




# **10 Cope Drive**

August 2018



# 10 Cope Drive

**Transportation Impact Assessment** 

prepared for: Taggart Realty Management 225 Metcalfe Street, Suite 708 Ottawa, Ontario K2P 1P9



August 16, 2018

476575-01000



# **Table of Contents**

| 1. INTRODUCTION                                                            | 1  |
|----------------------------------------------------------------------------|----|
| 2. SCOPING REPORT                                                          |    |
| 2. SCOPING REPORT                                                          |    |
| 2.1. EXISTING AND PLANNED CONDITIONS<br>2.1.1. Proposed Development        | -  |
| 2.1.1.       Proposed Development         2.1.2.       Existing Conditions |    |
| 2.1.2. Existing Conditions                                                 |    |
| 2.1.3. Planned Conditions                                                  |    |
| 2.2. STUDY AREA AND TIME PERIODS                                           |    |
| •                                                                          |    |
| <ul><li>2.2.2. Time Periods</li><li>2.2.3. Horizon Years</li></ul>         |    |
|                                                                            |    |
| 2.3. EXEMPTION REVIEW                                                      |    |
| 3. FORECASTING REPORT                                                      |    |
| 3.1. DEVELOPMENT-GENERATED TRAVEL DEMAND                                   |    |
| 3.1.1. Trip Generation and Mode Shares                                     |    |
| 3.1.2. Trip Distribution                                                   |    |
| 3.1.3. Trip Assignment                                                     |    |
| 3.2. BACKGROUND NETWORK TRAVEL DEMANDS                                     |    |
| 3.2.1. Transportation Network Plans                                        |    |
| 3.2.2. Background Growth                                                   |    |
| 3.2.3. Other Developments                                                  |    |
| 4. STRATEGY REPORT                                                         |    |
| 4.1. DEVELOPMENT DESIGN                                                    |    |
| 4.1.1. Design for Sustainable Modes                                        |    |
| 4.1.2. Circulation and Access                                              |    |
| 4.2. PARKING                                                               | -  |
| 4.2.1. Parking Supply                                                      |    |
| 4.3. BOUNDARY STREET DESIGN                                                |    |
| 4.3.1. Existing Conditions                                                 |    |
| 4.3.2. Projected Conditions                                                |    |
| 4.4. ACCESS INTERSECTION DESIGN                                            |    |
| 4.4.1. Location and Design of Access                                       |    |
| 4.4.2. Intersection Control                                                |    |
| 4.4.3. Intersection Design - MMLoS                                         |    |
| 4.5. TRANSPORTATION DEMAND MANAGEMENT                                      |    |
| 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT                                      | 20 |
| 4.7. TRANSIT                                                               |    |
| 4.8. REVIEW OF NETWORK CONCEPT                                             | 20 |
| 4.9. INTERSECTION DESIGN                                                   | 20 |
| 4.9.1. Existing Conditions                                                 | 20 |
| 4.9.2. Total Projected 2019 Conditions – Full-Site Build Out               |    |
| 4.9.3. Total Projected 2024 Conditions – 5-YEars Beyond Site Build-Out     | 24 |
| 5. CONCLUSIONS                                                             |    |



### **List of Appendices**

APPENDIX A – Intersection Turning Movement Counts APPENDIX B – Collision Data and Analysis APPENDIX C – Traffic Growth Analysis APPENDIX D – Truck Turning Templates APPENDIX E – Existing MMLoS Road Segment Analysis APPENDIX F – Signal Warrant Analysis APPENDIX G – Left-turn Lane Warrant Analysis APPENDIX G – Left-turn Lane Warrant Analysis APPENDIX H – Functional Drawing APPENDIX I – Proposed Eagleson/Site MMLoS Analysis APPENDIX J – Transportation Demand Management Checklist APPENDIX K – SYNCHRO and MMLoS Analysis: Existing Conditions APPENDIX L – SYNCHRO Analysis: Projected 2019 Conditions APPENDIX M – Assessment of Site Vehicular Assess Technical Memorandum APPENDIX N - SYNCHRO and MMLoS Analysis: Projected 2024 Conditions

