o The geotechnical investigation will provide the percolation rate
- A Joint Use and Maintenance Agreement with be required
 - Can be done through the severance process
- The site has an existing ECA
 - What type of amendment is needed/required to proceed
 - o Will require confirmation from MOE
- Please contact Mark Fraser (mark.fraser@ottawa.ca) for any engineering questions

Urban Design

- Keep in mind the treatment of internal drive aisles
- Respect the design of the commercial site in terms of parking in the middle

- Take advantage of the Feedmill Creek Corridor
 - o Think of putting the pool component creekside near the future pedestrian pathway (which will be on the north side of the creek)
 - Outdoor patio outside of pool area
 - Access to outdoor trail network
- Design of hotel
 - o Contemporary and appropriate
 - o Please provide a stronger base- masonry on 1st floor
 - Provide a secondary access out to Huntmar on the backside of the building

Urban Design Review Panel

- The proposed development is subject to review by the <u>Urban Design Review Panel</u>
- The submission requirements and agenda schedule is contained in the UDRP link above
- An informal preconsultation is not necessary
- This can be run congruently with the site plan
- Will try to be on the agenda within the first month of site plan application being submitted
- Items to be aware of from previous UDRP (Arcadia site plan)
 - Reference the Kanata West Concept Plan
 - Address the public realm (Huntmar)
 - The Queensway is a scenic entry route; describe what would be seen from the highway
 - Animation of end treatments

Transportation

 See attached e-mail from Riley Carter's for preliminary comments (the West Group's new Project Manager for transportation is Rosanna Baggs)

Please do not hesitate to contact me if you have any questions.

Regards, Laurel

Laurel McCreight MCIP, RPP

Planner
Development Review West
Urbaniste
Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa
613.580.2424 ext./poste 16587
ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

APPENDIX C WATERMAIN FLOW & FIRE CALCULATIONS

McINTOSH PERRY

Tyler Ferguson

Subject:

RE: Follow-up on water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

From: Lance Erion < lerion@IBIGroup.com> Sent: Monday, November 27, 2017 2:02 PM

To: Allan Kyd <AKyd@minto.com>; Ryan Kennedy <r.kennedy@mcintoshperry.com>

Cc: Curtis Melanson <c.melanson@mcintoshperry.com>; Benjamin Clare <b.clare@mcintoshperry.com>

Subject: RE: Follow-up on water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Based on the daily water consumption and the required fire flow demand our water model shows that a second watermain feed is not required to service the hotel site.

Regards,

Lance Erion P.ENG

Associate

IBI GROUP

400-333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 516 fax +1 613 225 9868

Defining the cities of tomorrow ibigroup.com

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message. NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel

From: Allan Kyd [mailto:AKyd@minto.com] Sent: Monday, November 27, 2017 1:29 PM

To: 'Ryan Kennedy' <r.kennedy@mcintoshperry.com>; Lance Erion <lerion@IBIGroup.com>

Cc: Curtis Melanson < c.melanson@mcintoshperry.com>; Benjamin Clare < b.clare@mcintoshperry.com>

Subject: Follow-up on water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Thanks Ryan. Much appreciated.

Lance is this what you're looking for?

Let me know.

Thanks,

Allan

Allan Kyd Leasing Manager Minto Properties 200-180 Kent St, Ottawa, ON, K1P 0B6 T 613.786.7934 | F 6137863001 minto.com

From: Ryan Kennedy [mailto:r.kennedy@mcintoshperry.com]

Sent: Monday, November 27, 2017 1:24 PM

To: Allan Kyd

Cc: Lance Erion (lerion@ibigroup.com); Curtis Melanson; Benjamin Clare

Subject: RE: Question regarding water consumption requirements - Country Glen Way Construction Drawings - Arcadia

Hotel

Hi Allan,

Per IBI's request below, please note the following demands for the hotel:

- Average daily demand = 0.28 L/s
- Maximum daily demand = 0.41 L/s
- Peak hour demand = 0.75 L/s
- Fire demand = 150 L/s

Hope this helps -let me know if you require anything further.

Thanks.

Ryan Kennedy, P. Eng.

Practice Area Lead | Land Development
115 Walgreen Road, RR 3, Carp, ON K0A 1L0

T. 613.836.2184 (ext 2243) | F. 613.836.3742 | C. 613.868.5790

r.kennedy@mcintoshperry.com | www.mcintoshperry.com

McINTOSH PERRY

Confidentiality Notice – If this email wasn't intended for you, please return or delete it. If you want to read all of the legal language around this concept, click here.

From: Benjamin Clare

Sent: Friday, November 24, 2017 10:54 AM

To: Curtis Melanson < c.melanson@mcintoshperry.com >

Subject: FW: Question regarding water consumption requirements - Country Glen Way Construction Drawings - Arcadia

Hotel

Hi Curtis,

See below, for your input. Please also copy me when you respond to Allan re: servicing plans, easements, etc.

Thanks,

Benjamin Clare, MCIP RPP

Senior Land Use Planner

T. 613.836.2184 (ext 2290) | C. 613.552.0925

From: Allan Kyd [mailto:AKyd@minto.com]

Sent: November-24-17 10:38 AM

To: Benjamin Clare < b.clare@mcintoshperry.com >

Cc: Ed Ireland <ed.ireland@IBIGroup.com>; Jean-Michel Le Blanc <JLeBlanc@minto.com>; Curtiss Scarlett

<CScarlett@minto.com>; 'Lance Erion' <lerion@IBIGroup.com>

Subject: Question regarding water consumption requirements - Country Glen Way Construction Drawings - Arcadia

Hotel

Hi Ben,

We're trying to finalize our water loop requirements and our 'civil' was asking what the hotel's:

- 1) daily consumption requirements and
- 2) fire demand

Capacity currently provided is:

> My analysis shows the fire flow available, in our design we calculated a fire flow demand of 183.3 l/s for retail. Does the Hotel require a higher fire flow than 194 l/s, also the City can require a second water main connection if the average flow exceeds 50,000 l/day, do you have the Hotel's daily water demand.

Could you let us know? See Lance's email below for more detail.

Tx,

ΑK

Allan Kyd
Leasing Manager

Minto Properties
200-180 Kent St, Ottawa, ON, K1P 0B6
T 613.786.7934 | F 6137863001
minto.com

----Original Message-----

From: Lance Erion [mailto:lerion@IBIGroup.com]
Sent: Friday, November 24, 2017 9:51 AM

To: Allan Kyd

Cc: Ed Ireland; Jean-Michel Le Blanc; Curtiss Scarlett

Subject: RE: AKs reply to completion of interior water loop - Country Glen Way Construction Drawings - Arcadia Hotel

There is no issue with pressure or water stagnating as a hotel is a high user of water. I need to know the fire demand for the hotel and the daily water consumption, can you request this from the hotel's civil engineer.

Regards,

Lance Erion P.Eng Associate IBI Group 400-333 Preston Street Ottawa ON K1S 5N4 Canada

tel 613 225 1311 ext 516 fax 613 225 9868 email lerion@IBIGroup.com web www.ibigroup.com

NOTE: This e-mail message and attachments may contain privileged and confidential information. If you have received this message in error, please immediately notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

----Original Message-----

From: Allan Kyd [mailto:AKyd@minto.com] Sent: Friday, November 24, 2017 7:08 AM To: Lance Erion < lerion@IBIGroup.com>

Cc: Ed Ireland <ed.ireland@IBIGroup.com>; Jean-Michel Le Blanc <JLeBlanc@minto.com>; Curtiss Scarlett

<CScarlett@minto.com>

Subject: AKs reply to completion of interior water loop - Country Glen Way Construction Drawings - Arcadia Hotel

Thanks for getting back Lance. I think we're less concerned with the water service capacity being able to service the hotel requirements but will get confirmation that we're OK. What we wanted to know is, will the City require us to complete the primary loop to Campeau Dr. before allowing the Hotel to use their water service. Apparently there could be some concern about water stagnating in the pipe and perhaps some pressure issues. I've heard the City typically wants the water to have two primary service outlets to be operational. Not exactly sure as this is not my area of expertise. Is that something you can provide us some direction on?

Let us know would you.

Thanks,

Allan Sent from my iPad

Allan Kyd Leasing Manager Minto Properties 200-180 Kent St, Ottawa, ON, K1P 0B6 T 613.786.7934 | F 6137863001 minto.com

You are receiving this email because you may have expressly consented to receive commercial electronic messages from Minto Group of Companies (Minto Properties Inc, Minto Communities Canada Inc., Minto Communities LLC.) and affiliates. To unsubscribe, please click here. Contact Minto Group of Companies at 200-180 Kent Street, Ottawa ON K1P 0B6 or 1-877-751-2852. Click here to access our privacy policy.

Boundary Conditions 340 Huntmar Drive.

Information Provided

Date provided: 25 April 2018

	Demand			
Scenario	L/min	L/s		
Average Daily Demand	16.8	0.3		
Maximum Daily Demand	24.6	0.4		
Peak Hour	45	0.8		
Fire Flow Demand	11000	183.3		

1

of connections

Location

Results

Connection 1 - 340 Huntmar Drive

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	162.0	82.6
Peak Hour	158.0	76.9
Max Day plus Fire (11,000 l/min)	147.8	70.8

¹ Ground Elevation = 103.91 m

Considerations

1. Pressure reducing valves are to be installed due to pressure exceeding 80 psi (552 kPa) as per City of Ottawa Water Design Guidelines.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

CP-17-0199 - 340 Huntmar Drive - Water Demands

 Project:
 340 Huntmar Drive

 Project No.:
 CP-17-0199

 Designed By:
 PGK

 Checked By:
 RPK

 Date:
 May 9, 2018

 Site Area:
 0.65 gross ha

 Bed-Space:
 108 Suites

AVERAGE DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	350	L/c/d
Industrial - Light	35,000	L/gross ha/d
Industrial - Heavy	55,000	L/gross ha/d
Shopping Centres	2,500	L/(1000m² /d
Hospital	900	L/(bed/day)
Schools	70	L/(Student/d)
Trailer Parks no Hook-Ups	340	L/(space/d)
Trailer Park with Hook-Ups	800	L/(space/d)
Campgrounds	225	L/(campsite/d)
Mobile Home Parks	1,000	L/(Space/d)
Motels	150	L/(bed-space/d)
Hotels	<i>22</i> 5	L/(bed-space/d)
Tourist Commercial	28,000	L/gross ha/d
Othe Commercial	28,000	L/gross ha/d
AVERAGE DAILY DEMAND	0.28	L/s

MAXIMUM DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	2.5 x avg. day	L/c/d
Industrial	1.5 x avg. day	L/gross ha/d
Commercial	1.5 x avg. day	L/gross ha/d
Institutional	1.5 x avg. day	L/gross ha/d
MAXIMUM DAILY DEMAND	0.42	L/s

MAXIMUM HOUR DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	2.2 x max. day	L/c/d
Industrial	1.8 x max. day	L/gross ha/d
Commercial	1.8 x max. day	L/gross ha/d
Institutional	1.8 x max. day	L/gross ha/d
MAXIMUM HOUR DEMAND	0.76	L/s

WATER DEMAND DESIGN FLOWS PER UNIT COUNT CITY OF OTTAWA - WATER DISTRIBUTION GUIDELINES, JULY 2010

CP-17-0199 - 340 Huntmar Drive - OBC Fire Calculations

Project: 340 Huntmar Drive Project No.: CP-17-0199 Designed By: Checked By: RPK May 9, 2018 Date:

Ontario 2006 Building Code Compendium (Div. B - Part 3)

Water Supply for Fire-Fighting - Hotel

Building is classified as Group: D

(from table 3.2.2.55)

From

*approximate distances

Building is of noncombustable construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2, including loadbearging walls, columns and arches.

From Div. B A-3.2.5.7. of the Ontario Building Code - 3. Building On-Site Water Supply:

(a) $Q = K \times V \times Stot$

where:

Q = minimum supply of water in litres

K = water supply coefficient from Table 1

V = total building volume in cubic metres

Stot = total of spatial coefficient values from the property line exposures on all sides as obtained from the formula:

Stot = 1.0 + [Sside1+Sside2+Sside3+...etc.]

						110111
K	18	(from Table 1 pg A-31) (Worst case occupancy {E / F2} 'K' value used)				Figure 1
V	17,149	(Total building volume in m³.)				
Stot	1.7	(From figure 1 pg A-32)	Snorth	6.934	m	0.3
Q =	524,751.75	L	Seast	60.266	m	0.0
			Ssouth	4.925	m	0.5
From Table 2: Required Minimum Water Supply Flow Rate (L/s)				14.597	m	0.0

9000 L/min (if Q >270,000 L) 2378 gpm

CP-17-0199 - 340 Huntmar Drive - Fire Underwriters Survey (FUS) Fire Calculations

1 of 2

 Project:
 340 Huntmar Drive

 Project No.:
 CP-17-0199

 Project No.:
 CP-17-0199

 Designed By:
 PGK

 Checked By:
 RPK

 Date:
 May 9, 2018

From the Fire Underwriters Survey (1999)

From Part II – Guide for Determination of Required Fire Flow Copyright I.S.O.:

F = 220 x C x vA Where:

F = Required fire flow in liters per minute

C = Coefficient related to the type of construction.

A = The total floor area in square meters (including all storey's, but excluding basements at least 50 percent below grade) in the building being considered.

A. Determine The Coefficient Related To The Type Of Construction

The building is considered to be of ordinary construction type. Therefore,

C = 1.00

B. Determine Ground Floor Area

As provided by the Architect:

Floor Area (One Floor) = 1,008.75 m^2 A = 4,035.00 m^2

This floor area represents the final build-out of the development; as outlined on the Site Plan drawing.

C. Determine Height in Storeys

From Architectural Drawings:

Number of Storeys = 4.00

D. Calculate Required Fire Flow

F = 220 x C x vA

F = 220.00 X 1.00 X $\sqrt{4035.00}$

F = 13,974.76 L/min.

E. Determine Increase or Decrease Based on Occupancy

From note 2, Page 18 of the Fire Underwriter Survey:

Low Hazard - Hotel No Change

> Occupancy Decrease = 0.00 L/min.F = 13,974.76 L/min.

CP-17-0199 - 340 Huntmar Drive - Fire Underwriters Survey (FUS) Fire Calculations

2 of 2

F. Determine the Decrease, if any for Sprinkler Protection

From note 3, Page 18 of the Fire Underwriter Survey:

- The flow requirement may be reduced by up to 50% for complete automatic sprinkler protection depending upon adequacy of the system.
- The credit for the system will be a maximum of 30% for an adequately designed system conforming to NFPA 13 and other NFPA sprinkler standards.
- Additional credit of 10% if water supply is standard for both the system and fire department hose lines
- If sprinkler system is fully supervised system, an additional 10% credit is granted
- The entire building will be installed with a fully automated, standardized with the City of Ottawa Fire Department and fully supervised.
- Therefore the value obtained in Step E is reduced by 30% (The building is sprinklered with a standard system and fire department hose lines)

Reduction = 13,974.76 L/min. X 30%

Reduction = 4,192.43 L/min.

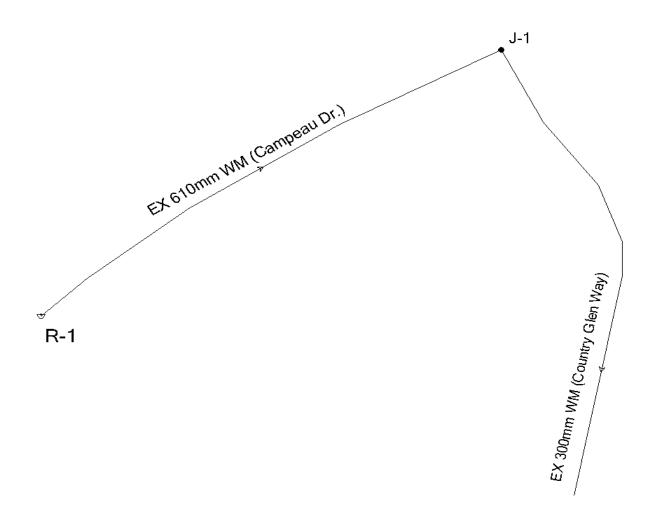
G. Determine the Total Increase for Exposures

From note 4, Page 18 of the Fire Underwriter Survey:

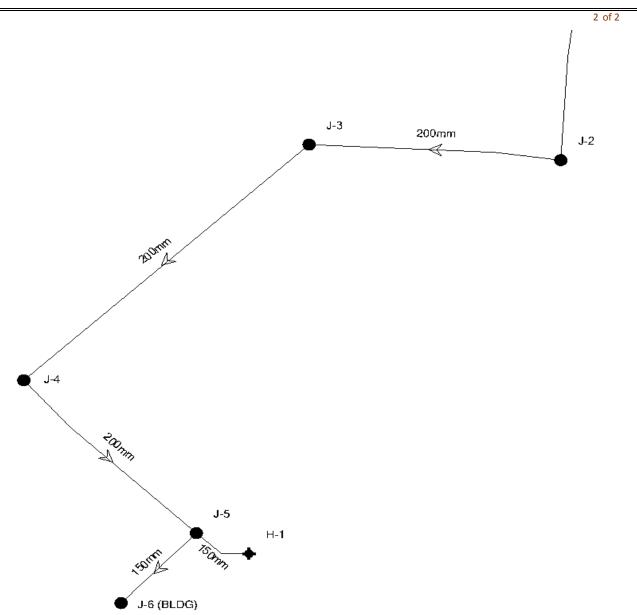
- Exposure distance to the concept future development layout adjacent to the proposed site on the north and east sides of the building will likely be between 30.1m-45m or greater.
- There are no existing buildings surrounding the remainder of the site that are within 45m.
- Therefore the charge for exposure is 10% of the value obtained in Step E.

Increase = 13,974.76 L/min. X 10%

Increase = 1,397.48 L/min.


H. Determine the Total Fire Demand

- To the answer obtained in E, substract the value obtained in F and add the value obtained in G
- Fire flow should be no less than 2,000L/min. and the maximum value shoul not exceed 45,000L/min.


F = 13,974.76 L/min. - 4,192.43 L/min. + 1,397.48 L/min.

F = 11,179.81 L/min.

Therefore, after rounding to the nearest 1,000 L/min, the total required fire flow for the development is 11,000 L/min (3,434 GPM).

CP-17-0199 - 340 Huntmar Drive - WaterCAD Model Schematic

Average Day

Label	Elevation (m)	Demand (L/min)	Pressure (psi)	Hydraulic Grade (m)
J-1	92.50	0.00	98.65	162.00
J-2	94.24	0.00	96.18	162.00
J-3	95.61	0.00	94.24	162.00
J-4	96.98	0.00	92.29	162.00
J-5	96.77	0.00	92.59	162.00
J-6 (BLDG)	97.38	16.80	91.73	162.00

Peak Hourly

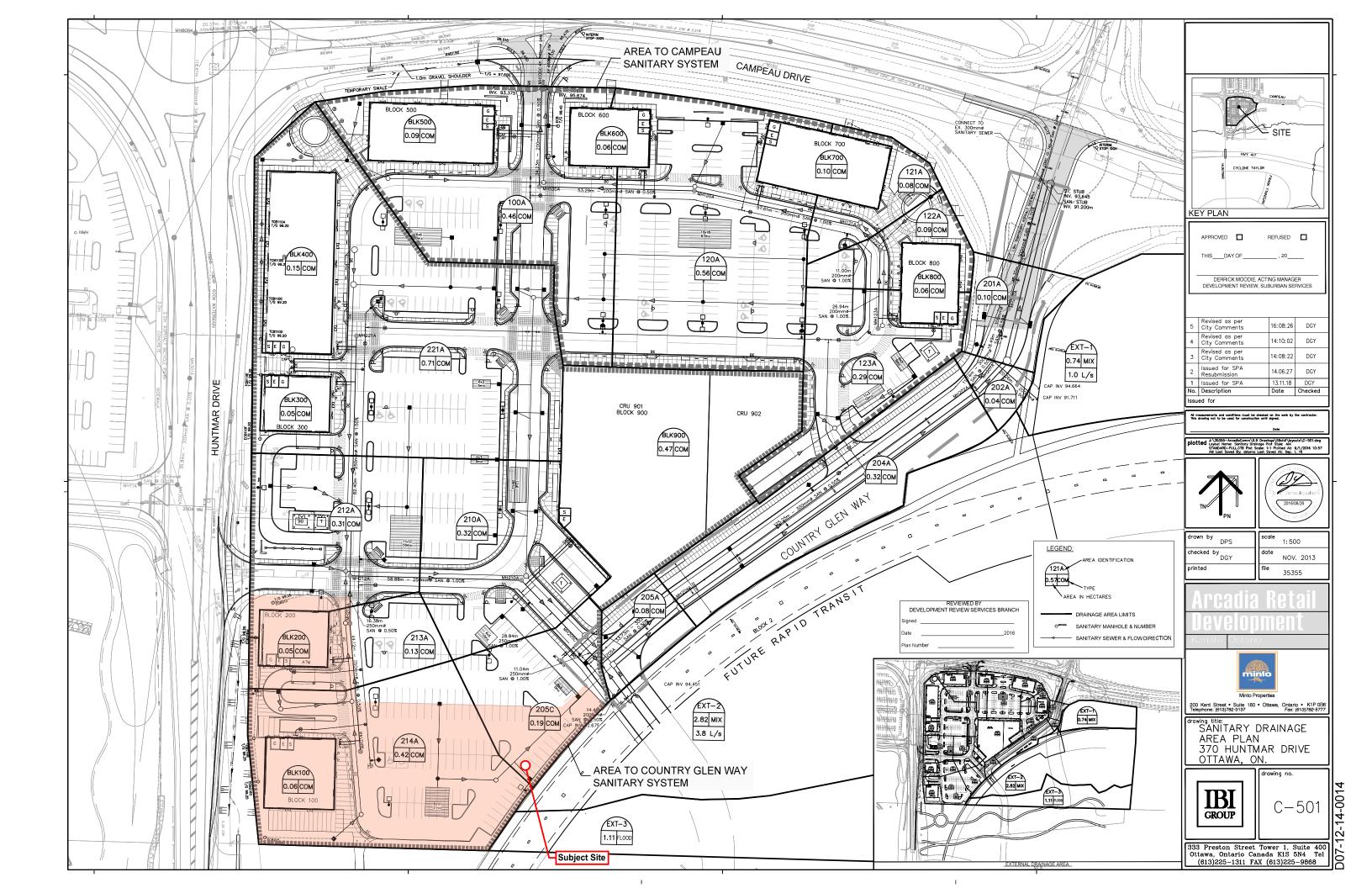
Label	Elevation (m)	Demand (L/min)	Pressure (psi)	Hydraulic Grade (m)	
J-1	92.50	0.00	92.97	158.00	
J-2	94.24	0.00	90.50	158.00	
J-3	95.61	0.00	88.56	158.00	
J-4	96.98	0.00	86.61	158.00	
J-5	96.77	0.00	86.91	158.00	
J-6 (BLDG)	97.38	45.60	86.05	158.00	

Max Day + Fire Flow

ID	Label	Is Fire Flow Run Balanced?	Satisfies Fire Flow Constraints?	Fire Flow (Needed) (L/min)	Fire Flow (Available) (L/min)	Pressure (psi)	Elevation (m)	Demand (L/min)
112	H-1	True	True	11,000.00	11,157.75	72.29	96.87	0.00
108	J-1	False	False	11,000.00	(N/A)	78.50	92.50	0.00
103	J-2	False	False	11,000.00	(N/A)	76.03	94.24	0.00
104	J-3	False	False	11,000.00	(N/A)	74.08	95.61	0.00
101	J-4	False	False	11,000.00	(N/A)	72.14	96.98	0.00
96	J-5	False	False	11,000.00	(N/A)	72.43	96.77	0.00
99	J-6 (BLDG)	False	False	11,000.00	(N/A)	71.57	97.38	25.20

APPENDIX D SANITARY SEWER CALCULATIONS

McINTOSH PERRY



IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

SANITARY SEWER DESIGN SHEET

PROJECT: NAME OF PROJECT LOCATION: CITY OF OTTAWA CLIENT: NAME OF CLIENT

	LOCATION			RESIDENTIAL							Alexander and a second		ICI AREAS							INFILTRATION ALLOWANCE							PROPOSED SEWER DESIGN					
		UNIT TYPES AREA POPULATION						PEAK	PEAK		ARE	A (Ha)	(Ha)					EA (Ha) FLOW		CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	VELOCITY	1 AVA	AVAILABLE					
STREET	AREA ID	FROM	TO MH	SF	SD	TH	APT	(Ha)	IND	CUM	FACTOR	FLOW				IMERCIAL INDUSTRIAL		FLOW	IND	сим	(L/s)	FLOW (L/s)		(m)			(full)	(actual)	CAPACITY			
		MH										(L/s)	IND	CUM	IND	CUM	IND	IND CUM	(L/s)	IND	COIVI	(2/3/	(1./3)	(L/s)	(m)	(mm)	(%)	(m/s)	(m/s)	L/s		
	BLK800	BLK800A	MAIN						0.0	0.0	4.00	0.00		0.00	0.06	0.06		0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.50	150	1.00	0.871		15.82	99.57	
	123A	MH123A	MH122A	1	1				0.0	0.0	4.00	0.00		0.00	0.29	0.35	-	0.00	0.30	0.29	0.35	0.10	0.40	24.00								
	122A	MH122A	MH121A						0.0	0.0	4.00	0.00		0.00	0.09	0.44		0.00	0.38	0.09	0.44	0.10	0.40	34.22	26.94 11.00	200	1.00	1.055	- 2	33.81	98.83	
											1988 E								0.20	0.00	Marie Control	Ville	0.51	34.22	11.00	200	1.00	1.055		33.71	98.52	
	BLK700	BLK700A	MAIN	-				-	0.0	0.0	4.00	0.00		0.00	0.10	0.10		0.00	0.09	0.10	0.10	0.03	0,11	15.89	6.50	150	1.00	0.871		15.77	99.28	
	121A	MH121A	MH120A						0.0	0.0	4.00	0.00		0.00	0.08	0.62		0.00	0.54	0.08	0.67	0.17	0.71	34.22	57.61	200	1.00	1.055		33.50	97.92	
	BLK600	BLK600A	MAIN						0.0	0.0	4.00	0.00	-	0.00	0.06	0.06		0.00	0.05	0.06	0.06	0.02	0.07	15.89	6,50	150	1.00	0.074				
	120A	MH120A							- 00	0.0	4.00	0.00		0.00							Name of Street,						1.00	0.871		15.82	99.57	
	120A	WHI2GA	MH100A						0.0	0.0	4.00	0.00		0.00	0.55	1.24		0.00	1.08	Ω 56	1.74	0.35	1.42	24.19	53.29	200	0.50	0.746		22.77	94.12	
	BLK500	BLK500A	NIAIN		-	-			0.0	0.0	4.00	0.00		0.00	0.09	0.09		0.00	0.08	0.09	0.09	0.03	0.10	15.89	15.00	150	1.00	0.871		15.78	99.35	
	100A	MHIODA	MH100C	j					0.0	0.0	4.00	0.00		0.00	0.46	1.79		0.00	1.55	9,46	1.79	0.50	2.06	24.19	34.23	200	0.50	0.746		22.14	91.51	
		MH100C	EXMH301A	1	-				0.0	0.0	-				0.00	1.79			1.55	0.00	1.79	0.50	2.06	24.19	23.50	200	0.50	0.746		22.14	91.51	
																														-		
	BLK400	BLK400A	MAIN		4				0.0	0.0	4.00	0.00		0.00	0.15	0.15		0.00	0.13	0.15	0.15	0.04	0.17	15,89	6.50	150	1.00	0.871		15.72	98.92	
	BLK300	BLK300A	MAIN	_	-	-		2	0.0	0.0	4.00	0.00		0.00	0.05	0.05		0.00	0.04	0.05	0.05	0.01	0.06	15.89	6.50	150	1.00	0.871		15.83	99.64	
	221A	MHZ21A	MH212A						0.0	0.0	4.00	0.00		0.00	0.71	0.91		0.00	0.79	0.71	0:91	0.25	1.04	75.98	82.40	250	1.50	1.500	0.522	74.94	98.63	
	BLK100	BLK100A	MAIN						0.0	0.0	4.00	0.00		0.00	0.06	0.06	-	0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.85	150	1.00	0.871		45.00	00.55	
	BLK200	BLK200A	MAIN			5			0.0	0.0	4,00	0.00		0.00	0.05	0.05		0.00	0.04	0.05	0.05	0.01	0.06	15.89	6.75	150	1.00	0.871		15.82 15.83	99.57 99.64	
	214A	MH214A	MH213A		1		1		0.0	0.0	4.00	0.00		0.00	0.42	0.53		0.00	0.46	0.42	0.53	0.15	0.01	42.07	1111							
																			0.46	0.42	0.53	0.15	0.61	43.87	44.12	250	0.50	0.866	0.301	43,26	98.61	
	213A	MH213A	MH212A						0.0	0.0	4.00	0.00		0.00	0.15	0,66		0.00	0.57	0.73	0.66	0.18	0.76	43.87	16.38	250	0.50	0.866	0.325	43.11	98.27	
	212A	MH212A	MH210A						0.0	0.0	4.00	0.00		0.00	0.31	1.88		0.00	1.63	0.31	1.88	0.53	2.16	62.04	58.88	250	1.00	1.224	0.551	59.88	96.52	
	BLK900	BLK900A	MAIN						0.0	0.0	4.00	0.00		0.00	0.47	0.47		0.00	0.41	0.47	0.47	0.13	0.54	11.23	22.08	150	0.50	0.616		10.69	95-20	
	210A	B41174.04	MH205C						- 00	2.0	1.00	0.00		0.00																10.05	33.20	
	210A	MH210A MH205C	MH205C MH205A		1	-			0.0	0.0	4.00	0.00		0.00	0.32	2.67		0.00	2.32	0.32	2.67	0.75	3.07	62.04 62.04	28.84	250	1.00	1.224	0.633	58.97	95.06	
							010-000								- N 103			0.00	2.70	0.13		U-80	3.28	62.04	11.04	250	1.00	1.224	0.633	58.76	94.71	
ternal South mixed	EXT 2	STUB	MH205A						0.0	0.0	4.00	0.00		0.00	_	0:00		0.00	3.01	2.82	2.62	0.79	3.80	24.19	14.51	200	0.50	0.746		20.39	84.29	
eet 1	205A	MH205A	MH204A						0.0	0.0	4.00	0.00		0.00	80.0	2.94		0.00	5.56	0.08	5:76	1.61	7.18	71.33	33.73	300	0.50	0.978	0.620	64.16	89.94	
eet 1	204A	MHZDAA	MH202A						0.0	0.0	4.00	0.00		0.00	58.0	3.26		0.00	5.84	0.32	6.08	1.70	7.54	71,33	125.25	300	0.50	0.978	0.628	63.79	89.43	
eet 1	202A	MH202A	MH201A	-	-				0.0	0.0	4.00	0.00		0.00	0.04	3.30		0.00	5.87	0.04	6.12	1.71	7.59	71.33	11.74	300	0.50	0.978	0.633	63.75	89.36	
ternal East Mix	EXT-1	Stub	MH201A						0.0	0.0	4.00	0.00		0.00		0.00		0.00	0.79	0.74	0.74	0.21	1.00	24.19	20.27	200	0.50	0.746		23.19	95.87	
eet 1	201A	MH201A	MH200A						0.0	0.0	4.00	0.00		0.00	0.10	3.40		0.00	6.75	0.10	6.06	4.05	0.70								LVACSES	
eet 1	200A	MH200A	EX CAP				72.15	-	0.0	0.0	4.00	0.00		0.00	0.10	3.40		0.00	6.75	0.10	6.96 6.96	1.95	8.70 8.70	71.33 58.82	18.49 45.35	300	0.50	0.978	0.659	62.63	87.80	
		EX CAP	ЕХМН303А						0.0	0.0			0.00	0.00	0.00	3.40	0.00	0.00	6.75	0.00	6.96	1.95	8.70	58.82	20.50	300	0.34	0.806	0.630 0.630	50.12 50.12	85.20 85.20	
sign Parameters:		Notes:						-	Designed:	R	RM	M		No.		1.1	2 100	Revision														
	Pasidontial (A)					1. Mannings coefficient (n) = 0.013										1,	Issued for SPA									Date 11/15/2013						
Residential				2, Demand (per capita): 350 L/day 300 L/day 3, Infiltration allowance: 0,28 L/s/Ha 0.4 L/s/Ha 4, Residential Peaking Factor:						Checked: DY					2,	Revised as per City Comments Revised as per City Comments Revised as per City Comments									6/24/2014							
	p/p/u Peak Factor p/p/u INST 50,000 L/Ha/day 1,5								L/s/Ha						4,										8/22/2014							
APT 1.8 p/p/u					4. Residential Peaking Factor: Harmon Formula = 1+(14/(4+P^0.5))											4.	Revised as per City Comments									10/2/2014						
ther 60 p/p/Ha		IND 35,000 L/Ha/day MOE Chart									Dwg. Refere	nce:	12345-501					- AIII-														
	17000 L/Ha/day																	Reference: 2345.5.7.1		Types (all a line line line line line line line line		Date:			28.000	1. 1. 1. 1.	DELUSION	Sheet I	No:			

Tyler Ferguson

Subject: RE: Microtel Kanata Pool Backwash Info

From: Nicolas Seguin < nseguin@lrl.ca > Sent: Tuesday, April 3, 2018 3:23 PM

To: Curtis Melanson < c.melanson@mcintoshperry.com>

Cc: Martin Tessier <mtessier@lrl.ca>; Mathieu Mault <mat.mault@activar.ca>

Subject: Microtel Kanata Pool Backwash Info

Hi Curtis,

As discussed on the phone, we don't have a precise value for this at this stage of the project. The pool equipment will be designed by a pool equipment supplier. The pump will be sized based on the required filtration rate of the pool which will be determined by many factors.

This said, on past projects we have seen backwash values go up to 140gpm which would be the worst case.

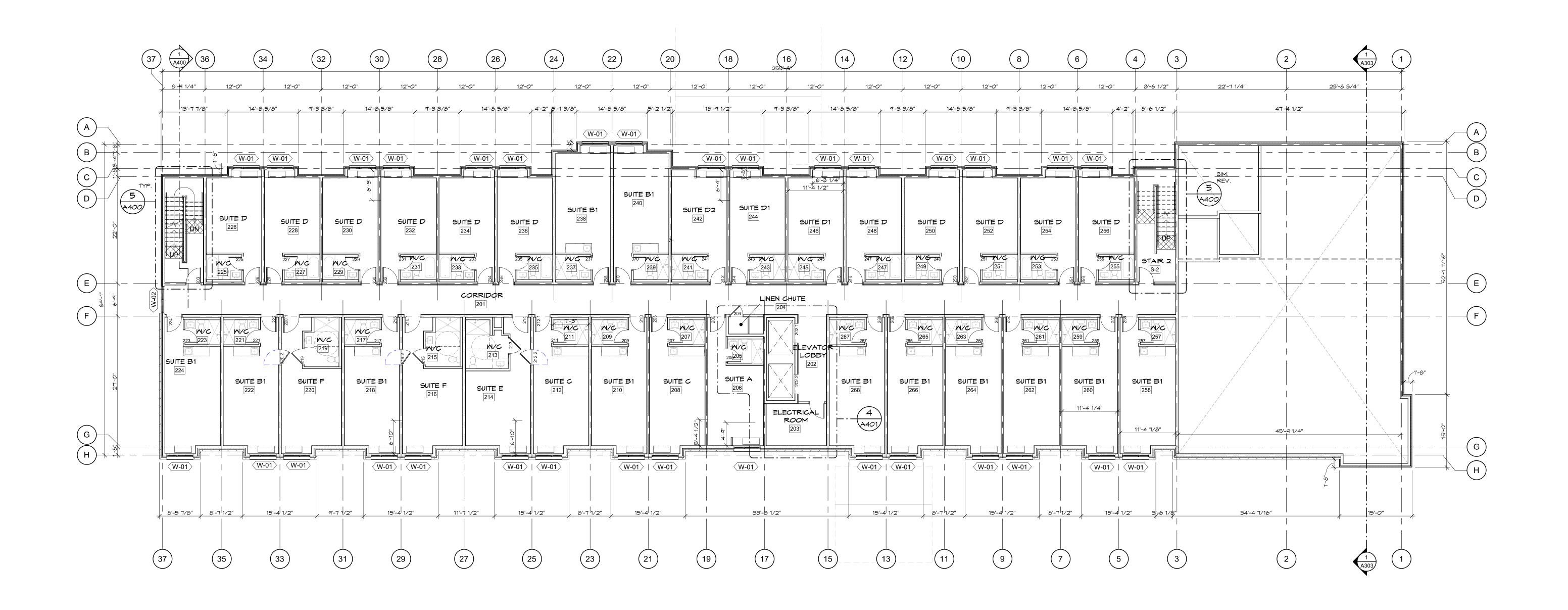
Let me know if you have other questions on this and I will help as best I can.

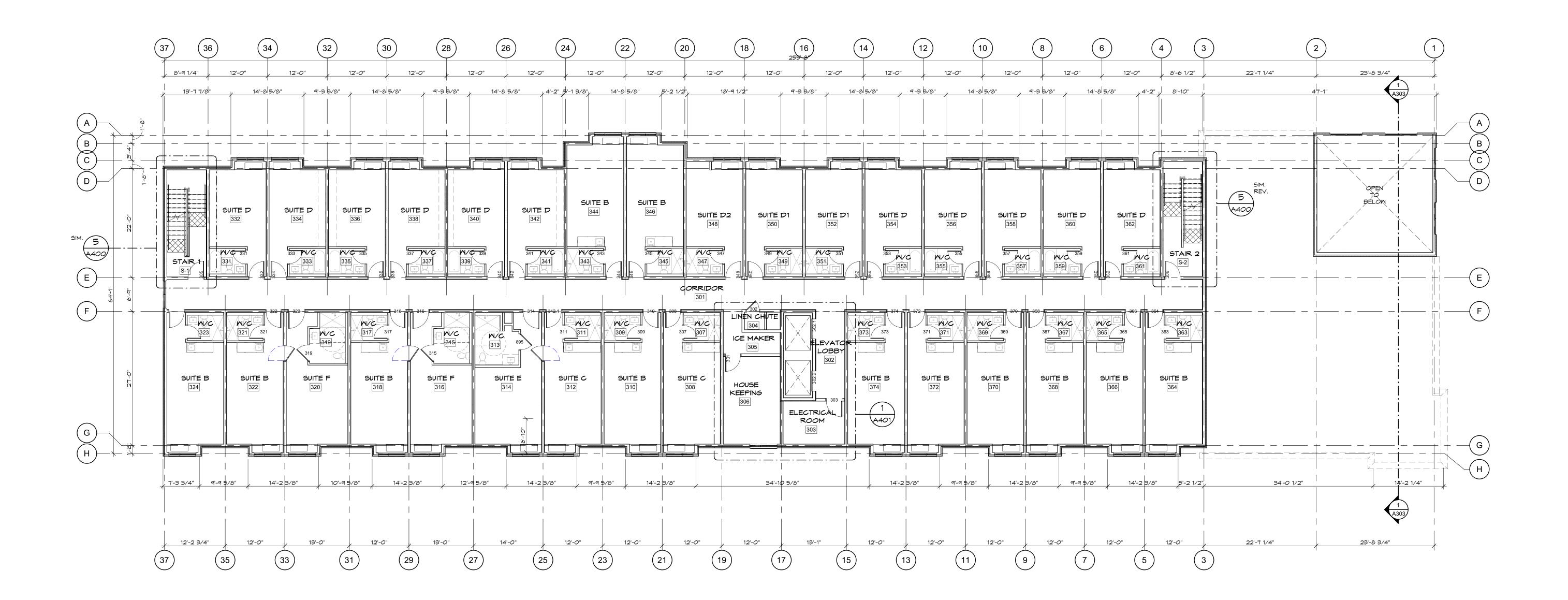
Thank you, Nicolas Séguin, P.Eng. Mechanical Engineer

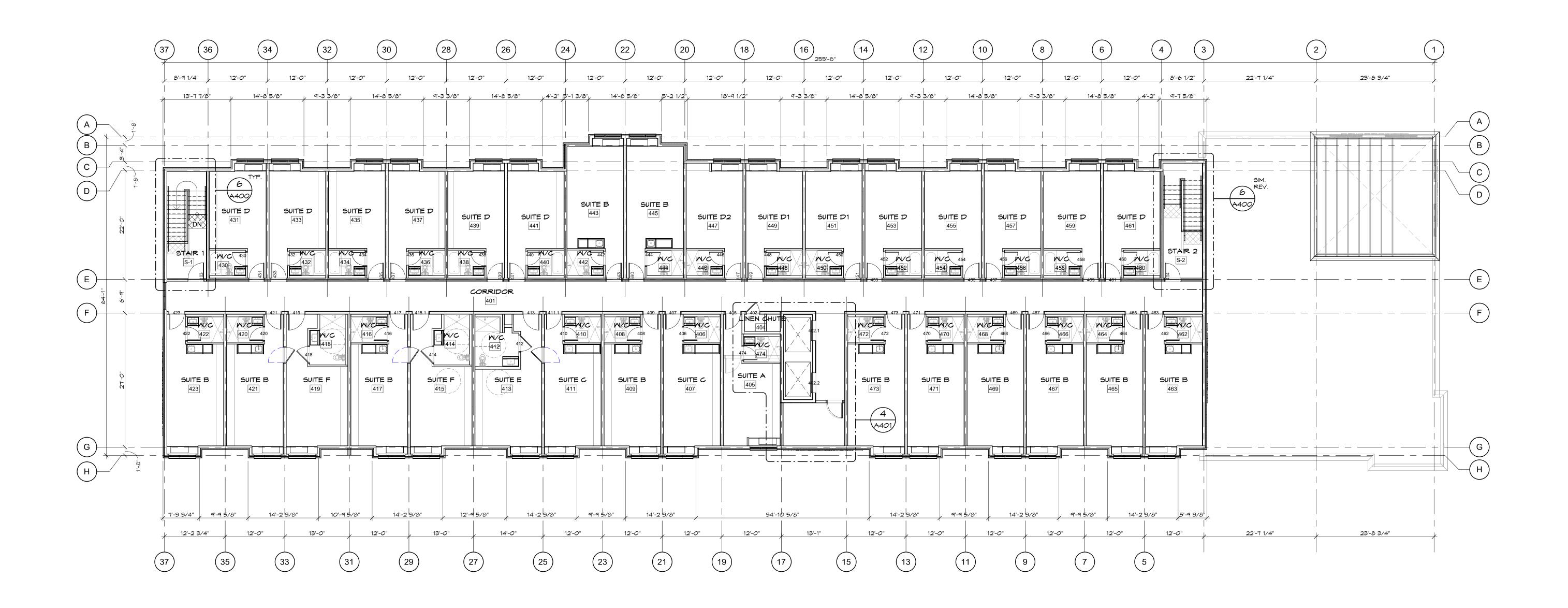
LRL Associates Ltd.

5430 Canotek Road Ottawa, Ontario K1J 9G2


T (613) 842-3434 or (877) 632-5664 ext 264


C (613) 915-6072


F (613) 842-4338


E nseguin@lrl.ca

www.lrl.ca

McINTOSH PERRY

Project: CP-17-0199 - Microtel Inn & Suites

Designed By: TDF

Checked By: RPK

Date: May 9, 2018

Sanitary Flow Calculations

1. Building Occupancy

The maximum number of suites will be 108 units with a breakfast area and Swimming Pool as per draft architectural floor plans.

2. Daily Volume in Litres

As per the extract of the City of Ottawa Sewer Design Guidelines, Appendix 4-A; Daily Sewage Flow for Motels and Hotels;

Residential Portion

With full housekeeping facilities = 225 Liters/Person/Day

Non-Residential Portion

• With Dining Room = 125 Liters/Seat/Day

As per the extract of the City of Ottawa Sewer Design Guidelines, Appendix 4-A; Daily Sewage Flow for Parks, Beaches, Picnic Grounds, Public Swimming Pools;

Swimming pools & beaches with = 40 Liters/Person/Day
 Bathrooms, showers and toilets

3. Peak Flow (Q/p)

• $Q_{Residential}(p) = F \times P$ Where:

F = 225 Litres/Person/Day

P = 216 People (Occupancy as per Section 3.1.17.1 in OBC)

• Therefore, $Q_{Residential}(p) = (225) \times (108) = 48,600 \text{ L/Day}(0.563 \text{ L/s})$

• $Q_{Non-Residential}(p) = F \times P$ Where:

F = 125 Litres/Seat/Day

P = 52 Seats

• Therefore, $Q_{Non-Residential}(p) = (125) \times (52) = 6,500 \text{ L/Day}(0.075 \text{ L/s})$

• $Q_{Pool}(p) = F \times P$ Where:

F = 40 Litres/Person/Day

P = 42 People (Occupancy as per Section 3.1.17.1 in OBC)

Therefore, Q_{Pool} (p) = (40) x (42) = 1,680 L/Day (0.019 L/s)

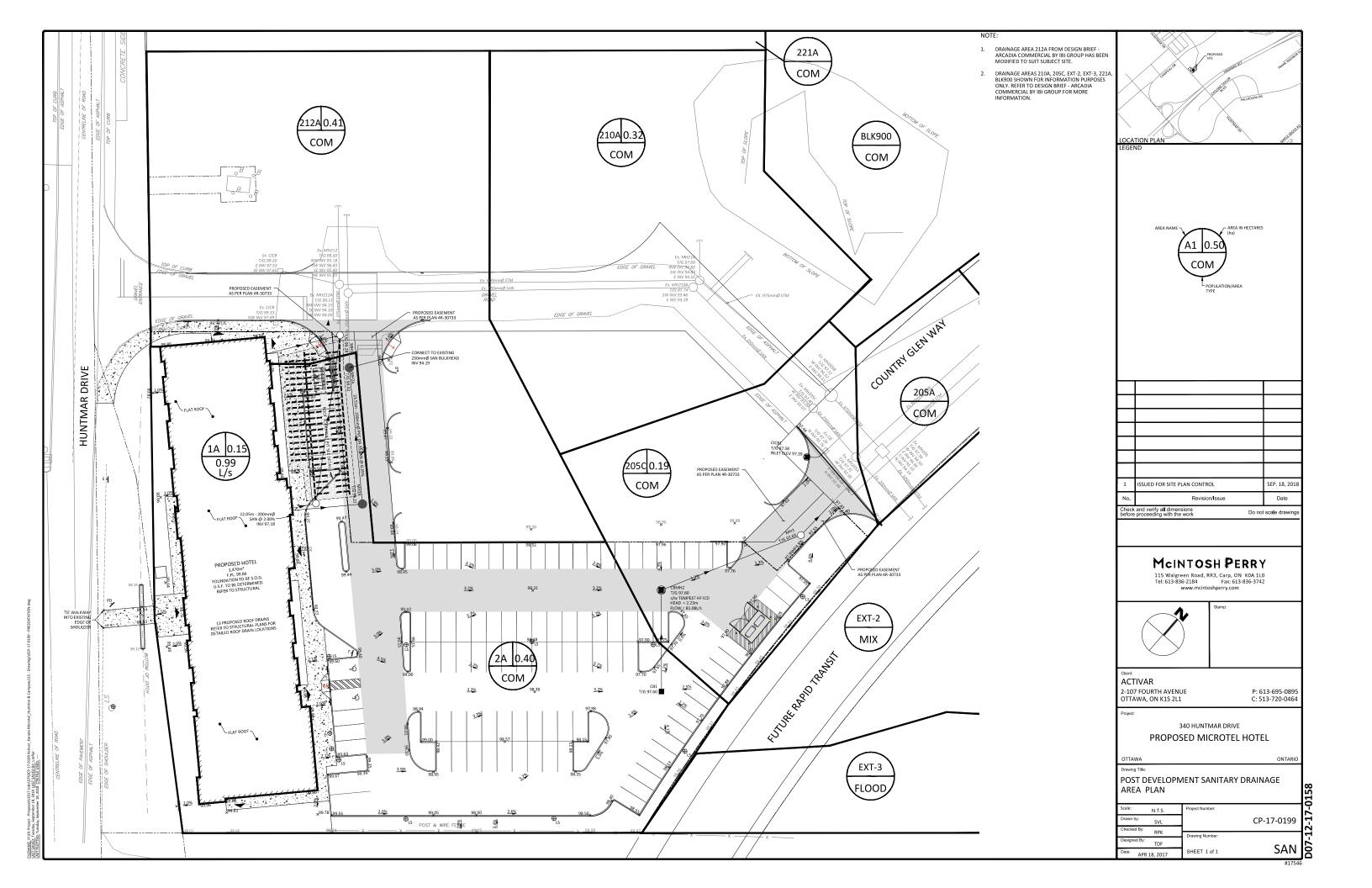
• $Q_{TOTAL} = Q_{Residential} + Q_{Non-Residential} + Q_{Pool}$ Where:

 $Q_{Residential}$ = 48,600 L/Day $Q_{Non-Residential}$ = 6,500 L/Day Q_{Pool} = 1,680 L/Day

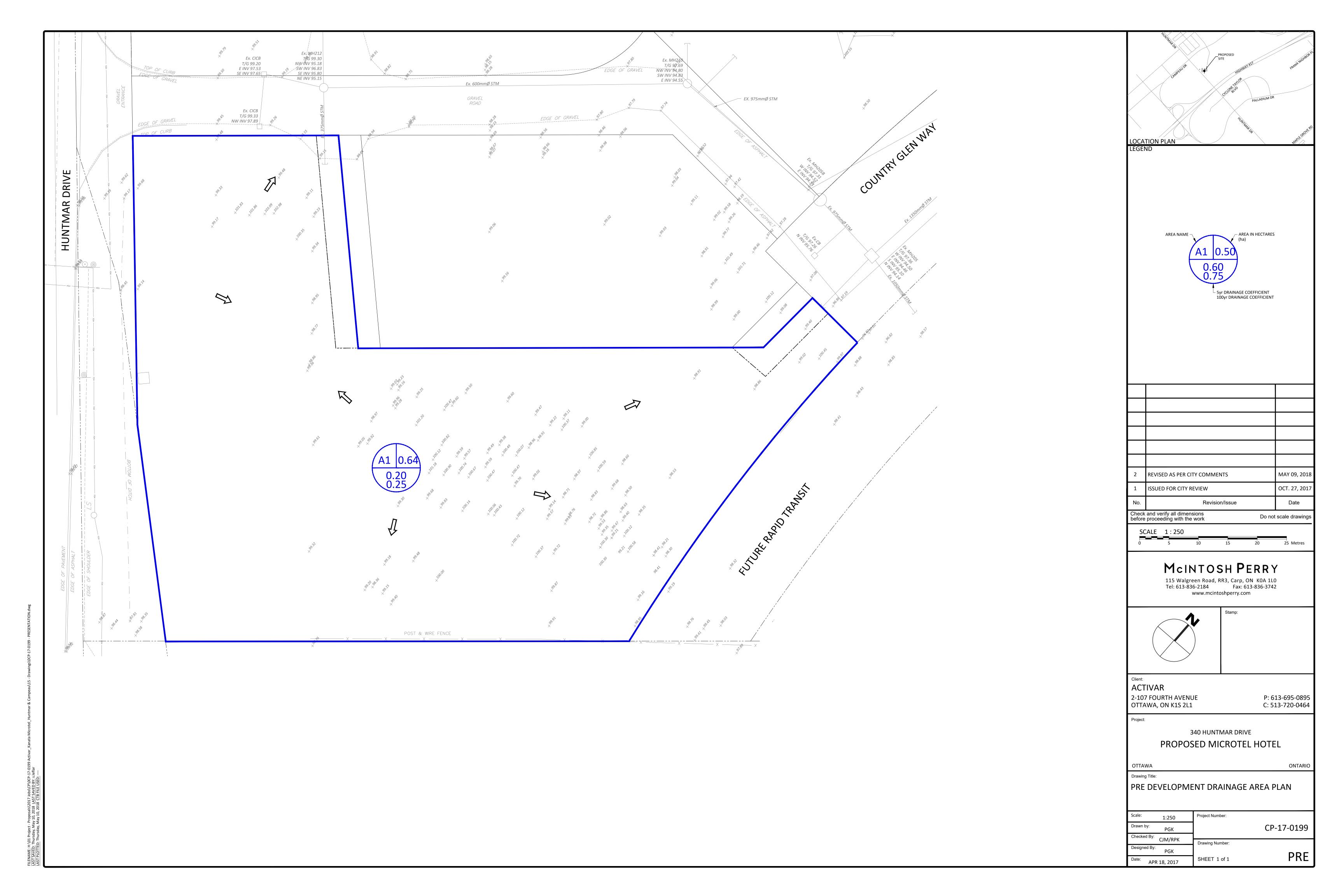
Therefore, Q_{TOTAL} = (48,600) + (6,500) + (1,680) = 56,780 L/Day (0.657 L/s)

• Q_{TOTAL} * Peaking Factor = Q_{PEAK} (p) Q_{PEAK} (p) = (0.657) x (1.5) Q_{PEAK} (p) = **0.986 L/s**

It is anticipated that there will be no issues with capacity constraints within the existing sanitary main as the amount of flow leaving the site is negligible compared to the pipe capacity. Therefore, the existing 250mm sanitary main within the internal access road for the Arcadia Commercial Development will have sufficient capacity to accommodate the increased flows for the new development.


