

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

SERVICING AND STORMWATER MANAGEMENT

FOR

GREATWISE DEVELOPMENTS 2710 DRAPER AVENUE – FRESH TOWNS - PHASE 3-1

CITY OF OTTAWA

PROJECT NO.: 17-927 DEVELOPMENT FILE NO.: D07-12-17-0076

> AUGUST 2018 – REV 8 © DSEL

SERVICING AND STORMWATER MANAGEMENT FOR 2710 DRAPER AVENUE – FRESH TOWNS - PHASE 3-1 GREATWISE DEVELOPMENTS

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	2
1.2	Required Permits / Approvals	3
1.3	Pre-consultation	3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	4
3.0	WATER SUPPLY SERVICING	6
3.1	Existing Water Supply Services	6
3.2	Water Supply Servicing Design	6
3.3	EPANet Water Modelling	9
3.4	Water Supply Conclusion	11
4.0	WASTEWATER SERVICING	12
4.1	Existing Wastewater Services	12
4.2	Wastewater Design	12
4.3	Morrison Drive Sanitary Sewer Hydraulic Grade Line Assessment	14
4.4	Wastewater Servicing Conclusions	
	5	
5.0	STORMWATER MANAGEMENT	
5.0 5.1	, , , , , , , , , , , , , , , , , , ,	15
	STORMWATER MANAGEMENT	15 15
5.1	STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis	15 15 16 16
5.1 5.2	STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target	15
5.1 5.2	STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis 5.3.1 Model Selection	15 15 16 16 16 17
5.1 5.2 5.3	STORMWATER MANAGEMENT. Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis 5.3.1 Model Selection 5.3.2 Model Assumptions	
5.1 5.2 5.3	STORMWATER MANAGEMENT. Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis 5.3.1 Model Selection 5.3.2 Model Assumptions Proposed Minor Stormwater Management System	15 15 16 16 16 16 17 18
5.1 5.2 5.3 5.4	STORMWATER MANAGEMENT. Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis 5.3.1 Model Selection 5.3.2 Model Assumptions Proposed Minor Stormwater Management System 5.4.1 Hydraulic Grade Line Analysis Proposed Major System Flow Catchbasin Capture Analysis	15 15 16 16 16 16 17 18 20 21
5.1 5.2 5.3 5.4 5.5	STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis	15 15 16 16 16 16 17 18 20 21
5.1 5.2 5.3 5.4 5.5 5.6	STORMWATER MANAGEMENT. Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis 5.3.1 Model Selection 5.3.2 Model Assumptions Proposed Minor Stormwater Management System 5.4.1 Hydraulic Grade Line Analysis Proposed Major System Flow Catchbasin Capture Analysis	15 151616161617182021212122
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target EPASWMM Stormwater Analysis 5.3.1 Model Selection 5.3.2 Model Assumptions. Proposed Minor Stormwater Management System 5.4.1 Hydraulic Grade Line Analysis. Proposed Major System Flow Catchbasin Capture Analysis Stormwater Servicing Conclusions	15 151616161617182021212222

FIGURES

Figure 1	Site Location
	TABLES
Table 1	Water Supply Design Criteria
Table 2	Water Demand Proposed Site Conditions – Phase 3-1
Table 3	Water Demand Proposed Site Conditions – Phase 3-1 & Phase 3-2
Table 4	FUS Estimated Fire Flow Summary
Table 5:	Model Simulation Output Summary – Phase 3-1
Table 6:	Model Simulation Output – Water Age Summary – Phase 3
Table 7	Summary of Existing Peak Wastewater Flow
Table 8	Wastewater Design Criteria
Table 9	Summary of Estimated Peak Wastewater Flow – Phase III
Table 10	Summary of Estimated Peak Wastewater Flow – Ultimate
Table 11	Summary of Calculated Time of Concentration
Table 12	Summary of Existing Peak Storm Flow Rates
Table 13	Available Subcatchment Storage Volumes
Table 14	Drainage Area Summary
Table 15	Summary of Storm Structure ICD
Table 16	Drainage Area Storage Volume Analysis 100-Year 6-Hour Storm
Table 17	Summary of Storage and Peak Flow Rates for the 5 and 100-Year Storm Distribution
Table 18	Storm Sewer Design Criteria
Table 19	Hydraulic Grade Line Analysis 100-Year 6-Hour
	Storm
Table 20	Catchbasin Capture Analysis
	APPENDICES
Appendix A Appendix B	Pre-consultation Notes Water Supply

- Appendix C Appendix D Wastewater Collection
- Stormwater Management
- Appendix E Supporting Documentation
 - Drawings / Figures Proposed Site Plan

SERVICING AND STORMWATER MANAGEMENT FOR 2710 DRAPER AVENUE – FRESH TOWNS - PHASE 3-1 GREATWISE DEVELOPMENTS AUGUST 2018 – REV 8

CITY OF OTTAWA PROJECT NO.: 17-927

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by Greatwise Developments to prepare a Servicing and Stormwater Management report in support of the application for a Site Plan Control (SPC) for the Phase 3-1 development at 2710 Draper Avenue.

The subject property is located within the City of Ottawa urban boundary, lot 19, concession 2 in Ward 8 -College. As illustrated in *Figure 1*, the site is bound by Morrison Drive to the west and Draper Avenue to the north, and an existing residential development to the east. Phase 3 of the development will occupy *1.3 ha* of the property and is zoned High Density Residential [R5A].

Figure 1: Site Location

The existing SPC for 2781 Baseline Road allowed for the Phase 1 and Phase 2 developments, Building E and Building F, respectively. Building E has been constructed and is now part of OC1791074.

The proposed SPC for Phase 3 would allow for the development of 86 slab on grade townhome units, **32 units** in Phase 3-1, **54 units** in Phase 3-2, and a communal park space. A copy of the Site Plan is included in **Drawings/Figures**.

The objective of this report is to provide sufficient detail to demonstrate that the existing municipal services provide sufficient capacity to support the SPC for the proposed Phase 3-1 development at 2710 Draper Avenue.

1.1 Existing Conditions

The site is currently developed as residential and consists of 4 townhome buildings (84 units) and a retail office. The existing buildings are serviced by separate water and sewer services off of municipal mains along Morrison Drive and Draper Avenue.

The existing on-site storm and sanitary sewers which service the existing buildings are to be abandoned and capped at the property line. Existing on-site water services are to be blanked at the main. Refer to drawing EX-1 for further details on existing services to be removed. A Topographical plan is also included in *Drawings/Figures* to demonstrate existing on-site easements.

Storm and sanitary sewers supporting 2702 Draper Avenue encroach into the subject property. The existing services are not within an easement. The developer is working with the adjacent land owner to coordinate an easement or relocation during the next phase of development.

The existing site grades range from approximately 73.13 m to 75.31 m from the northeast to the southwest corner of the property, which results in a grade change of approximately 2.18 m.

Sewer and watermain mapping collected from the City of Ottawa indicate that the following services exist across the property frontages, within the adjacent municipal right-of-ways:

Draper Avenue

- > 200 mm diameter CI watermain
- > 450 mm diameter concrete storm sewer tributary to Ottawa Central sub-watershed
- > 225 mm diameter concrete sanitary sewer tributary to the Pinecrest Collector

Morrison Drive

> 200 mm diameter CI watermain

- 300 mm diameter storm sewer, within Morrison Drive, tributary to Ottawa Central sub-watershed
- 300 mm diameter storm sewer, within the subject site, tributary to Ottawa Central sub-watershed
- 225 mm diameter concrete sanitary sewer, within Morrison Drive, tributary to the Pinecrest Collector
- 200 mm diameter concrete sanitary sewer, within the subject site, tributary to the Pinecrest Collector

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

Based on coordination with the City of Ottawa, an Environmental Compliance Application (ECA) would not be required for the proposed development during the Site Plan Control process. When the properties are subdivided through Part Lot Control, an ECA will be required.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA). Correspondence with the RVCA is included in *Appendix A*.

1.3 **Pre-consultation**

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines
 City of Ottawa, SDG002, October 2012
 (City Standards)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-04 City of Ottawa, June 27, 2018. (ISTB-2018-04)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Design Guidelines for Sewage Works Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium
 Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update.
 (OBC)

- Morrison Court Development Wastewater Servicing Study Novatech Engineering Consultants Ltd., January 2009. (Existing Wastewater Study)
- Geotechnical Investigation, Residential Development, 2710 Draper Avenue, Ottawa, Ontario
 Paterson Group, Inc., PG1630-3 – Revision 4, May 28, 2018. (Geotechnical Investigation)
- Functional Servicing and Stormwater Management Brief in support of Site Plan Amendment for 2781 Baseline Road David Schaeffer Engineering Ltd., April 2016. (Previously Approved Brief)

WATER SUPPLY SERVICING 3.0

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 1W pressure zone, as shown by the Pressure Zone Map in Appendix B. Potable water is available to the Phase 3 development via an existing 200 mm CI watermain on Morrison Drive and an existing 200 mm CI watermain on Draper Avenue.

3.2 Water Supply Servicing Design

It is proposed that the development will have an internal watermain network with a connection to the existing 200 mm diameter watermain within Draper Avenue and two connections to the existing 200 mm diameter watermain within Morrison Drive. Townhomes fronting Draper Avenue, Block 1, 2, and 6 will have independent connections to the existing infrastructure within the Draper Avenue right-of-way via 19mm diameter service laterals. The remaining Blocks will have connections to the internal watermain via 19mm diameter service laterals.

Table 1 summarizes the Water Supply Guidelines employed in the preparation of the preliminary water demand estimate.

Design Parameter	Value
Residential Townhome	2.7 P/unit
Residential 1 Bedroom Apartment	1.4 P/unit
Residential 2 Bedroom Apartment	2.1 P/unit
Residential Average Daily Demand	350 L/d/P
Residential Maximum Daily Demand	3.6 x Average Daily *
Residential Maximum Hourly	5.4 x Average Daily *
Minimum Watermain Size	150 mm diameter
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
During normal operating conditions desired	350 kPa and 480 kPa
operating pressure is within	
During normal operating conditions pressure must	275 kPa
not drop below	
During normal operating conditions pressure must	552 kPa
not exceed	
During fire flow operating pressure must not drop	140 kPa
below	
*Daily average based on Appendix 4-A from Water Supply Guidelines	

Table 1 Water Supply Design Criteria

* Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons. -Table updated to reflect ISD-2010-2

Table 2 and Table 3 summarizes the water supply demand and boundary conditions for the proposed development based on the Water Supply Guidelines.

Table 2
Water Demand
Proposed Site Conditions – Phase 3-1

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² Connection 1 (Morrison Drive) (m H ₂ O / kPa)	Boundary Condition ² Connection 2 (Draper Avenue) (m H ₂ O / kPa)
Average Daily Demand	21.1	45.8 / 449.3	45.5 / 446.6
Max Day + Fire Flow	76.1 + 10,000 = 10,076.1	14,100 L/min @ 140 kPa	12,600 L/min @ 140 kPa
Peak Hour	114.2	34.1 / 334.5	33.8 / 331.9
 Water demand calculation per <i>Water Supply Guidelines</i>. See <i>Appendix B</i> for detailed calculations. Boundary conditions supplied by the City of Ottawa for the demands indicated in the correspondence; assumed ground elevation 71.9m and 72.17m for Connection 1 and 2, respectively. See <i>Appendix B</i>. 			

Table 3Water DemandProposed Site Conditions – Phase 3-1 & Phase 3-2

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² Connection 1 (Morrison Drive) (m H ₂ O / kPa)	Boundary Condition ² Connection 2 (Draper Avenue) (m H ₂ O / kPa)
Average Daily Demand	56.6	45.8 / 449.3	45.5 / 446.6
Max Day + Fire Flow	203.9 + 11,000 = 11,203.9	14,100 L/min @ 140 kPa	12,600 L/min @ 140 kPa
Peak Hour	305.8	34.1 / 334.5	33.8 / 331.9
1) Water demand calculation per <i>Water Supply Guidelines</i> . See <i>Appendix B</i> for detailed calculations.			
 Boundary conditions supplied by the City of Ottawa for the demands indicated in the correspondence; assumed ground elevation 71.9m and 72.17m for Connection 1 and 2, respectively. See <i>Appendix B</i>. 			

Fire flow requirements are to be determined in accordance with City of Ottawa *Water Supply Guidelines*, and the Ontario Building Code.

Fire flow requirements were estimated per City of Ottawa Technical Bulletin *ISTB-2018-02*. The following parameters were established by Roderick Lahey Architects:

- Type of construction Non-Combustible Construction
- Occupancy type Combustible
- Sprinkler Protection Non-Sprinkler System

Table 4 summarizes the estimated fire flow demands based on the FUS method and summarizes the available fire hydrants within 90 meters of each block. Detailed calculations can be found in **Appendix B**.

Phase	Anticipated Demand (L/min)	Fire Hydrants within 90 Meters	
Block 1	9,000	FH1, FH4, FH5	
Block 2	10,000	FH1, FH2, FH4	
Block 3	8,000	FH1, FH2, FH4, FH5	
Block 4	9,000	FH1, FH2, FH4	
Block 5	10,000	FH1, FH2, FH5	
Block 6	11,000	FH1, FH2, FH3	
Block 7	9,000	FH1, FH2, FH3	
Block 8	9,000	FH1, FH2	
Block 9	8,000	FH1, FH2, FH3	
Block 10	8,000	FH1, FH2, FH3	
Block 11	7,000	FH1, FH2, FH3	
Block 12	9,000	FH1, FH2, FH4, FH5	

Table 4FUS Estimated Fire Flow Summary

The above assumptions result in a maximum fire flow of approximately **11,000 L/min**, actual building materials selected will affect the estimated flow. Based on **Table 4**, a minimum of two fire hydrants are available to support each block. Hydrant locates are identified on drawing **SSP-1**.

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand as indicated in the boundary request correspondence included in *Appendix B*.

The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow demand as indicated by the correspondence in *Appendix B*. The minimum and maximum pressures fall within the required range identified in *Table 1*.

Based on boundary conditions provided by the City a maximum **12,600 L/min** is available from Draper Avenue and **14,100 L/min** is available from Morrison Drive.

3.3 EPANet Water Modelling

EPANet was utilized to determine pipe sizing and the availability of pressures throughout the system during average day demand, max day plus fire flow, and peak hour demands. The static model determines pressures based on the available head obtained from the boundary conditions provided by the City of Ottawa, as indicated in **Table 2** and **Table 3**.

The model utilizes the Hazen-Williams equation to determine pressure drop, while the pipe properties, including friction factors, have been selected in accordance with Table 4.4 of the *Water Supply Guidelines*. The model was prepared to assess the available pressure at the finished first floor of each building, as well as, the pressures the watermain provides to fire hydrants during fire flow conditions.

For the purposes of providing sufficient fire flow, **7,000** *L/min* for a total of **14,000** *L/min* was modelled at the proposed fire hydrants during Phase 3-1 conditions, and **7,000** *L/min* for a total of **14,000** *L/min* was modelled at the proposed fire hydrants during the Phase 3 conditions.

Table 5 summarizes the model results. *Appendix B* contains output reports and model schematics for each scenario.

	Average Day	Max Day + Fire Flow	Peak Hour
Location	(kPa)	(kPa)	(kPa)
4	464.3	402.9	344.3
5	454.4	395.2	339.6
7	457.9	397.6	336.1
9	462.0	425.9	347.2
10	460.5	412.4	345.7
11	459.1	422.7	343.8
12	457.6	409.4	342.4
13	456.0	394.7	341.2
14	451.6	411.6	336.3
15	449.5	395.1	334.2
16	447.3	378.3	332.6
17	458.6	397.3	343.8
18	454.4	414.7	339.6
19	452.4	398.4	337.7
20	455.7	386.3	341.0
21	451.2	411.4	336.4
22	449.9	395.8	335.1
23	447.5	378.5	332.8
24	457.2	401.0	342.5
26	458.5	422.0	343.0
27	457.2	408.8	341.7
28	455.2	393.9	340.4
29	454.3	392.1	339.5
FHYD1	462.1	357.2	345.3
FHYD2	453.7	337.9	338.9
† indic	ates pressures exceeded requi	ired pressure values as outlined in Ta	able 1

Table 5: Model Simulation Output Summary – Phase 3-1

Based on the EPANET model, pressures during average day, max day + fire flow and peak hour, and peak hour respect the requirements of the *Water Supply Guidelines*. As demonstrated in *Table 5*, the local fire hydrants can provide the each block with the required fire flows indicated in *Table 4*.

Table 6 summarizes the water age model results. *Appendix B* contains output reports and model schematics for each scenario.

Location	Average Day	Max Day + Fire Flow	Peak Hour
	(hr)	(hr)	(hr)
P1	1.0-3.0	0-0.25	0-0.25
P2	0.50-0.75	0-0.25	0-0.25
P3	1.0-3.0	0-0.25	0.25-0.50
P4	1.0-3.0	0-0.25	1.0-3.0
P5	1.0-3.0	0-0.25	0.25-0.50
P8	1.0-3.0	0-0.25	0-0.25
P9	1.0-3.0	0-0.25	0.50-0.75
P10	1.0-3.0	0-0.25	0.25-0.50
P11	1.0-3.0	0-0.25	1.0-3.0
P12	1.0-3.0	0-0.25	0.25-0.50
P13	1.0-3.0	0-0.25	1.0-3.0
P14	1.0-3.0	0-0.25	0.50-0.75
P15	1.0-3.0	0-0.25	0-0.25
P16	0.25-0.50	0-0.25	0-0.25
P17	0.25-0.50	0-0.25	0-0.25
P18	1.0-3.0	0-0.25	0.25-0.50
P19	1.0-3.0	0-0.25	1.0-3.0
P20	1.0-3.0	0.25-0.50	0.75-1.0
P21	0.75-1.00	0-0.25	0-0.25
P22	1.0-3.0	0-0.25	0.25-0.50
P23	1.0-3.0	0.25-0.50	1.0-3.0
P24	0.75-1.00	0-0.25	0-0.25
P25	1.0-3.0	0-0.25	0.50-0.75
P26	1.0-3.0	0.25-0.50	1.0-3.0
P27	1.0-3.0	0-0.25	0.75-1.0
P28	1.0-3.0	0.25-0.50	1.0-3.0
P29	1.0-3.0	0.25-0.50	0.50-0.75

Table 6: Model Simulation Output – Water Age Summary – Phase 3

As demonstrated by **Table 6**, water age within the proposed system does not exceed 3 hours. The model indicates that pressure within the watermain network are within **City Standards**.

3.4 Water Supply Conclusion

The FUS assumptions result in an estimated fire flow of approximately **10,000 L/min** during Phase 3-1 conditions and **11,000 L/min** during Phase 3 conditions. The proposed average day water supply demand for the Phase 3 development based on the site plan is calculated to be **56.6 L/min**.

Based on the EPANET model, pressures during average day, max day + fire flow and peak hour, and peak hour respect the requirements of the *Water Supply Guidelines* and the proposed hydrants can provide each block with their require fire flows.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site lies within the Pinecrest Collector Sewer catchment area, as shown by the City sewer mapping included in *Appendix C*. An existing 225 mm diameter sanitary sewer within Draper Avenue and a 225 mm and a 200 mm diameter sanitary sewer within Morrison Drive are available to service the proposed development.

The existing site consists of residential units contributing wastewater to the local Draper Avenue and Morrison Drive sewer system. The sanitary sewers are tributary to the Pinecrest Trunk Collector sewer approximately 1.4 km downstream of the site.

An assessment of the existing Morrison drive sanitary sewer capacity was conducted for the Phase 1 and Phase 2 developments; the analysis identified that there is an available capacity of **8.0 L/s**. Refer to Section 4.3 for further discussion.

Table 7 demonstrates the estimated peak flow from the existing development including the Phase 1 development. See *Appendix C* for associated calculations.

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	1.45
Estimated Peak Dry Weather Flow	5.89
Estimated Peak Wet Weather Flow	6.59

Table 7Summary of Existing Peak Wastewater Flow

4.2 Wastewater Design

It is proposed that the development will have an internal sanitary sewer network with a connection to the existing 225 mm diameter sanitary sewer within Draper Avenue. Townhomes fronting Draper Avenue, Block 1, 2, and 6, will have independent connections to the existing 225 mm diameter sanitary sewer within Draper Avenue via 135 mm diameter service laterals. The remaining Blocks will have connections to the internal network via 135 mm diameter service laterals. Sanitary calculation sheet employed in the design of the internal network is included in *Appendix C*.

Table 8 summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

P/unit P/unit P/unit D L/d/per rmon's Peaking Factor. Max 4.0, Min 2.0 rmon's Correction Factor 0.8 5 L/s/ha (Dry Weather) 8 L/s/ha (Wet Weather)
P/unit D L/d/per rmon's Peaking Factor. Max 4.0, Min 2.0 rmon's Correction Factor 0.8 5 L/s/ha (Dry Weather) 8 L/s/ha (Wet Weather)
D L/d/per rmon's Peaking Factor. Max 4.0, Min 2.0 rmon's Correction Factor 0.8 5 L/s/ha (Dry Weather) 8 L/s/ha (Wet Weather)
rmon's Peaking Factor. Max 4.0, Min 2.0 rmon's Correction Factor 0.8 5 L/s/ha (Dry Weather) 8 L/s/ha (Wet Weather)
rmon's Correction Factor 0.8 5 L/s/ha (Dry Weather) 8 L/s/ha (Wet Weather)
8 L/s/ha (Wet Weather)
3 L/s/ha (Total)
$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
0 mm diameter
)13
om from crown of sewer to grade
δm/s
)m/s
.0 .5

Table 8Wastewater Design Criteria

Table 9 and *10* demonstrate the estimated peak flow from the proposed development. See *Appendix C* for associated calculations.

Table 9Summary of Estimated Peak Wastewater Flow – Phase III

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.76
Estimated Peak Dry Weather Flow	2.71
Estimated Peak Wet Weather Flow	3.15

Table 10Summary of Estimated Peak Wastewater Flow – Ultimate

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	1.70
Estimated Peak Dry Weather Flow	5.67
Estimated Peak Wet Weather Flow	6.38

DSEL estimated the peak wet weather flow based on the development statistics provided by Roderick Lahey Architect Inc. As a result, the development proposes to decrease the peak wet weather flow from the site by **0.21** L/s.

4.3 Morrison Drive Sanitary Sewer Hydraulic Grade Line Assessment

A preliminary assessment of the existing Morrison drive sanitary sewer capacity was conducted by Novatech. This analysis is provided in *Appendix C* in the report *Morrison Court Development Wastewater Servicing* Study dated January 26, 2009. The Novatech study used GIS data provided by the City to model the existing sewer network. Their study found that under existing conditions, the minimum freeboard between the hydraulic grade line (HGL) and the lowest connected underside of footing (USF) elevation was **0.33 m**.

To support this study, J.F. Sabourin and Associates (JFSA) was retained by Greatwise to re-create the Novatech model of the Morrison Drive sanitary sewer under both existing and proposed Phase 1 and Phase 2 conditions. JFSA recreated the Novatech model using XPSWMM, while Novatech had previously used H2OMAP Sewer/Pro. It was, therefore, anticipated that JFSA would arrive at slightly different results than Novatech when modelling the same system. In the JFSA model it was found that the minimum freeboard was **0.37 m**.

To verify existing sanitary pipe inverts and sizes, Stantec Geomatics Ltd. (Stantec) was retained by Greatwise to conduct a field survey along the Morrison Drive sewer. Several differences were present between the existing conditions data provided by Novatech and the survey performed by Stantec. When the surveyed data was input into the model it was found that the minimum freeboard was **0.48m**.

In proposed Phase 1 and Phase 2 scenarios, it was found that the minimum freeboard between the HGL and the lowest connected USF was **0.44 m**. This is greater than the City of Ottawa's minimum allowable value of 0.30 m. An email report from JFSA, as well as, detailed modeling information is provided in *Appendix C*.

Based on the previous HGL assessment and the email from JFSA dated January 21, 2013, included in the *Appendix C*, an available capacity of *8.0 L/s* was identified. As a result, no changes to the downstream sanitary network are required at this time. As indicated by *Table 5* and the ultimate condition sanitary calculation sheet included in *Appendix C*, there is sufficient capacity to support the proposed ultimate development.

4.4 Wastewater Servicing Conclusions

The site is tributary to the Pinecrest Trunk Collector sewer; based on the sanitary analysis provided by JFSA, sufficient capacity is available to accommodate the estimated **6.38 L/s** peak wet weather flow from the proposed ultimate development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system located within the Ottawa Central sub-watershed. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA).

The existing site is serviced by two existing catchbasins. One system outlets to the existing 300 mm diameter storm sewer located within the Morrison Drive right-of-way. The second catchbasin system discharges to the existing storm sewer located along the East side of the property, ultimately outletting to the existing 450 mm diameter storm sewer located within the Draper Avenue right-of-way. Drainage is routed north along Morrison Drive, then west to the outlet at a tributary to Graham Creek, approximately 1.5 km from the site.

In an effort to select the appropriate method in which time of concentration is calculated two methods were analyzed: the Airport Method and the SCS Method. The Airport Method is intended for developments that are primarily flat and asphalt. The SCS Method is intended for small urban basins under 2000 acres. Calculated time of concentrations are summarized in *Table 11*.

Area	Time of Concentration (min)
Airport Method	12.6
SCS Method	5.3

Table 11Summary of Calculated Time of Concentration

It was assumed that the existing development contained no stormwater management controls for flow attenuation. Based on the time of concentration analysis, the Airport Method is utilized due to the type of development and to provide a conservative estimate of existing peak storm flow rates. The estimated pre-development peak flows for the 2, 5, and 100-year are summarized in *Table 12*:

City of Ottawa Design Storm	Estimated Peak Flow Rate
	(L/s)
2-year	141.4
5-year	191.6
100-year	409.9

Table 12Summary of Existing Peak Storm Flow Rates

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were established using the City of Ottawa standards, where the proposed development is required to:

- Meet an allowable release rate based on a Rational Method Coefficient of 0.50, employing the City of Ottawa IDF parameters for a 2-year storm with a calculated time of concentration greater than or equal to 10 minutes.
- Attenuate all storms up to and including the City of Ottawa 100-year design event on site.
- Provide quality controls to an enhanced level of treatment due to the site's distance from the outlet and the current Site Plan; correspondence with the RVCA is included in *Appendix A*.

Based on the above the allowable release rate for the proposed development is **126.3** *L*/**s**.

5.3 EPASWMM Stormwater Analysis

5.3.1 Model Selection

The hydrology and hydraulics of the proposed stormwater management system were analyzed in EPASWMM using the Dynamic Wave Routing Model. This method best analyzes stormwater systems with respect to pressure flow and backwater impacts.

A model schematic and output files are included in *Appendix D*.

5.3.2 Model Assumptions

The following assumptions were made in the preparation for the EPASWMM model:

- Hydrology
 - > Initial abstraction parameters per City of Ottawa standards.
 - > Horton's infiltration for soil loss, per City guidelines.
 - Estimated % impervious area assuming limited vegetation / effective perviousness.
 - Sub-catchment width measured as perpendicular area to catch basins for longest distance of travel.
- Hydraulics
 - Storage Nodes represent both surface and subsurface components. Each node is assigned an invert elevation that corresponds with the tributary catch basin.
 - "Regular" Node represent either connections to the sewer main or strategic maintenance hole locations. Not all structures have been included in model.
 - > All conduits have been assigned a Mannings n = 0.013.
 - Orifices are all side mounted circular and have a 0.61 discharge coefficient.

Table 13 summarizes the storage volumes within each subcatchment.

Catchment ID	Outlet	Above Ground Storage (m ³)	Underground Storage (m ³)	
A1	MH4	-	-	
A2	MH2	-	-	
A3	MH3	-	-	
A4	UG3	-	41.6	
A5	MH5	-	-	
A6	MH6	-	-	
A7	MH7	-	-	
A8	MH7	-	-	
-	UG2	-	209.3	
PARK	UG1	-	198.1	
*No storage accounted for in rear yard systems.				

Table 13Available Subcatchment Storage Volumes

Table 14 summarizes the assumptions	made for the EPASWMM model.
-------------------------------------	-----------------------------

Catchment ID	Outlet	Total Area (ha)	Percent Impervious	Width (m)	Percent Slope
		0.05	(%)	07	(%)
A1	MH1	0.25	71	27	2.0
A2	MH2	0.26	71	66.6	2.0
A3	MH3	0.07	71	60	2.0
A4	UG3	0.08	71	33	2.0
A5	MH5	0.19	71	65	2.0
A6	MH6	0.19	71	63	2.0
A7	MH7	0.10	71	34	2.0
PARK	UG1	0.05	42.9	21	4.0
U1	-	0.16	71	120	5.0

Table 14Drainage Area Summary

5.4 Proposed Minor Stormwater Management System

The proposed stormwater management system will include private catch basin and storm sewer system with three underground storage units to achieve the target release rates. The stormwater management design consists of a private storm sewer system with a connection to the existing 450 mm diameter storm sewer within the Draper Avenue right-of-way.

Townhomes fronting Draper Avenue, Block 1 and 2, will have independent connections to the existing 450 mm diameter storm sewer within Draper Avenue via 100 mm diameter service laterals. The remaining Blocks will have connections to the internal network via 100 mm diameter service laterals.

Area A1, shown by drawing **SWM-1**, is tributary to the internal storm sewers connecting to Draper Avenue. **449.0** m^3 of underground storage is provided via Brentwood ST-36 storage systems or an approved equivalent storage system and will be attenuated by a **144** mm Plug Style ICD at the outlet side of MH8. MH 9 at the connection to the municipal sewer will be equipped with a Checkmate Ultraflex inline backwater valve to prevent stormwater from the municipal system from entering the private stormwater management system.

Table 15		
Summary of Storm Structure ICD		

Structure ID	ICD Size (mm)	Style	Design Head (m)	Design Flow (100-year) (L/s)
MH8	144	PLUG	1.81	53.97

To meet stormwater quality criteria specified by RVCA, an oil/grit separator will be installed downstream of all catch basins, as shown by drawing **SSP-1**. Based on Stormceptor sizing, a Stormceptor **OSR 750** will provide an enhanced level of quality control (80% TSS removal) in accordance with the RVCA requirement. Stormceptor sizing has been included in **Appendix D**.

Table 16 summarizes each sub-catchment. *Appendix D* contains a detailed outline of available storage and inlet controls.

Table 16Drainage Area Storage Volume Analysis 100-Year 6-Hour Storm

Catchment ID	Structure ID	Required Volume (1000 m ³)	Available Percent Full (%)	Maximum Outflow (L/s)
A1/A3/A4	UG3	0.032	90	62.72
PARK	UG1	0.144	73	14.89
A7	UG2	0.195	98	14.62

Table 17 summarizes the results of the EPASWMM model at the outfall. Model input and output summary is included in *Appendix D*.

Table 17
Summary of Storage and Peak Flow Rates for the 5 and 100-Year Storm
Distribution

	5-Year	100-Year
Outfall Node	(L/s)	(L/s)
System	24.0	125.4

Based on the EPASWMM analysis, the site is capable of attenuating to the established release rate of **126.3** *L*/**s**. A model schematic and output files are included in *Appendix D*.

Table 18 summarizes the relevant *City Standards* employed in the design of the proposed storm sewer system referred to as the minor system.

Design Parameter	Value
Intensity Duration Frequency Curve (IDF) 5-year	Α
storm event.	$i = \frac{A}{(t_a + B)^C}$
A = 998.071	$(t_c + B)^\circ$
B = 6.053	
C = 0.814	
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Runoff coefficient for paved and roof areas	0.9
Runoff coefficient for landscaped areas	0.2
Storm sewers are to be sized employing the	$Q = \frac{1}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
Manning's Equation	$Q = -AR^{73}S^{72}$
Minimum Sewer Size	250 mm diameter
Minimum Manning's 'n'	0.013
Service Lateral Size	100 mm dia PVC SDR 28 with a minimum slope
	of 1.0%
Minimum Depth of Cover	2.0 m from crown of sewer to grade
Minimum Full Flowing Velocity	0.8 m/s
Maximum Full Flowing Velocity	3.0 m/s
Additional Considerations	Storm sewer maintenance holes serving sewers
	900 mm diameter and less shall be constructed
	with 300 mm deep sumps. Maintenance holes for
	storm sewers greater than 900 mm must be
	benched.
Extracted from Sections 5 and 6 of the City of Ottawa	a Sewer Design Guidelines, November 2004.

Table 18Storm Sewer Design Criteria

5.4.1 Hydraulic Grade Line Analysis

A Hydraulic Grade Line (HGL) analysis was completed using EPASWMM. The minimum freeboard between the slab elevation and the HGL will be 0.30 m. The 100-year 6-Hour Chicago storm event yielded the highest peak flows and was, therefore, used in the HGL analysis.

Table 19 below summarizes modeled results of selected nodes that resulted in the smallest difference between slab elevation and HGL. Full model results can be seen in *Appendix D.*

Node ID	Building ID	Building Slab Elevation (m)	Maximum HGL (m)	Freeboard (m)
MH5	BLOCK 1	73.07	71.96	1.11
CLINI	BLOCK 3	73.77		1.81
МНе	BLOCK 2	73.07	71.96	1.11
MH6	BLOCK 4	73.97		2.01

Table 19Hydraulic Grade Line Analysis 100-Year 6-Hour Storm

5.5 **Proposed Major System Flow**

During storms in excess of the 100-year event or if catchbasins/manholes become blocked, stormwater runoff will spill towards the private right-of-ways. Stormwater from private right-of-ways will flow overland towards the municipal infrastructure within the Draper Avenue right-of-way and ultimately to Graham Creek, approximately 1.5 km downstream. During a stress test event, stormwater is estimated to ponding on Draper Avenue to 72.17 m, therefore will spill towards the municipal ROWs without touching proposed building envelopes.

5.6 Catchbasin Capture Analysis

In order to demonstrate that the catchbasin system is capable of collecting stormwater during a 100-year storm event, a catchbasin capture analysis was prepared utilizing *Table 4.19* of the *MTO Drainage Manual* for catchbasin capture and the orifice equation per *City Standards* for calculating catchbasin lead capture. The lower of the catchbasin capture or catchbasin lead capture was used to determine the capture at incremental heads, refer to *Appendix D* for the stage-discharge curve for single and twin CB and a 250 mm lead used in the analysis.

Subcatchment runoff directed towards the catchbasin system was designed via EPASWMM. Refer to Section 5.3 and Section 5.4 for further details.

Table 20 below summarizes the estimated runoff for each catchment area versus the estimated catchbasin lead capacity.

Catchment ID	Structure ID	Estimated Catchment Runoff (L/s)	Estimated Catchbasin Capacity (L/s)
A1/A3	CB6, CB7, CB8, CB19, CB20	138.2	186
A2	CB16, CB17, CB18	118.1	140
A4/A7	CB1, CB2, CB3, CB4, CB5	83.7	148
A5	CB9, CB10, CB11	88.0	128
A6	CB12, CB13, CB14, CB15	87.8	96

Table 20Catchbasin Capture Analysis

As demonstrated by *Table 20*, the proposed catchbasin system is capable of collecting stormwater runoff during a 100-year storm event.