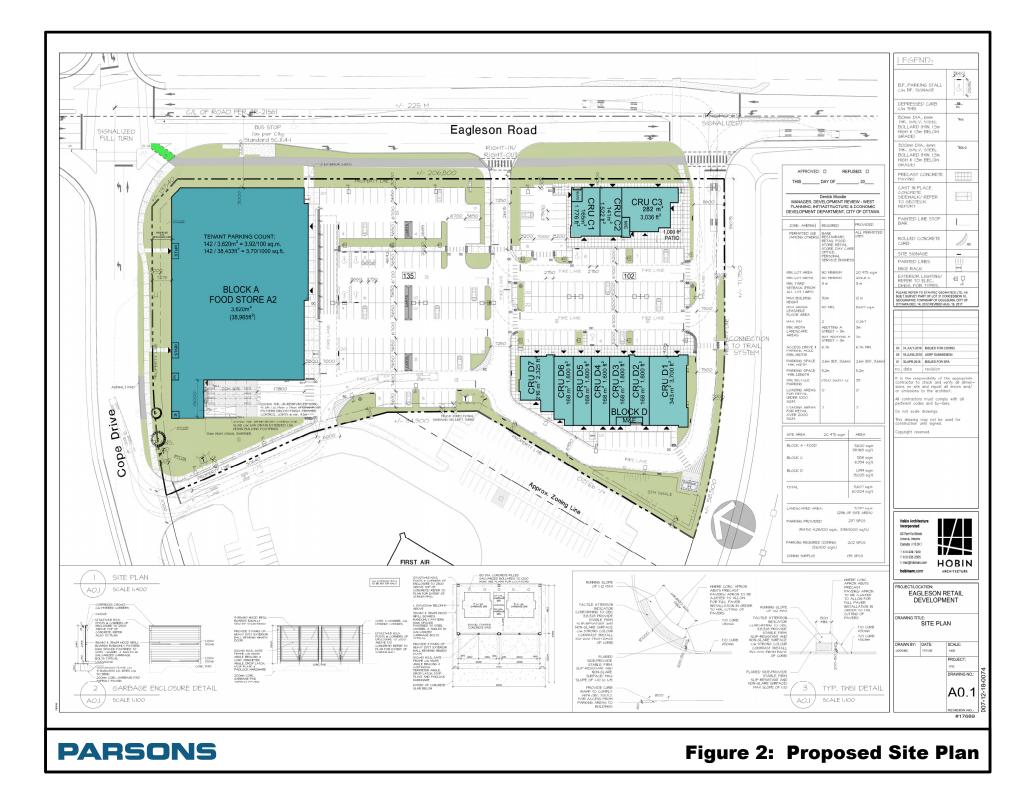
### **List of Tables**

| Table 1: Existing Boarding and Alighting Passengers                                                                                             | 5  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2: ITE Trip Generation Rates                                                                                                              | 9  |
| Table 1: Existing Boarding and Alighting Passengers         Table 2: ITE Trip Generation Rates         Table 3: Modified Person Trip Generation |    |
| Table 4: General Retail Modal Site Trip Generation (10% multi-purpose reduction)                                                                | 10 |
| Table 5: Restaurant Modal Site Trip Generation (10% multi-purpose reduction)                                                                    | 11 |
| Table 6: Medical/Dental Office Modal Site Trip Generation (10% multi-purpose reduction)                                                         | 11 |
| Table 7: Grocery Store Modal Site Trip Generation (10% multi-purpose reduction)                                                                 | 11 |
| Table 8: Site Vehicle Trip Generation                                                                                                           | 11 |
| Table 9: OD Survey Trips by Primary Travel Mode – Hunt Club                                                                                     |    |
| Table 10: Eagleson/Fernbank Historical Background Growth (2010 – 2017)                                                                          | 14 |
| Table 11: MMLOS – Existing Eagleson Road and Cope Drive Segments (adjacent to the site)                                                         | 17 |
| Table 12: MMLOS – Projected Eagleson Road Segment (adjacent to the site)                                                                        |    |
| Table 13: MMLOS – Proposed Eagleson/Site Intersection                                                                                           | 19 |
| Table 14: Existing Intersection Performance                                                                                                     | 21 |
| Table 15: MMLOS – Signalized Study Area Intersections                                                                                           | 21 |
| Table 16: Total Projected 2019 Performance at Study Area Intersections                                                                          |    |
| Table 17: Projected 2019 Queues at Study Area Intersections                                                                                     | 23 |
| Table 18: Total Projected 2024 Performance at Study Area Intersections                                                                          |    |
| Table 19: MMLOS – Widened Fernbank/Eagleson Intersection                                                                                        | 25 |
|                                                                                                                                                 |    |