McINTOSH PERRY 2

SANITARY SEWER DESIGN SHEET


PROJECT: 340 HUNTMAR DRIVE LOCATION: KANATA, ONTARIO CLIENT: ACTIVAR

McINTOSH PERRY

	LOCATION							RESIDENTIAL								ICI AREAS				INFILTR	ATION ALL	OWANCE	FLOW			:	SEWER DAT	A		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
					UNIT	TYPES		AREA	POP	ULATION		PEAK			AREA	(ha)			PEAK	AREA	(ha)	FLOW	DESIGN	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	ILABLE
STREET	AREA ID	FROM MH MH	TO MH	SF	SD	TH	APT	(ha)	IND	CUM	PEAK FACTOR	FLOW (L/s)	INSTITUTIO IND	ONAL CUM	COMM	ERCIAL CUM	INDU IND	STRIAL	FLOW (L/s)	IND	CUM	(L/s)	FLOW (L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAP/ L/s	ACITY (%)
																														<u> </u>
	1A	BUILDING	MH1A													0.1			0.00	0.15	0.15	0.04	1.03	48.39	12.05	200	2.00	1.492	47.36	97.88%
	2A	MH1A	MH2A											266 2	anitary Fig	w Calcualtio	ons		0.99	0.40	0.55	0.15	1.14	20.24	23.51	200	0.35	0.624	19.10	94.37%
		MH2A	Ex.MH212A													-		1		0.00	0.55	0.15	1.14	48.45	12.80	250	0.61	0.956	47.31	97.65%
	221A. BLK300. BLK400	Fv MH221A	Ex.MH212A											+	0.91	0.91		1	0.79	0.91	0.91	0.25	1.04	75.98	82.40	250	1.50	1.500	74.94	98.63%
	ZZ IA, DEKSOO, DEK400	LA. IVII IZZ IA	EX.IVIIIZ IZA		-			 		-					0.71	0.71			0.77	0.71	0.71	0.23	1.04	73.70	02.40	230	1.50	1.500	77.77	70.0370
	212A	Ex.MH212A	Ex.MH210A												0.41	1.32			2.13	0.41	1.87	0.52	2.66	62.04	58.88	250	1.00	1.224	59.38	95.72%
	210A. BLK900	Ex.MH210A	Ex.MH205C		1			†							0.79	2.11			2.82	0.79	2.66	0.74	3.56	62.04	28.84	250	1.00	1.224	58.48	94.26%
	205C	Ex.MH205C	Ex.MH205A					i i							0.19	2.30			2.98	0.19	2.85	0.80	3.78	62.04	11.04	250	1.00	1.224	58.26	93.91%
								i i																				†		
	EXT-2	STUB	Ex.MH205A											A	s per IBI D	esign Sheet			3.01	2.82	2.82	0.79	3.80	24.19	14.51	200	0.50	0.746	20.40	84.30%
	205A	Ex.MH205A	Ex.MH204A												0.08	2.38			6.06	0.08	5.75	1.61	7.67	71.33	33.73	300	0.50	0.978	63.66	89.25%
	204A	Ex.MH204A	Ex.MH202A												0.32	2.70			6.34	0.32	6.07	1.70	8.04	71.33	125.25	300	0.50	0.978	63.29	88.73%
	202A	Ex.MH202A	Ex.MH201A												0.04	2.74			6.37	0.04	6.11	1.71	8.09	71.33	11.74	300	0.50	0.978	63.25	88.67%
	EXT-1	STUB	Ex.MH201A											A	ls per IBI D	esign Sheet		1	0.79	0.74	0.74	0.21	1.00	24.19	20.27	200	0.50	0.746	23.20	95.88%
	201A	Ex.MH201A	Ex.MH200A												0.10	2.84			7.25	0.10	6.95	1.95	9.20	71.33	18.49	300	0.50	0.978	62.14	87.11%
	200A	Ex.MH200A	Ex.CAP												0.10	2.84			7.25	0.00	6.95	1.95	9.20	58.82	45.35	300	0.34	0.806	49.63	84.36%
	200A	Ex.CAP	Ex.MH303A		+		-	 							0.00	2.84		-	7.25	0.00	6.95	1.95	9.20	58.82	20.50	300	0.34	0.806	49.63	84.36%
		EX.OAI	EX.IVII ISOSA												0.00	2.04			7.25	0.00	0.75	1.75	7.20	30.02	20.30	300	0.34	0.000	47.03	04.3070
Design Parameters:				Notes:							Designed:					No.					Revision							Date		
5					ngs coefficient			0.013					PGK					R CITY REVIE										OCT. 27, 2017		
Residential		ICI Areas			nd (per capita)			L/day										S PER CITY CO										MAY 9, 2018		
SF 3.4 p/p/u			Peak Factor		tion allowance		0.28	l L/s/Ha			Checked:		201			3	REVISED AS	S PER CITY CO	OMMENTS									AUG. 22, 2018	3	
TH/SD 2.7 p/p/u		0 L/Ha/day	1.5	Resider	ntial Peaking F		4.4./4 DAO E						RPK																	
APT 2.3 p/p/u		0 L/Ha/day	1.5		Harmon For						D : 11:																			
Other 60 p/p/Ha	IND 35,00	0 L/Ha/day	MOE Chart		where P = p	opulation i	n thousands				Project No.																			
													CP-17-0199															Sheet No:		
																												1 of 1		

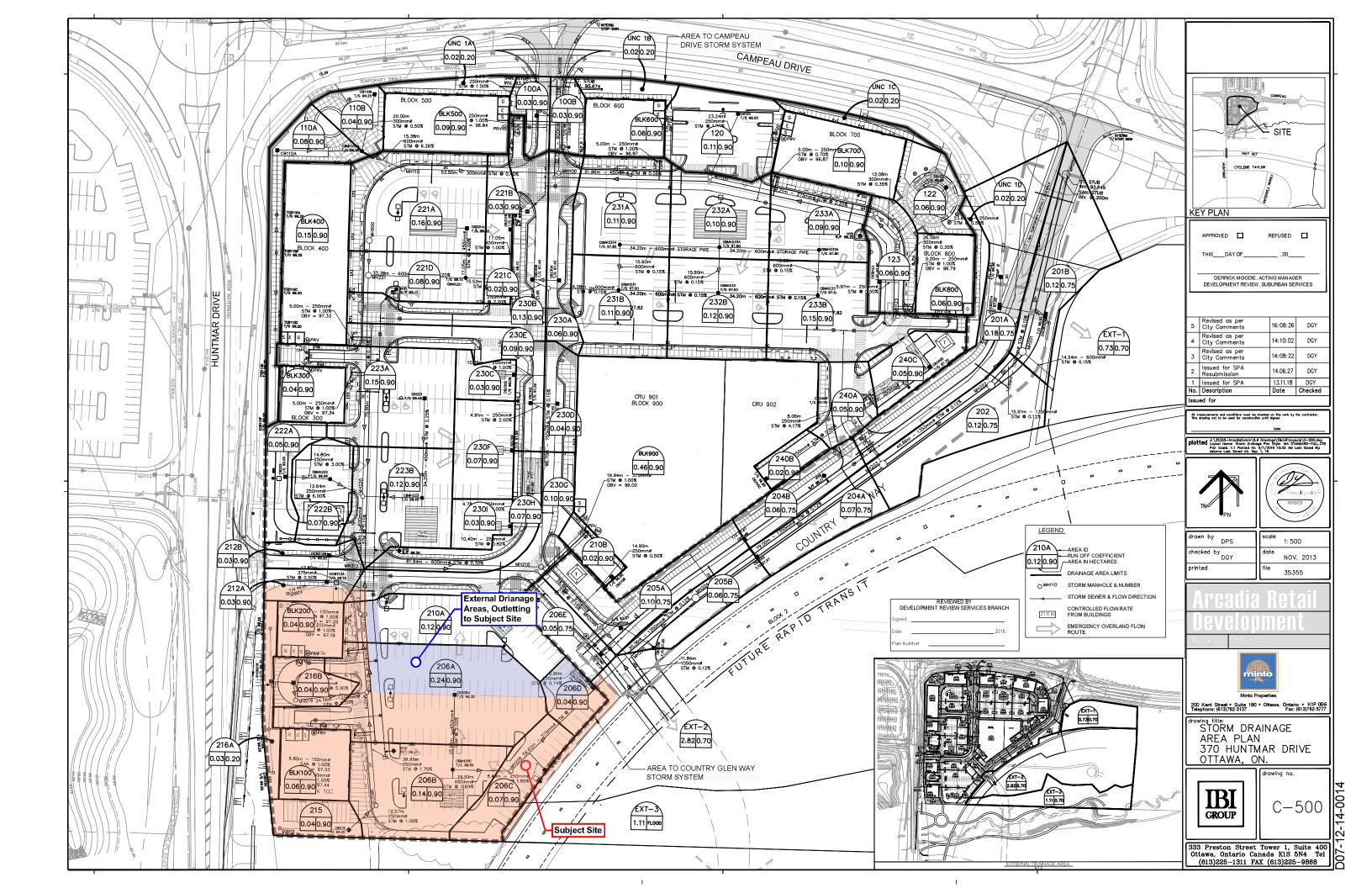
APPENDIX E PRE-DEVELOPMENT PLAN

APPENDIX F POST-DEVELOPMENT PLAN

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

STORM SEWER DESIGN SHEET

PROJECT: Arcadia Commercial
LOCATION: CITY OF OTTAWA

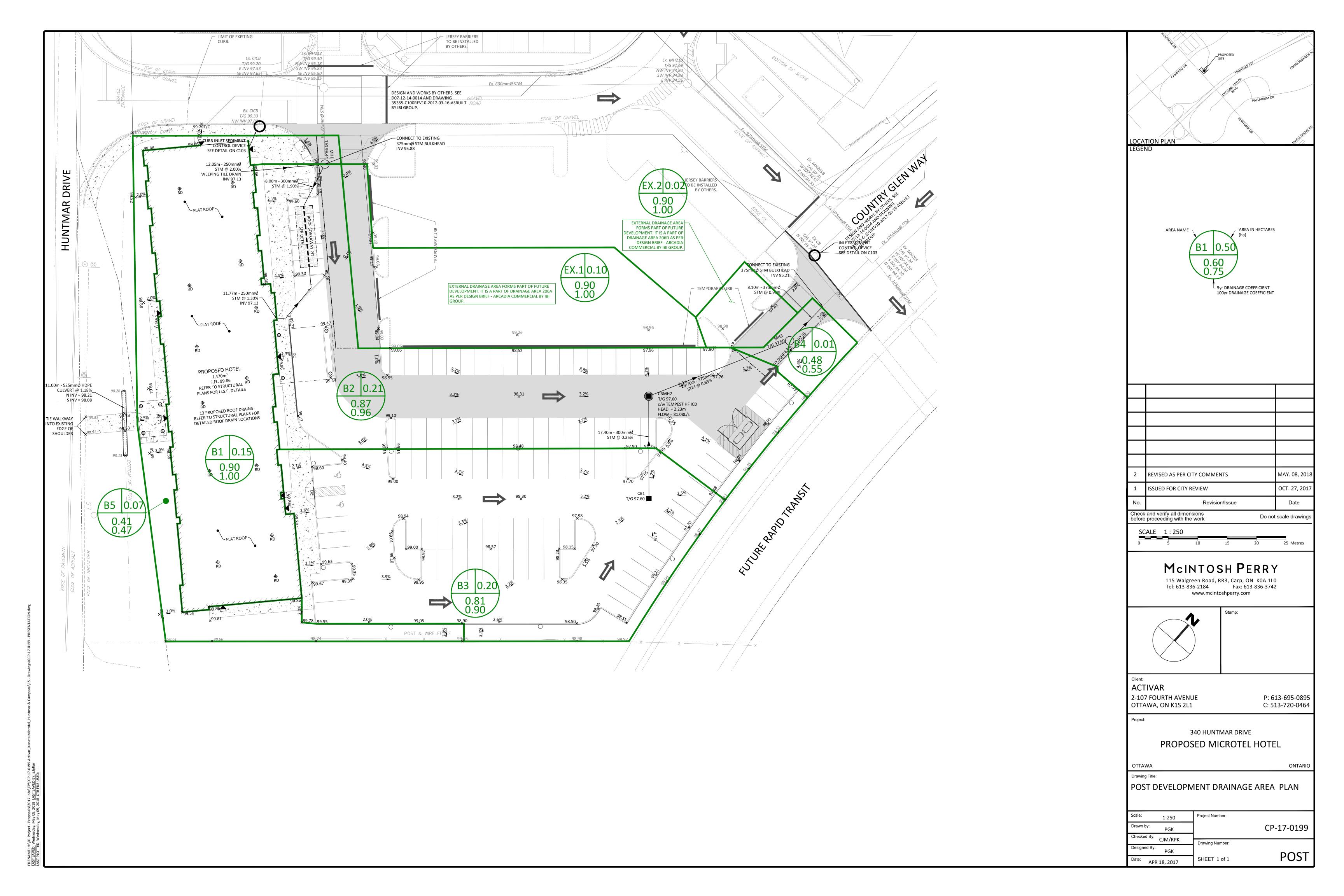

CLIENT: Minto Development Group

*HGL at obvert of pipe if pipe is not surcharged

** Finished floor for slab on grade commercial building

***Freeboard is from upstream MH HGL to FF

	LOCATION	7/-			AR	EA (Ha)	9			4				RATIONAL DI	ESIGN FLOW									5	EWER DATA	V				1	d is from upstrea	an win not to h	ni .	
STREET	AREA ID	FROM	то	C=					CUM		TIME	TOTAL	1 (5)	1 (10)	i (100)	5yr PEAK	10yr PEAK	100yr PEAK	ICD FIXED	DESIGN		LENGTH		PIPE SIZE (mm	CONTRACTOR OF THE PARTY OF THE	SLOPE	VELOCITY	AVAIL	CAP (5yr)	surcharge	upstream	HGL*	FF**	Freeboa
		МН	MH	0.20	0.70	0.75	0.90	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	(L/s)	(m)	DIA	W	н	(%)	(m/s)		(%)	pipe	obvert	m	m	
	223A	CB223	CBMH223				0.15	0.38	0.38	10.00	0.21	10.21	104.19	122.14	178.56	39.10				20.10	445.45	24.00	450											
	223B	CBMH223				1		0.30		10.00	0.27	10.47	103.10		176.66	69.65				39.10 69.65	446.15 210.32	34.20 20.38	450 450			2.25 0.50	2.718 1.281	407.05 140.67	91.24%				1	
																				05.03	LIUISE	20.50	720			0.30	1.281	140.67	66.88%	1				
		MH220	MH212					0.00	-2.1E	12.21	0.44	12/65	93.82	109.93	160.62	204.22				204.22	248.09	22.60	600			0.15	0.850	43.86	17.68%	(ing)	95.84	95.84	1	
	212A	CICB212A	CICB212B	-	-	-	0.03	0.00	0.08	10.00	0.13	40.42	104.10	102.11	470.55	7.02	-													1 2				
	212B	CICB212A	The second secon		+	+		0.08		10.00	0.12	10.12	104.19	122.14		7.82 15.55				7.82 15.55	62.04 151.96	8.61 11.24	250			1.00	1.224	54.22	87.39%	1			1	
		1 72 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					0.03	0.00	100	40.12	0.00		103,30	121.42	177.45	13.33				13.33	151.96	11.24	250			6.00	2.999	136.41	89.77%				1	
	215	CB215	MH215				0.04	0.10	0.10	10.00	0.17	10.17	104.19	122.14	178.56	10.43				10.43	62.04	12.57	250			1.00	1.224	51.61	83.19%	ì			1	
		-										204 GE																						
	BLK100	BLK100	MAIN	-			0.06	0.15	0.15	10.00	0.07	10.07	104.19	122.14	178.56	15.64				15.64	62.04	5.50	250			1.00	1.224	46.40	74.79%			97.23	99.60	
		MH215	MH214					0.00	0 25	10.17	0.40	10.57	103.30	121.09	177.01	25.85				25.85	82.07	38.95	250			1.75	1.000	F6 00	CO =404					
															200.00					23.03	02.07	30.33	230			1.75	1.620	56.22	68.51%	no	97.23	97.23	1	
	216A	RYCB216	CB216	0.03					0.02	10.00	0.05	10.05	104.19	122.14	178.56	1.74				1.74	124.08	7.40	250			4.00	2.449	122.34	98.60%				I	
	216B	CB216	WHS19				0.04	0.10	0,12	10.00	0.04	10,04	104.19	122.14	178.56	12.17				12.17	138.72	5.90	250			5.00	2.738	126.56	91.23%				1	
		MH216	MH214					0.00	0.15	10.05	0.47	10.53	103.93	121.83	178.10	12.13				42.40	40.00													
		1911918.255	COLUMN TO SERVICE					0.00	14143	49/03	0.47	10 24	103.33	121.03	1/0.10	12.15				12.13	43.87	24.56	250			0.50	0.866	31.73	72.34%	no	97.07	97.07	l	
	BLK200	BLK200	MAIN				0.04	0.10	0.10	10.00	0.07	10.07	104.19	122,14	178.56	10.43				10.43	62.04	5.40	250			1.00	1.224	51.61	83.19%	_		96.55	99.55	_
																												32.02	.03:43/8			30.33	33.33	
		MH214	MH213					0.00	0.47	10.57	0.40	10.97	101.27	118.69		47.30				47.30	129.34	27.00	375			0.50	1.134	82.04	63.43%	no	96.55	96.55		
		MH213	MH212		-			0.00	0.67	10.97	0.26	11.23	99.34	116.43	170.16	46.40				46.40	129.34	17.80	375			0.50	1.134	82.94	64.13%	no	96.39	96.39		
		MH212	DISHME					0.00	2.79	11-33	0.86	17.09	98.12	114.98	168.05	274.12				274.12	350.85	61.94	600			0.30	1.202	76.72	21.87%		05.74	05.74	l	
											771101															0.50	1.202	10.72	21.07/6	110	95.74	95.74		
	210A	CB210A	ZARIA		1		0.12	0.30	0.00	10.00	0.09	10.09	104.19	122.14	178.56	31.28				31.28	201.76	15.06	300			4.00	2.765	170.48	84.50%					
	BLK900	BLK900	MAR		-	1-	0.46	1.15	4 38 (10.00	0.21	130.01	104.19	122.14	178.56	119.92	-	_		440.02	400.04	10.01												
	DEROO	BERGOO	- COLUMN		1	1	0.46	1.15	-	10.00	0.21	40.0	104.13	122.14	178.30	119.92				119.92	182.91	19.94	375	-		1.00	1.604	62.99	34.44%			95.56	98.10	2
RESSED LOADING	210B	CB210B	ACA)N				0.02	0.05	15.0%	10.00	0.29	10.25	104.19	122.14	178.56	5.21				5.21	43.87	14.90	250			0.50	0.866	38.65	88.11%					
																													00.1270					
		MAH240	MH205B		-	+		0.00	7.55	15.74	0.41	14.15	87.88	102.93	150.35	663.26				663.26	905.48	28.86	975			0.15	1.175	242.23	26.75%	no	95.56	95.56		
	206E	CICB206D	MAIN		1	0.09		0.19	0.19	10.00	0.02	10.02	104.19	122.14	178.56	19.55				10.55	87.74	2.57	250											
	8000	Credeous	TVIPALIV.			0.03		0.13	0.13	10.00	0.02	10.02	104.13	122.14	178.30	13,33				19.55	87.74	2.57	250			2.00	1.731	68.18	77.72%					
		MH205B	MH205					0.00	=7.74	44.55	0.20	Made	86.42	101.22	147.84	668.51				668.51	905.48	13.88	975			0.15	1.175	236.97	26.17%	no	95.50	95.50		
		1			_	_																									55150	33.30		
	206A 206B	CB206A CBMH206	CBMH206		-	-			0.60	10.00	0.17	10.17	104.19	122.14		62.57				62.57	420.63		450			2.00	2.562	358.07	85.13%					
	2008	CBIVITIZUO	- territor	1	1	+	0.14	0.35	0.95	10.17	0.26	10,43	103.32	121.11	177.05	98.23				98.23	210.32	19.99	450	_		0.50	1.281	112.09	53.29%					
	206C	CB206B	MAIN		-		0.07	0.18	0.18	10.00	0.08	10.08	104.19	122.14	178.56	18.25				18.25	85.29	8.49	250			1.89	1.683	67.04	78.60%					
	206D	CB206C	MAIN				0.04	0.10	0.10	10.00	0.02	10.02	104.19	122.14	178.56	10.43				10.43	87.74	2.32	250			2.00	1.731	77.31	88.11%				li .	
		7,411900										5	101.00																					
		MHZ06	MHZUS					0.00	116	10/43	0.59	11.07	101.99	119.55	174.75	125.04				125.04	182.91	56.62	375			1.00	1.604	57.87	31.64%	no	96.05	96.05		
rnal South	EXT-2	STUB	2614205		2.82	1		5.49	5.49	12.00	0.17	12.17	94.70	110.96	162.13	519.66				519.66	986.85	11.55	1050	-+		0.13	1.104	457.46	47.040/					
								55					7	220.55		020.00				313.00	300.03	11.33	1030			0.12	1.104	467.19	47.34%	по	95.50	95.50		


STORM SEWER DESIGN SHEET

PROJECT: 340 HUNTMAR DRIVE LOCATION: KANATA, ONTARIO

CLIENT: ACTIVAR

McINTOSH PERRY

	LOCATION				CONTRIBUTING ARE	A (ha)						RATIO	ONAL DESIGN	FLOW								SE	EWER DATA				
1	2	3	4	6 7	8 9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
STREET	AREA ID	FROM	TO	C-VALUE	AREA	INDIV	CUMUL	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEAK	100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH		PIPE SIZE (mm)		SLOPE	VELOCITY	AVAIL (CAP (5yr)
SIREEI	AREA ID	MH	MH	C-VALUE	AKEA	AC	AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	(L/s)	(m)	DIA	W	Н	(%)	(m/s)	(L/s)	(%)
	D1	Roof	INFIL. TRENCH	0.90	0.15	0.13	0.13	10.00	0.14	10.14	104.19	122.14	178.56	38.33				38.33	70.74	11.77	250	+		1.30	1.396	32.41	45.82%
	R1	Roof	MH1	0.90	0.00	0.13	0.13	10.00	0.14	10.14	104.19	121.27	177.28	38.06				38.06	139.06	8.00	300			1.90	1.906	101.00	72.63%
	ы	MH1	Ex.MH212	0.70	0.00	0.00	0.13	10.14	0.07	10.21	103.40	120.85	176.66	37.92				37.92	143.09	13.00	375	+		0.61	1.255	105.17	73.50%
		IVIIII	LX.IVII IZ IZ		0.00	0.00	0.13	10.21	0.17	10.30	103.07	120.03	170.00	31.72				37.72	143.07	13.00	373			0.01	1.233	103.17	73.3070
	B2	CB1	CBMH2	0.87	0.21	0.19	0.19	10.00	0.35	10.35	104.19	122.14	178.56	53.86				53.86	59.68	17.40	300			0.35	0.818	5.82	9.75%
	EX1			0.90	0.10	0.09																					
	B3	CBMH2	MH3	0.81	0.20	0.16	0.44	10.35	0.33	10.69	102.36	119.98	175.38	124.26				124.26	147.47	25.76	375			0.65	1.293	23.21	15.74%
		MH3	Ex.BLKHD		0.00	0.00	0.44	10.69	0.09	10.77	100.70	118.03	172.52	122.25				122.25	178.28	8.10	375			0.95	1.564	56.03	31.43%
		Ex.BLKHD	Ex.MH205		0.00	0.00	0.44	10.77	0.13	10.90	100.28	117.53	171.79	121.74				121.74	179.22	12.00	375			0.96	1.572	57.47	32.07%
Definitions:				Notes:				Designed:		PGK	1		No.					Revision							Date		
Q = 2.78CiA, when	₽•			Mannings coeffi	icient (n) =		0.013						1	ISSUED FOR (CITY REVIEW										OCT. 27, 2017		
	itres per Second (L/s)			go ooo	ioioni (ii)		0.010						2.	REVISED AS F											MAY 9, 2018		
A = Area in Hectar								Checked:		RPK			3	REVISED AS F	ER CITY CON	MENTS									SEP. 19, 2018		
i = Rainfall intens	ty in millimeters per hour (mm/hr)																									
[i = 998.071 / (1	C+6.053)^0.814]	5 YEAR																									
[i = 1174.184 /	TC+6.014)^0.816]	10 YEAR						Project No.:		CP-17-0199																	
[i = 1735.688 /	TC+6.014)^0.820]	100 YEAR																						·	Sheet No:		
																									1 of 1		

APPENDIX G STORMWATER MANAGEMENT CALCULATIONS

McINTOSH PERRY

AVERAGE PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

1	Area A1		EXISTING	SITE - DEVELOPN	MENT AREA	
	Type	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)
	LANDSCAPE	0.20	0.25	6352.61	1270.52	1588.15
	Avg C	0.20	0.25			

AVERAGE POST-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area B1			PROPOSED HOTE	iL .	
Туре	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)
HARD	0.90	1.00	1470.19	1323.17	1470.19
Avg C	0.90	1.00			

Area B2			DRAINS TO CBM	1 3	
Type	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)
HARD	0.90	1.00	2037.59	1833.83	2037.59
LANDSCAPE	0.20	0.25	99.80	19.96	24.95
Ava C	0.87	0.96			

Area B3			DRAINS TO CB1		
Type	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)
HARD	0.90	1.00	1738.23	1564.41	1738.23
LANDSCAPE	0.20	0.25	272.44	54.49	68.11
Ava C	0.81	0.90			

Area B4			UNCONTROLLE)	
Type	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)
HARD	0.90	1.00	58.72	52.85	58.72
LANDSCAPE	0.20	0.25	88.78	17.76	22.19
Avg C	0.48	0.55			

Area B5		UNCONTROLLED										
Type	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)							
HARD	0.90	1.00	193.38	174.04	193.38							
LANDSCAPE	0.20	0.25	462.67	92.53	115.67							
Ava C	0.41	0.47										

		External Dr	ainage Areas			*
Area EX1			DRAINS TO CBMI	12		
Туре	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)	
HARD	0.90	1.00	976.43	878.78	976.43]
Avg C	0.90	1.00				•

Area EX2			UNCONTROLLE)		*
Type	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)	l
HARD	0.90	1.00	152.54	137.29	152.54	l
Avg C	0.90	1.00				

 $^{^{\}star}\text{Undevleoped}$ area within external drainage areas have been calcualted as hard surface to represent the worst case scenario.

Tc	2-Year	5-Year	100-Year	
(min)	(mm/hr)	(mm/hr)	(mm/hr)	
20.00	52.03	70.25	119.95	PRE-DEVELOPMENT
10.00	76.81	104.19	178.56	POST-DEVELOPMENT

PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area	Drainage Area (ha)	Balanced Runoff Coefficient (C) 2-yr & 5-yr	Balanced Runoff Coefficient (C) 100-yr	2-yr Flow Rate (I/s)	5-yr Flow Rate (I/s)	100-yr Flow Rate (I/s)
A1	0.64	0.20	0.25	18.38	24.81	52.96
Total	0.64			18.38	24.81	52.96

POST-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area	Drainage Area (ha)	Balanced Runoff Coefficient (C) 2-yr & 5-yr	Balanced Runoff Coefficient (C) 100-yr	2-yr Flow Rate (I/s)	5-yr Flow Rate (I/s)	100-yr Flow Rate (I/s)
B1	0.15	0.90	1.00	28.25	38.33	72.98
B2	0.21	0.87	0.96	39.70	53.86	101.85
B3	0.20	0.81	0.90	34.77	47.17	89.83
B4	0.01	0.48	0.55	1.51	2.05	4.03
B5	0.07	0.41	0.47	5.74	7.79	15.31
Sub-Total	0.64			109.99	149.21	283.99
		Exte	ernal Drainage A	reas		
EX1	0.10	0.90	1.00	18.76	25.45	48.47
EX2	0.02	0.90	1.00	2.93	3.98	7.57
Total	0.76		·	131.68	178.64	340.04

REQUIRED RESTRICTED FLOW

Existing Drainage Area	Area (ha)	*Release Rate as per Design Brief - Arcadia Commercial		ICD # / Roof Drain #	
		5-Year	100-Year		
206A/206B	0.38	85.00		206A	
206C	0.07	10	.00	206B	
206D	0.04	14	.00	206C	Restricted
BLK100	0.06	2.	00	Roof 100	Restricted
BLK200	0.04	1.	1.00		
215	0.04	10.00		215	
216A/216B	0.07	12.17	12.17 20.85		Unrestricted
Total	0.70	134.17	142.85		

^{*}Release rate was created by combining the release rates from applicable drianage areas for the subject site as per the Design Brief - Arcadia Commercial by IBI Group. See Appendix 'I' for complete report.

216A/216B ALLOWABLE RELEASE RATE EXTRAPOLOATION (100-YR)

Drainage Area	Area (ha)	С	_	Flow (L/s)
216A	0.03	0.2	178.6	2.98
216B	0.04	0.9	178.6	17.87
Total				20.85

ACTUAL STORM WATER RUNOFF FROM SITE (L/s)

Area	Post-Development Unrestricted (I/s)		Post-Dev	Post-Development (Restricted) (I/s)			
	2-yr	5-yr	100-yr	2-yr*	5-yr	100-yr	
B1	28.25	38.33	72.98	3.12	4.68	7.80	POOF DRAINS
B2	39.70	53.86	101.85				RESTRICTED -
В3	34.77	47.17	89.83	96.17	108.14 108.1	108.14	CBMH2
EX1	18.76	25.45	48.47	1			CDIVITZ
B4	1.51	2.05	4.03	1.51	2.05	4.03	
B5	5.74	7.79	15.31	5.74	7.79	15.31	UNRESTRICTED
EX2	2.93	3.98	7.57	2.93	3.98	7.57	
Total	131.68	178.64	340.04	109.48	126.64	142.85	

^{*2-}Year Storm Event Flows Unrestricted for Areas B2/B3/EX1

STORAGE REQUIRMENTS FOR AREA B2 & B3

5-YEAR STORM EVENT

Тс	l (mm/hr)	Runoff (I/s) B2	Runoff (I/s) B3	Runoff (I/s) EX1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m³)
10	104.20	53.87	47.18	25.46	108.14	18.36	11.01
20	70.30	36.34	31.83	17.17	108.14	-22.80	-27.36
30	53.90	27.86	24.40	13.17	108.14	-42.71	-76.88
40	44.20	22.85	20.01	10.80	108.14	-54.49	-130.77
50	37.70	19.49	17.07	9.21	108.14	-62.38	-187.13
60	32.90	17.01	14.90	8.04	108.14	-68.20	-245.53
70	29.40	15.20	13.31	7.18	108.14	-72.45	-304.30

Maximum Storage Required (m³) = 11.01

100-YEAR STORM EVENT

Тс	l (mm/hr)	Runoff (I/s) B2	Runoff (I/s) B3	Runoff (I/s) EX1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m³)
10	178.60	101.88	89.85	48.48	108.14	132.06	79.24
20	120.00	68.45	60.37	32.57	108.14	53.25	63.90
30	91.90	52.42	46.23	24.95	108.14	15.46	27.82
40	75.10	42.84	37.78	20.39	108.14	-7.14	-17.14
50	64.00	36.51	32.20	17.37	108.14	-22.07	-66.21
60	55.90	31.89	28.12	15.17	108.14	-32.96	-118.67
70	49.80	28.41	25.05	13.52	108.14	-41.17	-172.90

Maximum Storage Required (m³) = 79.24

STORAGE OCCUPIED IN AREA B2 & B3

5-YEAR STORM EVENT

Other Storage Areas on Site		V			
Location	T/G	INV. (out)	Area (m²)	Depth (m)	Volume (m³)
CB1	97.60	95.58	117.90	0.14	6.85
CBMH2	97.60	95.48	118.62	0.14	6.11
				Total	12.96

Storage Available (m³) =	12.96	
Storage Required (m³) =	11.01	

100-YEAR STORM EVENT

Other Storage Areas on Site		V	Vater Elev. (m) =	97.90	
Location	T/G	INV. (out)	Area (m²)	Depth (m)	Volume (m³)
CB1	97.60	95.58	285.30	0.30	38.84
CBMH2	97.60	95.48	388.18	0.30	45.94
				Total	84.78

Storage Available (m³) =	84.78
Storage Required (m³) =	79.24

STORAGE REQUIRMENTS FOR AREA B1

2-YEAR STORM EVENT

Тс	l (mm/hr)	Runoff (I/s) B1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m³)
40	32.90	12.10	3.12	8.98	21.56
50	28.00	10.30	3.12	7.18	21.54

Maximum Storage Required (m³) =

Maximum Storage Required (m³) =

5-YFAR STORM FVFNT

5-TEAR STORIVIEVENT							
Тс	l (mm/hr)	Runoff (I/s) B1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m³)		
30	53.90	19.83	4.68	15.15	27.26		
40	44.20	16.26	4.68	11.58	27.79		
50	37.70	13.87	4.68	9.19	27.56		
60	32.90	12.10	4.68	7.42	26.72		
70	29.40	10.81	4.68	6.13	25.77		

100-YFAR STORM FVFNT

TOO-TEAK STOKWEVENT							
Тс	I (mm/hr)	Runoff (I/s) B1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m³)		
30	91.90	37.56	7.80	29.76	53.57		
40	75.10	30.69	7.80	22.89	54.95		
50	64.00	26.16	7.80	18.36	55.07		
60	55.90	22.85	7.80	15.05	54.17		
70	49.80	20.35	7.80	12.55	52.73		

Maximum Storage Required (m³) = 55.07

STORAGE OCCUPIED IN AREA B1

2-YEAR STORM EVENT

	2-TEAR STORIVIEVEINT					
	Roof Storage					
	Location	*Area (m²)	Depth (m)	Volume (m³)		
Roof Drain 1102.64		0.020	22.05			
•	·		Total	22.05		

Storage Available (m³) =	22.05
Storage Required (m³) =	21.56

5-YEAR STORM EVENT

Roof Storage					
Location *Area (m²) Depth (m) Volume (m³					
Roof Drain	1102.64	0.030	33.08		
·		Total	33.08		

Storage Available (m³) =	33.08
Storage Required (m³) =	27.79

100-YEAR STORM EVENT

Roof Storage					
Location *Area (m²) Depth (m) Volume (m³					
Roof Drain	1102.64	0.050	55.13		
		Total	55.13		

Storage Available (m³) =	55.13	
Storage Required (m³) =	55.07	

^{*}Area is calcualted using 75% of the total roof area

SOAKAWAY PIT SIZING

Soakaway Pit Sizing as per MOE Stormwater Management Planning and Design Manual (March 2003) Maximum allowable depth:

Equation;

d= PT 1.000

where;

d= maximum allowable depth of the soakway pit

P= percolation rate (Table 4.1) (mm/h) T = drawdown time (24 to 48 hours)

Site Perameters;

P= 15.00 mm/hr T= 24 hours

Therefore;

Minimum volume required:

Site Perameters;

A= 1,470.19 m²

where;

A= building area

d= 20 mm

d= depth of roof ponding (5mm - 20mm)

Therefore;

$$V_{\text{water}} = 29.40 \text{ m}^3$$
 $V_{\text{pit}} = V/n$
 $V_{\text{pit}} = 98.01 \text{ m}^3$

Assumed Porosity (n)= 30%

Area required for the proposed soakaway pit:

$$A = 272.26 \text{ m}^2$$

SOAKAWAY PIT INFILTRATION CALCULATION

Infiltration Calculations

Required Infiltration Rate: 75 mm/yr

Site Area: 0.64 ha

Pre-Dev Infiltration: 480 m³/yr 25% Augmentation: 600 m³/yr Post-Dev Pervious Area: 0.09 ha Infiltration in Pervious Area: 69.28 m³/yr

Infiltration needed in Basin: 530.72 m³/yr

Maximum Water Level in Basin: 98.48 m

Bottom of Basin: 98.12 m

Number of events/yr 6mm<x<25mm: 35
Average Days Between Events: 5
Average Depth 6mm<x<25mm: 12.02 mm

Determine Volume of Water

Roof Area: 1470 m²

Cummulative Rainfall Depth 6mm<x<25mm: 420.7 mm

Volume of Runoff: 618.43 m³/yr

Volume of water to be stored for the 25mm event: 36.75 m³

Total Volume of Soakaway Pit: 98.01 m³

Assumed Porosity (n): 30%

Volume of Voids in Soakaway Pit: 29.40 m³

Infiltration Rate Calculations for 12mm event

Volume of water during the 12mm event: 17.67 m³

Volume of Pit Occupied: 58.90 m³

Depth: 0.22 m

Hydraulic Conductivity (k): 4.80E-06 m/s

i: 0.006118

Δh: 0.52 m BH4 & BH21

ΔI: 85 m

Darcy's Flux (q) = ki: 2.94E-08 m/sInfiltration Area = A(n): 81.68 m^2 Infiltration Rate: $2.40E-06 \text{ m}^3/\text{s}$

2.40E-09 L/s

Average Drawdown Time

Volume of Water: 17.67 m³

Time: 7.37E+06 s

1.23E+05 min 2.05E+03 hr 8.53E+01 days

Roof Drain Flow (B1)

Roof Drains Summary						
Type of Control Device	Wat	Watts Drianage - Accutrol Weir				
Number of Roof Drians		13				
	2-Year 5-Year 100 Year					
Rooftop Storage	22.05	33.08	55.13			
Storage Depth (mm)	0.020	0.030	0.050			
Flow (Per Roof Drain) (L/s)	0.24	0.36	0.60			
Total Flow (L/s)	3.12	4.68	7.80			

Flow Rate Vs. Build-Up (One Weir)				
Depth (mm)	Flow (L/s)			
15	0.18			
20	0.24			
25	0.30			
30	0.36			
35	0.42			
40	0.48			
45	0.54			
50	0.60			
55	0.66			

^{*}Roof Drain model to be Accutrol Weirs, See attached sheets

CALCULATING ROOF FLOW EXAMPLES

1 roof drain during a 5 year storm elevation of water = 25mm Flow leaving 1 roof drain = (1 x 0.30 L/s) = 0.30 L/s

1 roof drain during a 100 year storm elevation of water = 50mm Flow leaving 1 roof drain = (1 x 0.60 L/s) = 0.60 L/s

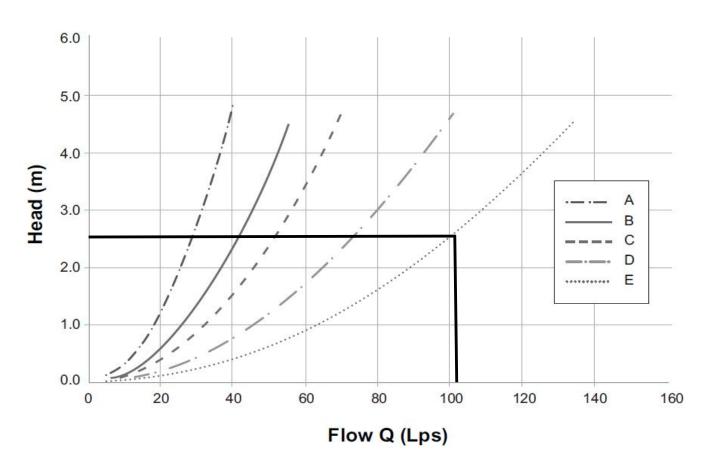
4 roof drains during a 5 year storm elevation of water = 25mm Flow leaving 4 roof drains = (4 x 0.30 L/s) = 1.20 L/s

4 roof drains during a 100 year storm elevation of water = 50mm Flow leaving 4 roof drains = (4 x 0.60 L/s) = 2.40 L/s

Roof Drain Flow				
Flow (L/s)	Storage Depth	13 Roof Drains		
1 10 W (L/ 3)	(mm)	Flow (L/s)		
0.18	15	2.34		
0.24	20	3.12		
0.30	25	3.90		
0.36	30	4.68		
0.42	35	5.46		
0.48	40	6.24		
0.54	45	7.02		
0.60	50	7.80		
0.66	55	8.58		
0.72	60	9.36		
0.78	65	10.14		
0.84	70	10.92		
0.90	75	11.70		
0.96	80	12.48		
1.02	85	13.26		
1.08	90	14.04		
1.14	95	14.82		
1.20	100	15.60		
1.26	105	16.38		
1.32	110	17.16		
1.38	115	17.94		
1.44	120	18.72		
1.50	125	19.50		
1.56	130	20.28		
1.62	135	21.06		
1.68	140	21.84		
1.74	145	22.62		
1.80	150	23.40		

Note:

The flow leaving through a restricted roof drain is based on flow vs. head information


^{*}Roof Drain Flow information taken from Watts Drainage website

CBMH 2 - IPEX TEMPEST HF ICD FLOW CURVE (TO BE VERIFIED WITH MANUFACTURER)

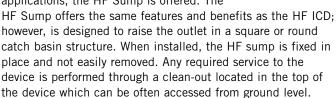
HEAD = 2.42 FLOW = 108.14

Type = E

Chart 3: HF & MHF Preset Flow Curves

PRODUCT INFORMATION: TEMPEST HF & MHF ICD

Product Description


Our HF, HF Sump and MHF ICD's are designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter or larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 5 preset flow curves, these ICDs have the ability to provide constant flow rates: 9lps (143 gpm) and greater

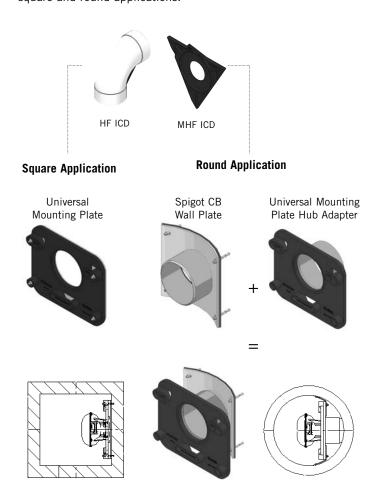
Product Function

TEMPEST HF (High Flow): designed to manage moderate to higher flows 15 L/s (240 gpm) or greater and prevent the propagation of odour and floatables. With this device, the cross-sectional area of the device is larger than the orifice diameter and has been designed to limit head losses. The HF ICD can also be ordered without flow control when only odour and floatable control is required.

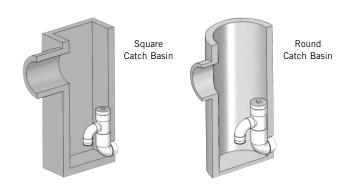
TEMPEST HF (High Flow) Sump: The height of a sewer outlet pipe in a catch basin is not always conveniently located. At times it may be located very close to the catch basin floor, not providing enough sump for one of the other TEMPEST ICDs with universal back plate to be installed. In these applications, the HF Sump is offered. The

TEMPEST MHF (Medium to High Flow):

The MHF plate or plug is designed to control flow rates 9 L/s (143 gpm) or greater. It is not designed to prevent the propagation of odour and floatables.



Product Construction


The HF, HF Sump and MHF ICDs are built to be light weight at a maximum weight of 6.8 Kg (14.6 lbs).

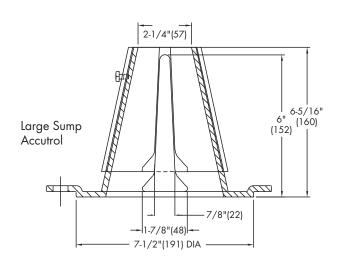
Product Applications

The HF and MHF ICD's are available to accommodate both square and round applications:

The HF Sump is available to accommodate low to no sump applications in both square and round catch basins:

Adjustable Accutrol Weir

Adjustable Flow Control for Roof Drains


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) \times 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Upper Cone

Fixed Weir

Adjustable

1/2 Weir Opening Exposed Shown Above

TABLE 1. Adjustable Accutrol Flow Rate Settings

Wain Ononing	1"	2"	3"	4"	5"	6"
Weir Opening Exposed	Flow Rate (gallons per minute)					
Fully Exposed	5	10	15	20	25	30
3/4	5	10	13.75	17.5	21.25	25
1/2	5	10	12.5	15	17.5	20
1/4	5	10	11.25	12.5	13.75	15
Closed	5	5	5	5	5	5

Job Name	Contractor
Job Location	Contractor's P.O. No.
Engineer	Representative

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

WATTS

A Watts Water Technologies Company

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca

Latin America: Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

By E-mail: t.ferguson@mcintoshperry.com

May 2, 2018

Our File Ref.: 170644

McIntosh Perry 115 Walgreen Road, R.R.3 Carp, Ontario K0A 1L0

Attention:

Subject: 340 Huntmar Drive, Ottawa, Ontario

Roof Drain Flow Control Devices Approval

Dear Mr. Ferguson,

The following is to confirm that the proposed flow control devices for the roof drain, *Watts Accutrol*, is suitable to limit the flow rate to 0.36 l/s per roof drain for a 5-year storm event and 0.6 l/s per roof drain for a 100-year storm event as indicated in the McIntosh Perry report.

Please do not hesitate to contact us if you have further questions.

Yours truly, LRL Associates Ltd.

Nicolas Séguin, P.Eng. Mechanical Engineer

5430 Canotek Road | Ottawa, ON, K1J 9G2 | info@Irl.ca | www.Irl.ca | (613) 842-3434

APPENDIX H CITY OF OTTAWA DESIGN CHECKLIST

McINTOSH PERRY

City of Ottawa

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

Criteria	Location (if applicable)
Executive Summary (for larger reports only).	N/A
Date and revision number of the report.	On Cover
☐ Location map and plan showing municipal address, boundary, and layout of proposed development.	Appendix E
☐ Plan showing the site and location of all existing services.	Site Servicing Plan (C102)
 Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere. 	1.1 Purpose 1.2 Site Description
developments must duriere.	6.0 Stormwater Management
☐ Summary of pre-consultation meetings with City and other approval agencies.	Appendix A
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in	1.1 Purpose 1.2 Site Description
conformance, the proponent must provide justification and develop a defendable design criteria.	6.0 Stormwater Management
\square Statement of objectives and servicing criteria.	3.0 Pre-Consultation Summary

☐ Identification of existing and proposed infrastructure available in the immediate area.	N/A
☐ Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)
☐ Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
☐ Proposed phasing of the development, if applicable.	N/A
Reference to geotechnical studies and recommendations concerning servicing.	Section 2.0 Backround Studies
 All preliminary and formal site plan submissions should have the following information: Metric scale North arrow (including construction North) Key plan Name and contact information of applicant and property owner Property limits including bearings and dimensions Existing and proposed structures and parking areas Easements, road widening and rights-of-way Adjacent street names 	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)

4.2 Development Servicing Report: Water

Criteria	Location (if applicable)
☐ Confirm consistency with Master Servicing Study, if available	N/A
Availability of public infrastructure to service proposed development	N/A
☐ Identification of system constraints	N/A
☐ Identify boundary conditions	N/A
☐ Confirmation of adequate domestic supply and pressure	N/A
 Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development. 	Appendix B
 Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves. 	N/A
 Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design 	N/A
Address reliability requirements such as appropriate location of shut-off valves	N/A
☐ Check on the necessity of a pressure zone boundary modification.	N/A
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	N/A

Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
☐ Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Appendix B
 Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference. 	N/A

4.3 Development Servicing Report: Wastewater

Criteria	Location (if applicable)
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	N/A
☐ Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 5.2 Sanitary Sewer

☐ Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	N/A
☐ Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	N/A
 Description of proposed sewer network including sewers, pumping stations, and forcemains. 	Section 5.2 Sanitary Sewer
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A
 Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development. 	N/A
☐ Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
☐ Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
 Special considerations such as contamination, corrosive environment etc. 	N/A

4.4 Development Servicing Report: Stormwater Checklist

Criteria	Location (if applicable)
 Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) 	Section 6.0 Stormwater Management
☐ Analysis of available capacity in existing public infrastructure.	N/A
☐ A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Pre & Post-Development Plans
☐ Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5-year event (dependent on the receiving sewer design) to 100-year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 6.0 Stormwater Management
☐ Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 6.0 Stormwater Management
 Description of the stormwater management concept with facility locations and descriptions with references and supporting information. 	Section 6.0 Stormwater Management
☐ Set-back from private sewage disposal systems.	N/A
☐ Watercourse and hazard lands setbacks.	N/A
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	N/A
☐ Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5-year return period) and major events (1:100-year return period).	Appendix F

☐ Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	Site Grading, Drainage, Sediment & Erosion Control Plan
☐ Calculate pre-and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 6.0 Stormwater Management Appendix F
Any proposed diversion of drainage catchment areas from one outlet to another.	Section 6.0 Stormwater Management
 Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. 	Section 6.0 Stormwater Management
☐ If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	Appendix A
☐ Identification of potential impacts to receiving watercourses	N/A
Identification of municipal drains and related approval requirements.	N/A
Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 6.0 Stormwater Management
100-year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)
☐ Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A

 Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors. 	Section 7.0 Sediment & Erosion Control
☐ Identification of floodplains — proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
☐ Identification of fill constraints related to floodplain and geotechnical investigation.	N/A

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

Criteria	Location (if applicable)
☐ Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	N/A
☐ Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
☐ Changes to Municipal Drains.	N/A
 Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.) 	N/A

4.6 Conclusion Checklist

Criteria	Location (if applicable)
Clearly stated conclusions and recommendations	Section 8.0 Summary
	Section 9.0 Recommendations
☐ Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	All are stamped
☐ All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	All are stamped

APPENDIX I DESIGN BRIEF - ARCADIA COMMERICAL BY IBI GROUP

REPORT

PROJECT: 35355-5.2.2

Design Brief Arcadia Commercial 370 Huntmar Drive City of Ottawa

Table of Contents

1	Introd	uction
	1.1	Scope
	1.2	Background
	1.3	Subject Property
	1.4	Phasing
	1.5	Previous Studies
	1.6	Environmental Issues
	1.7	Geotechnical Considerations
2	Water	Supply
	2.1	Existing Conditions
	2.2	Design Criteria
	2.3	Proposed Water Plan
3	Waste	ewater Disposal
	3.1	Existing Conditions
	3.2	Master Servicing Studies
	3.3	Design Criteria
	3.4	Recommended Wastewater Plan
	3.5	Hydraulic Grade Line
	3.6	Sewer Calculations
4	Storm	water Management
	4.1	Existing Conditions
	4.2	Minor Storm Sewers Design Criteria
	4.3	Stormwater Management
	4.4	Hydraulic Grade Line
5	Sedim	ent and Erosion Control Plan1
6	Geote	chnical1

7.1

7.2

Table of Contents (continued)

Approvals and Permit Requirements15

8	Recomm	endations16	
Lis	List of Appendices		
Арре	endix A –	Development Servicing Study Checklist Architects Site Plan Water Network Analysis General Plan C-100 Notes and Details C-100A	
Appe	endix B –	Sanitary Tributary Area Plan C-501 Sanitary Sewer Design Sheet	
Appe	endix C –	Storm Tributary Area Plan C-500 Storm Sewer Design Sheet Modified Rational Method Design Sheets Site Ponding Plan C-400	
Appe	endix D –	Sediment and Erosion Control Plan C-900 Paterson Group Geotechnical Report Grading Plan C-200	

October 2014

1 Introduction

1.1 Scope

The property owner, Minto Properties, wishes to proceed with the development of the subject lands at 370 Huntmar Drive, in accordance with the policies set out by the Planning Department of the City of Ottawa. This Design Brief is being prepared in support of the Site Plan Application for the development of the current draft plan, which identifies lands located in the Kanata West Business Park. This report will present a detailed servicing scheme to support development of the subject properties, including sections on water supply, wastewater disposal, minor and major stormwater management and erosion and sediment control.

This parcel of land is part of the proponent's larger "Arcadia" development lands which are currently being developed. This parcel is referred to as Stage 5 in other previously approved Minto reports, including "Conceptual Site Servicing Arcadia Stages 1, 2, 5 and 8", and "Arcadia Interim SWMF", which provide details related to the construction and operation of the downstream infrastructure which will service these lands.

This report was prepared in accordance with the Servicing Study Guidelines for Development Applications in the City of Ottawa. **Appendix A** contains a customized copy of the City's checklist which can be used as a quick reference for the location within this study report of each of the checklist items.

1.2 Background

In 2002, the City of Ottawa expanded its urban area to include the lands currently known as Kanata West. In March 2003, Ottawa City Council approved the general land use and development principles of the Kanata West Concept Plan (KWCP). The plan is a mixed-use community that will include a population of about 17,000 persons in 6,300 households, 24,000 jobs and approximately 1 million square meters of commercial space. Subsequent to approval of the KWCP, several supporting technical documents, including the Kanata West Master Servicing Study (KWSS), were prepared. The KWSS provided a master servicing plan for the entire KWCP, including major infrastructure such as water supply, wastewater disposal and stormwater management.