5.7 Stormwater Servicing Conclusions

Post development stormwater runoff will be required to be restricted to the allowable target release rate for storm events up to and including the 100-year storm in accordance with City of Ottawa *City Standards*. The post-development allowable release rate was calculated as *126.3 L/s* based on consultation with the City of Ottawa; *449 m*³ of underground storage will be provided to meet this release rate.

Based on consultation with the RVCA, stormwater quality controls to an enhanced level of treatment are required.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 UTILITIES

Utility servicing will be coordinated with the individual utility companies prior to site development.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or an approved equivalent installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

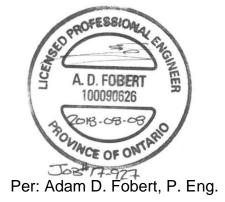
- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- > Plan construction at proper time to avoid flooding.
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by Greatwise Developments to prepare a Servicing and Stormwater Management report in support of the application for a Site Plan Control (SPC) for the Phase 3-1 development at 2710 Draper Avenue. The preceding report outlines the following:


- Based on boundary conditions provided by the City the existing municipal water infrastructure is capable of providing the proposed development with water within the City's required pressure range;
- The FUS method for estimating fire flow indicated 10,000 L/min is required for the Phase 3-1 development and 11,000 L/min is required for the Phase 3 development,
- The proposed ultimate development is anticipated to have a peak wet weather flow of 6.38 L/s; Based on the sanitary analysis prepared by JFSA, the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Based on consultation with the City of Ottawa, the proposed development will be required to attenuate post development flows to an equivalent release rate of **126.3** L/s for all storms up to and including the 100-year storm event;
- Stormwater objectives will be met through storm water retention via subsurface storage, 449 m³ underground storage system will be provided to attenuate flow to the established release rate above;
- Based on consultation with the RVCA, stormwater quality controls to an enhanced level of treatment are required, a Stormceptor has been provided to meet this requirement.

Prepared by, David Schaeffer Engineering Ltd.

Westing

Per: Alison J. Gosling, EIT.

Reviewed by, David Schaeffer Engineering Ltd.

[©] DSEL z:\projects\17-927_greatwise-2781_baseline-towns\b_design\b3_reports\b3-2_servicing (dsel)\2018-08_spa_sub8\report\fsr-2018-08-08_927_ajg.docx

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

17-927

4.1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	GP-1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\boxtimes	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	SSP-1
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1
_		

\boxtimes	Identification of system constraints	Section 3.1
\boxtimes	Identify boundary conditions	Section 3.1, 3.2
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.3

\mathbf{X}	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at leastings throughout the development	Section 3.2
	fire flow at locations throughout the development. Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
]	Check on the necessity of a pressure zone boundary modification	N/A
	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.2, 3.3
]	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
]	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
]	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2
]	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
.3	Development Servicing Report: Wastewater	
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 4.2
]	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	Section 4.2 N/A
]	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for	
]	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development.	N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	N/A N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be	N/A N/A Section 4.1
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C')	N/A N/A Section 4.1 Section 4.2

	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
]	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
]	Special considerations such as contamination, corrosive environment etc.	N/A
.4	Development Servicing Report: Stormwater Checklist	
]	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
]	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
]	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
]	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
]	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
]	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
]	Set-back from private sewage disposal systems.	N/A
]	Watercourse and hazard lands setbacks.	N/A
	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
]	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
]	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
]	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3
]	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
]	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	N/A
]	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-	N/A
	year return period storm event.	
]	year return period storm event. Identification of potential impacts to receiving watercourses	N/A

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development	
	from flooding for establishing minimum building elevations (MBE) and overall	N/A
	grading.	
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for	Section 7.0
A	the protection of receiving watercourse or drainage corridors.	Section 7.0
	Identification of floodplains – proponent to obtain relevant floodplain	
	information from the appropriate Conservation Authority. The proponent may	
	be required to delineate floodplain elevations to the satisfaction of the	N/A
	Conservation Authority if such information is not available or if information	
	does not match current conditions.	
	Identification of fill constraints related to floodplain and geotechnical	N/A
	investigation.	N/A
1.5	Approval and Permit Requirements: Checklist	
	Conservation Authority as the designated approval agency for modification of	
	floodplain, potential impact on fish habitat, proposed works in or adjacent to a	
	watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement	
\times	Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2
	Rivers Improvement ct. Where there are Conservation Authority regulations in	
	place, approval under the Lakes and Rivers Improvement Act is not required,	
	except in cases of dams as defined in the Act.	
	Application for Certificate of Approval (CofA) under the Ontario Water	N/A
_	Resources Act.	-
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A
	Government Services Canada, Ministry of Transportation etc.)	,
4.6	Conclusion Checklist	
\triangleleft	Clearly stated conclusions and recommendations	Section 8.0
-	Comments received from review agencies including the City of Ottawa and	
	information on how the comments were addressed. Final sign-off from the	
_	responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional	
	Engineer registered in Ontario	

Alison Gosling

From: Sent: To: Subject: Jamie Batchelor <jamie.batchelor@rvca.ca> Wednesday, October 18, 2017 11:49 AM Alison Gosling RE: 2710 Draper Avenue - RVCA

Hi Alison,

Thanks for providing the information and for the clarification on the stages. While there is no surface parking proposed in the traditional sense of a large parking lot, there are several driveways proposed which would be utilized for parking and the construction of new streets. Therefore the Conservation Authority would still advise the proponent that onsite water quality treatment of 80% TSS removal should be the water quality target for this site.

From: Alison Gosling [mailto:AGosling@dsel.ca] Sent: Wednesday, October 18, 2017 10:35 AM To: Jamie Batchelor <jamie.batchelor@rvca.ca> Subject: RE: 2710 Draper Avenue - RVCA

Good morning Jamie,

As discussed, phase III of the development includes 91 townhome units and a community park post-development, with no proposed surface parking. The subject site contains 84 townhome pre-development, with surface parking.

Stormwater in the post-development will be runoff from rooftops and landscaped areas. It is not proposed to have surface ponding within the private streets.

Please note that Phase III will be independently serviced and not connected to the services within Phase I and Phase II.

Can you provide an updated recommendation regarding quality controls?

Thank you,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.542 fax: (613) 836-7183 email: <u>agosling@dsel.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Jamie Batchelor [mailto:jamie.batchelor@rvca.ca]
Sent: Wednesday, June 21, 2017 2:19 PM
To: Alison Gosling <<u>AGosling@dsel.ca</u>>
Subject: RE: 2710 Draper Avenue - RVCA

Good Afternoon Alison,

Given that the site outlets to an existing storm sewer approximately 1.5 km to Graham Creek and there is no municipal facility which provides water quality treatment for the Stormwater entering the watercourse, we would advise the proponent that onsite water quality treatment of 80% TSS removal should be the water quality target for this site.

From: Alison Gosling [mailto:AGosling@dsel.ca]
Sent: Thursday, June 15, 2017 9:53 AM
To: Jamie Batchelor <jamie.batchelor@rvca.ca
Subject: 2710 Draper Avenue - RVCA

Good morning Jamie,

We wanted to touch base with you regarding a development we are working on located at 2710 Draper Avenue.

The stormwater collected from the site travels approximately 1.5 km to Graham Creek tributary to the Ottawa River.

The development proposes to construct a thirteen townhome blocks and a community park. The development will discharge stormwater to the existing 450 mm diameter storm sewer within Draper Avenue.

Can you provide a comment regarding quality controls that maybe required for the site

Thank you,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL david schaeffer engineering Itd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.542

fax: (613) 836-7183 email: agosling@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Alison Gosling

From:	Alison Gosling
Sent:	Tuesday, October 24, 2017 11:55 AM
То:	moeccottawasewage@ontario.ca
Cc:	'Diamond, Emily (MOECC)'
Subject:	2710 Draper Avenue - ECA Requirement

Good afternoon,

We wanted to touch base with you regarding a proposed Phase III development at 2710 Draper Avenue.

The existing 1.3 ha site currently consists of a 84 townhome units and is zoned Residential. The development proposes to construct a 91 townhome units and a community park.

It appears that the existing stormwater management system currently directs flow towards the municipal infrastructure within Draper Avenue and Morrison Drive. Proposed stormwater controls will use subsurface storage to attenuate the release rate to City of Ottawa requirements.

As the proposed sewage works does not discharge to a combined sewer system, and is not proposed to be used for industrial purposes, it is assumed this falls within the exemption requirements set out in Ontario Regulation 525/98 as part of the Ontario Water Resources Act.

I hope you could comment on our assumption that this property would be exempt from requiring an ECA. Please feel free to call to discuss further.

Thank you,

Alison Gosling, E.I.T.

Project Coordinator / Junior Designer

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.542

 fax:
 (613) 836-7183

 email:
 agosling@dsel.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

APPENDIX B

Water Supply

Greatwise Developments 2710 Draper Avenue Existing Site Conditions - Phase III

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7	84	227
Apartment			0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Рор	Avg. Daily		Max Day		Peak H	lour
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	227	79.5	55.2	286.0	198.6	429.0	297.9

Institutional / Commercial / Industrial Demand

			Avg. Daily		Max	Day	Peak Hour		
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min	
Commercial floor space	2.5 L/m ² /d		0.00	0.0	0.0	0.0	0.0	0.0	
Office	75 L/9.3m ² /d		0.00	0.0	0.0	0.0	0.0	0.0	
Industrial - Light	35,000 L/gross ha/d		0.00	0.0	0.0	0.0	0.0	0.0	
Industrial - Heavy	55,000 L/gross ha/d		0.00	0.0	0.0	0.0	0.0	0.0	
	Total I/CI	Demand	0.0	0.0	0.0	0.0	0.0	0.0	
	Total	Demand	79.5	55.2	286.0	198.6	429.0	297.9	

DEL

Greatwise Developments 2710 Draper Avenue Proposed Site Conditions - Phase III-I

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7	32	87
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Рор	Avg. Daily		ily Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	87	30.5	21.1	109.6	76.1	164.4	114.2
_							

Institutional / Commercial / Industrial Demand

			Avg. [Avg. Daily		Day	Peak Hour	
Property Type	Unit	Rate Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m²/d	0.00	0.0	0.0	0.0	0.0	0.0
Office	75	L/9.3m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
		Total I/CI Demand	0.0	0.0	0.0	0.0	0.0	0.0
		Total Demand	30.5	21.1	109.6	76.1	164.4	114.2

Greatwise Developments 2710 Draper Avenue Proposed Site Conditions - Phase III-I III-II

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7	86	233
Apartment			0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Рор	Avg. Daily		Max	Day	Peak Hour		
		m³/d	L/min	m³/d	L/min	m³/d	L/min	
Total Domestic Demand	233	81.6	56.6	293.6	203.9	440.4	305.8	

Institutional / Commercial / Industrial Demand

		Avg.	Daily	Max	Day	Peak Hour	
Property Type	Unit Rate Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Office	75 L/9.3m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000 L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000 L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
	Total I/CI Demand	0.0	0.0	0.0	0.0	0.0	0.0
	Total Demand	81.6	56.6	293.6	203.9	440.4	305.8

DSEL

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

$F = 220C\sqrt{A}$		L/min	Where	F is tl	he fire flow,	C is the	Type of construction and A is the Total floo
Type of Construction:		Non-Combus	tible Con	structio	n		
	C A	0.8 1140.4	<i>Type o</i> m²				er FUS Part II, Section 1 FUS Part II section 1
Fire Flow			5 L/min 0 L/min	round	led to the n	earest 1,0	00 L/min
ments							
2. Reduction for Occupant	су Туре						
Combustible		0%	6				
Fire Flow		6000.	0 L/min	-			
Non-Sprinklered		0%	6 0 L/min	•			
4. Increase for Separation	Distance						
Cons. of Exposed W		S.D	Lw	На	LH	EC	
N Wood Frame		20.1m-30m	10		1	10	8%
S Non-Combustible		10.1m-20m	35		3	105	15%
E Non-CombustibleW Wood Frame		0m-3m 30.1m-45m	13.3 12		3 3	40 36	23% 5%
W Wood Frame		% Increase	12		5	30	51% value not to exceed 75%
Increase		3060.	0 L/min	•			
Lw = Length of the Ex Ha = number of store LH = Length-height fa EC = Exposure Charg	/s of the adjacent s ctor of exposed wa		mum 5 st				
Fire Flow							

Fire Flow

9060.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 9000.0 L/min rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Roderick Lahey Architects. -Calculations based on Fire Underwriters Survey - Part II

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

$F = 220C\sqrt{A}$	L/min	Where	F is t	he fire flow,	C is the	Type of construction and $oldsymbol{A}$ is the Total
Type of Construction:	Non-Combu	stible Con	structio	n		
	C 0.8 A 1208.4	Type o m ²				per FUS Part II, Section 1 FUS Part II section 1
			-			
Fire Flow		5.1 L/min 5.0 L/min	round	led to the n	earest 1.	000 L/min
nents						
2. Reduction for Occupancy Ty	/pe					
Combustible	0	%				
Fire Flow	6000	.0 L/min	-			
3. Reduction for Sprinkler Prote	ection					
Non-Sprinklered	0	%				
Reduction		0 L/min	-			
4. Increase for Separation Dista	ance					
Cons. of Exposed Wall	S.D	Lw	На	LH	EC	
N Wood Frame	20.1m-30m	12		1	12	8%
S Non-Combustible	20.1m-30m	35		3	105	10%
E Non-CombustibleW Non-Combustible	0m-3m 0m-3m	13 13		3 3	39 39	23% 23%
W Non-Combustible		10		3	39	
	% Increase					64% value not to exceed 75%
Increase	3840	.0 L/min	-			
Lw = Length of the Expose	ed Wall (of the ajace	nt structu	e)			
Ha = number of storeys of						
LH = Length-height factor of			,			
EC = Exposure Charge						
. –						
re Flow						

Fire Flow

9840.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 10000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects. -Calculations based on Fire Underwriters Survey - Part II

SEL

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

$F = 220C\sqrt{A}$	L/min				, C is the	Type of construction and A is the Total floo
Type of Construction:	Non-Combu	stible Con	structio	n		
	C 0.8A 1075.2	<i>Type o</i> m²				er FUS Part II, Section 1 FUS Part II section 1
Fire Flow	-	.1 L/min .0 L/min	round	ed to the n	earest 1,0	000 L/min
tments						
2. Reduction for Occupancy Type						
Combustible	C	%				
Fire Flow	6000	.0 L/min	-			
Non-Sprinklered	0	%	-			
Reduction		0 L/min				
4. Increase for Separation Distance Cons. of Exposed Wall	S.D	Lw	На	LH	EC	
N Non-Combustible	20.1m-30m	43		3	129	10%
S Non-Combustible E Non-Combustible	20.1m-30m	54		3	162	10% 18%
Wood Frame	3.1m-10m >45m	13.3 0		3 1	40 0	0%
	% Increase				_	38% value not to exceed 75%
Increase	2280	.0 L/min	-			
Lw = Length of the Exposed Wall Ha = number of storeys of the adja LH = Length-height factor of expos EC = Exposure Charge		timum 5 st				
Fire Flow						

Total Fire F

Fire Flow

8280.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 8000.0 L/min rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects. -Calculations based on Fire Underwriters Survey - Part II

SEL

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

	_	. ,			_ .		• • •	T				
	$F = 220C\sqrt{A}$	L/	min	Where	F IS	the fire flow,	C is the	Type of construction and \mathbf{A} is the Total floor area				
	Type of Construction:	No	on-Combusti	ble Con	struct	tion						
		C A	0.8 1075.2	<i>Type o</i> m²	pe of Construction Coefficient per FUS Part II, Section 1 Total floor area based on FUS Part II section 1							
	Fire Flow		5771.1 6000.0		rour	nded to the ne	earest 1,0	000 L/min				
Adjustments	3											
2. Re	duction for Occupancy Type											
	Combustible		0%									
	Fire Flow		6000.0	L/min	•							
3. Re	duction for Sprinkler Protection											
	Non-Sprinklered		0%									
	Reduction		0	L/min								
4. Inc	rease for Separation Distance											
	Cons. of Exposed Wall	S.		Lw	На	LH	EC					
	Non-Combustible).1m-30m	35		3	105	10%				
	Non-Combustible).1m-30m 1m-10m	52		3	156 40	10%				
	Ordinary - Unprotected Openings Ordinary - Unprotected Openings		1m-10m	13.3 13.3		3 3	40 40	16% 16%				
	endinary enprotected openings		Increase	10.0		0	40	52% value not to exceed 75%				
	Increase		3120.0	L/min								
	Lw = Length of the Exposed Wall Ha = number of storeys of the adjace LH = Length-height factor of expose EC = Exposure Charge	ent stru		ium 5 st)						
Total Fire Flo	ow											

Fire Flow

9120.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 9000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects.

-Calculations based on Fire Underwriters Survey - Part II

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

	$F = 220C\sqrt{A}$	L/min		Where	F is	the fire flow,	C is the	Type of construction and ${f A}$ is the Total floor area
	Type of Construction:	No	n-Combus	tible Con	struct	ion		
		C A	0.8 1086.6	<i>Type c</i> m²				er FUS Part II, Section 1 FUS Part II section 1
	Fire Flow			6 L/min 0 L/min	roun	nded to the n	earest 1,0	00 L/min
Adjustment	S							
2. Re	eduction for Occupancy Type							
	Combustible		0%	6				
	Fire Flow		6000.	0 L/min	-			
3. Re	eduction for Sprinkler Protection							
	Non-Sprinklered		0%	6				
	Reduction			0 L/min	-			
4. In	crease for Separation Distance	S.	-	1	Ца	LH	EC	
N	Cons. of Exposed Wall Non-Combustible	-	.1m-30m	Lw 43	На	3	129	10%
	Non-Combustible		.1m-30m	88		3	264	5%
-	Non-Combustible		n-3m	13.3		3	40	23%
	Non-Combustible		n-3m	13.3		3	40	23%
		%	Increase					61% value not to exceed 75%
	Increase		3660.	0 L/min	-			
	Lw = Length of the Exposed Wall Ha = number of storeys of the adjace LH = Length-height factor of exposed EC = Exposure Charge	nt strue		mum 5 si)		
Total Fire F	low							
					-			
	Fire Flow	_		0 L/min	-	low not to exce		L/min nor be less than 2,000 L/min per FUS Section 4

10000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects.

-Calculations based on Fire Underwriters Survey - Part II

SEL

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

Type of Construction:	Non-Combus	suble Cons	SUUCTION			
	C 0.8A 1647.8	<i>Type of</i> m ²				er FUS Part II, Section 1 FUS Part II section 1
Fire Flow		.4 L/min . 0 L/min	rounded te	o the n	earest 1,0	00 L/min
ents						
Reduction for Occupancy Type						
Combustible	0'	%				
Fire Flow	7000	.0 L/min	I			
Reduction		0 L/min				
Increase for Separation Distance		_				
Cons. of Exposed Wall N Wood Frame	S.D 30.1m-45m	Lw 33.5	Ha	LH	EC 34	5%
S Non-Combustible	10.1m-20m	119	3		34 357	15%
E Non-Combustible	10.1m-20m	45			135	15%
W Non-Combustible	0m-3m	143	3		429	25%
	% Increase					60% value not to exceed 75%
Increase	4200	.0 L/min	I Contraction of the second			
		imum 5 sto	ories)			

Total Fire F

Fire Flow

11200.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 11000.0 L/min rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects.

-Calculations based on Fire Underwriters Survey - Part II

SE

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

Type of Construction:	Non-Combus		TUCIUIT		
	C 0.8A 1328.3				er FUS Part II, Section 1 FUS Part II section 1
Fire Flow		.5 L/min . 0 L/min /	rounded to the r	nearest 1,0	00 L/min
ents					
Reduction for Occupancy Type					
Combustible	04	%			
Fire Flow	6000	0 L/min			
Reduction		0 L/min			
Increase for Separation Distance					
Cons. of Exposed Wall N Wood Frame	S.D 20.1m-30m	Lw H 43	Ha LH 0	0 EC	8%
S Non-Combustible	10.1m-20m	43 35	0	0	8% 12%
E Non-Combustible	10.1m-20m	13.3	0	0 0	12%
W Non-Combustible	3.1m-10m	13.3	0	0	17%
	% Increase				49% value not to exceed 75%
Increase	2940.	0 L/min			
	(of the ajacer	nt structure) mum 5 stor			

Fire Flow

8940.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 9000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects.

-Calculations based on Fire Underwriters Survey - Part II

2018-08-08

SEL

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

	$F = 220C\sqrt{A}$	L/min		Where	F is tl	ne fire flow,	C is the	Type of construction and ${f A}$ is the Total floor area		
	Type of Construction:	Non-Co	ombustik	ole Con	structic	n				
			.8 36.6	<i>Type o</i> m²	f Construction Coefficient per FUS Part II, Section 1 Total floor area based on FUS Part II section 1					
	Fire Flow		5801.6 6000.0		round	ed to the n	earest 1,0	00 L/min		
Adjustments	5									
2. Re	duction for Occupancy Type									
	Combustible		0%							
	Fire Flow		6000.0	L/min						
3. Re	duction for Sprinkler Protection									
	Non-Sprinklered		0%							
	Reduction		0	L/min						
N S E W	increase for Separation Distance Cons. of Exposed Wall Non-Combustible Ordinary - Unprotected Openings Non-Combustible Non-Combustible Non-Combustible Non-Combustible Increase Lw = Length of the Exposed Wall Ha = number of storeys of the adjace LH = Length-height factor of exposed EC = Exposure Charge	ent structure	30m 30m 20m ease 3480.0 ajacent : (maxim	structur um 5 st	e)	LH 3 3 3 3	EC 129 264 135 36	10% 10% 15% 23% 58% value not to exceed 75%		
Total Fire Flo	ow									

Fire Flow

9480.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 9000.0 L/min rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provide Roderick Lahey Architects. -Calculations based on Fire Underwriters Survey - Part II

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

_						
$F = 220C\sqrt{A}$	L/min	Where	e F is tl	he fire flow,	C is the	Type of construction and A is the Total t
Type of Construction:	Non-Combu	stible Cor	structio	n		
	C 0.8					er FUS Part II, Section 1
	A 765.3	m²	Total	floor area k	based on	FUS Part II section 1
Fire Flow		8.9 L/min	-			
	500	0.0 L/min	round	led to the n	earest 1,0	000 L/min
nents						
2. Reduction for Occupancy Type						
Combustible	(0%				
Fire Flow	500	0.0 L/min	-			
3. Reduction for Sprinkler Protection						
Non-Sprinklered	(0%				
Reduction		0 L/min	-			
4. Increase for Separation Distance						
Cons. of Exposed Wall	S.D	Lw	На	LH	EC	
N Wood Frame	20.1m-30m	10)	1	10	8%
S Non-Combustible	3.1m-10m	13	3	3	39	18%
E Wood Frame	3.1m-10m	35	5	1	35	18%
W Non-Combustible	20.1m-30m	14	1	3	42	8%
	% Increase					52% value not to exceed 75%
Increase	260	0.0 L/min	-			
Lw = Length of the Exposed Wall	(of the ajace					
Ha = number of storeys of the adja			tories)			
LH = Length-height factor of expos	ed wall. Value rou	nded up.				
EC = Exposure Charge						
ire Flow						

Total Fire F

Fire Flow

7600.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 8000.0 L/min rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects.

-Calculations based on Fire Underwriters Survey - Part II

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

$F = 220C\sqrt{A}$	L/min	Where	F is the fire flow	v, C is the	Type of construction and ${f A}$ is the Total floor area			
Type of Construction:	Non-Co	mbustible Con	struction					
	C 0.8 A 765			f Construction Coefficient per FUS Part II, Section 1 Total floor area based on FUS Part II section 1				
Fire Flow		4868.9 L/min 5 000.0 L/min	rounded to the	nearest 1,0	00 L/min			
Adjustments								
2. Reduction for Occupancy Type								
Combustible		0%						
Fire Flow	:	5000.0 L/min	-					
3. Reduction for Sprinkler Protection								
Non-Sprinklered		0%						
Reduction		0 L/min	-					
 4. Increase for Separation Distance Cons. of Exposed Wall N Non-Combustible S Non-Combustible E Non-Combustible W Non-Combustible 	S.D 3.1m-10 3.1m-10 3.1m-10 10.1m-2 % Increa	m 13.3 m 40 0m 13.3	3 0 3	EC 40 40 120 40	18% 18% 20% 13% 69% value not to exceed 75%			
Increase	:	3450.0 L/min	-					
Lw = Length of the Exposed Wall Ha = number of storeys of the adj LH = Length-height factor of expo EC = Exposure Charge	acent structure (
Total Fire Flow			_					

Fire Flow

8450.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 8000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provider Roderick Lahey Architects.

-Calculations based on Fire Underwriters Survey - Part II

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

	$F = 220C\sqrt{A}$	L/min	Where	F is the	e fire flow,	C is the	Type of construction and ${f A}$ is the Total floor area		
Ty	ype of Construction:	Non-Combus	tible Con	struction					
		C 0.8 A 756.9	<i>Type o</i> m²	of Construction Coefficient per FUS Part II, Section 1 Total floor area based on FUS Part II section 1					
Fi	ire Flow		1 L/min 0 L/min	rounde	d to the n	earest 1,0	00 L/min		
Adjustments									
2. Redu	ction for Occupancy Type								
С	ombustible	0%	6						
Fi	ire Flow	5000.	0 L/min	•					
3. Redu	ction for Sprinkler Protection								
N	on-Sprinklered	0%	6						
R	eduction		0 L/min	•					
C N N S O E W	ase for Separation Distance ons. of Exposed Wall on-Combustible rdinary - Unprotected Openings /ood Frame on-Combustible	S.D 20.1m-30m 3.1m-10m 10.1m-20m 30.1m-45m % Increase	Lw 13.3 88 40 13.3		LH 3 4 3 3	EC 40 352 120 40	8% 19% 15% <u>5%</u> 47% value not to exceed 75%		
In	crease	2350.	0 L/min	•					
H Li	w = Length of the Exposed Wall a = number of storeys of the adjace H = Length-height factor of exposed C = Exposure Charge	· ·	mum 5 st						
Total Fire Flow	v			_					

Fire Flow

 7350.0 L/min
 fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4

 7000.0 L/min
 rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provide Roderick Lahey Architects. -Calculations based on Fire Underwriters Survey - Part II

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

		I /main	Who ro	F is the	fire flow	C is the	Time of construction and A is the Total floor area
	$F = 220C\sqrt{A}$	L/min	wnere	r is the	nie now,	C is the	Type of construction and \mathbf{A} is the Total floor area
	Type of Construction:	Non-Comb	ustible Con	struction			
		C 0.8 A 1086.0					er FUS Part II, Section 1 FUS Part II section 1
	Fire Flow		00.0 L/min 10.0 L/min	rounde	d to the n	earest 1,0	000 L/min
Adjustments	6						
2. Re	duction for Occupancy Type						
	Combustible		0%				
	Fire Flow	600	0.0 L/min	-			
3. Re	duction for Sprinkler Protection						
	Non-Sprinklered		0%				
	Reduction		0 L/min	•			
4. Inc	crease for Separation Distance						
	Cons. of Exposed Wall	S.D	Lw	На	LH	EC	
N	Non-Combustible	20.1m-30m	n 13.3		3	40	8%
S	Ordinary - Unprotected Openings	10.1m-20m	n 88		4	352	15%
E	Non-Combustible	0m-3m	40		3	120	25%
W	Wood Frame	30.1m-45m	n 13.3		3	40	5%
		% Increase	•				53% value not to exceed 75%
	Increase	318	0.0 L/min	-			
	Lw = Length of the Exposed Wall Ha = number of storeys of the adjace LH = Length-height factor of exposed EC = Exposure Charge		aximum 5 st				
Total Fire Fl	ow						
				-			

9180.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 9000.0 L/min rounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provide Roderick Lahey Architects. -Calculations based on Fire Underwriters Survey - Part II

Greatwise Developments 2710 Draper Avenue Boundary Conditions Unit Conversion

Connection 1 (Morrison Drive)

	Height (m) Elev	ation (m	$m H_2O$	PSI	kPa		L/s	L/min
Avg. DD	117.7	71.9	45.8	65.2	449.3	Fire Flow @ 140kPa	235	14100
Fire Flow			0.0	0.0	0.0			
Peak Hour	106.0	71.9	34.1	48.5	334.5			

Connection 2 (Draper Avenue)

	Height (m) Eleva	ation (m)	m H ₂ O	PSI	kPa		L/s	L/min
Avg. DD	117.7	72.2	45.5	64.8	446.6	Fire Flow @ 140kPa	210	12600
Fire Flow			0.0	0.0	0.0			
Peak Hour	106.0	72.2	33.8	48.1	331.9			

Greatwise Developments 2710 Draper Avenue - Phase III-I EPAnet Input/Results

Minor Loss Coefficients

Fitting	Loss Coefficient
Globe valve, fully open	10
Angle valve, fully open	5
Swing check valve, fully open	2.5
Gate valve, fully open	0.2
Short-radius elbow	0.9
Medium-radius elbow	0.8
Long-radius elbow	0.6
45 degree elbow	0.4
Closed return bend	2.2
Standard tee - flow through run	0.6
Standard tee - flow through branch	1.8
Square Entrance	0.5
Exit	1

*Minor loss coefficients based on EPANET 2 USERS MANUAL, dated September 2000

Node Pressures

Кра	Pressure (kPa)	Pressure (m H20)
Max	552	56.3
Rec Max	480	49.0
Rec Min	350	35.7
Min	275	28.1

Leastion	Average Day	Max Day + Fire Flow	Peak Hour
Location	(L/min)	(L/min)	(L/min)
4	0.0	0.0	0.0
5	0.0	0.0	0.0
7	4.0	14.3	21.4
9	4.0	14.3	21.4
10	0.7	2.4	3.6
11	0.7	2.4	3.6
12	0.0	0.0	0.0
13	0.7	2.4	3.6
14	0.7	2.4	3.6
15	0.0	0.0	0.0
16	0.0	0.0	0.0
17	2.0	7.1	10.7
18	2.0	7.1	10.7
19	0.0	0.0	0.0
20	0.0	0.0	0.0
21	0.0	0.0	0.0
22	0.0	0.0	0.0
23	0.0	0.0	0.0
24	0.7	2.4	3.6
26	0.7	2.4	3.6
27	0.0	0.0	0.0
28	0.0	0.0	0.0
29	0.0	0.0	0.0
FHYD1	0.0	7000	0.0
FHYD2	0.0	7000	0.0

Pipe Diameter vs. "C" Factor

Pipe Diameter (m)	C-Factor
150	100
200 to 250	110
300 to 600	120
Over 600	130

Location	Average Day	Max Day + Fire Flow	Peak Hour
Looation	(kPa)	(kPa)	(kPa)
4	464.3	402.9	344.3
5	454.4	395.2	339.6
7	457.9	397.6	336.1
9	462.0	425.9	347.2
10	460.5	412.4	345.7
11	459.1	422.7	343.8
12	457.6	409.4	342.4
13	456.0	394.7	341.2
14	451.6	411.6	336.3
15	449.5	395.1	334.2
16	447.3	378.3	332.6
17	458.6	397.3	343.8
18	454.4	414.7	339.6
19	452.4	398.4	337.7
20	455.7	386.3	341.0
21	451.2	411.4	336.4
22	449.9	395.8	335.1
23	447.5	378.5	332.8
24	457.2	401.0	342.5
26	458.5	422.0	343.0
27	457.2	408.8	341.7
28	455.2	393.9	340.4
29	454.3	392.1	339.5
FHYD1	462.1	357.2	345.3
FHYD2	453.7	337.9	338.9

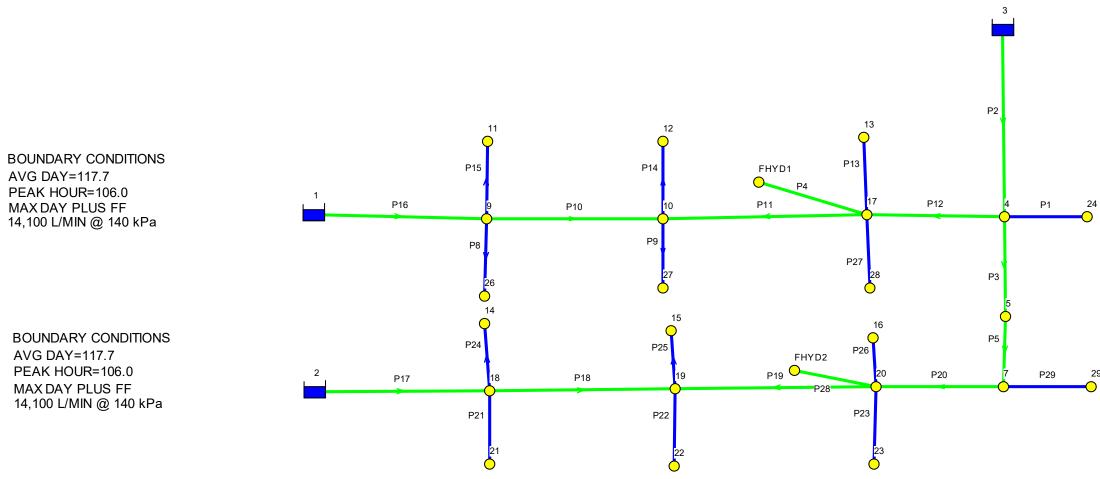
Minor Loss Coefficients

Fitting	Loss Coefficient
Globe valve, fully open	10
Angle valve, fully open	5
Swing check valve, fully open	2.5
Gate valve, fully open	0.2
Short-radius elbow	0.9
Medium-radius elbow	0.8
Long-radius elbow	0.6
45 degree elbow	0.4
Closed return bend	2.2
Standard tee - flow through run	0.6
Standard tee - flow through branch	1.8
Square Entrance	0.5
Exit	1

*Minor loss coefficients based on EPANET 2 USERS MANUAL, dated September 2000

Node Pressures

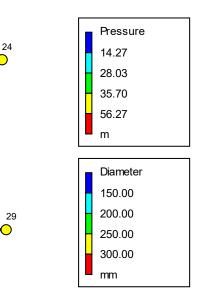
Кра	Pressure (kPa)	Pressure (m H20)
Max	552	56.3
Rec Max	480	49.0
Rec Min	350	35.7
Min	275	28.1


Location	Average Day (L/min)	Max Day + Fire Flow (L/min)	Peak Hour (L/min)
4	2.0	7.1	10.7
5	0.0	0.0	0.0
7	2.0	7.1	10.7
9	4.0	14.2	21.3
10	4.0	14.2	21.3
11	0.7	2.4	3.6
12	0.7	2.4	3.6
13	0.7	2.4	3.6
14	0.7	2.4	3.6
15	0.7	2.4	3.6
16	0.7	2.4	3.6
17	5.9	21.3	32.0
18	6.6	23.7	35.6
19	6.6	23.7	35.6
20	7.2	26.1	39.1
21	0.7	2.4	3.6
22	0.7	2.4	3.6
23	0.7	2.4	3.6
24	0.7	2.4	3.6
26	0.7	2.4	3.6
27	0.7	2.4	3.6
28	0.7	2.4	3.6
29	0.7	2.4	3.6
FHYD1	0.0	7000.0	0.0
FHYD2	0.0	7000.0	0.0