### **List of Figures**

| 1  |
|----|
| 2  |
| 4  |
| 6  |
| 8  |
| 13 |
| 13 |
| 14 |
| 15 |
| 23 |
| 25 |
|    |




# **Transportation Impact Assessment**

### **1. INTRODUCTION**

Taggart (Eagleson) Corporation is proposing to develop the property located at the southwest quadrant of the Eagleson/Cope intersection (10 Cope Drive) within the South Kanata Community of Ottawa. We understand the proposed development will consist of an approximate 3,620 m<sup>2</sup> grocery store, and 1,982 m<sup>2</sup> of additional commercial retail including a restaurant, dental/medical office, and other retail stores. A total of approximately 246 parking spaces are proposed. With regard to vehicular site access/egress, an all-movement connection already exists to Cope Drive (serving the adjacent First Air) approximately 120 m west of the signalized Eagleson/Cope intersection. A right-in/right-out only access is proposed to Eagleson Road approximately 120 m south of the Eagleson/Cope intersection, and a new signalized full-movement access is proposed a further 100 m south on Eagleson Road. The site's local context is depicted in Figure 1 and the Site Plan is depicted in Figure 2.



As part of the Site Plan Approval process, the City of Ottawa requires a submission of a formal Transportation Impact Assessment (TIA) consistent with their updated 2017 guidelines. With respect to these guidelines, this Strategy Report has been prepared.



### 2. SCOPING REPORT

The TIA and ensuing analysis includes the signalized Eagleson/Cope, Eagleson/Fernbank and unsignalized Cope/Site (First Air) Driveway intersections. The proposed signalized access and right-in/right-out access to Eagleson Road will also be assessed.

### 2.1. EXISTING AND PLANNED CONDITIONS

#### 2.1.1. PROPOSED DEVELOPMENT

The existing land is zoned as Arterial Mainstreet Zone. The proposed development will consist of an approximate 5,602m<sup>2</sup> of retail with an anchor grocery store. The estimated date of occupancy is 2019. A total of approximately 246 parking spaces are proposed. A right-in/right-out only access is proposed to Eagleson Road approximately 120 m south of the Eagleson/Cope intersection, and a new signalized full-movement access is proposed a further 100 m south on Eagleson Road.

#### 2.1.2. EXISTING CONDITIONS

#### Area Road Network

**Cope Drive** is an City-owned east-west collector road, which extends from Eagleson Road in the east to Terry Fox Drive in the west. Within the study area, Cope Drive has a two-lane cross section and a posted speed limit of 50 km/h (40 km/h approaching Eagleson).

*Eagleson Road* is a major City-owned north-south arterial, which extends from Brophy Drive in the south (where it continues south as McCordick Road) to the Hwy 417 in the north (where it continues north as March Road). Within the study area, Eagleson Road has a four-lane divided cross section with auxiliary turn lanes at major intersections. The speed limit within the study area is posted at 60 km/h.