1.3 Subject Property

As shown in **Figure 1**, the subject property is located at the southeast quadrant of Huntmar Drive and Campeau Drive, and is part of the Kanata West Business Park (KWBP). The KWBP is proposed to include several types of non-residential uses including Prestige Business Park, High Profile Employment and Extensive Employment.

The proposed 5.0 Ha development will be a mixture of attached and free standing buildings. The total commercial grass floor area will be approximately 10,500 m², see Master Site Plan SPA-1 in **Appendix A**.

October 2014

SITE LOCATION

DESIGN BRIEF ARCADIA RETAIL DEVELOPMENT

GROUP

FIGURE 1

1.4 Phasing

The Owner's intent at this time is to proceed immediately upon SPA approval to service the entire development in a single phase, with building construction to occur as tenants are secured.

1.5 Previous Studies

1. Kanata West Concept Plan

The Kanata West Concept Plan (KWCP) was approved by the City of Ottawa in 2003. The plan provides a framework for the current and future development of the Kanata West lands. It also provides the guidelines and requirements for concept planning, the recommended concept plan, and an implementation strategy. The plan focuses on development of the urban lands with mix uses including office, housing, retail, institutional, entertainment and leisure activities.

2. Kanata West Servicing Study

The Kanata West Servicing Study (KWSS) was completed by the City of Ottawa in 2006. That study provided detailed guidelines for provision of major municipal infrastructure in support of the Kanata West Concept Plan. Among other things it provided guidelines and criteria for water supply, wastewater collection and stormwater management.

3. Third Party Review

The Third Party Review (TPR) was completed after potential omissions in the stormwater management model for KWSS were identified. The TPR was commissioned to be an arm's length review of the model to ensure that it was property calibrated and validated.

4. Signature Ridge Pump Station Hydraulic Grade Line Analysis

A March 2012 report by IBI Group was completed for Minto Properties and completed an update to the Signature Ridge Pump Station sanitary hydraulics. The report predicted HGL's for several scenarios for the tributary sewers including the sanitary sewer servicing the subject parcel. The HGL analysis was further refined in September 2012 based on current overflow proposals by the City.

5. Implementation Plan – Kanata West Development Area

This Plan was prepared for the City of Ottawa and the Kanata West Land Owners Group. The Implementation Plan recognizes that Kanata West is a large planning area which will take years to fully develop and therefore includes a mixture of short and long-term development plans and the associated infrastructure requirements to support them. The Plan builds on the framework of the KWCP and KWSS and provides updated comments for future approvals and the actions that would bring about the approval requirements. The Plan further reviews actions that would be conducted if "triggered" by an event or set of circumstances, while allowing sufficient flexibility to ensure that appropriate changes to the undertaking(s), once identified, are made.

6. Conceptual Site Servicing Arcadia Stages 1, 2, 5 & 8 Kanata West – Minto Communities

This IBI Group report, completed in September 2012, provided a high level conceptual site servicing plan specifically for Minto Arcadia Lands, including the subject site which is Stage 5 of the report. The report focused on details related to water supply, wastewater disposal and stormwater management.

7. Arcadia interim Stormwater Management Facility Design Brief June 2012

This IBI Group report outlines the design of the interim SWM Facility to service Minto's Arcadia development lands, including these commercial lands, until such time as the ultimate stormwater management facility is constructed.

1.6 Environmental Issues

In July 2012, Kilgour & Associates prepared and submitted, as part of the Stage 1 approval, an Intergraded Environmental Review (IER) for the entire 80 ha Minto property. The report assessed the natural features on the site including trees, watercourses, fish and fish habitat and species at risk. The report findings concluded that the project had no significant effect on the existing natural features on the site, as the value of the features was low due to the past history of agricultural activity. It did identify that there are three (3) watercourses on the site: the Carp River, Feedmill Creek and an unnamed creek, for which specific conditions have been put on the development through the "Carp River, Poole Creek and Feedmill Creek Restoration Plan", the "Kanata West Implementation Plan" and the "Carp River, Poole Creek and Feedmill Creek Corridor Width Limits Rationale".

1.7 Geotechnical Considerations

The Owner has commissioned a preliminary geotechnical investigation for the proposed development. The preliminary report was based on information from 21 boreholes on the subject site. The report (No. PG3045-1R) was updated by Paterson Group Inc. in June 2014.

The objectives of the investigations include:

- Determination of the subsoil and groundwater conditions;
- Provision of geotechnical recommendations pertaining to the design and development of the subject site including construction considerations.

Among other items, the reports comment on the following:

- Site grading:
- Foundation design;
- Pavement structure;
- Infrastructure construction:
- Groundwater Control

- Design for Earthquakes
- Corrosion potential;
- Grade raise considerations

Most of the soils on site consist of silty clay underlain by glacial till layer. While many other geotechnical recommendations are provided in the reports, two of those include maximum grade raises in the order of 2 meters and long-term groundwater lowering be controlled with the use of clay dykes in sewer trenches.

2 Water Supply

2.1 Existing Conditions

The Kanata West community is located in the City's 3W water pressure zone. Potable water to this area is pressurized at the Glen Cairn Pump Station where a major water storage reservoir (Glen Cairn Reservoir) is located. Major watermains into this pressure zone from the pump station are located along Castlefrank Road (going north), Hazeldean Road and Campeau Drive (going west) and Terry Fox Drive (going south). In support of the KWCP which includes the subject site, the June 2006 Master Servicing Study completed a review of the existing water plan adjacent to the KWCP and made recommendations for improvements and expansion to the City's water transmission and distribution system to support the proposed development.

As part of the development of Phase 1 of the Arcadia subdivision located north of Campeau Drive adjacent to the commercial site, a 600 mm diameter watermain was extended from Didsbury Road to Huntmar Drive along the future Campeau Drive ROW. The 600 mm diameter watermain is currently in service and Phase 1 has been constructed. A 300 mm diameter watermain has been extended west across Campeau Drive to service the Tanger commercial development which is currently under construction. The 600 mm diameter watermain is being extended south along Huntmar Drive to connect to existing watermains on Cyclone Taylor Boulevard south of Highway 417. Construction of the 600 mm diameter watermain is being completed in two stages with the work on Huntmar Drive at Campeau Drive currently under construction and the Highway 417 to be crossing completed in early 2015.

Two watermain stubs have been provided from the 600 mm watermain on Campeau Drive that will be used to service the commercial site. A 300 mm diameter main is provided at the intersection of Campeau Drive and Country Glen Way and a 200 mm diameter main from Campeau Drive approximately 100 meters east of Huntmar Drive.

2.2 Design Criteria

In order to determine the watermain plan needed to adequately service the subject site, a hydraulic model was prepared using H20 MAP software by MWH Soft Inc. The City of Ottawa supplied boundary conditions at the intersection of Campeau Drive and Huntmar Drive. The specific boundary conditions are:

Max Day and Fire Flow = 152.0 m Peak Hour = 155.1 m Max Pressure Check = 163.1 m

As stated in the boundary conditions, the 300 mm diameter watermain on Campeau Drive at Huntmar Drive is required to be interconnected to the 600 mm watermain at Huntmar Drive and Campeau Drive. The connection has recently been completed and the watermain will be in service in September 2014.

Water consumption rates for the commercial site and adjacent subdivision is taken from Table 4.2 of the Ottawa Design Guideline Water Distribution. For the commercial site, a rate of 2500 L/(1000 m²/d) is used for each of the 9 blocks. In the Master Servicing Study a rate of 50,000l/ha/day is used for commercial areas, for a gross area of 5 ha, the basic day flow rate calculates as 2.9 l/s while the basic day rate calculated using the floor area of each block adds up to 0.31 l/s. Water demands for development west of Huntmar Road are also included in the water model. The calculated demands are tabulated in **Appendix A**.

In order to determine the fire flow requirements, calculations based on the criteria of the Fire Underwriters Survey was carried out for several blocks. The calculations resulted in a maximum

fire flow requirement of 183.3 l/s (11,000 l/min) which has been applied to all nodes in the commercial site. A copy of the calculations are included in **Appendix A**.

2.3 Proposed Water Plan

A figures showing the water model for the Arcadia commercial site are included in **Appendix A** along with the results of the hydraulic modelling.

A computer model of the water distribution network for the Arcadia development was developed using the H20MAP water program provided by MWH Soft Inc. Water demands and HGL boundary conditions as described in Section 2.2 were incorporated into the model. The results of the hydraulic analysis are as follows:

SCENARIO	ARCADIA COMMERCIAL SITE
Basic Day Pressure	624.6 to 644.2 kPa (90.6 to 93.4 psi)
Maximum Day plus Fire Design Fire Flow	Minimum 253.3 l/s (15,198 l/min)
Peak Hour Pressure	542.6 to 562.2 kPa (78.7 to 81.5 psi)

For all nodes the basic day pressure exceeds 552 kPa (80 psi) requiring all buildings to have pressure reducing valves installed. Pressure reducing valves will be installed immediately downstream of the isolation valve inside the buildings located downstream of the water meter and be maintained by the building owner in accordance with Technical Bulletin ISDTB-2014-02. Sizing of the pressure reducing valves will be conducted by the building's mechanical engineer. The basic day pressure does not exceed the maximum 689 kPa (100 psi) at any node in the system. All nodes exceed the required fire flow while maintaining a residual pressure of 140 kPa (20 psi) at any node in the system. Peak hour pressures in excess of the minimum requirement of 276 kPa (40 psi) at all nodes.

The proposed water distribution system for this development is shown on the General Plan of Services drawing C-100 with additional notes and details on Details drawing C-100A in **Appendix A**.

3 Wastewater Disposal

3.1 Existing Conditions

The Signature Ridge Pump Station (SRPS) is the wastewater outlet for all lands in the KWCP north of Highway 417, including the subject site. The SRPS was constructed in 1991 with an ultimate capacity of 250 l/s to service an area of Kanata, both north and south of Highway 417 including Signature Ridge, Interstitial lands, the Broughton/Richardson lands and developments along Palladium Drive south of Highway 417. This station is being upgraded to accommodate additional lands as per the KWSS.

3.2 Master Servicing Studies

The Kanata West Master Servicing Study (KWSS) was completed in 2006 in support of the KWCP. It recommended a wastewater master plan for the entire KWCP. For lands north of Highway 417, including the subject site, all wastewater flows are to be routed to the SRPS. The KWSS Section 4.3 recommended that the capacity of the pump station be upgraded to 400 l/s to accommodate the wastewater flow from the expanded drainage area. The relevant portion of KWSS Section 4.3 is included in **Appendix B**. To convey flows from the subject site, the 2006 report recommended that a 525 mm diameter sewer be constructed in the extended Campeau Drive across Huntmar Drive into the subject site. Because of hydraulic gradient constraints, the 2006 KWSS was very conservative with recommendations for sub-trunk sanitary sewer sizes.

Subsequent to completion of the KWSS report, several additional reviews have been completed with respect to sanitary HGL and overflow impacts at the SRPS. The most recent of these is the "Signature Ridge Pump Station Hydraulic Grade Line Analysis (IBI Group July 2014) completed for Minto Properties in support of its Arcadia development. The HGL analysis was further refined in July 2014 based on more up-to-date development conditions with the construction of Phase 1 Arcadia and Richardson Ridge.

As part of Arcadia's Stage 2 development the 375 mm diameter sanitary sewer sub-trunk was extended along Campeau Drive to Huntmar Drive. This sewer will provide the wastewater outlet for the subject site.

3.3 Design Criteria

In accordance with the City's current "Ottawa Sewer Design Guidelines", the following design criteria were used to predict wastewater flow rates for the subject site and to size the sanitary sewers:

- Minimum velocity 0.6 m/s
- Maximum velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Residential average flow 350 L/c/d
- Commercial (Employment Area) average flow 50,000 L/gross ha/d
- Industrial (Business Park) average flow 35,000 L/gross ha/d
- Residential peaking factor Harmon Formula
- Commercial/Institutional peaking factor 1.5
- Industrial peaking factor as per the guidelines
- Infiltration inflow 0.28 l/s effective gross ha
- Minimum allowable slopes as listed below

DIAMETER	SLOPE
200	0.320
250	0.240
300	0.816
375	0.140
450	0.111
525 and larger	0.100

3.4 Recommended Wastewater Plan

The recommended wastewater plan for the subject site is shown on Drawing C-100 along with details on drawing C-100A. The plan recommends that all wastewater flows from the subject site be conveyed to the Campeau Drive sewer. The 375 mm diameter sanitary sewer currently terminates at Huntmar Drive and has two connection points for the subject site. The west connection point is a 200 mm \varnothing sanitary service stub, while the east is a 300 mm \varnothing sanitary sewer stub.

3.5 Hydraulic Grade Line

The above referenced July 2014 technical Memorandum by IBI Group estimated the full build-out hydraulic grade line (HGL) at the intersection of Campeau Drive and north entrance to be 95.47 m, and at Campeau Drive and Street 1, 94.76 m. The lowest finished floor elevation for all of the Arcadia commercial development is 98.10 m and since all buildings will be slab on grade type, the sanitary HGL will not negatively impact the development.

3.6 Sewer Calculations

The on-site sanitary sewers have been designed in accordance with City of Ottawa and Ministry of the Environment of Ontario (MOE) criteria. The detailed sanitary sewer design sheets and related sanitary drainage area plan C-501 are included in **Appendix B**.

The July 2012 Site Servicing Report 'Arcadia – Kanata West Ph 1' by IBI Group identified conceptually the servicing for the 9.84 Ha parcel of land south of Campeau Drive. This site comprises approximately 5.2 Ha of that area. The Campeau Drive sewer was designed and constructed assuming 0.85 Ha of commercial lands connecting to MH301A and 9.99 Ha of mixed use lands (3.82 Industrial, 3.82 Residential, 1.35 Ha commercial) connecting to MH 303A, with peak flows of 0.98 l/s and 9.77 l/s, respectively, for a total of 10.75 l/s. This site generates approximately 5.95 l/s peak flow – 2.06 l/s to MH 301A and 3.89 l/s to MH 303A. The minor (1.08 l/s) increase in flow to MH 301A has no negative impact on the system as it has over 34 l/s spare capacity up to MH 303A.

As noted above, the site is comprised of slab on grade construction (no basements). The minor (1.08 l/s) increase in flow from MH 301A to 303A will not negatively impact this site. There are existing houses along Campeau Drive and the current freeboard between the HGL and USF is approximately 1.18 m at MH301A. It is anticipated that any minor HGL adjustment (1 to 2 cm) due to the 1.08 l/s at this MH will leave these units with in excess of 1 m of freeboard.

The remaining lands from the 9.84 Ha parcel has been divided into two external areas; EXT1(0.74 Ha) which is north of the future Rapid Transit Line, and EXT2 (2.82 Ha), south of the

Rapid Transit Line. These areas will be mixed use development areas and will split prorate the residual flow assigned this area. 10.75 L/S less 2.06 l/s and less 3.89 l/s equals 4.8 l/s which will be split 1.0 l/s for EXT1 and 3.8 for EXT2.

The total flow from this 9.84 Ha area to the Campeau Drive trunk sewer is 2.06 + 3.89 + 1.0 + 3.8 = 10.75 l/s. As a comparison, the KWSS had applied 50,000.00 l/Ha/d for this area which would equate to 11.29 l/s peak flow when using Peak Factor 1.5 and infiltration rate of 0.28 l/s/Ha. To this end, the total flow from this area to the Campeau Drive sewer and SRPS is less than the flow allocated in the KWSS.

October 2014

4 Stormwater Management

4.1 Existing Conditions

As previously noted, the subject site, which is located east of Huntmar Drive north of the proposed Rapid Transit Route and Feedmill Creek is currently vacant except for a temporary sales trailer for Minto's residential lands. The site was previously stripped and the excavated material was used to preload the initial phase of Minto's residential development. As such, the topography is fairly consistent and ranges from about 100 m in the west to about 97 m in the east.

As part of the Arcadia development Stage 1 works, an interim SWM facility was constructed in the future Stage 4 area to service Stages 1, 2 and 5. Storm sewers within Stage 1 and the portion of Campeau Drive fronting on Stage 1 are currently in service and outlet to the interim SWM facility.

Details related to the design elements of the stormwater management facility are presented in the previously approved report entitled "Arcadia Interim SWMF Design Brief, June 2012". This section of the report will focus only on the onsite stormwater system proposed for the site.

4.2 Minor Storm Sewers Design Criteria

The minor storm sewers for this site will be sized based on the recommendations of the KWSS and standards of both the City of Ottawa and the provincial Ministry of the Environment. Some of the key criteria will include the following:

•	Design Return Periods:	Local and Collector Roads	1:5 yr (Ottawa)
•	Sewer Sizing by Rational Method		
•	Runoff Coefficients:	Roof	C=0.90
		Asphalt	C=0.90
		Landscaped Areas	C=0.2
•	Initial T of C	10 min	
•	Min Velocity:	City Design Guidelines	0.80 m/s

The SWM report for the neighbourhood recommended that for the subject lands, runoff discharged to the downstream storm system should be limited to 240 l/s/Ha.

The minor storm sewers for the subject site, will be sized based on the rational method and the City of Ottawa 1:5 yr. event. Minor storm flow into these sewers will be controlled by Inlet Control Devices (ICD) to limit flows and prevent sewer surcharging.

The minor storm sewer system is illustrated on the General Plan C-100 plus additional specifications and details are provided on Drawing C-100A. The storm sewer design sheets and related Storm Sewer Drainage Area plans C-500 is included in **Appendix C**.

The servicing report for Arcadia Phase 1 included capacity for 163 l/s and 1822 l/s at MH's 301 and 303 in Campeau Drive. The detail design sheets note the peak flows of 158.8 and 1354.27 at MH's 301 and 303 respectively. To this end, no negative impact on the existing downstream system is anticipated.

4.3 Stormwater Management

In accordance with the neighbourhood SWM, the site is proposed to outlet to the existing Campeau Drive storm sewer, which outlets to the Interim SWM pond and eventually to the future Pond 1 as per KWDA Master Servicing Report. The downstream sewers and interim SWMF have been constructed and are operational. As per the recommendation of the Servicing Report

for the downstream storm sewers, all drainage from this site is restricted to a maximum release rate of 240 l/s/ha.

In order to control flow into the downstream sewers, Inlet Control Devices (ICD) and roof drain restrictors are proposed. These flow control devices will be required to restrict flow into the minor system and to the downstream storm sewers, to a maximum of 240 l/s/Ha, or 192 l/s for the 0.8 Ha tributary to MH 301 in Campeau Drive, and 1027.2 l/s for the 4.28 ha tributary to MH 303 in Campeau Drive for a total of 1219.2 l/s.

The KWSS identified the major storm route for these lands to discharge to Feedmill Creek. This site will be designed to accommodate the 100 year event with minimal over flow off site, however, should a major event in excess of the 1:100 year event occur, runoff which exceeds the available spare storage would be routed along the parking lot and internal roads to Feedmill Creek. Figure C-500 in **Appendix C** also illustrates the proposed major storm routing for the site system.

As noted above, the development must limit flow to the storm trunk sewer to 240 l/s/Ha during a 1:100 year rainfall event to provide flood protection for downstream properties. In order to control flow into the downstream sewers to meet this criteria, Inlet Control Devices (ICD) are proposed. Drawing C-100 illustrates the location of ICD's for the various inlets and roof drains and drawing C-100A provides additional details on the ICD's. These ICD's restrict flow into the minor system resulting in ponding as illustrated on drawing C-400. The modified rational method was used to determine the volume of storage required to capture the 100 year event while limiting the accumulated flow to the downstream storm sewers to a maximum of 240 l/s/Ha.

Approximately 0.19 Ha will shed uncontrolled runoff to the Huntmar Road and Campeau Drive storm sewers. The net allowable from the site shall be reduced by the 100 yr. flow provided by this area which is approximately 46.66 l/s. To this end the maximum allowable flow from the onsite sewers is 1219.2 l/s - 46.66 l/s = 1172.54 l/s.

Based on the proposed ICD's during a 100 yr. event, a total of 1142 l/s is being allowed into the system, while a maximum of 1357.48 m³ of storage has been provided as summarized in the table below. The modified rational method analysis is included in **Appendix C** along with the above noted drawings. It can be noted that on site storage (roof top, inline and surface), attenuates the 100 year event with minimal overflow to future phases.

ICD#	TRIBUTARY AREA (m²)	100 YR. FLOW (I/s)	100 YR. STORAGE (m³)	5 YR. FLOW (I/s)	5 YR. STORAGE (m³)
100	600	30	4.17	15	2.07
110	1100	40	20.65	20	20.65
120	1100	15	34.51	7.5	14.76
122	600	10	19.52	5	19.52
123	600	15	1.74	7.5	1.74
201	2900	60	11.06	30	19.97
204	1300	55	1.82	27.5	1.82
205	1600	60	4.33	30	4.33
206A	3800	85	104.32	42.5	37.34
206B	700	10	29.25	5	9.27
206C	400	14	9.27	7	5.52
206D	500	60	1.68	30	0.52
210A	1200	77	13.50	38.5	10.52
212	600	24	3.73	12	3.73
215	400	10	7.07	5	3.59
221	2900	85	69.97	42.5	69.83
222	1200	15	31.00	7.5	16.98
223	2700	32	116.57	16	57.66
230B	1900	70	32.11	35	10.57
230C	300	10	6.49	5	5.52
230D	1300	67	21.16	33.5	3.97
230F	700	38	11.77	34	5.52
230G	1200	53	43.07	26.5	27.57
2301	300	11	8.62	5.5	5.52
231	6800	150	204.32	75	139.9
240A	500	10	14.22	5	11.57
240C	500	10	15.07	5	5.52
Roof 100	600	2	26.48	2	11.12
Roof 200	400	1	19.3	1	8.31
Roof 300	400	1	19.3	1	8.31
Roof 400	1500	4	70.97	4	30.4
Roof 500	900	2	44.93	2	19.51
Roof 600	600	2	26.48	2	11.12
Roof 700	1000	2	51.44	2	22.49
Roof 800	600	2	26.48	2	11.12
Roof 900	4600	10	231.11	10	100.49
TOTAL	47700	1142	1357.48	584	738.33

4.4 Hydraulic Grade Line

The storm HGL is dictated by downstream infrastructure. The storm HGL within the existing storm sewer on Campeau Drive is at 96.05 m and 95.09 m at existing MH's 301 and 303 respectively. The sewers are not surcharged at these points and since the internal sewers are restricted to meet the downstream system design requirements and sized to accommodate the restricted flow. The onsite sewers will not be surcharged and as such the HGL will follow the obvert of the pipes. Additionally, this is a slab on grade development and the City requirement for 0.3 m freeboard to USF to protect basements from flooding is a mute point. The minimum freeboard from the onsite HGL (obvert of storm sewer) to finished floor elevation is 1.51 m. Additional columns have been added on the storm sewer design sheet to identify relationship between HGL (obvert of pipe) and FF for buildings.

5 Sediment and Erosion Control Plan

During construction, existing stream and conveyance system can be exposed to significant sediment loadings. Although construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- seepage barriers will be constructed in any temporary drainage ditches;
- filter cloths will remain on open surface structure such as manholes and filter socks on catchbasins until structures are commissioned and put into use.

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

In order to reduce sediment loading to the adjacent lands via overland flow, seepage barriers will be installed along the property limits will be used. Light Duty Silt Fence Barrier as per OPSD 219.110. All seepage barriers will be inspected and maintained as needed.

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed theses structures will be covered to prevent sediment from entering the minor storm sewer system. Until the parking lots are asphalted and curbed, all catchbasins and manholes will be constructed with a geotextile filter fabric located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

During construction of any development both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer system is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rear yard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stock piling of imported construction materials is generally not a concern. These materials are quickly used and in mitigative measures stated previously, such as and filter fabric in catchbasins and manholes help to manage these concerns.

Roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only temporary event since the materials are quickly moved off site.

To reduce the potential for tracking of sediment off-site, mud mats will be constructed at each entrance and maintained until site is ready for paving.

A sediment and erosion control plan is provided as Drawing C-900 in Appendix D.

6 Geotechnical

Paterson Group prepared a geotechnical report updated June 26, 2014 for the subject lands. A copy of the Paterson report has been provided in **Appendix D**. The report provides recommendations for various site servicing and building construction issues. The recommendations impacting site servicing include, but are not limited to the following, see report for details:

- Permissible grade raise: 2 m within 5 m of building 3 m elsewhere.
- Pavement Structure: The following is the recommended pavement structure.

	THICKNESS (mm)		
PAVEMENT STRUCTURE	CAR PARK AREA	ACCESS LANES & HEAVY TRUCK PARKING	
Superpave 12.5	50	40	
Superpave 19.0		50	
Granular "A"	150	150	
Granular "B" Type II	400	450	

- Pavement Structure Drainage: Subdrains at CB's 3 m long orthogonally or longitudinally when along a curb.
- Pipe Bedding and Backfill: 150-300 mm OPSS Granular 'A' crushed stone bedding compacted to 95% SPMDD. Cover to extend 300 mm above pipe obvert to be OPSS Granular 'A' compacted to 95% SPMDD.
- Clay Seals: To be provided at 60 m intervals

The proposed Grading Plan C-200 is included in **Appendix D**. The grading plan was prepared with a view to limit grade raise to 2.0 m or less. Paterson Group has reviewed this plan and via their comments to the City dated June 26, 2014, Item #13 included in **Appendix D** noting their concurrence of the plan from a geotechnical perspective.

Infiltration targets for the proposed site were outlined in Figure 5.4 of the KWSS. The soil type within the proposed development area is characterized as clay with low recharge potential. The infiltration target for the area, as identified within the KWSS, is 50-70mm/year. The site is primarily comprised of impervious parking lot and roof surfaces. Infiltration targets for the neighbourhood are detailed under a separate approved report, IBI Arcadia Stage 2 SWM Report and Stage 2 Inlet Design Brief dated September 2014. Section 3.2 of that report identifies how the target for the neighbourhood is to be achieved; summary calculations including these commercial lands are included in **Appendix D**, illustrating an infiltration rate of 122 mm/yr for the neighbourhood which exceeds the 50-70 mm/yr required.

7 Approvals and Permit Requirements

7.1 City of Ottawa

The City of Ottawa will review all and approve most development applications as they relate to provision of water supply, wastewater collection and stormwater conveyance and treatment. Ultimately, the City will issue final approvals for construction including:

- MOE Section 53 Application for Sewers
- Form 1 for Watermains
- Commence Work Notifications
- Site Plan Approval

7.2 Province of Ontario

At the time of final design approvals, the Ministry of Ontario (MOE) will approve the local sewers under Section 53 of the Ontario Water Resources Act and issue an Environmental Compliance Approval. Also if required, the MOE will issue a Permit To Take Water (PTTW).

8 Recommendations

The development of 370 Huntmar Drive will be completed by extension of existing external infrastructure, including water, wastewater and stormwater systems. This report provides sufficient information and demonstrates that water, wastewater and stormwater systems required to develop this site have been designed in accordance with MOE and City of Ottawa current level of service requirements and/or requirements of the existing downstream systems. This report therefore recommends that the City provide the relevant approvals and Commence Work Notifications as needed to start site construction.

Report Prepared By:

Demetrius Yannoulopoulos, P. Eng.

Associate Director

APPENDIX A

ARCADIA DEVELOPMENT

Adjacent street names

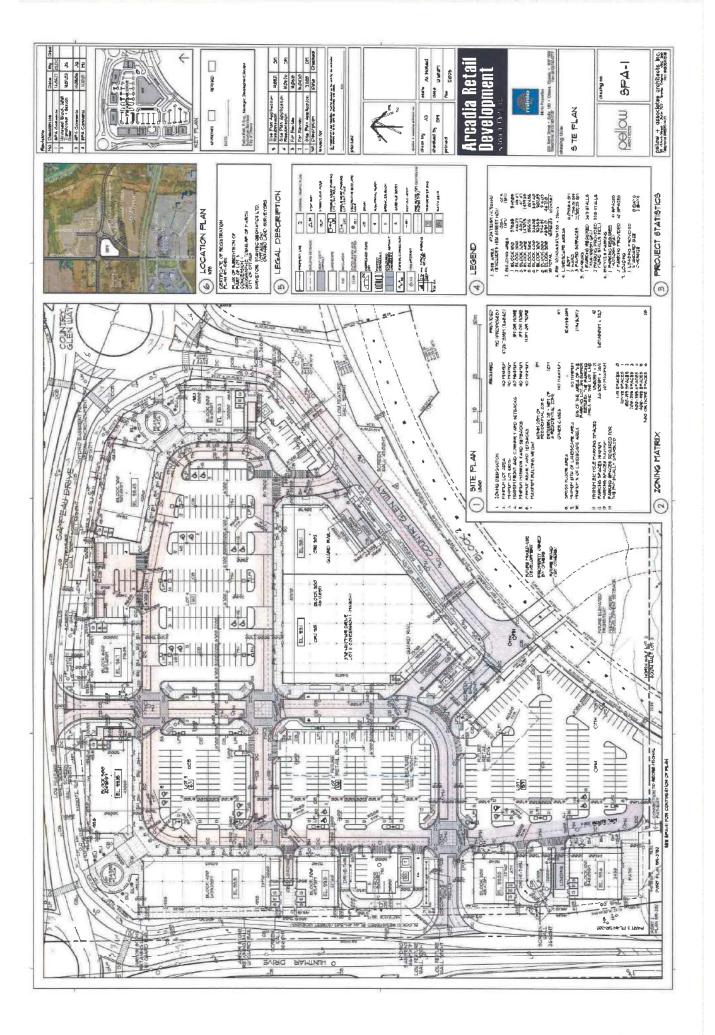
See detail drawings

Development Servicing Study Checklist

.1	General Content
	Executive Summary - Not applicable
	Date and revision number of the report - On cover
	Location map and plan showing municipal address, boundary, and layout of proposed development – key map Figure 1
	Plan showing the site and location of all existing services - Drawing C-100
	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual development must adhere – Section 1
	Summary of Pre-consultation Meetings with City and other approval agencies – Section 1
	Reference and confirm conformance to higher level studies and reports (master Servicing Studies Environmental Assessments, Community Design Plans), or in the case where it is not in conformance the proponent must provide justification and develop a defendable design criteria – Overall: Section 1 Water: Section 2, Sanitary: Section 3, Storm: Section 4
	Statement of objectives and servicing criteria – Overall: Section 1, Water: Section 2, Sanitary: Section 3, Storm: Section 4
	Identification of existing and proposed infrastructure available in the immediate area -Water Section 2; Sanitary; Section 3, Storm Section 4
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, it available) - Carp River, Section 1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts – not applicable
	Proposed phasing of the development, if applicable - Section 1
	Reference to geotechnical studies and recommendations concerning servicing – Sections 1 & 7
	All preliminary and formal site plan submissions should have the following information:
	 Metric scale North arrow (including construction North) Key plan Name and contact information of applicant and property owner Property limits including bearings and dimensions Existing and proposed structures and parking areas Fasements, road widening and rights-of-way

4.2	Development Servicing Report: Water
	Confirm consistency with Master Servicing Study, if available - Section 2
	Availability of public infrastructure to service proposed development - Section 2
	Identification of system constraints – Section 2
	Identify boundary conditions - Section 2
	Confirmation of adequate domestic supply and pressure - Section 2
	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development – Section 2
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure decuding valves – Section 2
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design $-$ Section 2
	Address reliability requirements such as appropriate location of shut-off valves - Section 2
	Check on the necessity of a pressure zone boundary modification - Not applicable
	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range – Section 2
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions – Section 2
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation - Not required.
	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines - Section 2
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference — Section 2

4.3 **Development Servicing Report: Wastewater** Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure – Section 3 Confirm consistency with Master Servicing Study and/or justifications for deviations - Section 3 Consideration of local conditions that may contriburte to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers - Not applicable Description of existing sanitary sewer available for discharge of wastewater from proposed development - Section 3 Verify available capacity in downstream Sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) - Section 3 Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format - Section 3 Description of proposed sewer network including sewers, pumping stations, and forcemains - Section 3 Discussion of previously identified environmental constraints and impact on servicing (environmental constrains are related to imitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality) - Section 4 Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development - Section 3 Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity -Not applicable Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding - Not applicable Special considerations such as contamination, corrosive environment etc - Not applicable 4.4 Development Servicing Report: Stormwater Checklist Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) - Section 4 Analysis of available capacity in existing public infrastructure - Section 4 A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage


patterns, and proposed drainage pattern - Section 4

Development Servicing Study Checklist

	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects – Section 4
	Water quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements – <i>Not applicable</i>
	Description of the stormwater management concept with facility locations and descriptions with references and supporting information $-Not \ applicable$
	Set-back from private sewage disposal systems - Not applicable
	Watercourse and hazard lands setbacks - Not applicable
□ hat ha	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority s jurisdiction on the affected watershed – $Section\ I$
-	Confirm consistency with subwatershed and Master Servicing Study, if applicable study exists - Section
	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period)—Not applicable
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals – Section 4
	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions – Not applicable
	Any proposed diversion of drainage catchment areas from one outlet to another - Not applicable
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities – $Section 4$
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event - Section 4
	Identification of potential impacts to receiving watercourses - Not applicable
	Identification of municipal drains and related approval requirements - Not applicable
	Descriptions of how the conveyance and storage capacity will be achieved for the development - Not applicable
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading – Section 4
	Inclusion of hydraulic analysis including hydraulic grade line elevations - Not applicable
	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors - Section 5

Development Servicing Study Checklist

	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions – <i>Not applicable</i>
	Identification of fill constraints related to floodplain and geotechnical investigation - Section 6
1.5	Approval and Permit Requirements: Checklist
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams or defined in the Act. – Section 7
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act - Section 7
	Changes to Municipal Drains - not applicable
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation – Section 7
1.6	Conclusion Checklist
	Clearly stated conclusions and recommendations - Section 8
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency – not applicable
	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario - Section 8

Lance Erion

From: Sent: Fraser, Mark [Mark.Fraser@ottawa.ca] Tuesday, August 26, 2014 2:54 PM

To:

Lance Erion

Cc:

Demetrius Yannoulopoulos; Ogilvie, Chris

Subject:

RE: D07-12-14-0014_370 Huntmar Drive (Arcadia Commercial Development) - Request for

Updated Boundary Conditions

Attachments:

FUS Fireflow Block 900.pdf; CCS_WaterDemands.pdf

Lance,

Please find below City of Ottawa watermain boundary conditions as requested based on the provided water demand and fire flow demand requirements.

Water Demand and Fire Flow Requirements:

Proposed Development Location: 370 Huntmar Drive

Average Daily Demand = 0.31 L/s
Max Daily Demand = 0.44 L/s
Peak Hour Demand = 0.83 L/s

Fire Flow = 183.3 L/s

City of Ottawa Watermain Boundary Conditions:

PKHR = 155.1m MXDY+Fire = 152.0 m Max HGL = 163.1m

Please note that the boundary conditions provided are based on the following:

- Boundary condition location is on the existing 305mm dia. watermain, about 25m north of the E-W 305mm watermain on Campeau Drive at Huntmar Drive.
- As required for all development beyond the initial 200 units approved for the Arcadia development, it is assumed
 that the 610mm Campeau feedermain extension south on Huntmar to Cyclone-Taylor is in operation.
- To supply the required fire demand provided, the future interconnection between the 610 and the 305 on Campeau Drive at Huntmar Drive (as per 2013-01-18 IBI report, Campeau Drive Watermain, Didsbury to Huntmar Road) MUST BE CONSTRUCTED.
- Pressure Reducing Valves (PRV) are likely required for this development.

Please refer to City of Ottawa, Ottawa Design Guidelines – Water Distribution, First Edition, July 2010, WDG001 Clause 4.2.2 for watermain pressure and demand objectives.

These boundary conditions are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

If you have any questions please let me know.

SEOUP SEOUP

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S BN4

WATERMAN DEMAND CALCULATION SHEET

ARCADIA COMMERCIAL CITY OF CITTAVIA MINITO PROJECT: LOCATION: DEVELOPER:

35355.5.7 16-Aug-14 10F1 FILE: DATE PRINTED: DESIGN: PAGE:

		RESIDENTIAL	ENTIAL		NON	NON-RESIDENTIAL	TIAL	AV	AVERAGE DAILY	11LY	MA	MAXIMUM DAILY	ILY	MAX	MAXIMUM HOURLY	JRLY	FIRE
HUCN		UNITS			INDTRL	COMM.	RETAIL	۵	DEMAND (Ys)	Vs)	ŏ	DEMAND (Vs)	(8)	Z	DEMAND (Vs)	(S)	DEMAND
	SF	SD & TH	1S	POPN	(ha.)	(ha.)	(m ₂)	Res	Non-res.	Total	Res.	Non-res.	Total	Res	Non-res.	Total	(l/min)
ARCADIA COMMERCIAL																	
AC-120 (Blk 800)							547	00 0	0.02	0.02	00.00	0.02	0.02	00:00	0.04	0.04	11,000
AC-130 (Blks 600,700)							1472	00.0	0.04	0.04	00.0	0.06	0.08	0.00	0.12	0.12	11,000
AC-140 (Blk 500)							926	00'0	0.02	0.02	00'0	0.04	0.04	00'0	20 0	20.0	11,000
AC-160 (Bilks 300,400)							1918	00'0	90.0	90.0	00.00	0.08	0.08	00.00	0.15	0.15	11,000
AC-180 (Biks 100,200)							1025	0.00	0.03	0.03	00.00	0.04	0.04	00'0	0.08	0.08	11,000
AC-190 (BIK 900)							4694	00.0	0.14	0.14	00.0	0.20	0.20	0.00	0.37	0.37	11,000
TOTAL										0.31			0.44			0.83	
ARCADIA STAGE 1							Ī										
PH1-100		4		11				0.04	00.0	0.04	0.11	00.0	0.11	0.24	00.0	0.24	10,000
PH1-101		4		11				0 04	00.00	0.04	0.11	0.00	0.11	0.24	0.00	0.24	10,000
PH1-105		ß		14				0.05	00.00	0.05	0.14	0.00	0.14	0.30	00.0	0.30	10,000
PH1-110		8		22				60.0	00.0	0.09	0.22	00'0	0.22	0.48	0.00	0.48	10,000
PH1-115		8		22				60 0	000	60.0	0.22	00'0	0.22	0.48	0.00	0.48	10,000
PH1-120		5		14				90.0	00'0	0.05	0.14	00'0	0.14	0.30	0.00	0.30	10,000
PH1-160	6	9		47				0,19	00'0	0.19	0.47	00.0	0.47	1.04	00.0	1.04	10,000
PH1-170	8	8		49				0.20	0.00	0.20	0.49	00'0	0.49	1.09	00'0	1,09	10,000
PH1-180		7		18				80.0	00.0	0.08	0.19	00'0	0.19	0.42	0.00	0.42	10,000
PH1-185		2		18				80 0	00 0	0.08	0.19	00.0	0.19	0.42	0.00	0.45	10,000
PH1-190		6		24				0.10	00.0	0.10	0.25	0.00	0.25	0.54	0.00	0.54	10,000
PH1-200		16		43				0.18	0.00	0.18	0.44	00'0	0.44	96.0	0.00	96.0	10,000
PH1-210		17		46				0.19	00'0	0.19	0.46	00.0	0.46	1.02	0.00	1.02	10,000
PH1-220		œ		22				0.09	00'0	60.0	0.22	00.0	0.22	0.48	0.00	0.48	10,000
PH1-230	11			37				0.15	00.0	0.15	0.38	0.00	0.38	0.83	0.00	0.83	10,000
PH1-240	7			24				0.10	00.0	0.10	0.24	00'0	0.24	0.53	0.00	0.53	10,000
PH1-250	11			37				0.15	0.00	0.15	0.38	00'0	0.38	0.83	0.00	0.83	10,000
PH1-260	11			37				0.15	0.00	0.15	0.38	00.00	0.38	0.83	0.00	0.83	10,000
PH1-270	12			14				0.17	0.00	0.17	0.41	00'0	0.41	0.91	0.00	0.91	10,000
PH1-280	12			14				0.17	00:00	0.17	0.41	0.00	0.41	0.91	0.00	0.91	10,000
C-140					65.40	19.10		0.00	37.55	37.55	0.00	56.32	56.32	00.00	101.38	101.38	10,000

		ASSUMPTIONS			
RESIDENTIAL DENSITIES		AVG. DAILY DEMAND		MAX, HOURLY DEMAND	
- Single Family (SF)	3.4 p/p/u	3.4 p/p/u - Residential	350 1 / cap / day	- Residential	1.925 I / cap / day
		 Industrial (Business Park) 	35,000 I / ha / day	 Industrial (Business Park) 	94,500 I / ha / day
- Semi Detached (SD) & Townhouse (TH)	2.7 p/p/u	2.7 p / p / u - Commercial (Employment Area	50,000 If ha / day	- Commercial (Employment Area	135,000 l / ha / day
		- Retail (Shopping Centre)	2,500 I / 1000m ² / day	- Retail (Shopping Centre)	6,750 t/ 1000m2 / day
- Stacked Townhouse (ST)	2.3 p/p/u	2.3 p/p/u MAX, DAILY DEMAND		FIRE FLOW	
		- Residential	875 1 / cap / day	- SF, SD & TH	10.000 1 / min
		 Industrial (Business Park) 	52,500 I / ha / day	- Retail	11,000 17 min
		- Commercial (Employment Area	75,000 17 ha / day		
		- Retail (Shooning Centre)	3,750 17 1000m ² / day		

Fire Flow Requirement from Fire Underwriters Survey

Building Floor Area Block 900

F = 220C√A		floor area	4,694	m ²	
С	1.0		C =	1.5	wood frame
			0 -		
Α	4,694	m ⁻			ordinary
				8.0	non-combustible
F	15,073	I/min		0.6	fire-resistive
use	15,000	l/min			
Occupancy A	diustme	nt		-25%	non-combustible
		=		-15%	limited combustible
Use		0%		0%	combustible
000		0,70			free burning
Adimeterant		0 l/m	in		_
Adjustment				723%	rapid burning
Fire flow		15,000 l/m	ın		
Sprinkler Adj	<u>ustment</u>				system conforming to NFPA 13
				-50%	complete automatic system
Use		30%			
Adjustment		4500 l/m	in		

Exposure Adjustm	nent		Separation C	harge
			0 to 3m	+25%
Building Face	Separation Charge		3.1 to 10m	+20%
			10.1 to 20m	+15%
north	0%		20.1 to 30m	+10%
east	37 5%		30.1 to 45m	+5%
south	0%			
west	0%			
Total	5%			
Adjustment	750	l/min		
Adjustment	100			
Fire flow	11,250	I/min		
Use	11,000	I/min		

Note: This is the highest value for all buildings and will be used as the fire flow rate for the site

Fire Flow Requirement from Fire Underwriters Survey

Building Floor Area Block 400

Adjustment

	f	loor area	1	,470 m	2
F = 220C√A					
С	1.0			C =	1.5 wood frame
Α	1,470 r	m²			1.0 ordinary
					0.8 non-combustile
F	8,435 L	/min			0.6 fire-resistive
use	8,000 1	/min			
Occupancy Ad	<u>ljustment</u>				-25% non-combustile
					-15% limited combustile
Use		0%			0% combustile
					+15% free burning
Adjustment		0	l/min		+25% rapid burning
Fire flow		8,000	l/min		
Sprinkler Adjus	stment				-30% system conforming to NFPA 13
					-50% complete automatic system
Use		30%			

-				
Exposure Adjustm	<u>ient</u>		Separation C	harge
			0 to 3m	+25%
Building Face	Separation Cha	ırge	3.1 to 10m	+20%
			10.1 to 20m	+15%
north		0%	20.1 to 30m	+10%
east	10	20%	30.1 to 45m	+5%
south	8	20%		
west		0%		
Total		40%		
A II. A		0.000 11 1		
Adjustment		3,200 I/min		
Fire flow		8,800 I/min		
		•		
Use		9.000 Vmin		

2400 I/min

Fire Flow Requirement from Fire Underwriters Survey

Building Floor Area Block 700

		floor area	4,694 m ²	!
F = 220C√A				
С	1.0		C =	1.5 wood frame
Α	934	m ²		1.0 ordinary
				0.8 non-combustile
F	6,724	l/min		0.6 fire-resistive
use	7,000	/ min		
10				
Occupancy A	<u>djustmer</u>	<u>nt</u>		-25% non-combustile
				-15% limited combustile
Use		0%		0% combustile
				+15% free burning
Adjustment		0 l/mi	n	+25% rapid burning
Fire flow		7,000 l/ mi	n	
Sprinkler Adju	<u>ıstment</u>			-30% system conforming to NFPA 13
				-50% complete automatic system
Use		30%		
Adjustment		2100 l/mi	n	

Exposure Adjustm	<u>nent</u>			Separation C	harge
				0 to 3m	+25%
Building Face	Separation Ch	ıarge		3.1 to 10m	+20%
				10.1 to 20m	+15%
north		0%		20.1 to 30m	+10%
east	13	15%		30.1 to 45m	+5%
south		0%			
west	37	5%	2		
Total		20%			
Adjustment		1,400 l/min			
Fire flow		6,300 I/min			
Use		6,000 Vmin			

ARCADIA COMMERCIAL - PIPE SIZES

ARCADIA COMMERCIAL - NODE ID'S

ARCADIA COMMERCIAL - PIPE ID'S

		ID.	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1		AC-100	0.00	97.40	163.04	643.21
2		AC-110	0.00	97.90	163.04	638.31
3		AC-120	0.02	97.95	163.04	637.82
4		AC-130	0.04	98.30	163.04	634.41
5		AC-140	0.02	98.50	163.04	632.46
6		AC-150	0.00	97.85	163.04	638.80
7	[100]	AC-160	0.06	99.10	163.04	626.55
8		AC-170	0.00	99.20	163.04	625.57
9		AC-180	0.03	99.30	163.04	624.59
10		AC-190	0.14	97.75	163.04	639.78
11	timit	AC-200	0.00	97.30	163.04	644.19
12		C-130	0.00	98.10	163.04	636.35
13		C-140	37.55	100.20	163.04	615.77
14		PH1-100	0.04	100.25	163.06	615.53
15		PH1-101	0.04	99.50	163.05	622.78
16		PH1-105	0.05	99.00	163.05	627.61
17		PH1-110	0.09	98.65	163.04	631.00
18		PH1-115	0.09	98.20	163.04	635.39
19		PH1-120	0.05	98.10	163.04	636.36
20		PH1-130	0.00	97.90	163.04	638.31
21		PH1-160	0.19	97.15	163.04	645.66
22		PH1-170	0.20	97.25	163.04	644.68
23		PH1-180	0.08	97.25	163.04	644.68
24	3	PH1-185	0.08	96.95	163.04	647.62
25		PH1-190	0.10	97.10	163.04	646.15
26		PH1-200	0.18	97.15	163.04	645.67
27		PH1-210	0.19	97.80	163.04	639.30
28		PH1-220	0.09	99.70	163.04	620.68
29		PH1-230	0.15	99.60	163.04	621.67
30		PH1-240	0.10	99.70	163.04	620.72
31		PH1-250	0.15	97.90	163.04	638.33
32		PH1-260	0.15	97.50	163.04	642.24
33		PH1-270	0.17	98.15	163.04	635.87
34		PH1-280	0.17	97.20	163.04	645.17

Date: Tuesday, August 26, 2014, Page 1

Peak Hour HGL 155.1 m - Junction Report Pressure Demand Elevation Head 1D (kPa) (L/s)(m) (m) 97.40 154.67 561.22 0.00 AC-100 1 556.32 0.00 97.90 154.67 2 w **AC-110** 97.95 154.67 555.85 国 AC-120 0.04 3 154.68 552.51 0.12 98.30 4 AC-130 0.07 98.50 154,69 550.59 5 国 AC-140 97.85 154.67 556.83 6 AC-150 0.00 154.67 544.57 7 AC-160 0.15 99.10 543.59 0.00 99.20 154.67 8 AC-170 542.61 AC-180 0.08 99.30 154.67 9 97.75 154.67 557.79 0.37 AC-190 10 154.67 562.20 AC-200 0.00 97.30 11 154.67 554.35 0.00 98.10 C-130 12 ... 533.78 101.38 100.20 154.67 in. 13 C-140 154.85 535.01 0.24 100.25 14 PH1-100 0.24 99.50 154.77 541.64 PH1-101 15 545.99 0.30 99.00 154.72 16 PH1-105 154.69 549.19 0.48 98.65 PH1-110 17 PH1-115 0.48 98.20 154.68 553.43 18 554.38 0.30 98.10 154.67 19 PH1-120 97.90 154.67 556.31 0.00 PH1-130 20 154.66 563.57 97.15 PH1-160 1.04 21 97.25 154.66 562.55 1.09 PH1-170 22 97.25 154.66 562.54 0.42 PH1-180 23 565.48 154.66 0.42 96.95 24 PH1-185 97.10 154.66 564.01 0.54 25 PH1-190 97.15 154.66 563.52 PH1-200 0.9626 1.02 97.80 154.66 557.16 PH1-210 27 0.48 99.70 154.66 538.54 PH1-220 28 154.66 539.57 PH1-230 0.83 99.60 29 0.53 99.70 154.69 538.84 30 PH1-240 97.90 154.67 556.26 PH1-250 0.83 31 560.10 97.50 154.66

PH1-260

PH1-270

PH1-280

0.83

0.91

0.91

154.66

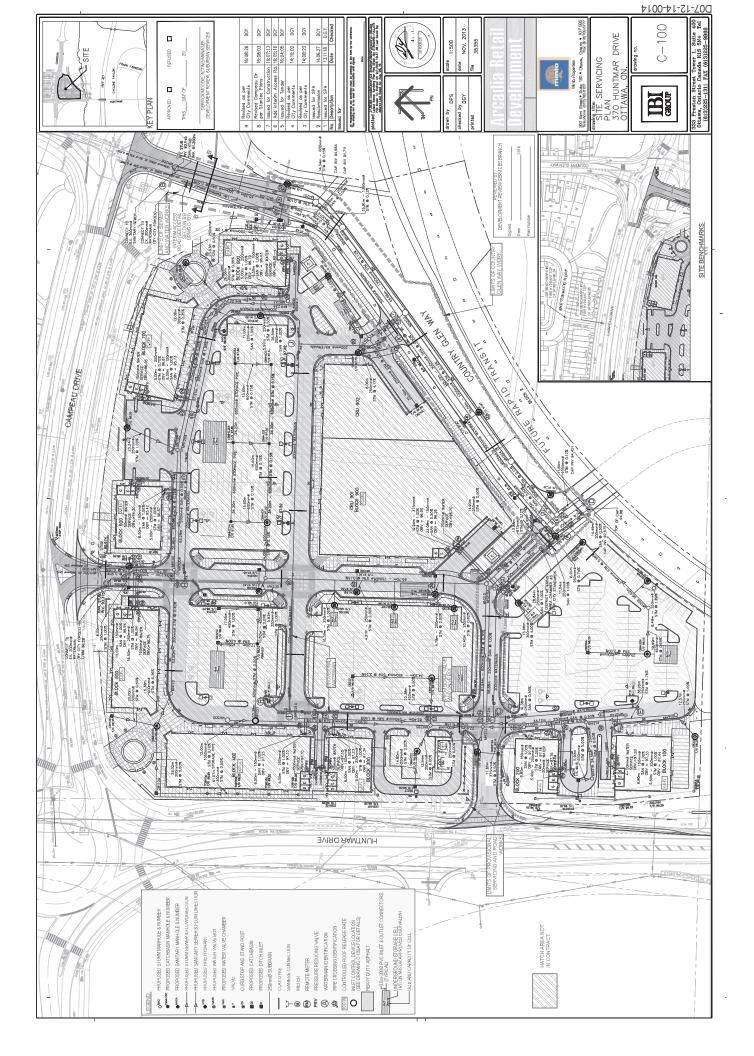
154.66

98.15 97.20 553.78

563.03

Date: Tuesday, August 26, 2014, Page 1

32


33

34

14.9 | Design Flow (14.9) | De Adjusted Available
Flow
(148)
606 24
607 24
607 24
607 24
607 24
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27
508 27 112.28 112.28 112.28 113.28 113.28 113.28 113.28 113.28 111.38 111.38 111.43 11 Critical Node 2
| Pressure | Pressure | Pressure | Pressure | 144.48 | 144.48 | 149.96 | 149.96 | 149.96 | 149.96 | 149.96 | 149.96 | 149.96 | 159. Critical Node 2 ID AC-186
AC GHydraft (L/s) GHydraft (L/s) GHydraft (L/s) GHydraft (L/s) GH, RS GH, R 600 23 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 44 444 (m)
(m)
(47,08
(46,54
(46,54
(46,54
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(46,63
(Critical Node 11D AC-180
AC Totel Demand (U/s) 189.3.5 199.3.0 199.3.0 199.3.0 199.3.3 199.3 199. AC-16 A REPARTMENT AREA 3 3 3 3 3 3 3 2 7 5 B