Pipe Diameter vs. "C" Factor

Pipe Diameter (m)	C-Factor	
150	100	
200 to 250	110	
300 to 600	120	
Over 600	130	

Location	Average Day (kPa)	Max Day + Fire Flow (kPa)	Peak Hour (kPa)
4	459.1	402.5	344.3
5	454.4	394.7	339.6
7	457.9	395.1	343.2
9	462.0	425.7	347.2
10	460.5	412.1	345.7
11	459.1	422.6	343.8
12	457.6	409.1	342.4
13	456.0	394.1	340.7
14	451.6	411.2	336.3
15	449.5	394.6	334.2
16	447.3	377.4	332.1
17	458.6	396.9	343.8
18	454.4	414.3	339.6
19	452.4	397.8	337.7
20	455.9	386.1	341.1
21	451.2	410.6	335.5
22	447.5	394.9	334.2
23	457.2	377.4	331.9
24	458.5	400.3	341.9
26	457.2	421.8	343.0
27	455.2	408.5	341.6
28	454.3	393.1	339.5
29	459.1	391.3	338.9
FHYD1	453.7	355.7	344.3
FHYD2	450.1	340.8	338.9


2710 DRAPER AVENUE PHASE III-I - AVERAGE DAY DEMAND

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 12,600 L/MIN @ 140 kPa

	2018-08-08_ph3-1_avg.rpt	
Page 1	2018-08-	08 11:24:31 AM
******	*****	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	******	******

Input File: 2018-08-07_ph3-1_avg.net

Link	Start	End	Length	Diameter
ID	Node	Node	m	mm
P2	4	3	34.8	200
Р3	4	5	18.7	200
P4	17	FHYD1	1.2	200
P5	5	7	14.2	200
P10	9	10	35.1	200
P11	10	17	39.7	200
P12	17	4	24.7	200
P13	17	13	6.1	19
P14	10	12	6.1	19
P15	9	11	6.1	19
P16	9	1	29.3	200
P17	2	18	33.3	200
P18	18	19	36.4	200
P19	19	20	38.4	200
P20	20	7	45.4	200
P21	18	21	10.8	19
P22	19	22	10.8	19
P23	20	23	10.8	19
P24	18	14	6.1	19
P25	19	15	6.1	19
P26	20	16	6.1	19
P1	4	24	6.7	19
P8	9	26	10.6	19
Р9	10	27	10.6	19
P27	17	28	10.6	19
P28	FHYD2	20	3	200
P29	7	29	6.7	19

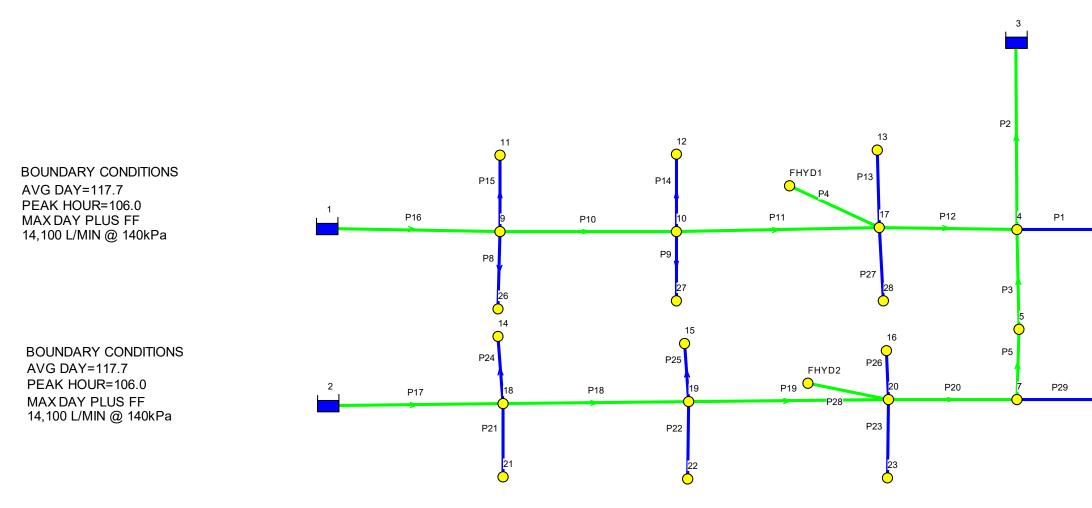
▲ Page 2

2018-08-08_ph3-1_avg.rpt

Node Results:

Node ID	Demand LPM		Pressure	-	
чт 			m 		
4	0.00	117.70	47.33	0.00	
5	0.00	117.70	46.32	0.00	
FHYD1	0.00	117.70	47.10	0.00	
7	0.00		46.68		
9	3.95				
10	3.95				
11	0.66	117.70		0.00	
12	0.66	117.70		0.00	
13 14	0.00	117.70	46.48	0.00 0.00	
14	0.66 0.66	117.70 117.70	46.03 45.82		
16	0.00	117.70			
17	0.00	117.70			
18	1.97				
19	1.97			0.00	
20	0.00	117.70		0.00	
21	0.00	117.70	45.99	0.00	
22	0.00	117.70	45.86	0.00	
23	0.00	117.70	45.62	0.00	
24	0.00	117.70			
26	0.66	117.70		0.00	
27	0.66	117.70	46.61	0.00	
28	0.00	117.70	46.40	0.00	
FHYD2	0.00	117.70	46.25	0.00	
29 1	0.00 -6.97		46.31 0.00		Pacanyain
2	-0.97		0.00		
3	-4.35		0.00		Reservoir
5	4.55	11/./0	0.00	0.00	Nebel Voll
Link Results:					
Link	Flow	Velocitvu	nit Headloss	Stat	
ID	LPM	m/s	m/km	Stat	
P2	-4.35	0.00	0.00	0pen	
P3	0.78	0.00	0.00	0pen	
P4	0.00	0.00	0.00	0pen	
P5	0.78	0.00	0.00	0pen	
P10	1.70	0.00	0.00	0pen	
P11	-3.57	0.00	0.00	0pen	
P12	-3.57	0.00	0.00	Open Open	
P13	0.00	0.00	0.00	Open Open	
P14	0.66	0.04	0.36	0pen	

2018-08-08_ph3-1_avg.rpt

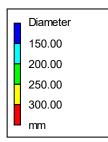

				F -
P15	0.66	0.04	0.36	0pen
P16	-6.97	0.00	0.00	0pen
P17	4.48	0.00	0.00	0pen
P18	1.85	0.00	0.00	0pen

♠

Page 3 Link Results: (continued)

Link	Flow	VelocityUnit	Headloss	Status
ID	LPM	m/s	m/km	
P19	-0.78	0.00	0.00	Open
P20	-0.78	0.00	0.00	Open
P21	0.00	0.00	0.00	Open
P22	0.00	0.00	0.00	Open
P23	0.00	0.00	0.00	Open
P24	0.66	0.04	0.36	Open
P25	0.66	0.04	0.36	Open
P26	0.00	0.00	0.00	Open
P1	0.00	0.00	0.00	Open
P8	0.66	0.04	0.35	Open
P9	0.66	0.04	0.35	Open
P27	0.00	0.00	0.00	Open
P28	0.00	0.00	0.00	Open
P29	0.00	0.00	0.00	Open

2710 DRAPER AVENUE PHASE III-I - MAX DAY + FIRE FLOW DEMAND



Day 1, 12:00 AM

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 12,600 L/MIN @ 140kPa

Pressure
14.27
28.03
35.70
56.27
m
m

	2018-08-07_ph3-1_max.rpt	
Page 1	2018-08-	08 10:59:24 AM
******	************	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***************************************	*****

Input File: 2018-08-07_ph3-1_max.net

Link - Node Table:	Link	Node Ta	ble:
--------------------	------	---------	------

Link ID	Start Node	End Node	Length m	Diameter mm
P2	4	3	34.8	200
Р3	4	5	18.7	200
P4	17	FHYD1	1.2	200
P5	5	7	14.2	200
P10	9	10	35.1	200
P11	10	17	39.7	200
P12	17	4	24.7	200
P13	17	13	6.1	19
P14	10	12	6.1	19
P15	9	11	6.1	19
P16	9	1	29.3	200
P17	2	18	33.3	200
P18	18	19	36.4	200
P19	19	20	38.4	200
P20	20	7	45	200
P21	18	21	10.8	19
P22	19	22	10.8	19
P23	20	23	10.8	19
P24	18	14	6.1	19
P25	19	15	6.1	19
P26	20	16	6.1	19
P1	4	24	6.7	19
P8	9	26	10.6	19
Р9	10	27	10.6	19
P27	17	28	10.6	19
P28	FHYD2	20	3	200
P29	7	29	6.7	19

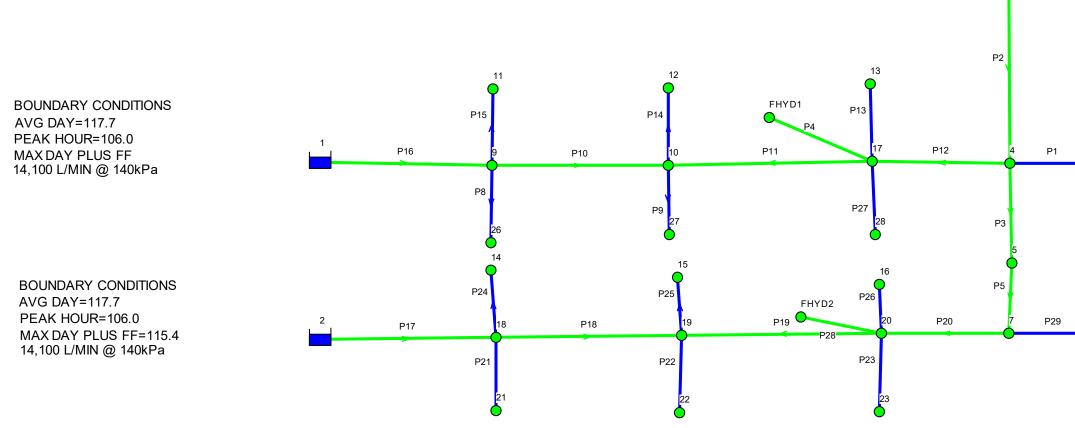
▲ Page 2

2018-08-07_ph3-1_max.rpt

Node Results:

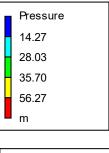
Node	Demand	Head	Pressure	Quality	
ID	LPM	m	m	hours	
4	0.00			0.00	
5	0.00	111.67	40.29	0.00	
FHYD1	7000.00	107.21	36.41	0.00	
7	0.00	111.36	40.53	0.00	
9	14.22	114.02	43.41	0.00	
10	14.22	112.80	42.04	0.00	
11	2.37	113.99	43.09	0.00	
12	2.37	112.78	41.73	0.00	
13	0.00	111.45	40.23	0.00	
14	2.37	113.63	41.96	0.00	
15	2.37	112.16	40.28	0.00	
16	0.00	110.66	38.56	0.00	
17	0.00	111.45	40.50	0.00	
18	7.11	113.65	42.27	0.00	
19	7.11	112.19	40.61	0.00	
20	0.00	110.66	39.38	0.00	
21	0.00	113.65	41.94	0.00	
22	0.00	112.19	40.35	0.00	
23	0.00	110.66	38.58	0.00	
24	0.00	111.97	40.88	0.00	
26	2.37	113.98	43.02	0.00	
27	2.37	112.76	41.67	0.00	
28	0.00	111.45	40.15	0.00	
FHYD2	7000.00	106.26	34.44	0.00	
29	0.00	111.36	39.97	0.00	
1	-4080.46	115.40	0.00		eservoir
2	-4416.38	115.40	0.00		eservoir
3	-5560.04	115.30	0.00	0.00 R	eservoir
Link Results:					
Link	Flow	VelocitvUr	nit Headloss	s Statu	IS IS
ID	LPM	m/s	m/km	2000	-
			•		

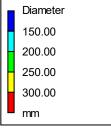
10		117 3	ш/ Кш		
P2	-5560.04	2.95	95.56	Open	
Р3	2602.58	1.38	16.55	Open	
P4	7000.00	3.71	3537.92	Open	
P5	2602.58	1.38	21.64	0pen	
P10	4061.50	2.15	34.68	0pen	
P11	4042.54	2.14	33.91	0pen	
P12	-2957.46	1.57	21.09	Open	
P13	0.00	0.00	0.00	Open	
P14	2.37	0.14	3.90	Open	


2018-08-07_ph3-1_max.rpt

P15	2.37	0.14	3.90	0pen
P16	-4080.46	2.16	47.19	0pen
P17	4416.38	2.34	52.57	0pen
P18	4406.90	2.34	40.22	0pen

♠


Link	Flow	-	nit Headloss	Status
ID	LPM	m/s	m/km	
P19	4397.42	2.33	39.82	Open
P20	-2602.58	1.38	15.59	Open
P21	0.00	0.00	0.00	Open
P22	0.00	0.00	0.00	Open
P23	0.00	0.00	0.00	Open
P24	2.37	0.14	3.90	Open
P25	2.37	0.14	3.90	Open
P26	0.00	0.00	0.00	Open
P1	0.00	0.00	0.00	Open
P8	2.37	0.14	3.76	Open
Р9	2.37	0.14	3.76	Open
P27	0.00	0.00	0.00	Open
P28	-7000.00	3.71	1465.54	Open
P29	0.00	0.00	0.00	Open


2710 DRAPER AVENUE PHASE III-I - PEAK HOUR DEMAND

Day 1, 12:00 AM

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 12,600 L/MIN @ 140kPa

24

3

	2018-08-08_ph3-1_peak.rpt	
Page 1	2018-08-	08 11:30:55 AM
**************	***********	*****
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	*************	*****

Input File: 2018-08-07_ph3-1_peak.net

Link	Start	End	Length	Diameter
ID	Node	Node	m	mm
 P2	4	3		200
Р3	4	5	18.7	200
P4	17	FHYD1	1.2	200
Р5	5	7	14.2	200
P10	9	10	35.1	200
P11	10	17	39.7	200
P12	17	4	24.7	200
P13	17	13	6.1	19
P14	10	12	6.1	19
P15	9	11	6.1	19
P16	9	1	29.3	200
P17	2	18	33.3	200
P18	18	19	36.4	200
P19	19	20	38.4	200
P20	20	7	45	200
P21	18	21	10.8	19
P22	19	22	10.8	19
P23	20	23	10.8	19
P24	18	14	6.1	19
P25	19	15	6.1	19
P26	20	16	6.1	19
P1	4	24	6.7	19
P8	9	26	10.6	19
Р9	10	27	10.6	19
P27	17	28	10.6	19
P28	FHYD2	20	3	200
P29	7	29	6.7	19

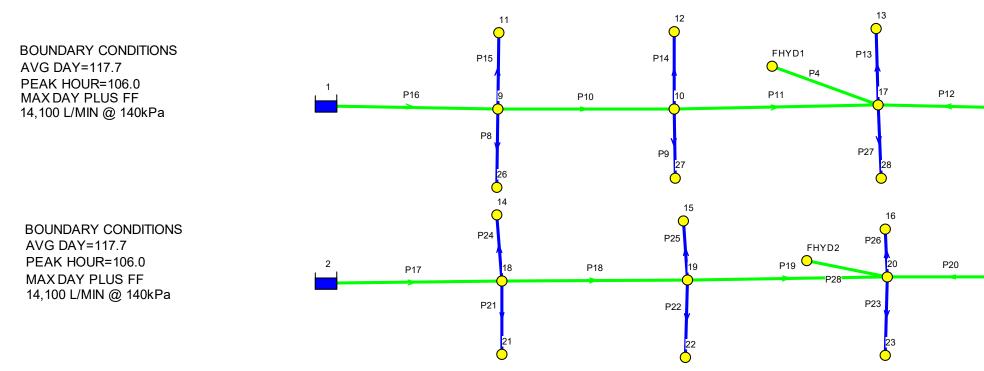
Link - Node Table:

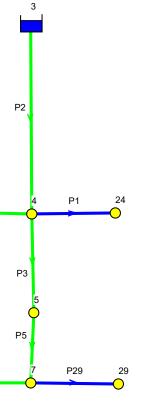
▲ Page 2

2018-08-08_ph3-1_peak.rpt

Node Results:

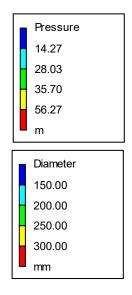
			Pressure		
ID	LPM		m 		
4			35.10		
5	0.00		34.62		
FHYD1	0.00		35.20		
7	0.00	106.00	34.26	0.00	
9	21.33	106.00	35.39	0.00	
10	21.33			0.00	
11	3.55	105.95		0.00	
12	3.55		34.90	0.00	
13	0.00		34.78	0.00	
14	3.55		34.28		
15	3.55		34.07		
16	0.00		33.90		
17	0.00		35.05	0.00	
18 19	10.66	106.00 106.00	34.62 34.42	0.00	
20	10.66 0.00			0.00 0.00	
20	0.00	106.00			
22	0.00		34.16		
23	0.00	106.00			
24	0.00	106.00		0.00	
26	3.55	105.92	34.96	0.00	
27	3.55	105.92	34.83	0.00	
28	0.00	106.00	34.70	0.00	
FHYD2	0.00	106.00	34.55	0.00	
29	0.00	106.00	34.61	0.00	
1	-37.53	106.00	0.00	0.00	Reservoir
2	-24.31	106.00	0.00	0.00	Reservoir
3	-23.46	106.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	Velocitvu	nit Headloss	Stat	
ID	LPM	m/s	m/km	Stat	
P2	-23.46	0.01	0.00	0pen	
Р3	4.12	0.00	0.00	Open	
P4	0.00	0.00	0.00	Open	
P5	4.12	0.00	0.00	0pen	
P10	9.10	0.00	0.00	0pen	
P11	-19.33	0.01	0.00	0pen	
P12	-19.34	0.01	0.00	0pen	
P13	0.00	0.00	0.00	0pen	
P14	3.55	0.21	8.28	0pen	


2018-08-08_ph3-1_peak.rpt


	-	_ _		
P15	3.55	0.21	8.28	0pen
P16	-37.53	0.02	0.01	0pen
P17	24.31	0.01	0.00	0pen
P18	10.09	0.01	0.00	0pen

♠

Link	Flow	VelocityUnit	Headloss	Status
ID	LPM	m/s	m/km	
P19	-4.12	0.00	0.00	Open
P20	-4.12	0.00	0.00	Open
P21	0.00	0.00	0.00	Open
P22	0.00	0.00	0.00	Open
P23	0.00	0.00	0.00	Open
P24	3.55	0.21	8.28	Open
P25	3.55	0.21	8.28	Open
P26	0.00	0.00	0.00	Open
P1	0.00	0.00	0.00	Open
P8	3.55	0.21	7.97	Open
P9	3.55	0.21	7.97	Open
P27	0.00	0.00	0.00	Open
P28	0.00	0.00	0.00	Open
P29	0.00	0.00	0.00	Open


2710 DRAPER AVENUE PHASE III - AVERAGE DAY DEMAND

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 12,600 L/MIN @ 140kPa

	2018-08-08_ph3_avg.rpt	
Page 1	2018-08-	08 11:08:29 AM
*************	***************************************	*****
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***************************************	*****

Input File: 2018-08-07_ph3_avg.net

Link	Start	End	Length	Diameter
ID	Node	Node	m	mm
P2	4	3	34.8	200
Р3	4	5	18.7	200
P4	17	FHYD1	1.2	200
P5	5	7	14.2	200
P10	9	10	35.1	200
P11	10	17	39.7	200
P12	17	4	24.7	200
P13	17	13	6.1	19
P14	10	12	6.1	19
P15	9	11	6.1	19
P16	9	1	29.3	200
P17	2	18	33.3	200
P18	18	19	36.4	200
P19	19	20	38.4	200
P20	20	7	45.4	200
P21	18	21	10.8	19
P22	19	22	10.8	19
P23	20	23	10.8	19
P24	18	14	6.1	19
P25	19	15	6.1	19
P26	20	16	6.1	19
P1	4	24	6.7	19
P8	9	26	10.6	19
Р9	10	27	10.6	19
P27	17	28	10.6	19
P28	FHYD2	20	3	200
P29	7	29	6.7	19

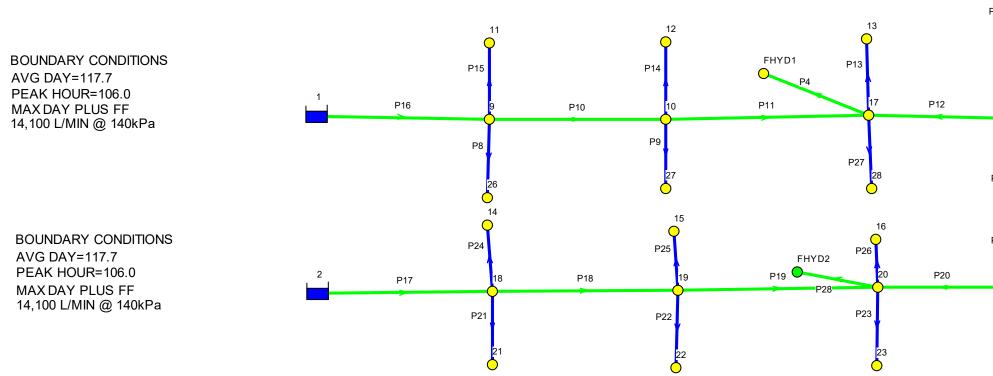
Link - Node Table:

▲ Page 2

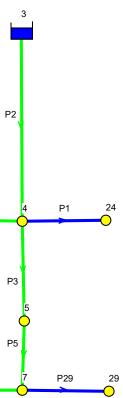
2018-08-08_ph3_avg.rpt

Node Results:

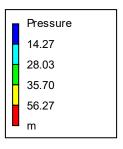
			Pressure		
ID			m		
4			46.80		
5	0.00		46.32		
FHYD1	0.00		46.80	0.00	
7	1.98		46.68	0.00	
9	3.95		47.09	0.00	
10	3.95	117.70	46.94	0.00	
11	0.66	117.70	46.80	0.00	
12	0.66	117.70			
13	0.66	117.70			
14	0.66	117.70		0.00	
15	0.66	117.70		0.00	
16	0.66		45.60	0.00	
17	5.93		46.75		
18	6.59				
19	6.59				
20	7.24		46.47		
21	0.66	117.70	45.99	0.00	
22	0.66 0.66		45.86 45.62	0.00	
23 24	0.66		45.62	0.00	
26	0.66	117.70			
27	0.66	117.70			
28	0.66	117.70			
FHYD2	0.00	117.70		0.00	
29		117.70		0.00	
1	-14.22				Reservoir
2			0.00		
3	-15.41		0.00		
Link Results:					
Link	Flow		nit Headloss		
ID	LPM	m/s	m/km	Juan	
P2	-15.41	0.01	0.00	Open	
Р3	9.20	0.00	0.00	Open	
P4	0.00	0.00	0.00	Open	
P5	9.20	0.00	0.00	Open	
P10	8.95	0.00	0.00	0pen	
P11	3.68	0.00	0.00	Open	
P12	-3.57	0.00	0.00	0pen	
P13	0.66	0.04	0.36	0pen	
P14	0.66	0.04	0.36	0pen	

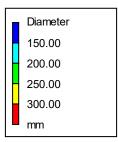

2018-08-08_ph3_avg.rpt

P15	0.66	0.04	0.36	0pen
P16	-14.22	0.01	0.00	0pen
P17	17.82	0.01	0.00	0pen
P18	9.91	0.01	0.00	0pen


♠

Link	Flow	VelocityUnit		Status
ID	LPM	m/s	m/km	
P19	2.00	0.00	0.00	Open
P20	-6.56	0.00	0.00	Open
P21	0.66	0.04	0.35	Open
P22	0.66	0.04	0.35	Open
P23	0.66	0.04	0.35	Open
P24	0.66	0.04	0.36	Open
P25	0.66	0.04	0.36	Open
P26	0.66	0.04	0.36	Open
P1	0.66	0.04	0.36	Open
P8	0.66	0.04	0.35	Open
P9	0.66	0.04	0.35	Open
P27	0.66	0.04	0.35	Open
P28	0.00	0.00	0.00	Open
P29	0.66	0.04	0.36	Open


2710 DRAPER AVENUE PHASE III - MAX DAY + FIRE FLOW DEMAND



BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 12,600 L/MIN @ 140kPa

	2018-08-08_ph3_maxv2.rpt	
Page 1	2018-08-	08 11:11:40 AM
******	*****	*****
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	************	*****

Input File: 2018-08-07_ph3_maxv2.net

Link ID	Start Node	End Node	Length m	Diameter mm
 P2	 4	3		
P3	4	5	18.7	
P4	17	FHYD1	1.2	200
P5	5	7	14.2	200
P10	9	10	35.1	
P11	10	17	39.7	
P12	17	4	24.7	200
P13	17	13	6.1	19
P14	10	12	6.1	19
P15	9	11	6.1	19
P16	9	1	29.3	200
P17	2	18	33.3	200
P18	18	19	36.4	200
P19	19	20	38.4	200
P20	20	7	45	200
P21	18	21	10.8	19
P22	19	22	10.8	19
P23	20	23	10.8	19
P24	18	14	6.1	19
P25	19	15	6.1	19
P26	20	16	6.1	19
P1	4	24	6.7	19
P8	9	26	10.6	19
P9	10	27	10.6	19
P27	17	28	10.6	19
P28	FHYD2	20	3	200
P29	7	29	6.7	19

Link - Node Table:

▲ Page 2

2018-08-08_ph3_maxv2.rpt

Node Results:

P14

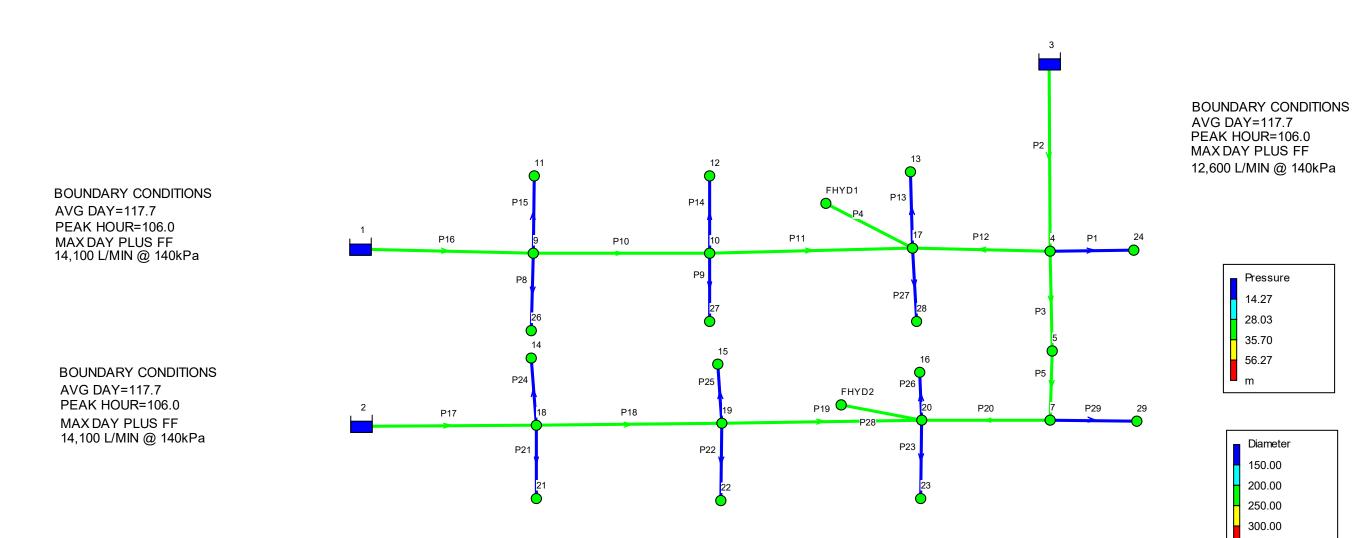
Node	Demand	Head	Pressure	Oualitv	
ID	LPM	m	m	hours	
4	7.11	111.93	41.03	0.00	
5	0.00			0.00	
FHYD1	7000.00				
7	7.11			0.00	
9	14.22			0.00	
10	14.22		42.01	0.00	
11	2.36	113.98	43.08	0.00	
12	2.26	112.75	41.70	0.00	
13			40.17		
14			41.92		
15	2.36		40.22	0.00	
16	2.36			0.00	
17	21.34		40.46	0.00	
18	23.71		42.23	0.00	
19	23.71		40.55	0.00	
20	26.08				
21	2.36		41.86		
22	2.36		40.25	0.00	
23	2.36	110.55	38.47	0.00	
24	2.36	111.90	40.81	0.00	
26	2.36	113.96	43.00	0.00	
27	2.36	112.73	41.64	0.00	
28	2.36	111.37	40.07	0.00	
FHYD2	7000.00	106.19	34.74	0.00	
29	2.36	111.28	39.89	0.00	
1	-4104.96	115.40	0.00	0.00	Reservoir
2	-4466.90	115.40	0.00	0.00	Reservoir
3	-5598.68	115.30	0.00	0.00	Reservoir
Link Results:					
Link	Flow	Velocitvu	nit Headloss	s Stat	-
ID	LPM	m/s	m/km	5 Stu	
P2	-5598.68	2.97	96.83	Open	
P3	2630.23	1.40	16.88	Open	
P4	7000.00	3.71	3537.92	Open	
Р5	2630.23	1.40	22.08	0pen	
P10	4086.02	2.17	35.07	Open	
P11	4067.08	2.16	34.30	0pen	
P12	-2958.98	1.57	21.11	Open	
P13	2.36	0.14	3.87	0pen	
D14	2.26	0 1/	2 07	Opop	

3.87

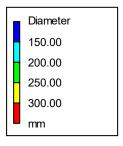
0pen

0.14

2.36


2018-08-08_ph3_maxv2.rpt

			· ·	
P15	2.36	0.14	3.87	0pen
P16	-4104.96	2.18	47.73	0pen
P17	4466.90	2.37	53.72	0pen
P18	4438.47	2.35	40.76	0pen


♠

Link ID	Flow LPM	VelocityUr m/s	nit Headloss m/km	Status
P19	4410.04	2.34	40.04	Open
P20	-2620.76	1.39	15.80	Open
P21	2.36	0.14	3.73	Open
P22	2.36	0.14	3.73	Open
P23	2.36	0.14	3.73	Open
P24	2.36	0.14	3.87	Open
P25	2.36	0.14	3.87	Open
P26	2.36	0.14	3.87	Open
P1	2.36	0.14	3.84	Open
P8	2.36	0.14	3.73	Open
P9	2.36	0.14	3.73	Open
P27	2.36	0.14	3.73	Open
P28	-7000.00	3.71	1465.54	Open
P29	2.36	0.14	3.84	Open

2710 DRAPER AVENUE PHASE III - PEAK HOUR DEMAND

Pressure
14.27
28.03
35.70
56.27
m

	2018-08-08_ph3_peak.rpt	
Page 1	2018-08-0	08 11:14:31 AM
*****	***************************************	*****
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*****	***************************************	*****

Input File: 2018-08-07_ph3_peak.net

Link	Start	End	l ength	Diameter
ID	Node	Node	m	mm
P2	4	3	34.8	200
Р3	4	5	18.7	200
P4	17	FHYD1	1.2	200
P5	5	7	14.2	200
P10	9	10	35.1	200
P11	10	17	39.7	200
P12	17	4	24.7	200
P13	17	13	6.1	19
P14	10	12	6.1	19
P15	9	11	6.1	19
P16	9	1	29.3	200
P17	2	18	33.3	200
P18	18	19	36.4	200
P19	19	20	38.4	200
P20	20	7	45.4	200
P21	18	21	10.8	19
P22	19	22	10.8	19
P23	20	23	10.8	19
P24	18	14	6.1	19
P25	19	15	6.1	19
P26	20	16	6.1	19
P1	4	24	6.7	19
P8	9	26	10.6	19
P9	10	27	10.6	19
P27	17	28	10.6	19
P28	FHYD2	20	3	200
P29	7	29	6.7	19

Link - Node Table:

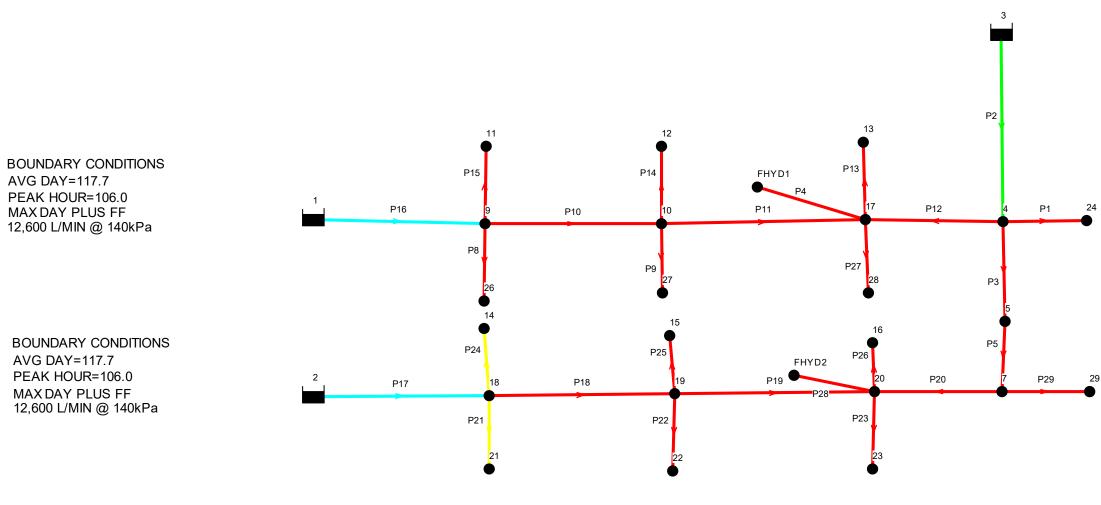
▲ Page 2

2018-08-08_ph3_peak.rpt

Node Results:

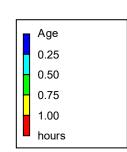
			Pressure	-	
ID	LPM		m		
4			35.10		
5	0.00		34.62		
FHYD1	0.00		35.10		
7	10.67		34.98		
9	21.34			0.00	
10	21.34		35.24	0.00	
11	3.54	105.95	35.05	0.00	
12	3.54		34.90	0.00	
13	3.54	105.95	34.73	0.00	
14	3.54	105.95	34.28	0.00	
15	3.54	105.95	34.07	0.00	
16	3.54	105.95	33.85	0.00	
17	32.00	106.00	35.05	0.00	
18	35.56	106.00	34.62	0.00	
19	35.56	106.00	34.42	0.00	
20	39.12		34.77	0.00	
21	3.54	105.91	34.20		
22	3.54		34.07	0.00	
23	3.54		33.83	0.00	
24	3.54			0.00	
26	3.54	105.92	34.96	0.00	
27	3.54	105.91	34.82	0.00	
28	3.54		34.61	0.00	
FHYD2	0.00		34.55		
29	3.54		34.55		
1	-77.03		0.00		Reservoir
2	-96.23				Reservoir
3	-82.56	106.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headloss	Stat	us
ID	LPM	m/s	m/km		
			, 		
P2	-82.56	0.04	0.03	0pen	
Р3	49.47	0.03	0.01	0pen	
P4	0.00	0.00	0.00	0pen	
P5	49.47	0.03	0.01	Open	
P10	48.61	0.03	0.01	Open	
P11	20.19	0.01	0.00	0pen	
P12	-18.89	0.01	0.00	0pen	
P13	3.54	0.21	8.24	0pen	
P14	3.54	0.21	8.24	0pen	

Page 2

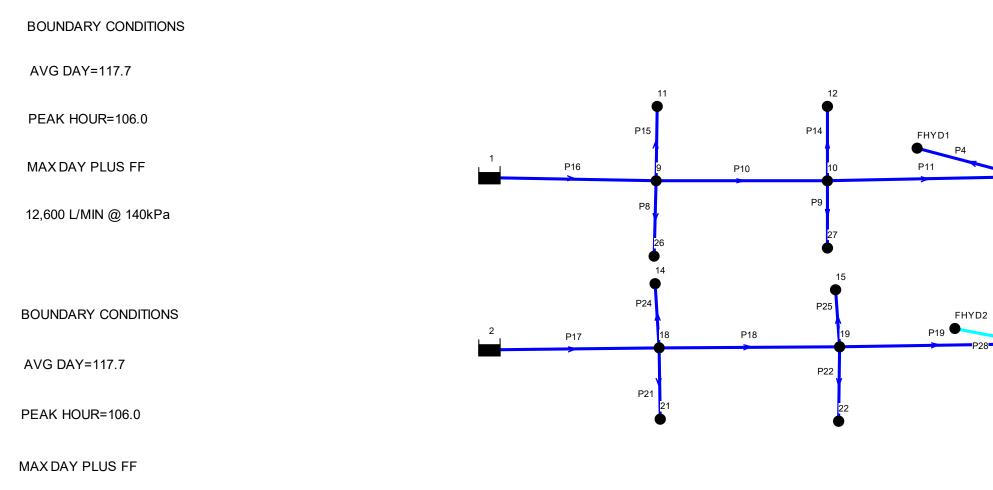

2018-08-08_ph3_peak.rpt

P15	3.54	0.21	8.24	0pen
P16	-77.03	0.04	0.03	0pen
P17	96.23	0.05	0.04	0pen
P18	53.59	0.03	0.01	0pen

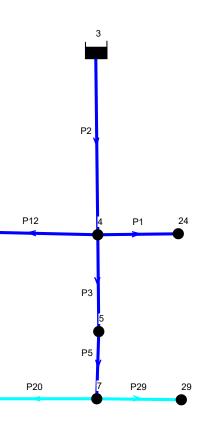
♠


Link	Flow	VelocityUnit	Headloss	Status
ID	LPM	m/s	m/km	
P19	10.95	0.01	0.00	Open
P20	-35.26	0.02	0.01	Open
P21	3.54	0.21	7.92	Open
P22	3.54	0.21	7.92	Open
P23	3.54	0.21	7.92	Open
P24	3.54	0.21	8.24	Open
P25	3.54	0.21	8.24	Open
P26	3.54	0.21	8.24	Open
P1	3.54	0.21	8.17	Open
P8	3.54	0.21	7.93	Open
P9	3.54	0.21	7.93	Open
P27	3.54	0.21	7.93	Open
P28	0.00	0.00	0.00	Open
P29	3.54	0.21	8.17	Open

2710 DRAPER AVENUE PHASE III - AVERAGE DAY DEMAND


Day 2, 12:00 AM

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 14,100 L/MIN @ 140kPa


29

2710 DRAPER AVENUE PHASE III - MAX DAY + FIRE FLOW DEMAND

12,600 L/MIN @ 140kPa

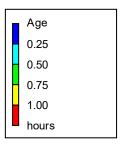
Day 2, 12:00 AM

13

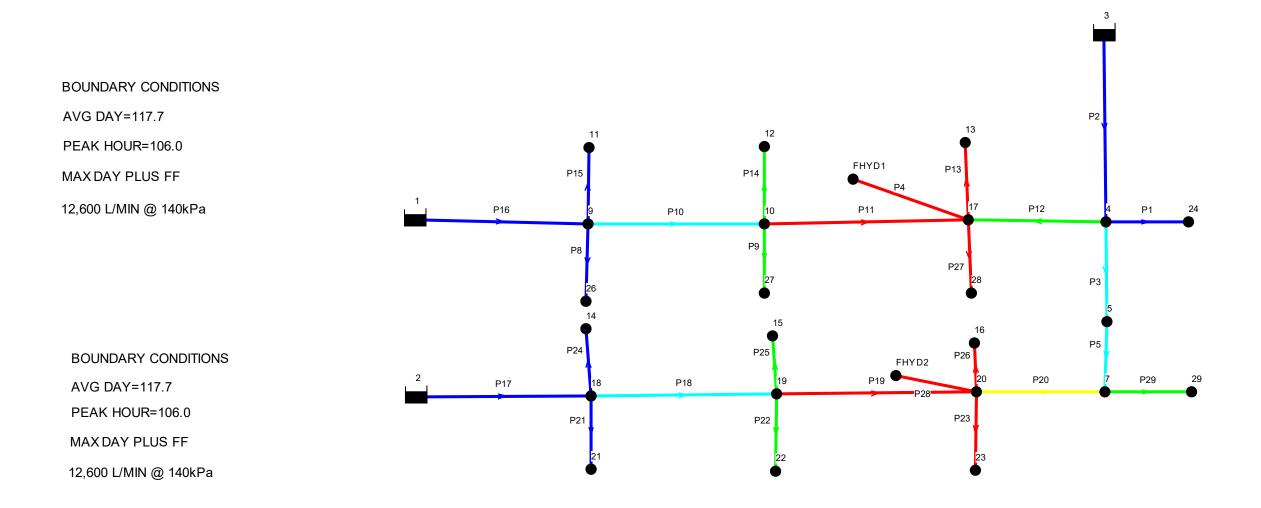
P13

P27

P26


P23

16


20

23

2710 DRAPER AVENUE PHASE III - PEAK HOUR DEMAND

Day 2, 12:00 AM

BOUNDARY CONDITIONS AVG DAY=117.7 PEAK HOUR=106.0 MAX DAY PLUS FF 14,100 L/MIN @ 140kPa

Age
0.25
0.50
0.75
1.00
hours

Alison Gosling

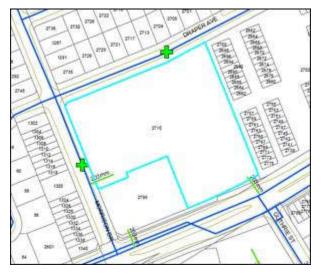
From:	Fraser, Mark <mark.fraser@ottawa.ca></mark.fraser@ottawa.ca>
Sent:	Friday, March 23, 2018 11:50 AM
To:	Alison Gosling
Cc:	Robert Freel
Subject:	RE: 2710 Draper Avenue - Boundary Condition Request
Attachments:	2710 Draper March 2018.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Alison,

Please find below updated boundary conditions for hydraulic analysis as requested based on the <u>REVISED</u> water demands provided:

Proposed Development Location: **2710 Baseline Road** Average Day = 0.98 L/s Max Day = 3.54 L/s Peak Hour = 5.32 L/s Fire Flow = 20,000 L/min

Please note that the boundary conditions provided below are same for both scenarios .


City of Ottawa Boundary Conditions:

The following are boundary conditions, HGL, for hydraulic analysis at 2710 Baseline (Zone 1W) assumed to be connected to the 203mm on Draper Ave and 203mm on Morrison Drive (see attached PDF for location).

Specified Connection Point: Morrison Drive (203mm dia.) [Connection 1] Minimum HGL = 106.0m Maximum HGL = 117.7m Available Flow assuming a residual of 20 psi = 235m L/s

Specified Connection Point: Draper Ave. (203mm dia.) [Connection 2] Minimum HGL = 106.0m Maximum HGL = 117.7m Available Flow assuming a residual of 20 psi = 210 L/s

These are for current conditions and are based on computer model simulation.

Please refer to City of Ottawa, Ottawa Design Guidelines – Water Distribution, First Edition, July 2010, WDG001 Clause 4.2.2 for watermain pressure and demand objectives.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

If you have any questions or require any clarification please let me know.

Regards,

Mark Fraser

Project Manager, Planning Services Development Review West Branch City of Ottawa | Ville d'Ottawa Planning, Infrastructure and Economic Development Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 <u>Tel:613.580.2424</u> ext. 27791 Fax: 613-580-2576 Mail: Code 01-14 Email: <u>Mark.Fraser@ottawa.ca</u>

*Please consider your environmental responsibility before printing this e-mail

This message, including any document or file attached, is intended only for the addressee and may contain privileged and /or confidential information. Any person is strictly prohibited from reading, using, disclosing or copying this message. If you received this message in error, please notify the sender and delete the message. Thank you.

From: Fraser, Mark
Sent: March 20, 2018 7:41 AM
To: 'Alison Gosling' <AGosling@dsel.ca>
Cc: 'Robert Freel' <RFreel@dsel.ca>
Subject: RE: 2710 Draper Avenue - Boundary Condition Request

Thank you Alison.

Please accept this email as confirmation that updated boundary conditions for hydraulic analysis for 2710 Draper Ave. have been requested from the Infrastructure Planning Unit based on the water demands provided for the subject development. Please note that it takes approximately 5-10 business days to receive and provide you with boundary conditions.

Regards,

Mark Fraser

Project Manager, Planning Services Development Review West Branch City of Ottawa | Ville d'Ottawa Planning, Infrastructure and Economic Development Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 <u>Tel:613.580.2424</u> ext. 27791 Fax: 613-580-2576 Mail: Code 01-14 Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

This message, including any document or file attached, is intended only for the addressee and may contain privileged and /or confidential information. Any person is strictly prohibited from reading, using, disclosing or copying this message. If you received this message in error, please notify the sender and delete the message. Thank you.

From: Alison Gosling [mailto:AGosling@dsel.ca]
Sent: March 19, 2018 4:46 PM
To: Fraser, Mark <<u>Mark.Fraser@ottawa.ca</u>>
Cc: Robert Freel <<u>RFreel@dsel.ca</u>>
Subject: 2710 Draper Avenue - Boundary Condition Request

Good afternoon Mark,

We would like to request updated water boundary conditions for 2710 Draper Avenue using the following proposed development demands:

- 1. Location of Service / Street Number: 2710 Draper Avenue (Phase III)
- 2. Type of development and the amount of fire flow required for the proposed development:
 - The proposed Phased development is residential use. Phase III proposes 90 townhomes, 53 townhomes in Phase III-I and 37 townhomes in Phase III-II.
 - It is anticipated that the Phase III development will have a dual connection to be serviced from the existing 203 mm diameter watermain within Morrison Drive and a connection to the existing 203mm diameter watermain within Draper Avenue, as shown by the attached map.
 - Based on the parameters provided by the Architect, a maximum fire flow of 20,000 L/min is estimated for the development.

2	
3	•

Phase	111-1		- & -	
	L/min	L/s	L/min	L/s
Avg. Daily	35.0	0.58	59.1	0.98
Max Day	126.0	2.10	212.6	3.54
Peak Hour	189.0	3.15	318.9	5.32

It you have any questions please feel free to contact me.

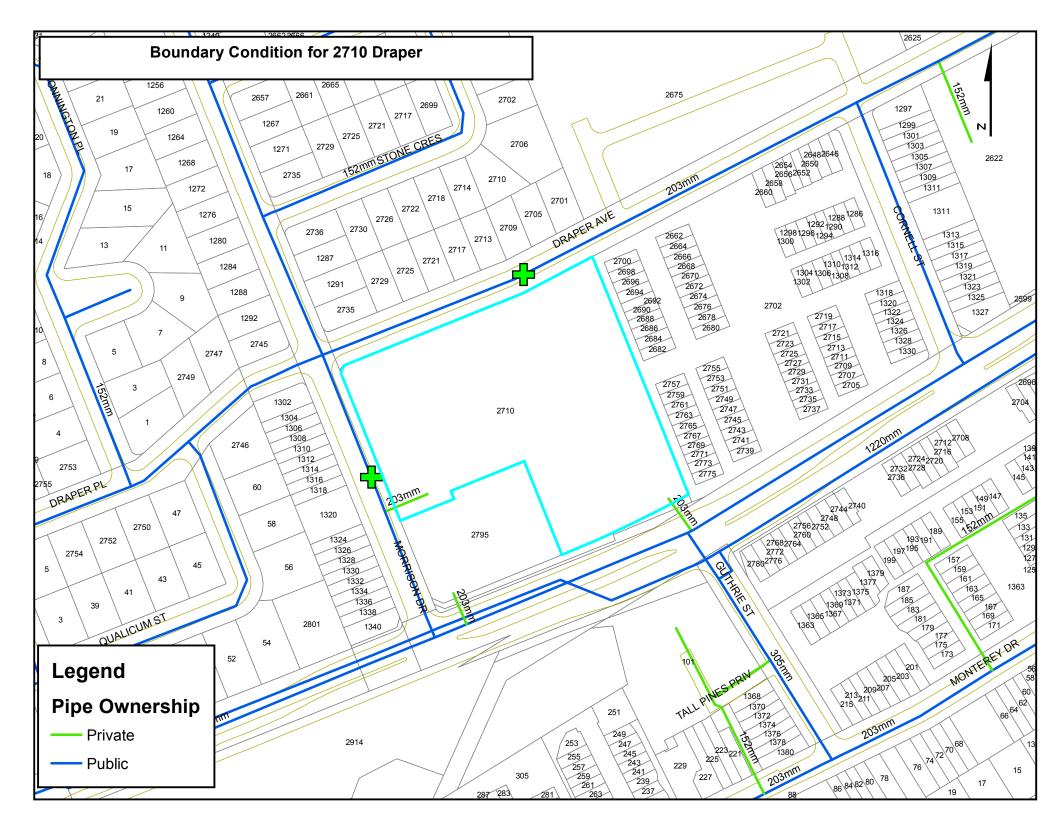
Thank you,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

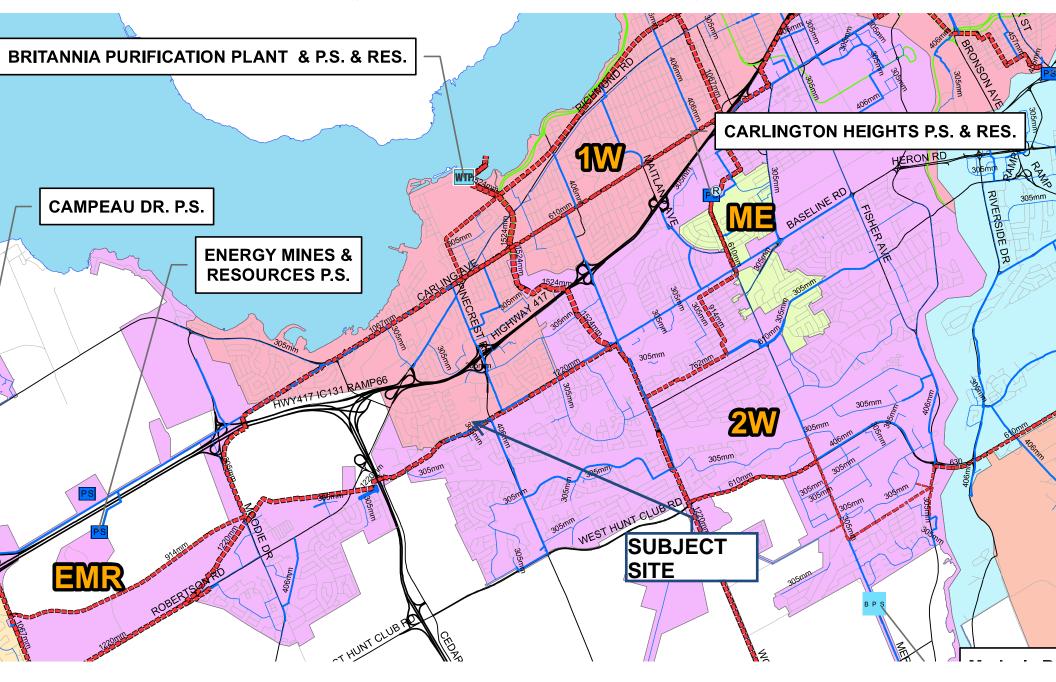
DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9


 phone:
 (613) 836-0856 ext.542

 fax:
 (613) 836-7183


 email:
 agosling@dsel.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

City of Ottawa - Water Distribution System

rla/architecture

June1, 2018

Mr. Steam Shen MCIP RPP Planner II Development Review West City of Ottawa

Re: Site Plan Control Application -2710 Draper Ave. Fourth Round Comments dated May 18, 2018 City of Ottawa File no. D07-12-17-0076

Dear Mr. Shen,

In response to **Reports: Functional Servicing and Stormwater Management Report by DSEL**, specifically Item 7, Roderick Lahey Architect offers the following proposed revisions to the plans as filed as a companion document to DSEL's comments.

With reference to **ISO's Guide for Determination of Needed Fire Flow**, we understand the following definitions are intended to support the Construction Class of a building:

A Under Construction Materials and Assemblies 1 a) (8) essentially defines that an assembly that has a one hour rating or better is considered not to be combustible (non-combustible).

B Under Classification of Basic Construction Types 2.c) Non-Combustible (Construction Class 3) – the class is defined as buildings with exterior walls, floors and roof of (assemblies considered to be)non-combustible...supported by (assemblies considered to be) non-combustible etc.

Together with this letter please find our proposed assemblies to satisfy the above-referenced criteria. The assemblies reference OBC SB-3 as the authority in defining the fire resistance rating. Structural and demising fire separation walls, floor and roof assemblies will be revised to have a minimum 1 hr. fire resistance rating.

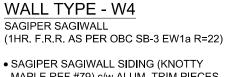
It is our understanding that this proposed revision would then comply with the individual buildings in question being Classified as Construction Class 3.

Trusting the above and the attached, together with DSEL's comments regarding this matter are sufficient to satisfy compliance with City of Ottawa's comment 7.

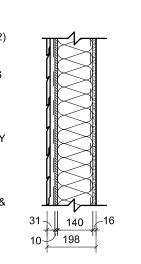
Best Regards

Glen Vaillancourt B.Arch. Partner, Roderick Lahey Architect Inc.

WALL TYPE - W3


EXTERIOR BRICK WALL. (1HR, F, R, R, AS PER OBC SB-3 EW1a R=22)

- BRAMPTON BRICK VENEER, PREMIER SIZE - BEAUPORT, REFER TO ELEVATIONS (H-79mm x D-90mm x L-257mm) c/w ADJUSTABLE UNIT TIES @ 400mm O.C. HORIZ & 600mm O.C. VERT & WEEPHOLES @ 600mm O.C @ BOTTOM. BLUESKIN THROUGH WALL FLASHING MIN 150mm HIGH • 25mm AIR SPACE
- TYVEK AIR/WEATHER BARRIER -
- ALL JOINTS SEALED.
- 10mm OSB SHEATHING
- 140mm WOOD STUDS @400mm O.C.
- 140 mm R22 BATT INSULATION. • 6 mil POLY VAPOUR BARRIER.
- 16mm TYPE 'X' GYPSUM BOARD,
- PRIME & PAINT FINISH.


NOTE: TYPICAL 15mm OVERHANG FROM EXTERIOR FACE OF CONCRETE FOUNDATION WALLS.

10 25 140 16 15 75

280

- MAPLE REF #79) c/w ALUM, TRIM PIECES
- 19mm WOOD STRAPPING
- TYVEK AIR/WEATHER BARRIER -SHINGLED AND ALL JOINTS SEALED. BLUESKIN THROUGH WALL FLASHING MIN.150mm HIGH AT BASE OF ASSEMBLY
- 10mm OSB SHEATHING
- 140mm WOOD STUDS @400mm O.C.
- 140 mm R22 BATT INSULATION
- 6 mil POLY VAPOUR BARRIER
- 16mm TYPE 'X' GYPSUM BOARD, PRIME & PAINT FINISH

WALL TYPE - W5

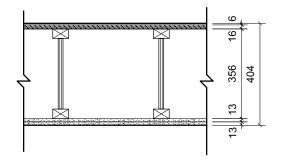
W5 - HARDIE BOARD PANELS (1HR. F.R.R. AS PER OBC SB-3 EW1a R=24)

- HARDIE BOARD PANEL SIDING (REFER TO ELEVATIONS FOR COLOR / PATTERN)
- 19mm WOOD STRAPPING • TYVEK AIR/WEATHER BARRIER - SHINGLED AND ALL JOINTS SEALED. BLUESKIN THROUGH WALL FLASHING MIN.150mm HIGH
- AT BASE OF ASSEMBLY • 10mm OSB SHEATHING
- 140mm WOOD STUDS @400mm O.C.
- 140 mm R22 BATT INSULATION
- 6 mil POLY VAPOUR BARRIER • 16mm TYPE 'X' GYPSUM BOARD, PRIME & 29 PAINT FINISH

10-NOTE: ALL CUT JH EDGES TO BE PAINTED PRIOR TO USE. FOLLOW MANUFACTURER INSTALLATION DETAILS

PAINTED METAL PANEL TRIM PIECES • 10mm OSB SHEATHING

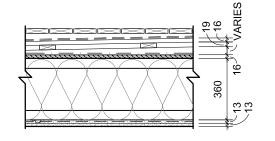
PAINT FINISH

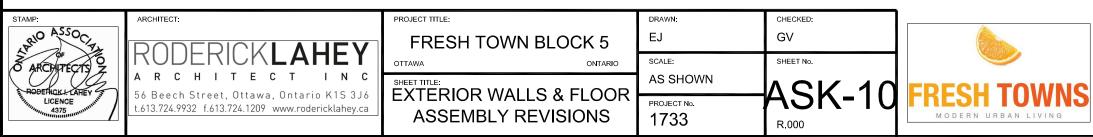

140 16

195

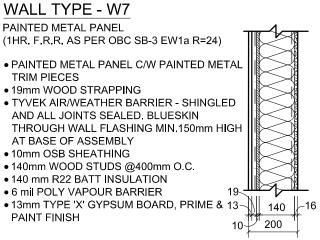
FLOOR TYPE - F3

TYPICAL FLOOR CONSTRUCTION (1HR. F.R.R., AS PER SB-3 TABLE 2 F4e)


- FLOOR FINISH AS NOTED ON FLOOR PLANS
- 6mm FOAM IMPACT ISOLATION BARRIER
- 16mm OSB SHEATHING (GLUED AND SCREWED)
- 356mm PRE-ENGINEERED FLOOR JOISTS @ 400 O.C.
- 2 LAYERS 13mm TYPE 'X' GYPSUM BOARD c/w PRIME & PAINT FINISH



ROOF TYPE - R2


FLAT ROOF w/ SLEEPERS (OBC SB-12 - R31 min) (1HR. F.R.R., AS PER SB-3 TABLE 2 F4e)

- PRESSURE TREATED WOOD DECKING ON SLEEPERS
- 16mm CEMENT BOARD
- SLEEPERS SLOPED TO ROOF DRAINS (MIN 2%)
- 16mm OSB SHEATHING (GLUED AND SCREWED) 360mm
- FILL VOID WITH MINERAL FIBER BATT INSULATION
- 6mil POLY VAPOUR BARRIER
- 2 LAYERS 13mm TYPE 'X' GYPSUM BOARD c/w PRIME & PAINT FINISH

- 2-PLY MODIFIED BITUMEN ROOFING SYSTEM
- 19x64mm STRAPPING @ 400mm O.C.
- BLACK BUILDING PAPER
- PRE-ENGINEERED FLOOR JOISTS @ 400mm O.C.

APPENDIX C

Wastewater Collection

Existing Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Extraneous Flow AllowancesInfiltration / Inflow (Dry)0.11 L/sInfiltration / Inflow (Wet)0.60 L/sInfiltration / Inflow (Total)0.70 L/sOmestic ContributionsUnit TypeUnit RateUnitsPopSingle Family3.40Semi-detached and duplex2.70Duplex2.30Townhouse2.784ApartmentExisting CCC 994 Lands (Building E)1 Bedroom1.4562 Bedroom2.12451	
Infiltration / Inflow (Wet)0.60 L/sInfiltration / Inflow (Total)0.70 L/sDomestic ContributionsUnit RateUnitsUnit TypeUnit RateUnitsSingle Family3.40Semi-detached and duplex2.70Duplex2.30Townhouse2.784Existing CCC 994 Lands (Building E)1.4561 Bedroom1.45679	
Infiltration / Inflow (Total)0.70 L/sDomestic ContributionsUnit RateUnitsPopUnit TypeUnit RateUnitsPopSingle Family3.40Semi-detached and duplex2.70Duplex2.30Townhouse2.784ApartmentExisting CCC 994 Lands (Building E)1 Bedroom1.45679	
Domestic ContributionsUnit RateUnitsPopUnit TypeUnit RateUnitsPopSingle Family3.40Semi-detached and duplex2.70Duplex2.30Townhouse2.784ApartmentExisting CCC 994 Lands (Building E)1 Bedroom1.456	
Unit TypeUnit RateUnitsPopSingle Family3.40Semi-detached and duplex2.70Duplex2.30Townhouse2.784Apartment	
Single Family 3.4 0 Semi-detached and duplex 2.7 0 Duplex 2.3 0 Townhouse 2.7 84 227 Apartment Existing CCC 994 Lands (Building E) 1 Bedroom 1.4 56 79	
Semi-detached and duplex2.70Duplex2.30Townhouse2.784Apartment2.784Existing CCC 994 Lands (Building E)1 Bedroom1.45679	
Duplex 2.3 0 Townhouse 2.7 84 227 Apartment Existing CCC 994 Lands (Building E) 7 7 1 Bedroom 1.4 56 79	
Townhouse2.784227Apartment2.784227Existing CCC 994 Lands (Building E)1.45679	
Apartment Existing CCC 994 Lands (Building E) 1 Bedroom 1.4 56 79	
Existing CCC 994 Lands (Building E) 1 Bedroom 1.4 56 79	
1 Bedroom 1.4 56 79	
2 Bedroom 2.1 24 51	
3 Bedroom 3.1 0	
Average 1.8 0	
Total Pop 357	
Average Domestic Flow 1.45 L/s	
Peaking Factor 4	
Peak Domestic Flow 5.78 L/s	
Institutional / Commercial / Industrial Contributions	
Property Type Unit Rate No. of Units Avg Wastewate (L/s)	r
Commercial floor space 5 L/m ² /d 0.0	00
Office 75 L/9.3m ² /d 0.0	
Restaurant 125 L/seat/d 0.0	
Industrial - Light 35,000 L/gross ha/d 0.0	
Industrial - Heavy 55,000 L/gross ha/d 0.0	00
Average I/C/I Flow 0.	00
Peak Institutional / Commercial Flow 0.0	00

Total Estimated Average Dry Weather Flow Rate	1.45 L/s
Total Estimated Peak Dry Weather Flow Rate	5.89 L/s
Total Estimated Peak Wet Weather Flow Rate	6.59 L/s

0.00

0.00

Residential demands, Harmon's Correction Factor, Extraneous Flow Rates and Commercial Peaking Factor established by the City of Ottawa Technical Bulletin ISTB-2018-01. Commercial demands established by City of Ottawa Sewer Design Guidelines Appendix 4A.

Peak Industrial Flow**

Peak I/C/I Flow

SI

City of Ottawa Sewer Design Guidelines, 2012 Site Area 1.33 ha **Extraneous Flow Allowances** Infiltration / Inflow (Dry) 0.07 L/s 0.37 L/s Infiltration / Inflow (Wet) Infiltration / Inflow (Total) 0.44 L/s **Domestic Contributions** Unit Type Units Рор **Unit Rate** Single Family 0 3.4 Semi-detached and duplex 2.7 0 Townhouse 2.7 233 86 Stacked Townhouse 2.3 0 Apartment 1 Bedroom 1.4 0 2 Bedroom 2.1 0 **Total Pop** 233 Average Domestic Flow 0.76 L/s **Peaking Factor** 3.50 Peak Domestic Flow 2.64 L/s Institutional / Commercial / Industrial Contributions

Property Type	Unit R	ate	No. of Units	Avg Wastewater (L/s)	
Commercial floor space*	5 I	L/m²/d		0.00	
Office	75 I	_/9.3m²/d		0.00	
Industrial - Light	35,000 l	_/gross ha/d		0.00	
Industrial - Heavy	55,000 l	_/gross ha/d		0.00	

Average I/C/I Flow	0.00
Peak Institutional / Commercial Flow	0.00
Peak Industrial Flow**	0.00
Peak I/C/I Flow	0.00

* assuming a 12 hour commercial operation

Wastewater Design Flows per Unit Count

Total Estimated Average Dry Weather Flow Rate	0.76 L/s
Total Estimated Peak Dry Weather Flow Rate	2.71 L/s
Total Estimated Peak Wet Weather Flow Rate	3.15 L/s

Residential demands, Harmon's Correction Factor, Extraneous Flow Rates and Commercial Peaking Factor established by the City of Ottawa Technical Bulletin ISTB-2018-01. Commercial demands established by City of Ottawa Sewer Design Guidelines Appendix 4A.

Greatwise Developments 2710 Draper Avenue/2781 Baseline Road Proposed Site Conditions - Ultimate

City of Ottawa Sewer Design Gu	idelines, 2012				DSEL
Site Area			2.130	ha	
Extraneous Flow Allowances					
		on / Inflow (Dry)	0.11		
		n / Inflow (Wet)	0.60		
	Infiltration	/ Inflow (Total)	0.70	L/s	
Domestic Contributions					
Unit Type	Unit Rate	Units	Рор		
Single Family	3.4		. 0		
Semi-detached and duplex	2.7		0		
Townhouse	2.7	86	233		Phase 3 Townhomes
Stacked Townhouse	2.3		0		
Apartment	2.0		0		
Existing CCC 994 Lands (Bui	ilding E)				
1 Bedroom	1.4	56	79		
2 Bedroom	2.1	24			
	2.1	24	51		
Proposed Building F		40	04		
1 Bedroom	1.4	43	61	(00	
2 Bedroom	2.1	37	78	139	рор
		Total Pop	502		
	Average I	Domestic Flow	1.63	L/s	
	F	Peaking Factor	3.38		
	Peak I	Domestic Flow	5.50	L/s	
Institutional / Commercial / Indu	strial Contributions				
Property Type	Unit R	late	No. of Units	Avg Wastewater (L/s)	
Commercial floor space*	5 L/	/m²/d	598	0.07	
Office	75 L/	'9.3m²/d		0.00	
Industrial - Light		gross ha/d		0.00	
Industrial - Heavy		gross ha/d		0.00	
					<u>.</u>
		Ave	rage I/C/I Flow	0.07	
	Peak In	stitutional / Cor	nmercial Flow lustrial Flow**	0.07	
				0.00	
* assuming a 12 hour commercial oper	ation	ŀ	Peak I/C/I Flow	0.07	-
- '	_				
				Neather Flow Rate	
				Neather Flow Rate	
		Total Estimation	ated Peak Wet	Neather Flow Rate	6.38 L/s

Residential demands, Harmon's Correction Factor, Extraneous Flow Rates and Commercial Peaking Factor established by the City of Ottawa Technical Bulletin ISTB-2018-01. Commercial demands established by City of Ottawa Sewer Design Guidelines Appendix 4A.