Note that Eagleson Road transitions from a four-lane divided to a two-lane undivided cross-section just south of the subject site. The widening of Eagleson Road to four lanes from this transition point to Hope Side Road is identified in the TMP as a Phase 2 Road Project (2016-2022).

*Fernbank Road* is a major City-owned east-west arterial road, which extends from Eagleson Road in the east, through Stittsville, to Dwyer Hill Road in the west. Within the study area, Fernbank Road has a two-lane cross section with auxiliary turn lanes at major intersections, on-road cycling lanes, and a posted speed limit of 60 km/h.

Akerson Road/Carronbridge Circle is a City-owned north-south local road that links Michael Cowpland Drive in the north to Cope Drive in the south, where it continues as Carronbridge Circle. The cross-section is two-lanes and the unposted speed limit is understood to be 50 km/h. A multi-use path (MUP) was recently constructed from Carronbridge Circle to Eagleson Road.

#### Adjacent Private Driveways

Along Eagleson Road there are no private driveways located within 200 m of the proposed site's driveways.

Along Cope Drive, the proposed site driveway will use a portion of the existing driveway to the First Air development.

Along the north side of Cope Drive there are two driveways to the Real Canadian Superstore development, located approximately 35 and 50 m from the existing First Air/proposed site driveway.

### Pedestrian/Cycling Network

With regard to pedestrian facilities adjacent to the site, sidewalks are provided on the both sides of Cope Drive, Akerson Road and Eagleson Road (north of Cope). South of Cope Drive, an asphalt sidewalk is provided along the east side of Eagleson Road which connects to a pathway approximately 150 m south of the Cope/Eagleson intersection. As mentioned previously, a MUP is provided south of the site between Carronbridge Circle and Eagleson Road. The notable deficiencies in the pedestrian network are: the lack of a sidewalk facility on the west side of Eagleson Road along the site's frontage; and the lack of a protected crossing of Eagleson Road for users of recreational pathway between Cope Drive and Fernbank Road.

According to the Ottawa Cycling Plan, Eagleson Road, north of Flewellyn Road, and Fernbank Road are identified as Spine Cycling Routes and Cope Drive and Akerson Road are identified as Local Cycling Routes. Bicycle lanes are currently provided along the west side of Eagleson Road, between Cope Drive and the southern access to Eagleson Place shopping centre. Bicycle lanes are also provided along Fernbank Road between Terry Fox Drive and Eagleson Road. Cope Drive and Akerson Road are identified as 'suggested routes' and MUPs are provided south of the site between Carronbridge Circle and Eagleson Road and west of the site, serving the adjacent residential community.

#### **Transit Network**

Transit service within the vicinity of the site, as shown in Figure 3, is provided by OC Transpo Routes #161, 164 and 256. Bus stops for all three Routes are provided at the Cope/Akerson intersection approximately 200 to 400 m walking distance from the subject site. Bus stops are also located along Eagleson Road in the northbound direction at the Eagleson/Cope intersection and in the north and southbound directions at the signalized Eagleson/Real Canadian Superstore intersection approximately 250 m north of the Eagleson/Cope intersection. Route #161 is a local route, which provides frequent allday service. Route #164 is a peak route, which provides service during the weekday peak hours only. Route #256 is a Connexion Routes, which also provides weekday peak hour service only.

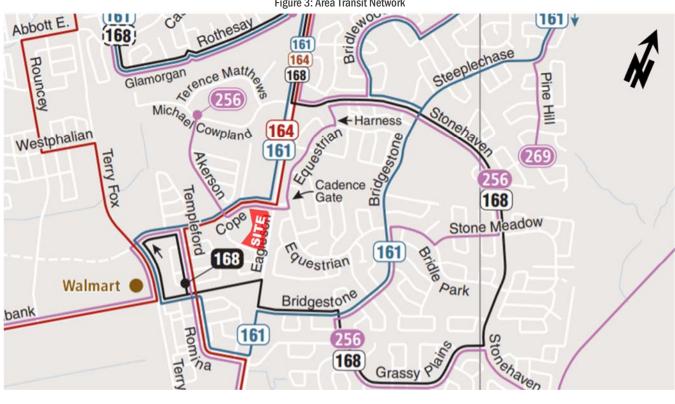



Figure 3: Area Transit Network

### Existing Transit Capacity

Based on the information provided by OC Transpo, the following Table 1 provides the number of boarding and alighting passengers during the peak periods for an average day at the bus stops within the vicinity of the site. In addition, it provides the average number of persons on board busses leaving the stops.