Max Day + Fire HGL 152.0 m - Fireflow Design Report

III 101 PRH 140 PRH 140 64.55 38.40 17000 64.49 0.04 III 107 PRH 140 PRH 140 RAS 38.40 17000 57.70 0.04 III 107 PRH 140 PRH 140 RAS 38.40 17000 5.73 0.04 III 108 PRH 140 PRH 140 PRH 140 RAS 38.60 170.00 5.73 0.03 III 108 PRH 140 PRH 140 PRH 140 PRH 140 170.00 1.03 0.03 III 108 PRH 140 PRH 140 PRH 140 PRH 140 170.00 1.03 0.03 III 108 PRH 140 PRH 1		a	From Mode	То Мофе	Length (m)	Olemeter (mml)	Raughnees	Flow (L/s)	Velocity (mis)	(m)	(m/km)
8 16.9 FM-141 FM-141 S. 46.7 S. 46.0 C 6.0 C 6.0 <t< td=""><td>-</td><td>161</td><td>PH1-100</td><td>PH1-101</td><td>46.05</td><td>204.00</td><td>110.00</td><td>14.49</td><td>0.44</td><td>0.07</td><td>1.60</td></t<>	-	161	PH1-100	PH1-101	46.05	204.00	110.00	14.49	0.44	0.07	1.60
8 1417 Perilation C + 184 8.8.1 3440 (140) 1.20 1.20 1.20 0.000 8 1417 Perilation Perilation 1841 1.20 1.20 1.20 1.00 0.00 8 1418 Perilation Perilation 1.60 1.10 1.20 1.00 0.00 8 1419 Perilation Perilation 1.60 1.00 0.00 0.00 0.00 8 1419 Perilation Perilation 1.60 1.00 0.00 0.00 0.00 8 1419 Perilation Perilation 1.60 1.00 0.00			PH1-110	PH1-115	59.67	284.00	115.00	5.79	0.18	0.02	0.29
8 (48) PH11-104 PH11-104 96.24 114-104 16.0 11.2 15.0 10.0 10.0 8 (48) PH11-104 PH11-104 PH11-104 PH11-104 18.4 18.40 11.3 10.7 10.00 8 (48) PH11-104 PH11-104 PH11-104 PH11-104 10.00 11.3 10.7 10.00 8 (48) PH11-104 PH11-104 PH11-104 10.00 10.00 10.00 10.00 8 (48) PH11-104 PH11-104 PH11-104 10.00			PH1-130	C-130	29.61	264.00	416.00	-1.20	0.04	0.000	0.02
8 183 PHH-170 PHH-170 O-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	4	181	PH1-130	PH1-180	90.83	204.00	110.00	3.27	0.10	0.01	0.10
2 1912 FHI-170 FHI-180 68-64 SMAGO 119-30 15-34 BAZ 0.00 2 180 180 FHI-180 78.23 78.23 78.24 18.00 10.00 2 180 180 FHI-180 78.23 78.23 78.60 10.00 10.00 10.00 3 180 180 FHI-180 78.23 78.60 110.00 4.24 10.00 10.00 3 180 FHI-180 FHI-180 18.23 186.00 11.00 4.24 10.00 0.00 3 180 FHI-180 18.60 18.60 11.00 4.24 10.00 0.00 3 180 FHI-180 18.60 18.60 11.00 4.24 10.00 0.00 3 180 FHI-180 18.60 18.60 11.00 4.24 10.00 0.00 3 180 FHI-180 18.60 18.60 11.00 4.24 10.00 <td>100</td> <td>183</td> <td>PH1-160</td> <td>PH1-170</td> <td>69.47</td> <td>204.00</td> <td>110.00</td> <td>27.23</td> <td>0.07</td> <td>0.00</td> <td>0.05</td>	100	183	PH1-160	PH1-170	69.47	204.00	110.00	27.23	0.07	0.00	0.05
4	90	185	PH1-170	PH1.180	85.41	204.00	110,00	1,14	0.03	0.00	0.01
19		187	PH1-180	PH1-190	70.16	204.00	110.00	0.30	0.01	0.0000	0.00
167 167	•	180	PH1.190	PH1-200	76.23	204.00	110.00	-0.24	0.04	0.0000	0.000
1 15 15 15 15 15 15 15	- C	191	PH1-200	PH1-210	69.87	204.00	110.00	-0.94	0.03	0.000	10:01
	10	186	PH1-230	PH1-240	162.92	156.60	100,00	-1.88	0.40	0.03	0.17
III 1499 PH14200 FH1200	-	197	PH1-250	PH1-240	101.05	115.00	140.00	-2.19	D.12	0.02	0.22
III 2017 PHY-1200 FHY-1200 FHY-	12	681	PH1-280	PH1-210	88.07	155.00	140.00	8.	T0.0	0.01	60:0
III 200 FRH-220 RFH-220 RFH-220 RFH-220 RFRA-20 145500 1460.00 -146 D.MS D.M	: 5	201	PH1-210	PH1-220	72.36	204.00	110,00	-0.57	0.02	0.000	0:00
217 PHY-200 PH	10	203	PH1-220	PH1-230	61.93	155,00	100,00	-1.06	0.06	00.00	90.0
III 2.00 PH1-200 0.9.34 1856-00 100.00 -4.14 0.0.00 0.0.01 III 2.11 PH1-200 PH1-200 1462-00 100.00 0.671 0.000 0.001 III 2.15 PH1-200 PH1-100 0.69.31 1456-00 1.00.00 0.671 0.000 0.000 III 4.25 PH1-100 PH1-100 0.69.31 2150 0.000 0.001 0.000 0.000 III 4.25 PH1-100 0.69.31 216.00 1.00.00 0.29 0.000	100	207	PH1-200	PH1.260	98.75	155,00	160,00	-0.28	10.0	0000	0.00
211 PH1-200 PH1-200 1464.20 156.00 160.00 0.02 0.08 0.01 213 213 PH1-100 PH1-100 PH1-100 PH1-100 0.42 0.01 0.00 0.00 216 423 PH1-100 PH1-100 PH1-100 PH1-100 0.43 0.00 0.00 0.00 0.00 216 445 PH1-100 PH1-100 PH1-100 PH1-100 0.00	18	208	PH1-260	PH1-270	93.20	156.00	160.00	4,14	90.0	0.01	90'0
III 213 PHE-1260 PHE-1360 99-43 195.60 190.00 0.61 0.60 0.60 0.60 III 235 AG-170 C-170 66.35 287.60 170,00 0.25 0.13 0.60 0.60 III 425 AG-170 C-170 66.35 287.60 170,00 2.27 0.13 0.60 0.60 III 445 PHE-170 PHE-170 28.40 170,00 2.27 0.13 0.60 III 445 PHE-170 PHE-170 28.40 160.00 4.40 0.24 0.60 III 445 PHE-170 PHE-170 14.25 160.00 4.40 0.24 0.83 III 465 PHE-170 PHE-170 28.40 160.00 4.45 0.84 0.84 0.84 III 465 PHE-170 PHE-170 28.40 160.00 4.45 0.84 0.84 0.84 0.84 0.84 0.84 0.84 </td <td>17</td> <td>211</td> <td>PH1-280</td> <td>PH1-270</td> <td>148,23</td> <td>155.00</td> <td>100.00</td> <td>-0.92</td> <td>0.05</td> <td>1970</td> <td>0.04</td>	17	211	PH1-280	PH1-270	148,23	155.00	100.00	-0.92	0.05	1970	0.04
III 2.5.6 PH-14-89 PH-14-89 PH-14-89 PH-14-89 PH-14-89 PH-14-18 7.4.29 28.400 170,00 2.04 0.04 0.0400 III 445 PH-14-18 44,70 23.61 24,40 170,00 2.27 0.03 0.040 III 445 PH-14-18 34,50 24,40 110,00 2.27 0.03 0.040 III 445 PH-14-16 34,50 24,40 110,00 4.24 0.07 0.040 III 445 PH-14-16 34,50 146,00 110,00 4.24 0.03 0.04 III 445 PH-14-16 24,40 110,00 4.24 0.03 0.04 III 445 PH-14-16 24,40 110,00 4.24 0.04 0.04 0.04 III 457 PH-14-16 24,40 110,00 2.24 0.04 0.04 III 457 AC-10 AC-10 AC-10 AC-10		213	PH1-280	PH1-190	98.43	159,00	190.00	0.01	0.000	0.60	0.00
III 4420 AG-100 C-130 66-35 287-00 120.00 2.25 0.03 0.000 III 4460 PH1-110 4570 264-00 110.00 2.37 0.07 0.400 III 4480 PH1-110 3.845 1456-00 140.00 2.37 0.13 0.01 III 448 PH1-120 PH1-106 3.845 1456-00 140.00 2.37 0.13 0.01 III 448 PH1-120 PH1-106 3.845 1456-00 140.00 2.24 0.13 0.01 III 450 PH1-120 PH1-120 2.440 110.00 2.45 0.04 0.01 III 450 PH1-120 PH1-130 7.240 2.440 110.00 2.27 0.04 0.01 III 450 PH1-120 PH1-130 7.440 7.020 1.020 0.02 0.02 0.00 III 450 AC-130 AC-130 7.040 <th< td=""><td>10</td><td>215</td><td>PH1-180</td><td>PH1-185</td><td>74.29</td><td>204.00</td><td>110,00</td><td>0.42</td><td>0.01</td><td>0.000</td><td>00'0</td></th<>	10	215	PH1-180	PH1-185	74.29	204.00	110,00	0.42	0.01	0.000	00'0
## 446 PH1410 4470 28440 110.00 2.57 0.07 0.08 ## 446 PH14106	20	423	AC-100	C-130	68.35	287.00	120.00	2.25	0.03	0000	0.01
III 446 PH4-140 PH4-140 33 OH 284-00 10.00 6.54 B.25 0.02 III 447 PH4-130 PH4-140 36.35 165.00 100.00 -2.44 B.25 0.02 III 488 PH4-270 PH4-145 38.35 165.00 100.00 -2.44 0.14 0.04 III 488 PH4-270 PH4-145 28.45 10.00 1.05 1.45 0.04 0.04 III 487 PH4-170 PH4-140 77.77 28.45 10.00 2.44 0.04 0.04 III 487 PH4-170 PH4-140 77.74 28.45 10.00 2.47 0.04 0.04 III 489 PH4-170 PH4-140 77.74 28.45 110.00 2.47 0.04 0.04 III 480 AC-140 AC-120 46.75 28.46 110.00 2.27 0.04 0.04 III 450 AC-120		443	PM1-115	PH1-120	46.70	204.00	110.00	2.37	0.07	0,00	90'0
447 PH1-3PQ PH1-15Q P	72	445	PH1-105	PH1-110	33.01	204.00	110.00	8.34	6270	0.02	0.71
	23	447	PH1-240	PH1-105	34,25	156.00	140.00	4.60	0.24	0.03	0.87
4 65 C-140 PH-1-05 3-8.04 264.00 100.00 14.25 D-44 0.00 III 455 C-140 72.14 610.40 100.00 14.25 D-44 0.00 III 455 C-140 72.17 264.00 100.00 2.07 D-36 0.01 0.01 III 459 PH-140 77.45 264.00 110.00 2.07 D-36 0.00 0.01 III 459 PH-140 77.46 264.00 110.00 2.07 D-36 0.00 0.01 III 459 AC-100 AC-110 17.46 244.00 110.00 2.07 D-36 0.00 0.00 III 503 AC-120 AC-140 16.72 244.00 110.00 -2.49 0.00 0.00 III 513 AC-120 AC-140 61.42 244.00 110.00 -2.49 0.00 0.00 III 513 AC-120	24	449	PH1-270	PH1-115	35,93	156.00	100.00	-2.64	0.18	0.81	Q.38
456 C-130 C-1440 228,44 610,00 120,00 1,05 0,00 0,4000 18 437 PH-110 C-140 72,17 264,60 110,00 2.07 0,00 0,010 18 437 PH-110 AC-140 77.48 77.48 264,60 110,00 2.07 0,00 0,01 18 650 AC-140 AC-140 77.48 264,60 110,00 2.25 0,10 0,00 0,00 18 650 AC-120 AC-120 17.44 264,60 110,00 2.25 0,00 0,00 18 507 AC-120 AC-120 115,20 244,60 110,00 2.26 0,09 0,00 18 519 AC-120 AC-120 18,22 244,60 110,00 0,85 0,00 0,00 18 519 AC-120 AC-120 81,42 244,60 110,00 0,85 0,00 0,00 18 519	55	451	PH1-101	PH1-105	38.08	204,00	110.00	14.25	0.44	0.06	1.55
III 4437 PH1-110 AC-140 72.77 204.00 10.00 3.08 0.09 0.01 0.01 III 4.99 PH1-120 AC-110 AC-110 AC-110 AC-110 AC-110 AC-110 AC-110 AC-120 AC-12	26	456	C-130	C-140	255,14	610.00	120.00	1.05	0.00	0.0000	0.000
	27	457	PH1-110	AC-140	72.77	204.00	110.00	3.08	0.09	0.01	0.09
## 840 AC-100 AC-100 70.633 287-00 40.000 0.000 ## 840 AC-110 AC-120 61.73 24.40 10.000 -2.25 0.040 0.000 ## 840 AC-110 AC-120 61.73 244.00 110.00 -2.89 0.040 0.01 ## 571 AC-120 AC-120 165.72 244.00 110.00 -3.41 0.04 0.01 ## 511 AC-130 AC-130 AC-140 84.77 244.60 110.00 -3.85 0.03 0.00 ## 511 AC-130 AC-130 AC-140 81.42 244.60 110.00 0.85 0.03 0.00 ## 512 AC-130 AC-140 81.42 244.60 110.00 0.85 0.02 0.00 ## 512 AC-130 AC-130 AC-130 AC-130 64.20 0.02 0.02 0.00 ## 521 AC-130 AC-130 AC-130 AC-130 AC-130 0.02 0.02 <t< td=""><td>28</td><td>459</td><td>PH1-120</td><td>PH1-130</td><td>77.46</td><td>204.00</td><td>110.00</td><td>2.07</td><td>90.0</td><td>0.00</td><td>0.04</td></t<>	28	459	PH1-120	PH1-130	77.46	204.00	110.00	2.07	90.0	0.00	0.04
© 600 AC-170 AC-170 61.73 204.00 10.00 2.00 0.00	8	2002	AC-100	AG-110	70.63	287.00	120.00	-2.25	0.03	0000	0.01
	30	909	AC-110	AC-120	51.75	204.00	110.00	-2.00	0.06	0.00	0.04
## 509 AC-140 AC-140 64.17 24440 110,10 -3.41 0.049 0.00 ## 511 AC-120 AC-150 78.22 20440 110,10 0.85 0.03 D.00 ## 513 AC-150 AC-150 81.42 204,40 110,30 0.85 0.03 D.00 ## 513 AC-150 AC-160 83.40 204,40 110,30 0.25 0.02 D.00 ## 519 AC-130 AC-10 63.23 204,40 110,30 0.85 0.02 0.00 ## 521 AC-130 AC-10 63.23 204,40 110,30 0.25 0.02 0.00 ## 521 AC-130 AC-10 41,41 204.40 110,30 0.25 0.01 0.00 ## 521 AC-110 AC-210 14,41 204.40 110,30 0.25 0.01 0.00 ## 523 AC-110 A	31	209	AC-120	AC-130	105.72	204.00	110.00	-2,69	0.00	0.01	Q.08
## \$11 AC-120 AC-150 78.22 204.69 16,00 0.88 0.03 0.000 ## \$13 AC-150 AC-150 81.42 204.60 110.00 0.38 0.03 0.000 ## \$15 AC-150 AC-170 64.29 204.60 110.00 -0.18 0.02 0.00 0.00 ## \$17 AC-150 AC-170 64.39 204.60 110.00 -0.88 0.00 0.0	32	909	AC-130	AC-140	56.17	204,00	410,00	-3.01	0.03	0.00	60'0
	33	511	AC-120	AC-150	78.22	204.90	110,00	9.85	0.03	0.000	10.01
III \$15 AC-170 AC-160 \$83.40 284.60 110.30 40.70 0.02 0.000 III \$17 AC-180 AC-170 64.29 204.40 110.30 -0.62 0.02 0.00 III \$19 AC-180 AC-10 64.29 204.40 110.30 -0.62 0.02 0.00 III \$21 AC-180 AC-200 41.61 284.40 110.30 0.25 0.01 0.000 III \$22 AC-180 AC-200 41.61 284.40 110.30 0.25 0.01 0.000 III \$23 AC-180 AC-200 41.83 287.40 120.05 0.02 0.01 0.000 III \$23 PH-110 AC-200 24.50 287.40 120.05 -136 0.04 0.000	34	513	AC-130	AC-160	81.42	204.00	110.00	0.85	0.03	0.000	10:0
III \$17 \$C-170 \$6.29 \$2440 \$10.00 -0.08 \$0.00 \$0.00 III \$18 \$C-170 \$C-270 \$C-27	35	4	AC-170	AC-160	89.40	204.00	110,00	-0.70	0.02	D.000	10:01
III 51P AC-190 AC-170 65.34 204.60 160.00 46.2 0.02 0.00 III 62.1 AC-180 AC-210	96	517	AC-180	AC-170	\$4.29	204,00	410.00	-0.03	0.00	0.00	00:00
25.7 AC-150 AC-210 (4.51 284.40 110.30 0.25 0.041 0.0000	37	519	AG-190	AC-170	60.33	204.00	140,00	-0.62	0.02	0.000	000
III 628 AC-110 AC-200 (13.55 287.40 120.90 -0.25 0.00 0.000 0.000 III 527 PH1-100 7002 24.89 287.30 120.00 -115.66 1.86 0.25	38	521	AC-190	AC-200	41.61	204.00	110.00	0.25	0.01	0.0000	0.000
□ 527 PH1-100 7002 24.69 247.00 120.00 -1150.68 17.66 0.25	39	525	AC-110	AG-200	113.85	297.00	120:00	-0.25	00:00	0.0000	0000
	9	527	PH1-100	7002	24.69	297.00	120.00	+115.06	1.66	0.25	10,15

STRUCTURE	Q	OCB123 CB122	CB120 CB1108	CBMH110A	CBMH233A CBMH233	CBMH232 CBMH232	CBMH231A CBMH231	CICB230A CICB230S	GR2300	CB23DE	CB230G CB230H		C8221A	CB221B	CBMHG21	MH221 CB222	CB223	CBMH023	CICB212A	CB215	CB216	CB210A	CB2108 CB205A	CBMHSD8	WH206	CB2066	080580	CB2058	CB2048	CB243A	(B2)43B	CB2400	DCB201A		
100 OF ASSET	inze:	8182	200	2000年200日	10 P P P P	3888	5.55	22	ger	int.	1498	8 8 8 8	ere e		ar.	er.	e e e	S SI	873	8 P D	21 25 (21	58 (A)	8 8 8	25.00	488	255	18.7.1	282	486	200	200		623		35
FEER TO	11111		2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	0000			6533 N	380			Ш				271	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	200	10 10 10 10 10 10 10 10 10 10 10 10 10 1		1000	MASS NX MASS NX MASS NX	H		18.02 18.03 18.03 18.03	1000 1000 1000 1000 1000 1000 1000 100	82.00	F. 18 18	27.0	6775 68 9775 68	87.73 SS		81.00 81.00 81.00	77.00 97.00 98.01	1000
DOSCIACIONI NO TELEVINA SCHOOL	090 TOSAIA.521 090 TOSAIA.521	20g = 150g H/15WH TE	MODES A SOCIAL PRINT THE SOCIAL PRINT TH	22 F VEND L 280 22 F VEND L 280 22 F VEND L 280	0.000 // 0.000 (2002 x 500 H THANT TEE	Ex 3000 Cer.	2005 x 200 ₈ TEE	25/6 ± 20/5 TE DOLOTTIC 20%/00 25/6 ± 20/5 TE DOLOTTIC 20%/00 25/6 ± 10/5 H/ DR/H/ TE	ZIVE STOP PEDICER	2 V V V V V V V V V V V V V V V V V V V	200 CM	2000 - RED HYDANITTE 2000 OW SQ THE DOMESTIC SERVER	NAME IN	SOCIAL COST PLANT TIE	2000 CW 500 TVS DOMESTS SERVICE		201g IAC	SECULE SEC. SO THE TORREST SECULE	AF BEND VENTIAL BEID AF BEND VENTIAL BEID	4F 1000 VERTICAL TIBID 4F 1650 VERTICAL BEID	2500 x 2000 VIII 2500 x 2000 D	2000 AZIDA TE:	2515 CHYSGETYS DOMESTIC SERVICE	200 rt v ebc 200 r 200 termoveno anvar 200 v 8v8	B. 1080 4 751 1988	100	2003 - et 100.0 2003 - et 100.0 2003 - et 100.0	2500 - 471040	2000 1 VVB		2010 x 1000 HY DWAYT TEE	48 RENO VERTICAL RESID 48 RESID VERTICAL REND 48 REND VERTICAL REND	and termination of	20tg V4V5 20tg x 20tg TEE
97ATON 0400000 0400000	0+008.87	0+015.0) 0+083.00 0+083.95	0+035.00 0+000.41 0+10.00 0+10.00	0411422 0411422 0413137	04193.00 04193.40 04196.00	0+160.90 0+160.40 0+160.40	0-28100	0+00000	0.00010	0408800	0+000.50	200	0400010 04000000	010800	0000000	0+1900 0+1200 0+1200	0+14140 0+14140	0.12140 0.12140	0+000033	04-005-00 04-005-00 04-005-00	0+008.38	0408174 0408287 040833	000000	0+02503	0+005017 0+005019 0+005019	0+080.00	0411134 0411134	0+147.40 0+147.40	0+152.78 0+153.42	0+172.13 0+172.13	0+28500	0+243.55 0+243.55 0+286.05	0.000 E	0+203.00	0+31333
<		Ш		×		Ш	a	Ü		Ш	∢	5	4	,		Ш	-	+	0			*	=			Ш				,		Ш		Ш	ŀ

221 223

201.00	Attendance Mineral	ŀ	St. bert.	ŀ	200	1	The second	Solin Non	ŀ
				HEDULE	CROSSING SCHEDULI				
4	6000	1307	PVC DR-35	320	02.30	88.43	97.03	303	жазотв
4	6000	1,707	PVC DR-35	350	05.30	95.43	97.02	303	CHIOLES
		100000	PVC DR-85	250	95.57		97.01		DCB201A
	1000	2000				96.43	000000000000000000000000000000000000000	200000	
TWI	1000	1,465	PVC DR-35	350	96.31	96.73	92'38	2400	CB243D
	П		PVC DB-35	250	95.40		36.05		CB24DC
LMF.	10.0	1,652	PVC DR-35	250	56.07	96.30	92.75	2404	CB2/40B
						36,40			
			PVC 08:35	350	96.30	36.72	97.75		CB243A
	55.0	1.510	PVC 08-35	250	96.04	30.10	17.67	204	Chross

	edit wcleli	Pipe .	Sworth	Pipe.	Difference	***************************************	Below Pipe	Pipe	Above Pipe	Pipe	Difference
COCCOOL	Slot (mm)	Obset	Size (mm)	Invest	(m)	roggons	Size (mm)	Obsert	Size (mm)	trayer?	(m)
1	2500 SAN	94.41	2005 W/M	56.65	2.20	30	1506 SAM	95.98	300Ø STM	86.55	0.49
2	250@ SAN	93.68	250Ø 5TM	56.95	2.23	31	975Ø STM	1956	150ØSAN	96.01	0.27
E	2000 SAN	98.33	2006 W/M	95.85	0.50	32	135500.5TM	95.04	ZXX55TM	18'98	0.37
u	2500 SAN	93.69	300@ W/M	96.15	242	33	1500Ø 5TM	95.23	250055714	98.69	0.25
un	3006 SAN	92.80	25005 STM	16.67	2.79	38	5006 STM	95.78	W/W BOX	96.62	0.73
9	300¢ SAN	92.82	WT2@27P	94.57	1.55	35	250¢ STM	96.74	M/W doz	97.E	250
4	3000 SAN	92.24	3000 5104	20'96	2.65	36	375@STM	96.54	5000 W/M	97.15	0.52
20	MA2 GOOD	92.50	23000 3 TPA	100.00	3.43	37	40000 STM	90,00	M/W glos	36.75	O, full
6	3000 SAN	91.78	250055704	88.88	3.83	38	ASOB STW	96.01	ISOR W/M	59.96	0.57
91	2500 SAN	94.79	508 W/M	97.75	252	25	625@ STM	95,64	250055TM	15.55	0.15
==	2500 SAN	6976	50g W/M	57.75	2.41	68	575Ø STM	00.30	SOBSTW	86.98	0.18
12	25005 SAN	94.52	WT2 G008	95,19	0.54	41	2008 W/M	94.30	WTS@STM	90'96	0.65
13	250¢ SAN	94.85	450Ø 5TM	66.50	0.55	42	3006 W/M	94.48	300@STM	95.04	95.0
12	2500 SAN	95 56	50¢ W/M	96.73	1.12	43	1508 W/M	69.63	SPSSTM	96.21	050
22	25005 SAN	95.59	150¢ W/W	96.63	0.69	44	500 W/W	95.42	450@STM	96.03	0.53
28	2500 SAN	94.95	130¢ W/M	95.47	0.50	45	200@ W/M	98.80	MT2 Q00E	96.10	0.50
17	ZSCID SAN	94.68	M/W BCE	08.30	0.63	40	45005 STM	96.10	333\$ W/M	96.78	0.68
22	ZSOC SAN	0130	NT2 Sport	56.03	2,01	47	2000 W/M	94.70	35000 STM	55.22	05.0
19	ZSOØSAN	93.23	250¢5TM	66.96	3.72	48	2000 W/W	95.40	250@STW	95.90	0.50
8	ZSOBSAN	93.21	250¢53TM	36.44	3.19	49	300¢ W/M	94.35	SZSØSTW	95.73	679
17	250¢ SAN	95.91	250¢5Th/	96.57	0.62	30	2006 W/M	96.45	ZSDØSTIV.	96.36	0.79
22	ZSOID SAN	92.92	arsposme	28.23	2.18	51	stoop w/m/	24.80	250p53TM	25.71	11.73
53	2500 574	96.83	19005 SAM	99.13	92.0	92	2000 W/M	96.24	350¢557hz	97.03	07.70
34	375.05.TW	56.52	150Ø SAN	50.02	0.47	53	975@ STM	98.60	2000/09/94	96.15	0.50
25	450¢ STM	95.99	1500554N	97.08	0.97	25	M/W BODE	94.01	MISSSIM	25.57	0.50
×	450Ø 5TM	96.02	150ØSAN	97.03	\$6.0	55	2000 W/M	95.16	250,05TM	96.15	0.97
22	2006 W/W	02.30	150p55AN	29 90	0.00	22	200g W/M	26735	PLLS GOSE	26.47	0.30
28	1506 SAN	25.20	5400 STD4	50.00	35.0	13	WWW gate	68 76	MISSON	12.70	0.80

DRAWING NOTES	1.0 GENERAL

FLOW (1/s) 10.0

100 yr HEAD

CATCH BASIN DATA TABLE
ELEVATION OUTLET HPE
INVEST OMBITTE THPE
INVEST OUTLET (FREE)

DP OF GRATE

AREA

12 22

13 CONTRACTOR TO REPORT ALL DISCOVERSES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE PACHTERT OR DESIGN BRIGINEER AS APPLICABLE.

THE STANDARD SHALL SEEGUL OUTCOME. IN TO THINK IT MANDED AND STREET OF TO IT THE THE THE STANDARD SHALL SEEGUL OUTCOME. IN THE STREET OF THE STANDARD SHALL SEEGUL OUTCOME. THE STREET OF THE STANDARD SHALL SEEGUL OUTCOME. THE STANDARD SHALL SHALL

1.12 ALL CONCRETE CLRSS AND SIDBIALIST TO CONFORM TO 0.P.S. AND CONSTR ALL URSITE CLADS TO BE BRADGER LITTE, WITH URPHISS SAMES AS NUTEL. DEFEMBED BY THE BIGINERS

A 33 PLL CONDELESPICE BETWINNING PURILIFIED CEMENT PORTUGATOR ACTOR DAYS.

10.0 67.0 Ø'ES

40'86

2301

2306

1,535

2300

2306

REFUSED

APPROVED

S DOTTING TO UNALL DESCRIPTIONS OF STITE ON RECEIVED OF SETTIONED TO THE WALL BEYOND THE WAS REPORTED. THE WALL BEYOND THE WAL TRECURINGED IN TO SUPPLE SUFFICIENCE MATERIAL IN MATERIAL DE PROBLEMANT DE PROBLEMA.
MPORTED FILL MATERIAL TO BE CERTPED AS ACCEPTABLE BY THE OBJECTAN CALENGINERS. AND THE FORTING TO SECURE CONTINUE VIDERAGE AND THE FORE OF SECURE AND THE SECURE AND THE FORE OF SECURE AND THE S

12) ALL CAMPACTION METHOUS TO BE PERFURANCE OF THE SALISACION OF PERFORMENT OF BLACKED.

29 UTILITY DUCTS TO BE INSTALLED PRORETO ROAD BASE CONSTRUCTORA. 24 CLAY DIESS TO BE INSTALLED INVERSE NICIONIED ON THE CREAMINGS OR 46 PPROVED AND CRECTED BY IN BOOK SATINGALE, INSTRUCTIVE AND SPECIAL DIEST IN BOOK SATINGALE, INSTRUCTIVE AND SPECIAL DIEST INSTRUCTIVE OF THE ACCOUNTAGE AT INTO 11 TO 10 THROUGH SATINGALE OF AND SPECIAL DIEST. 2.2 ALL HIPE BELLENG I U BE UPSS SHOWILL HY "A PLUCLAL ARATMALIA UP "SUDAM BELURI" SEMBERGARU WAN EA SEMBER SAND CORPECTED TO SPERING LINE. RECIDINS, AND COVERMATERIAL AS PER RECOMMENDATIONS FROM THE LEYMENT, A REVINEAR.

15.0

2.869

2.1 AL SANTARY SINER NANNS TO BE CSA,CERTIFED, BELL AND SPIOOTT PPE, CNLY FACTORY V BE USED, SENERY DE SINTYLLES, N. P. C. B. C. SANTARY SENERAWITERAS, TO BE SOMMO PAD, LPRIER - LONG, CL. 40-D

2 ALL SANTARYMANTENANCE HOLES TO BE LONDONNET ER AS PER CITY OF OTTAINS STANDARDS COARLETE WITH BENCHING, RUNGS, FRANE AND COVER, DROYF PPES, AND LANDINGS WHERE NEEDER 24 SANTAN SEMEN LEWAZETET AD CITYASPETINISHAL SECONALEED AS PER OTY SPECIFICANS PRINCE TO REAL ATANDO TO BECURSE ASPINAL. AND AND SEMENTIAL SES LAWADO TO THE SEMENT THE MAN AND AND ASPENDENCE TO IT AND ASPINAL POSITION AS PERCO THAN STANDARD TO SEMENTIAL TO MAN SERVICE TO THAN STANDARD TO SEMENTIAL TO THAN SEMENTIAL TO THAN STANDARD TO SEMENTIAL TO THAN STANDARD TO SEMENTIAL TO THAN STANDARD TO SEMENTIAL TO SEMENTIAL

Commercial—Storm STRUCTURE TABLE

14.0

0220

2,413

36.22 \$7.473]

2007

2068

212 210A

27.00

1350

| Mark | See 11.0. | Medical in street of the second of th TO CETERANTE PPROFILIE DISPOSA, METHODILOCALIUM 6.14 PALADAENT STRUCT VEGNATERAL TIPES AND THICKAES ESS FOR HE TO BEAS SPECIFIED IN THE OEUTECHOCAL REPORT AND SHOWN ONTHE MH2069 97.47 MF4.589 E94.526 18000 0F50 701.01.
MH206 98.59 SNB4.584 NB.674 12000 0F50 701.01.
HH210 97.78 SNB4.997 E94.082 18000 0F50 701.01

	DYNAMY SHOWN VOICES YOU TON AND PART STANDARD - TULLING O// 2014 104 to All Lost Sowel By 25, 16	CT PT	scale 1:500	date NOV. 2013	file 35355	Retail		0	ATINIO Minb Properties	190 • Ottavia, Ontario • KIP OB Fax: (613)782-677
	plotted a Novo-Accessoration by plotted appet Remain Debail Sheet Reader its Plotted Att address Last Seese Att Au		drawn by DPS	checked by DGY	printed	Arcadia	lojanag	Michigan, Digital	E Nyuy	200 Kent Street • Suite 190 Telephone: (613)/92-9137
3	1 ,	95 8								

Telephone: (613)782-8157 Fac: (619)782-	drawing title: DETAILS AND	SCHEDULES	S/O HONIMAK DKIVE		drawing no.	Ī	
---	-------------------------------	-----------	-------------------	--	-------------	---	--

Ž.	drawing no.	C-100	Preston Street Tower 1, Suite
JITAWA, C		IBI	Preston Street Towe

					3	шш	ш 2	52	mm E
OPSD 701.010	OPSD 701.010	0PSD 701.010	0PSD 701.010	OPSD 701.010	COUNTRY GLEN W	40mm 12.5 SUPERPAVE forum 19.3 SUPERPAVE	Committee SUPERPAVE 150mm GRANULAR'A	INTERIM ACCESS F	40mm 12.5 SUPERPAVE Comm 19.8 SUPERPAVE 150mm GRANULAR'R 40mm GRANULAR'R TYPI
E93,082	NE94.119	NW94.261	NW94,512	SE96.415		88	228	= =	8829
W93.112 SW93.530	SE94.179 NW94.179	SE94.291			PAVEMENT STRUCTURE				
97,55	99.24	99,23	99.25	99.18	IT STRU	2000	F TYPE II		AAVE 'A 'Y TYPE II
MH205C MH210A	WH212A	MH213A	MH214A	WHZZ1A	PAVEMEN UGHT DUTY	20 mm 10 & 01 ID DD DAM	10mm GRANULAR'S 400mm GRANULAR'S	HEAVY DUTY	46mm 12.5 SUPERPAVE 50mm 10.0 SUPERPAVE 50mm GRANULAR'S 450mm GRANULAR'S TYPE II
					PA	2	4004	훼	40mm 50mm 150mm 450m

SIIIS SIIIS	KEY PLAN
STALLED PACS TO FOR THERE TO FLAT	TI Afm DDN DDN DDN DDN DDN DDN DDN DDN

11 MACROSCO, CONTROLLO DE CALCADOR DE CALC
ADMINISTRATION ENGINEERS SETTIONS TO ORGENING MAILENAL
4.0 WAI EK
41 ALL MATERIANS TO BE PACIDE BY MITHAMAM COVER OF 24th AND INSTALLED PER CITY OF OTTAMA

4.1 ALL WAT ERACHES TO BE PLOTOR IS, MITHINIBADIACONGRI OF 24th AND INSTALLED PER CITY OF OTTAINS STAMMANDS, ALL CUMASS INCRINATEN SERVICES ARE TO BE JUSTIMIA.
42 INKUST BLUCKS TU BETIKST FILLED AT BENUS, LIES, AND CAPS FILLAS PER UPSU TUSUS PRUTTIGUE.
43 CHINI WACTUR TU UDINUUCI PPESSURE PRULEBRIRE LISTINA UP ALLINNI DANNES PRUUDISPELI ARU CHLORINATE ALL WATERMANS TO THE SATISPACTION OF MOD. PAD THE CITY OF DITTAIN
44TRACER WRETO BE NSTALED ALOND THE FULL LENGTH OF WATERMAN AND ATTACHED TO BICH MAIN STUP MS PHY CIT I'VE UIT/SIR'S TANDINGS.
45 ALL COMPUNENTS UP THE WHITE HUSTRIBUTIONS IS THE SHALL BE CHINGGALT PROTECTED AS PERCENT OF OTT ARM STAND PROS.
4.6 ALL VALVES & VALVEROCES, AND CHAMBERS, HTTRANTS, AND HTTRANT VALVES AND ASSEMBLIES SHALL BEINS FILLED AS YEAR LITE OF UIT MAINST MILIBRADS.
4.7 ANY VINTERMANNIN'I LESS THAN 2 AN CONGRESCURES THENANLINS LUCTION AS PER CITY OF OTT ANN STANDARD WIZE ORAS APPROACED BY THE BROWNER.
48 CONTRACTOR IS RESPONSIBLE FOR ACQUISING THE WATER PERMIT FROM THE CITY OF OTTAMBADID BEAMING SOFT OF THE WATER PERMIT FROM THE CONTRACTOR SOFT OF THE WATER PERMIT FROM THE W
49 CONNECTION TO BXISTING WIPERALIND BE INCLUDED IN THE COST FOR THE WATERWANNINSTALLATION. THIS COST INCLUDES REINST AT BARENT OF ROAD CUTS TO CITY STANDARDS.
5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY
6.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTANASTANDARD R.ID.
6.2 THE CONTRACTOR SWALL PRESPONDE ATTRACTOR SWALL PLUK TORREDIZE JAKE DIPROPAL BY THE TITLY OF THE WASHINGTON SWALL BY THE SWALL BY THE WASHINGTON SWALL BY THE SECOND THE SWALL BY THE SOUR SWALL BY THE SWALL BY T
6.3 CONTRACTOR TO PREPARE SUBGRACE INCLUDIO PROGROLLING, TO THE SKEISFACTION OF THE GEOFERHALZE BY SINER PROPETO THE COMPLEX BARBET OF PLACEMENT OF
5.4 FILTO BEPLACED AND COMPACTED PER THE DEOTECHNICAL REPORT REGURBABITS.
SO CHRINGALINI OLI SIPPILI, LALE, ARLOLDARE, LOUGHA, ARLOHDARI CHRING MACLIDIARE, WIEL HER. FORMEL STATE ON SO THE GENETI-HINI, SENSEE CONTRACTOR PROVIDE BOXERS WITH SAPELS NO FRANCIO SENSEEN SENSEEN SENSEEN SENSEEN ON THE CONTRACTOR FROM THE THE NOTE THAN METER THE GRAZIM RECURBERENS SECTIORS IN THE CONTRACTOR FROM THE THE THE THAN METER THE GRAZIM RECURBERENS SECTIORS IN THE CONTRACTOR FROM THE THE
5.0 GRANULAR ANNTENILTO BEPLACED ONLY UPONAPTRONAL BY THE GESTECHNICAL ENGNEER OF GRANULAR B PLACEMENT.
5.7 CONTROLLEGO, OR SINT Y, LEGE, GROCORPE, CORRALLEGO, CORRADOR MANDESSE MANDESSE MANDESSE MANDESSE MANDESSE CONTROLLEGO SE SERVICE CONTROLLEGO DE POSSO É BIOLETES MANDESSE
5.8 AS PHALT MATERIAL TO BE PLACED DALY UPON APPROVAL BY THE GEOTECHARCAL ENGINEER OF GRANULAR A PLACEMENT.
SO CONTROLING TO SIRPHY, TO EXP OR DOLOGICAL SHORT AND REAL MY ACCORDING TOWN THE CANADAM SHORT OF THE EXPLAINMENT OF THE SHORT OF THE
5.10 CURI MICLURIS NESPURSBLE FUNESI PRUSHINU UNE PRUCHPUE IN POCURIMINAZI WITH THE PLPRS,

DGY DCY 14.06.27 DGY 13.11.18 DGY Date Checked

14:08:22 14:10:02

6.0 GRANULAR AMATENALTO BE PLACED ONLY UPONAPPROVAL BY THE GEOTECHNICAL ENGNEER OF GENEUR PLACEMENT.	ONTRACTOR TO SUPPLY PLACE AND COMPACT GRAALLARAMSTERIAL INACCORDANIES WITH TAMBOERD TO SUPPLY SAND SECRETARIAL SOURCE BANKERS WITH A RANDERSON SOF THE BEGEN WITH SECRETARIAL PROPERTIES WAS AND SECRETARIAL PORTISE THAT OF THE UNPERFORMED SECRETARIAL SOUR SECRETARIAL BANKERS AND SECRETARIAL SECRETARIA SECRETARIAL SECRETARIAL SECRETARIAL SECRETARIAL SECRETARIA SECRETARIAL SECRETARIA SEC	S 8 APPALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE DEOTECHNICAL ENGINEER OF GRANLLAR A PLACEMEDIT.	S & CONTRACTOR TO SUPPLY PLACE AND COMPACT AGRINAT MATERIA. IN ACCRONACE INTERNATIVE PROCESSOR AND CONTRACT OF PROCESSOR AND CONTRACTOR IN WITHOUT IN PROVIDE INSTRUMENT WITHOUT PROMINE INSTRUMENT AND CONTRACTOR PROMINE TO REPORT MATERIAL FOR TEST IN A AND CONTRACTOR PROMINE TO THE WASHINGTON TO THE	S JU CURI MACIUM IS RESPUNDINEED UN EST FRUSHING UNE FRUUNFULE IM FOLZUMANGERICH THE AND FOR PROVIDING THE ENGINEER MITH VERIFICATION FROR TO PLACEMENT.	LII ANY OTICHES DISTURBED DURNO SERACING. AND GRADING OFERATIONS ACE TO BEREIKTATIONS LONDONS ACE TO BEREIKTATIONEN CUMBILI DURAUES.	O. IZ JALI KE URRUBUJ PREMS IN EUST INS PUBILIC HISHTS UP WRO WALI PRIT UI HEK UST LARBLI JANEPR BISTIND PUBILIC ROHTS OF WAY JAFE TO BE FINSHED WITH SCO ON ICOMM TO PSOLL
The control of the co	THE SHAPE UP THE FACE TO A 1904 ATTO A 11 THE CENTER AND A 15 THE	The control of the co	TO REPORT OF THE PROPERTY OF THE	44YOTICHE DISTURBED.OURMAN SERVIZING AND GREADING OFEROTONS AGETO EK RENISTATE IN VIOLINIUM, UNITED TATION OFER THE VIOLINIUM AND	ALL KEUROLU, WEBS IN EUSTINS PUBLIC HUBHIS UP 1997 AND ANY UTHEKUSI UNDELJANDEN TIND PUBLIC RIGHTS OF WIRK PRETO BE FINSHED WITH SOOD ON TOOM TOPSOL.	

Al monutements and conditions must be choosed on the sont, by the centre. The drawing net to be and for construction until algebra.

\ -)			scale	date	ģ	2	J									é		Į,		Minio Propense	ISO • Uttories,
				drawn by DPS	checked by	- Constant	Danied										-				A QUIM	To b phone: (613)782-8137
	MENS IN	STE SHOULD SR. BNONEER	DUTYARBAS																			
	N TO PECUSI UNDELL'AMENTO IN INTO PSOIL	AN APPROVED DIAMP SITE SHOULD IS TO NOTE Y BUGINEER, ENSINEER	EAVOUTY AND LIGHT DUTY ARBAS PLANS.		BLDG SERVICE	BLDG SERVICE	BLDG SERVICE	BLDG SERVICE	BLDC SERVICE	BLDG SERVICE	BLDG SERVICE	BLDC SERVICE	OPSD 701.010	0PSD 701.010	0PSD 701.010	0PSD 701.010						

0 000	AU Nert Street Sure 180 • Un Talaphone: (613)/182-3137	drawing title:	Λ. Ω	SCHEDULES	370 HUNTMA	OLLAWA, ON.	μp		T	E C				
SD 701.010	SD 701.010	SD 701.010	SD 701.010	SD 701.010	SD 701.010	SD 701.010	SD 701.010	SD 701.010	NTRY GLEN WAY	25 SUPERPAVE 9.8 SUPERPAVE	IS SUPERPAVE SRANUJAR W	GRANULAR'B'TYPE II	RIM ACCESS ROAD	

	drawing no.
IBI	C-100A
333 Preston Street Ottawa, Ontario Ca (613)225-1311 FA	canada K1S 5N4 Tel PAX (613)225-9868

D07-12-14-0014

APPENDIX B

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

Economy (E) 25%

The reconstruction of the Signature Ridge Pumping Station is significantly more than the costs to upgrade the existing station.

Caring and Healthy Community (CHC) 25%

In terms of the impact on the Community, there are no significant differences between the two alternatives.

Natural Environment (NE) 14%

There are no significant differences between the two options with respect to impacts to the natural environment. Both alternatives require the construction of an emergency overflow to the Carp River. Impacts to surface water quality as a result of potential station overflows during an emergency situation are not expected to occur. Should an overflow occur for either alternative, the impacts would be mitigated by a SWM pond. Increases in CO₂ emissions as a result of the use of diesel generators during power failures or maintenance procedures will be negligible and are similar in both alternatives.

4.2.6.3 Selection of Preferred Signature Ridge Pumping Station Alternative

Based on the above evaluation, the Signature Ridge Pumping Station Alternative I, station upgrade, is selected as the preferred alternative. This alternative maximizes the use of existing infrastructure and offers the most flexibility in phasing of the works with the least amount of capital expenditure or impacts.

4.2.6.4 Summary

The preferred alternatives selected for the wastewater outlet, the internal servicing system, the temporary forcemain, the trunk sewer alignment, and the Signature Ridge Pumping Station have been used to develop a comprehensive wastewater servicing plan for the KWCP. This servicing plan is discussed in future detail in the following section of this report.

4.3 Preferred Sanitary Sewer Servicing Plan

Section 4.2 has detailed the selection of preferred alternatives for the major infrastructure required to provide sanitary sewer service to the KWCP. These preferred alternatives have been used to develop a Master Sanitary Servicing Plan for the area. This plan is illustrated on **Drawing S-1** (appended to this report). The major features of this plan are:

(i.) An upgraded Signature Ridge Pumping Station (SRPS) to service all the KWCP lands north of the Queensway, the existing urban area north of the Queensway currently proposed to drain to the SRPS, and the Broughton/Richardson Interstitial lands. A spreadsheet detailing the exact areas and flows tributary to the SRPS is included in Figure 4.2-1.

The 400 l/sec peak flow capacity identified in **Figure 4.2-1** for the upgraded SRPS, is consistent with the findings of the R.V. Anderson Report titled "Signature Ridge Pumping Station Upgrades Feasibility Study".