SANITARY SEWER CAL	CULATI	ON SHEE	Т																						6	ttaw	va
LOCATION			RES							CO	MM	INS	STIT	PA	RK	C+l+l	IN	FILTRATI	ON					PIPE			
STREET	FROM	ТО	AREA	UNITS	POP.		LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	EL.
	M.H.	M.H.	(ha)			AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (l/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap (%)	(FULL) (m/s)	(ACT.) (m/s)
Cherry Blossom Private																											
						0.00								0.06			0.06	0.06		0.00168							
	<u>5A</u>	6A	0.19		35.00	0.19	35.00		0.57						0.06	0.01	0.19	0.25	0.07	0.65		250.00	0.30	32.57	0.02	0.66	0.04
To Dumple Mentin Drivete, Dine 74	<u>6A</u>	7A	0.19	14.00	38.00			4.00	1.18						0.06	0.01	0.19		0.12	1.32	63.00	250.00	0.30	32.57	0.04	0.66	0.08
To Purple Martin Private, Pipe 7A	4 - 8A					0.38	73.00								0.06			0.44		0.00							
Foliage Private																											
	2A	ЗA	0.26		46.00		46.00		0.75								0.26	0.26	0.07	0.82		250.00	0.30	32.57	0.03	0.66	0.06
	3A	4A	0.24	20.00	54.00		100.00		1.62								0.24	0.50	0.14	1.76	59.50	250.00	0.30	32.57	0.05	0.66	0.08
To Purple Martin Private, Pipe 4A	A - 70A					0.50	100.00											0.50									
Purple Martin Private																											
Contribution From Foliage Private	e Pine 34	- 40				0.50	100.00										0.50	0.50									
Contribution r form r onage r rivat	4A	70A	0.11	1 00	3.00	0.61	103.00		1.67								0.00	0.61	0.17	1.84	13.00	250.00	0.30	32.57	0.06	0.66	0.08
	70A	7A		3.00			111.00										0.05	0.66	0.18	1.98		250.00		32.57	0.06	0.66	0.08
Contribution From Cherry Blosso	m Private	, Pipe 6A - 7A				0.38	73.00								0.06		0.44	1.10		0.00							
	7A	8A	0.09	4.00	11.00	1.13	195.00	4.00	3.16						0.06	0.01	0.09	1.19	0.33	3.50		250.00	0.30	32.57	0.11	0.66	0.09
	8A	9A				1.13	195.00	4.00	3.16						0.06	0.01	0.00	1.19	0.33	3.50	12.00	250.00	0.30	32.57	0.11	0.66	0.09
			SIGN P		TERS								Desigr	ned:				PROJE	CT:		•						•
Park Flow = Average Daily Flow =	9300 350	L/ha/da I/p/day	0.10764	I/s/Ha		Industria	l Peak Fa	actor =	as per M	OE Gra	ph										2710 I	DRAPE	R AVEN	UE - PH	ASE 3-1		
Comm/Inst Flow = Industrial Flow = Max Res. Peak Factor =	50000 35000 4.00	L/ha/da	0.5787 0.40509			Industrial Peak Factor = as per MOE Grap Extraneous Flow = 0.280 L/s/ha Minimum Velocity = 0.600 m/s Manning's n = (Conc) 0.013 (Pvc)						Checked:					LOCATION:					City of	City of Ottawa				
Commercial/Inst./Park Peak Factor Institutional =	1.50 0.58	l/s/Ha				Townhou	use coeff= ouse coef	=	2.7 3.4	/				Referenc y Drainage			SAN-1	File Ref	:	17-927		Date:	2018-08	-07		Sheet No o	

		Pop	ulation		<u></u>						
City MH						Com.		Inst.		Cumulative	Design
İD	Pipe ID	Local	Cumulative	Res.	Com.	Cumul.	Inst.	Cumul.	Total	Area (ha)	Flow (L/S)
Morrison D	n Drive Sewer (Upper Reach)										
25698	1	113	113	1.39		0		0	1.39	1.39	1.8
25699	2	592	705	7.91		0	8.21	8.21	16.12	17.51	16.4
25700	3	71	776	1.55		0		8.21	1.55	19.06	17.8
25701	4	85	861	1.7		0		8.21	1.7	20.76	19.4
25702	5	58	919	1.05		0		8.21	1.05	21.81	20.5
25703	6	27	946	0.59		0		8.21	0.59	22.4	21.0
25704	7	160	1106	3.22		0		8.21	3.22	25.62	24.0
25706	8	43	1149	0.57		0		8.21	0.57	26.19	24.6
43673	9	162	1311	2.17	2.38	2.38		8.21	4.55	30.74	28.8
25709	10		1311	0.76	0.39	2.77		8.21	1.15	31.89	29.4
25710	11		1311	0.71	1.05	3.82		8.21	1.76	33.65	30.5
25711	12		1311	1.29	0.8	4.62		8.21	2.09	35.74	31.7
25713	13	378	1689	3.19		4.62		8.21	3.19	38.93	36.5
25715	14	2294	3983	34.61	6.5	11.12	1.39	9.6	42.5	81.43	77.2
Draper Ave	nue Sewer										
	15A	38	38	1.38		0	1.47	1.47	2.85		2.0
	15B	135	173	2.2		0		1.47	2.2	5.05	4.4
	15C	230	403	0.54		0		1.47	0.54	5.59	6.9
	15D	360	763	0.84		0		1.47	0.84		10.6
	15E	905	1668	4.13		0		1.47	4.13		20.4
	15F	251	1919	2.98		0	0.5	1.97	3.48		24.3
	15G	111	2030	0.94		0	0.25	2.22	1.19	15.23	25.8
Morrison D		(Lower Rea	,			-					
25723	15		6013			11.12		11.82	0		100.4
25722	16		6013	0.38	1.88	13		11.82	2.26		101.4
25720	17	154	6167	2.07	0.84	13.84		11.82	2.91	101.83	104.2

Domestic Flow	300 (L/per/day)
Correction Factor Dom (Harmon Equation)	0.6
Extraneous Flow	0.5 L/s/ha
Commercial	17000 L/ha/day
Institutional	10000
Industrial	10000
Peaking Factor non-res	1

Population density

Single Family	3.4
Townhouse	2.7
Apartment Units	1.4

				mase i C	onations	as per DS					
		Pop	ulation		Local Area (ha)						
City MH						Com.		Inst.		Cumulative	Design
ID	Pipe ID	Local	Cumulative	Res.	Com.	Cumul.	Inst.	Cumul.	Total	Area (ha)	Flow (L/S)
Morrison Drive Sewer (Upper Reach)											
25698	1	305	305	1.33	0.06	0.06		0	1.39	1.39	4.0
25699	2	592	897	7.91		0.06	8.21	8.21	16.12	17.51	20.3
25700	3	71	968	1.55		0.06		8.21	1.55	19.06	21.7
25701	4	85	1053	1.7		0.06		8.21	1.7	20.76	23.3
25702	5	58	1111	1.05		0.06		8.21	1.05	21.81	24.3
25703	6	27	1138	0.59		0.06		8.21	0.59	22.4	24.8
25704	7	160	1298	3.22		0.06		8.21	3.22	25.62	27.7
25706	8	43	1341	0.57		0.06		8.21	0.57	26.19	28.4
43673	9	162	1503	2.17	2.38	2.44		8.21	4.55	30.74	32.5
25709	10		1503	0.76	0.39	2.83		8.21	1.15	31.89	33.1
25710	11		1503	0.71	1.05	3.88		8.21	1.76	33.65	34.2
25711	12		1503	1.29	0.8	4.68		8.21	2.09	35.74	35.4
25713	13	378	1881	3.19		4.68		8.21	3.19	38.93	40.1
25715	14	2294	4175	34.61	6.5	11.18	1.39	9.6	42.5	81.43	80.5
Draper Ave	nue Sewer	System									
	15A	38	38	1.38		0	1.47	1.47	2.85	2.85	4.5
	15B	135	173	2.2		0		1.47	2.2	5.05	6.9
	15C	230	403	0.54		0		1.47	0.54	5.59	9.2
	15D	360	763	0.84		0		1.47	0.84	6.43	12.8
	15E	905	1668	4.13		0		1.47	4.13	10.56	22.5
[15F	251	1919	2.98		0	0.5	1.97	3.48	14.04	26.3
	15G	111	2030	0.94		0	0.25	2.22	1.19	15.23	27.8
Morrison D		(Lower Rea	,								
25723	15		6205			11.18		11.82	0	96.66	103.0
25722	16		6205	0.38	1.88	13.06		11.82	2.26	98.92	104.5
25720	17	154	6359	2.07	0.84	13.9		11.82	2.91	101.83	107.2

Phase 1 Conditions as per DSEL 2	2012
----------------------------------	------

Domestic Flow - Existing	300 (L/per/day)
Domestic Flow Proposed	350 (L/per/day)
Correction Factor Dom ¹ (Harmon Equation)	0.6
Extraneous Flow	0.5 L/s/ha
Commercial	17000 L/ha/day
Institutional	10000
Industrial	10000
Peaking Factor non-res	1
¹ Correction factor for proposed buildings -1.0	

¹Correction factor for proposed buildings = 1.0

Population density	
Townhouse	2.7
Apartment 1 Bedroom	1.4
Apartment 2 Bedroom	2.1
Apartment 3 Bedroom	3.1

Total Population Increase

Existing Townhouses 5*12 units	162 persons
Proposed	354 persons
Difference	192
100 % will be added at Link 1	354 persons

Population increase based on Phase I proposed development, net population increase of 220.

		Рор	ulation	Local Area (ha)							
City MH						Com.		Inst.		Cumulative	Design
ÍD	Pipe ID	Local	Cumulative	Res.	Com.	Cumul.	Inst.	Cumul.	Total	Area (ha)	Flow (L/S)
Morrison D	rive Sewer	(Upper Rea	ch)								
25698	1	347	347	1.33	0.06	0.06		0	1.39	1.39	4.6
25699	2	1060	1407	7.91		0.06	8.21	8.21	16.12	17.51	28.0
25700	3	71	1478	1.55		0.06		8.21	1.55	19.06	29.3
25701	4	85	1563	1.7		0.06		8.21	1.7	20.76	30.9
25702	5	58	1621	1.05		0.06		8.21	1.05	21.81	31.9
25703	6	27	1648	0.59		0.06		8.21	0.59	22.4	32.4
25704	7	160	1808	3.22		0.06		8.21	3.22	25.62	35.2
25706	8	43	1851	0.57		0.06		8.21	0.57	26.19	35.9
43673	9	162	2013	2.17	2.38	2.44		8.21	4.55	30.74	39.9
25709	10		2013	0.76	0.39	2.83		8.21	1.15	31.89	40.5
25710	11		2013	0.71	1.05	3.88		8.21	1.76	33.65	41.6
25711	12		2013	1.29	0.8	4.68		8.21	2.09	35.74	42.8
25713	13	378	2391	3.19		4.68		8.21	3.19	38.93	47.4
25715	14	2294	4685	34.61	6.5	11.18	1.39	9.6	42.5	81.43	87.1
Draper Ave	nue Sewer	System									
	15A	38	38	1.38		0	1.47	1.47	2.85	2.85	8.6
	15B	135	173	2.2		0		1.47	2.2	5.05	10.8
	15C	230	403	0.54		0		1.47	0.54	5.59	13.0
	15D	360	763	0.84		0		1.47	0.84	6.43	16.4
	15E	905	1668	4.13		0		1.47	4.13	10.56	25.8
	15F	251	1919	2.98		0	0.5	1.97	3.48	14.04	29.6
	15G	111	2030	0.94		0	0.25	2.22	1.19	15.23	31.1
Morrison D		(Lower Rea	,							-	-
25723	15		6715			11.18		11.82	0	96.66	109.3
25722	16		6715	0.38	1.88	13.06		11.82	2.26	98.92	110.8
25720	17	154	6869	2.07	0.84	13.9		11.82	2.91	101.83	113.5

Ultimate Proposed Conditions - as per DSEL 2012

Domestic Flow - Existing	300 (L/per/day)
Domestic Flow Proposed	350 (L/per/day)
Correction Factor Dom ¹ (Harmon Equation)	0.6
Extraneous Flow	0.5 L/s/ha
Commercial	17000 L/ha/day
Institutional	10000
Industrial	10000
Peaking Factor non-res	1
¹ Correction factor for proposed buildings -1.0	

¹Correction factor for proposed buildings = 1.0

Population density	
Townhouse	2.7
Apartment 1 Bedroom	1.4
Apartment 2 Bedroom	2.1
Apartment 3 Bedroom	3.1

Total Population Increase

Existing Townhouses 7	12 units 227 persons
Proposed	929 persons
Difference	702
1/3 will be added at Link	1 310 persons
2/3 will be added at Link	2 619 L/s

Population increase based on proposed development, net population increase of 702, new pop = 929.

		Pop	ulation		Local Area (ha)						
City MH						Com.		Inst.		Cumulative	Design
ID	Pipe ID	Local	Cumulative	Res.	Com.	Cumul.	Inst.	Cumul.	Total	Area (ha)	Flow (L/S)
Morrison D	rive Sewer	(Upper Rea	ch)								
25698	1	276	276	1.33	0.06	0.06		0	1.39	1.39	4.9
25699	2	917	1193	7.91		0.06	8.21	8.21	16.12	17.51	24.6
25700	3	71	1264	1.55		0.06		8.21	1.55	19.06	25.9
25701	4	85	1349	1.7		0.06		8.21	1.7	20.76	27.5
25702	5	58	1407	1.05		0.06		8.21	1.05	21.81	28.5
25703	6	27	1434	0.59		0.06		8.21	0.59	22.4	29.0
25704	7	160	1594	3.22		0.06		8.21	3.22	25.62	31.9
25706	8	43	1637	0.57		0.06		8.21	0.57	26.19	32.6
43673	9	162	1799	2.17	2.38	2.44		8.21	4.55	30.74	36.6
25709	10		1799	0.76	0.39	2.83		8.21	1.15	31.89	37.3
25710	11		1799	0.71	1.05	3.88		8.21	1.76	33.65	38.3
25711	12		1799	1.29	0.8	4.68		8.21	2.09	35.74	39.5
25713	13	378	2177	3.19		4.68		8.21	3.19	38.93	44.1
25715	14	2294	4471	34.61	6.5	11.18	1.39	9.6	42.5	81.43	84.2
Draper Ave	enue Sewer										
	15A	38	38	1.38		0	1.47	1.47	2.85	2.85	6.6
	15B	135	173	2.2		0		1.47	2.2	5.05	8.9
	15C	230	403	0.54		0		1.47	0.54	5.59	11.1
	15D	360	763	0.84		0		1.47	0.84	6.43	14.7
	15E	905	1668	4.13		0		1.47	4.13		24.2
	15F	251	1919	2.98		0	0.5	1.97	3.48		28.0
	15G	111	2030	0.94		0	0.25	2.22	1.19	15.23	29.5
		(Lower Rea	- /								
25723	15		6501			11.18		11.82	0	00100	106.5
25722	16		6501	0.38	1.88	13.06		11.82	2.26		108.0
25720	17	154	6655	2.07	0.84	13.9		11.82	2.91	101.83	110.7

Domestic Flow - Existing	300 (L/per/day)
Domestic Flow Proposed	350 (L/per/day)
Correction Factor Dom ¹ (Harmon Equation)	0.6
Extraneous Flow	0.5 L/s/ha
Commercial	17000 L/ha/day
Institutional	10000
Industrial	10000
Peaking Factor non-res	1
¹ Correction factor for proposed buildings -1.0	

¹Correction factor for proposed buildings = 1.0

Population density	
Townhouse	2.7
Apartment 1 Bedroom	1.4
Apartment 2 Bedroom	2.1
Apartment 3 Bedroom	3.1

Total Population Increase

Existing Townhouses 5*12 units	162 persons			
Proposed New	650 persons			
Difference	488			
1/3 will be added at Link 1	217 persons			
2/3 will be added at Link 2	433 L/s			

Population increase based on JFSA XPSWMM Modelling - max allowable increase for freeboard >= 0.30 m.

	Underside of	Novatech	2009 Existing	XPSWM	M Replica of	XPSWMM Model with		
City MH	Footing	Con	ditions ²	Novatech	Novatech 2009 Model ²		Stantec 2012 Survey data ³	
ID	Elevation (m) ¹	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	
25697	N/A	73.87	N/A	73.77	N/A	N/A	N/A	
25698	N/A	71.28	N/A	71.20	N/A	71.30	N/A	
25699	N/A	68.75	N/A	68.69	N/A	69.18	N/A	
25700	N/A	67.88	N/A	67.81	N/A	68.99	N/A	
25701	67.50	66.07	1.43	66.00	1.50	66.07	1.43	
25702	66.65	65.68	0.97	65.61	1.04	65.69		
25703	66.25	65.44	0.81	65.38	0.87	65.44		
25704	66.50	65.12	1.38	65.12	1.39	65.20	1.30	
25704i ⁴	N/A	N/A	N/A	N/A	N/A	64.95	N/A	
25705	65.50	65.09	0.41	64.97	0.53	64.93	0.57	
25706	65.40	65.07	0.33	64.94	0.46	64.92	0.48	
25707	N/A	64.90	N/A	64.90	N/A	64.87	N/A	
25708	N/A	64.85	N/A	64.82	N/A	64.74	N/A	
43673	65.15	64.82	0.33	64.78	0.37	64.67	0.48	
25709	67.08	64.77	2.31	64.74	2.34	64.63	2.45	
25710	N/A	64.69	N/A	64.66	N/A	64.55	N/A	
25711	N/A	64.59	N/A	64.57	N/A	64.46	N/A	
25712	N/A	64.57	N/A	64.55	N/A	64.43	N/A	
25713	N/A	64.55	N/A	64.53	N/A	64.41	N/A	
25714	N/A	64.54	N/A	64.53	N/A	64.41	N/A	
25715	N/A	64.54	N/A	64.52	N/A	64.40	N/A	
25723	N/A	64.53	N/A	64.52	N/A	64.39	N/A	
25722	N/A	64.51	N/A	64.51	N/A	64.37	N/A	
25721	N/A	64.50	N/A	64.51	N/A	64.37	N/A	
25720	N/A	64.49	N/A	64.50	N/A	64.36	N/A	
25719	N/A	64.48	N/A	64.50	N/A	64.36	N/A	

Table 1 - Comparison of Existing Conditions HGL results based on different Sanitary Sewer pipe layouts and Modelling Programs.

¹Underside of footing elevation as estimated by Novatech in their January 2009 report titled Morrison Court Development Wastewater servicing Study.

²Sanitary sewer layout as per Novatech 2009 survey

³Sanitary sewer layout as per a survey conducted by Stantec in August 2012.

⁴During the survey conducted by Stantec in August 2012, they identified a maintenance hole between City structures 25704 and 25705. This structure is refered to as 25704 for the purposes of this study. Note 1: Freeboard distances have only been calculated at maintenance holes where Novatech calculated/reported an underside of footing elevation. N/A in the freeboard column denotes missing USF data. Note 2: Hydraulic Gradeline elevations have not been calculated at all location in each model due to data gaps. N/A in the HGL column denotes missing pipe data for that particular model.

Table 2 - Existing Conditions, Fhase Table 7 And Fhase X Hydraulic Gradeline Results									
	Underside of	Novatech 2009 Existing		XPSWMM Model Existing		XPSWMM Proposed Phase		XPSWMM Proposed	
City MH	Footing	Conditions ²		Condition ³		I Condition ³		Phase X Condition ⁴	
ID	Elevation (m) ¹	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)
25697	N/A	73.87	N/A	N/A	N/A	N/A	N/A	N/A	N/A
25698	N/A	71.28	N/A	71.30	N/A	71.32	N/A	71.32	N/A
25699	N/A	68.75	N/A	69.18	N/A	69.27	N/A	69.38	N/A
25700	N/A	67.88	N/A	68.99	N/A	69.00	N/A	69.00	N/A
25701	67.50	66.07	1.43	66.07	1.43	66.09	1.41	66.11	1.39
25702	66.65	65.68	0.97	65.69	0.96	65.71	0.94	65.73	0.92
25703	66.25	65.44	0.81	65.44	0.81	65.47	0.78	65.49	0.76
25704	66.50	65.12	1.38	65.20	1.30	65.21	1.29	65.23	1.27
25704i⁵	N/A	N/A	N/A	64.95	N/A	64.97	N/A	65.03	N/A
25705	65.50	65.09	0.41	64.93	0.57	64.96	0.54	65.04	0.47
25706	65.40	65.07	0.33	64.92	0.48	64.94	0.46	65.02	0.39
25707	N/A	64.9	N/A	64.87	N/A	64.89	N/A	64.96	N/A
25708	N/A	64.85	N/A	64.74	N/A	64.80	N/A	64.90	N/A
43673	65.15	64.82	0.33	64.67	0.48	64.75	0.40	64.84	0.31
25709	67.08	64.77	2.31	64.63	2.45	64.70	2.38	64.77	2.31
25710	N/A	64.69	N/A	64.55	N/A	64.59	N/A	64.64	N/A
25711	N/A	64.59	N/A	64.46	N/A	64.47	N/A	64.49	N/A
25712	N/A	64.57	N/A	64.43	N/A	64.44	N/A	64.46	N/A
25713	N/A	64.55	N/A	64.41	N/A	64.42	N/A	64.43	N/A
25714	N/A	64.54	N/A	64.41	N/A	64.41	N/A	64.42	N/A
25715	N/A	64.54	N/A	64.40	N/A	64.41	N/A	64.42	N/A
25723	N/A	64.53	N/A	64.39	N/A	64.39	N/A	64.40	N/A
25722	N/A	64.51	N/A	64.37	N/A	64.37	N/A	64.38	N/A
25721	N/A	64.50		64.37	N/A	64.37	N/A	64.37	N/A
25720	N/A	64.49	N/A	64.36	N/A	64.36	N/A	64.36	N/A
25719	N/A	64.48	N/A	64.36	N/A	64.36	N/A	64.36	N/A

Table 2 - Existing Conditions, Phase 1 and Phase X Hydraulic Gradeline Results

¹Underside of footing elevation as estimated by Novatech in their January 2009 report titled Morrison Court Development Wastewater servicing Study.

²Sanitary sewer layout as per Novatech 2009 survey

³Sanitary sewer layout as per a survey conducted by Stantec in August 2012.

⁴Phase X condition is a test case to determine the maximum sanitary flow increase from the proposed development that will result in a minimum freeboard of no less than 0.30 m. Modelled flow increase = 8 L/s. ⁵During the survey conducted by Stantec in August 2012, they identified a maintenance hole between City structures 25704 and 25705. This structure is referred to as 25704i for the purposes of this study. Note 1: Freeboard distances have only been calculated at maintenance holes where Novatech calculated/reported an underside of footing elevation. N/A in the freeboard column denotes missing USF data. Note 2: Hydraulic Gradeline elevations have not been calculated at all location in each model due to data gaps. N/A in the HGL column denotes missing pipe data for that particular model.

Alison Gosling

From:	C. Brennan <cbrennan@jfsa.com></cbrennan@jfsa.com>
Sent:	January-21-13 2:51 PM
To:	'natan'; 'Andrew Finnson'
Cc:	'J.F. Sabourin'; 'Lloyd Phillips'
Subject:	RE: Morrison Drive MH's
Attachments:	20130114 - Hydraulic Gradeline Results + Sanitary Design.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello Andrew,

As requested by your office and Greatwise Developments Corporation (Greatwise), J.F. Sabourin and Associates Inc. (JFSA) have completed our hydraulic analysis of the existing Morrison Drive sanitary sewer system. This analysis is meant to augment the findings that JFSA provided to Greatwise in August 2012. During the previous analysis it was determined that the existing sanitary sewer along Morrison Drive had sufficient capacity to convey the sanitary flow increases from Phase I of the proposed Morrison Court development while maintaining a freeboard of greater than 0.30 m at the critical location, MHSA43673. The current analysis has been undertaken to determine the maximum peak sanitary flow increase from the proposed development that would still result in a freeboard of greater than 0.30 m along the existing Morrison Drive sanitary sewer.

JFSA updated the sanitary sewer design calculations and XPSWMM model of the existing sanitary sewer to determine the maximum flow increase that would meet the 0.30 m freeboard criterion. Based on that analysis it was determined that an overall peak sanitary flow increase of **8** L/s will result in a freeboard of 0.31 m at the critical location, MHSA43673, along the existing sanitary sewer. Please refer to the Hydraulic Gradeline Results and Sanitary Design sheets attached, these results supersede the tables that were submitted in August 2012. As is illustrated in the sanitary design table for Phase X, the scenario that was used to arrive at the max allowable peak flow increase of 8 L/s is a new development with a population of 650 replacing five (5) of the existing townhouses (population of 162) for a net population increase of 488. Please note that the freeboard calculations are based on the hydraulic gradeline results from JFSA's XPSWMM model and the underside of footing determinations made by Novatech in their January 26, 2009 report titled *Morrison Court Development Wastewater Servicing Study*.

Please contact me if you have any questions or comments, Kind Regards

Colin Brennan, B.A.Sc. **Water Resources EIT**

J.F. Sabourin and Associates Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 tel.: 613.836.3884 ext. 224, fax: 613.836.0332, www.jfsa.com

From: natan [mailto:natan@gsregalgroup.com] **Sent:** Tuesday, January 08, 2013 3:21 PM **To:** 'Andrew Finnson' **Cc:** 'J.F. Sabourin'; 'Lloyd Phillips'; cbrennan@jfsa.com **Subject:** RE: Morrison Drive MH's

Andrew Can we start with a conference call on Thursday Jan 10th I recommend for Colin, you, Lloyd and me to be there. Do we need James! If the time is acceptable to all I will send the conference access info to ALL Regards Natan

From: Andrew Finnson [mailto:afinnson@dsel.ca]
Sent: January-08-13 1:43 PM
To: cbrennan@jfsa.com; 'natan'
Cc: 'J.F. Sabourin'; 'Lloyd Phillips'
Subject: RE: Morrison Drive MH's

Hi Natan,

Colin's email below states that they would like to have a meeting to discuss the sanitary analysis and make sure that we're all on the same page. Can you suggest a time that would work for you so we can try to set something up?

Thanks,

Andrew Finnson, P.Eng.

DSEL david schaeffer engineering ltd

phone: (613) 836-0856 ext 229 cell: (613) 222-4957 e-mail: <u>afinnson@DSEL.ca</u>

From: C. Brennan [mailto:cbrennan@jfsa.com] Sent: Tuesday, December 18, 2012 7:00 PM To: 'Andrew Finnson' Cc: 'J.F. Sabourin'; 'natan'; 'Lloyd Phillips' Subject: RE: Morrison Drive MH's

Hello Andrew,

We can perform such an analysis. It would involve additional work in comparison to the quote provided below and we would like to have a brief meeting with the team to confirm the conclusions that can be drawn from such an analysis and how the project could progress from there. To perform the aforementioned our fee would be \$1,250 + tax. A meeting with the City may be required to confirm that our approach will be acceptable to them, which would be charged at our standard hourly rates.

Kind Regards, Colin

Colin Brennan, B.A.Sc. **Water Resources EIT**

J.F. Sabourin and Associates Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 tel.: 613.836.3884 ext. 224, fax: 613.836.0332, <u>www.jfsa.com</u>

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Thursday, December 13, 2012 9:56 AM To: <u>cbrennan@jfsa.com</u> Cc: 'J.F. Sabourin'; 'natan'; 'Lloyd Phillips' Subject: RE: Morrison Drive MH's

Hi Colin,

I've discussed this with Natan at Greatwise and what they'd like to see (since we're looking at this again) is a maximum number of units, or maximum population that could be accommodated without the need for a downstream upgrade. This analysis should show that the additional units can be accommodated, as well as give a bit of a buffer in the event that there are any site plan changes. Are you able to complete this analysis for the fee quoted below or would additional fees be required to complete this type of analysis?

Thanks,

Andrew Finnson, P.Eng.

DSEL david schaeffer engineering Itd

phone: (613) 836-0856 ext 229 cell: (613) 222-4957 e-mail: <u>afinnson@DSEL.ca</u>

From: C. Brennan [mailto:cbrennan@jfsa.com] Sent: Wednesday, December 12, 2012 3:14 PM To: 'Andrew Finnson' Cc: 'J.F. Sabourin' Subject: RE: Morrison Drive MH's

Hi Andrew,

I can introduce that flow increase into our hydraulic model and confirm if Phase I can still go ahead without improving the existing sanitary sewer system. It will take about a half day to update everything and respond via email. To perform this check our fee would be \$ 500.

Let me know if you would like me to proceed.

Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Monday, December 10, 2012 11:11 AM

To: <u>cbrennan@jfsa.com</u> Subject: RE: Morrison Drive MH's

Hi Colin,

I've been told that they are making some minor adjustments to unit counts for the Greatwise - Morrison Drive development. Basically they are converting 5 - 2 bedroom units to 10 - 1 bedroom units. They have asked me to confirm that this will still work without upgrading the downstream sewer. Are you able to confirm that this should still work?

Give me a call if you have any questions.

Thanks,

Andrew Finnson, P.Eng.

DSEL david schaeffer engineering Itd

phone: (613) 836-0856 ext 229 cell: (613) 222-4957 e-mail: <u>afinnson@DSEL.ca</u>

From: C. Brennan [mailto:cbrennan@jfsa.com] Sent: Friday, August 24, 2012 11:07 AM To: 'Andrew Finnson' Cc: jfsabourin@jfsa.com Subject: RE: Morrison Drive MH's

Hi Andrew,

As requested, we have assessed the HGL elevations along the Morrison Drive sanitary sewer under ultimate (Phase I and II) flow conditions. Sanitary flows are based on Novatech's 2009 design, with a peak flow of 112.4 L/s at the downstream end of the system. The minimum freeboard for this condition at MHSA43673 is 0.26 m, less than the City's minimum allowable freeboard of 0.30 m.

Regards,

Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Friday, August 24, 2012 9:19 AM To: cbrennan@jfsa.com Subject: RE: Morrison Drive MH's

Colin,

The latest sanitary design sheets are attached. The ultimate flow from the site is 12.08 L/s.

Thanks, Andrew From: C. Brennan [mailto:cbrennan@jfsa.com] Sent: Wednesday, August 22, 2012 2:27 PM To: 'Andrew Finnson' Cc: 'J.F. Sabourin' Subject: RE: Morrison Drive MH's

Hello Andrew,

As requested by your office, on behalf of Greatwise Developments Corporation, J.F. Sabourin and Associates Inc. (JFSA) have completed our modelling exercise along the Morrison Drive sanitary sewer line under both existing and proposed phase I development conditions. A preliminary assessment of the sanitary sewer capacity was previously undertaken by Novatech Engineering Consultants Ltd. (Novatech) as described in their January 26, 2009 report titled *Morrison Court Development Wastewater Servicing Study*. In that study, Novatech found that at the most critical location, MHSA43673, the existing freeboard between the Hydraulic Gradeline (HGL) in the sanitary sewer system and the lowest connected underside of footing (USF) elevation is 0.33 m. Novatech also assessed the HGL within the system under proposed development flows whereby seven (7) 12-unit townhomes (population of 223) would be replaced with a new development having a total population of 929 (representing a population increase of 702 persons). Novatech found that the peak flow at the Pinecrest Trunk confluence would increase from 104.2 L/s under existing conditions to 112.4 L/s under proposed conditions. They found that this flow increase resulted in increased HGL elevations such that, the minimum freeboard at MHSA43673 would be reduced to 0.12 m. Novatech therefore concluded that the existing system does not have adequate capacity for the entire proposed development and recommended increasing the diameter of 423 m of pipe between MHSA25705 and MHSA25711 to 375 mm at 0.14% slope, which would provide a minimum freeboard of 0.41 m.

JFSA conducted our modelling of the sanitary sewer system using XPSWMM version 10.6, while Novatech had previously used H2OMAP Sewer/Pro. It is therefore anticipated that JFSA will arrive at slightly different results than Novatech when modelling the same system. Table 1, attached, indicates that at MHSA43673 where Novatech modelled a freeboard of 0.33 m, the JFSA XPSWMM model indicates that there is a 0.37 m freeboard. Previous modelling was based on a survey conducted by Novatech during the work for their January 2009 report. Pipe lengths and dimensions from the Novatech survey and As Built plans agree with one another and have been taken as correct in JFSA's work. The sanitary pipe inverts were verified/confirmed however, using the results from a field survey conducted by Stantec Consulting Ltd. in August 2012. It is important to note that Stantec located a maintenance hole between MHSA25704 and MHSA25705, this maintenance hole has been included in JFSA's models and labelled as 25704i for the purposes of this work. Furthermore, Stantec's structure SMH2 (correlates to city MHSA25697) was not included in the JFSA modelling as: 1) the measured invert does not agree well with the As Built data and 2) that pipe is upstream of the proposed site and lowest freeboard locations. Similarly, Stantec structures SMH38, SMH39 and SMH40 appear to be a parallel sanitary line to the Morrison sewer and do not appear to have City structure ID's, therefore, JFSA was instructed by DSEL to neglect these three (3) structures as noted in the correspondence below. A graph demonstrating the Morrison Drive sanitary sewer invert elevation as per the: Novatech 2009 survey, Stantec 2012 survey and As Built plans is attached for reference, note that the first node is MHSA25698 and the final node is MHSA25759. The final two columns of attached Table 1 provide JFSA's modelling results under existing flow conditions based on the Stantec surveyed inverts. In updating the XPSWMM model to reflect the Stantec 2012 survey rather than the Novatech 2009 survey the modelled HGL elevations were reduced, such that, the minimum freeboard at MHSA43673 based on JFSA's model is 0.49 m. This freeboard is above the minimum allowable freeboard of 0.30 m as per the City of Ottawa Sewer Design Guidelines (November 2004).

JFSA was retained to assess the HGL elevations under the currently proposed Phase I development conditions rather than ultimate development conditions. The proposed Phase I construction will result in the demolition of four (4) existing townhouse buildings and the construction of three (3) 4-storey buildings two of which are for residential use while one is to be mixed use commercial/residential. The net impact of the proposed Phase I development to 10L/s of sanitary flow), which results in a peak flow at the confluence with the Pinecrest trunk sewer of 106.2 L/s. Sanitary flow sheets

are attached for both existing and Phase I development conditions. Table 2, attached, provides a comparison the HGL results from the Novatech 2009 existing modelling, the JFSA XPSWMM existing modelling and the JFSA XPSWMM modelling for proposed Phase I flow conditions. The minimum freeboard calculated along the existing Morrison Drive sanitary sewer under Phase I flows was 0.44 m, which occurs at MHSA43673. Therefore, based on the JFSA XPSWMM model, and the Novatech 2009 USF elevations, the minimum freeboard under Phase I development flows will be 0.44 m, which is greater than the City of Ottawa's minimum allowable value of 0.30 m.

Please contact myself if you have any questions or comments. Kind Regards,

Colin Brennan, B.A.Sc. **Water Resources EIT**

J.F. Sabourin and Associates Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 tel.: 613.836.3884 ext. 224, fax: 613.836.0332, <u>www.jfsa.com</u>

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Wednesday, August 22, 2012 10:13 AM To: cbrennan@jfsa.com Subject: RE: Morrison Drive MH's

Colin,

Jamie at Stantec has confirmed that it is in fact a typo. It's 1 metre high. The actual invert is 64.53.

Andrew

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Wednesday, August 22, 2012 10:02 AM To: 'cbrennan@jfsa.com' Subject: RE: Morrison Drive MH's

Colin,

I've left a message with Jamie. Please proceed. I'll make sure we get confirmation from him asap.

Thanks, Andrew

From: C. Brennan [<u>mailto:cbrennan@jfsa.com</u>] Sent: Wednesday, August 22, 2012 8:32 AM To: 'Andrew Finnson' Subject: RE: Morrison Drive MH's

Thanks Andrew.

Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Wednesday, August 22, 2012 8:29 AM To: <u>cbrennan@jfsa.com</u> Subject: RE: Morrison Drive MH's

Hi Colin,

Your assumptions below are correct. 3 townhouse buildings will remain in Phase I and 4 will be demolished.

Thanks, Andrew

From: C. Brennan [mailto:cbrennan@jfsa.com] Sent: Wednesday, August 22, 2012 8:25 AM To: 'Andrew Finnson' Subject: RE: Morrison Drive MH's

Hi Andrew,

No problem including the new Phase 1 population numbers. Just to confirm though, from the in-progress base plan I received from you it seems like Phase 1 construction will replace four (4) of the existing Townhouses (4*12units*2.7 = 130 persons). Will the other three (3) existing townhouses remain during Phase 1 (3*12*2.7=97 persons), is this correct?

I am assuming that the proposed Phase 1 buildings will contribute flow from 350 persons which replaces flow from 130 persons, representing a net increase of 220 persons for Phase I.

Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Tuesday, August 21, 2012 9:29 AM To: cbrennan@jfsa.com Subject: RE: Morrison Drive MH's

Hi Colin,

We've just received a new plan with minor revisions to the unit counts for phase 1, and therefore minor revisions to the sanitary flow. If it's possible to revise the flows to match the updated plan without causing you further delay please do so, otherwise please proceed with the previous numbers you have.

Thanks, Andrew

From: C. Brennan [mailto:cbrennan@jfsa.com]
Sent: Tuesday, August 21, 2012 9:31 AM
To: 'Andrew Finnson'
Cc: jfsabourin@jfsa.com; spichette@dsel.ca
Subject: RE: Morrison Drive MH's

Hi Andrew,

I am currently running various modelling scenarios for Monahan to respond to the RVCA letter from Bruce Reid. Therefore, I will not be able to provide the Sanitary modelling results to you today. Sorry for the delay, I will plan to return to that file first thing tomorrow morning.

Regards, Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Tuesday, August 21, 2012 8:17 AM To: cbrennan@jfsa.com Subject: RE: Morrison Drive MH's

Hi Colin,

Do you have something you can send me today? I need to get this incorporated into a report which needs to be submitted to the client tomorrow.