| Sept 20      | 17 Data |       | A                                | M PEAK PERIC                      | D                               | PM PEAK PERIOD                   |                                   |                                 |  |
|--------------|---------|-------|----------------------------------|-----------------------------------|---------------------------------|----------------------------------|-----------------------------------|---------------------------------|--|
| Intersection | STOP    | Route | Average<br>Boarding<br>(6am-9am) | Average<br>Alighting<br>(6am-9am) | Average<br>Load at<br>Departure | Average<br>Boarding<br>(3pm-6pm) | Average<br>Alighting<br>(3pm-6pm) | Average<br>Load at<br>Departure |  |
| 603          | 6936    | 161   | 0                                | 0                                 | 1                               | 0                                | 2                                 | 6                               |  |
|              | 0930    | 164   |                                  |                                   |                                 | 0                                | 1                                 | 6                               |  |
| Akerson/Cope | 6935    | 161   | 1                                | 0                                 | 5                               | 0                                | 0                                 | 2                               |  |
|              |         | 164   | 2                                | 0                                 | 12                              |                                  |                                   |                                 |  |
|              |         | 256   |                                  | Not Available                     |                                 |                                  | Not Available                     |                                 |  |

We have been informed by OC Transpo that Route #256 did not extend to Stop 6935 until January 2018 and as such, there is no boarding/alighting data for this route at this stop. We are advised that there are currently overload issues on Route #256 and the issues are under review by OC Transpo. As mentioned previously, Route #164 is a peak direction route and as such there is boarding/alighting data in only one direction during the peak hours.

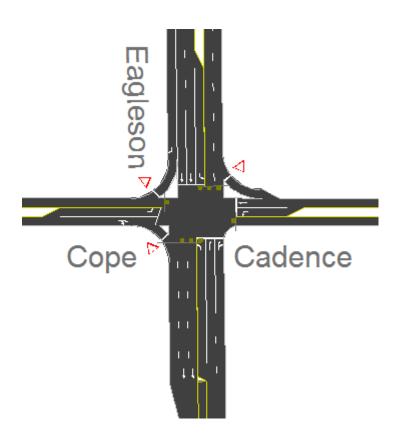
As shown in Table 1, there is significant spare capacity on Routes #161 and 164 within the vicinity of the site. Capacity of busses is understood to be 55 persons per bus for regular busses, 75 persons per bus for articulated busses and 90 persons per bus for double decker busses.

#### **Existing Study Area Intersection**

Eagleson/Cope (signalized) Northbound

- two through lanes
- single 60m left-turn lane

#### Southbound


- two through lanes
- single 50m left-turn lane
- single 100m+ right-turn lane (channelized)
- cycling lane