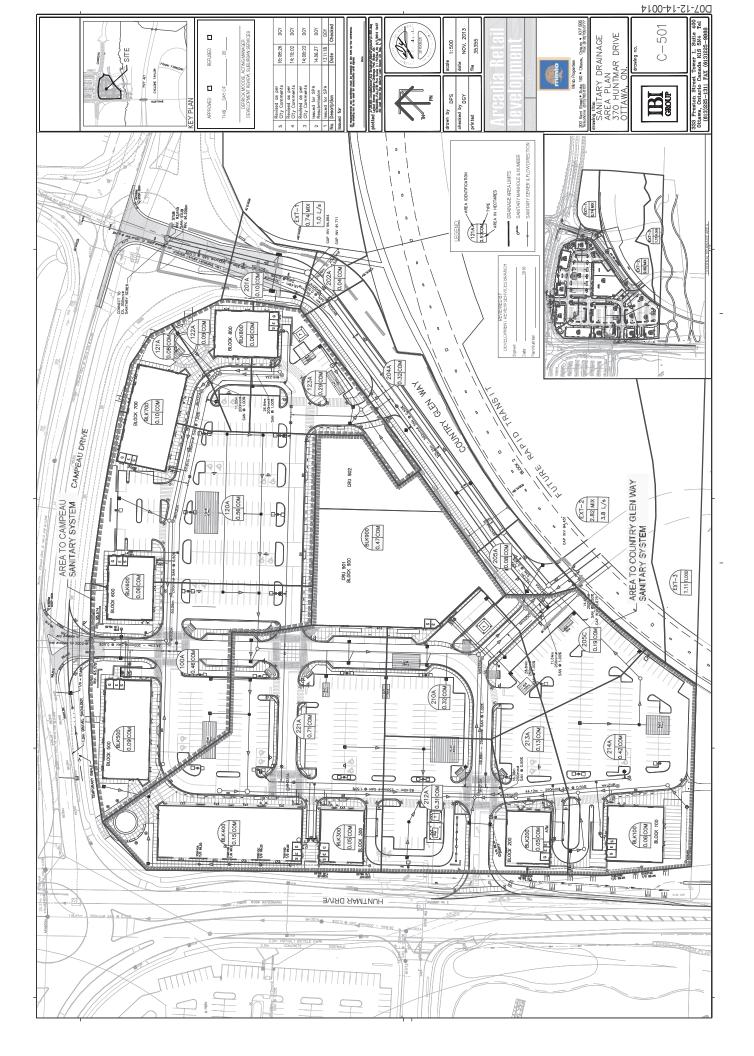
10 10 10 10 10 10 10 10		E	z	TOTAL	. 1	APPLIC UNIT/Ha	TOTAL	POPULATION POPULATION	FAC	EAK PEAK	K APPLIC	ACCUM	AREA R	LOW NTE INDE	N ACCUM	UM TOTAL	T INDIV	CUMUL CUMUL	TOTAL	FLOTT TON	lis.	(full) m/s (m)	(mm) (mm)	%	CAP.	8		(m/s)
Column C	STREET	MHH	2≖	E	Н	(a)				(Vs)	(Ha)	(Ha)	(Ha) (A	Hald) 0/s	Or Or Or	-		11	Н	H								
Company Comp			Ages 1 (PSD)	18	-						38.1					23.16	38.			1								
Column C	rive Truck Sewer	+	Area 2 (PBP)		19				1	-	14.0		-		П			П					625.0		69.44%	630	B 0.739	26.0
Company Comp			Area 3 Ext Employm	1	35			1	-		10.9		90,38					١	90.38	1		1						
This process This			Area 4 HP Employin	+	61	29.19			1664				96.38	1	2.50			1	128.02			355	700.0		54.93%	0.0	0.630	0,615
Continue		-	Area 9 Ext Employme	t	45					2			98.83		14.45				П			30	0000	1	20 G785	0.1		
1		14	3 Area 6/8 Ext Employn	Н	88		3				10.4		22.13		4.76				И			-	2000	1	60.59%		4 6.790	0.438
Thirtier			Area 7 HP Employm		88				1664	1			120.96		0.00		3		1	1		-	750.0	1	78.91%			
Controller		3	7	+	1				1588			8						1	1	1	1		450.0		51.93%			
Company Comp	200	44	A Area 10 Residentia	+	13				3515				123.33		1.44		1	١	100.17	1								1
This problem This		+	5 14 Mixed Use	t	15	4.70				Ш	Ц		6.35		3.86				18.15				420.0		43,31%		r n.880	6782
Contention 13 15 15 15 15 15 15 15		Queenwa	Ares 11/12 Mixed L	t	80	5.02			752				13.14		2.36		Ŀ						4 444		54.4795		A BECK	0.04
This problem This	-	-	-	-	SS			0	4267		1		166.89		15.52				229.71				300.0	1	2000			
11 12 13 14 15 15 15 15 15 15 15	and letter	,	-	H	154	2			-	ľ			Carrier V			-	15.27			1	5.77				I	122		
19 19 19 19 19 19 19 19				1	9.71				5141			0							1	1	1110							
1971 14.00	idge			1	070	90.20							4.88	50000	4.24				1		003			100				
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	idge		-	t	000	1					0.1				1	1	100		27.4.70	8		•	9000	0.25	%01.19		0.840	1.1
Column C	and & Broughton/Richardso.	44	300	E.	L	154.02	3136		6645	. 124		7		1	1	1	Year			┸	Ц					1		
The control of the	orro	t			H				1		-										-							
1,11, 1,11							-		-		57.7				15.64	49.51	53			1	+							
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	riw Think Sewer	9	7 Ares 32 (PBP)	+	203						00				0.00		1				-							
1,10, 1,10			Avea 32/4 Fve French	+	185								1		18.10								915.0		57.69%		0.010	1.40
1579 1580		-	8 Area 37 Mixed U.	H	6.70	15.60		3	2340		1	1	1		4						2,85	-	-	-	Ī	-		
Second Column 1.50				Н	26 53	15.60	78	9	2340	1			1	30000	3.15	3.15		503			+				Ī			
State Stat	Et. (Existing Sewer)			1	505				-							-				1	5.52		Peter	r				
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			1	+	3.15		-				.20.			14400	5.04	8.19						į.			1			
1.5 1.5	36	110	+		65'7	1					14		1	14000	7.37	16.14	Ē				П				L	1		
State Stat	Addocwer	-	_		16				1	1	20		1	35000	12.55								525.0	1	69,89%		1	
1985 1985			Area 42 Employm	1	99.4					1	38			3:000	17.55					1			400.0	1	60.54%		06790	0,776
19 19 19 19 19 19 19 19			Area 43 Employs	†	18.89	15.60	84	0	2340					0	0.00	1			1				550,0	П	47,25%			
1,10, 1,10	Fruik	+	-		9.73	15,60	32	0,	2340					1	0.00	I			1	L					ļ	930		
1,10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	fruk	+	+	t										8			44						275.0	1	67.28%		0740	132
1,000 Residence 2,11 1,000 Residence 2,12 1,000 Residence 2	e Road Trunk Sewer	6	-	+	3.34	23.34					03.83									1				Н				
Second Color 1,500			Area 72/75/2/1 MCSS	t	450	4000	L			Ш			1	1	1		o.								I	828		1
1,100 1,10	Towns Trink Sewer	=	H	H	10'64	10.66								\$1000	29.08			П		1	-	-						
11 12 13 14 14 15 15 15 15 15 15			Н	+	13.50		1			1	14									1			775.0		73.64%	0.	64 0.700	100
1.00 1.00			Area 16/20 Open 2	+	177	*					U		1	35000	2.09				ı	L		100						
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		1	+	╀	68'0						IR		1	25000	200	9.45								1	I	1	-	1
Total Comments Tota		-	t	H	193	6.63				1	1		1	35000	10.70			П	Н			1	0.000	1	58.71%		12 4.800	0.911
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			Area 23/24 Centrumi	Н	19:21				1									- 1	1	1								
150 150			Н	+	17.10	27.10			1	L				35000	7.18			1	1	1			1000.0		44.98%		50 4670	0 0
13 Controller	re Load Truth, Sewer	10			15.00	15.00				Ш			1	10000	10.10			ı	1	L			M.		are ones			
According Accoding According Accod		1	1	t	20.02								1	20000	1000	1							м	1	10.079		2000	0.246
1,000 1,00	Truk Sewer	a		T	18.72	38.72		Ĩ			1			40000	0.65					0,21		,	- 1	1	37.03%	-		
670.04 313.70 8484 14465 1450 14		-			0.75					1	1									4	1	1	0.00	1	70 DE UF		day . a day	1 781
GF10,04 313.70 84844 35451 3					Ц					90	1	2.4		1		ř	(1.53		670.04	_			20.0	1				
1000 1000	ing Station 2 to KWPS	10A	CWPS	9	4	313.70	848	84	10051	4	┸										-					241		
Special formation of the special speci		H			1	100.000	311	00	34860		52	111						-		1	1	Click Short	Benden 342.	1				
in the second se	TOTALS				2391.63	40.74		240												grade a		COL 1 2003	Barthin Da.					
Andreas and Andreas and Andreas and Andreas and Andreas Andrea			F																	-		ri 28. 1005 ·	Bartelon Ne.		_			
Ruders No. 3:	Daily Per capita Flow Mate -	ā	potu																	By die		1007, 2045	Berliam Nt.					
	on Alorence Flow gate =	0.28 8	A ROTAL																	Man read		-						

MASS OF LAND DAY
DAYER WEST WEST OF DAY
DESIGN AND MEST SHOWN AND

BANTHARY SEXTER DESTON ENTERTHER STANDS PROJECT : Remail World Surface By Stands Company of the Company of the

FIG. 4.2-2

1 2 Ann 1 (1997) Coop	400	TION		TATAL			RESIDENTIAL	SIDENTIAL	-			EMPLOYA	EMPLOYMENT/RETAIL/BUSINESS PARK/CPEN SPACES	JBUSINESS	PARKICPEN	SPACES			INFILTRATION		-	-		S	ŀ	İ	-
1 2 Airs (1997) 0.00	200	200		A DES	1001		1	MODE IN	-	PEAK	APPLE	ADCUM	TOTAL	FLOW	73d	PEAK FLOW		ARE	AREA (Ha)	Def.	MOTA Y	V CAPACITY	3	STT LOTH	H. PINE	ORADE	AVAIL
1 2 Acas (1989) 0.00 0.0		S.F.		MEN	ARBA			V Accient	-	W.C.	AME	_		L	UNDIV A	ACCUM		NOV.	_	TOTAL FLOW			(fluid)	1	+		CAP.
1 2 Aver 1 (PBP) 0.00	-	1		(Ha)	(Fari		H			(0,0)	(Ha)	(Ha)	H	UHBAD	(1/s)	(8/1)	(Ha)		đ	+	3	\$	2	(H)	Ē	7/4	(%)
1 2 Area (1997) 0.00 0.0									0				1			1		1		1	-			1			
Area December Area	Sawer 1	2	Area I (PBP)	00.00							0000	00'0		22050	0.00	0.00		0000	0.00	1	1		1	1			
Ave of Fig Engiquent Ave of Engiquent			Area 2 (PBP)	0.00							00:00	000		2000	0.00	000	56	0000	000					1			
1			Aves 1 Det Descherment	000			-				0.00	000		23000	0.00	0.00		000	0.00						Į		
1			Area 4 WD Pennloyment	8.00							0.00	0.00	0000	80000	00'0	000	O DO	000	0000	0.00	0.00	0.00	11111	1.27 50	500.0	0.40	100.00%
14 3 Aves 68 Englephormen 0.00 1.05 1.0		1	Arms C Desidential	71 72	20 10		L			-			000			127	000	29.19	29.19					į	4		
1		-	Aves 6 Fot Resilvement	b do	-		L			24.58				50000	0.00	000	000	4,00	00.00	29.19		32.75	286.61	D,93	700,0	0.20	E8 17%
1	75	1	Aven K/D Dat Resolators	0.00			-				0000	000	000	90006	00'0	000	1000	0.00	0000	0.00	0.00	l,		Ы	d		
3 4 Arm 10 Red, 11 11 11 11 11 11 11	**	-	Area of the Continuent	1			1				4.00	L	000	80000	0000	000	0,000	00'0	4.00	-			4B74		ı,		100,4096
A		1	Atta) ar Suppoyment			-		166				L	979		0.00	000	000	0.00	00.00			l,	10.67		ı,		13,45%
1	n		17 17 1841 1		20.00					21.66						-		17.86	27.86	27.86	7.80 31.	31.36	3400	T. T.	750.0	0.25	7,10M
13 Acta 3 19 Acta 4 Acta 4 19 Acta 4	44		William to Arthogram		47.00		1	1	1			45.4	23.13	15001	1.44	144	144	7.0	4.13		Ц		TO.OT				66,749
15 Art 18 Participated 844		-	24 NAME US		1.70	1		1		1	100	1		4000	2.15	7		× 65		-							
Area 15 Denoising 2011 Area 15 Denoising 2011 Area 15 Denoising 2011 Area 15 Denoising Area 15 Denoising Area 15 Denoising Area 15 Denoising 2012	cieting Sewer)	15	Area 35 HP Employment	80							0.03	2000		1000	-	-	-				30.00	-					
15 Area (D insignment 25 Area (D ins			Area 36 (Corel Centre)				1				2000	1	The Maria	MANON	× 04	9	610	20.15	26.20	26.20	734	45.52			Saleshage		
13 Area 10 Engloyment 14.5 Area 10 Engloyment 14.5 Area 11 Engloyment 14.5 Area 12 Engloyment 14		1	Area 38 Exten Employment	10.11							70.13	ı			2000			1	03.71	1	L						
Area of Engineering Area of Engineering 248 Area o		15	Area 40 Employment	14.59							14.59			33005	8.87	10.1	1	N N	14.39	1	I						
Acta of Employment 25.56 Acta of Employment 25.56 Acta of Employment 25.56 Acta of Employment 25.56 Acta of Employment 25.57 Acta of Employ Edual 25.57 Acta of			Area 41 Employment	6.							11.97			25200	7.27	16.14		1.97	26.56	1	1			1	1	İ	
Aces 45 Early Aces 45 Early Aces 45 Early Aces 15 Aces 15 Community Robel E33 Community Estate Community Communit			Area 47 Penalment	33.65							20.66	47.22		13900	12.55	22.69		29.66	47.22			ļ		ŀ			
1			Aven 43 Truniounent	28 80							28.89		76.11	3930C	17,55	46.33	4625	21.83					1007	S. Mar	F34,0 375	0.30	27.30%
According 1	+	13	The state of the s	100.11	00.0				0	0.00	ř						54.44	10231		102,31	56.dfi 113.	113,08 20	93.90		230.0 450	0.47	44.54%
1	1	No.	Enter Date of the Control	25.3			1				L	108.66		35000	3.86	58.29		6.35	6.35								
5 5.4 Area 10 Community Noted 13.89 Area 10 Sectional 13.80 Area 10 Sectional 14.89 Area 10 Sectional 4.83 Area 10 Section	Chechana		Area 1100 Michael Ilea	10.	600.5		196			11.81	6.19	113.49	115.45	35000	4.12	62.42	13410	11.80		120.46	CC.71 137.	137.96 20	203.90	1.24 45	420.0 450	0.47	32,34%
2 25.4 Average Ave		10	ALC LIVE PRINCE USE	000	2000						1	119.33		35000	2.36	64.77		3.88	124.34								
1,000 1,00	2	3/4	Acces to Community source	25.54						59.98	<u> </u>	144.87	268.20	35000	15.52	81.73	61.73	25.54		211.05	PP.10 230	230.81	519.43	1.14 30	300.0 750	0.20	55.56%
Aces 100 Residential 9:220 9:0210 19 Pris 5:141 SA Aces 100 Residential 9:250 9:0210 19 Pris 5:141 SA Aces 100 Residential 9:250 9:0210 19 Pris 5:141 SA SRPS SA Aces 100 Residential 9:250 SA Aces 100 Resi			A CONTRACTOR OF THE PERSON OF	140.60			1				L											1.73					
V lateration 5.A. GREPS 50.A. Area 100 feed-and-and-and-and-and-and-and-and-and-an		100	Aven 100 Backfastist	00.00	00.00	101												90.20									
1/ Interesticial 5.0 Area to Prince consonium, e.e.o. 1.0 154.03 1.336 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			And Ivo Notherical	200	20.40		L			51.13	100	88.9	4.88	20000	4.24	424	4.24	4.88	95.08	80.26	34.001	98.21					
7 SOG.14 554.03 5336	100000000000000000000000000000000000000	N. C.	Area too Non-Residence.	4.00		-				1	L			-	-	-					69	5.00					
5A SRPS 506.14 54.09 2136	on / interequal	NC.			-		1		-				-				20 20		2	10 11 11	11K 51 304 02		£14.68	1 177	45.0	0 40	30 6196
		SRPS	ALTERNATION CONTRACTOR	306.14	154.03		\$136	4	6	127.33	153,12		1		STREET, SQUARE,	03,277		-		197	1	1		10 T	Aori	1	
												;												Darrie		6-01 10 200A	
To Note:	-	Postoil	1				Not		from made	5 to BRP	S in market	g and late	ne replace											Reni	Revision No. 3	0.20	
Infiltration Allowance Place In 0.28 Speedfile	te Plot Rule > 0.28	Vesoffs		+																				Ramfa		Oct 14 8005	
Residential Paking Parora = 1+(14/(4+(P*0.5))), P=Pop. in 1000*, Max # 4	Factor = 1+(14/(4+(P'0.5))), P=Pc	p. in 1000's, Ma.	- B-																					Dank		W. L. 100	


Prodict of t Prodict shelp-to Note: Ayaket DENCE: Au FE: March out

SANTARY SEARK DESIGN SHEET
PROJECT : Kennin West Savin Brity Savin
LOCATION : CITY OF OTTAWA

IB Group
400-338 Preston Street
Ottawa, Ontaxio
GROUIP
K15.984

SANITARY SEWER DESIGN SHEET WOMEN MANG OF MAKE I LOCATION OF CHANGE CITY OF OTHER MANG SECTION TO THE MANG SECTION OF THE MANG SECTION OF THE MANG SECTION OF THE MANG SECTION OF THE MANG SECTION OF THE MANG SECTION OF T

	LOCOTOR							RESIDENTIAL							10	ICI PREAS			2	INPLINATION ACLOSOMICE	CONCANEE	TOTAL				PROPOSED	PROPOSED SEWER DESIGN	N		
					2	UNIT TYPES		AREA		POPULATION	PEAK	PEAK			AREA (H2)	1		1		AREA (Hall	MC.M	MON	CAPACITY	Y LENGTH	Die	34045	VPLOCITY	VILLOCITY	7	AVAILABLE
STREET	AREA ID	NAME OF THE PARTY	2 1	94	45	7	PAPT	¥	9	NA.	PACTOR	KAN KAN	IND CIE	CHA	COMMERCIAL CHAN	+	IND CHAR	MOW .	dul	CUM	(9/4)	\$2		Ē		2	(For	_	3	CANADITA
																H		Н				-	-				(60/3)	(s/tu)	5	2
	01k800	eckends.	MAIN		-	1			0.0	60	400	9000		00.0	90'0	20.00	0.00	O CORE	90'0	900	40.0	D.07	1539	6.50	DSC	1,00	0.631		15.91	44.57
	1239,	MM234	Н			-			00	3	400	9700		000	0.29	D.33	D:00	020	629	40	010	0.40	34.12	28.94	200	200	1.055		55.81	28.45
	1224	MPT22A	MIGSTR			-	-		00	90	480	900		0.00	-	0.04	D.0	+	Ч	0.64	Dr12	+	7177	11.00	unc	456	1.051		33.71	08.94
	MK200	BUKROOA	WANG.			-			0.0	90	4.00	90'6		0.00	67.0	0.10	000	403	0.10	0.10	20'0	0.11	15.49	6.50	150	1.00	0.871		11.33	9028
	1214	MILESEA	MAHERON		1	1			9.0	90	CUT	ath		000	5.08	-	0.08	0.54	0.00	1970	47.0	6.13	34-32	\$3.61	300	3.00	1.055		33.50	97.32
	6cK600	BUNGOOM	MANN			-		-	0.0	0.0	4.00	90.04		000	90'0	2.05	0.03	\$0,05	90.0	90'9	404	20.0	15.69	954	354	91	100.00		80 74	1
	1204	MANAGE	ALCO LINEAR			1	-		4	9	4.00	500		900		16.0	000	+		1	20.00									icer.
										3				444				H			673	74	70.19	\$3.23	a	9.5	9.746		22,77	94.12
	6v 4500	BUKSOOK.	*100.00			+	1	1	0.0	0.0	4119	80		90'0	900	0.03	8	90'0	0.09	6.03	603	0.10	15.89	63.00	150	140	1220		15.78	26.35
	2004	MINIOGA							0.0	0.0	4.00	0.00		900		1.79	0,00	+	Į.	1,79	080	+	34.19	34.33	200	050	0.245		11.14	100
		MH100C	EXMINIBOLA	*					0.0	0.0					100	3.79		1.55	P,04	1.74	0.50	2.05	24.19	35	52	0.10	0.746		22.74	91.51
	815/400	BLK-400A.	MARIN			1			0.0	0.0	4.00	0.00		0.00	H	316	900	Н	H	0.64	200	4.0	9	0	1					
	900,000	6LX300A				1			0.0	0.0	4.00	0.00		000	O.C.S	0.00	0,00	900	5070	0.00	0.91	0.05	3718	0.90	95	1.0	0,871		15.83	99.54
	TEG	MHZZZA	Mettaga						0.0	0.0	4.00	000		000	0.71	0.91	0.00	0.70	17.0	0.91	0.25	1.18	8	82.46	250	1.90	1580	0.522	74.94	98.53
	BUX300	BAX1004	H	1	1	1	1	-	0.0	0.0	4.00	000		0.00	+	90%	900	+	+	200	600	90	1 2 2	464	Nat.	00.0	6400			
	BLK200	BLK200A	MAN						90	0.0	uge	0.00		000	0.05	500	0.00	0.04	50:0	500	5	80	6.83	63	150	70	0.871		15.63	89.54
	STAN	SHITTER	MH213A						0.0	0.0	400	000		0.00	0.42	D.D	900	9970	0.42	190	0.13	19'0	43.87	41.12	250	0.50	0.666	0301	43.25	10.36 10.36
	2134	MOCELLA	MH212A		1	1			ge	000	8	900		000	0.13	0.66	90'0	45.5	0.33	99'0	97.0	3670	43.67	16.38	250	95.6	288.0	0.325	44,13	38.27
	77.74	MH213%	MH210A						00	6.6	00*	900		900	0.31	1.56	000	1.63	0.31	1.25	0.43	2.36	62.04	28.85	972	1,00	128	0.551	K4 28	65.56
	RIKSOO	D.K.WOOD	MARN			-	-		çe	**	4.00	900		990	9.47	4.17	D0 4	17.0	0.47	440	67.0	0.54	220	\$2.08	536	90	9090		97.50	9 4
	2404	MANNO	MAZDRC			1	-	-	00		400	900		+	+	4.5	900	H	400	100	20.00	100								
		MH205C	Ħ-						0.0	98	0074	0.00		900	910	582	000	2.48	678	185	OFF0	3.3	62.0	77.0V	052	8 8	1.224	0.633	E 74	98.78
vtomes South officed	DOL	\$71/B	MICROSA			H			9.0	6	4.00	00°b		9670		00:0	0.00	30	2.82	187	673	3.67	24.13	14,51	200	00.30	0.746		20.39	64.29
rugu 1	205A	MHZGSA							0.0	D:0	4.00	0.00		0,00		7	0.00	+	0.00	1.74	2.61	13	71.33	33.79	and	0.53	0.073	0630	27.73	40.64
treet 1	ZD4A	Ner-Libbah							0.0	0.0	4.00	000		00'0		3.76	0.00	Н	0.35	80'9	2,70	7.58	71,33	125.35	300	020	0.978	0.128	83.79	89.43
uen 1	MIN	MADINE	+						6.0	0.0	4.00	0.00		000	90'0	R	06.9	S.E.	0.04	6.12	TOT .	7.59	71.31	11.74	300	0.53	0.528	62970	59.75	56.68
ctemal fact lidin	FKT:1	Sub	68H931A						99	0.0	2.00	000		0000	3	0.00	900	0.10	0.74	420	170	1.00	34.13	14.27	200	0:30	0.746		SFEZ	95.87
Irest 1	1014	#EGENM	Н						Dr0	0.0	430	0000		000	0.10	3.40	90%	6.75	OL6	989	1.66	£ 70	71.33	31.49	Q.	0.50	0.976	0.659	62.69	67.10
unet 1	2004	MHZDOW	-			-	1		000	0.0	P.	99		900	Н	Н	+		80	959	1.85	\$.70	58.83	45.35	OR.	0.54	0.806	0.630	\$9.12	45.20
		TX CAT	Ekuluy03		1	-			00	00			00.00	+	000	340 000	CW3	673	900	96'9	1.85	8 70	X9.92	55 35	COM.	200	0.606	0:630	20'05	88.30
gaign Plantmeters:				Nobes:							Designed		RM			PJQ.			STATE OF THE PARTY	Revision	28			The same of			Q	Date		
Reckbenial		ISI Aleas		P. Deman	L. Markhogt coaffictor: (n) = 2. Demand (per capits)	- (u) - (t)		350 (780)	X	reby) is					1	-			Ate	Revised as per City Comments	Y Commercia						11/11	11/15/2013		
3.33		SQUED UVILLABLY	Peak Factor	r 3 Infilba	3. Inhibation allowance: 4. Residential Pedicing Secon:	Dice: g Sector:		HAA R	ô	0.4 US/Ha	Chackard:		ΛO			ਗ ਵੱ			Rec	Heytsel 33 per City Comments Revised as per City Sormwets	y Comments y Comments						10/2	8/25/26t4 10/2/26t4		
Other 60 p/p/Ha	MON Si Si	400 L/Hs/day	TACK Chart		Marara P	- population	Harmon Formula - 14 (14)(4+P+0.51) where P = population is (harmonds)	ŧ.			Dwg. Referen	ference:	12345-403																	
		17000 U/Hs/day														FREEER	File Ceferences				Date:	200	Canal Canal				Ŧ.	Shipert May		
				1												1641	13.4.4	-			11/15/20	13	The second	Crossrcano	No. of Concession,	TO STATE OF THE PARTY OF THE PA	1	af1		

APPENDIX C

IBI Group	400-333 Pres	Ottawa, Onb	KIS SN4	
1	7		ROUP	

reston Street Misirio

STORM SEWER DESIGN SHEET PROPERLY AND COMMENTAL LIDERTON. CITY OF CITAWA CLEARS. MIND DOWNSTOWN GROUP.

	Freshoand***		1.53					1.32			2.25						3,63					
1	1		88					88.45			96.70						\$1.54					
-	į į	t	M.78		\$6.35		16.67	16.63	34.63		96.45	\$6.45				25.36	46.32			96.52		96.052
	Dat V Parm	1			96.79		1996		2999			96.45				96.54				26.32		96.35
	2				e ou		90		40			6				6					ψu	60
1	T	t	*	× ×		8	33.73%	124	11	2	*		\$	× ·	*	П	3,6	ま	秀			
	AVAIL CAP CAN	+	24.79%	84.34%	47.76%	8 64.34%	H	49.78%	33.65%	544 85	74.79%	1 28.575k	+	+	13.03	7 52 TA	B 67.13%	2 47,39%	+	7 34,25%	36,00%	
	_	+	46.4D	28.23	23.51	22.82	14.16	25.84	23.48	\$	46.40	42,41	Н	1	20.33	33.67	31.58	Н	46.48	84.97	Н	
	VEUOCITY		1224	0.856	0.813	9989	0.813	1,024	0.802	1.224	1.224	0.908	0.978	0.976	0.982	9,874	1.224	1.224	1.224	0.850	0.650	
4	20%		1.00	0.50	0.35	0.50	93.0	0.70	97.0	9	ofi	972	0.50	950	88	040	100	100	8	0.15	47'0	
SEWER DATA	3																					
-	PIPE SIZE (mm)																					
	1	5	8	750	9	92	000	952	375	250	950	650	900	300	009	300	250	250	250	909	500	
	HIGH	ŝ	2.00	5.97	36.56	E9'E2	12.08	2.00	58.21	19.24	5.00	\$1.98	29.02	20.00	13.38	59.50	16.50	8:00	D.34	32.73	16.00	-
1	CAPACITY	8	52.04	43.87	29,63	43.97	59.68	\$1.91	91.46	42.04	62.04	146.72	11.33	11.33	256.47	62.80	90'29	62.04	62.04	248.09	243.09	ŀ
+	_		15.64	15.64	\$1.15	15.64	68.53	26.07	68.97	28.68	15.54	106.31	Н	Н	10.52	30.13	23.46	7.82	Н	163.12 2	158.78 2	ŀ
- 3	ICD MAED DE	PLO	#	+	1	1	1	*	6	1	1	и	^	-	A .	Fr.	~	ľ	-	38	3	
		H IN		H	H	H	H	H	H	H	H	H		+		H	H	+		+		
	NK 100 yr PEAK	IK FLOW		4	\parallel	#	\parallel	\parallel	\parallel	\parallel	H	H				\parallel	H			l		
1	10m PERK	FLOW	Ц				\parallel				Ц					Ц	1	1	Ц			
	Syr PEAK	Prow Live	15.64	15.64	91.18	15.86	45.52	28.07	69.97	28.48	15.44	10631	20.46	10.63	30.55	30,18	23.66	7.83	15.56	363.32	156.76	
ISN FLOW		(mm/h)	32 871	178.56	177.94	178.56	273.18	173.36	171.10	174.56	173.56	99731	178.56	378.56	174.15	171.93	178.56	178 56	177.57	194.97	150.81	
RATIONAL DESIGN FLOW	(00)	Denicarie	122.14	172 14	111.72	122.14	138.08	122.14	117.06	122.14	272.14	110.63	122.14	322.14	119.15	117.63	122.14	172.14	121.47	106.08	103.25	
ĸ	[5]	_	104.19	104.19	103.83	104.19	104 DK	100.19	99.66	104.19	104.39	CP 26	104.19	104.19	101.65	100.46	104.19	104.19	109.62	90.55	88.14	
	TOTAL	[mim]	1000	19.01	1900	10.65	10.86	10.03	30.41	10.00	10.07	11.02	10.49	10.9e	10,75	11.78	10,01	10.11	10.12	13.64	13.86	
	TIME	N Pape	200	n.tt	6.54	0.45	0.15	970	171	22	D) (I)	88.0	0.40	O.ta	920	1.0	0.22	0.13	0.01	10.64	684	2
	INET	+	70,00	10.00	100	00'01	i i	10.00	10.86	10.00	10.00	12.06	10.00	30.00	\$0.49	10.76	10.00	10,00	10.13	1000	13.66	
	CUM	1	100		100	0.15	0.45	57:0	0.10	0.28	0,15	113		010	Ц	0.30	0.51	800	Н		1.50	1
100	9		ctn	6.15	1.004	6,19	0.00	0.25	.00'0	U.25	9118	0.00	0.20	0.10	900	0,00	23	+	90.0	400	٠	+
	ð	0.90	4000	900		90:0		0.10		0.13	90'0		9008	3		I	0.49	8	D.II3			-
AREA [Hall	5	-	H	+	1		H	-	+	+	\mathbb{H}	+	+			H	+	+	H	+	-	
-	5	-	H	+					t		H	H	+			H	+				t	
-	10	1	MARK	NAME OF	ALLES	STAIN.	MHIZZ	MAIN	MHIZO	MH120	MAIN	MH100	CBMH110A	CBMHIIDA	MHBIG	MHIGO	MAZA	CICRISOR	MANN	ANUTURN	SMAHAM	1
	PHDex	113	81/1800	CICRITIS	Vertro.	77190	WHIELD	90/2708	MHIZE	CELZO	Bar(600	MINISO	CBITCH	-	CBENHINGA	MHIIG	PRK960	+	CIC8100B		AND AND A	1
LOCATION	DAFA ID		BLK800	57		777	**	BUCKO		120	BLKGUU		911		,		Викор	t	1000		SHETHER	
	CTREET																					

STORM SEWER DESIGN SHEET
PROJECT: Avadle Commund
LOCATION: CAT OF CITYAN
CLIENT: Minite Devalupment Group
19

" Perkhad from for date on gradu mammark out buildship		1) surchanged upstream HGL* FF** Fredomid***	-	376	74.6	***	*5	256	30	×	28	ž	ž.	35	*	*	46	91K Ac 68.10 95.70		2	18		78. 96.83 99.50 3.47	755 BE403 99-50 3.47	22	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Eniok all
		AVAIL CAP (SVI)	Н	75.17%	12 89.49%	23.93%	1, 68,44%	7 34.01%	20.29%	Н	2 47.38%	+	9 61.58%	9 70.53%	+	6 48.77%	2 87,39%	21.89%	2 90,08%	+	555 CF D	#85 EL 6	38,97%	1 89.15%	7 100,00%	10.120	1
j	1			104.00	122 E	133.80	17-614	86.37	+	88.46	24.22	+	54.03	43.79	+	43.66	Ze.22	143,45	378.92	289.61	Н	211.79	27.54	51.61	900.87	40 00	+
	1	VELCACITY [m/x]	+	0.850	0.850	058'0	0,840	0.950	+	1.733	1.224	1.22	1731	1.224	1.22	1.731	1.724	0.988	1.542	1.832	2.977	0.962	1.224	P224	1,008	1050	100
	J	S SP	AL O	0.15	0.15	0.15	0.15	0.15	1.00	2.00	100	9	200	100	1.00	3:00	1,00	0.15	2.30	1/00	2.7	970	1.00	1.00	0.10	0.75	
	SEWER DATA	M M M																									
		Ale	199	900	009	909	95	909	952	252	750	250	\$50	250	250	920	35	š	450	450	ą	005	350	150	10%	450	
		(m)	981	M.20	15.80	277A	15.10	24.46	108	5,93	10.39	3.65	4.63	12.50	8.00	4.78	6.57	33.10	17.05	17.05	15.12	33.34	\$30	9:00	12.00	73.30	
		CAPACITY	748.04	248.09	248.09	248.09	248.09	248.09	62.04	67.74	62.04	62.04	87.74	62,04	52.04	87.74	62.04	18.65%	420.63	297.43	489.73	296.47	62.04	62.0M	300.87	148.72	
Ī		DESIGN LOW L/4	13.46	1379	16.07	114.29	28.68	169.72	15.64	49.26	7.62	10.49	33.70	14.24	16.07	44.07	7.87	306.36	11.71	2.82	12.63	74,66	29.10	10.43	000	120.21	
		LOFT PLAN MONTPLAK KORNED DESIGN FLOWING FLOWING ROWING FLOWING																									
	- 14	Syr PEAR I	23.46	1319	26.67	114.29	28.68	163.72	15.64	49.26	7.82	10.43	99,70	18.35	26.07	44.07	7.42	306.36	41.71	57.7	12.93	74.63	19.1D	10.43	0.00	120.71	
The Contract of the Contract o	ŀ	[100] 	35	175.51	173.56	176.10	171.56	184.79	178.56	177.56	178.56	179.56	377.08	178 SE	178.56	177.57	378.96	361.26	178.56	478.56	122.14	175.36	175.56	175.56	173.56	171.47	
200	2 L	I (10)	+	120.27	122.14	116.38	122,14	112.76	+	121.67	122.14	122.14	-	47.544	+	171.47	122.34	110.36	112.14	+	121.17	120.65	122.14	122.14	112.14	\$17.32	
1	21-	(mm/het b	+	107.60	114.19	99.90	104.19	62.39	+	103.67	104.19	+	103.62	104 10	+	103.63	104.15	94.19	104.19	+	102.27	102.92	1 1 1	104.19 7	104.19	100.10	ł
	ŀ	FOTAL Frein	-	10.98	10.31	11.65	10.31	12.12	+	10.17	10.14	Н	10.16	10.17	+	10.15	10:12		10:01	H	10.24	19-88-01	10:01	10.07	of the	11.11	ı
1	ŀ	TIME IN DIDE	-	0.67	0.31	9,67	0.31	0.47	H	90'0	0.14	H	0.00	619	H	0.05	0.12	1.62	0.11	-	0.00	0.57	0.07	0.00	0.30	1.40	
	ł	[calch]	+	16.31	Dygn	85 01	10.00	2911	+	10.11	10.01	H	10.11	10.00	+	10.11	no.m	12.13	10.00	-	10.16	10.24	10.00	10.00	10.00	10.61	
	L	2.78AC	+	0.60	0.25	1.15	0.26	1.70	H	93'0	80.0	0.10		0.18	0.25		80'0	42.6	0.40	+	0.13	673	0.38	0.30	000	1.20	
		Z.YAAC	0.23	0.38	6.25	0.30	0.28	0.76	0.15	EE 0	8070	-	6.23	B.18	0.25	0.18	e for	000	000	D.O.S	6,05	0.20	Ti d	0.10	0000	0.00	
	1	5 8	60'0	0.15	0.10	2.0	673	0.11	90.0	0.13	0.03	90.0	60'0	200	0.10	2000	5		0.16	900	Det.	90'0	0.15	No co	076		
270	AKIN	0.00 0.70 0.72																									
	†	2 2	BAN-259	CDMHD31	CHEMIST	COMMISSI	COMMON.	MILENO	CICBROD	NINE30	MARK	306280	MAIN	MARK	C8230H	MAIN	MARK	THE STREET	COMPRES	CB223E	COMMON	MAZZI	MANN	NAMES	MAGNET	A51220	
		FROM	-	CBNH1233	(BAVH2124	CBMH232	CBMH231A	CHMH231	OC6230A		CB230C	H	C#230c	308282	+	СВЕЗОН	CESSO	MH230	CRITIA	H	Chizic	CHMEST	BLK4OD	hedon	MH500	MH225	
- Contraction	-	AREAID		2336 (1	2324 (6	2278	23JA CB	2338	i	2309 0	2300 4	l	290c	2405	1306	1	1324		tzik		2215	dtss	BIKADO	Buk 200		Ĭ,	

184 Group	400-333 Preston Street	Ottawa, Onterlo	KJS 5M4	
	Υ		ROUP	

STORM SEWER DESIGN SHEET PROFEST ANSIGN CHARACTER STORES OF THE LOCATION OF OTHER PROFESSION CHARACTER STORES OF THE STORES OF T

	Freeboadere	E							3.33					S.M.					65.54										
	1,1	E							99.60					23.25					91.96										
日の記れ日	HGL*	٤			95.84				17:18	57.23			10.79	36.55	3	i	98.74		98.56		95.56		8.30					80%	98.50
il martera fr	upstears	obsegrit			98.36				Н	97.23			97.47		95.44	6796	95,74				92.26		S4.					50'96	55.58
Tooks which from an brown hill 1454 to FF	u begrenous	alpe								ę			2			2	g				8		9					2	9
			*2	65,89%	17,68%	2000	84.77%	\$3.19%	74.9%	68.51%	200 200	S1.23%	72.34%	83.19%	63.43%	94179	21.87%	\$4.10%	31.44%	86.11%	26.75×	77,72%	24.17%	*	33.19%	76,60%	88.11%	31.64%	_
	AVAIL CAP (5yr)	IVE	+	Н		+	H	-	+	+	+	Н	++		+	Н	+		+	+	+	+	+	+	1	+	Н	+	20% (1) 41
		4	20101	Н	43.86	+	146.41	1 51.61	46.40	98.22	+	138.56	31.73	51.61	+	82.9v	76,72	170.48	62.99	38.65	342.23	86.38	736.97	+	11.09	+	Н	57.83	467.19
	3	Im/M	77.72	Н	0.850	+	2.599	1.7%	1,224	1.620	+	2,738	0.865	1,224	7.131	Н	1,202	3.765	1.604	0.256	1175	£731	1173	2 5/53	1281	1,683	1,781	70971	LIGA
7.0	SLOPTE	2	2.25	05.0	0.15	1.00	6.00	1.80	1.00	1.73	400	9.00	0.50	1.00	6.50	05:0	030	460	0pr	0.50	0.15	7:00	0.18	4	0.50	1.69	3.60	1.8	0.12
SPILIFE DAT	E	=																											
	PIPE SIZE IMM	3																											
	Ш	NA P	480	450	009	52	250	250	92	80	Z	ž	280	150	\$4	375	009	900	Ř.	25	86	330	975	450	450	2	195	STE	1050
ŀ	LENGTH	E	34,20	50.18	21.60	8.61	11.14	12.57	9.50	38.55	2.40	5.90	24,56	5.40	27.60	17.80	61.94	95'51	PS-61	14.90	14.86	137	13.88	35.66	19.59	6.46	0.0	8,8	11.55
	CAMAGIET	II/d	445,15	10.32	348.09	62.04	151.96	62.04	62.04	22.07	124.04	138.72	43.67	82.04	129.84	129.34	350.85	201.76	127.01	49.87	905.48	87.74	40K.43	420.63	210.32	25.29	87.74	167.91	58972
ŀ	_	W II Ve	39.10	Н	204.72	+	15.02	10.43	15.64	15.85	1.76	Н	12.13	30.43	+	46.40	234,12	11.28	139.92	5,21	64.2%	19.55	15.899	0.00	Н	+	10.43	125.00	19.616
	FUED 0	W [t/3] PU		1	1	+		H			T		H	H	,		7	H	H	H	2	+	Œ.	9	2	-	-	Ħ	H
	100pr PEAK 100 PAKED 0459/GN	PV4 RO		+	H			H	H	H			H	H	t		H	H	H	H	H	H	H	1	H			H	H
				-	H	+		-	H	H	+		H	H	ł		H	H	H		H	H	H	-		-		H	H
	1 JOY PEAK	W FLOW			1	-			Ц	Ц	ļ		H	Ц			Ц	Ц	Щ			Ц	\parallel						Ц
	SyrPEAK		39.10	89.65	304.72	7.83	15.55	10.43	15.64	75.25	1.74	12.17	12.13	10.43	13.40	46,40	27.2.12	31.23	11410	5.23	663.26	19.45	668.51	(5.5)	3	18.23	10.43	125.64	99 615
MON FLOW	[300]	Imm/Jred	17856	176.66	ISDS	178.56	177.49	178.56	178.56	122.03	178.56	178.56	178.10	378 54	178.49	170:16	IKARR	178.56	17256	17816	15035	178.56	147.84	178.56	177.05	17R S6	178.56	174.75	EI 291
RATIONAL DESIGN FLOW	(00)	[memohr]	122.14	120.85	149.99	122,14	121.42	122.14	172.14	111.09	172.14	172.14	17.33	172.14	IIR.FR	116.43	116.6	122.14	132.10	132.14	102.93	122.14	101.72	122.14	17771	177.14	127.14	119.88	110.96
	1431	Emmilion	104.19	103.10	93,82	104.19	103.54	104.19	104.19	309.30	91 801	1De.19	103.99	101,19	101.77	*	94.12	304.19	104.09	104.19	67.88	EM.19	PE.02	104,19	100.92	104.19	104.19	201.99	N.70
	TOTAL	1	10.21	10.01	TANK .	10.12	10.00	10.17	10.07	10.52	30.05	10.01	2000	THE STATE OF	10.97	HEST.	1169	THE STREET	1001	211	34.25	20'01	18.86	10.17	10.41	10.04	10.01	III II	32.0
	3MM	IN DIPE	11.0	0,27	44	0.12	20.00	6.17	0.05	0,40	50.0	0.04	0.07	10,0	0.40	97.0	980	100	1770	\$2	0,43	0,00	0.20	0.17	6.26	0.nn	0.02	0.59	613
	IMMET	+	10.00	1021	1221	10.00	1012	30.00	TOTAL	10.17	10.00	70.00	10.05	10.04	には書	10.97	11.12	10.00	10.00	au or	W.S.	10.00		10.00	1017	00.01	10.00	10.41	12:00
1	EUM.	1.MAC	98.0	6.63	2,116	60 0	Ц	6.10	0.15	144	200	0.32	233	0.00	0.47	200	2.75	N No.		SW()	2,23	6.19	N.	09:0	Ш	0.18		Na.	SARCI
	MUD CUM	2.78ac	0.39	0.30	00'0	800	609	0:10	910	0000	200	0.10	0.00	0,10	0.00	000	0000	St.	1.15	900	- FEAT	0.19	000	0.50	0.95	A.18	100	0.00	5.49
	3	86.0	0.15	270		100	0.03	8.	40.04			47.04		9.6				0.12	90.0	0.02				0.24	0.14	0.07	9704		
AREA [Ha]	8			-	H	-		1		1			H	H	H		H	Ц	H		Н	600						Ц	
W	5	+		+	H	+	H	+	H	H	100		H	H	H		+	H	H	H	H	H	H		+		-	H	7.63
-	2	t	FRANK223	MHZZO	4113	Christian	Mexico	MHZ1S	Mein	CATE OF	61214	MH216	MOTE	100	WH213	111.58		- NOTH	No.	and the same	MHEGER	MAIN	1001	CBMMH206	MANDE	MARK	Alth	100	100
	-	+			20	+		-	H	15 N	H			8	H	13	2		90	8	ŝ.	H	88	+	4			90	
	FROW	2	(812)	CRM	/MH220	CHCHOLDE	000	CB215	BAKTOO	MINITE	EVOBEST	CB2	MH216	81,4200	14.5	NAM213	Min	CB210A	91.890	C92109	100	CACRODISO	MM20SB	CBZD64	9	CB2069	CBX	MICRO	Blus
LOCATION	AREAID		2234	223R	16	2134	SISE	115	B1K100		7164	2164		BURZEO	*)		×	HOA	BAIKSAD	210B		XIEF		2060	2068	2060	1060	×	EKT-2
	STREET																			PRESSED LOADING									ternal South

IBI Group	400-333 Proxton Street	Ottowa, Onlarlo	K15 5N4
Į	~	7	5

STORM SEWER DESIGN SHEET PROBET: Annual commercial LOCATION COLONIA CO

				-			1						A STREET, SALE	100000000000000000000000000000000000000						-				The state of the s	1		١		L	recovered flow continent VIII had to at	NI WILLIAM		
	LOCATION			1	AKEA	ı	1		1	ŀ	ŀ	t	No.	AL DE MARA PLE	ŀ	H	н		ŀ	+	ŀ	1		N. WELL	J	ŀ	ŀ	The state of the s		- 1	ı		
STREET	OI PER	FROM:	2 #	3 8	ع <u>ا</u>	3 %	- 27	THE PERSON CLANS	Nac Intel	ET TIME	ME TOTAL	AL IMPORTO	Prit (ram/2m)	Opt 1 (1900)	hr Roward	EAK IDyr PEAK	_	TODAY PERK TO FIXED DESIGNATION FLOW 11/3	XED DESIGN	LVM CAPACITY	HENGTH (CIT)	1	MA NO W	T WWW I	\$10M	WEUDCHY	L	AVAIL CAP ISyri	Surcharged	ohumen	ğ e	į	Freeboard
	MSA	OCB205A	CICBZOSB	+			٦	0 27 0		t	₽	t		-	1	-	-		27.77	L	F	H	250	H	t	-	╀	F	Ļ				
	9507	COMPS	- ANN			90'0	e	A13	10.00	Ac 3.01			19 122.14	31 178.56	34.76	90			34.76	76 87.74	34 0.64	H	8		2/00/2	H	Н	Н					
Street 1	2	Secons	MH304			+	-	100	18.70	3,39	14.73	18 ES.74	100.02	AT 14K.67	1,167.51	15			1,367.51	7.54 1, #28.R7	R.R7 40.36	+	1980		0.13	1.308	SE 139	34.29%	8	15.46	98,48		
	ne ut	The board	Pi-fundana.		1	100	-	-	400	+	+	41 104.16	199.14	130.55	1808				13.01	10 69 10	000	+	9		100	+	+	+					
Street 1	204A	CCB2DAA	MAIN			0.07	C	0.14	(101)	17 3.02	10.14		Н	H	H	0			10.85	H	H	H	250		2.00	17.3	54.67	F 68.01%					
	7	MH204	SHOOK			+	O	0000	18.05 1A.73	1.01	15.74	P. 05	Н	9£ B9 144.42	21727 23	q	+	+	1,771.12	1.12 1.928.87	8.87 79.00	+	1150	+	25	5	657.73	X 10X	2	95.43	8		
		CICROAGA	CHCROADE		İ	+	=	thom no.	AAA 10.00	0.34	+	+	+	+	+	-			9700	6 62.04	+	+	os		83	+	62:04	+	Į,				
	DeDA	00(83409	MR240			c	0 500		Н	Н	1030	103.45	Н	32 177.30	H	×	4		12.90	97.74	74 16.61	H	250		2.00	1.73	Н	85.25% 4					
DEPRESSED LOADING	2406	CB740C	NH240			ø	0 200	5000	0.05 10.00	99.0	89 ID 88	61707	PF 241 61	14 17856	525				12.5	1 43.87	87 35.30	H	25D		DSG	0.866	3K.GE	\$3,11%	L				
	240C	C62400	MH240	- Interest		¢	404	0.15	0.13 40.00	00	10.64	61,904 19	FE'221 61	.1s 228.56	11.08	8			18.03	62.64	69 32.56	H	250		1:00	1,224	49.00	13.99%	1.1				
		MN4240	MHZDI				0	0,00	0.30 30.68	TX.0	11,03	100.74	74 118.07	107 17253	30.24	4	-	-	30.24	24 63.20	20 19.34	+	300	+	0.40	0.874	9577	43.60%	9	16	95.39		
Draw d		THE PERSON NAMED IN	MAMSON			+		71	15.45	-	16.27	E.H. 53	67.13	+	-	42	-	1	1247.62	1,938.57	3.27 45.85	+	O.S.		0.12	+	+	+		12.58	10.00		
Street 1		Media	MH201				d	ada 15		32 D.20	Н		Н	16.251 80	1,220.78	78			37.022.1	н	Н	Н	1350		0.12	1,305	708.09	9 16.71%	2	36.13	98.23		
Street 1	2014	DEICBZDIA	DCIOSZOTB	20'0		9.0	6	0.30	0,39 32.0	+		94,70	110.96	16212	20.49				16.39	\$0.00	14,74	+	8		1.00	1,224	25.45	+	Τ.				
Seraat 1	2018, 202	DCICBZDIB		-		0.24	9		0.88 12.00	900	12.03	00.04	Н	96 162.13	13 83.56	92			16.198	Н	74 \$.63	-	230		2.00	Н	376	4.7HK					
External 6 ası	64154	er.	FAMISH		0.73	+	1	142	T:42 30.00	00 3.29	10.29	104.19	132.14	14 178.56	148.01	01			148.01	01 243,09	D9 M.54	+	900		51'0	0.850	\$00.03	2. 40.34%	5	£2'56	8		
street 1	Z	MARDE	CAP	I		+	0	-	17.66 18.53		17.34	+	+	41 134.90	39.95	- 35			1,395.95	1,95 2,332.02	202 52.55	+	1500	-	d.D	+	938.07	7 40.23%	8	95.23	95.23		
street 5	Delastice.	FECAP	ESEMMES			-	0	_		34 0.33	H	H	8 89.77	77 151.03	23 1,554.27	12			2,554-27	26.552.94	56.36 20.39	H	1500		0.10	1278	977.75		L				
				97:02	\$33	0.80	1.62 13	11.66 TR	TRUE																				gi.	95.07	\$3.089		
				1	AREA CHECK	X	+	+	-		-		-	-															-				
					TOTAL	TOTAL AREA 8.02	202																										
					EXTERMAL AREA 3.55	AREA 3	133						-		-		-			+	-	-			-								
			1	1	1	4	4.47	1		1	+	1															1		T				
Delinitors				Maries			+	1	Designato	9	WW.			Mo			-		Ravision	- 1		1			-	Date	100						
C - 2 78CH, whe e:				3. Minn	3. Memorip coefficient ini »	right in			_										Issued for SFA	55.5						11/15/2013	113						
Q : Pank ling of three pay Second (L'c)	Second IL/4)													0	-			Red	Revised per City Comments	Comments						5/27/2014	2.5						
A - Ages in Mechanic Stal		į							Checked:	ij	à			rı	-			Rad	Reused per Oty Comments	Commonly				1		8/22/2014	114						
i is flagriful intensity in millimeters par hour (mm.fhr.). It = 308.071 // m245.0534/5.4741	limeters par hour ima	m./hr.] 5.v6.40													-			NGS.	harrised for the confinence	CONTINENTS				+		10/2/20							
= 1174.184 / TC=6.014)*0,316	10,0316	FA3* OI							8	Dwg. Reference:	31255-500	300																	7				
= 1735.688 / [TC-6.014)*0.420	(bzgra.(b	JOO TEAR													File Mahermer:	K71				080:	51013	N. Carlo				Sheet No:	:0						
																													1				

IBI 333 Preston St OTTAWA, ONTARIO K1\$ 5N4 ONSITE SWM 100yr design
PROJECT: Arcadia commercial
CITY OF OTTAWA
DEVELOPER Minto

PAGE: 1 OF 1 JOB#: 35355 DATE: Oct 1, 2014 DESIGN: DY Rev#3

Outlet EX MH 303 100yr design

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 I/s/Ha

Time of concentrati	on = 10 minutes
Area (ha) =	4.280
C Average =	0.90

10 min Tc	i5yr = 998.0	71/(T+6.053)^0.814=	104.2	mm/mr
Unrestricted Fl	owrate (Q5)			
10 min Tc		= 2.78*A*Cw*l =	1115.76	l/s
Restricted Flow				
10 min Tc	Q= 85 Vs/H	a	363.80	Vs
Intensity - 100 y	year event storm	35.688/(T+6.014)*0.82=	178.6	mm/hr
MACON MICHELO	- India-American			A
Unrestricted Flo				A.A.
10 min Tc	Opost-devo	= 2,78*A*Cw*i =	1912.11	¥5
10 min Tc			1912.11	Vs
10 min Tc Restricted Flow	Opost-devo	= 2,76°A°Cw°i =	1912.11 1027.20	
10 min Tc Restricted Flow	Qpost-devo vrate (Q _{rest 100yr}) Q= 240 l/s/h	= 2,76°A°Cw°i =		
10 min To Restricted Flow 10 min To Uncontrolled ru	Qpost-devo vrate (Q _{rest 100yr}) Q= 240 l/s/h	= 2,76°A°Cw°i =	1027.20	I/s AxC
10 min To Restricted Flow 10 min To Uncontrolled ru Location	Qpost-devo vrate (Q _{rest 100yr}) Q= 240 l/s/h	= 2,78°A°Cw°i =	1027.20 C	AxC D.COX
10 min To Restricted Flow 10 min To Uncontrolled ru Location Area 216 A Area 216B	Qpost-devo yrate (Q _{rest 100yr}) Q= 240 l/s/h moff (Q100)	= 2.78°A°Cw°i = Ha	1027.20 C 0.2 0.9	AxC D,000
10 min To Restricted Flow 10 min To Uncontrolled ru Location Area 216 A Area 216B Depressed Load	Qpost-devo yrate (Q _{rest 100yr}) Q= 240 l/s/h unoff (Q100)	= 2.76*A*Cw*i = Ha Area 0.03 0.04 0.02	1027.20 C: 0.2 0.9	AxC 0.006 0.03
10 min To Restricted Flow 10 min To Uncontrolled ru Location Area 216 A Area 216B Depressed Load	Qpost-devo yrate (Q _{rest 100yr}) Q= 240 l/s/h moff (Q100)	= 2.78*A*Cw*i = Ha Area 0.03 0.04	1027.20 C: 0.2 0.9	AxC D,000

Allowable Release $Q_{\text{rest 100yr}} - Q_{\text{uno}} = Q_{\text{ellow}}$

10 min To

Q_{unc}= 2.78 Aci

988.48 l/s

38,72 l/s

STORM WATER MANAGEMENT - Post-Development Controlled (5 year post-development with 100yr inlets)

76	100						
THE RESERVE AND ADDRESS OF THE PARTY OF THE	00 sm						
0 -YR FLOW							
Op (Vs)							₹
Area(ha)=	0.0600						
Cw =	1.00	STORMWATER MANAGEMENT O	(m =		2.00	l/s	
Tc Variable	ii	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(l/s)	(l/s)	(m3)		
63	53.9	9.0	2.00	7.0	26.42		
65	52.6	8.8	2.00	6.8	26.45		
67	51,5	8.6	2.00	5.6	26.47		
69	50.3	8.4	2.00	6.4	26.48	<===	Required volume
71	49,3	8.2	2.00	6,2	26.48		for roof storage
73	40.2	8.0	2.00	6.0	26.48		
75	47.3	7.9	2.00	5.9	26.47		
77	46.3	7.7	2.00	5.7	26.45		
79	45.4	7.6	2.00	5.6	26.43		
81	44.6	7.4	2.00	5.4	26.41		
83	43.7	7.3	2.00	5,3	26,38		
85	43.0	7.2	2.00	5,2	26.34		

Req. Storage volume Average depth

26.48 m3

0.044 m

OOF BLOCK	200						
4	00 sm						
-YR FLOW							
Qp (l/s)							metal .
Area(ha)=	0.0400						1
Cw =	1.00	STORMWATER MANAGEMENT C	lm =		1.00	l/s	
Te		Qp	Qm	Qp-Qm	Valume		
Variable	- E	2,78 x Area x c x i					
(min)	(mm/hour)	(I/s)	(1/s)	(Vs)	(m3)		
90	41.1	4.6	1.00	3,6	19.29		
92	40.4	4.5	1,00	3,5	19.29		
94	39.8	4.4	1,00	3.4	19.29		
96	39.1	4.3	1.00	3.3	19.30	<===	Required volum
98	38.5	4.3	1.00	3.3	19.29		for roof storage
100	37.9	4.2	1,00	3.2	19.29		
102	37.3	4.2	1.00	3.2	19.28		
104	36.8	4.1	1.00	3.1	19.27		
106	36.2	4.0	1.00	3.0	19.26		
108	35.7	4.0	1.00	3.0	19.25		
110	35.2	3.9	1.00	2.9	19.24		
112	34.7	3.9	1.00	2.9	19.22		

Req. Storage volume Average depth 19.30 m3 0.048

4	00 sm						
00-YR FLOW	0.0 1111						
Op (Vs)			//				→
Area(he)=	0.0400						
Cw=	1,00	STORMWATER MANAGEMENT C	m =		1,00	/s	
Tc Variable	16	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(I/s)	(1/s)	(m3)		
90	41.1	4.6	1.00	3.6	19.29		
92	40.4	4.5	1,00	3.5	19.29		
94	39.8	4.4	1.00	3.4	19.29		
96	39.1	4.3	1.00	3.3	19.30	<===	Required volum
98	38.5	4.3	1.00	3.3	19.29		for roof slorage
100	37.9	4.2	1.00	3.2	19.29		
102	37.3	4.2	1,00	3.2	19.28		
104	36.8	4.1	1,00	3.1	19.27		
106	36.2	4.0	1,00	3.0	19.26		
108	35.7	4.0	1.00	3.0	19.25		
110	35.2	3.9	1.00	2.9	19.24		
112	34.7	3.9	1,00	2.9	19.22		