Thanks, Andrew

From: C. Brennan [mailto:cbrennan@jfsa.com]
Sent: Friday, August 17, 2012 1:09 PM
To: 'Andrew Finnson'
Cc: 'J.F. Sabourin'
Subject: RE: Morrison Drive MH's

Hi Andrew,

I've just come across another discrepancy. Where Stantec picks up three (3) sanitary manholes, SMH25, SMH26 and SMH27, the Novatech drawings and model only show two manholes (25705 and 25706). I'm inclined to trust the Stantec survey and add another manhole and pipe (approx. 17 m long) to the model.

Could you please check with Stantec and advise if the above assumption should be used or not.

Regards, Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Friday, August 17, 2012 11:20 AM To: cbrennan@jfsa.com Cc: 'J.F. Sabourin' Subject: RE: Morrison Drive MH's

Hi Colin,

I will follow up with Stantec but according to the as-builts the below assumptions are correct. Please proceed on that basis.

Thanks, Andrew From: C. Brennan [mailto:cbrennan@jfsa.com] Sent: Friday, August 17, 2012 11:21 AM To: 'Andrew Finnson' Cc: 'J.F. Sabourin' Subject: RE: Morrison Drive MH's

Hi Andrew,

As a follow-up to our phone conversation I would like to confirm the assumptions that I am to make with respect to the sanitary survey data prepared by Stantec.

1. Due to a discrepancy between the new and old inverts at SMH2 (25697) and the second south invert at SMH4 (25698), JFSA will only model from SMH4 (25698) downstream pending clarification from DSEL/Stantec.

2. The following three (3) manholes seem to be a parallel line which are not noted on the As Built drawings in DSEL's possession, SMH 38, SMH 39 and SMH 40. Therefore these manholes will be neglected in our analysis. We are under the assumption that SMH37 corresponds to the City MH 25711 and SMH41 corresponds to City MH 25712 and that these two manholes are connected by a 63.5 m long 375 mm diameter concrete sanitary pipe.

3. There is a discrepancy from SMH37 to SMH49 with respect to pipe sizes. The sizes recorded by Stantec will be neglected in favour of the sizes included in DSEL's EPA SWMM model, which are based on the As Built Drawings. Pipe diameters to be used are as follows:

SMH37 (25711) to SMH44 (25715) - 375 mm concrete

SMH44 (25715) to SMH49 (25719 - 600 mm concrete

4. Except as noted above, the pipe inverts and top of grate elevations recorded by Stantec will be taken as correct and used in all subsequent hydraulic (XPSWMM) modelling.

Please advise if any of the preceding assumptions are incorrect, or if clarification is provided by Stantec.

Regards, Colin

Colin Brennan, B.A.Sc. Water Resources EIT

J.F. Sabourin and Associates Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 tel.: 613.836.3884 ext. 224, fax: 613.836.0332, <u>www.jfsa.com</u>

From: C. Brennan [<u>mailto:cbrennan@jfsa.com</u>] Sent: Friday, August 17, 2012 10:05 AM To: 'Andrew Finnson' Cc: 'J.F. Sabourin' Subject: RE: Morrison Drive MH's

Hi Andrew,

I've been reviewing the Stantec Storm and Sanitary manhole survey and would like a few clarifications.

specifically:

1. there two (2) pipes coming into the South side of Structure 4. What is the second pipe, and which one represents the main sewer line.

2. There are more sanitary manholes in the NE portion of Morrison Road than recorded by Novatech. STM 38, 39 and 40 all seem like additions.

3. Several pipe size and invert comments are included on the attached drawing as well.

I have attached a CAD Drawing with City Structure labels included where I believe they may apply, I will call to discuss.

Colin

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Monday, August 13, 2012 2:30 PM To: cbrennan@jfsa.com Subject: FW: Morrison Drive MH's

Colin, See the attached survey from Stantec. If anything is unclear let me know.

Thanks, Andrew

From: Leslie, Jamie [mailto:Jamie.Leslie@stantec.com] Sent: Monday, August 13, 2012 2:24 PM To: Andrew Finnson Subject: RE: Morrison Drive MH's

Hi Andrew,

Sorry for the delay. Here is the CAD file for our MH pickup and invert measurements. Let me know if you have any questions. Thank you.

Jamie Leslie, OLS, OLIP, EIT

Project Manager Stantec Geomatics Ltd. 1505 Laperriere Avenue Ottawa ON K1Z 7T1 Ph: (613) 722-4420 Ext. 592 Fx: (613) 722-2799 Jamie.Leslie@stantec.com stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

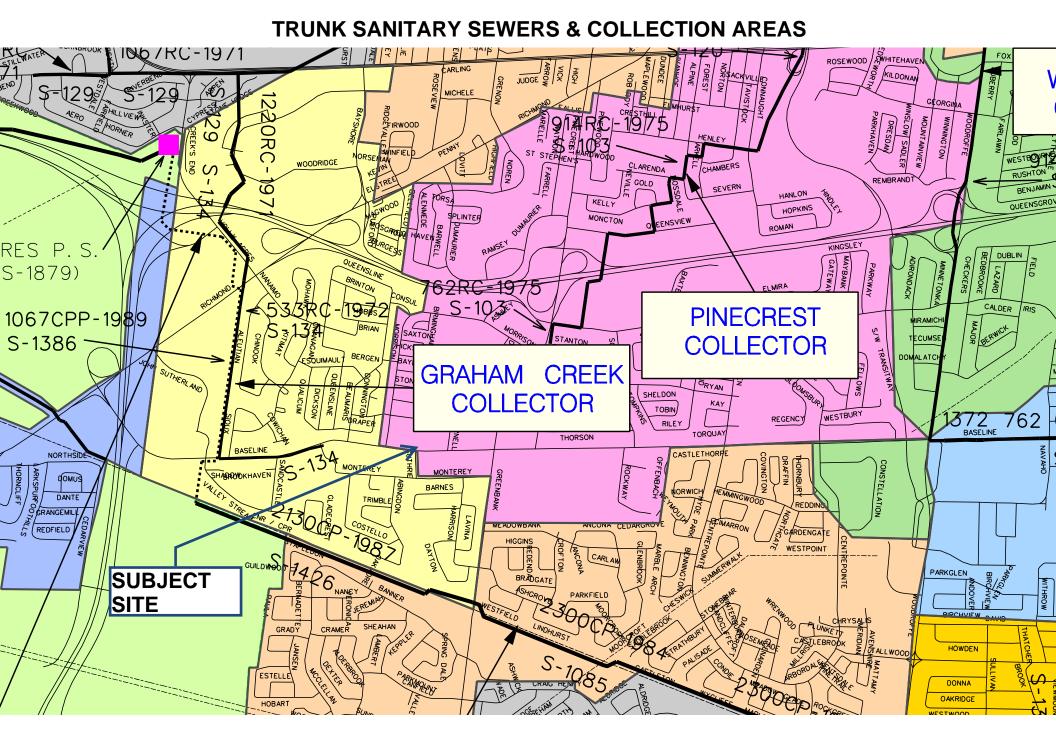
Please consider the environment before printing this email.

From: Andrew Finnson [mailto:afinnson@dsel.ca] Sent: Friday, August 10, 2012 11:08 AM To: Leslie, Jamie Subject: RE: Morrison Drive MH's

Monday morning is fine Jamie. Have a good weekend.

Thanks, Andrew

From: Leslie, Jamie [mailto:Jamie.Leslie@stantec.com]
Sent: Friday, August 10, 2012 11:10 AM
To: Andrew Finnson (afinnson@dsel.ca)
Subject: Morrison Drive MH's


Hi Andrew,

I just wanted to update you on the status of the Morrison Drive MH pickup. We are finalizing the CAD file now. I do have to step out shortly for a meeting this afternoon. I'm not sure if I will return to the office this afternoon. Unless you require this information later this afternoon, I will forward you the drawing first thing Monday morning. If you do require it, I will have it sent to you by my CAD person when it is finished. Let me know your thoughts. Thank you.

Jamie Leslie, OLS, OLIP, EIT Project Manager Stantec Geomatics Ltd. 1505 Laperriere Avenue Ottawa ON K1Z 7T1 Ph: (613) 722-4420 Ext. 592 Fx: (613) 722-2799 Jamie.Leslie@stantec.com stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

💎 Please consider the environment before printing this email.

APPENDIX D

Stormwater Management

5-Year

100-Year Imp.

Area

Area

С

С

Imp.

0.686

0.686

1.00

0.9

Perv.

Perv.

0.645

0.645

0.25

0.2

Total

Total

1.331

0.56

1.331

0.64

Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2012

1) Time of Concentration per Federal Aviation Administration

Existing Drainage Charateristics From Internal Site

Area	1.331 ha
С	0.56 Rational Method runoff coefficient
L	101.6 m
Up Elev	75.85 m
Dn Elev	73 m
Slope	2.8 %

<i>t</i> _	$1.8(1.1-C)L^{0.5}$	
ι_c –	S ^{0.333}	

tc, in minutes

C, rational method coefficient, (-)

L, length in ft

S, average watershed slope in %

Tc 12.6 min

2) Time of Concentration per SCS Method

Existing Drainage Charateristics From Internal Site

Area	1.331 ha
L	101.6 m
Up Elev	75.85 m
Dn Elev	73 m
Slope	2.8 %
CN (-)	91.0

t —	$100L^{0.8}\left[\left(\frac{1000}{CN}\right)-9\right]^{0.7}$
ι_c –	1900 <i>S</i> ^{0.5}

L, length in ft

CN, SCS runoff curve number S, average watershed slope in (%)

. . .

Tc 5.3 min

3) Estimated Peak Flow (Airport Method)

	2-year	5-year	100-year	
i	68.2	92.4	158.1	mm/hr
Q	141.4	191.6	409.9	L/s

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

t_c

Α

Target Flow Rate

rea	1.33 ha

- C 0.50 Rational Method runoff coefficient
 - 12.6 min

2-year

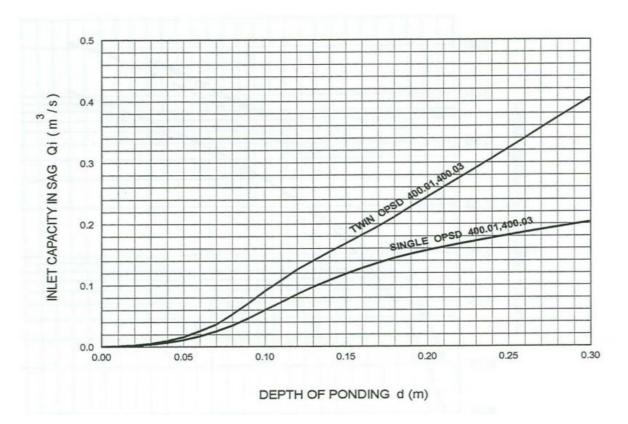
i	68.2	mm/hr
-		

Q 126.3 L/s

Greatwise Developments 2710 Draper Avenue - Phase 3-1 Storm Sewer Calculation Sheet - 5-Year Storm Event

													5	Sewer Data	l			
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	I	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q full
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(min)	(-)
			0.05	0.50	0.00	0.00	40.0	404.0	7.0	000	4.00	0.5	0.074	0.075	4.07	00.7		0.07
Cherry Blossom Private			0.05	0.50	1		10.0	104.2	7.2	300	1.00	3.5		0.075	1.37	96.7		
	MH 5	MH 6	0.19	0.75		0.17	10.0	104.0	48.4	600	0.14	60.5	0.283	0.150	0.81	229.7		
	MH 6	MH 7	0.19	0.75	0.14	0.31	11.3	97.9	84.3	675	0.15	63.0	0.358	0.169	0.91	325.6	1.2	0.26
							12.4											
Foliage Private	MH 2	MH 3	0.26	0.75	0.20	0.20	10.0	104.2	56.4	600	0.16	60.5	0.283	0.150	0.87	245.6	1.2	0.23
	MH 3	MH 4	0.07	0.75	0.05	0.25	11.2	98.4	67.7	600	0.16	59.5	0.283	0.150	0.87	245.6		0.28
							12.3											
Purple Martin Private	MH 4	MH70	0.25	0.75	0.19	0.44	12.3	93.4	112.9	600	0.14	13.0	0.283	0.150	0.81	229.7	0.3	0.49
•	MH70	MH7	0.08	0.75	0.06	0.50	12.6	92.3	127.0	600	0.14	20.0	0.283	0.150	0.81	229.7		
							13.0											
	MH 7	MH 8	0.10	0.75	0.08	0.88	13.0	90.7	221.7	675	0.15	31.0	0.358	0.169	0.91	325.6	0.6	0.68
	MH 8	OGS			0.00	0.88	13.5	88.6	170.7	600	0.15	2.0		0.150	0.84	237.8		
	OGS	MH 9			0.00	0.88	13.6	88.4	170.7	600	0.13	15.5	0.283	0.150	0.78	221.4	0.3	0.77
							13.9											

Greatwise Developments 2710 Draper Avenue - Phase 3-1 Storm Sewer Calculation Sheet - 2-Year Storm Event

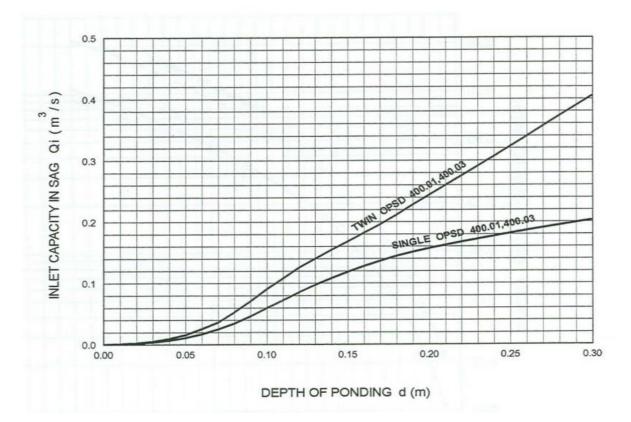

														Sewer Data	3			
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	I	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q full
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)
Cherry Blossom Private			0.05	0.50	0.03	0.03	10.0	76.8	5.3	300	1.00	3.5	0.071	0.075	1.37	96.7	0.0	0.06
Cherry Diossonn'i Invate	MH 5	MH 6	0.00	0.30	0.03	0.03	10.0	76.6	35.7	600	0.14	60.5	0.283	0.073	-	229.7		
	MH 6	MH 7	0.19	0.75	0.14	0.17	11.3	70.0	62.2	675	0.14	63.0	0.203	0.150		325.6		
			0.19	0.75	0.14	0.31	12.4	12.2	02.2	075	0.15	03.0	0.556	0.109	0.91	323.0	1.2	0.18
Foliage Private	MH 2	MH 3	0.26	0.75	0.20	0.20	10.0	76.8	41.6	600	0.16	60.5	0.283	0.150	0.87	245.6	1.2	0.17
	MH 3	MH 4	0.07	0.75	0.05	0.25	11.2	72.6	49.9	600	0.16	59.5	0.283	0.150	0.87	245.6	1.1	0.20
							12.3											
Purple Martin Private	MH 4	MH70	0.25	0.75	0.19	0.44	12.3	69.0	83.3	600	0.14	13.0	0.283	0.150	0.81	229.7	0.3	0.36
	MH70	MH7	0.08	0.75	0.06	0.50	12.6	68.2	93.7	600	0.14	20.0	0.283	0.150	0.81	229.7	0.4	0.41
							13.0											
	MH 7	MH 8	0.10	0.75	0.08	0.88	13.0	67.0	163.7	675	0.15	31.0	0.358	0.169	0.91	325.6	0.6	0.50
	MH 8	OGS			0.00	0.88	13.5	65.4	170.7	600	0.15	2.0	0.283	0.150		237.8		
	OGS	MH 9			0.00	0.88	13.6	65.3	170.7	600	0.13	15.5	0.283	0.150	0.78	221.4	0.3	0.77
							13.9											

CB Grate CB Lead Capture on Constant Grade

2018-08-07	7
------------	---

					Single CB	Twin CB
Depth of Flow	Single CB	Twin CB	CB Lead	250mm CB Lead	Discharge	Discharge
(m)	Flow (L/s)	Flow (L/s)	Head (m)	Flow (L/s)*	(L/s)	(L/s)
0	0	0	1.5	162	0	0
0.01	1	1	1.51	163	1	1
0.02	2	3	1.52	164	2	3
0.03	4	5	1.53	164	4	5
0.04	7	9	1.54	165	7	9
0.05	12	16	1.55	165	12	16
0.06	18	27	1.56	166	18	27
0.07	23	36	1.57	166	23	36
0.08	36	54	1.58	167	36	54
0.09	42	71	1.59	167	42	71
0.1	61	91	1.6	168	61	91
0.11	73	109	1.61	168	73	109
0.12	85	127	1.62	169	85	127
0.13	99	140	1.63	169	99	140
0.14	109	155	1.64	170	109	155
0.15	120	169	1.65	170	120	169
0.16	129	183	1.66	171	129	171
0.17	136	196	1.67	171	136	171
0.18	145	211	1.68	172	145	172
0.19	150	228	1.69	172	150	172
0.2	156	243	1.7	173	156	173
0.21	161	259	1.71	173	161	173
0.22	167	275	1.72	174	167	174
0.23	172	291	1.73	174	172	174
0.24	176	307	1.74	175	175	175
0.25	181	322	1.75	175	175	175
0.26	186	337	1.76	176	176	176
0.27	189	354	1.77	176	176	176
0.28	194	371	1.78	177	177	177
0.29	199	387	1.79	177	177	177
0.3	202	403	1.8	178	178	178

* CB Grate Flow calculated using Table 4.19 of the MTO Drainage Management Manual, 1997 **CB Lead Flow calculated per the orifice equation Q = C * A * sqrt(2 * g * H)


Design Chart 4.19: Inlet Capacity at Road Sag

CB Curb Inlet CB Lead Capture on Constant Grade

					Single CB	Twin CB
Depth of Flow	Single CB	Twin CB	CB Lead	250mm CB Lead	Discharge	Discharge
(m)	Flow (L/s)	Flow (L/s)	Head (m)	Flow (L/s)*	(L/s)	(L/s)
0	0	0	1.5	162	0	0
0.01	1	2	1.51	163	1	2
0.02	3	6	1.52	164	3	6
0.03	6	12	1.53	164	6	12
0.04	9	18	1.54	165	9	18
0.05	13	26	1.55	165	13	26
0.06	17	34	1.56	166	17	34
0.07	22	44	1.57	166	22	44
0.08	26	52	1.58	167	26	52
0.09	32	64	1.59	167	32	64
0.1	37	74	1.6	168	37	74
0.11	43	86	1.61	168	43	86
0.12	49	98	1.62	169	49	98
0.13	62	124	1.63	169	62	124
0.14	67	134	1.64	170	67	134
0.15	71	142	1.65	170	71	142
0.16	75	150	1.66	171	75	150
0.17	79	158	1.67	171	79	158
0.18	83	166	1.68	172	83	166
0.19	86	172	1.69	172	86	172
0.2	89	178	1.7	173	89	173
0.21	93	186	1.71	173	93	173
0.22	96	192	1.72	174	96	174
0.23	99	198	1.73	174	99	174
0.24	102	204	1.74	175	102	175
0.25	105	210	1.75	175	105	175
0.26	107	214	1.76	176	107	176
0.27	11	220	1.77	176	11	176
0.28	113	226	1.78	177	113	177
0.29	115	230	1.79	177	115	177
0.3	118	236	1.8	178	118	178

* As per Qweir=CLH^(3/2) where C=1.8, and Qorifice=CA*(2gh)^(0.5) where C=0.65 for a 13cm high x 65cm wide side inlet

Area A1 and A3/MH3 and 4 Stage-Discharge Curve

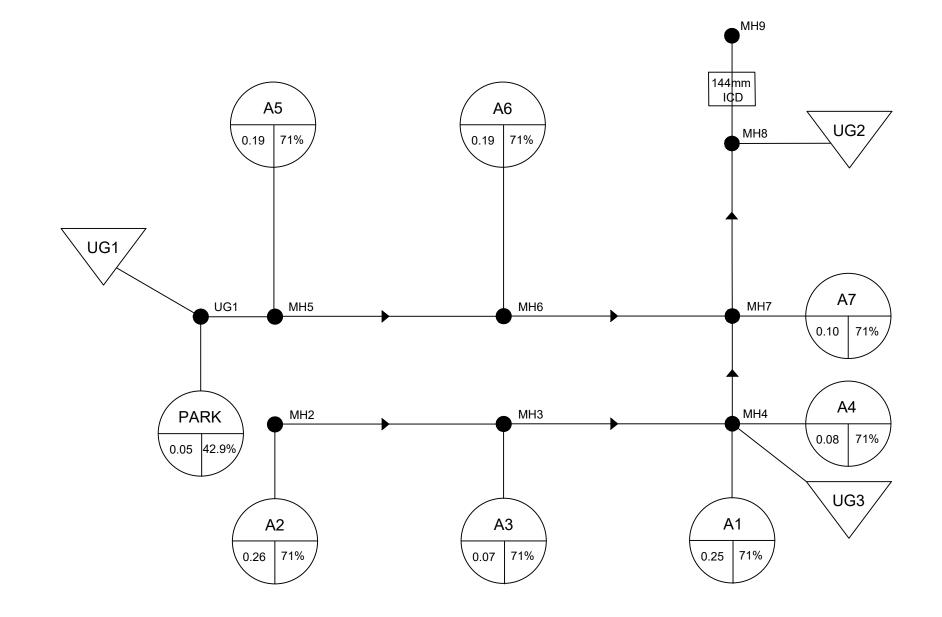
Stage	Depth CB8 (m)	Flow CB8 (L/s)	Flow CB6/7 (L/s)	Total Flow (L/s)
73.28	0	0	0	0
73.29	0.01	1	1	3
73.30	0.02	3	3	9
73.31	0.03	6	6	18
73.32	0.04	9	9	27
73.33	0.05	13	13	39
73.34	0.06	17	17	51
73.35	0.07	22	22	66
73.36	0.08	26	26	78
73.37	0.09	32	32	96
73.38	0.10	37	37	111
73.39	0.11	43	43	129
73.40	0.12	49	49	147
73.41	0.13	62	62	186

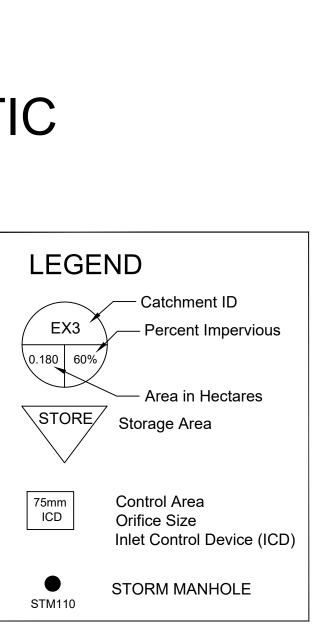
Area A2/MH2 Stage-Discharge Curve

Stage	Depth CB16 (m)	Flow CB16 (L/s)	Total Flow (L/s)
74.02	0	0	0
74.03	0.01	1	1
74.04	0.02	2	2
74.05	0.03	4	4
74.06	0.04	7	7
74.07	0.05	12	12

Stage	Depth CB17/18 (m)	Flow CB17/18 (L/s)	Total Flow (L/s)
73.59	0	0	0
73.60	0.01	2	4
73.61	0.02	6	12
73.62	0.03	12	24
73.63	0.04	18	36
73.64	0.05	26	52
73.65	0.06	34	68
73.66	0.07	44	88
73.67	0.08	52	104
73.68	0.09	64	128

Stage	Depth CB10/11 (m)	Flow CB10/11 (L/s)	Total Flow (L/s)
72.74	0	0	0
72.75	0.01	2	4
72.76	0.02	6	12
72.77	0.03	12	24
72.78	0.04	18	36
72.79	0.05	26	52
72.80	0.06	34	68
72.81	0.07	44	88
72.82	0.08	52	104
72.83	0.09	64	128


Stage	Depth CB12/13 (m)	Flow CB12/13 (L/s)	Total Flow (L/s)
72.74	0	0	0
72.75	0.01	2	4
72.76	0.02	6	12
72.77	0.03	12	24
72.78	0.04	18	36
72.79	0.05	26	52


Stage	Depth CB14/15 (m)	Flow CB14/15 (L/s)	Total Flow (L/s)
72.72	0	0	0
72.73	0.01	1	2
72.74	0.02	3	6
72.75	0.03	6	12
72.76	0.04	9	18
72.77	0.05	13	26
72.78	0.06	17	34
72.79	0.07	22	44

Area A4 and A7/UG3 and MH7 Stage-Discharge Curve

Stage	Depth CB1/2 (m)	Flow CB1/2 (L/s)	Total Flow (L/s)
72.16	0	0	0
72.17	0.01	2	4
72.18	0.02	6	12
72.19	0.03	12	24
72.20	0.04	18	36
72.21	0.05	26	52
72.22	0.06	34	68
72.23	0.07	44	88
72.24	0.08	52	104
72.25	0.09	64	128
72.26	0.10	74	148

FIGURE 1 - HYDROLOGIC MODEL SCHEMATIC

[TITLE] ;;Project Title/Notes

[OPTIONS] ;;Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Ξ	Value LPS HORTOM DYNWAN ELEVA ⁻ Ø YES NO	VE
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTING_STEP		01/01, 00:01 01/01, 00:01 01/02, 00:00 01/01 12/31 0 00:01 00:01 00:01 0:00:0	:00 /2000 :00 /2000 :00 :00 :00
INERTIAL_DAMPING NORMAL_FLOW_LIMIT FORCE_MAIN_EQUAT VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	ΓED	BOTH	
[EVAPORATION] ;;Data Source ;; CONSTANT	0.0	ameters	
DRY_ONLY [RAINGAGES] ;;Name	NO Forr	nat	Interval SCF

		201	10-00	-0/_92/_51	ш•тпр			
;; 1	INTENSITY	0:10	1.	0 TIM	ESERIES CH	6H100		
[SUBCATCHMENTS] ;;Name CurbLen SnowP ;;	ack					-	Width	%Slope
A5 Ø	1		MH5		0.19	71	65	2.0
PARK Ø	1		UG1		0.05	42.9	21	4
A6	1		MH6		0.19	71	63	2.0
0 A2	1		MH2		0.26	71	66.6	2.0
0 A3	1		MH3		0.07	71	60	2.0
0								
A1 0	1		MH4		0.25	71	27	2.0
A4 0	1		UG3		0.08	71	33	2.0
A7	1		MH7		0.1	71	34	2.0
0 U1	1		1		0.16	71	120	5
0	T		Ŧ		0.10	/1	120	J
[SUBAREAS]								
;;Subcatchment PctRouted	•							teTo
;;								
A5	0.013	0.25		1.57	4.67	0	OUT	LET
PARK				1.57	4.67	0	OUT	LET
A6	0.013	0.25		1.57	4.67	0	OUT	LET
A2	0.013	0.25		1.57	4.67	0	OUT	LET
A3	0.013	0.25		1.57	4.67	0	OUT	
A1	0.013	0.25		1.57	4.67	0	OUT	
A4	0.013	0.25		1.57	4.67	0	OUT	
A7	0.013	0.25		1.57	4.67	0	OUT	
U1	0.013	0.25		1.57	4.67	0	OUT	LET
[INFILTRATION] ;;Subcatchment ;;	MaxRate	MinRat	:e	Decay	DryTime	MaxInfi	.1	
A5	76.2	13.2		4.14	7	0		
PARK	76.2	13.2		4.14	7	0		
A6	76.2	13.2		4.14	7	0		

2018-08-07_927_slm.inp

			2018-0	08-07_927_s	lm inn		
A2		76.2		4.14		0	
A3		76.2			7	0	
A1			13.2	4.14	7	0	
A4			13.2			0	
A7		76.2	13.2			0	
U1		76.2	13.2	4.14	7	0	
[JUNCTIONS] ;;Name	_	Elevatior	n MaxDepth	InitDept	h SurDepth	Aponded	
;; MH8		70.15	2.04	0	 0	0	
MH7			2.601		0	0	
MH6			2.402		0	0	
MH4			2.428		0	0	
MH5		70.613	2.182	0	0	0	
MH2		70.925	3.105	0	0	0	
MH3			2.88		0	0	
[OUTFALLS]							
			п Туре	Stage Dat	ta Ga	ited Route T	ō
;;				70 44	 NO	·	
1		69.89	FIXED	70.44	NO)	
N/A	Feva	p Psi	MaxDepth Ksat	IMD	-	Curve Name/Pa	irams
							-
UG1		70.65	1.8	0	TABULAR	UG1	
0	0	70 10	2	0			
UG2 0	0	70.19	Z	0	TABULAR	UGZ	
UG3	0	70.35	1.8	0	TABULAR	1163	
0	0	/0.95	1.0	0	TADOLAN	005	
[CONDUITS]		Frank Nada	T.	Nada	Loughb	Developeration	Troffeet
;;Name OutOffset			e To	Node	Length	Roughness	Inuttset
;;							
P7-8		MH7	MH8	}	31.0	0.013	*
*	0	0					
P2-3	-	MH2	MHE	5	60.5	0.013	*
*	0	0				• • • •	.1.
P3-4 *	0	MH3	MH2	ŀ	59.5	0.013	*
·1·							
D5_6	0	0 мыс	МЦА		60	0 012	*
P5-6 *	0	0 MH5 0	МНе	5	60	0.013	*

P6-7		MH6		20	18-08 MH7	-07_927_	slm	.inp 63.0		0.013	*	
F0-7 *	0	мпо	0		רוח ז			03.0		0.015		
P1		MH5			UG1			3.5		0.013	*	
* P4-7	0	MH4	0		MH7			31		0.013	*	
*	0		0									
P2 *	0	UG2	0		MH8			10		0.013	*	
РЗ	U	UG3	0		MH4			5		0.013	*	
*	0		0									
[ORIFICES	51											
;;Name	_	From	Node		To N	ode		Туре		Offs	et	Qcoeff
Gated	CloseT	⁻ ime										
, ,												
ICD1	0	MH8			1			SIDE		*		0.61
YES	0											
[XSECTION				_	_		_	_	_	_		
;;Link Barrels	Culve	Shap Shap	e	Geo	m1		Geo	om2	Geo	om3	Geom4	
;;												
				0.0	36		0		0		0	
P7-8		CIRC	CULAR	0.6	/5		0		0		0	1
P2-3		CIRC	CULAR	0.6	00		0		0		0	1
P3-4		CIRC	ULAR	0.6	00		0		0		0	1
P5-6		CIRC	ULAR	0.6			0		0		0	1
P6-7		CIRC	ULAR	0.6	75		0		0		0	1
P1		CIRC	ULAR	0.3			0		0		0	1
P4-7			ULAR	0.6			0		0		0	1
P2		CIRC	CULAR	0.4	5		0		0		0	1
P3		CIRC	ULAR	0.3			0		0		0	1
ICD1		CIRC	CULAR	0.1	44		0		0		0	
[LOSSES] ;;Link		Kent	ry	Kexit		Kavg		Flap Ga	ite	Seepage		
;; P7-8		 0 5		 0.5		 0		 NO		 0		
r/-0		0.5		0.5		U		NU		0		

Page 4

		2018-08	8-07_927_slm	.inp	
P2-3	0.5	0.5	0	NO	0
P3-4	0.5	1.3	0	NO	0
P5-6	1.3	0.5	0	NO	0
P6-7	0.5	1.3	0	NO	0
P1	0	1.3	0	NO	0
P4-7	1.3	0.5	0	NO	0
P2	0	1.3	0	NO	0
Р3	0	1.3	0	NO	0
[CURVES]					
	Туре	X-Value	V-Value		
;;					
,,					
;					
UG1	Storage	0	110		
UG1		0.25	110		
UG1		1.8	110		
UG1		1.81	0		
; CB	Storage	0	0		
CB	5001 480	1.5	0.4		
CB		1.55	274.6		
;					
UG3	Storage	0	20		
UG3	0	0.25	20		
UG3		0.5	20		
UG3		1.8	20		
UG3		1.81	0		
;					
CB9	Storage	0	0.4		
CB9		1.5	0.4		
CB9		1.55	47.97		
;					
CB11	Storage	0	0.4		
CB11		1.5	0.4		
CB11		1.59	134.2		
;		_			
CB17	Storage	0	0.4		
CB17		1.5	0.4		
CB17		1.59	147.8		
;		0	110		
UG2	Storage	0 1 0	110 110		
UG2		1.8	110 0		
UG2		1.81	0		
UG2 ;		2	0		
, 100-YEAR	Tidal	0	94.81		
100-YEAR	TTAUT	6	94.81		
TOO ILAN		0	27.UI		

		2018	-08-07_927_slm.inp
100-YEAR 100-YEAR		12 24	0 0
[REPORT] ;;Reporting Optic INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL			
[TAGS]			
[MAP] DIMENSIONS -2500 Units None	.000 0.000 1	.2500.000	0 10000.000
[COORDINATES] ;;Node	X-Coord		Y-Coord
;; MH8 MH7 MH6 MH4 MH5 MH2 MH3 1 UG1 UG1 UG2 UG3	7698.962 7702.419 3995.366 7681.388 -200.084 -225.358 4008.003 7698.962 -1130.389 8512.907 8591.470		6862.745 5120.925 5120.051 3238.696 5132.687 3237.152 3237.152 8004.614 4321.767 6857.464 3243.547
[VERTICES] ;;Link ;;	X-Coord		Y-Coord
<pre>[Polygons] ;;Subcatchment ;; A5 A5 A5 A5 A5 PARK PARK PARK PARK PARK A6</pre>	X-Coord -194.367 121.555 -447.105 -194.367 -1880.792 -1564.869 -2221.988 -1842.881 4008.003		Y-Coord 6599.074 6043.051 6043.051 6624.348 5612.890 5006.318 4993.682 5650.800 6560.657