Req. Storage volume Average depth

0.048 m

ROOF BLOCK 400 1500 sm 100 -YR FLOW Op (l/s) 0.1500 1.00 Area(ha)= STORMWATER MANAGEMENT Qm = 4.00 l/s Cw = Qm Qp-Qm Volume Ор Тс 2.78 x Area x c x i Variable (Vs) 4.00 (m3) (mm/hour) 44.2 43.3 (I/s) (min) (Vs) 18.4 14.4 70.90 70.94 82 84 18.1 4.00 70.96 70.97 42.6 41.8 86 88 17.8 4.00 13.8 Required volume 4,00 17.4 13.4 13.1 12.9 12.6 12.3 12.1 90 92 70.97 70.96 for roof storage 41.1 4.00 4.00 40.4 16.9 39.8 39.1 38.5 37.9 37.3 36.8 70.95 94 16.6 4.00 70.92 70.88 96 98 16.3 4.00 4.00 16.1 15.8 4.00 11.8 70.83 100 102 15.6 15.3 11.6 11.3 4.00 70.78 104 4.00 70.72

Req. Storage volume Average depth

70.97 m3

0.047 m

46	00 sm						
-YR FLOW							
Qp (l/s)							first (
Area(ha)=	0.4600						
Cw =	1.00	STORMWATER MANAGEMENT (2m =		10,00 1/	S	
Tc Variable	f	Qp 2,78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
104	36.9	47.0	10.00	37.0	231.01		C.
106	36.2	46.3	10.00	36.3	231.06		
108	35.7	45.7	10.00	35.7	231.10		
110	35.2	45.0	10.00	35.0	231.11	<===	Required volum
112	34.7	44.4	10.00	34.4	231.10		for roof storage
114	34.2	43.8	10.00	33.8	231.07		
116	33.8	43.2	10.00	33.2	231.03		
118	33.3	42.6	10.00	32.6	230.96		
120	32.9	42.1	10.00	32.1	230,87		
122	32.5	41.5	10.00	31.5	230.77		
124	32.1	41.0	10.00	31.0	230.65		
126	31.7	40.5	10.00	30.5	230.52		

Req. Storage volume Average depth

231.11 m3

0.050

PARKING LOT Area # 221 2900 sm 100 -YR FLOW Qp (Vs)

Flow restricted to

85 Vs

				_
	Qm =		42,50	l/s
Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume	
out) (l/s)	(Vs)	(Vs)	(m3)	
1 125.0	42.50	82.5	64,39	
7 119.9	42.50	77.4	65.02	
9 115.2	42.50	72.7	65.43	
5 110.9	42.50	68.4	65.66	
	42.50	64.4	65.71	1
	42.50	60.8	65.62	
	42.50	57.4	65.39	
	42.50	54.2	65.04	
	42.50	51.3	64.59	
	42.50	48.5	64.03	
	42.50	45.9	63,38	
	Qp 2.78 x Area x c x i (/s) 125.0	Qp Qm 2.78 x Area x c x i (Vs) (Ur) (Vs) .1 125.0 42.50 .7 119.9 42.50 .9 115.2 42.50 .6 106.9 42.50 .6 106.9 42.50 .1 103.3 42.50 .9 99.9 42.50 .0 96.7 42.50 .3 33.8 42.50 .9 91.0 42.50	OD STORMWATER MANAGEMENT Qm = Qm Qp-Qm 2,78 x Area x c x i (Vs) (Vs) (Vs) 100(r) (I/s) (Vs) (Vs) 1,1 125.0 42.50 82.5 7,2 119.9 42.50 77.4 9 115.2 42.50 72.7 5 110.9 42.50 68.4 6 106.9 42.50 64.4 1 103.3 42.50 60.8 9 99.9 42.50 57.4 0 96.7 42.50 54.2 3 33.8 42.50 51.3 .9 91.0 42.50 48.5	Qp Qm Qp-Qm Volume 2.78 x Area x c x i (Vs) (Vs) (ms) 1.1 125.0 42.50 82.5 64.39 7. 119.9 42.50 77.4 65.02 9. 115.2 42.50 72.7 65.43 .5 110.9 42.50 68.4 65.66 .6 106.9 42.50 64.4 65.71 .1 103.3 42.50 60.8 65.62 9 99.9 42.50 57.4 66.39 0 96.7 42.50 54.2 65.04 3 33.8 42.50 51.3 64.59 9 91.0 42.50 48.5 64.03

<=== Required volume for storage on-site</p>

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB	- Artistantini - Company	
0.36 m3/m	Height	Storage
	(m)	(m3)
CB221A	1,00	0.36
CB221B	1.30	0.47
CB221C	1.50	0.54
		0.00
	Total:	1.37

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB221A - CBMH221	17.05	0.45	2.71
CB221B - CB221C	12.00	0,45	1,91
CB221C-CBMH221	18.50	0.45	2.94
CBMH221 - MH221	33,38	0.60	9.44
		Total:	17.00

IN-LINE STORAGE (Structure)

CBMH's		
1.2m dia=1.13 m3/m	Height	Storage
1.8m dia=2.54m3/m	(m)	(m3)
CBMH221(1,2m)	2.20	2.49
MH221 (1.8m)	2.20	5,59
	Total:	2.49

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
221C	8.28	0.05	0.14
		Total:	0.14

OFF-LINE STORAGE (Structure)

MH's		
1.8m dia=2.54m3/m	Height	Storage
	(m)	(m3)
MH500	2.20	5.59
	Total:	5.59

OFF-LINE STORAGE (Pipe)

Length	Dia	Storage
(m)	(m)	(m3)
12.00	1.05	10.39
		33,00
	Total:	43.39
	(m)	(m) (m) 12.00 1.05

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

Overflow from area 110 4.25
Total Storage required 69.97
Total Storage provided 69.97
Overflow to Area 230A 0.00

ICD use Tempest HF 85l/s @ 2.35m head, or approved equal

	Area # 231		
0 -YR FLOW	- R. SHI		
Qp (l/s)			
Area(ha)=	0.6800		
Cw=	1.00	STORMWATER MANAGEMENT On	
Tc		Qp	
Variable		2.78 x Area x c x i	
(min)	(mm/hour)	(l/s)	
17	132.6	250.7	
19	123.9	234.2	
20	120.0	226.8	
21	116.3	219.8	

Flow restricted to

150 Vs

Area(ha)= Cw =	1.00	STORMWATER MANAGEMENT OF	=		75.00 1
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)
17	132.6	250.7	75.00	175.7	179.24
19	123.9	234.2	75.00	159.2	181.44
20	120.0	226.8	75.00	151.8	182.11
21	116.3	219.8	75.00	144.6	182.51
22	112.9	213.4	75.00	138.4	182.68
23	109.7	207.3	75.00	132.3	182.63
24	106.7	201.7	75.00	126.7	182.39
25	103.8	196.3	75.00	121.3	181.97
26	101.2	191.3	75.00	116.3	181.38
27	98.7	186.5	75.00	111,5	180.64
29	94.0	177.7	75.00	102.7	178.74

<=== Required volume for storage on-site

INJ INF	STORAGE	(Structure)

0.6m X 0.6m CB		
0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
		-
	Total:	0.00

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB233-CBMH233	15.60	0.60	4.41
CBMH233-CBMH232	34.20	0,60	9.67
CB232-CBMH323	15.60	0.60	4,41
CBMH232 - CBMH231	34.20	0,60	9.67
CB231-CBMH231	15.60	0.60	4,41
		Total:	32.57

IN-LINE STORAGE (Structure)

IN-FINE OLOVWOF	outactare	
1.2mDia CBMH's=1.1	3m3/m	
1.5m dia=1.77m3/m	Height	Storage
	(m)	(m3)
CBMH233 (1.5m)	1.42	2.5134
CBMH232 (1.5m)	1,49	2,6373
CBMH231 (1.5m)	1.53	2.7081
	Total:	7,86

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
231	295.46	0.20	19.70
232	337.60	0.20	22.51
233	333.20	0.20	22.21
		Total:	64.42

OFF-LINE STORAGE (Structure)

MH's		
1.8m dla=2.55m3/m	Height	Storage
	(m)	(m3)
CBMH231A	1.81	4.62
CBMH232A	1.70	4.34
CBMH233A	1.64	4.18
	Total:	13.13

OFF-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Dia	Storage	
	(m):	(m):	(m3)
MH501 - MH230	69.40	0.60	19,34
10X18 Trilon M-6 storage cell			67.00
The state of the s		Total:	86.34

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

Overflow from area 100, 123 Total Storage required Total Storage provided Overflow to area 230A 20,74 203.42 204.32 0.00

ICD use Tempest HF 150l/s @ 2.26m head, or approved equal

ARKING LOT	Area # 230	В					
19	00 sm						
00 -YR FLOW				Flow restr	icled to	71	0 l/s
Qp (I/s)							_
Area(ha)=	0.1900						
Cw =	1,00	STORMWATER MANAGEMENT	Qm =		35.00	l/s	
To Variable	3	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
9	188.3	99.4	35.00	64.4	34,80		
- 11	169.9	69.7	35.00	54.7	36.13		
12	162.1	85.6	35.00	50,6	36.46		
13	155.1	81.9	35.00	46,9	36,60	<===	Required volume
14	148.7	78.6	35.00	43.8	36.59		for storage on-sit
15	142.9	75.5	35.00	40.5	36,43		
16	137.5	72.7	35.00	37.7	36.15		
17	132.6	70.1	35.00	35.1	35.76		
18	128.1	67.7	35,00	32.7	35.27		
19	123.9	65.4	35.00	30.4	34.69		
21	116.3	61.4	35.00	28.4	33.30		

0.6m X 0.6m CB	***************************************	
0.36 m3/m	Height	Storage
MI-0000000000	(m)	(m3)
CB230A	1.45	0.52
CB230B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB230A - CB230B	10,00	0,25	0.49
		Total:	0,49

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flet top and iron frame/grate

PARKING LOT STORAGE 100yr Meximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
223C	366,50	0.25	30.54
		Total:	30.54

 Overflow from area 221 & 231
 0.00

 Total Storage required
 38,60

 Total Storage provided
 32,11

 Overflow to area 230D
 4.49

ICD use Tempest HF 70l/s @ 1.71m head, or approved equal

PARKING LOT	Area # 230	С					
3	00 sm						
100 -YR FLOW				Flow restri	icted to	10	D I/s
Qp (l/s)							-
Area(ha)=	0.0300						
Cw=	1.00	STORMWATER MANAGEMENT (Qm =		5,00	1/8	
To Variable	(4)	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		-7).:
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
11	169.9	14.2	5.00	9.2	6.05		
13	155.1	12.9	5.00	7.9	6.19		
14	148.7	12.4	5.00	7.4	6.22		
15	142.9	11.9	5.00	6.9	6.23	<===	Required volume
16	137.5	11.5	5.00	6.5	6.21		for storage on-sit
17	132.6	413	5.00	6.1	6.18		
18	128.1	10.7	5.00	5.7	6.14		
19	123.9	10.3	5.00	5,3	6.08		
20	120.0	10.0	5.00	5.0	6,00		
21	116.3	9,7	5.00	4.7	5.92		
23	109.7	9.1	5.00	4.1	5,72		

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
CB230C	1.45	0.52
		0.00
	Total:	0,52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total;	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 10l/s @ 1.4m head, or approved equal

INL I	INIE	STO	DA	CE	(Dina)	

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	41.50	0.07	0.97
		Total:	0.97

OFF-LINE STORAGE (Cell)

Cell storage			
-110-110-5- U	Storage		
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00

Total Storage required 6.23
Total Storage provided 6.49
Overflow to area 230D 0.00

PARKING LOT	Area 230D						
13	00 sm						
100 -YR FLOW				Flow restr	icted to	6	7 ⊮s
Qp (l/s)							
Area(ha)=	0.1300						1
Cw =	1.00	STORMWATER MANAGEMENT	2m =		33,50	1/s	
To Variable	î	Op 2.78 x Area x C x i	Qm	Qp-Qm	Volume		=5/1
(min)	(mm/hour)	(l/s)	(1/3)	(l/s)	(m3)		
5	242.7	87.7	33.50	54.2	16.26		
6	226.0	81.7	33.50	48,2	17.34		
7	211.7	76.5	33,50	43,0	18.06		
8	199.2	72.0	33,50	38,5	18,48		
9	168,3	68.0	33,50	34.5	18,65	<===	Required volume
10	178.6	64.5	33.50	31,0	18,62		for storage on-site
11	169.9	61.4	33,50	27,9	18,42		
12	162.1	58.6	33.50	25,1	18.07		
13	155,1	56,1	33,50	22,6	17,59		
14	148.7	53.7	33.50	20.2	17.01		
16	137.5	49.7	33,50	16.2	15,56		

0.6m X 0.6m CØ		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230D	1.45	0,52
CB230E	1.55	0.56
	Total:	1,08

IN-LINE STORAGE (Structure)

1.2mDia CBMH's	, (1)	
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.84m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m):	(m)	(m3)
CB230D-CB230E	10.00	0.25	0.49
		0,30	0.00
		Total:	0.49

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
230D	391.79	0.15	19.59
			0,00
			0.00
			0.00
			0.00
		Total:	19.69

Overflow from 230A, 230C 4.49
Total Storage required 23.14
Total Storage provided 21.16
Overflow to area 230G 1.98

ICD use Tempest HF 67l/s @ 1.68m head, or approved equal

PARKING LOT Area 230F 700 sm 100 -YR FLOW 38 Ns Flow restricted to Op (l/s) 0.0700 1.00 Area(ha)= STORMWATER MANAGEMENT Qm = 19.00 l/s Cw= Qm Qp-Qm Volume Τ¢ Qp 2.76 x Area x c x l Variable (mm/hour) 226.0 211.7 199.2 (l/s) (m3) (l/s) (min) (l/s) 44.0 6 41.2 38.8 9.32 19.00 22.2 19.8 17.6 9,49 В 19,00 Required volume 19.00 9,52 <=== 106.3 36.6 15.7 9.45 for storage on-site 10 178.6 34.7 19.00 14.1 12.6 11.2 9.9 19,00 9.28 169.9 33.1 9.04 19.00 12 162.1 31.6 8.72 8.35 13 155.1 30.2 19.00 19.00 148.7 28.9 14 27.6 25.6 19,00 8,0 7.93 15 142.9 17 132.6 6.95

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB203F	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage	
	(m)	(m3)	
	Total:	0.00	

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and fron frame/grate

ICD use Tempest HF 38Vs @ 1,53m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum available

AREA#		Depth	Storage	
	(SM)	(m)	(m3)	
18A	89.27	0.21	6.25	
		0.00	0.00	
		Total:	6,25	

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Slorage
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5,00
		Total:	5.00

Overflow from Area 223	0.00
Total Storage required	9.52
Total Storage provided	11.77
Overflow to Area 230G	0.00

PARKING LOT	Area 230G						
17	00 sm						
100 -YR FLOW				Flow restri	icted to	53	3 Vs
Qp (l/s)							ma .
Area(ha)=	0.1700	W					al S
Cw =	1.00	STORMWATER MANAGEMEN	JT Qm =		26,50	l/s	1
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/s)	(Vs)	(m3)		
13	155.1	73.3	26.50	46.0	36.51		
14	148.7	70.3	26.50	43.8	36.78		
15	142.9	67.5	26.50	41.0	36,93		
16	137.5	65.0	26.50	38,5	36.97	<===	Required volume
17	132.6	62.7	26.50	36.2	36,90		for storage on-site
18	128.1	60.5	26.50	34.0	36.75		
19	123.9	58.5	26.50	32.0	36.53		
20	120.0	56.7	26.50	30.2	36.23		
21	116.3	55.0	26.50	28.5	35.86		
22	112.9	53.3	26.50	26.8	35,44		
24	106.7	50.4	26.50	23.9	34.44		

0.6m X 0.6m CB		141-
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230G	1.45	0.52
CB230H	1,55	0.56
	Total:	1.08

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.0

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 531/s @ 1.71m head, or approved equal

N-LINE	STORAGE (Pipe)
m	

Pipe storage			
Structure to Structure	Longth	Dia	Storage
	(m)	(m)	(m3)
CB230G-CB230H	10.00	0.25	0.49
		Total:	0.49

PARKING LOT STORAGE 100yr Maximum available

PARAMING LOT OTOTAGE TOOYS INICAMINGS STREET				
AREA#	AREA	Depth	Storage	
	(SM)	(m)	(m3)	
230G	258.40	0.19	15.50	
		Total:	15.50	

OFF-LINE STORAGE (Cell)

Cell storage			
Length width		Storage	
	(m)	(m)	(m3)
Triton M-6 storage cell	12.00	6.00	26.00
201.51-00177-222-2-1-1-2	-	Total:	26.00

overflow from 230D, 230F	1.98
Total Storage required	38.95
Total Storage provided	43.07
1/2 Overflow to Area 206D	0,00
1/2 Overflow to Area 205	0,00

PARKING LOT	Area 2301						
3	00 sm						
100 -YR FLOW				Flow restri	cled to	1	1 l/s
Qp (Vs)							
Area(ha)=	0.0300						
Cw =	1.00	STORMWATER MANAGEMEN	T Qm =		5.50	V/s	1
Tc Varlable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		-97
(min)	(mm/hour)	(1/8)	(Vs)	(J/s)	(m3)		
9	188.3	15.7	5.50	10.2	5.51	1	
11	169.9	14.2	5,50	0.7	5.72		
12	162.1	13,5	5,50	0.0	5.78		
13	155.1	12.9	5.50	7.4	5.80	<===	Required volume
14	148.7	12.4	5.50	6.9	5.80		for storage on-site
15	142.9	11.9	5.50	6.4	5.78		
16	137.5	11.5	5,50	6.0	5.73		
17	132.6	11.1	5.50	5.6	5.67		
10	128.1	10.7	5.50	5.2	5,60		
19	123.9	10.3	5.50	4.8	5.51		
21	116.3	9.7	5.50	4.2	5.29	T .	

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
CB230I	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 11l/s @ 1.44m head, or approved equal

INJ INF STORAGE (P)	mai

Pipe storage			
Structure to Structure	Length	Dia	Slorage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum available

AREA	Depth	Storage
	(m)	(m3)
66.30	0.14	3.09
		3.09
	66.30	(m)

OFF-! INF STORAGE (Cell)

Cell storage			
	Length	width	Slorage
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00
Total Storage required	5.80	711	11.
Total Storage provided	8.62		
Overflow to Area 230G	0.00		

Total Storage required Total Storage provided Overflow to Area 230G 0.00

ARKING LOT	and the same of th						
Commence of the Commence of th	00 sm			Flow restri	alad ta	4	5 I/s
0-YR FLOW				riow resul	CIEU (U	14	o ira
Qp (1/s)							7
Area(ha)=	0.1200						
Cw =	1.00	STORMWATER MANAGEMENT (∑m =		7.50	Vs.	
Tc Variable	19.	Qр 2.78 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(Vs)	(1/s)	(m3)	ľ)	
35	82.6	27.5	7.50	20.0	42.10	0	
37	79.4	26.5	7,50	19.0	42.17	l)	
38	77.9	26.0	7.50	18.5	42.18		
39	76.5	25.5	7.50	18,0	42.18	<===	Required volume
40	75.1	25.1	7.50	17,6	42.16	ľ	for storage on-sit
41	73.8	24.6	7.50	17.1	42.14	l)	
42	72.6	24.2	7.50	16.7	42.11	ľ	
43	71.4	23.8	7.50	16.3	42.06	B)	
44	70.2	23.4	7.50	15.9	42,01	i)	
45	69.1	23.0	7,50	15:5	41.95		
47	66.9	22.3	7.50	14,8	41.79	1	

0.6m X 0.6m CB	- 0	
0.36 m3/m	Height	Storage
	(m)	(m3)
CB222	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB222	14.80	0.25	0.73
		Total:	0.73

IN-LINE STORAGE (Structure)

1.2mDia CBMH's	A		
1,13 m3/m	Height	Storage	
	(m)	(m3)	
CBMH222	1,50	0 1	.70
	Total:	1	.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 151/s @ 2.44m head, or approved equal

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA (SM)	Depth (m)	Storage (m3)
222	340.74	0.19	21.58
222A	129.60	0.15	6,48
		Total;	28.06

Total Storage required 42.18
Total Storage provided 31.00
Overflow to area 223 11.17

PARKING LOT	Area # 223						
27	00 sm						
100 -YR FLOW				Flow restr	icled to	3.	2 l/s
Op (Vs)							
Ares(ha)=	0.2700			100			
Cw=	1.00	STORMWATER MANAGEMENT	Qm =		16,00	l/s	
To Variable	î	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(I/s)	(1/5)	(m3)		
35	82.6	62,0	16.00	46.0	96,57		
36	81.0	60.8	16,00	44,8	96.71		
37	79.4	59.6	16,00	43.6	96.81		
38	77.9	58.5	16.00	42.5	96.89		
39	76,5	57.4	16.00	41,4	96.95	<===	Required volume
40	75.1	56.4	16.00	40,4	96,97		for storage on-site
41	73.8	55,4	16,00	39,4	96.97		
42	72.6	54.5	16,00	38,5	96.94		
43	71.4	53.6	16,00	37.6	96.90		
44	70.2	52,7	16,00	36.7	96.83		
46	68.0	51.0	16.00	35.0	96.63		10

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
CB223	1,45	0.52
		0.00
	Total	0,52

IN-LINE STORAGE (Structure)

1,2mOia CBMH's	10 11	
1:13 m3/m	Height	Storage
	(m)	(m3)
CBMH223	1.50	1.70
	Total:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Día	Slorage	
	(m)	(m)	(m3)
CB223 - CBMH223		0.45	5.44
		0.30	0,00
		Total:	5.44

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
223	706.92	0.25	58,91
		Total:	58.91

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	11,00	12.00	50,00
	0707	Total:	50.00
Overflow from area 212, 222	18.27		

Overflow from area 212, 222

Total Storage required Total Storage provided Overflow to area 230F 115.22 116.57

ICD use Tempest HF 32½ @ 2.67mhead, or approved equal

6	00 sm						
00-YR FLOW	OLD OTT			Flow restri	cted to	24	4 I/s
Qp (l/s)							-1
Area(ha)=	0.0600						
Cw =	1,00	STORMWATER MANAGEMENT ()m =		12,00	l/s	
To Variable	ï	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		=10
(min)	(mm/hour)	(I/s)	(l/s)	(Vs)	(m3)		
8	199.2	33.2	12.00	21.2	10.19		
10	178.6	29.8	12.00	17.8	10.67		
11	169.9	28.3	12,00	16,3	10.78		
12	162.1	27,0	12,00	15,0	10.83	<===	Required valume
13	155.1	25.9	12.00	13.9	10.82		for storage on-si
14	148.7	24.8	12.00	12.8	10.76		
15	142.9	23.8	12.00	11.8	10.65		
16	137.5	22.9	12,00	10.9	10.51		
17	132.6	22.1	12.00	10,1	10,32		
18	128.1	21.4	12.00	9.4	10.11		
20	120.0	20.0	12.00	8,0	9.61		

0.6m:X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB212B	1.45	0.52
CICB212B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Dia	Storage	
	(m)	(m)	(m3)
CICB212A-CICB212B	10.28	0.25	0.50
		Total:	0.50

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1:13 m3/m	Height	Storage
	(m)	(m3)
	Total;	0.00

CBMH height for storage equals top of grate to invert less 0.64 m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	92.12	0.07	2.15
		Total:	2.15

Total Storage required 10.83 Total Storage provided 3.73 Overflow to area 223 7.10

ICD use Tempest LMF 24l/s @ 1.63m head, or approved equal

PARKING LOT Area # 215 400 sm 100 -YR FLOW Flow restricted to 10 l/s Qp (l/s) 0.0400 Area(ha)= STORMWATER MANAGEMENT Om = 5.00 l/s 1.00 Cw = Qp-Qm | Volume Qm Тс Qр 2,78 x Area x c x i Variable (mm/hour) 137.5 128.1 (Vs) (I/\$) (m3) (min) (l/s) 10.3 9.88 5.00 5.00 16 15.3 9.2 9.98 14.2 18 123.9 120.0 13.8 5,00 8.8 10.00 19 5.00 <=== Required volume 20 13.3 8,3 10.01 116.3 112.9 21 12.9 5.00 7.9 9.99 for storage on-site 5.00 7.6 7.2 6.9 22 12.6 9.97 109.7 12.2 9.93 24 106.7 11.9 5.00 5.00 9.88 6,5 6,3 9.62 9.75 103.8 11.5 25 5.00 26 101.2 11.3 10.7 5.00 5.7 9.59 28 96.3

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		Y
0.36 m3/m	Height	Storage
N. P. C. S. S. S. S. S. S. S. S. S. S. S. S. S.	(m)	(m3)
CB213	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure Length		Dia	Storage
	(m)	(m)	(m3)
ECB-CB215	24.00	0.25	1.18
		Total:	1.16

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100	yr Maximum	available	
AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	64.44	0.25	5.37
		Total:	5.37

Total Storage required 10.01
Total Storage provided 7.07
Overflow to 206A 2.94

ICD use Tempest LMF 10l/s @ 1.67m head, or approved equal

PARKING LOT Area # 206B 700 sm Flow restricted to 10 l/s 100 -YR FLOW Qp (l/s) Area(ha)= Cw = 0.0700 STORMWATER MANAGEMENT Qm = 5.00 Vs 1.00 Qm Volume Qp-Qm Tc Qр 2.78 x Area x c x i Variable (!/s) 5.00 (m3) 23.18 (l/s) (mm/hour) 91.9 87.9 (l/s) 17.9 17.1 (min) 30 23.24 23.25 23.25 5.00 12.1 11.7 11.4 33 86.0 16.7 5.00 <=== Required volume 34 84.3 16.4 5.00 23,25 for storage on-site 35 82.6 16.1 5.00 11.1 5.00 5.00 5.00 23.23 23.21 23.18 10.0 10.5 36 81.0 37 79.4 15.5 10.2 38 77.9 15.2 23.14 76.5 75.1 72.6 5.00 14.9 9.9 39 5.00 9.6 23.10 14.6 14.1 40 42

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
0.56 1115/111		
	(m)	(m3)
CB206B	1.45	0.52
		0,00
	Total:	0,52

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Slorage	
	(m)	(m)	(m3).	
		0.20	0.00	
		Total:	0.00	

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invertiless 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 10	Oyr Maximum	available	
AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
2060	344.76	0.25	28.73
		0.13	0.00
		Total:	28.73

Total Storage required 23.25
Total Storage provided 29.26
Overflow to area 206A 0.00

ICD use Tempest LMF 10l/s @ 1.57m head, or approved equal

ARKING LOT		Α					
38	00 sm						
00 -YR FLOW				Flow restr	icled to	8	5 l/s
Qp (l/s)							→
Area(ha)=	0.3800						
Cw=	1.00	STORMWATER MANAGEMENT	Qm =		42,50	/s	
Tc		Qρ	Qm	Qp-Qm	Volume		
Variable		2.78 x Area x c x i					
(min)	(mm/hour)	(1/3)	(Vs)	(l/s)	(m3)		
17	132.6	140.1	42.50	97.6	99,56		
19	123.9	130.9	42,50	88.4	100.72		
20	120.0	126,7	42.50	84.2	101.05		
21	116.3	122.9	42.50	80.4	101,25		
22	112.9	119.2	42.50	76.7	101.31	<===	Required volume
23	109.7	115.9	42,50	73.4	101,25		for storage on-site
24	106.7	112.7	42.50	70,2	101,08		
25	103.0	109.7	42.50	67.2	100,81		
26	101.2	106.9	42.50	64.4	100.44		
27	98.7	104.2	42.50	61.7	99.99		
29	94.0	99.3	42.50	56,8	98.86		

0.36 m3/m	Height	Storage
	(m)	(m3)
CB206	1.58	0.57
		0,00
	Total:	0.57

IN-LINE STORAGE (Structure)

1:13 m3/m	Height	Storage
	(m)	(m3)
CBMH206	1.50	1.70
	Total:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 851/s @ 2.41m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB206-CBMH206	25.60	0.45	4.07	
		Total:	4.07	

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
206A	772.10	0.25	64.34
206	79.40	0.10	2,65
		Total:	66.99

OFF-LINE STORAGE (Cell)

Cell storage			"
	Storage		
	(m)	J(m)	(m3)
Triton M-6 storage cell	10.00	9.00	31.00
		Total:	31.00

Overflow from area 206B, 215 2.94
Total Storage required 104.24
Total Storage provided 104.32
Overflow to 210A 0.00

12	00 sm						
00 -YR FLOW				Flow restri	icled to	77	7 V/s
Qp (Vs)							ma
Area(ha)=	0.1200						1
Cw =	1.00	STORMWATER MANAGEMENT	Qm =		38,50 I	/s	J
Tc Variable	É	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		=7.A
(min)	(mm/hour)	(I/s)	(1/8)	(l/s)	(m3)		
5	242,7	61.0	38.50	42.5	12.74		
5.5	234.0	78.1	38.50	39.6	13.06		
6.5	218.6	72.9	38,50	34.4	13,42		
7.5	205.2	68.5	38.50	30.0	13.48	<===	Required volume
8.5	193,6	64.6	38,50	26.1	13.30		for storage on-site
9.5	103.3	61.1	38.50	22.6	12.90		
10.5	174.1	58.1	38.50	19.6	12:34		
11.5	165.9	55.4	38.50	16.9	11.63		
12.5	158.5	52.9	38.50	14.4	10,79		
13.5	151.6	50.7	38.50	12.2	9.84		
15.5	140.2	46.8	38.50	8.3	7.68		

0.36 m3/m	Height	Storage
	(m)	(m3)
CB210A	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDla CBMH's		
1,13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
8B	44.62	0.20	2.97
		Total:	2.97

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	5.00	6.00	10.00
		Total:	10,00

Overflow from area 206A	0.0
Total Storage required	13.4
Total Storage provided	13.5
Overflow to 206D	0.00

ICD use Tempest HF 77l/s @ 1.55m head, or approved equal

PARKING LOT	Area # 206	D					
4	00 sm						
100 -YR FLOW				Flow restr	icled to	14	4 l/s
Qp (l/s)							
Area(ha)=	0.0400						
Cw=	1,00	STORMWATER MANAGEMENT	' Qm =		7,00	I/s	
Tc Variable	i	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		= ₹.
(min)	(mm/hour)	(I/s)	(l/s)	(Vs)	(m3)		
11	169.9	18.9	7.00	11,9	7.85		
12	162.1	18.0	7.00	11.0	7.94		
13	155.1	17.2	7.00	10.2	7.99		
14	148.7	16.5	7.00	9.5	8.01	<===	Required volume
15	142.9	15.9	7.00	8,9	9.00		for storage on-si
16	137.5	15.3	7.00	8,3	7.96		
17	132.6	14.7	7.00	7.7	7.90		
18	128.1	14.2	7.00	7.2	7.82		
19	123.9	13.8	7,00	6,8	7.72		
20	120.0	13,3	7.00	6.3	7.61		
21	116.3	12.9	7,00	5.9	7.47		

0.36 m3/m	Height	Storage
	(m)	(m3)
GB206C	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		1000
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0,00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 14l/s @ 1.47m head, or approved equal

IMF_E	INE	STOR	PAGE	(Dina)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
		0.20	0.00	
		Total:	0.00	

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage	
	(SM)	(m)	(m3)	
206C	75.00	0,15	3.75	
		Total:	3.75	

OFF-LINE STORAGE (Cell)

Cell storage	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	6,00	3.00	5,00
170	0 11	Total:	5.00

Total Storage required 8.01
Total Surface Storage provided 9.27
Overflow to area 206D 0.00

Street 1, Area	# 206E						
5	00 sm						
100 -YR FLOW				Flow restri	icted to	60) V\$
Op (l/s)			111				
Area(ha)=	0.0500						
Cw =	0.94	STORMWATER MANAGEMENT	Ωm =		30.00 I	/s	_
Tc	327	Ор	Qm	Qp-Qm	Valume		
Variable	1 1 1	2.78 x Area x c x l	Hr.	(1/-)	7-21		
(mln)	(mm/hour)	(l/s)	(1/s)	(l/s)	(m3)		
0.5	373.4	48.8	30,00	18,0	0.56		
1	351.4	45.9	30,00	15.9	0.95		
1,5	332.1	43.4	30,00	13.4	1,21		
2	315.0	41.2	30,00	11.2	1.34		
2,5	299.8	39.2	30.00	9.2	1.37	<===	Required volume
3	266,0	37.4	30,00	7.4	1.33		for storage on-site
3.5	273.7	35.8	30.00	5.8	1,21		
4	262.4	34,3	30,00	4.3	1.03		
4.5	252.1	32.9	30.00	2.9	0.79		
5	242.7	31.7	30.00	1.7	0.51		
5.5	234.0	30.6	30.00	0.6	0.19		

0.6m X 0.6m CB			-
0.36 m3/m CB206D	Height	Storage	
	(m)	(m3)	-
	1.45	0.5	2
	Total:	0.5	2

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.30	0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage	
	(m)	(m3)	
		0.00	
-	Total:	0.00	

CBMH height for storage equals top of grate to invertiless 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA	Depth	Storage
(SM)	(m)	(m3)
24.81	0.14	1.16
	Tatal	4 46
	(SM)	(SM) (m)

 Overflow from 208C 210A 230G
 0.00

 Total Storage required
 0.00

 Total Storage provided
 1.68

 Overflow to future area
 0.00

ICD use Tempest HF 60l/s @ 1.46m head, or approved equal

Street 1 Area # 205 1600 sm 60 l/s Flow restricted to 100 -YR FLOW Qp (I/s) Area(ha)= 0,1600 STORMWATER MANAGEMENT Qm = 30,00 1/s Cw = Qp 2,78 x Area x c x i Qm Qp-Qm Volume To Variable (mm/hour) (Ws) (l/s) (Vs) (m3)(min) 25.58 26.30 26.79 27.09 27.21 199.2 30.00 53.3 70,7 48.7 9 188,3 30.00 44.7 10 74.7 30.00 178.6 30,00 41.0 169.9 71.0 67.8 11 30,00 37.8 Required volume 12 162.1 34.9 32.2 27,10 27,03 for storage on-site 155.1 30.00 13 64.9 14 148.7 62.2 30.00 142.9 59.7 30,00 29.7 26,77 15 27.5 25.5 23.6 26,41 25,96 25,44 16 137.5 57.5 30,00 55.5 30,00 18 128.1 53.6 30,00

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB205A	1.45	0.52
CICB205B	1.55	0,56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB205A-CICB205B	14.00	0.25	0.69
			0,00
	_	Total:	0.69

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0,00

CBMH height for storage equals top of grate to invert less 0,64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
205	69.82	D. 11	2.56
		Total:	2.56

Overflow from 204, 206D, 1/2 230G

18.13

Total Storage required

45,34

Total Storage provided

4.33

Overflow to Area Future

41.01

ICD use Tempest HF 60l/s @ 1.68m head, or approved equal

PARKING LOT	Area # 240)A					
5	00 sm						
100 -YR FLOW				Flow restri	icted to	1	O l/s
Qp (l/s)							may .
Area(ha)=	0.0500						
Cw =	1,00	STORMWATER MANAGEMENT	Qm =	5.00 l/s			
Tc Variable	ì	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(l/s)	(l/s)	(m3)		
20	120.0	16.7	5.00	11.7	14,01		
21	116.3	16.2	5,00	11,2	14.07		
22	112.9	15.7	5.00	10.7	14.11		
23	109.7	15.2	5.00	10.2	14.14		
24	108.7	14.8	5.00	9.8	14.15	<===	Required volume
25	103.8	14.4	5.00	9.4	14.15		for storage on-she
26	101,2	14.1	5.00	9.1	14.14		
27	98.7	13.7	5.00	8.7	14.12		
28	96.3	13.4	5.00	8.4	14.08		
29	94.0	13.1	5.00	8.1	14.04		
30	91.9	12.8	5.00	7.8	13.99		

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB240A	1.45	0,52
CICB240B	1,55	0,56
		0.00
	Total:	1,08

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
		0.00
		0.00
	Total:	0.00

CBMH height for storage equals top of grale to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 10Vs @ 1.65m head, or approved equal

 46 1 107	CTODAGE	APRIL

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CICB240A-CICB240B	10.00	0.25	0.49	
			0.00	
			0.00	
			0.00	
			0.00	
		Total:	0,49	

PARKING LOT STORAGE 100yr Maximum available

PARTITION TO TOTAL TOO I MICHIGANITATION OF THE COLOR				
AREA#	AREA	Depth	Storage	
	(SM)	(m)	(m3)	
240A	79.61	0.10	2.65	
		Total:	2.65	

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	11.00	3.00	10.00
		Total:	10.00

Total Storage required	14.15
Total Storage provided	14.22
1/2 Overflow to Area 204	0.00
1/2 Overflow to Area 201	0,00

Street 1 Area # 204 1300 sm 100 -YR FLOW Op (l/s)

Flow restricted to

55 l/s

Area(ha)= Cw =	0.1300	STORMWATER MANAGEMENT Om =		×	
Tc Variable	Ď	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)
8	199.2	67.7	27.50	40,2	19.28
9	168,3	64.0	27.50	36,5	19,68
10	178.6	60.7	27.50	33,2	19,90
11	169,9	57.7	27.50	30,2	19.95
12	162:1	55.1	27.50	27.6	19,86
13	155.1	52.7	27.50	25.2	19.65
14	148.7	50.5	27.50	23.0	19.34
15	142.9	48.5	27.50	21,0	18,94
16	137.5	46.7	27.50	19.2	18.46
17	132.6	45.1	27.50	17.6	17.91
18	128.1	43.5	27.50	16.0	17.29

<=== Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB	W	
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB204A	1.45	0.52
CICB204B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Dia	Storage	
	(m)	(m)	(m3)
CICB204A-CICB204B	15.00	0.25	0.74
		Total:	0.74

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grale to invert less 0.64m to account for flat top and Iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
		0.13	0.00
		0.13	0.00
		Total	0.00

Overflow from area 1/2 240A 0.00 Total Storage required Total Storage provided Overflow to Area 205 19,95 1.82 10.13

ICD use Tempest HF 55l/s @ 1.51m head, or approved equal

PARKING LOT	Area 240D						
5	00 sm						
100 -YR FLOW	and it			Flow restri	icted to	10	O l/s
Qp (l/s)							-
Area(ha)=	0.0500						
Cw =	1.00	STORMWATER MANAGEMENT ()m =		5.00	/s	
Tc Variable	ñ	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		==
(min)	(mm/hour)	(I/s)	(Vs)	(J/s)	(m3)		
16	137.5	19.1	5,00	14.1	13.55		
18	128.1	17.8	5.00	12.8	13.83		
20	120.0	16.7	5,00	11.7	14.01		
22	112.9	15.7	5.00	10,7	14.11		
24	106.7	14.8	5,00	9.0	14.15	<===	Required volume
26	101.2	14.1	5.00	9.1	14.14		for storage on-site
28	96.3	13.4	5.00	8,4	14.08		
30	91.9	12.8	5.00	7.8	13,99		
32	87.9	12.2	5.00	7.2	13.85		
34	84.3	11.7	5,00	6.7	13.69		
35	82.6	11.5	5.00	6.5	13.60		

IN-LINE STORAGE (Pipe)

Length

Length

(m)

Dia

(m)

Total:

width

(m)

3.00 Total:

AREA Depth
(SM) (m)
204.50 0.14
Total:

0.25 0.30

Sto. (m3) 0.00

Storage (m3) 4 9.54 9.54

Storage

(m3) 5.00

5.00

0.00

0.00

Pipe storage Sinucture to Structure

AREA#

Cell storage

IN-LINE STORAGE (Structure)

0.6m X 0,6m CB			
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB240D	1.45	0.5	
	Total:	0.5	

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invertiess 0.64m to account for flat top and iron frame/grate

(m) 6.00 Triton M-6 storage cell 14,15

240C

OFF-LINE STORAGE (Cell)

PARKING LOT STORAGE 100yr Maximum available

Total Storage required Total Storage provided Overflow to Area 201 15.07 0.00

ICD use Tempest LMF 10Vs @ 1,46m head, or approved equal

Street 1 Area 201 2900 sm 100'-YR FLOW Op (I/s) Area(ha)= 0.2900 Cw = 0.94 STORMWATER MAI

Flow restricted to

60 l/s

NT O	0.2900 STORMWATER MANAGEM			30.00	l če
:141 (41	0.94 STORMWATER MANAGEMI				1/2
	Оρ	Qm	Qp-Qm	Volume	
	i 2.78 x Area x c x i				
	(mm/hour) (l/s)	(Vs)	(Us)	(m3)	
	123.9 93.9	30.00	63.9	72.81	
	120.0 90.9	30.00	60.9	73.08	
	116.3 88.1	30,00	58.1	73.25	
	112.9 85.5	30,00	55,5	73.32	
	109.7 83.1	30.00	53,1	73.31	
	106.7 80.8	30,00	50.8	73.21	
	103.8 78.7	30.00	48.7	73.05	
	101,2 76,7	30,00	46.7	72.82	
	98.7 74.6	30.00	44.8	72.52	
	96.3 73.0	30.00	43.0	72.17	
	94.0 71.2	30.00	41,2	71,77	

<=== Required volume for storage on-site

INJ INF STORAGE (Structure)

IN-LINE STORAGE	(Structure)	
0.6m X 0.6m CB		
0,36 m3/m	Height	Storage
	(m)	(m3)
CICB201A**	1,45	0.52
CICB2018**	1.65	0.59
	Total:	2.23

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB201A - CICB201B	15,00	0,25	0.74
	-	Total:	0.74

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.0

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
201	649.30	0,29	62.77
			0,00
		Total:	62.77

Overflow from Area 240D, 122 0.00
Total Storage required 73.32
Total Storage provided 65.73
overflow to future area 7.69

ICD use Tempest HF 60l/s @ 1.71m head, or approved equal

OUTLET # 1 (MH301) SUMMARY

Total Flow from Roofs=	18.00 l/s
Total Roof Area =	0.750 Ha
Average roof flow =	24.00 l/s/Ha
Volume Stored on Roofs	367.15 cm
Total Roof Storage rate	489.54 cm/H
Total flow from parking lot =	1006.00 l/s
Total parking Lot area =	3.420 Ha
Average parking lot flow =	294,15 l/s/H:
Volume Stored on Parking lot	815.08 cm
Total Parking lot Storage rate	238.33 cm/H
Total uncontrolled flow from site	38.72 l/s
Total uncontrolled area	0.110 Ha
Total flow	1062.72 l/s
Total area	4.280 Ha
Average flow	248.30 l/s/H
Volume Stored	1182.23 cm
Total Storage rate	276.22 cm/H

^{**}double CB's, volume x 2.

IBI 333 Preston St OTTAWA, ONTARIO K1S 5N4 ONSITE SWM 100yr design
PROJECT: Arcadia commercial
CITY OF OTTAWA

DEVELOPER Minto

PAGE: 1 OF 1 JOB#: 35355 DATE: Oct 1, 2014 DESIGN: DY Rev#3

Outlet # 2 EX MH 301 100yr design

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 I/s/Ha

Time of concentration = 10 minutes

Area (ha) =	0.800
C Average =	0.90

Intensity - 5 year event storm

10 min Tc	i5yr = 998,071/(T+6.053)^0.614=	104.2	mm/hr

Unrestricted Flowrate (Q5)

***********	101010		
10 min Tc	Qpre-devo = 2.78*A*Cw*i =	208.55 l/s	
Restricted Flow	rate (Q5)		
10 min Tc	Q= 240 l/s/Ha	192.00 l/s	

Intensity - 100 year event storm

10 min Tc	i100yr = 1735.688/(T+6.014)^0.82=	178.6	mm/hr

Unrestricted Flowrate (Q100)

10 min Tc	Qpost-devo = 2.78*A*Cw*i =	357.40 l/s
Restricted Flow	rate (Q5)	
10 min Tc	Q= 240 l/s/Ha	192.00 Vs

Uncontrolled runoff (Q100)

Location		Area	С	AxC
UNC 1A		0.02	0.2	0.004
UNC 1B		0.02	0.2	0.004
UNC 1C		0.02	0.2	0.004
UNC 1D		0.02	0.2	0.004
				0
Total		0.08	0,20	0.016
10 min Tc	Q _{uno} = 2.78 A	ci	7.94	l/s

Allowable Release

Q_{rest 100yr} - Q_{unc} = Q_{allow}

184.06 l/s

STORM WATER MANAGEMENT - Post-Development Controlled (5 year post-development with 100yr inlets)

ROOF AREA 5	00						
9	00 sm						
100 -YR FLOW							
Qp (l/s)	"						-
Area(ha)=	0.0900						
Cw =	1.00	STORMWATER MANAGEME	ENT Qm =		2.00	I/\$	
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		=17.
(min)	(mm/hour)	(Vs)	(Vs)	(l/s)	(m3)		
100	37.9	9.5	2.00	7.5	44.90		
102	37.3	9.3	2.00	7.3	44.92		
104	36.8	9,2	2.00	7.2	44.93		
106	36.2	9,1	2.00	7.1	44.93	<===	Required volum
108	35.7	8.9	2.00	6.9	44,93		for roof storage
110	35.2	8.8	2.00	6.8	44.93		
112	34.7	B,7	2.00	6.7	44.92		
114	34.2	8.6	2,00	6.6	44.91		
116	33.8	8.5	2.00	6.5	44.90		
118	33,3	8.3	2.00	6.3	44.88		
120	32,9	6.2	2.00	6.2	44.86		
122	32,5	8,1	2.00	6.1	44.83		

Req. Storage volume Average depth

44.93 0.050

m3 m

6	00 sm						
100 -YR FLOW	00 5111						
Qp (l/s)							
Area(ha)=	0.0600						7
Cw =	1.00	STORMWATER MANAGEME	ENT Qm =		2,00	l/s	
Tc Variable	î	Qp 2.78 x Area x c x l	Qm	Qp-Qm	Volume		_
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
66	52.0	8.7	2.00	6.7	26.46		
68	50.9	6.5	2.00	6.5	26.47		
70	49.8	8.3	2.00	6.3	26.48		
72	48,7	8,1	2.00	6.1	26.48	<====	Required volume
74	47.7	8.0	2.00	6.0	26.48		for roof storage
76	46.8	7.8	2.00	5.8	26.46		
78	45.9	7.7	2.00	5.7	26.45		
80	45.0	7.5	2.00	5,5	26.42		
82	44.2	7.4	2.00	5.4	26.39		
84	43.3	7.2	2.00	5.2	26.36		
86	42.6	7.1	2.00	5.1	26.32		
68	41.8	7.0	2.00	5.0	26.28		

Req. Storage volume Average depth

m3 26.48 0.044

ROOF AREA 700 1000 sm 100 -YR FLOW Qp (l/s) 0.1000 1,00 Area(ha)= STORMWATER MANAGEMENT Qm = 2.00 l/s Cw = Qp-Qm Volume Τ¢ Qр 2.78 x Area x c x i Variable (l/s) 2.00 (m3)(1/s) (mm/hour) (min) (Vs)51.43 115 34.0 9,5 7.5 117 33.6 9.3 2,00 7.3 51.44 2.00 33.1 9.2 7.2 51.44 119 7.1 51.44 <=== Required volume 9.1 121 32.7 for roof storage 123 32.3 9.0 2,00 7.0 51.44 2.00 8.9 6.9 51.43 31.9 125 31.5 6.7 51,42 8.7 127 51.41 2.00 6.6 129 31.1 9.6 2.00 6.5 51.39 30.7 8.5 131 30,4 9.4 2.00 6.4 51,37 133 2.00 6.3 51,35 30.0 29.7 8,3 135 6.2 51.32 8.2 137

Req. Storage volume Average depth

51.44 m3

0.051 m

ROOF AREA	800	
	600 sm	
100 -YR FLOW		
Qp (l/s)		

Area(ha)=	0.0600				
Cw =	1.00	STORMWATER MANAGEMI	ENT Qm ≂		2.00
To	1 12	Qp	Qm	Qp-Qm	Volume
Variable	(may have)	2.78 x Area x c x i	(l/s)	(Us)	(m3)
(min)	(mm/haur)	(I/s)			
66	52,0	0.7	2.00	6.7	26.46
68	50.9	8.5	2.00	6.5	26.47
70	49.8	8.3	2.00	6.3	26.48
72	48.7	8.1	2.00	6.1	26.48
74	47.7	8.0	2.00	6.0	26.48
76	46.8	7.8	2,00	5.8	26.46
78	45.9	7.7	2.00	5.7	26.45
80	45.0	7.5	2.00	5,5	26.42
82	44.2	7.4	2.00	5.4	26.39
84	43.3	7.2	2.00	5.2	26.36
86	42.6	7:1	2.00	5.1	26.32
88	41.8	7.0	2.00	5.0	26.28

Required volume for roof storage

Req. Storage volume

26.48 m3

Average depth

0.044 m

PARKING LOT	Area # 120						
110	00 sm						
100 -YR FLOW				Flow restri-	cted to	1	5 l/s
Qp (l/s)							
Area(ha)=	0.1100						
Cw=	1,00	STORMWATER MANAG	EMENT Qm =		7.50	/s	_
Tc Variable	ĩ	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
31	89,8	27.5	7.50	20.0	37.14		
32	87.9	26.9	7,50	19.4	37.20		
33	66,0	26.3	7.50	18.8	37.24		
34	84.3	25,8	7.50	18.3	37.27		
35	82.6	25.3	7.50	17,8	37.28	<===	Required volume
36	81.0	24.8	7,50	17.3	37.28		for storage on-site
37	79.4	24.3	7.50	16.8	37.26		
38	77.9	23.8	7.50	16.3	37.24		
39	76.5	23.4	7.50	15.9	37.20		

40

41

0.6m X 0.6m CB	L (Structure)		
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB120	1,45		0.52
			0.00
	Total		0.52

75.1 73.8 23.0 22.6

IN-LINE STORAGE (Pipe)

15.5

15.1

7.50

7,50

Pipe storage	e			
Structure to		Dia	Storage	
	(m)	(m)	(m3)	
		0.25	0.00	
		0.30	0.00	
		Total:	0.00	

37.15 37.09

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0,00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING I Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
120	407,88	0.25	33,99
		0.00	0.00
			0.00
		Total:	33.99

Total Storage required 37.28
Total Storage provided 34.51
Overflow to area 231 2.77

ICD use Tempest LMF 15l/s @ 1.47m head, or approved equal

6	00 sm						
00 -YR FLOW				Flow restric	cted to	30	0 Vs
Qp (l/s)							
Area(ha)=	0.0600						
Cw =	1.00	STORMWATER MANAGEMI	ENT Qm =		15.00	l/s	_
Tc Variable	1	Qp 2.78 x Area x c x í	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(Vs)	(l/s)	(m3)		
6	226.0	37,7	15.00	22,7	8.17		
7	211.7	35.3	15.00	20,3	8,53		
e	199.2	33.2	15.00	18.2	8.75		
9	168.3	31.4	15.00	16.4	8.86		
10	178,6	29.8	15.00	14.8	8.87	<===	Required volume
11	169.9	28.3	15.00	13.3	8,60		for storage on-sit
12	162.1	27.0	15,00	12.0	8.67		
13	155.1	25.9	15.00	10.9	8.48		
14	148.7	24,8	15.00	9.8	8.24		
15	142.9	23.8	15,00	8.8	7,95		
16	137.5	22,9	15.00	7.9	7.63		

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB100A	1.45	0.52
CICB100B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

			Transit .	
Pi	pe storage	9		
SI	ructure to	Length	Dia	Storage
		(m)	(m)	(m3)
CICB100A	-CICB100B	10.00	0.25	0.49
			Total:	0.49

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING I Maximum avaitable

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
100	78.00	0.10	2,60
		Total:	2.60

Total Storage required 8.87
Total Storage provided 4.17
Overflow to area 231 4.70

ICD use Tempest LMF 30l/s @ 1.51m head, or approved equal

PARKING LOT	Area # 110						
12	00 sm						
100 -YR FLOW				Flow restrict	cted to	4	0 Vs
Qp (l/s)							
Area(ha)=	0,1200						
Cw =	1,00	STORMWATER MANAGE	EMENT Qm =		20,00	l/s	
Tc Variable	ī	Qp 2,76 x Area x c x l	Qm	Qp-Qm	Volume		= ,
(min)	(mm/hour)	(Vs)	(l/s)	(l/s)	(m3)		
11	169.9	56.7	20.00	36.7	24.21		
13	155,1	51,7	20.00	31,7	24.76		
14	148.7	49.6	20.00	29.6	24.60		
15	142.9	47.7	20.00	27,7	24.90	<===	Required volume
16	137.5	45.9	20.00	25.9	24.85		for storage on-site
17	132.6	44.2	20,00	24,2	24.73		
18	128:1	42.7	20.00	22.7	24.55		
19	123.9	41.3	20.00	21,3	24,31		
20	120.0	40.0	20.00	20.0	24.02		
21	116,3	38.8	20.00	18.8	23,68		
23	109.7	36.6	20,00	16,6	22.89		

.45ecb=	Height	Storage
	(m)	(m3)
CB110B	1.21	0.44
CB110A	1.46	0.53
6 x ECB/TCB	1.00	0,96
		0,00
	Total:	1.92

IN-LINE STORAGE (Pipe)

Pipe storage	9	10.01		
Structure to	Length Dia		Storage	
	(m)	(m)	(m3)	
CBMH110A-MH110	14.50	0.60	4.10	
CB110A - CBMH110	23.00	0.30	1,63	
ECB-CB110A	95.00	0.30	6.72	
CB110B - CBMH110	20.00	0.30	1,41	
		Total:	13.85	

IN-LINE STORAGE (Structure)

1.2mDia MH's=1.13m3/m		
1.5mDia MH's=1.77m3/m	Height	Slorage
	(m)	(m3)
CBMH110A	1.56	2,76
MH110	1.87	2,11
	Total:	4.87

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING I Maximum ava

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
		4	-
		-	4
	-	Total:	0.00

Total Storage required 24.90
Total Storage provided 20.65
Overflow to area 221 4.25

ICD use Tempest HF 40l/s @ 1.7m head, or approved equal

PARKING LOT Area # 123 600 sm 100 -YR FLOW Flow restricted to 15 l/s Qp (l/s) 0.0600 Area(ha)= 7.50 Vs STORMWATER MANAGEMENT Qm = 1,00 Cw = Тс Qр Qp-Qm Volume 2.78 x Area x c x i Variable (l/s) (m3)(Vs) (min) (mm/hour) (Vs) 7.50 17 132.6 14.6 14.91 21,4 7.50 13.9 14.97 128.1 18 7.50 13,2 15.00 20.7 123.9 19 7.50 12.5 Required volume <=== 15.01 20 120.0 20.0 21 116.3 19.4 7.50 11.9 14.99 for storage on-site 7.50 7.50 11.3 14.95 22 23 18.8 112.9 14.90 10.8 109.7 18.3 24 106.7 17.8 7.50 10.3 14.82 7.50 17.3 9.8 14.73 25 103.8 7,50 9.4 14.63 101.2 16.9 26 7,50 8.6 14,38 16.1 28 96.3

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB	(00,000,000,00)		
0.36 m3/m	Reight	Storage	
participants	(m)	(m3)	
CB123	1.45		0.52
	Total:	+	0.52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to I		Dia	Storage
	(m)	(m)	(m3)
			0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING I Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
123	36.40	0.10	1.21
		Total:	1.21

Total Storage required 15.01 Total Storage provided 1.74 Overflow to area 231 13.27

ICD use Tempest LMF 15l/s @ 1.22m head, or approved equal

PARKING LOT	Area #122						
6	00 sm						
100 -YR FLOW				Flow restric	cted to	1	0 l/s
Qp (l/s)							
Area(ha)=	0.0600						
Cw=	1.00	STORMWATER MAN	AGEMENT Qm =		5,00	l/s	
Tc Variable	i	Qр 2.78 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
25	103,8	17.3	5.00	12.3	18.46		
26	101,2	16.9	5.00	11.9	18.53		
27	98.7	16.5	5,00	11.5	18.56		
28	96.3	16.1	5.00	11.1	18.58		
29	94.0	15.7	5.00	10.7	18.59	<===	Required volume
30	91,9	15.3	5.00	10.3	18.58		for storage on-site
31	89.8	15.0	5.00	10.0	18.57		
32	87.9	14.7	5.00	9.7	18,55		
33	86.0	14.4	5,00	9.4	18,51		
34	84.3	14.1	5.00	9.1	18.47		
35	82.6	13.8	5.00	8,8	18.43		

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB122	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage	- (ripe)	
Structure to Length	Día	Storage
(m)	(m)	(m3)
		0.00
		0.00
	Total:	0.00

PARKING I Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
		Total:	0.00

OFF-LINE STORAGE (Cell)

Cell storage	90		
	Length	width	Storage
	(m)	(m)	(m3)
7rlton M-6	5.00	10.00	19,00
		Total:	19.00

T. 4. 1.04	40.00
Total Storage required	18.59
Total Storage provided	19.52
Overflow to area 201	0.00

ICD use Tempest LMF 101/s @ 1.26m head, or approved equal

Outlet # 2 (MH301) SUMMARY

Odder # 2 (million t) Colmini itt		
Total Flow from Roofs=	8.00	l/s
Total Roof Area =	0.310	На
Average roof flow =	25.81	I/s/Ha
Volume Stored on Roofs	149.34	cm
Total Roof Storage rate	481.73	cm/Ha
Total flow from parking lot =	110.00	1/s
Total parking Lot area ■	0.410	На
Average parking lot flow =	268.29	l/s/Ha
Volume Stored on Parking lot	80.59	cm
Total Parking lot Storage rate	196.56	cm/Ha
Total uncontrolled flow from site	7.94	l/s
Total uncontrolled area	0.080	На
Total flow	125.94	l/s
Total area	0.80	Ha
Average flow	157.43	l/s/Ha
Volume Stored	229.93	cm
Total Storage rate	287.41	cm/Ha

Outlet # 1 & 2 SUMMARY		
Total Flow from Roofs=	26.00	l/s
Total Roof Area =	1.06	Ha
Average roof flow =	24.53	lis/Ha
Volume Stored on Roofs	516.49	CITO
Total Roof Storage rate	487.25	cm/Ha
Total flow from parking lot ≂	1116.00	l/s
Total parking Lot area =	3,83	Ha
Average parking lot flow =	291.38	l/s/Ha
Volume Stored on Parking lot	895.67	cm
Total Parking lot Storage rate	233.86	cm/Ha
Total uncontrolled flow from site	46.66	l/s
Total uncontrolled area	0.190	Ha
Total flow	1188.66	l/s
Total area	5.080	Ha
Average flow	233.99	l/s/Ha
Volume Stored	1412.16	ст
Total Storage rate	277.98	cm/Ha

333 Preston St OTTAWA, ONTARIO K1S 5N4

ONSITE SWM 100yr design PROJECT: Arcadia commercial
CITY OF OTTAWA

DEVELOPER Minto

PAGE: 1 OF 1 JOB#: 35355 DATE: Oct 1, 2014 DESIGN: DY Rev#3

Outlet EX MH 303 5yr design

Time of concentration = 10 minutes

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 l/s/Ha

Area (ha) =	4.280	1				
C Average =	0.90					
		=)				
Intensity - 5 year	r event storm					
10 min Tc		71/(T+6.053)^0.814=	1	104.2	mm/hr	
Unrestricted Flo	wests (OE)					
10 min Tc		= 2.78*A*Cw*i =	_	1115.76	l/s	
Restricted Flow	- Love	and it are i		**********		
10 min Tc	Q= 85 Vs/H	a		363.60	Vs	
Intensity - 100 y	ear event storm					
10 min Tc	i100yr = 173	35.688/(T+6.014)^0.82	= 1	178.6	mm/hr	
community of the first	O CONTRACTOR OF THE CONTRACTOR					
Unrestricted Flo						
10 min Tc		= 2.78*A*Cw*i =		1912.11	Vs	
Restricted Flow	rate (Qrest 100yr)					
10 min Tc	Q= 240 l/s/l	ła		1027.20	I/s	
Uncontrolled ru	noff (Q5)		-0-			
Location		Area	- 0	2	AxC	
Area 216 A		0.0)3	0.2		0.006
Area 216B		0.)4	0.9		0.036
Depressed Loading BLK900-230G		0.	02	0.9		0.018
Depressed Loading BLK900-240C		0,)2	0.9		0.018
Depressed Load						

Allowable Release Q_{rest 100yr} - Q_{unc} = Q_{allow}

Que 2.78 Aci

10 min To

1004.61 Vs

22.59 l/s

STORM WATER MANAGEMENT - Post-Development Controlled

6.0 5.8 5.7

5.5 5.3 5.2

(5 year post-development with 100yr inlets)

ROOF BLOCK	100						
6	00 sm						
100 -YR FLOW			Ī				
Op (l/s)							
Area(ha)=	0.0600						
Cw=	0.90	STORMWATER MA	NAGEMENT Qm =			2.00	Vs.
Tc Variable	(ii)	Op 2.78 x Area x c x i		Qm	Qp-Qm	Volume	
(mln)	(mm/hour)	(/s)		(I/s)	(Vs)	(m3)	
34	49.5	7.4		2.00	5.4	11.08	
36	47.6	7.1		2.00	5.1	11.11	
38	45.8	6.9		2.00	4.9	11.12	
40	44.2	6,6		2,00	4.6	11.12	<===
42	42.7	6.4		2.00	4.4	11.11	
44	41.3	6.2		2.00	4.2	11.08	
							1

2.00 2.00 2.00

2.00 2.00 2.00

4.0 3.8

3.7 3.5 3.3 3.2

11.05

10.96

10.90 10.76 Required volume for roof storage

> Required volume for roof storage

56 Req. Storage volume Average depth

46

48

50

52 54

11.12 m3

0.019 m

ROOF BLOCK	200
4	00 sm
100 -YR FLOW	
Qp (l/s)	
4 4 4	0.0400

40.0 38.8 37.7

36.6 35.6

34.7

Area(ha)=	0.0400				4.00
Cw =	0.90	STORMWATER MANAGEMENT (1.00
Tc		Qp	Qm	Qp-Qm	Volume
Variable	1	2:78 x Area x c x i			
(min)	(mm/hour)	(l/s)	(l/s)	(1/5)	(m3)
47	39.4	3.9	1.00	2,9	8.29
49	38.2	3.8	1.00	2.8	9.30
51	37.1	3.7	1.00	2.7	8.31
53	36.1	3.6	1.00	2,6	8.31
55	35.1	3,5	1.00	2,5	8,30
57	34.2	3.4	1.00	2,4	8.29
59	33.4	3.3	1.00	2.3	8.28
61	32.5	3.3	1.00	2.3	8.26
63	31.8	3.2	1.00	2.2	8.24
65	31.0	3.1	1.00	2.1	8.22
67	30.4	3.0	1.00	2.0	8.19
69	29.7	3.0	1,00	2.0	8.16

Req. Storage volume

6.31 m3

Average depth 0,021 \mathbf{m}

OOF BLOCK	300						
4	00 sm						
0 -YR FLOW							
Op (l/s)							meda ()
Area(ha)=	0.0400						
Cw =	0.90	STORMWATER MANAGEMENT C	im =		1.00	l/s	
To Variable		Qp 2,78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(Vs)	(Vs)	(m3)		
47	39.4	3.9	1.00	2.9	8.29		
49	38.2	3.8	1.00	2.8	8.30		
- 51	37.1	3.7	1.00	2.7	8.31		
53	36.1	3.6	1.00	2.6	8.31	<===	Required volum
55	35.1	3.5	1.00	2.5	8.30		for roof storage
57	34.2	3.4	1.00	2.4	8.29		
59	33.4	3.3	1.00	2.3	8.28		
61	32.5	3.3	1.00	2.3	8.26		
63	31.8	3.2	1.00	2.2	8.24		
65	31.0	3.1	1.00	2.1	8.22		
67	30.4	3.0	1.00	2.0	8.19		
69	29.7	3.0	1.00	2.0	8.16		

Req. Storage volume Average depth

8.31 m3

0.021 m

15	00 sm						
00-YR FLOW							
Qp (l/s)							-31
Area(ha)=	0,1500	9 9 9 9					
Cw=	0.90	STORMWATER MANAGEMENT O)m =		4.00	/s	
To Variable	i	Qp 2,78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(Vs)	(I/s)	(m3)		
43	42.0	15,8	4.00	11.8	30.32		
45	40.6	15.2	4.00	11.2	30.37		
47	39.4	14.8	4.00	10,8	30.39		
49	38.2	14,3	4.00	10.3	30.40	<===	Required volum
51	37.1	13.9	4.00	9.9	30.38		for roof storage
53	35.1	13,5	4.00	9.5	30.35		
55	35.1	13.2	4.00	9.2	30.30		
57	34.2	12,8	4.0D	8.8	30.23		
59	33.4	12.5	4.00	8,5	30.15		
61	32.5	12.2	4.00	8.2	30.06		
63	31.8	11.9	4,00	7.9	29.96		
65	31.0	11.7	4.00	7.7	29,84		

Req. Storage volume Average depth

30.40 m3 0.020 m

ROOF BLOCK 900				
	4600 sm			
100 -YR FLOV	V			
Qp (l/s)			

Area(ha)		***			10.00 1
Cw =	0.90	STORMWATER MANAGEMENT	STORMWATER MANAGEMENT Qm =		
To Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)
54	35.6	41.0	10.00	31.0	100.35
56	34.7	39.9	10.00	29.9	100.44
58	33,8	36.9	10.00	28.9	100.49
60	32.9	37.9	10.00	27.9	100,49
62	32.2	37.0	10.00	27.0	100.46
54	31.4	36,1	10.00	26.1	100.39
66	30.7	35.3	10.00	25.3	100.29
68	30.0	34.5	10.00	24.5	100.15
70	29.4	33.0	10.00	23.8	99.98
72	28,8	33.1	10.00	23.1	99.78
74	28.2	32.4	10.00	22.4	99.56
76	27.6	31.8	10.00	21.8	99.31

<=== Required volume for roof slorage

Req. Storage volume Average depth

100.49 m3 0.022 m

Flow restricted to

85 l/s

Area(ha)=	0.2900				
Cw =	0.90	STORMWATER MANAGEMENT Qm =			42,50
Tc Variable	10.0	Qρ 2,78 x Area x c x i	Qm	Qp-Qm	Volume
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)
5	141.2	102,4	42.50	59.9	17.98
6	131.6	95.5	42.50	53.0	19,07
7	123.3	89.5	42.50	47.0	19,73
8	116,1	84.2	42.50	41.7	20.04
9	109.8	79.7	42,50	37.2	20.07
10	104.2	75,6	42,50	33.1	19.86
11	99.2	72.0	42.50	29.5	19.45
12	94.7	68.7	42.50	26.2	18,87
13	90.6	65.8	42,50	23.3	18,14
14	86.9	63.1	42.50	20.6	17,28
15	83.6	60.6	42.50	18.1	16,31

<=== Required volume for storage on-site

INLT 1	INF ST	CORAC	SE IS	tructure	aV.

0.6m X 0.6m CB		
0.36 m3/m	Helght	Storage
	(m)	(m3)
CB221A	1,00	0.36
CB221B	1.30	0.47
CB221C	1.50	0.54
		0.00
	Total:	1,37

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Dia	Storage		
	(m)	(m)	(m3)	
CB221A - CBMH221	17.05	0.45	2.71	
CB221B - CB221C	12,00	0.45	1,91	
CB221C-CBMH221	18.50	0.45	2.94	
CBMH221 - MH221	33.38	0.60	9.44	
		Total:	17.00	

(N-LINE STORAGE (Structure)

CBMH's		
1.2m dia=1.13 m3/m	Height	Storage
1.8m dla=2.54m3/m	(m)	(m3)
CBMH221(1.2m)	2.20	2.49
MH221 (1.8m)	2.20	5.59
	Total:	2 49

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
221C	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Structure)

OFF-LINE STORAGE	(Structura)	
MH's		
1.8m dia=2.54m3/m	Height	Storage
-350774042-0005-1000-1000-	(m)	(m3)
MH500	2.20	5.59
	Total	5.59

CBMH height for storage equals top of grale to invert less 0.84m to account for flat top and iron frame/grate

OFF-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
MH500 - MH221	12.00	1.05	10,39	
16X6 Triton M-6 storage cell			33.00	
		Total:	43.39	

Overflow from area 110	4,25
Total Storage required	24.32
Total Storage provided	69,83
Overflow to Area 230A	0.00

ICD use Tempest HF 65l/s @ 2.35m head, or approved equal

PARKING LOT Area # 231 6800 sm 100 -YR FLOW Qp (l/s) Area(ha)= 0.6800 Cw = 0.90 STORMWATER MAN Tc Qp

Flow restricted to

150 l/s

			0.6800	Area(ha)=
75.0		STORMWATER MANAGEMENT OF	0.90	Cw=
2p-Qm Volum	Qm Qp-0	Qp 2.78 x Area x c x i)	To Variable
(l/s) (m3)	(Us) (Us	(l/s)	(mm/hour)	(min)
134.8 56.61	75.00 134	209.8	123.3	7
111.8 60.37	75,00 111	186.0	109.8	9
102.3 61.36	75.00 102	177.3	104.2	10
93.9 61.88	75.00 93.	169.8	99.2	11
86,1 62.00	75,00 86,	161.1	94.7	12
79.2 61.77	75,00 79.	154.2	90.6	13
72.9 61.24	75.00 72.	147.9	86.9	14
67.2 60.44	75,00 67.	142.2	83.6	15
61.9 59.42	75.00 61.	136.9	80.5	16
57.0 58.18	75.00 57.	132.0	77.6	17
48.4 55,17	75.00 48.	123.4	72.5	19

Required volume for storage on-site

IN.II	NF :	STOR	MAGE	(Structure	1

0.6m X 0.6m CB	OE (Structure)	
0.36 m3/m	Helghi	Storage
	(m)	(m3)
	Total:	0.00

INJ INF STORAGE (Pline

Pipe storage Structure to Structure	Dia	Storage	
	(m)	(m)	(m3)
CB233-CBMH233	15.60	0.60	4.41
CBMH293-CBMH292	34.20	0.60	9.67
CB232-CBMH323	15.60	0,60	4.41
CBMH232 - CBMH231	34.20	0.60	9.67
CB231-CBMH231	15.60	0.60	4.41
		Total:	32.57

IN-LINE STORAGE (Structure)

1.5m dia=1.77m3/m	Height	Storage
	(m)	(m3)
CBMH233 (1.5m)	1.42	2.5134
CBMH232 (1.5m)	1.49	2.6373
CBMH231 (1.5m)	1.53	2.7081
10	Total:	7,86

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
231	0.00	0.00	0.00
232	0.00	0.00	0.00
233	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Structure)

MH's	TWO	
1.8m dia=2.55m3/m	Height	Storage
	(m)	(m3)
CBMH231A	1.81	4.62
CBMH232A	1.70	4.34
CBMH233A	1.64	4.18
	Total:	13.13

OFF-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
MH501 - MH230	68.40	0.60	19.34
10X18 Triton M-6 storage cell			67.00
	110	Total:	86.34

CBMH height for storage equals top of grate to invert less 0,54m to account for flat top and iron frame/grate

Overflow from area 100, 123 20,74
Total Storage required 62,74
Total Storage provided 139,90
Overflow to area 230A 0.00

ICD use Tempest HF 150l/s @ 2.25m head, or approved equal

PARKING LOT Area # 230B 1900 sm Flow restricted to 70 l/s 100 - YR FLOW Op (Vs) 0.1900 Area(ha)= 35,00 l/s STORMWATER MANAGEMENT Qm = Cw = Valume Qp 2.78 x Area x c x l Qm Qp-Qm Tc Variable (l/s) (m3) 6,22 (mm/hour) (l/s) (l/s) (min) 35,00 35,00 35,00 182.7 51.8 37.5 9,00 72.5 67.1 62.6 152.5 32.1 27.5 9,63 141,2 35,00 9,92 <=== Required volume 131.6 6 23,6 9,92 for storage on-site 35.00 123.3 58.6 20.2 17.2 35,00 9.69 55.2 8 116.1 52,2 35.00 9,28 9 109.8 14.5 12.2 10.0 104.2 49.5 8.72 10 8.02 7.21 5.31 99.2 47.2 35,00 35.00 35.00 94.7 45.0 12 6.3 41.3

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230A	1.45	0,52
CB230B	1,55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe slorage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB230A - CB230B	10.00	0.25	0.49
		Total:	0.49

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0,00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and Iron frame/grate

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
223C	207,80	0.13	9.00
		Tolal:	9.00

Overflow from area 221 & 231 0.00 **Total Storage required** 9.92 Total Storage provided 10,58 Overflow to area 230D 0,00

(CD use Tempest HF 701/s @ 1.71m head, or approved equal

3	00 sm						
00 -YR FLOW	AM CHIEF			Flow restri	icled to	11	D l/s
Op (I/s)							
Area(ha)=	0.0300	7					
Cw =	0.90	STORMWATER MANAGEMENT	Jm =		5.00	l/s	J
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(I/s)	(l/s)	(m3)		
3	166.1	12.5	5.00	7.5	1,34		
5	141.2	10.6	5.00	5.6	1.68		
6	131.6	9.9	5.00	4.9	1.76		
7	123.3	9.3	5,00	4.3	1.79	<===	Required volume
8	116.1	8.7	5.00	3.7	1,78		for storage on-sit
9	109.8	8.2	5.00	3.2	1.75		
10	104.2	7.8	5.00	2.8	1.69		
11	99.2	7.4	5.00	2.4	1,61		
12	94.7	7.1	5.00	2.1	1.52		
13	90.6	6.8	5.00	1.8	1.41		
15	83.6	6.3	5.00	1.3	1.14		

0.6m X 0.6m CB		71
0.36 m3/m	Height	Storage
1250-10059775	(m)	(m3)
CB230C	1.45	0.5
		0.0
-	Total:	0.5

IN-LINE STORAGE (Structure)

Helght	Storage
(m)	(m3)
	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 10l/s @ 1.4m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
		0.20	0.00	
		Total:	0.00	

PARKING LOT STORAGE Byr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)

Cell storage			
	Storage		
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00

Fotal Storage required	1.79
Total Storage provided	5.52
Overflow to area 230D	0.00

PARKING LOT Area 230D 1300 sm 100 -YR FLOW 67 l/s Flow restricted to Op (Vs) Area(ha)= 0.1300 STORMWATER MANAGEMENT Qm = 33.50 l/s 0.90 Qp Qp-Qm Volume Variable 2.78 x Area x c x i (Vs) 33,50 (min) (mm/hour) (Vs) (m3) 41.5 230.5 0.00 66.2 59.4 33.50 33.50 32.7 25.9 203.5 1.96 3,11 3,69 182.7 166.1 54.0 33,50 20,5 33,50 16.1 3.07 Required volume 49.6 152.5 4 12.4 9.3 3.73 3.35 45.9 33.50 for slorage on-site 141.2 131.6 42.8 33,50 2.77 123.3 40.1 33.50 6.6 2.05 1.19 6 116.1 37,8 33,50 4.3 35.7 32.3 2.2 -1.2 109.8 33,50 33.50 -0.82 11 99.2

IN-LINE STORAGE (Structure)

0,6m X 0,6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230D	1.45	0.52
C8230E	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Structure)

1.2mDia CBMH's	0	
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB230D-CB230E	10.00	0.25	0.49
		0.30	0.00
		Total:	0.49

PARKING LOT STORAGE 5vr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
230D	103.00	0.07	2.40
			0.00
			0.00
			0.00
			0.00
	'	Total:	2.40

Overflow from 230A, 230C 0,00
Total Storage required 3.87
Total Storage provided 3.97
Overflow to area 230G 0.00

ICD use Tempest HF 67l/s @ 1.68m head, or approved equal

PARKING LOT Area 230F 700 sm 100 -YR FLOW Flow restricted to 38 l/s Qp (l/s) 0,0700 0,90 Area(ha)= STORMWATER MANAGEMENT Qm = 19.00 l/s Qm Qp-Qm Volume Τç Qρ Variable 2.78 x Area x c x i (l/s) 19.00 (m3) 1.00 (mm/hour) 203.5 182.7 (Vs) (mln) (Vs) 35.6 16.6 19.00 13.0 1.56 32.0 29.1 26.7 166.1 19.00 10.1 1.82 <=== Required volume 152.5 19,00 7.7 1.85 4 5,7 for storage on-site 141.2 24.7 19.00 1,72 1.46 4.0 131.6 23.0 19.00 21.6 20.3 19.2 123.3 19.00 2.6 1.09 1.3 0.2 -0.8 116.1 19.00 0.64 0.12 19.00 9 109.8 19.00 -0.45 10 104.2 18.2 16.6 19.00 -2.4 -1.74 12 94.7

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB			
0.36 m3/m	Helght	Storage	
200000000000000000000000000000000000000	(m)	(m3)	
CB203F	1.45		0.52
			0.00
	Total:		0,52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 38l/s @ 1.53m head, or approved equal

IN-LINE STORAGE (Pine)

Pipe storage				
Structure to Structure Ler		Dia	Storage	
	(m)	(m)	(m3)	
		0.20	0,00	
	1	Total;	0.00	

PARKING LOT STORAGE Syr

AREA#	AREA	Depth	Storage	
	(SM)	(m)	(m3)	
18A	0.00	0.00	0.00	
		0.00	0.00	
		Total:	0.00	

OFF-LINE STORAGE (Cell)

Cell storage		Storage		
Length width				
(m)		(m)	(m3)	
Triton M-6 storage cell			5.00	
		Total:	5.00	

Overflow from Area 223	0.00
Total Storage required	1.85
Total Storage provided	5.52
Overflow to Area 230G	0.00

PARKING LOT	Area 230G						
17	00 sm						
100 -YR FLOW				Flow restr	icled to	53	3 Vs
Qp (I/s)							no.
Area(ha)≖	0.1700						
Cw =	0,90	STORMWATER MANAGEMENT	Qm =		26.50	l/s	
Tc Variable	ji .	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
5	141.2	60.0	26.50	33.5	10,06		
6.	131.6	56.0	26.50	29.5	10,61		
7	123.3	52.4	26.50	25.9	10,90		
8	116.1	49.4	26.50	22.9	10.99	<ase< td=""><td>Required volume</td></ase<>	Required volume
9	109.8	46.7	26,50	20.2	10,91		for storage on-site
10	104.2	44.3	26.50	17.8	10.69		
11	99.2	42.2	26.50	15.7	10.36		
12	94.7	40.3	26.50	13.8	9.92		
13	90.6	38.5	26,50	12.0	9.40		
14	86.9	37.0	26.50	10.5	8.60		
16	80.5	34.2	26.50	7,7	7.41		

0.6m X 0.6m CB		vier.
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230G	1,45	0.52
CB230H	1.55	0,56
	Total:	1.08

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 53Vs @ 1.71m head, or approved equal

IN-LINE	STORAGE	(Pipe)

IN-LINE STURAGE (Pipe)				
Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB230G-CB230H	10.00	0.25	0.49	
		Total:	0.49	

PARKING LOT STORAGE 5yr

AREA#	ARFA	Depth	Storage	
	(SM)	(m)	(m3)	
230G	0.00	0.00	0.00	
		Total:	0.00	

OFF-LINE STORAGE (Cell)

Cell storage Length width			Storage	
	(m)	(m)	(m3)	
Trilon M-6 storage cell	12.00	5.00	26.00	
	7.00	Total:	26.00	

overflow from 230D, 230F	0.00
Total Storage required	10.99
Total Storage provided	27.57
1/2 Overflow to Area 206D	0.00
1/2 Overflow to Area 205	0.00

PARKING LOT	Area 230l						
3	00 sm						
100 -YR FLOW				Flow restri	icled to	11	1 Vs
Qp (l/s)							-
Area(ha)=	0.0300						Ī
Cw =	0.90	STORMWATER MANAGEMEN	T Qm ≖		5.50	l/s	
Tc Variable	III.	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(l/s)	(l/s)	(m3)		
3	166.1	12.5	5.50	7.0	1.25		
5	141.2	10.6	5.50	5.1	1.53		
6	131.6	9.9	5:50	4.4	1.58		
7	123.3	9.3	5.50	3.8	1.58	<===	Required volume
в	116.1	8.7	5.50	3.2	1.54		for storage on-sit
9	109.6	8.2	5,50	2.7	1.48	1	
10	104.2	7.8	5.50	2.3	1.39		
11	99.2	7.4	5.50	1.9	1.28	R	
12	94.7	7.1	5:50	1.6	1.16		
13	90.6	6.8	5.50	1.3	1.02		
15	83.6	6,3	5.50	0.8	0.69		

0.6m X 0.6m CB			
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB230	1.45	0.5	52
		0.0	00
	Total:	0.1	62

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0,64m to account for flat top and iron frame/grate

ICD use Tempest LMF 111/s @ 1.44m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure Length		Dia	Storage	
	(m)	(m)	(m3)	
		0.20	0.00	
		Total:	0.00	

PARKING LOT STORAGE 5vr

AREA#	AREA	Depth	Storage	
		(m)	(m3)	
2301	0.00	0,00	0.00	
		Total;	0.00	

OFF-LINE STORAGE (Cell)

Cell storage		-		
Length width			Storage	
	(m)	l(m)	(m3)	
Trilon M-6 storage cell	6.00	3.00	5.00	
		Total:	5,00	

Total Storage required 1.58
Total Storage provided 5.52
Overflow to Area 230G 0.00

PARKING LOT Area # 222 1200 sm 15 l/s Flow restricted to 100 -YR FLOW Op (l/s) 0.1200 0.90 Area(ha)= STORMWATER MANAGEMENT Om = 7.50 l/s Cw= Qp 2.78 x Area x c x l Qm Qp-Qm Volume Τ¢ Variable (l/s) 15.8 (l/s) 23.3 (l/s) 7.50 (mm/hour) (m3)(min) 16.12 17 19 21.8 21.1 20.5 7.50 7.50 7.50 14.3 13.6 16,27 16,31 72.5 20 21 70.3 13.0 16.32 <=== Required volume 68.1 7.50 16.31 12.4 for storage on-site 22 23 66.1 19.9 7.50 7.50 11,8 16.29 64.3 19.3 62.5 60.9 18.8 11,3 16,24 24 18.3 17.0 7.50 10,8 16.18 25 26 7,50 59.3 10,3 16.10 7.50 7.50 9,9 16,00 9.1 15.78 55.2 16.6

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB222	1.45	0.52
		0.00
	Total:	0.52

Length	Dla	Storage
(m)	(m)	(m3)
14.80	0.25	0.73
	Total:	0.73
	(m)	(m) (m) 14.80 0.25

IN-LINE STORAGE	(Structure)	
1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
CBMH222	1.50	1,70
	Total:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 15Vs @ 2.44m head, or approved equal

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
222	248.90	0.16	13.27
222 222A	32.50	0.07	0.76
		Total:	14.03

Total Storage required	16.32
Total Storage provided	16.98
Overflow to area 223	0.00

PARKING LOT	Area # 223						
27	00 sm						
100 -YR FLOW				Flow restr	icled to	3.	2 Vs
Qp (l/s)							-
Area(ha)=	0.2700						
Cw =	0,90	STORMWATER MANAGEMENT	Qm =		16.00	l/s	
Tc Variable	i i	Ор 2.78 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
18	75.0	50.6	16.00	34,6	37.42		
19	72.5	49.0	16.00	33.0	37.61		
20	70.3	47.5	16.00	31.5	37.75		
21	66.1	46.0	16.00	30.0	37.83		
22	66.1	44.7	16.00	28.7	37.86	<===	Required volume
23	64.3	43.4	16.00	27.4	37.85		for storage on-site
24	62.5	42,2	16.00	26.2	37.80		
25	60.9	41.1	16.00	25.1	37.71		
26	59.3	40.1	16.00	24.1	37.58		
27	57.9	39.1	16.00	23.1	37.42		
29	55.2	37.3	16.00	21.3	37.02		

0.6m X 0.6m CB	1500000		
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB223	1.45	38825 V	0.52
			0.00
	Total:		0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
CBMH223	1.50	1,70
	Total:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Dia	Storage	
**	(m)	(m)	(m3)
CB223 - CBMH223	34.20	0.45	5.44
		0.30	0.00
		Total:	5.44

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Slorage
	(SM)	(m)	(m3)
223	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	11.00	12.00	50.00
		Total:	50.00
Overflow from area 212, 222	0.00		TR.

Overflow from area 212, 222 0.00

Total Storage required 37.86

Total Storage provided 57.66

Overflow to area 230F 0.00

ICD use Tempest HF 32l/s @ 2.67mhead, or approved equal

6	00 sm						
0-YR FLOW				Flow restri	cted to	2-	4 l/s
Op (Vs)							=16
Area(ha)=	0.0600						
Cw =	0.90	STORMWATER MANAGEMENT	Qm =		12,00	l/s	
Tç		Ор	Qm	Qp-Qm	Volume		
Variable	10	2.78 x Area x c x i					
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
2	182.7	27.4	12.00	15,4	1,85		
4	152,5	22.9	12.00	10.9	2,61		
5	141.2	21.2	12,00	9.2	2,76		
6	131.6	19.8	12.00	7.8	2.79	<===	Required volume
7	123.3	18.5	12.00	6,5	2.73		for storage on-sit
9	116.1	17.4	12.00	5.4	2,61		_
9	109.8	16.5	12.00	4.5	2.42		
10	104.2	15.6	12.00	3.6	2.16		
11	99.2	14.9	12,00	2.9	1.91		
12	94.7	14.2	12.00	2.2	1.60		
14	86.9	13.1	12.00	1.1	0.88		

IN-LINE STORAGE	(Structure)	
0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB212B	1,45	0,52
CICB212B	1,55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)			
Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB212A-CICB212B	10.28	0.25	0.50
		Total:	0.50

IN-LINE STORAG	GE (Structure)	
1.2mDia CBMH's		
1,13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	92.12	0.07	2.15
		Total:	2,15

Total Storage required 2.79
Total Storage provided 3.73
Overflow to area 223 0.00

ICD use Tempest LMF 24l/s @ 1.63m head, or approved equal

PARKING LOT Area # 215 400 sm Flow restricted to 10 l/s 100 -YR FLOW Qp (l/s) 0.0400 Area(ha)= STORMWATER MANAGEMENT Om = 5.00 l/s Cw= 0.90 Qp-Qm Volume Qp 2,78 x Area x c x l To Variable (l/s) 13,2 (min) (mm/hour) (l/s) 5,00 (1/s) (m3) 2.94 3.18 3.23 131.6 8.2 6.6 5.00 116.1 11.6 6.0 5.00 5.00 109.8 11.0 3.26 3.25 <=== Required volume 5.4 10 104.2 10.4 5.00 5.00 4.9 for storago on-site 11 99.2 9,9 4.5 3.22 12 94.7 9.5 4.1 5.00 5.00 3.17 90.6 13 14 9.1 B.7 3.11 86.9 8.4 5.00 3.4 3.03 83.6 15 16 2.93 80.5 8.1 5.00 3.1 2.5 5.00 18 75,0

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB			
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB213	1.45		0.52
			0.00
	Total:		0,52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
ECB-CB215	24.00	0.25	1.18
		Total:	1.18

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		Ta:
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	31,10	0.18	1.07
		Total:	1,87

Total Storage required 3.26
Total Storage provided 3.57
Overflow to 206A 0.00

ICD use Tempest LMF 10l/s @ 1.57m head, or approved equal

PARKING LOT Area # 206B 700 sm 100 -YR FLOW Op (Vs)

Flow restricted to

10 l/s

Area(ha)= Cw =	0.0700	STORMWATER MANAGEMENT ()m =		5.00	1/3
Tc Variable	i	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume	
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)	
15	83,6	14.6	5.00	9.6	B.67	
17	77.6	13,6	5,00	8.8	8.76	
16	75.0	13.1	5.00	8.1	8.78	
19	72.5	12.7	5,00	7.7	8.78	
20	70.3	12,3	5.00	7.3	8.76	
21	68.1	11,9	5,00	6.9	8.73	
22	56.1	11,6	5,00	6.6	8.69	
23	64.3	11,3	5.00	6.3	8.64	
24	62.5	11.0	5.00	6.0	8.57	
25	60.9	10.7	5.00	5.7	8.50	
27	57.9	10,1	5.00	5.1	8.32	

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB	(Structure)		
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB206B	1.45		0.52
			0.00
	Total:		0.52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0,00

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
206B	154.40	0.17	8.75
2000			0.00
		Total:	8.75

Total Storage required Total Storage provided 8.78 9.27

Overflow to area 206A

0.00

ICD use Tempest LMF 101/s @ 1.57m head, or approved equal

PARKING LOT	Area # 206	A					
38	00 sm						
00 -YR FLOW				Flow restr	icled to	0:	5 l/s
Qp (l/s)							
Area(ha)=	0.3800						
Cw=	0.90	STORMWATER MANAGEMEN	T Qm =		42.50	l/s	1
Tc Variable	1	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(Vs)	(l/s)	(m3)		
7	123.3	117.2	42.50	74.7	31,39		
9	109.8	104.4	42.50	61.9	33.42		
10	104.2	99.1	42.50	56.6	33.94		
11	99.2	94.3	42.50	51.8	34.19		
12	94.7	90.0	42.50	47.5	34.22	<===	Required volume
13	90.6	86.2	42.50	43.7	34,06		for storage on-site
14	86.9	82.7	42.50	40.2	33.73		
15	83.6	79.4	42.50	36.9	33.25		
16	80.5	76.5	42.50	34.0	32.64		
17	77.6	73.8	42.50	31.3	31.91		
19	72.5	69.0	42.50	26,5	30,15		

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
CB206	1.59	0.57
		0,00
	Total:	0.57

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Storage
11.00.1100.111	(m)	(m3)
CBMH206	1.50	1.70
	Total:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 85l/s @ 2.41m head, or approved equal

IN-LINE	STORAGE (Pipe)
44.4-3-44.4	010111101111111111111111111111111111111

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB206-CBMH206	25,60	0.45	4.07
		Total:	4.07

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage	
	(SM)	(m)	(m3)	
206A	0.00	0.00	0,00	
206	0.00	0.00	0.00	
		Total:	0.00	

OFF-LINE STORAGE (Cell)

Cell storage			
	Length width	Storage	
	(m)	(m)	(m3)
Triton M-6 storage cell	10.00	8.00	31.00
		Total:	31.00

Overflow from area 206B, 215 0.00
Total Storage required 34.22
Total Storage provided 37.34
Overflow to 210A 0.00

PARKING LOT Area # 210A 1200 sm 100 -YR FLOW Flow restricted to 77 l/s Qp (1/s) 0.1200 0.90 Area(ha)= 38.50 Vs STORMWATER MANAGEMENT Qm = Cw = Qm Qp-Qm Volume Qp 2.78 x Area x c x i Tc Variable (l/s) 30,7 (mm/hour) (l/s) (l/s) (m3) (min) 230,5 69.2 38.50 0,00 216.1 192.5 173.9 38,50 0.79 0.5 64.9 26,4 57.8 52,2 38.50 38.50 19,3 13,7 1.74 <=== Required volume 2.5 2.08 47.7 for storage on-site 38.50 9.2 1.94 3.5 159.0 5.5 2.4 -0.3 4.5 5.5 6.5 44.0 40.9 38.50 1.49 146.6 38,50 0.79 136.2 127.3 119.6 -0.11 -1.17 38.2 38,50 38.50 -2.6 7.5 35,9 -2.35 -5.03 33,9 112.9 6.5 10.5 101.6 -8.0

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB210A	1,45	0.52
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total;	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		Total:	0.00

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
88	0.00	0.00	0.00
		Total:	0,00

OFF-LINE STORAGE (Cell)

Cell storage				
2	Length width			
	(m)	(m)	(m3)	
Triton M-6 storage cell			10.00	
		Total	10.00	

Overflow from area 206A	0.00
Total Storage required	2.00
Total Storage provided	10.53
Overflow to 206D	0.00

ICD use Tempest HF 771/s @ 1.55m head, or approved equal

PARKING LOT	Area # 206	D					
4	00 sm						
100 -YR FLOW				Flow restr	icted to	14	4 l/s
Qp (l/s)							=1
Area(ha)=	0.0400						
Cw=	0,90	STORMWATER MAN	SEMENT Om =		7,00	l/s	
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/5)	(l/s)	(m3)		
4	152.5	15.3	7.00	8.3	1.98		
5	141.2	14.1	7.00	7.1	2.14		
6	131.6	13.2	7.00	6.2	2.22		
7	123.3	12.3	7.00	5.3	2.24	<===	Required volume
9	116,1	11.6	7.00	4.6	2.22		for storage on-site
9	109.6	11.0	7.00	4.0	2.15		
10	104.2	10.4	7.00	3.4	2.06		
11	99.2	9.9	7.00	2.9	1.93		
12	94.7	9.5	7.00	2.5	1.78		
13	90.6	9.1	7.00	2.1	1.61		
14	86.9	8.7	7.00	1.7	1.43		

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB206C	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grale to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 14l/s @ 1.47m head, or approved equal

IN-LINE ST	ORAGE (Pipe)
------------	--------------

Pipe storage			Ű
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
300H2V4V	(SM)	(m)	(m3)
206C	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
Trilon M-6 storage cell	6.00	3.00	5.00
Trilon M-6 storage cell	6.00	Total:	5.

Total Storage required 2.24
Total Surface Storage provided 5.52
Overflow to area 206D 0.00

Street 1, Area # 206E 500 sm 100 -YR FLOW Flow restricted to 60 Vs Op (Vs) 0.0500 0.75 Area(ha)= Cw= STORMWATER MANAGEMENT Qm = 30.00 l/s Qm Qp-Qm Volume Τç Qp 2.78 x Area x c x i Variable (mm/hour) (l/s) (m3) (min) 230,5 24.0 30,00 -6.0 0.00 24.0 24.0 24.0 0 230,5 -6.0 0.00 30,00 230,5 230,5 230,5 30,00 -6.0 0 0.00 0 -6.0 0.00 30.00 -6.0 24.0 0.00 Required volume 0 216.1 203.5 192.5 162.7 22.5 21.2 -7.5 -8.8 0.5 30.00 -0.22 for storage on-site -0.53 30,00 30.00 -9.9. -0.89 1.5 20.1 19.0 30.00 -11.0 -1.31 -11.9 -12.7 2.5 173,9 18.1 30.00 -1.78

IN-LINE STORAGE (Structure)

0,6m X 0,6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB206D	1.45	0.52
	Total:	0.52

166,1

IN-LINE STORAGE (Pipe)

30.00

Structure to Structure	Length	Dia	Slorage	
	(m)	(m)	(m3)	
		0.00	0.00	
		Total:	0.00	

-2.28

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat lop and iron frame/grate

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
206D	0.00	0.00	0.00
		Total:	0.00

Overflow from 206C 210A 230G 0.00 Total Storage required 0.00 Total Storage provided 0.52 Overflow to future area 0.00

ICD use Tempest HF 60l/s @ 1.46m head, or approved equal

Street 1 Area # 205 100 -YR FLOW Flow restricted to 60 l/s Qp (l/s) 0.1600 0.75 Area(ha)= Cw= STORMWATER MANAGEMENT Qm = 30.00 Vs Qp 2.78 x Area x c x i Qm Qp-Qm Volume Tc Variable (mm/hour) (m3) 2,27 (Ws) (l/s) (l/s) (min) 203.5 182.7 30,00 3.71 60,9 30,00 30,9 4.57 5.01 5.13 166.1 152.5 55.4 50.9 30.00 25.4 20.9 17.1 30.00 30.00 <=== Required volume 141.2 47.1 13.9 11.1 30.00 30.00 for storage on-site 43.9 41.1 5.00 131.6 4.68 123,3 30,00 8.7 4.19 116,1 38,7 8 109.8 30.00 6.6 3.58 36,6 2.86 104.2 34.8 4.8 10

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB205A	1,45	0.52
CICB205B	1.55	0,56
	Total:	1.08

33,1

IN-LINE STORAGE (Pipe)

30.00

Pipe storage Structure to Structure	Length	Dia	Slorage
Situation to Situation	(m)	(m)	(m3)
CICB205A-CICB205B	14.00	0.25	0.69
			0.00
		Total:	0.69

3.1

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate

to invertiess 0,64m to account for

flat top and iron frame/grate

PARKING LOT STORAGE 5

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
205	69.82	0.11	2.56
		Total:	2.56

Overflow from 204, 206D, 1/2 230G

1.60

Total Storage required Total Storage provided 6,63

Overflow to Area Future

4,33

2.31

ICD use Tempest HF 60l/s @ 1.68m head, or approved equal

PARKING LOT	Area # 240	A					
5	00 sm						
100 -YR FLOW				Flow restr	icled to	1	0 Vs
Qρ (l/s)							-
Area(ha)=	0.0500						
Cw=	0.90	STORMWATER MANAGER	AENT Qm =		5.00	l/s	_
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
9	109.8	13.7	5,00	8.7	4.72		
10	104.2	13.0	5.00	8.0	4.82		
11	99.2	12.4	5.00	7,4	4.89		
12	94.7	11.0	5,00	6.8	4,93		
13	90.6	11,3	5.00	6,3	4.94	<===	Required volume
14	86.9	10.9	5,00	5,9	4.94		for storage on-site
15	83.6	10.5	5,00	5.5	4,91		
16	80.5	10.1	5,00	5.1	4.86		
17	77.6	9,7	5,00	4.7	4.80		
18	75.0	9.4	5,00	4.4	4.73		
19	72.5	9.1	5,00	4.1	4.64		

E (Structure)		
		9
Helght	Storage	
(m)	(m3)	Į
	0.0	ā
	0.0	0
	0.0	ō
Total	0.0	٥
	Height (m)	Height Storage (m3) 0.00 0.00 0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 101/s @ 1.65m head, or approved equal

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CICB240A-CICB240B	10,00	0.25	0.49	
CICD2407-CICB240B			0.00	
			0.00	
			0.00	
			0.00	
		Total:	0.49	

PARKING LOT STORAGE	5yr		
AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
240A	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)			
Cell storage			
	Length	lwidth	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	11,00	\$1.7.0g	10,00
		Total:	10.00

Total Storage required	4.94
Total Storage provided	11.57
1/2 Overflow to Area 204	0.00
1/2 Overflow to Area 201	0.00

Street 1 Area # 204 1300 sm Flow restricted to 55 l/s 100 -YR FLOW Qp (Vs) Area(ha)= 0.1300 STORMWATER MANAGEMENT Qm = 27.50 l/s 0.75 Qρ Qm Qp-Qm Volume Tc Variable 2.78 x Area x c x i (l/s) 27.50 27.50 27.50 27.50 (l/s) (m3) (min) (mm/hour) 203.5 27,7 1.86 22.0 17.5 13.8 2.64 49.5 182,7 3.15 45.0 166.1 152.5 Required volume 41.3 27.50 27.50 3.23 2.94 10,8 for storage on-site 38.3 5 141.2 8.2 5.9 35.7 131,6 6 27,50 2.49 123.3 33.4 116.1 27,50 4.0 1,91 27,50 27,50 27,50 109.8 29.8 2.3 0,7 1,22 28.2 26.9 104.2 0.44 -0.41 99.2 -0.6

IN-LINE STORAGE	(Structure)
O.C. V.O.C. CD	

0.6m X 0.6m CB	les viv	le.	
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CICB204A	1.45		0.52
CICB204B	1.55		0.56
	Total:		1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB204A-CICB204B	15.00	0.25	0.74
The state of the s		Total:	0.74

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for tlat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
		0,00	0.00
		0,00	0.00
		Total:	0.00

Overflow from area 1/2 240A 0.00
Total Storage required 3.32
Total Storage provided 1.82
Overflow to Area 205 1.50

ICD use Tempest HF 55l/s @ 1.51m head, or approved equal

PARKING LOT	Area 240D	2					
	00 sm						
00 -YR FLOW	SAME PROPERTY.			Flow restri	icled to	10	0 Vs
Op (l/s)							
Area(ha)=	0.0500						
Cw =	0.90	STORMWATER MANAGEMENT	Qm =		5,00	l/s	1
To Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		-
(min)	(mm/hour)	(1/\$)	(I/s)	(1/5)	(m3)		
6	131.6	16,5	5.00	11,5	4.13		
8	116.1	14.5	5.00	9.5	4.57		
10	104.2	13.0	5,00	8,0	4.82		
12	94.7	11.8	5.00	6.8	4.93		
14	86.9	10.9	5.00	5.9	4.94	<===	Required volume
16	80.5	10.1	5.00	5.1	4.86		for storage on-sit
18	75.0	9.4	5.00	4.4	4.73		
20	70.3	8.8	5,00	3,8	4,55		
22	68.1	8,3	5.00	3.3	4.32		
24	62.5	7.8	5,00	2.8	4.07		
25	60.9	7.6	5.00	2.6	. 3.93		

IN-LINE STORAGE (Pipe) Pipe storage Structure to Structure

PARKING LOT STORAGE 5yr

(Structure)	
Height	Storage
(m)	(m3)
1.45	0,52
Total:	0.52
	Height (m)

GE (Structure)	
Height	Storage
(m)	(m3)
	0,00
Total:	0.00
	Height (m)

CBMH height for storage equals top of grate to invert less 0.64m to account for flet top and iron frame/grate

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
240C	0.00	0.00	0.00
		Total:	0.00
OFF-LINE STORAGE (Cell)			
Transfer Tra			
OFF-LINE STORAGE (Cell) Cell storage	Length	width	Storage
Transfer Tra	Length (m)	width (m)	Storage (m3)
Transfer Tra	- Committee of the Comm	(m)	

Length

(m)

Dia

(m)

0.25 0.30 Total:

Storage

(m3) 0.00 0.00 **0.00**

Total Storage required	4.94
Total Storage provided	5.52
Overflow to Area 201	0.00

ICD use Tempest LMF 101/s @ 1.46m head, or approved equal

Street 1 Area 201 100 -YR FLOW Flow restricted to 60 l/s Op (Vs) Area(ha)= Cw = 0,2900 0.75 STORMWATER MANAGEMENT Qm = 30.00 l/s Tc Qp 2,78 x Area x c x i Qm Qp-Qm Volume Variable (m3) 18,71 (mm/hour) (l/s) (l/s) (min) (l/s) 74.6 123,3 30,00 44,6 116,1 70,2 30,00 40.2 19,30 109,8 104,2 36.4 33.0 19.65 19.80 9 66.4 30,00 Required volume 10 63.0 30.00 <=== 19,78 30,0 for storage on-site 11 99.2 60.0 30.00 57.3 54.8 12 94.7 30.00 27.3 19.63 90.6 30.00 24.8 19.34 22,6 20,5 52.6 18,95 86.9 30.00 14 83.6 50.5 30.00 18.47 80.5 48,6 30,00 18,6 17,90 77.6 46,9 16.9 17.26

IN-LINE STORAGE (Structure)

0,36 m3/m	Height	Storage
	(m)	(m3)
CICB201A**	1.45	0.52
CICB2018**	1,65	0,59
	Total:	2,23

^{**}double CB's, volume x 2,

1,2mDia CBMH's		
1,13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invertiless 0,64m to account for flat top and iron frame/grate.

flat top and iron frame/grate

ICD use Tempest HF 60l/s @ 1.71m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB201A - CICB201B	15,00	0.25	0.74
		Total:	0.74

PARKING LOT STORAGE Syr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
201	300,00	0.17	17.00
			0.00
		Total;	17.00

Overflow from Area 240D, 122 0.00
Total Storage required 19.80
Total Storage provided 19.97
overflow to future area 0.00

OUTLET # 1 (MH301) SUMMARY

Total Flow from Roofs=	18.00 l/s
Total Roof Area =	0.750 Ha
Average roof flow =	24.00 I/s/Ha
Volume Stored on Roofs	158.62 cm
Total Roof Storage rate	211.50 cm/Ha
Total flow from parking lot =	503.00 l/s
Total parking Lot area =	3.420 Ha
Average parking lot flow =	147.08 l/s/Ha
Volume Stored on Parking lot	456.73 cm
Total Parking lot Storage rate	133.55 cm/Ha
Total uncontrolled flow from site	22,59 l/s
Total uncontrolled area	0.110 Ha
Total flow	543.59 Vs
Total area	4.280 Ha
Average flow	127.01 Vs/Ha
Volume Stored	615.36 cm
Total Storage rate	143.78 cm/Ha

IBI 333 Preston St OTTAWA, ONTARIO K1S 5N4 ONSITE SWM 100yr design
PROJECT: Arcadia commercial
CITY OF OTTAWA

DEVELOPER Minto

104.2

192.00 l/s

mm/hr

PAGE: 1 OF 1
JOB #: 35355
DATE: Oct 1, 2014
DESIGN: DY
Rev#3

Outlet # 2 EX MH 301 5yr design

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 l/s/Ha

Time of concentration = 10 minutes

Area (ha) =	0.800
C Average =	0.90

Intensity - 5 year event storm

10 min Tc

10 min Tc

Unrestricted Flowrate (Q5)		
10 min Tc	:w*i = 208.55 l/s	

i5yr = 998.071/(T+6.053)^0.814=

Q= 240 l/s/Ha

Intensity - 100 year event storm

10 min Tc	i100yr = 1735.688/(T+6.014)^0.82=	178.6	mm/hr

Unrestricted Flowrate (Q100)

10 min Tc	Qpost-devo = 2.78*A*Cw*i =	357.40 l/s	
Restricted Flowra	ite (Q5)		
10 min Tc	Q= 240 l/s/Ha	192.00 l/s	

Uncontrolled runoff (Q5)

Location		Area	C	AxC
UNC 1A		0.02	0.2	0.004
UNC 1B		0.02	0.2	0.004
UNC 1C		0,02	0.2	0.004
UNC 1D		0.02	0.2	0.004
				0
Total		0.08	0.20	0.016
10 min Tc	Q _{unc} = 2.78 Ac	zi i	4.63	l/s