A6 4374.473 5991.997 A6 3666.807 6004.634 A6 4020.640 6548.020 A2 -210.220 2461.401 A2 143.614 1753.734 A2 -589.327 1753.734 A2 -197.583 2474.038 A3 3970.093 2314.659 A3 4450.295 1632.266 A3 3070.093 2327.296 A1 8130.936 2507.537 A1 8585.865 1787.233 A1 8701.282 1812.507 A1 8130.936 2520.174 A4 9242.879 4272.768 A4 9672.534 3704.107 A4 863.772 3678.833 A4 9255.516 4285.405 A7 9043.078 6011.675 A7 9043.078 6036.948 U1 1922.915 7394.693 U1 1922.915 7394.693 U1 12327.296 6788.121 U1 1581.719 6788.121 <		2018	8-08-07_927_slm.inp
A64020.6406548.020A2-210.2202461.401A2143.6141753.734A2-589.3271753.734A2-197.5832474.038A33970.0932314.659A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11948.1897419.966	A6		
A2-210.2202461.401A2143.6141753.734A2-589.3271753.734A2-197.5832474.038A33970.0932314.659A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A1858.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A6	3666.807	6004.634
A2143.6141753.734A2-589.3271753.734A2-197.5832474.038A33970.0932314.659A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A6	4020.640	6548.020
A2-589.3271753.734A2-197.5832474.038A33970.0932314.659A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A2	-210.220	2461.401
A2-197.5832474.038A33970.0932314.659A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11948.1897419.966	A2	143.614	1753.734
A33970.0932314.659A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79043.0786036.948U11922.9157394.693U12327.2966788.121U11948.1897419.966	A2	-589.327	1753.734
A34450.2951632.266A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A2	-197.583	2474.038
A33603.6231619.629A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11948.1897419.966	A3	3970.093	2314.659
A33970.0932327.296A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A3	4450.295	1632.266
A18130.9362507.537A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A3	3603.623	1619.629
A18585.8651787.233A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A3	3970.093	2327.296
A17701.2821812.507A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A1	8130.936	2507.537
A18130.9362520.174A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A1	8585.865	1787.233
A49242.8794272.768A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11948.1897419.966		7701.282	1812.507
A49672.5343704.107A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A1	8130.936	2520.174
A48863.7723678.833A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A4	9242.879	4272.768
A49255.5164285.405A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A4	9672.534	3704.107
A79043.0786011.675A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A4	8863.772	3678.833
A79472.7335341.919A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A4	9255.516	4285.405
A78727.1565354.556A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A7	9043.078	6011.675
A79043.0786036.948U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A7		5341.919
U11922.9157394.693U12327.2966788.121U11581.7196788.121U11948.1897419.966	A7	8727.156	5354.556
U12327.2966788.121U11581.7196788.121U11948.1897419.966	A7	9043.078	6036.948
U11581.7196788.121U11948.1897419.966			7394.693
U1 1948.189 7419.966	U1	2327.296	6788.121
[SYMBOLS]	U1	1948.189	7419.966
[SYMBOLS]			
;;Gage X-Coord Y-Coord	;;Gage	X-Coord	Y-Coord
;;			
1 -777.143 7405.714	1	-///.143	/405.714

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed YES Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Starting Date 01/01/2000 00:01:00 Ending Date 01/02/2000 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Wet Time Step 00:01:00 Dry Time Step 00:01:00 Routing Time Step 2.00 sec Variable Time Step YES Maximum Trials 8 Number of Threads 1 Head Tolerance 0.001500 m ***** Volume Depth Runoff Quantity Continuity hectare-m mm ********* ----_ _ _ _ _ _ _ _ Total Precipitation 0.111 82.291 Evaporation Loss 0.000 0.000

 Infiltration Loss
 0.021
 15.898

 Surface Runoff
 0.088
 65.377

 Final Storage
 0.001
 1.099

 Continuity Error (%)
 -0.100

******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.088	0.883
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.085	0.845
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.004	0.041
Continuity Error (%)	-0.385	

Percent	In Sleady Slale	•	0.00
Average	Iterations per Step	:	2.02
Percent	Not Converging	:	0.14

			201	8-08-08_out	.rpt			
			Total	Total	Total	Total	Total	
Total	Peak	Runoff						
_			Precip	Runon	Evap	Infil	Runoff	
Runoff		f Coeff						
Subc 10^6 1	atchment	_PS	mm	mm	mm	mm	mm	
10.01		_F3						
A5			82.29	0.00	0.00	15.27	65.99	
0.13	87.99	0.802						
PARK		0 607	82.29	0.00	0.00	30.14	51.57	
0.03	21.20	0.627	<u>01 10</u>	0 00	0 00	15 20		
A6 0.13	87.83	0.802	82.29	0.00	0.00	15.28	65.98	
A2	07.05	0.002	82.29	0.00	0.00	15.35	65.90	
0.17	118.12	0.801	02.25	0.00	0.00	13.35	05.50	
A3			82.29	0.00	0.00	15.13	66.17	
0.05	33.39	0.804						
A1			82.29	0.00	0.00	15.75	65.47	
0.16	104.84	0.796						
A4			82.29	0.00	0.00	15.23	66.04	
0.05	37.41	0.802	00.00	0.00	0.00	15 00	65.00	
A7 0.07	46.29	0.802	82.29	0.00	0.00	15.28	65.99	
0.07 U1	40.29	0.002	82.29	0.00	0.00	15.10	66.20	
0.11	76.54	0.804	02.23	0.00	0.00	13.10	00.20	
J	,	0.001						

Node Depth Summary *********

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	0ccu	of Max rrence hr:min	Reported Max Depth Meters
MH8	JUNCTION	0.46	1.81	71.96	0	02:25	1.81
MH7	JUNCTION	0.38	1.74	71.96	0	02:26	1.74
MH6	JUNCTION	0.18	1.51	71.96	0	02:26	1.51
MH4	JUNCTION	0.28	1.62	71.96	0	02:26	1.62
MH5	JUNCTION	0.14	1.35	71.96	0	02:26	1.35
MH2	JUNCTION	0.09	1.53	72.45	0	01:56	1.04
MH3	JUNCTION	0.10	1.23	72.04	0	01:56	1.16
1	OUTFALL	0.55	0.55	70.44	0	00:00	0.55
UG1	STORAGE	0.13	1.31	71.96	0	02:26	1.31
UG2	STORAGE	0.42	1.77	71.96	0	02:25	1.77

2018-08-08_out.rpt STORAGE 0.27 1.61 71.96 0 02:26 1.61

UG3

Node Inflow Summary

_	_		Maximum	Maximum		Lateral	
Total	Flow		.				
T. (]	Deleves		Lateral	Total	Time of M	ax Inflow	
Inflow	Balance		Inflow	Inflow	Occurrer	ce Volume	
Volume	Error		THITOM	THITOM	occurrer	ce vorume	
Node	LITO	Туре	I PS	LPS	davs hr:	in 10^6 ltr	10^6
ltr	Percent	.)pc	2. 5	2. 5		10 0 10	20 0
MH8	0.050	JUNCTION	0.00	287.88	0 01:	59 0	
0.939	0.258		46 20	200 04	0 01	50 0.000	
MH7 0.794	0.683	JUNCTION	46.29	288.84	0 01:	59 0.066	
0.794 MH6	0.005	JUNCTION	87.83	101.85	0 01:	51 0.125	
0.358	-0.099	JONCTION	07.05	101.05	0 01.	51 0.125	
MH4	•••••	JUNCTION	104.84	256.03	0 01:	59 0.164	
0.441	0.247						
MH5		JUNCTION	87.99	174.91	0 01:	59 0.125	
0.339	-0.126						
MH2		JUNCTION	118.12	118.12	0 01:	59 0.171	
0.171	-0.311						
MH3	0.000	JUNCTION	33.39	151.38	0 01:	59 0.0463	
0.218	-0.089			125 25	0 01	F0 0 10C	
1 0.845	0.000	OUTFALL	76.54	125.35	0 01:	59 0.106	
UG1	0.000	STORAGE	21.20	195.82	0 01:	59 0.0258	
0.15	0.017	STORAGE	21,20	155.02	0 01.	55 0.0250	
UG2	••••=	STORAGE	0.00	238.44	0 01:	59 0	
0.197	0.267					-	
UG3		STORAGE	37.41	101.97	0 01:	56 0.0528	
0.0605	0.136						

Node Surcharge Summary **********

Node		Туре	Hours Surcharg	ed	Above	leight Crown leters	Below	•	
MH8		JUNCTION	3.	96		1.135	0.	230	
MH7		JUNCTION	3.	59		1.060	0.	866	
MH6		JUNCTION	2.	72		0.834	0.	893	
MH4		JUNCTION	3.	43		1.024	0.	804	
MH5		JUNCTION		44		0.750		832	
MH2		JUNCTION		63		0.926		579	
MH3		JUNCTION	1.	90		0.630	1.	650	
*****	******	**							
Node F *****	looding Summa	iry ***							
No nod	les were flood	led.							
*****	<************	***							
	*************** ge Volume Summ								
Storag		lary							
Storag	ge Volume Summ	lary							
Storag ******	ge Volume Summ ***************	lary	Avg	 Evap	Exfil		 Maximum	Max	
Storag ******	ge Volume Summ	ary ***	Avg Pcnt	-	Exfil Pcnt		Maximum Volume		 Time
Storag ******	ge Volume Summ ***********************************	ary *** Average Volume	-	-				Max Pcnt	 Time
Storag ****** Max	ge Volume Summ ***********************************	ary *** Average Volume	-	Pcnt					
Storag ****** Max	ge Volume Summ ***********************************	ary *** Average Volume	Pcnt	Pcnt	Pcnt		Volume	Pcnt	
Storag ****** Max ccurren Storag	ge Volume Summ *************** Maximum nce Outflow ge Unit	ary *** Average Volume	Pcnt	Pcnt	Pcnt		Volume	Pcnt	
Storag ****** Max curren Storag :min	ge Volume Summ *************** Maximum nce Outflow ge Unit	ary *** Average Volume 1000 m3	Pcnt Full	Pcnt Loss	Pcnt Loss		Volume 1000 m3	Pcnt Full	days
Storag ****** Max ccurren Storag :min UG1	ge Volume Summ *************** Maximum nce Outflow ge Unit	ary *** Average Volume	Pcnt	Pcnt	Pcnt		Volume	Pcnt	days
Storag ****** Max curren Storag :min UG1 2:26	ge Volume Summ ***************** Maximum nce Outflow ge Unit LPS	ary *** Average Volume 1000 m3	Pcnt Full	Pcnt Loss	Pcnt Loss		Volume 1000 m3	Pcnt Full	days
Storag ****** Max ccurren Storag	ge Volume Summ ***************** Maximum nce Outflow ge Unit LPS	Average Volume 1000 m3 0.014	Pcnt Full	Pcnt Loss	Pcnt Loss		Volume 1000 m3 0.144	Pcnt Full 73	days
Storag ****** Max curren Storag min UG1 2:26 UG2	ge Volume Summ ***********************************	Average Volume 1000 m3 0.014	Pcnt Full	Pcnt Loss	Pcnt Loss		Volume 1000 m3 0.144	Pcnt Full 73	Time days

Surcharging occurs when water rises above the top of the highest conduit.

Outfall Loading Summary ***********

	Flow Freq	Avg Flow	Max Flow	Total Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
1	43.74	24.00	125.35	0.845
System	43.74	24.00	125.35	0.845

Link Flow Summary

		Maximum	Time of Max		Maximum	Max/	Max/
		Flow	0ccu	irrence	Veloc	Full	Full
Link	Туре	LPS		hr:min	m/sec	Flow	Depth
	· ypc						
P7-8	CONDUIT	287.88	0	01:59	0.80	0.69	1.00
P2-3	CONDUIT	117.99	0	01:59	0.95	0.44	1.00
P3-4	CONDUIT	152.05	0	01:56	0.58	0.28	1.00
P5-6	CONDUIT	93.19	0	02:00	0.45	0.29	1.00
P6-7	CONDUIT	57.29	0	01:51	0.27	0.11	1.00
P1	CONDUIT	174.62	0	01:59	2.47	1.76	1.00
P4-7	CONDUIT	249.51	0	01:59	0.88	0.67	1.00
P2	CONDUIT	238.44	0	01:59	1.50	1.32	1.00
P3	CONDUIT	65.69	0	01:56	0.93	1.52	1.00
ICD1	ORIFICE	53.97	0	02:25			1.00
P2-3 P3-4 P5-6 P6-7 P1 P4-7 P2 P3	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	117.99 152.05 93.19 57.29 174.62 249.51 238.44 65.69	0 0 0 0 0 0 0	01:59 01:56 02:00 01:51 01:59 01:59 01:59 01:59	0.95 0.58 0.45 0.27 2.47 0.88 1.50	0.44 0.28 0.29 0.11 1.76 0.67 1.32	1.00 1.00 1.00 1.00 1.00 1.00 1.00

_____ _ Adjusted ----- Fraction of Time in Flow Class ----Up /Actual Down Sub Sup Up Down Norm Inlet Dry Dry Dry Crit Crit Crit Ltd Conduit Length Ctrl

-									
P7-8	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.01
0.00									
P2-3	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.02
0.00									
P3-4	1.00	0.02	0.27	0.00	0.71	0.00	0.00	0.00	0.81
0.00									
P5-6	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.10
0.00									
P6-7	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.73
0.00									
P1	1.00	0.02	0.00	0.00	0.97	0.00	0.00	0.00	0.44
0.00									
P4-7	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.04
0.00									
P2	1.00	0.02	0.01	0.00	0.97	0.00	0.00	0.00	0.00
0.00									
P3	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.00
0.00									

Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
P7-8 P2-3 P3-4 P5-6	3.59 1.63 1.90 2.44	3.59 1.63 1.90 2.44	3.96 1.90 3.43 2.98	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01
P5-0 P6-7 P1	2.44 2.72 3.33	2.44 2.72 3.33	2.98 3.59 3.54	0.01 0.15	0.01 0.01 0.01
P4-7 P2 P3	3.43 4.84 4.80	3.43 4.84 4.80	3.95 5.05 4.85	0.01 0.07 0.03	0.02 0.01 0.04

Analysis begun on: Wed Aug 08 08:58:56 2018 Analysis ended on: Wed Aug 08 08:58:57 2018 Total elapsed time: 00:00:01

Brentwood STORMTANK Module

STORMANN Module Volume Calculator

	Project Name: 2710 DRAPER AVENUE - UG1					Module				
							Length:	21.045	m	
	Engineer:			Date:		_	Width:	4.122	m	
	Units: <u>SI</u> Shape:		Shape:	Square/Rectangle		_	Excavation			
							Length:	21.645	m	
	Liner: No		Location:	N/A		_	Width:	4.722	m	
	Stacking:	Double	Height:	182	1828.8			Stone		
	S					I I Dimensions	Leveling Bed:	0.5	m	
	Stone Storage:		All	Porosity:	40%	me	Top Backfill:	0.3	m	
						Di	Compacted Fill:	0.3	m	
				Result	S					
C	Capacity:									
	Stone Storage Volume: 44.02			m^3		Storage Capacity Ratio				
	Module Storage Volume:		154.12	m^3		Storage Capacity Natio				
Total Storage Volume:		198.13	m^3							
Quantities:							22%			
	Required Excavation:		299.35	_m^3						
Required Stone Volume:		110.04	m^378%							

(Estimations include 10% for scrap and overlap)

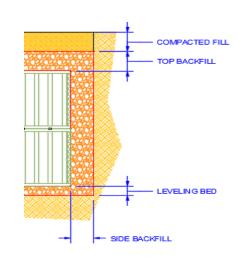
676.21

0.00

m^2

m^2

Component Quantities:


Estimated Geotextile:

Estimated Liner:

	Bottom Layer	Top Layer	Total
Height	914.4	914.4	1,828.8
# of Modules	207	207	415
# of Platens	415	415	830
# of Side Panels	110	110	220
# of Columns	1,660	1,660	3,320
# of Stacking Pins	415	N/A	415

Cross-Section:

Stone Storage Volume:

Module Storage Volume:

STORM TAKK Module Volume Calculator

Projec	ct Name: 2710 D	RAPER AVENUE - U	G2		Module				
					Length:		20.13	m	
Engine	eer:		Date:		Width:		4.58	m	
Units:	SI	Shape:	Square/R	ectangle		Exca	vation		
					Length:		20.73	m	
Liner:	No	Location:	N/	Ά	Width:		5.18	m	
Stacki	ng: Double	Height:	1828.8		su	St St			
(0)					Sing Leveling Top Bac	gBed:	0.5	m	
Stone	Storage:	All	Porosity:	40%	Тор Вас	kfill:	0.3	m	
Inp					Compac	ted Fill:	0.3	m	
			Result	:S					
Capacity	/:								
Stone	Stone Storage Volume: 45.47			Storage Capacity Ratio					
Modu	le Storage Volume:	163.80		51	Storage Capacity Natio				
Total Storage Volume: 209.27			m^3						
Quantiti	Quantities:				229	%			
Requi	Required Excavation: 314.50		m^3						
Required Stone Volume:		113.68	m^3		78%				
Estimated Geotextile: 695.29			m^2						

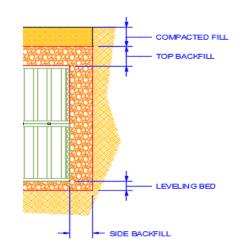
Stone Storage Volume: Mo

Module Storage Volume:

(Estimations include 10% for scrap and overlap)

Component Quantities:

Estimated Liner:


•	Bottom Layer	Top Layer	Total
Height	914.4	914.4	1,828.8
# of Modules	221	221	441
# of Platens	441	441	882
# of Side Panels	108	108	216
# of Columns	1,764	1,764	3,528
# of Stacking Pins	441	N/A	441

Basin Detail

m^2

0.00

Cross-Section:

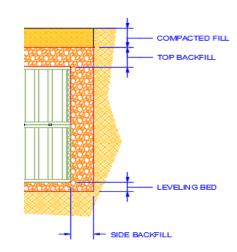
STORM TAK Module Volume Calculator

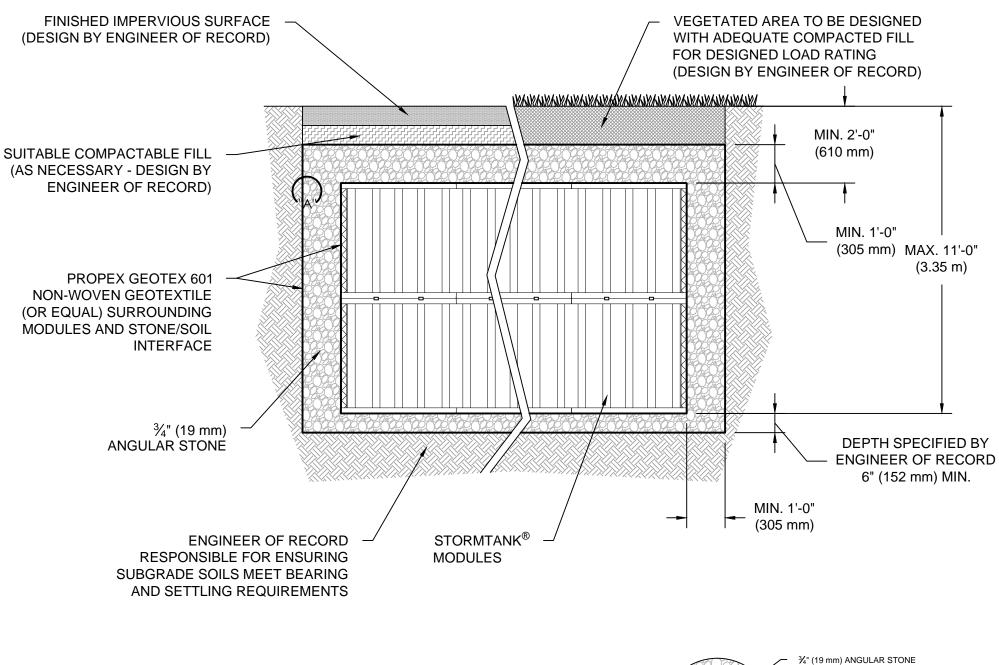
	Project Name:	2710 DI	RAPER AVENUE - U	G3			M	odule	
							Length:	7.32	m
	Engineer:			Date:			Width:	2.29	m
	Units:	SI	Shape:	Square/R	ectangle		Exca	avation	
							Length:	7.92	m
	Liner:	No	Location:	N/	A		Width:	2.89	m
	Stacking:	Double	Height:	182	8.8	suc	S	tone	
10						nsid	Leveling Bed:	0.5	m
Inputs	Stone Storage:		All	Porosity:	40%	Dimensions	Top Backfill:	0.3	m
						Di	Compacted Fill:	0.3	m
				Result	c				
Ca	pacity:			Result	5				
Cu	Stone Storage V	/olume:	11.81	m^3	<u> </u>				
	Module Storage		29.78	_m ^{^3} Storage Capacity Ratio					
	Total Storage V		41.59						
				_					
Qu	antities:						28%		
	Required Excave	ation:	67.04	m^3					
	Required Stone	Volume:	29.51	m^3		7	2%		
	Estimated Geot	extile:	190.32	 m^2					

Stone Storage Volume: Module Storage Volume:

(Estimations include 10% for scrap and overlap)

Estimated Liner:


U	Sinponeni Quantities.						
		Bottom	Тор	Total			
		Layer	Layer	TOLAI			
	Height	914.4	914.4	1,828.8			
	# of Modules	40	40	80			
	# of Platens	80	80	160			
	# of Side Panels	42	42	84			
	# of Columns	321	321	641			
	# of Stacking Pins	80	N/A	80			


Basin Detail

m^2

0.00

Cross-Section:

IMPERMEABLE LINER

DETAIL "A"

NATIVE SOIL

		y of Brentwood Industries, Inc. It may not be reproduced or used for any purpose other than thorized by Brentwood Industries. It shall be returned immediately upon request of Brentwo		stries.			
REV.							
А	1/10/12	INITIAL RELEASE	BLL	FK			
В	7/6/12	FORMATTING & DWG. NO. UPDATE	JKB	FK			
С	9/9/13	NOTE REVISION, FORMATTING UPDATE & DWG. NO. UPDATE	JKB	JKB			
D	11/10/14	GEOTEXTILE PRODUCT SPECIFIED	CGB				

NOTES:

- a. REFERENCE CURRENT INSTALLATION INSTRUCTIONS FOR PROPER INSTALLATION PRACTICES.
- IMPERMEABLE LINER IS REQUIRED TO BE INSTALLED AROUND b. BOTTOM AND SIDES OF EXCAVATION ONLY

NON-WOVEN GEOTEXTILE FABRIC (PROPEX GEOTEX 601 OR APPROVED EQUAL)

NON-WOVEN GEOTEXTILE FABRIC (PROPEX GEOTEX 601 OR APPROVED EQUAL)

610 Morgantown Road Reading, PA 19611 U.S.A. Phone: (610) 374-5109 Fax: (610) 376-6022 www.brentwoodindustries.com

TYPICAL DOUBLE STK. DETENTION **BASIN CROSS-SECTION DETAIL**

Project Name

Drawn By		Date
B.LINE		1/10/12
Drawing No.	Sheet	Scale
STM-001-03	1 of 1	NTS

Stormceptor Oil/Grit Separator Sizing Report

Detailed Stormceptor Sizing Report – Ottawa

Project Information & Location							
Project Name Ottawa		Project Number	-				
City Ottawa		State/ Province	Ontario				
Country	Canada	Date	10/19/2017				
Designer Information	1	EOR Information (optional)					
Name	Brandon O'Leary	Name	Alison Gosling				
Company	Forterra	Company	David Schaeffer Engineering Ltd.				
Phone # 905-630-0359		Phone #					
Email	brandon.oleary@forterrabp.com	Email					

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Ottawa	
Recommended Stormceptor Model	OSR 750	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	83	
PSD	OK-110	
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary							
OSR Model	% TSS Removal Provided	% Runoff Volume Captured Provided					
OSR 300	74	88					
OSR 750	83	96					
OSR 2000	88	99					
OSR 4000	93	100					
OSR 6000	95	100					
OSR 9000	95	100					
OSR 14000	96	100					
StormceptorMAX	Custom	Custom					

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur.

Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station						
State/Province	State/Province Ontario Total Number of Rainfall Events		4819			
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1			
Station ID #	6000	Average Annual Rainfall (mm)	567.0			
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	2697.6			
Elevation (ft)	370	Total Infiltration (mm)	4807.9			
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	13472.6			

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

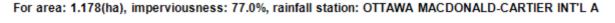
Drainage Area	Up Stream Storage			
Total Area (ha)	1.178	Storage (ha-m)	Discharge (cms)	
Imperviousness %	77.0	0.000 0.		.000
		0.000	0.	.077
	0.010	0.	.089	
		0.020	0.	.100
		0.026	0.	.106
			0.112	
Water Quality Objective	Water Quality Objective		Up Stream Flow Diversion	
TSS Removal (%)	80.0	Max. Flow to Stormceptor (cms) 0.000		0.00000
Runoff Volume Capture (%)	90.00	Desi	gn Details	-
Oil Spill Capture Volume (L)		Stormceptor Inlet Inve	rt Elev (m)	
Peak Conveyed Flow Rate (L/s)	111.50	Stormceptor Outlet Inve	ert Elev (m)	
Water Quality Flow Rate (L/s)		Stormceptor Rim E	lev (m)	
		Normal Water Level Ele	evation (m)	
		Pipe Diameter (r	nm)	
			Pipe Material	
		Multiple Inlets (Y/N)		No
		Grate Inlet (Y/	N)	No

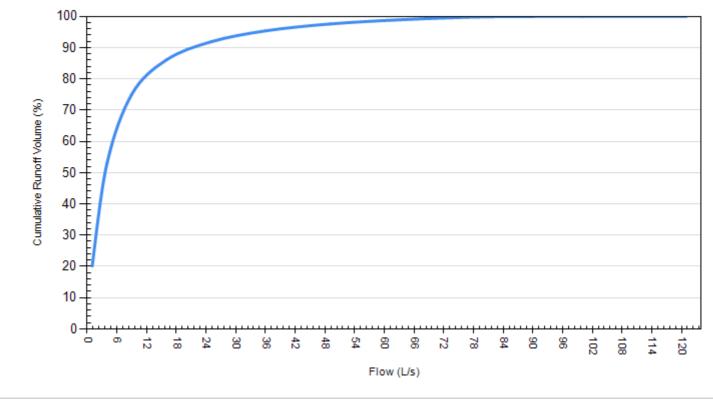
FORTERRA"

Particle Size Distribution (PSD)

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

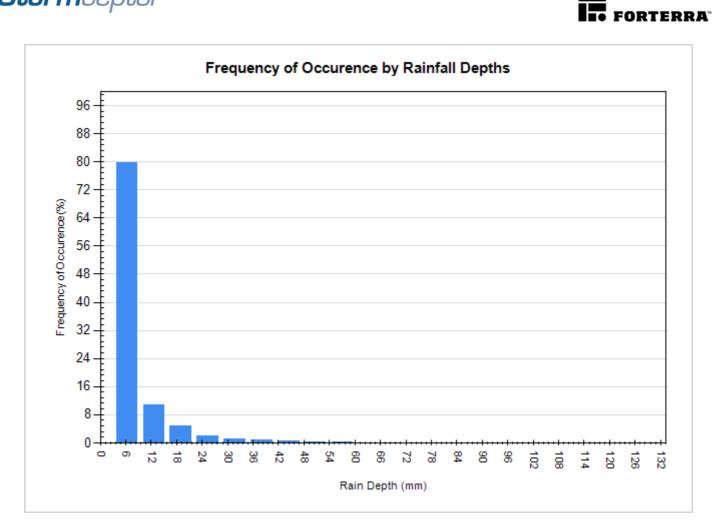
	OK-110						
Particle Diameter (microns)	Distribution %	Specific Gravity					
1.0	0.0	2.65					
53.0	3.0	2.65					
75.0	15.0	2.65					
88.0	25.0	2.65					
106.0	41.0	2.65					
125.0	15.0	2.65					
150.0	1.0	2.65					
212.0	0.0	2.65					




Site Name		Ottawa				
Site Details						
Drainage Area		Infiltration Parameters				
Total Area (ha)	1.178	Horton's equation is used to estimate	infiltration			
Imperviousness %	77.0	Max. Infiltration Rate (mm/hr)	76.2			
Surface Characteristics	\$	Min. Infiltration Rate (mm/hr)	13.2			
Width (m)	217.00	Decay Rate (1/sec)	0.00115			
Slope %	2	Regeneration Rate (1/sec)	0.01			
Impervious Depression Storage (mm)	1.57	Evaporation				
Pervious Depression Storage (mm)	4.67	Daily Evaporation Rate (mm/day)	2.54			
Impervious Manning's n	0.015	Dry Weather Flow				
Pervious Manning's n	0.25	Dry Weather Flow (Ips)	0			
Maintenance Frequency	y	Winter Months				
Maintenance Frequency (months) >	12	Winter Infiltration	0			
	TSS Loading	Parameters				
TSS Loading Function		Build Up/ Wash-off				
Buildup/Wash-off Parame	eters	TSS Availability Parameters				
Target Event Mean Conc. (EMC) mg/L	125	Availability Constant A	0.05			
Exponential Buildup Power	0.40	Availability Factor B	0.04			
Exponential Washoff Exponent	0.20	Availability Exponent C	1.10			
		Min. Particle Size Affected by Availability (micron)	400			

Cumulative Runoff Volume by Runoff Rate							
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)				
1	32235	127753	20.1				
4	84873	75130	53.0				
9	120228	39800	75.1				
16	137700	22306	86.1				
25	147049	12958	91.9				
36	152664	7338	95.4				
49	156146	3856	97.6				
64	158406	1594	99.0				
81	159903	97	99.9				
100	160000	0	100.0				
121	160000	0	100.0				

FORTERRA"


Cumulative Runoff Volume by Runoff Rate

6	FORTERRA

Rainfall Event Analysis					
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)	
6.35	3843	79.7	5885	28.1	
12.70	520	10.8	4643	22.1	
19.05	225	4.7	3470	16.5	
25.40	98	2.0	2144	10.2	
31.75	58	1.2	1639	7.8	
38.10	32	0.7	1118	5.3	
44.45	24	0.5	996	4.7	
50.80	9	0.2	416	2.0	
57.15	5	0.1	272	1.3	
63.50	1	0.0	63	0.3	
69.85	1	0.0	64	0.3	
76.20	1	0.0	76	0.4	
82.55	0	0.0	0	0.0	
88.90	1	0.0	84	0.4	
95.25	0	0.0	0	0.0	
101.60	0	0.0	0	0.0	
107.95	0	0.0	0	0.0	
114.30	1	0.0	109	0.5	
120.65	0	0.0	0	0.0	
127.00	0	0.0	0	0.0	

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

APPENDIX E

Supporting Documentation

patersongroup

consulting engineers

re:	Response to Engineering Comments Proposed Residential Development 2710 Draper Avenue - Ottawa
to:	City of Ottawa - Mr. Stream Shen - <u>Stream.Shen@Ottawa.ca</u>
date:	May 28, 2018

file: PGPG1630-MEMO.08

Further to your request and authorization, the current memorandum was prepared to respond to the City of Ottawa's forth round of engineering comments for the aforementioned site. This memorandum should be read in conjunction with our revised geotechnical Report PG1630-3 Revision 4 dated May 28, 2018.

Geotechnical Comments

Item 1

Comment: Section 6.8 Underground Storage Chamber states that based on a review of the Site Servicing Plan, Revision 2 dated November 17, 2017 the seasonally high groundwater table depth elevation is a minimum 1m below the bottom of the proposed underground storage system as per MOE requirements. Please review the most recent revision to the Site Servicing Plan prepared by DSEL (Revision 5) and confirm that the minimum separation is still being achieved and update section 6.8 accordingly. Section 6.8 shall reference the most recent drawing revision number prepared by DSEL used to determine the elevation of the base of the system. Please document how a base elevation of 71.15m was established. .

Response: Updated under Subsection 6.8 in our revised geotechnical Report PG1630-1 Revision 4, dated May 28, 2018.

Item 2

Comment: A sewer easement transferred to the owner of Building F is required to be established over the existing private 200mm dia. sanitary service and 300mm dia. storm service that crosses the subject site along Morrison Drive. Please review these private services and provide a recommended easement width.

Mr. Stream Shen Page 2 PG1630-MEMO.08

Response: It is understood that the minimum service easement width considered adequate by the City of Ottawa is 6 m. However, a 4.5 m service easement is all that is required from a geotechnical perspective due to the method of the service installation requiring less than 4.5 m width with the use of engineered trench box. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time and inspected by Paterson personnel.

Item 3

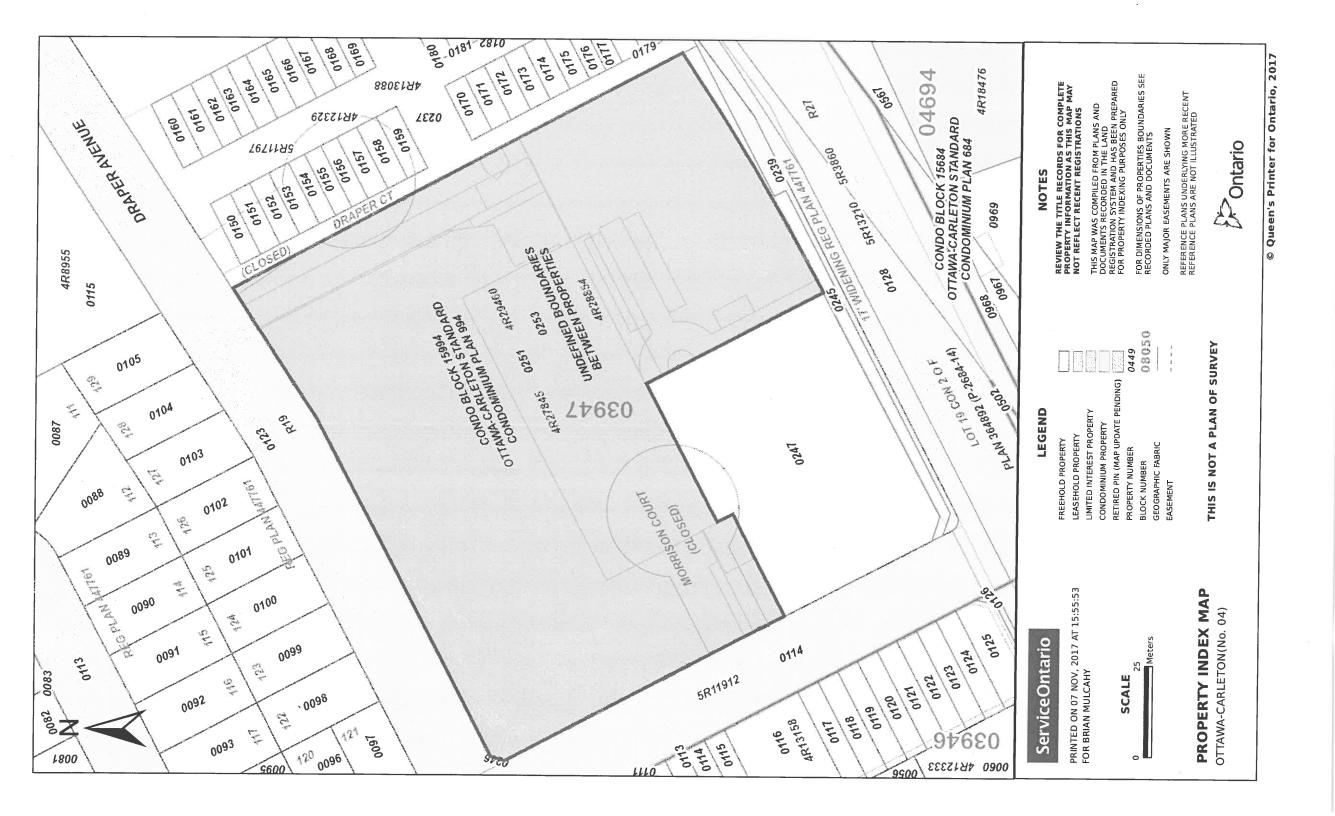
Comment: Please provide an updated Grading Plan review memorandum that indicates Paterson Group has reviewed the most recent revision of the Grading Plan prepared by DSEL that verifies that there no exceedances above the recommended 1m permissible grade raise restriction and in keeping with the recommendations of the geotechnical investigation.