Allowable Release

 $Q_{rest\ 100yr} - Q_{unc} = Q_{allow}$

187.37 l/s

STORM WATER MANAGEMENT - Post-Development Controlled (5 year post-development with 100yr inlets)

m3

m

ROOF AREA 50	0						
S	000 sm						
100 -YR FLOW							
Qp (l/s)							_
Area(ha)=	0.0900						
Cw =	0.90	STORMWATER MAI	NAGEMENT Qm =		2,00	1/\$	
T¢ Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/s)	(l/s)	(m3)		
53	36.1	8.1	2.00	6.1	19.48		
55	35.1	7,9	2.00	5.9	19.50		
57	34.2	7.7	2.00	5.7	19.51		
59	33.4	7.5	2.00	5.5	19.51	<===	Required volum
61	32.5	7.3	2.00	5.3	19.50		for roof storage
63	31.8	7.2	2.00	5.2	19,49		
65	31.0	7.0	2.00	5.0	19.46		
67	30.4	6.8	2.00	4.8	19.43		
69	29.7	6.7	2,00	4.7	19.40		
71	29.1	6.5	2.00	4.5	19.36		
73	28.5	6.4	2.00	4.4	19,31		
75	27.9	6.3	2.00	4.3	19,26		

Req. Storage volume 19.51 Average depth 0.022

ROOF AREA 600	D						
6	00 sm						
100 -YR FLOW							
Qp (l/s)							-
Area(ha)=	0.0600						
Cw=	0.90	STORMWATER MAI	NAGEMENT Qm =		2.00	l/s	_
Tc Variable		Qp 2,78 x Area x c x i	Qm	Qp-Qm	Volume		 ,
(min)	(mm/hour)	(1/s)	(l/s)	(Vs)	(m3)		
34	49.5	7.4	2.00	5.4	11.08		
36	47.6	7.1	2.00	5.1	11.11		
38	45.8	6.9	2.00	4.9	11.12		
40	44.2	6.6	2.00	4.6	11.12	<===	Required volume
42	42.7	6,4	2.00	4.4	11.11		for roof storage
44	41.3	6.2	2.00	4.2	11.08		
46	40,0	6.0	2.00	4.0	11.05		
48	38.8	5.8	2.00	3.8	11,01		
50	37.7	5.7	2.00	3.7	10,96		
52	36.6	5.5	2.00	3.5	10.90		
54	35.6	5.3	2.00	3.3	10.83		
56	34.7	5.2	2.00	3.2	10.76		

Req. Storage volume Average depth

11.12 m3 m

0.019

ROOF AREA 70	0						
10	000 sm						
100 -YR FLOW							
Qp (l/s)							
Area(ha)=	0,1000						
Cw=	0.90	STORMWATER MANAGER	MENT Qm =		2.00	l/s	
To Variable	E I	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		=
(min)	(mm/hour)	(l/s)	(1/s)	(l/s)	(m3)		
57	34.2	8.6	2.00	6.6	22.44		
59	33.4	8.3	2.00	6.3	22,46		
61	32.5	8,1	2.00	6.1	22.48		
63	31.8	7.9	2.00	5.9	22.49	<===	Required volume
65	31.0	7.8	2.00	5.8	22.49		for roof storage
67	30.4	7.6	2.00	5.6	22.49		
69	29.7	7.4	2.00	5.4	22.47		
71	29.1	7.3	2.00	5.3	22.46		
73	28.5	7.1	2.00	5.1	22.43		
75	27.9	7.0	2.00	5,0	22.40		
77	27.3	6.8	2,00	4.8	22,36		
79	26.8	6.7	2.00	4.7	22.32		

Req. Storage volume Average depth

22,49

m3

0.022 สา

ROOF AREA 800			
	600 sm		
100 -YR FLOW			
Qp (l/s)			

Area(ha)=	0.0600				
Cw=	0.90	STORMWATER MANAGEM	STORMWATER MANAGEMENT Qm =		2.00
Tc Variable	*** E	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume
(min)	(mm/hour)	(Vs)	(Vs)	(Vs)	(m3)
34	49.5	7.4	2.00	5,4	11.08
36	47.6	7.1	2.00	5.1	11.11
38	45.8	6.9	2.00	4.9	11.12
40	44.2	6.6	2.00	4.6	11.12
42	42.7	6.4	2.00	4.4	11,11
44	41.3	6.2	2.00	4.2	11.08
46	40.0	6.0	2.00	4.0	11.05
48	38.8	5.8	2.00	3.8	11.01
50	37.7	5.7	2.00	3.7	10.96
52	36.6	5,5	2.00	3.5	10.90
54	35.6	5.3	2.00	3,3	10.83
56	34.7	5.2	2.00	3.2	10.76

<=== Required volume for roof storage

Req. Storage volume Average depth

11.12

m3 m

0.019

PARKING LOT /	Area # 120						
11	00 sm						
100 -YR FLOW				Flow restric	cled lo	1	5 l/s
Qp (l/s)							202
Area(ha)=	0.1100						
Cw=	0.90	STORMWATER MANA	\GEMENT Qm =		7,50	Vs.	
Tc		Qp	Qm	Qp-Qm	Volume		==
Variable	ĵ	2.78 x Area x c x i					
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
15	83,6	23.0	7.50	15.5	13.95		
16	80,5	22,1	7,50	14.6	14.06		
17	77.6	21.4	7.50	13.9	14.14		
19	75.0	20.6	7.50	13.1	14.16		
19	72.5	20.0	7.50	12.5	14.20	<===	Required volume
20	70.3	19.3	7.50	11.8	14.20		for storage on-site
21	68.1	18.8	7.50	11.3	14.18		-
22	66.1	16.2	7.50	10.7	14.13		
23	64.3	17.7	7.50	10.2	14.07		
24	62,5	17.2	7.50	9.7	13.99		
25	60,9	16.8	7.50	9.3	13.89		

0,6m X 0.6m CB			
0,36 m3/m	Height	Storage	
	(m)	(m3)	
CB120	1.45		0.52
			0.00
	Total:		0.52

IN-LINE STORAGE (Pipe)

Pipe storage		
Structure to Length	Dia	Storage
(m)	(m)	(m3)
	0.2	0.00
	0.30	0.00
	Total:	0.00

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m).	(m3)
120	251.20	0,17	14.23
		0.00	0.00
			0.00
	-10	Total:	14.23

Total Storage required 14.20 Total Storage provided 14.76 Overflow to area 231 0.00

ICD use Tempest LMF 15l/s @ 1.47m head, or approved equal

PARKING LOT	Area # 100						
6	00 sm						
00 -YR FLOW	***************************************			Flow restric	cted to	31	0 l/s
Qp (l/s)							30
Area(ha)=	0.0600						
Cw=	0.90	STORMWATER MANAGEM	IENT Qm =		15.00	Vs.	
Tc		Qp	Qm	Qp-Qm	Volume		
Variable	i i	2.78 x Area x c x i					
(min)	(mm/hour)	(l/s)	(l/s)	(1/s)	(m3)		
0	230,5	34,6	15,00	19.6	0.00		
1	203.5	30.6	15.00	15.6	0.93		
2	182.7	27.4	15.00	12.4	1.49		
3	166.1	24.9	15.00	9,9	1.79		
4	152.5	22.9	15.00	7.9	1.89	<===	Required volume
5	141.2	21.2	15.00	6,2	1,86		for storage on-sit-
8	131.6	19.8	15.00	4.8	1.71		
7	123.3	18,5	15.00	3.5	1.47		
8	116,1	17,4	15.00	2.4	1.17		
9	109.8	16,5	15.00	1.5	0.80		
10	104.2	15,6	15.00	0.6	0.38		

0.6m X 0.6m CB	All distances		
0.36 m3/m	Height	Storage	
O'90 HISHH			
	(m)	(m3)	
CICB100A	1.45		0.52
CICB100B	1,55		0.56
	Total:		1.08

IN-LINE STORAGE (Pipe)

Pipe storag	je		
Structure to	Length	Dia	Storage
	(m).	(m)	(m3)
CICB100A-CICB100E	10.00	0.25	0.49
		Total:	0.49

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5vr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
100	30,00	0.05	0.50
		Total:	0.50

Total Storage required 1.89
Total Storage provided 2.07
Overflow to area 231 0.00

ICD use Tempest LMF 301/s @ 1.51m head, or approved equal

12	00 sm						
00 -YR FLOW				Flow restric	cted to	4	0 Vs
Qp (l/s)							· · ·
Area(ha)=	0.1200	77					1
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		20,00	l/s	1
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		=======================================
(min)	(mm/hour)	(l/s)	(1/s)	(l/s)	(m3)	ľ	
3	166.1	49.9	20.00	29.9	5.38	i i	
5	141.2	42.4	20.00	22.4	6.72		
6	131.6	39.5	20.00	19.5	7.02		
7	123,3	37.0	20.00	17.0	7.15	<===	Required volume
8	116.1	34.9	20.00	14.9	7.13		for storage on-sit
9	109.8	33.0	20.00	13.0	7.00		
10	104.2	31,3	20.00	11.3	6.77		
11	99.2	29.8	20.00	9.8	6,46		
12	94.7	28.4	20.00	8.4	6.07		
13	90.6	27.2	20.00	7.2	5.62		
15	83.6	25,1	20.00	5.1	4.58		

.45ecb=	Height	Storage	
	(m)	(m3)	
CB110B	1.21	0.4	44
CB110A	1.46	0.0	53
6 x ECB/TCB	1,00	0.9	96
		0.4	00
	Total:	1.5	92

IN-LINE STORAGE (Pipe)

Pipe storage		·P-/	i -
Structure to		Dia (m)	Storage (m3)
CBMH110A-MH110	14.50	0.60	4.10
CB110A - CBMH110	23,00	0.30	1.63
ECB-CB110A	95,00	0.30	6.72
CB110B - C8MH110	20,00	0.30	1.41
		Total:	13.85

IN-LINE STORAGE (Structure)

1,2mDia MH*s=1,13m3/m		
1,5mDia MH's=1,77m3/m	Height	Storage
	(m)	(m3)
CBMH110A	1.56	2.76
MH110	1.87	2.11
	Total:	4.87

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
	0-110		

Total:

0.00

Total Storage required 7.15
Total Storage provided 20.65
Overflow to area 221 0.00

ICD use Tempest HF 40l/s @ 1.7m head, or approved equal

PARKING LOT	Area # 123						
6	800 sm						
100 -YR FLOW				Flow restric	cted to	1:	5 Vs
Qp (l/s)							314
Area(ha)≃	0.0600						1
Cw=	0.90	STORMWATER MAN	NAGEMENT Qm =		7,50	l/s	
Тс		Qρ	Qm	Qp-Qm	Volume		-
Variable	i//	2,78 x Area x c x i					
(min)	(mm/hour)	(l/s)	(1/s)	(l/s)	(m3)		
7	123,3	18.5	7.50	11.0	4.62		
6	116.1	17.4	7.50	9.9	4.77		
9	109.8	16,5	7.50	9.0	4.85		
10	104.2	15.6	7.50	8.1	4.88	<===	Required volume
11	99.2	14.9	7.50	7.4	4.88		for storage on-sit
12	94.7	14.2	7,50	6.7	4.84		
13	90.6	13.6	7.50	6.1	4.76		
14	86.9	13,1	7,50	5.6	4.66		
15	83.6	12.5	7.50	5.0	4.54		
16	80.5	12,1	7.50	4.6	4.40		
18	75.0	11,3	7,50	3.8	4.05		

0.6m X 0.6m CB		
0.36 m3/m	Height	Slorage
	(m)	(m3)
CB123	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage	9		
Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
	20-50		0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

1,2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.84m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
123	36.40	0.10	1.21
		Total:	1,21

Total Storage required 4.88
Total Storage provided 1.74
Overflow to area 231 3.15

ICD use Tempest LMF 15l/s @ 1.22m head, or approved equal

PARKING LOT	Агеа #122						
6	300 sm						
100 -YR FLOW				Flow restri	cted to	10	0 Vs
Qp (I/s)							
Area(ha)=	0,0600						1
Cw =	0.90	STORMWATER MAN	AGEMENT Qm =		5,00	l/s	
Tc Variable	I i	Qp 2,78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
12	94.7	14.2	5.00	9.2	6.64		
13	90.6	13,6	5.00	8.6	6.71		
14	86.9	13,1	5.00	8.1	6.76		
15	83.6	12.5	5.00	7.5	6,79		
16	80.5	12.1	5.00	7.1	6.80	<===	Required volume
17	77.6	11.7	5.00	6.7	6.78		for storage on-site
18	75.0	11,3	5.00	6,3	6.75		
19	72.5	10.9	5,00	5.9	6.71		
20	70.3	10.5	5.00	5.5	6.66		
21	68.1	10.2	5.00	5.2	6.59		
22	66.1	9.9	5.00	4.9	6.51		

0.6m X 0.6m CB			
0.36 m3/m	Height	Storage	
	(m)	(m3)	
CB122	1,45	0	0.52
			0.00
	Total		0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.0
	Total:	0.0

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage		i ipoj	
Structure to Length Dia		Dia	Storage
	(m)	(m)	(m3)
	17,1707		0.00
			0.00
		Total:	0.00

PARKING LOT STORAGE 5yr

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
		Total:	0.00

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6	5.00	10.00	19.00
		Total:	19.00

Total Storage required 6.80
Total Storage provided 19.52
Overflow to area 201 0.00

ICD use Tempest LMF 10l/s @ 1.26m head, or approved equal

Outlet # 2 (MH301) SUMMARY

Total Flow from Roofs=	8.00 l/s
Total Roof Area =	0.310 Ha
Average roof flow =	25.81 l/s/Ha
Volume Stored on Roofs	64.24 cm
Total Roof Storage rate	207.22 cm/Ha
Total flow from parking lot =	55.00 l/s
Total parking Lot area =	0.410 Ha
Average parking lot flow =	134.15 l/s/Ha
Volume Stored on Parking lot	58.73 cm
Total Parking lot Storage rate	143.26 cm/Ha
Total uncontrolled flow from site	4.63 l/s
Total uncontrolled area	0.080 Ha
Total flow	67.63 l/s
Total area	0.80 Ha
Average flow	84.54 I/s/Ha
Volume Stored	122.97 cm
Total Storage rate	153.71 cm/Ha

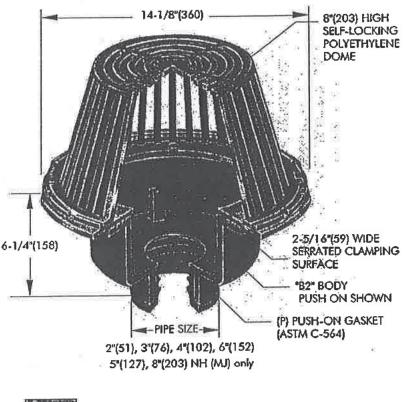
Outlet # 1 & 2 SUMMARY

Oudet#1&250MMART	
Total Flow from Roofs=	26.00 l/s
Total Roof Area =	1.06 Ha
Average roof flow =	24.53 Vs/Ha
Volume Stored on Roofs	222.86 cm
Total Roof Storage rate	210.25 cm/Ha
Total flow from parking lot =	558.00 l/s
Total parking Lot area =	3.83 Ha
Average parking lot flow =	145.69 l/s/Ha
Volume Stored on Parking lot	515.47 cm
Total Parking lot Storage rate	134.59 cm/Ha
Total uncontrolled flow from site	27.23 l/s
Total uncontrolled area	0,19 Ha
Total flow	611.23 l/s
Total area	5.080 Ha
Average flow	120.32 I/s/Ha
Volume Stored	738.33 cm
Total Storage rate	145.34 cm/Ha

RD-100

Large Capacity Roof Drain

Components:


Tag:

SPECIFICATION: Watts Drainage Products RD-100 epoxy coated cast iron roof drain with deep sump, wide serrated flashing flange, flashing clamp device with integral gravel stop and self-locking polyethylene (standard) dome strainer.

7,95,979 28, ht

** Side Outlet (-SO) option only available in 2°(51), 3"(76), 4"(102) pipe sizes.
Underdeck Clamp (-BED and -D options) are not available when -SO is selected.

	Orc	ler Code: RD-10	무-	Ę
Į	Ex. RE	D-102P-K	/	1
-	G Spirite	lige Shaing (Sales) Osea Descriptor		
	3	2"(51) Pipe Size 3"(76) Pipe Size	뷥	
1	4	4"(102) Pipe Size		1
	5	5"(127) Pipe Size	밁	н
	6	6*(152) Pipe Size	밁	ш
	8	B*(203) Pipe Size	ш	
	્તું. આપાન	oliai Tron (haise Osia Westinia		
	NH	No Hub (MI)		
	P	Push On		
- {	τ	Threoded Outlet		
1	X	Inside Coulk		
	onin.	period (Kalland Ölette in 1816) internation		
	-A	Accutrol weir (specify # 1-6 slot	اراه	
	-B	Sump Receiver Flange	"öl	
	-BED	Sump Receiver, Adij Ed., Deck Clomp	ō	
	-C	Secondary Membrane Clamp		
	-D	Underdeck Clamp		
	-E	Adjustable Extension	믜	
	-GSS	Stoinless Steel Ballast Guard	빏	
	-H	Adj. to 6" IRMA Ballast Guard	빔	
	-K	Dudile Iron Dome	빔	
	-K80	Aluminum Dome	밁	
	-L	Vondol Proof Dome	H	
	-R -SO	2" High External Water Dam Side Outlet"	H	
	.v	Fixed Extension (1-1/2",2",3",4")	, HI	
	.w	Adi. Water Level Regulator	'님	
	-W-1	Waterproofing Flange		
	·z	Extended Integral Wide Florige	퓜	
	.5	Sediment Bucket	뭐	
	-12	Golvanized Dome	ᆔ	
	-13	All Galvanized	H	
	-83	Mesh Covered Dome	ᆔ	
		Special Epoxy from 3M Range	ő	
1			White I	
	apin aping	हिस्सारा) गाउद्धायां समुद्रान्ती करते. उत्पोद्धान्तरस्य) iv	
- 8	.60	PVC Rody w/Socket Outlet		

ABS Body w/Socket Outlet

Job Nome	···· - 355)	Contractor	
Job Location		Contractor's P.O. No.	عاد المراجعة (المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراج
Engineer		Representative ————————————————————————————————————	

WATTS Drainage reserves the right to modify an change product design or construction without prior notice and without incurring any obligation to make similar changes and modifications to products previously or subsequently solds. See your WATTS Drainage representative for any clarification. Dimensions are subject to manufacturing tolerances.

CANADA: 5435 North Service Road, Burlington, ON, L7L SH7 TEL: 905-332-6715 TOLL-FREE: 1-888-208-8927 Website: www.mattadrainage

-61

Adjustable	Accutrol	Weir

Tag:

Adjustable Flow Control for Roof Drains

ADJUSTABLE ACCUTROL(for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

FXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2° of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3° of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: $[5 \text{ gpm}(\text{per inch of head}) \times 2 \text{ inches of head}] + 2-1/2 \text{ gpm}(\text{for the third inch of head}) = 12-1/2 \text{ gpm}$.

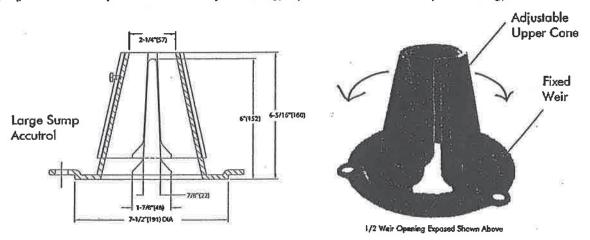
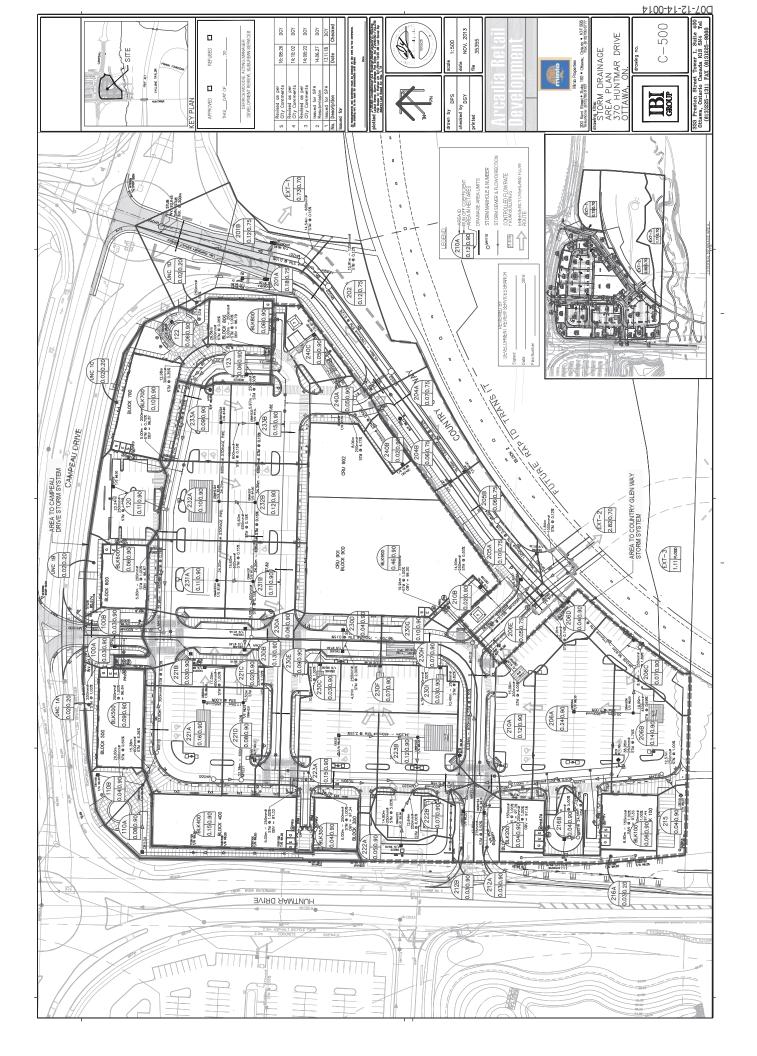
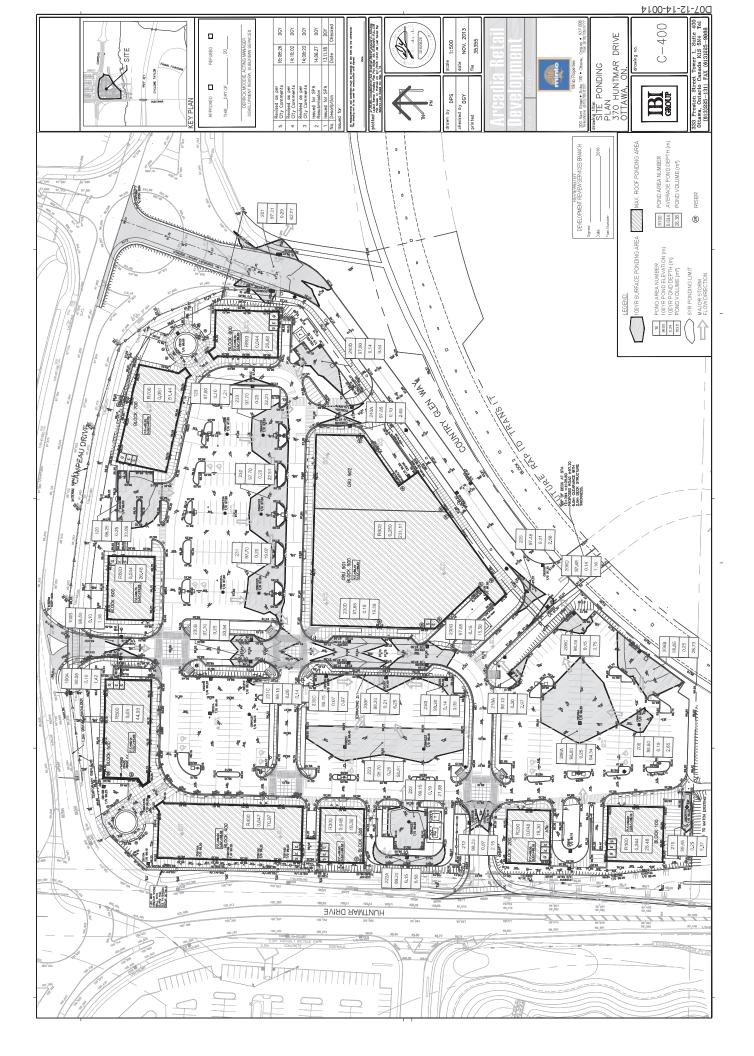


TABLE 1. Adjustable Accutrol Flow Rate Settings

	1,000,000	7.	Head of Wate	er :	31	
Weir Opening	1"	2"	3"	4"	5"	6"
Exposed —		Flow	Rate (gallons p	er minute)		
Fully Exposed	5	10	15	20	25	30
3/4	5	10	13.75	17.5	21.25	25
1/2	5	10	12.5	15	17.5	20
1/4	5	10	11.25	12,5	13.75	15
Closed	5	10	10	10	10	10


Job Name	_ Contractor
Job Location	Contractor's P.O. No.
Engineer	Representative


WAITS Drainage reserves the right to modify or change product daign or construction without prior notice and without incurring any obligation to make similar changes and modifications to products previously or absequently sold. See your WAITS Drainage representative for any clarification. Dimensions are subject to manufacturing tolerances.

CANADA

CANADA: 5435 North Service Road, Burlington, ON, L7L SH7 TEL: 905-332-6718 TOLL-FREE: 1-888-208-8927 Website: www.nothsdralnage.ca

APPENDIX D

patersongroup

memorandum

consulting engineers

to:	City of Ottawa - Mr. Mark Fraser - mark.fraser@ottawa.ca
re:	Response to City of Ottawa Comments
	Proposed Arcadia Commercial Development - 370 Huntmar Drive, Ottawa, ON
date:	August 12, 2014
file:	PG3045 - MEMO.01
from:	Joe Forsyth

The present memorandum has been prepared to address the geotechnical item noted, in the City of Ottawa comments prepared for the aforementioned site. The relevant comments were part of a series of comments presented in the letter dated July 31, 2014 and issued by Mr. Mark Fraser with City of Ottawa Planning and Growth Management. Paterson's response is summarized below:

Item 1 - Shear Strengths Values

As per the previous 1st Engineering Review comments (2014-03-28) on Soil Profile and Test Data sheet BH1 a ground surface consistency classification of "very stiff" to "stiff" was applied to the full depth of ground. Based on the undisturbed shear strength values provided a ground surface consistency classification of "very stiff" is not appropriate for the soil. A shear strength of between 100-200kPa would have been anticipated for the ground surface to be classified as "very stiff". BH1 does not indicate shear strength values greater than approximately 92 kPa. The borehole log has not been revised as indicated. Please review all borehole logs to confirm the ground surface consistency classifications are appropriate based on the shear strength values provided.

Response

Paterson has revised the borehole logs to indicate proper classifications as per Mark Fraser's comment. See attached updated report PG3045 -1R dated June 26, 2014.

Best Regards,

Paterson Group Inc.

Joe Forsyth, P.Eng.

Paterson Group Inc.

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Geotechnical Investigation

Proposed Multi-Storey Building 340 Huntmar Drive Ottawa, Ontario

Prepared For

Kanata Microtel 10537616 Canada Ltd.

August 28, 2018

Report: PG4544-1

Revision 1

Table of Contents

		PAC	àΕ
1.0	Intro	oduction	. 1
2.0	Pro	posed Development	. 1
3.0	Met	hod of Investigation	
	3.1	Field Investigation	. 2
	3.2	Field Survey	. 3
	3.3	Laboratory Testing	. 3
	3.4	Analytical Testing	. 3
4.0	Obs	servations	
	4.1	Surface Conditions	. 4
	4.2	Subsurface Profile	
	4.3	Groundwater	. 5
5.0	Disc	cussion	
	5.1	Geotechnical Assessment	. 6
	5.2	Site Grading and Preparation	. 6
	5.3	Foundation Design	
	5.4	Design for Earthquakes	. 8
	5.5	Slab-on-Grade Construction	. 8
	5.6	Pavement Structure	. 9
6.0	Des	ign and Construction Precautions	
	6.1	Foundation Drainage and Backfill	11
	6.2	Protection of Footings	11
	6.3	Excavation Side Slopes	
	6.4	Pipe Bedding and Backfill	
	6.5	Groundwater Control	13
	6.6	Winter Construction	13
	6.7	Corrosion Potential and Sulphate	14
	6.8	Tree Planting Restrictions	14
	6.9	Infiltration System Recommendations	15
7.0	Rec	ommendations	16
8.0	Stat	tement of Limitations	17

Appendices

Appendix 1 Soil Profile and Test Data Sheets

Symbols and Terms

Analytical Testing Results

Appendix 2 Figure 1 - Key Plan

Drawing PG4544-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Kanata Microtel to conduct a geotechnical investigation for the proposed multi-storey building to be located at 340 Huntmar Drive in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were:

boreholes,
to provide geotechnical recommendations pertaining to design of the proposed

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical

recommendations pertaining to the design and construction of the subject development

development including construction considerations which may affect the design.

as they are understood at the time of writing this report.

2.0 Proposed Development

It is understood that the proposed development will consist of a multi-storey hotel building of slab-on-grade construction. It is further understood that associated access lanes, parking and landscaped areas will occupy the remainder of the site.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

A geotechnical investigation conducted on October 9 to 11, and 15, 2013 included a total of 5 boreholes completed at, or in the vicinity of, the subject site. The locations of the relevant test holes are shown on Drawing PG4544-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations and sampling the overburden.

Sampling and In Situ Testing

Soil samples were recovered from the auger flights and a 50 mm diameter split-spoon sampler. The soil from the auger flights and split-spoon samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the auger flight and split-spoon samples were recovered from the boreholes are depicted as AU and SS, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was conducted at regular intervals in cohesive soils and completed using an MTO field vane apparatus.

The thickness of the overburden was evaluated by dynamic cone penetration testing (DCPT) at boreholes BH 4 and BH 5. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible PVC standpipes were installed in all boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

3.2 Field Survey

The test hole locations were selected by Paterson and located and surveyed in the field by Stantec Geomatics. The ground surface elevations at the test hole locations are understood to be referenced to a geodetic datum. The locations and ground surface elevations of the test holes are presented on Drawing PG4544-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logs.

3.4 Analytical Testing

One (1) soil sample was obtained during the above-noted geotechnical investigation and submitted for analytical purposes. This sample was obtained from a borehole located approximately 100 m to the north of the subject site, and was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was also submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the soil. The analytical test results are presented in Appendix 1 and discussed in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped and is bordered by Huntmar Drive to the west, adjacent undeveloped properties to the north and east, and the Feedmill Creek valley corridor to the south. The ground surface across the site is relatively level, varying from approximate geodetic elevation 99 to 101 m, and is generally covered with minor vegetated growth.

The adjacent section of Feedmill Creek meanders in a west to east direction toward the Carp River within the approximately 15 to 25 m wide valley corridor with a 2 to 2.5 m high valley wall. It was noted that the watercourse is approximately 0.3 to 0.6 m deep, 2 to 3 m wide, and is located along the toe of the south valley wall.

4.2 Subsurface Profile

Generally, the subsurface profile at the test hole locations consisted of a silty clay deposit encountered at the ground surface, or underlying an approximate 0.6 m thickness of fill. The silty clay deposit was observed to consist of a hard to stiff, brown silty clay crust extending to depths of 2.5 to 3.5 m, overlying a stiff to firm, grey silty clay.

Practical refusal to the DCPTs were encountered at depths of 15.8 m and 12.1 m in boreholes BH 4 and BH 5, respectively. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Based on available geological mapping, the site is located in an area where the bedrock consists of interbedded limestone and shale of the Verulam formation with drift thicknesses ranging from 10 to 25 m.

4.3 Groundwater

Groundwater levels were measured in the standpipes on October 21, 2013 for boreholes completed as part of the previous investigation. The results of our groundwater readings from existing boreholes are presented in Table 1. It should be noted that surface water can become trapped within the backfilled borehole, which can lead to higher than normal groundwater level readings. The long term groundwater level can also be estimated based on the recovered soil sample's moisture level and consistency. Based on these observations, the long term groundwater table is anticipated to be at a 2.5 to 4 m depth. It should be further noted that the groundwater level could vary at the time of construction.

Table 1 - Measured Groundwater Levels					
Test Hole	Ground	Wate	r Level		
Number	Surface Elevation (m)	Depth (m)	Elevation (m)	Date	
BH 4	99.35	2.23	97.12	October 21, 2013	
BH 5	98.99	2.36	96.63	October 21, 2013	
BH 6	98.90	Damaged	-	October 21, 2013	
BH 7	97.75	Damaged	-	October 21, 2013	
BH 21	98.55	0.91	97.64	October 21, 2013	

Report: PG4544-1 Revision 1

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is satisfactory for the proposed development. It is expected that the proposed multi-storey building will be founded by conventional shallow footings placed on an undisturbed, hard to stiff silty clay bearing surface.

Due to the presence of the silty clay deposit at the site, the proposed development will be subjected to a permissible grade raise restriction. If the grade raise restriction is exceeded, several options are available such as a preload/surcharge program or the placement of lightweight fill below the proposed building.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and fill, containing deleterious or organic materials, should be stripped from under any building, paved areas, pipe bedding and other settlement sensitive structures. Under paved areas, existing construction remnants, such as foundation walls, pipe ducts, etc., should be excavated to a minimum depth of 1 m below final grade.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of the standard proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, the material should be compacted in thin lifts to a minimum density of 95% of the respective SPMDD.

Backfill against foundation walls should consist of free-draining, non frost susceptible granular materials. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against the foundation walls, unless used in conjunction with a composite drainage blanket connected to the perimeter foundation drainage system.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 3 m wide, and pad footings, up to 8 m wide, placed on an undisturbed, very stiff to stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **200 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **300 kPa**. A geotechnical resistance factor of 0.5 was applied to the above-noted bearing resistance value at ULS.

Footings designed using the above-noted bearing resistance value at SLS will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to a hard to stiff silty clay above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Page 7

Permissible Grade Raise Recommendations

A permissible grade raise restriction of **2 m** is recommended for grading within 5 m of the proposed buildings. A permissible grade raise restriction of **3 m** is recommended in the parking areas and access lanes. A post-development groundwater lowering of 0.5 m was considered in our permissible grade raise calculations.

5.4 Design for Earthquakes

The subject site can be taken as seismic site response **Class D** as defined in Table 4.1.8.4.A of the Ontario Building Code 2012 for foundations considered at this site. The soils underlying the site are not susceptible to liquefaction. Reference should be made to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Slab on Grade Construction

With the removal of all topsoil and fill, containing deleterious or organic materials, the native soil will be considered to be an acceptable subgrade surface on which to commence backfilling for slab on grade construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-floor fill consists of OPSS Granular A crushed stone. All backfill materials within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of the SPMDD.

Report: PG4544-1 Revision 1

5.6 Pavement Structure

For design purposes, the pavement structures presented in the following tables shall be used for the design of car only parking areas, heavy truck parking areas and access lanes.

It is anticipated that the proposed pavement structures will be placed over either a hard to stiff silty clay or engineered fill subgrade.

Table 2 - Recommended Pavement Structure - Car Only Parking Areas			
Thickness Material Description			
50 Wear Course - Superpave 12.5 Asphaltic Concrete			
150 BASE - OPSS Granular A Crushed Stone			
400 SUBBASE - OPSS Granular B Type II			
SUBGRADE - Either in situ soil, fill or OPSS Granular B Type I or II material placed over in situ soil			

Table 3 - Recommended Pavement Structure Heavy Truck Parking Areas and Access Lanes			
Thickness Material Description			
40	Wear Course - Superpave 12.5 Asphaltic Concrete		
50 Binder Course - Superpave 19.0 Asphaltic Concrete 150 BASE - OPSS Granular A Crushed Stone			
		450 SUBBASE - OPSS Granular B Type II	
SUBGRADE - Either in situ soil, fill or OPSS Granular B Type I or II material placed over in situ soil			

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing the load bearing capacity.

Due to the impervious nature of the subgrade materials consideration should be given to installing subdrains during the pavement construction. These drains should be installed at each catch basin, be at least 3 m long and should extend in four orthogonal directions or longitudinally when placed along a curb. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

It is recommended that a perimeter foundation drainage system be provided for the proposed structure as an outlet for perched water below the sidewalks anticipated to surround the building. Perched water below the sidewalks can lead to heaved sidewalks due to freeze/thaw cycles. The system should consist of a 100 to 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining, non frost susceptible granular materials. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be used for this purpose. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a composite drainage blanket, such as Miradrain G100N or Delta Drain 6000.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for exterior unheated footings, or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should be either cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

Report: PG4544-1 Revision 1

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly a Type 2 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A crushed stone. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of the SPMDD.

It should generally be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary MOECC permit to take water (PTTW) may be required if more than 50,000 L/day are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MOECC.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MOECC review of the PTTW application.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

Report: PG4544-1 Revision 1

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a severe to aggressive environment.

6.8 Tree Planting Restrictions

Given that the multi-storey building is proposed to have a finished floor elevation of 99.86 m, the underside of footing is expected at approximately elevation 98.4 m. Based on the subsurface conditions encountered in the boreholes, the hard to stiff silty clay crust extends to approximate geodetic elevations of 95.5 to 95 m. As such, the silty clay which extends 3 to 3.5 m below design footing level should be considered low to medium sensitivity clay and should not be considered a sensitive marine clay.

Based on the above discussion, it is recommended that trees placed within 4.5 m of the foundation wall consist of street trees with shallow root systems that extend less than 1.5 m below ground surface. Trees placed greater than 4.5 m from the foundation wall may consist of moderate water demanding trees with roots extending to a maximum 2 m depth. It should be noted that shrubs and other small plantings are permitted within the 4.5 m setback area.

It is documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils which shrink on drying can result in long-term differential settlements of the structures. Tree varieties that have the most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and should not be considered in the landscaping design.

Report: PG4544-1 Revision 1

6.9 Infiltration System Recommendations

It is understood that the proposed development will include a stormwater infiltration system. Based on our review of published values for silty clay and the results of a previous hydrogeological investigation completed in the general area, the recommended percolation rate for the stormwater infiltration system at this site is 35 to 50 minutes/cm.

It is also recommended that the bottom of the stormwater infiltration system be located a minimum of 1 m above the long term groundwater table, in accordance with the Ministry of Environment (MOE) Stormwater Design Manual.

Page 15

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that a materials testing and observation services program including the following aspects be performed by the geotechnical consultant.

Review final grading plan from a geotechnical perspective, once available.
Observation of all bearing surfaces prior to the placement of concrete.
Sampling and testing of the concrete and granular fill materials used.
Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
Observation of all subgrades prior to backfilling.
Field density tests to determine the level of compaction achieved.
Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

Statement of Limitations 8.0

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test hole locations, we request immediate notification to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Kanata Microtel or their agents is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report. August 28

August 28, 2018

Paterson Group Inc.

Scott S. Dennis, P.E.

Report Distribution:

☐ Kanata Microtel (e-mail copy)

☐ Paterson Group (1 copy)

David J. Gilbert, P.Eng.

Page 17

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

▲ Undisturbed

△ Remoulded

Ground surface elevations provided by Stantec Geomatic Ltd. **DATUM** FILE NO. PG4544 **REMARKS** HOLE NO. **BH 4 BORINGS BY** CME 55 Power Auger DATE 10 October 2013 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone Construction Piezometer (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % 80 **GROUND SURFACE** 20 0 + 99.35FILL: Brown silty sand with gravel and cobbles 1 0.60 1 + 98.352 SS 42 13 SS 3 100 14 O 2 + 97.35Hard to very stiff, brown SILTY 3+96.35 - stiff and grey by 3.7m depth 4 + 95.355+94.35 6 + 93.35Ó 7 + 92.35O 8 + 91.359 + 90.3560 100 Shear Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

DATUM Ground surface elevations p	rovide	ed by	Stante	c Geo	matic	Ltd.			FILE NO.	PG4544	
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	10 Octobe	er 2013			BH 4	
SOIL DESCRIPTION				IPLE 성	W •	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		ter tion
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD				later Con		Piezometer Construction
GROUND SURFACE	72.2			24	4	9-	90.35	20	40 60	80	
Stiff, grey SILTY CLAY								A			
Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 12.8m depth.		-				10-	-89.35				
						11-	-88.35				
						12-	87.35				
						13-	-86.35				
						14-	-85.35				
15.83						15-	-84.35	•			
End of Borehole		_									
Practical DCPT refusal at 15.83m depth											
(GWL @ 2.23m-Oct. 21, 2013)											
								20 Shea ▲ Undistu	40 60 or Strengt ourbed △		00

DATUM

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by Stantec Geomatic Ltd.

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

FILE NO.

PG4544 **REMARKS** HOLE NO. **BH 5 BORINGS BY** CME 55 Power Auger DATE 10 October 2013 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone Construction Piezometer (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Water Content % 80 **GROUND SURFACE** 20 0 + 98.991 + 97.99SS 1 100 12 SS 2 100 4 Ó 2 + 96.99Very stiff to stiff, brown SILTY CLAY 3+95.99 Ö - grey by 3.5m depth 4 + 94.995+93.99 6+92.99 7 + 91.998 + 90.999+89.99 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

DATUM Ground surface elevations p	rovide	ed by	Stante	c Geo	matic	Ltd.			FILE NO.	PG4544	
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	10 Octobe	er 2013	1		BH 5	
SOIL DESCRIPTION	A PLOT			IPLE	B 0	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia.		ter ction
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			○ W	ent %	Piezometer Construction	
GROUND SURFACE				-		9-	89.99	20	40 60		
Dynamic Cone Penetration Test commenced at 9.60m depth. Cone pushed to 11.3m depth.		_				40	00.00	<u> </u>			
pushed to 11.3m depth.						10-	-88.99				
						11-	-87.99				
12.14 End of Borehole		_				12-	-86.99				
Practical DCPT refusal at 12.14m											
depth											
(GWL @ 2.36m-Oct. 21, 2013)											
								20 Shea	40 60 r Strengtl	80 10 h (kPa)	00
								▲ Undist		Remoulded	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by Stantec Geomatic Ltd.

DATUM

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

FILE NO.

DEMARKO										PG4544	
REMARKS									HOLE NO	D. BH 6	
BORINGS BY CME 55 Power Auger	1				DATE	15 Octobe	er 2013			ВПО	T
	탕		SAN	IPLE		DEPTH	ELEV.			ows/0.3m	
SOIL DESCRIPTION	PLOT			>:	₩ -	(m)	(m)	• 5	0 mm Di	a. Cone	fer tion
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD			0 V	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE	STE	Ĥ	N	RECO	N O N			20		60 80	Piez
CHOONE SOIL ACE						0-	98.90			† : : : † : : :	— O
											\otimes
		∇		100	1.0	1-	97.90				▩▩
Hard to very stiff brown SILTV		ss	1	100	16		07.00				
Hard to very stiff, brown SILTY CLAY											
											49
						2-	96.90				
											99 📗
						3-	95.90		·		
							00.00	/			
	YXX	_						<u> </u>	: : : : :	\$ - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	49
(Piezometer damaged - Oct. 21, 2013)											
,											
								20 Shea	40 ar Streno	60 80 1 jth (kPa)	00
								▲ Undist	urbed \(\triangle \)	Remoulded	

DATUM

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by Stantec Geomatic Ltd.

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

FILE NO.

REMARKS										PG4544	
							0010		HOLE NO	o. BH 7	
BORINGS BY CME 55 Power Auger				D	ATE S	9 October	2013			D117	
	PLOT		SAN	IPLE		DEPTH	ELEV.			ows/0.3m	
SOIL DESCRIPTION				×	₩ -	(m)	(m)	• 5	0 mm Di	a. Cone	ter
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD			O 14	lator Co	mtant 0/	Piezometer Construction
	STR	Į.	NON) S	N V					ntent %	iezc
GROUND SURFACE		 		<u> </u>		0-	97.75	20	40	60 80	<u>₩</u> ₩
		 AU	1								$\otimes \otimes$
		⊗ AU	2								\otimes
											$\otimes \otimes$
Very stiff to stiff, brown SILTY CLAY						1-	96.75			1	39
- rootlets extending to 0.2m depth								<i> </i>			
noted											
						2-	95.75			<u> </u>	20
firm and grouply 2 Cm donth											
- firm and grey by 2.6m depth							04.75		*		
						3-	94.75				
3.50									- 14 - 1 - 1 - 1		
End of Borehole											
(Piezometer damaged - Oct. 21, 2013)											
2010)											
								20 Shea	40 er Strend	60 80 1 jth (kPa)	00
								▲ Undist		Remoulded	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario

Ground surface elevations provided by Stantec Geomatic Ltd. **DATUM** FILE NO. PG4544 **REMARKS** HOLE NO. **BH21 BORINGS BY** CME 55 Power Auger DATE 15 October 2013 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone Construction Piezometer (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Water Content % 80 **GROUND SURFACE** 20 0 + 98.551 + 97.55Hard to very stiff, brown SILTY **CLAY** 1 9 100 2+96.55 3+95.55 End of Borehole (GWL @ 0.91m-Oct. 21, 2013) 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	>85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube
PS	-	Piston sample
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% - Natural moisture content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic limit, % (water content above which soil behaves plastically)

PI - Plasticity index, % (difference between LL and PL)

Dxx - Grain size which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

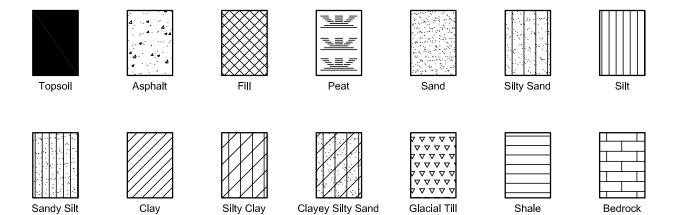
p'_o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

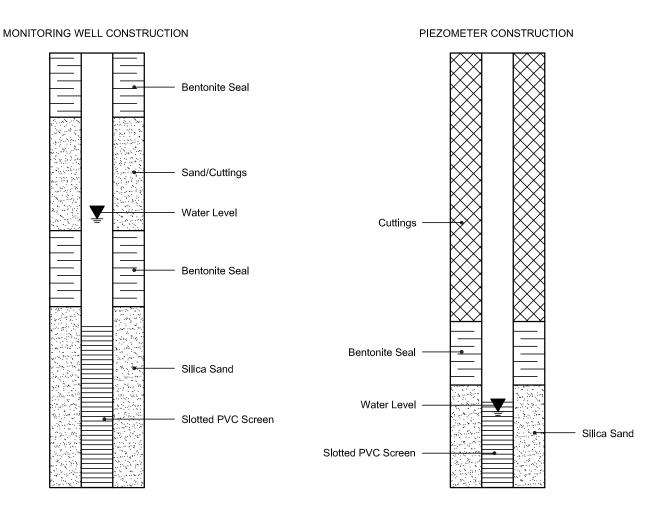
Ccr - Recompression index (in effect at pressures below p'c)
Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'_c/p'_o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

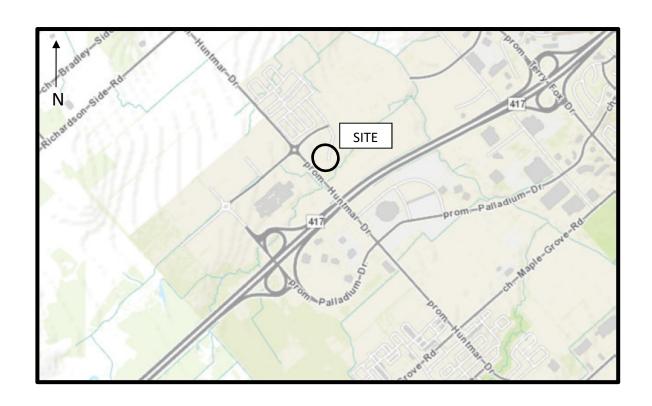
STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Order #: 1342113

Certificate of Analysis

Client: Paterson Group Consulting Engineers


Client PO: 15096 Project Description: PG3045 Report Date: 22-Oct-2013 Order Date:16-Oct-2013

Fruject Description: PG3045									
Client ID:	BH12-SS1	-	-	-					
Sample Date:	10-Oct-13	-	-	-					
Sample ID:	1342113-01	-	-	-					
MDL/Units	Soil	-	-	-					
0.1 % by Wt.	68.0	-	-	-					
		,	•	•					
0.05 pH Units	7.61	-	-	-					
0.10 Ohm.m	31.5	-	-	-					
		•	•						
5 ug/g dry	79	-	-	-					
5 ug/g dry	47	-	-	-					
	Sample Date: Sample ID: MDL/Units 0.1 % by Wt. 0.05 pH Units 0.10 Ohm.m	Client ID: BH12-SS1 Sample Date: 10-Oct-13 Sample ID: 1342113-01 Soil 0.1 % by Wt. 68.0 0.05 pH Units 7.61 0.10 Ohm.m 31.5	Client ID: BH12-SS1 -	Client ID: BH12-SS1					

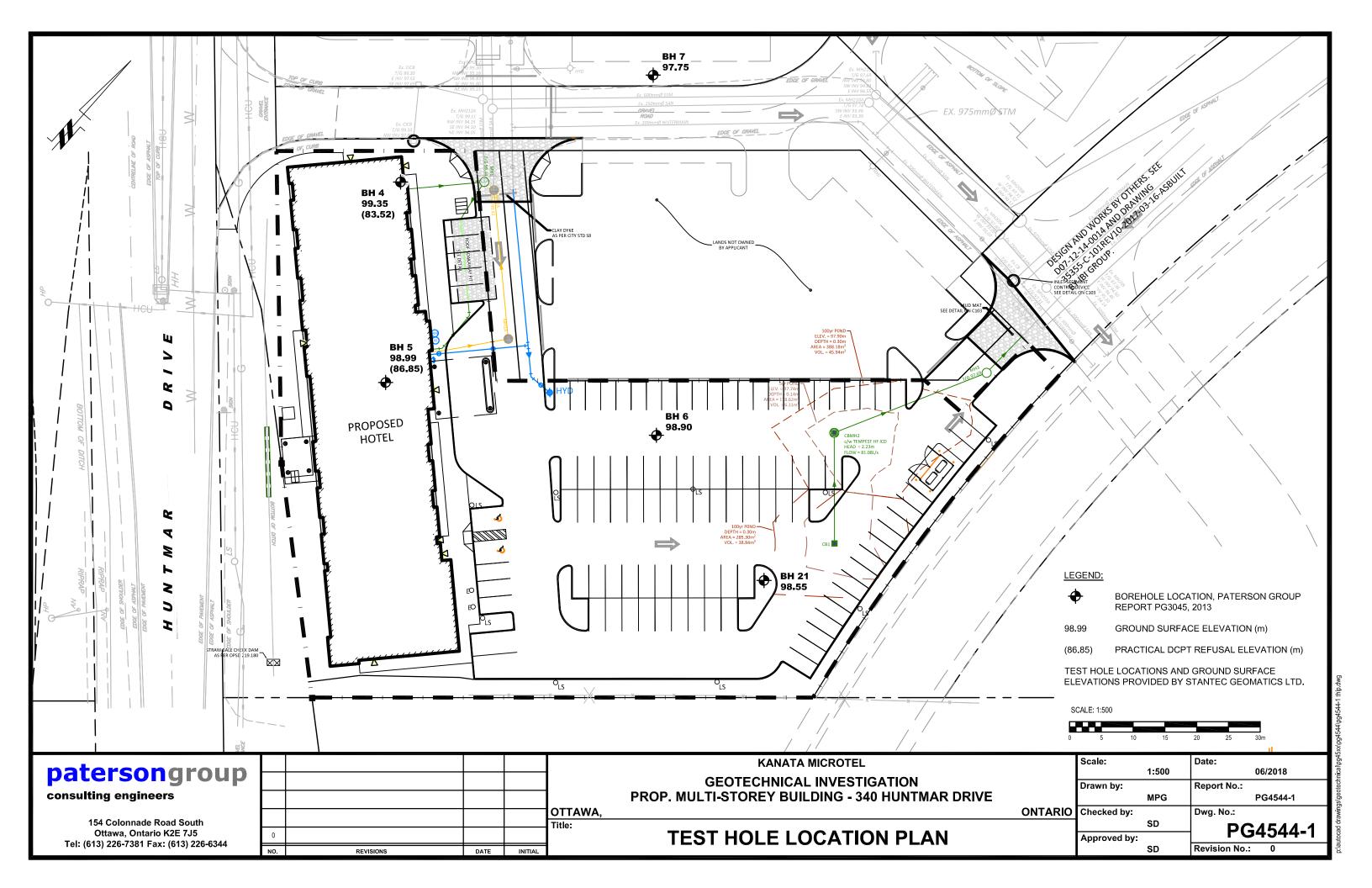

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG4544-1 - TEST HOLE LOCATION PLAN

FIGURE 1 KEY PLAN