Response: Please refer to Appendix 3 in our revised geotechnical report for the updated grading plan review report.

We trust that this information satisfies your requirements.

Best Regards,

Paterson Group Inc.


Faisal I. Abou-Seido, P.Eng.

David J. Gilbert, P.Eng.

Paterson Group Inc.

Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344 Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 **St. Lawrence Office** 993 Princess Street Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381

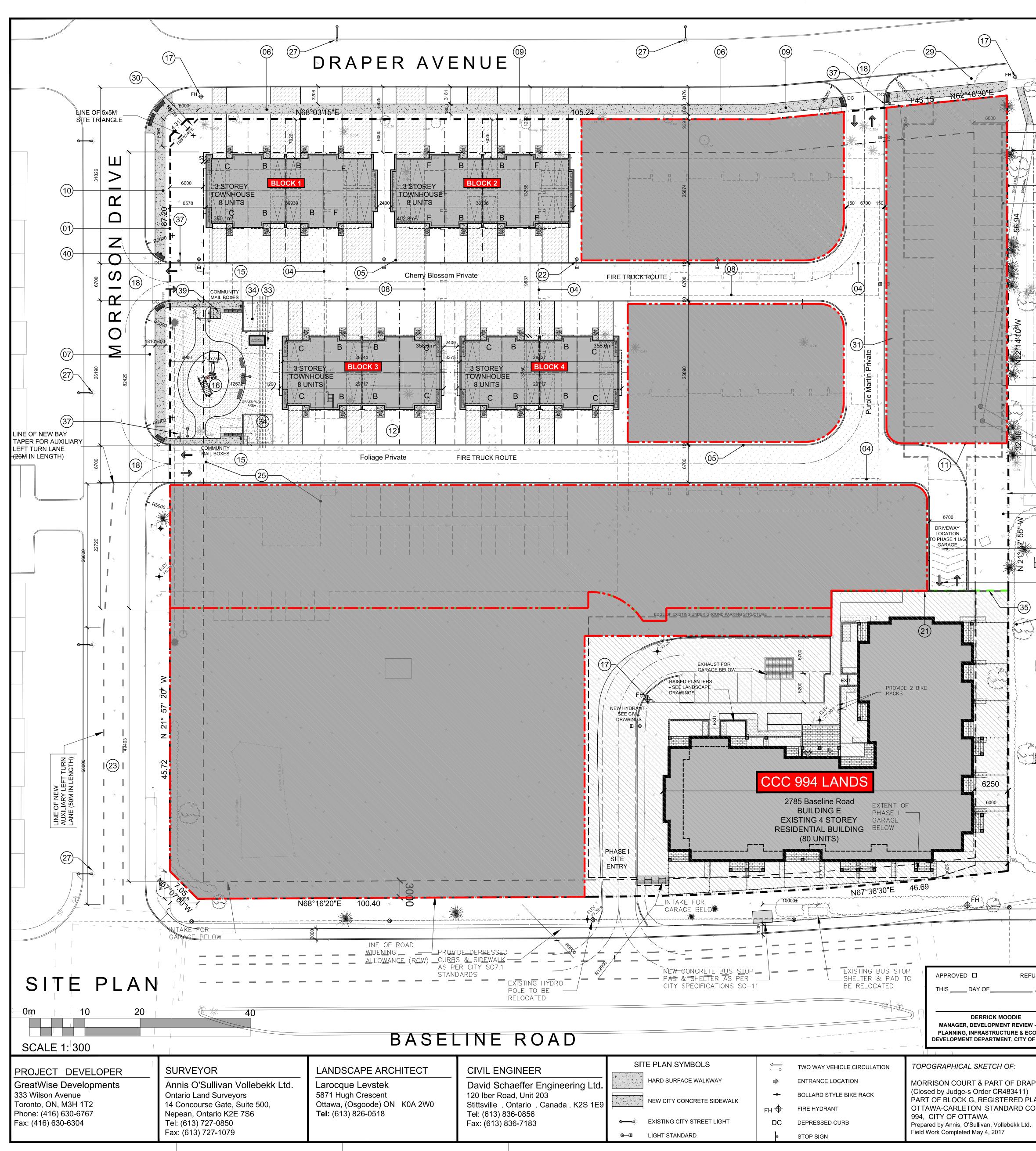
NOTE: ENSURE THAT YOUR PRINTOUT STATES THE TOTAL NUMBER OF PAGES AND THAT YOU HAVE PICKED THEM ALL UP. NOTE: ADJOINING PROPERTIES SHOULD BE INVESTIGATED TO ASCERTAIN DESCRIPTIVE INCONSISTENCIES, IF ANY, WITH DESCRIPTION REPRESENTED FOR THIS PROPERTY.

				UP TO THE DATE OF RE		**
	** FOREFLARE MUR DEVELT LEVERALL I FOR FORFELLOKE **					
		* UNV IV SHAVYA				
				DOCUMENT TYPES (DEL		
CHKD CEKI/	PARTIES TO	MOAT ZEITAAT	TNUOMA	INSTRUMENT TYPE	DATE DATE	REG. NUM.
		<u>ara</u>	IS YTIDATAD	d	DENCES FIWILE SS	REDWOOD RESI
	2016/06/14 PIN CREATION DATE:	03947-0249	DIAISION EKC			ESTATE/OUAL FEE SIMPLE LT ABSOLUTE
	ACT CONSENT IN DOCUMENT OC1591628.	DATE OF REGISTRATION OF ABSOLUTE TITLE IS 2006/06/19. PLANNING.	THE QUALIFIER THE	FOR THE PURPOSE OF		PROPERTY REI
	PAGE 1 OF 3 PRAFTIONS IN CROWN GRANT AND EAGE 1 OF 3 PREPARED FOR BRIAN MULCAHY ON 2017/11/07 AT 15:54:41 FEVATIONS IN CROWN GRANT * 00 2017/11/07 AT 15:54:41 FEVATIONS IN CROWN GRANT * 00 2017/11/07 AT 15:54:41 FEVATIONS IN CROWN GRANT * 10 5 SUBJECT TO AN EASEMENT IN FAVOUR OF THE FEVATIONS IN VA36790. S/T AN EASEMENT IN FAVOUR OF THE FEVATIONS FINA 447761, PENA 4829460 TO AS TIN N436790. S/T AN EASEMENT IN FAVOUR OF THE FEVATIONS FINA 487761, PENA 4829460 TH FAVOUR OF PART FID AS IN N436790. S/T AN EASEMENT OVER PART 9, FID AS IN V436790. S/T AN EASEMENT OVER PART 9, FID AS IN V436790. S/T AN EASEMENT OVER PART 9, FID AS IN V436790. S/T AN EASEMENT OVER PART 9, FID AS IN V436790. S/T AN EASEMENT OVER PART 9, FID AS IN V436790. S/T AN EASEMENT OVER PART 9, FID AS IN V436790. S/T AN EASEMENT OVER PART 9, FID AS IN V439460 AS IN OCT/91074; TOGETHER WITH AN FID C1591657; SUBJECT TO AN EASEMENT OVER PART 9, FID AS IN V429460 AS IN OCT/91074; TOGETHER WITH AN FOUR OF COTAMA-CARLETON CONDOMINIUM PLAN FOUR OF COTAMA-CARLETON CONDOMINIUM PLAN FORMOR ELEMENTS OF OTTAMA-CARLETON FORMOR ELEMENT FORMOR OF OTTAMA-CARLETON CONDOMINIUM PLAN FORMOR ELEMENTS OF OTTAMA-CARLETON FOR OTTAMA- FORMOR FLEMENTS OF OTTAMA-CARLETON FOR FOR PARE FORMOR FLEMENTS OF OTTAMA-CARLETON FOR FOR PARE FORMOR ELEMENTS OF OTTAMA-CARLETON FOR PAREMENT FORMOR ELEMENTS OF OTTAMA-CARLETON FOR PAREMENT FORMOR FLEMENTS OF OTTAMA-CARLETON FOR PAREMENT FORMOR FL		* CE * CE * CCNDOMINIUM PART OF MORRISON CO PLAN 44-27845 SAVE FORT OF OTTAWA AS MUTSSION OF THE CIT PLAN 447761, PAND 20 PLAN 447761, PANT 20 PLAN 447761, PLAN 40 PLAN 447761, PLAN 20 PLAN 447761, PLAN 44761, PLAN 4476	CORPORATION OF THI HYDRO-ELECTRIC CON 2 AND 12 ON PLAN OF PART OF BLOCK OF PART OF BLOCK OF PART OF BLOCK OF PLAN OF BLOCK G, PART OF BLOCK G, PART OF CLT301074; TOGETHE PLAN 4R-27845, SAVE AS IN OCI791074; S SUBJECT TO AN FAST PLAN 4R27945, SAVE PLAN 4R27945, SAVE PLAN 4R27945, SAVE PLAN 4R27945, SAVE OCI591626, SAVE AS IN OCI791074; S SUBJECT TO AN FAST PLAN 4R27945, SAVE PLAN 4R27575, SAVE PLAN 4R57575, SAVE PLAN 4R57575, SAVE PLAN 4R57575, SAVE PLAN 4R57575, SAVE PLAN 4R57575, SA		
<i>i</i> .		PARCEL REGISTER (ABBREVIATED) FOR PROPERTY IDEN	UNA.I		<	4

NOTE: ENSURE THAT YOUR PRINTOUT STATES THE TOTAL NUMBER OF PAGES AND THAT YOU HAVE PICKED THEM ALL UP. NOTE: ADJOINING PROPERTIES SHOULD BE INVESTIGATED TO ASCERTAIN DESCRIPTIVE INCONSISTENCIES, IF ANY, WITH DESCRIPTION REPRESENTED FOR THIS PROPERTY.

KEDMOOD KERIDENCER FIWILED	CITY OF OTTAWA	T 6				
	AMARTO FO VELO	15	NOLICE	5076/05/30	ELL06LTDO	
KEDMOOD KESIDENCES FIWILED	KEDMOOD KERIDENCER FIWILED	τ\$	NOLICE	₽Z/S0/9T0Z	080687100	
			PLAN REFERENCE	TT/#0/9T0Z	4K29460	
			1 AND S FLAN 4R28854	STAA9 : SXAAA	UEN EN	
demini i futuro oddyn	KEDMOOD KESIDENCES FIWILED	τ\$	TRANSFER EASEMENT	08/L0/STOZ	₽TZ90LT30	
ROGERS COMMUNICATIONS INC.	KEDMOOD KERIDENCER LIMITED	τ\$	TNEMERAE AETRANAT	02/10/5102	01290710	
ENBRIDGE GAS DISTRIBUTION INC.	KEDMOOD KERIDENCER FIWILED	Z\$	TNEMERAE REFURENT	5012/0 <i>1</i> /58	620507100	
BELL CANADA	KEDMOOD KERIDENCER FIWILED	τ\$	TNEMERAE AETRINAT	₽Z/L0/ST0Z	0C1704430	
			PLAN REFERENCE	01/20/5102	4828854	
KEDMOOD KESIDENCES FIWILED	AMATTO FO OTTAWA	τ\$	NOTICE	501∉\0/\51	0CT 00 2 6 5 0 2 6 5 5 5	
KEDMOOD KESIDENCES FIWILED	CITY OF OTTAWA	τ\$	NOLICE	501∉\0/\51	685009T2O	
KEDMOOD KESIDENCEZ FIWILED	CITY OF OTTAWA	τ\$	NOLICE	501∉\0\\SI	0CJ 000288	
KEDMOOD KERIDENCER FIWILED	KEDMOOD KESIDENCES FIWLLED	τ\$	TRANSFER	\$Z/90/\$T0Z	0CI20T6550	
			FLAN REFERENCE	2014/04/11	2487278	
	KEDMOOD KESIDENCES FIWILED		NOLICE	TT/80/L66T	₽7220111	
THE HYDRO-ELECTRIC COMMISSION OF THE CITY OF OTTAMA			TRANSFER EASEMENT	E0/90/886T	907044N	
OTTAWA CABLEVISION LTD			TRANSFER EASEMENT	90/S0/8861	0619EFN	
AWATTO GO YIT OF THE CITY OF OTTAMO					<i>ве</i> Св491495	
, PARTY: THE BELL TELEPHONE	THE CITY OF OTTAWA' ADDED ON 1997/11/17 BY KATHLEEN DILLABOUGH. ILABOUGH.	/17 BY KATHLEEN DI TRIC COMMISSION OF	БА КТҮ: ТНЕ НҮDRO ELEC	SKECLIONS:	cc	
THE CORPORATION OF THE CITY OF CANADA THE HYDRO ELECTRIC COMMISSION OFTHE CITY OF OTTAWA THE BELL TELEPHONE COMMISSION OFTHE CITY OF OTTAWA					ia	
			AGREEMENT	1962/08/23	CK448175	
PARTIES TO	PARTIES FROM	TNUOMA	INSTRUMENT TYPE	DATE	кес. илм.	
Critic #4 Orefice Orefice #4 Orefice Orefice #4 Orefice Orefice #4 Orefice Orefice Orefice #4 Orefice Orefice #4 Orefice Orefice Orefice #4 Orefice Orefice Orefice Orefice #4 Orefice Orefice Orefice Orefice #4 Orefice Orefice						
	PAGE 2 OF 3 PAGE 2 OF 3 PREPARED FOR BRIAN MULCANY ON 2017/11/07 AT 15:54:41 ON 2017/11/07 AT 15:54:41 PERTERION IN CROWN GRANT & PARTES TO THE CORPORATION OF THE CITY OF OTTAMA THE HYDRO ELECTRIC COMMISSION OF THE CITY OF OTTAMA THE CORPORATION OF THE CITY OF OTTAMA MEDWOOD RESIDENCES LIMITED REDWOOD RESIDENCES REDWOOD	BELNOOD BESIDENCES TIMIED NOBO OLIVWY TIMIED WEDNOOD BESIDENCES TIMIED NOBO OLIVWY TIMIED WEDNOOD BESIDENCES TIMIED NOBO OLIVWY TIMIED WEDNOOD BESIDENCES TIMIED NOBO DESIDENCES TIMIED WEDNOOD BESIDENCES TIMIED NEUTOD DESIDENCES TIMIED METODOD BESIDENCES TIMIED NEUTOD DESIDENCES TIMIED METODOD BESIDENCES TIMIED NEUTODO BESIDENCES TIMIED METODOD DIAWY YDEED ON 1997/11/17 BK MARHTEEN DITTWOOD BESIDENCES TIMIED METODOD DIAWY YDEED ON 1997/11/17 BK MARHTEEN DITTWOOD BESIDENCES TIMIED MEC CITY OF OTTAWN NEENOOD BESIDENCES TIMIED METODOD NEELDENCES TIMIED METODODON NEELDENCES TIMIED METODODON NEELDENCES TIMIED METODONON NEELDENCES TIMIED METODONON NEELDENCES TIMIED METODONON NEELDENCES TIMIED METODONON NEELENCON METODONON NEELENCON METODONON <t< td=""><td>Machine Machine Machine Machine 11 Servero Servero Servero Servero Servero 12 Servero Servero Servero Servero Servero 13 Servero Servero Servero Servero Servero 14 Servero Servero Servero Servero Servero 15 Servero Servero Servero Servero Servero 16 CITY OF OFTAMAR Macroson Mastreavero Servero Servero 17 Servero Servero Servero Servero Servero 18 CITY OF OFTA Servero Servero Servero Servero 19 CITY OF OFTA Servero Servero Servero Servero 17</td><td></td><td></td></t<>	Machine Machine Machine Machine 11 Servero Servero Servero Servero Servero 12 Servero Servero Servero Servero Servero 13 Servero Servero Servero Servero Servero 14 Servero Servero Servero Servero Servero 15 Servero Servero Servero Servero Servero 16 CITY OF OFTAMAR Macroson Mastreavero Servero Servero 17 Servero Servero Servero Servero Servero 18 CITY OF OFTA Servero Servero Servero Servero 19 CITY OF OFTA Servero Servero Servero Servero 17			

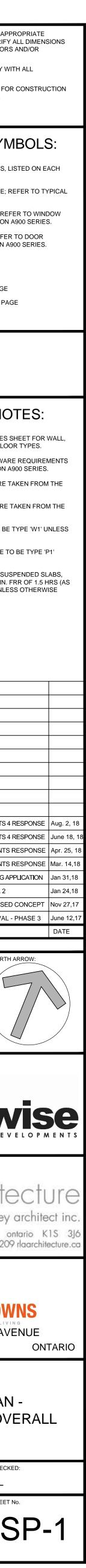
PARCEL REGISTER (ABBREVIATED) FOR PROPERTY IDENTIFIER

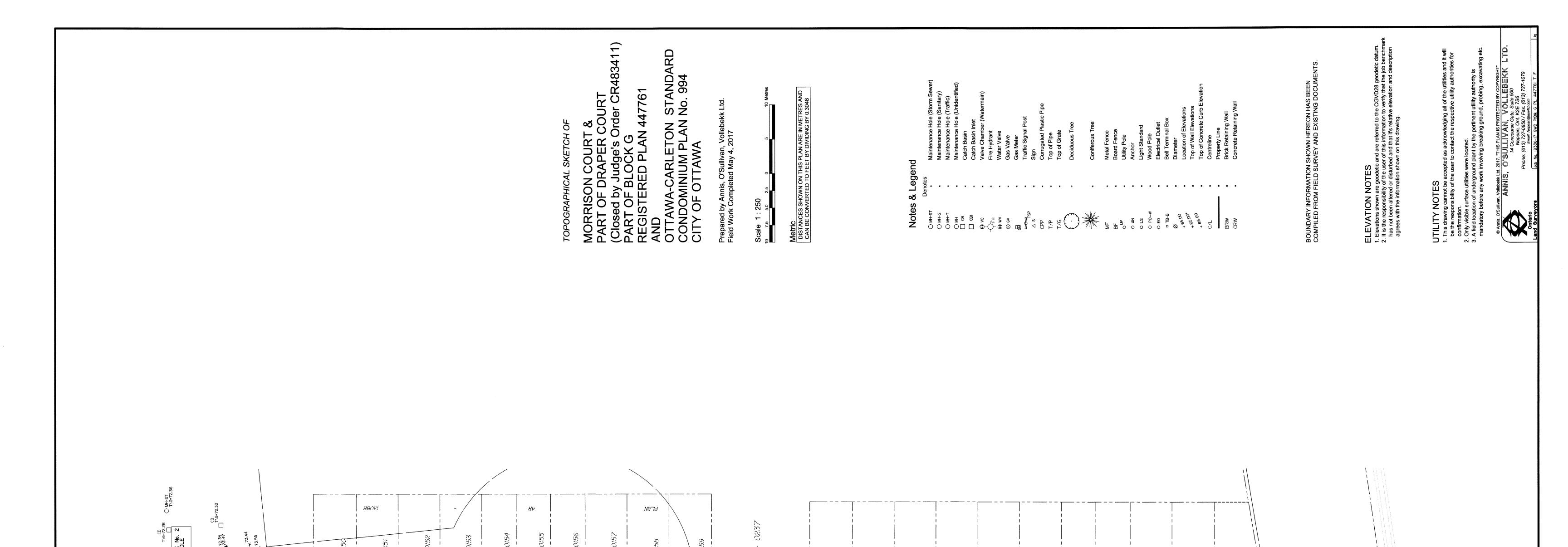

(TJ) £820-7∌8£0

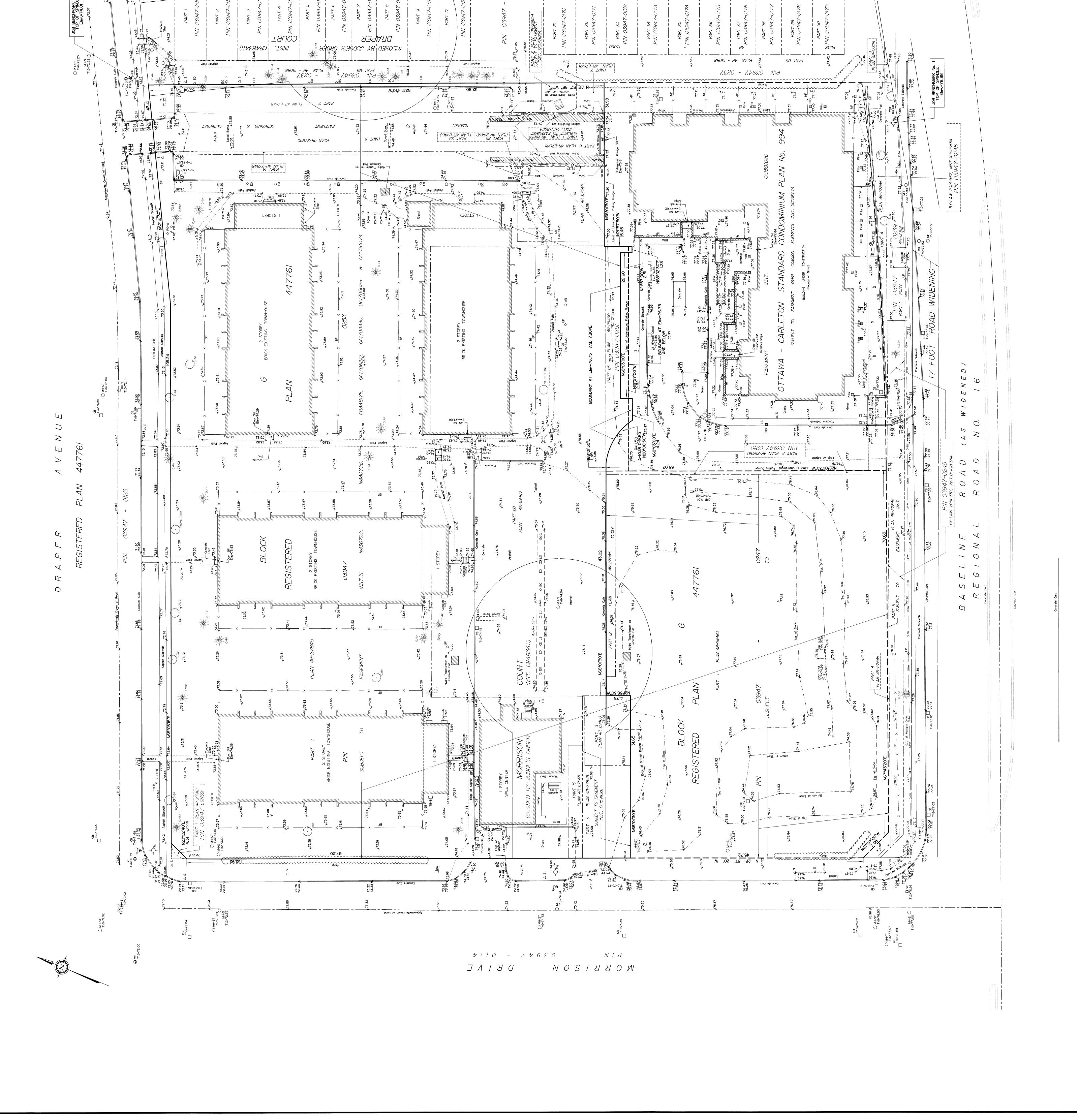
PRGE 3 OF 3 ON 2017/11/07 AT 15:54:41

* CERTIFIED IN ACCORDANCE WITH THE LAND TITLES ACT * SUBJECT TO RESERVATIONS IN CROWN GRANT *

CHKD CEKT/	OT SEITRAG	FARTIES FROM	TNUOMA	INSTRUMENT TYPE	J TAQ	кес. илм.
С	KEDMOOD KERIDENCER FIWILED	CITY OF OTTAWA	τ\$	NOTICE	2016/05/30	9 <i>LL</i> 06 <i>L</i> IJO
C				NIT OUNOD DAADNATS	5016/05/31	0CC6994
C		KEDMOOD KEZIDENCEZ FIWILED		CONDO DECLARATION	18/S0/9102	₽L016L100


DRAWINGS / FIGURES


 \rightarrow


	Here a the state of the state o	PROJECT INFORMATION	IT IS THE RESPONSIBILITY OF THE AP CONTRACTOR TO CHECK AND VERIFY ON SITE AND TO REPORT ALL ERROR
*	a Hwy 117 Queensway Redwood Morrison Dr - Re	ZONING Zoning By-Law 2008-250 R5A[1700] S247, S282 SITE AREA INCLUDING ORIGINAL PHASES 21,252.5 sq. m. (228,760) sq. ft.	OMISSIONS TO THE ARCHITECT. ALL CONTRACTORS MUST COMPLY W PERTINENT CODES AND BY-LAWS. THIS DRAWING MAY NOT BE USED FO
×× (m	hawk Queensine D. Lisa Park ▲ Brinton Ave Hobbs Nre Brian Crescent Q Brian Crescent Q Bria	BUILDING HEIGHT 5 STOREY 18.0 M OVERALL SITE SETBACK (PHASE 1 & 2) PROVODED REQUIRED	UNTIL SIGNED BY THE ARCHITECT. DO NOT SCALE DRAWINGS.
	Qualicum - Ne ⁴ Redwood Park store Graham Z ward Qualicum SITE	FRONT YARD SETBACK (BASELINE ROAD)3.0 M3.0 MMORRISON DRIVE SETBACK6.0 M6.0 MDRAPER AVENUE SETBACK6.0 M6.0 M	NOTATION SYN
24	Cuancular LOCATION 2 Outnot Str 2 Outnot	INTERIOR SIDE YARD SETBACK 6.0 M 6.0 M	000 INDICATES DRAWING NOTES, I SHEET.
(14)	Lesline Pairk ac ig a same of the same of		 INDICATES ASSEMBLIE TYPE; I ASSEMBLIES SCHEDUAL. INDICATES WINDOW TYPE; RE FLEVATIONS AND DETAILS ON
	LOCATION PLAN- NTS		ELEVATIONS AND DETAILS ON INDICATES DOOR TYPE; REFERENCE SCHEDULE AND DETAILS ON A
(01)	NOTE: READ THIS DRAWING IN CONJUNCTION WITH	PROJECT INFORMATION - PHASE 1 (TOWNHOUSE)	DETAIL NUMBER
	LANDSCAPE PLAN AS PREPARED BY LAROCQUE+LEVSTEK, GRADING PLAN AND SITE SERVICES PLAN AS PREPARED BY DSEL ENGINEERING CONSULTANTS LTD., AND	ZONING Zoning By-Law 2008-250 R5A[1700] S247, S282 SITE AREA - PHASE 1 7,692.7 sq. m. (82,804) sq. ft.	DETAIL REFERENCE PAGE
	GEOTECHNICAL INVESTIGATION AS PREPARED BY PATERSON GROUP INC	BUILDING HEIGHT4.5 STOREY17.0 MFRONT YARD SETBACK (BASELINE ROAD)3.0 M	
	GARBAGE AND RECYCLING WILL BE CURB SIDE BY PRIVATE CONTRACTOR	FRONT YARD SETBACK (MORRISON DRIVE)6.0 MFRONT YARD SETBACK (DRAPER AVENUE)6.0 MINTERIOR SIDE YARD SETBACK6.0 M	
0.30	SNOW CLEARING AND STORAGE WILL BE BY PRIVATE CONTRACTOR		
	DRAWING NOTES	PROJECT STATISTICS - PHASE 1 BUILDING HEIGHT 3 STOREY 12.0 M	GENERAL NO
	 PROPERTY LINE (REFER TO SURVEY DRAWING FOR INTERNAL PROPERTY LINES AND PARTS) 6.0M ZONING YARD SETBACK 	BUILDING AREA (32 UNITS) 4,169.5 sq. m. FRONT YARD SETBACK (TYPICAL) (44,880) sq. ft.	 REFER TO TYPICAL ASSEMBLIES PARTITION, ROOF CEILING & FLO FOR DOOR TYPES AND HARDWAR REFER TO DOOR SCHEDULE ON A
(14)	3 FIRE TRUCK ROUTE	CORNER YARD SETBACK (TYPICAL)6.0 MINTERIO YARD SETBACK (TYPICAL)6.0 M	B REFER TO DOOR SCHEDULE ON A C ALL INTERIOR DIMENSIONS ARE FACE OF STUD
(24)	EXISTING 2 STOREY APARTMENT BUILDING TO BE REMOVED	LOT COVERAGE	D ALL EXTERIOR DIMENSIONS ARE FACE OF STUD
(24)	 1200mm WIDE CONCRETE SIDEWALK AND CURB 1800mm WIDE CITY SIDEWALK, AS PER CITY OF 	PAVED SURFACE (ROADS) = 2,459.1 sq. m. 32% PAVED SURFACE (DRIVEWAY) = 702.8 sq. m. 9%	 ALL EXTERIOR WALLS ARE TO BE NOTED OTHER WISE. ALL INTERIOR PARTITIONS ARE T UNLESS NOTED OTHER WISE.
k.	 OTTAWA STANDARDS 2000mm WIDE CITY SIDEWALK & CURB, AS PER 	BUILDING FOOTPRINT = 1,500.1 sq. m. 20% LANDSCAPE OPEN SPACE = 2,645.0 sq. m. 34% LANDSCAPE PARK = 385.7 sq. m. 5%	ALL REINFORCED CONCRETE SU COLUMNS & BEAMS HAVE A MIN. DETERMINED BY OBC SB-2) UNLE
2000 STN	 CITY OF OTTAWA STANDARDS 8 EXISTING WOOD PRIVACY FENCE, TO BE REMOVED 	TOTAL = 7,692.7 sq. m. 100.0%	STATED.
	 REMOVED EXISTING ASPHALT PATH TO BE REMOVED 	BUILDING STATISTICS UNIT COUNT TOTAL UNIT AREA	
35)	 (10) EXISTING TREES TO BE REMOVED (11) RETAINING WALL WITH STEPS AS REQUIRED, SEE LANDSCAPE AND CIVIL DRAWINGS 	TOWNHOUSE TYPE 'A' (WITH GARAGE) 1,037 sq. ft. 0 0 0 0 TOWNHOUSE TYPE 'B' (WITH GARAGE) 1,282 sq. ft. 16 20,512 sq. ft./ 1,905.6 m² TOWNHOUSE TYPE 'C' (WITH GARAGE) 1,439 sq. ft. 10 14,390 sq. ft./ 1,336.9 m²	
38	 SEE LANDSCAPE AND CIVIL DRAWINGS PRIVATE DRIVEWAY 	TOWNHOUSE TYPE 'D' (WITH GARAGE) 1,472 sq. ft. 0 0 0 TOWNHOUSE TYPE 'E' (WITH GARAGE) 1,651 sq. ft. 0 0 0 TOWNHOUSE TYPE 'E' (WITH GARAGE) 1,651 sq. ft. 0 0 0 TOWNHOUSE TYPE 'F' (WITH GARAGE) 1,663 sq. ft. 6 9,978 sq. ft./ 927.0 m ²	
	13 PEDESTRIAN CROSS WALK WITH DEPRESSED CURBS	TOWNHOUSE TYPE 'H' (WITH GARAGE) 2,699 sq. ft. 0 <td></td>	
26) 	(14) EXISTING TREES TO REMAIN, PROTECT AS REQUIRED	TOTAL UNITS 32 44,880 sq. ft./ 4,169.5 m ²	
36	 (15) PROPOSED COMMUNITY MAIL BOX LOCATION (16) PRIVATE PARK WITH SAND FILLED PLAY AREA 	CAR PARKING	
	 (17) EXISTING FIRE HYDRANT (18) NEW ENTRY, DEPRESSED CURB AND 	REQUIREDRESIDENCE- 1.0 PER UNIT (32 UNITS)32	ISSUED FOR SPC - CITY COMMENTS
14	 SIDEWALK TO CITY STANDARDS SC7.1 PROPOSED LOT LINE 	VISITOR- NOT REQUIRED0TOTAL32	 issued for spc - city comments
	20 2.1 TO 2.5 M HT. SOUND BARRIER	PROVIDED RESIDENCE - PRIVATE GARAGE 32 VISITOR - PRIVATE IN DRIVEWAY 32	$\frac{21}{19}$ ISSUED FOR PRIVATE ROAD NAMING A 19 ISSUED FOR PERMIT - BLOCK 1 & 2
B B	 RETAINING WALL / EXPOSED EXTERIOR WALL OF PHASE 1 PARKING GARAGE LIGHT STANDARD, EXACT LOCATION TO BE 	VISITOR - COMMUNAL AT PARK 4 TOTAL 68	18 ISSUED FOR SPC - PHASE 3 REVISE
	CONFIRMED BY ELECTRICAL ENGINEER		No. DESCRIPTION REVISIONS: ARCHITECT SEAL: NORTH
	 (23) REPLACED WITH CONCRETE BUS STOP PAD & SHELTER AS PER CITY SPECIFICATIONS SC-11 (23) EXISTING PARKING LOT, PHASE 1 GARAGE 		ARCHITECT SEAL
	RAMP TO THE REMOVED UNDER THIS PHASE		ARCHUPECTS Z
 B B	 ⁽²⁵⁾ AREA TO BE REMOVED UNDER THIS PHASE ⁽²⁶⁾ EXISTING PHASE 1 PARKING GARAGE ENTRY RAMP TO REMAIN 		SEAL DATE: STAMP DATE
	 RAMP TO REMAIN 27 EXISTING CITY STREET LIGHT 		CLIENT:
	(28) METER CLOSETS(29) CONNECT NEW SIDEWALK TO EXISTING		Groot
	$\begin{array}{c} \hline 30 \\ \hline 30 \\ \hline 5.0 \text{ m x 5.0 m SIGHT TRIANGLE} \\ \hline \hline 31 \\ \hline \end{array} \text{ METAL FRAMED STAIRS TO MAIN LEVEL} \end{array}$		Great
	32 WOODEN DECK OFF MAIN LEVEL, STEPS VARY		ARCHITECT:
\supset	(33) HYDRO TRANSFORMER(34) VISITOR PARKING SPACE		rla/archite
	35 RETAINING WALL, HEIGHT VARIES SEE LANDSCAPE FOR TYPE		roderick lahey 56 beech street, ottawa, o
	36 EXISTING ARMOR STONE RETAINING WALL TO BE REPLACES WITH POURED CONCRETE		t. 613.724.9932 f. 613.724.120 PROJECT TITLE:
	 (37) STOP SIGN (AT ALL INTERSECTIONS) 38 REAR YARD ACCESS EASEMENTS (TO BE CONFIRMED ON SURVEY DRAWING) 		
	 CONFIRMED ON SURVEY DRAWING) BICYCLE PARKING WITH RACK 		FRESH TOV
JSED , 20	40 TACTILE WALKING SURFACE INDICATOR, SEE CITY DETAIL SD6		2710 DRAPER AV OTTAWA
	(41) EXISTING FIRE HYDRANT TO BE RELOCATED		SHEET TITLE:
- WEST ONOMIC F OTTAWA			SITE PLAN PROPOSED OV
PER COURT			DRAWN: CHECK
.AN 447761 ONDOMINIUM F	PLAN No.		SCALE: SHEET
			PROJECT No. 1020
			· · · - ·

Plan No.: #17529

J07-12-14-0076