#### Eastbound

- single through/right-turn lane (channelized)
- single 40m left-turn lane

#### Westbound

- single through/right turn lane (channelized)
- single 20m left-turn lane



#### Eagleson/Fernbank (signalized) Northbound

- single through lane
- single 30m left-turn lane

Southbound

- single through lane
- single right-turn lane
- pocket cycling lane

#### Eastbound

- single left-turn lane
- single right-turn lane
- cycling lane

#### Cope/Site (uncontrolled) Northbound

• single all-movement lane

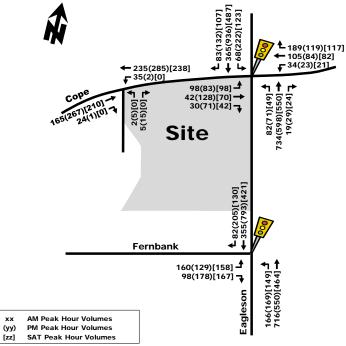
#### Eastbound

• single through right-turn lane

#### Westbound

• single through left-turn lane

Illustrated as Figure 4, are the most recent weekday morning and afternoon peak hour traffic volumes obtained from the City of Ottawa at the Eagleson/Cope, Eagleson/Fernbank intersections and collected by Parsons at the Cope/Site intersection (First Air driveway). Saturday peak hour counts (collected by Parsons) are also included in Figure 4. All peak hour traffic volumes are included as Appendix A.


Fernbank

\*

agleson

Cope

#### Figure 4: Existing Peak Hour Traffic Volumes



### **Existing Road Safety Conditions**

Collision history for the Eagleson/Cope and Eagleson/Fernbank intersections (2012 to 2016, inclusive) was obtained from the City of Ottawa and most collisions (69%) involved only property damage, indicating low impact speeds, and 29% involved personal injuries. There was one fatal accident at the Eagleson/Fernbank intersection in 2016 that involved a passenger vehicle and a motorcycle. The primary causes of collisions cited by police include; rear end (35%), angle (24%), and turning movement (22%) type collisions.

A standard unit of measure for assessing collisions at an intersection is based on the number of collisions per million entering vehicles (MEV). At intersections within the study area, reported collisions have historically take place at a rate of:

- 0.44/MEV at the Eagleson/Cope intersection; and
- 0.67/MEV at the Eagleson/Fernbank intersection.

It is noteworthy that within the 5-years of recorded collision data, no collisions involved pedestrians or cyclists. The source collision data as provided by the City of Ottawa and related analysis is provided as Appendix B.

#### 2.1.3. PLANNED CONDITIONS

#### Planned Study Area Transportation Network Changes

#### Roadways

As noted previously, the widening of Eagleson Road (Cadence Gate to Hope Side Road) from the current two lanes to four lanes is identified in the TMP as a Phase 2 Road Project (2016-2022).

#### Transit

Identified in the 2031 Affordable Concept is Transit Priority (isolated measures) along Eagleson Road, north of Hazeldean Road.

#### **Other Area Development**

According to the City's development application search tool, the following developments are planned within close proximity of the site.

#### 80, 110, 140, 151, 180 Cope Drive

Thomas Cavanagh Construction Ltd. is proposing to construct 260 residential units at the above noted addresses. The Transportation Impact Study (prepared by Stantec) projected an increase in vehicle trips of approximately 75 veh/h during the peak hours.

#### 800 Eagleson Road/5264 Fernbank Road

A car dealership is proposed at the above noted address with approximately 100 parking spaces (34 for display vehicles and 64 for customers and staff). No transportation impact assessment was submitted with the application.

#### 1039 Terry Fox Drive/5331 Fernbank Road

The application for these lands (known as the Van Gaal Lands) includes a proposal for the construction of 255 townhouses, approximately 100,000 ft<sup>2</sup> of commercial and 600,000 ft<sup>2</sup> of office. The Community Transportation Study (prepared by Novatech) projected an increase in vehicle volumes of approximately 900 to 1,000 veh/h during the weekday peak hours and 630 veh/h during the Saturday peak hour.

#### 25 Overberg Way/5306 Fernbank Road

A 72 unit residential development is proposed at the above noted address with approximately 100 parking spaces. No transportation impact assessment was submitted with the application.

#### 895 Eagleson Road

The South Kanata Development Corporation is proposing to construct a residential development at the above noted address consisting of approximately 141 townhouses. The Transportation Impact Study (prepared by Stantec) projected an increase in traffic volumes of 50 to 60 veh/h during the peak hours.

#### 630 Eagleson Road

A residential care facility, consisting of approximately 66 units is proposed at the above-noted address. The Transportation Brief (prepared by Parsons) projected an increase in vehicle volumes of approximately 15 veh/h during peak hours.

### 2.2. STUDY AREA AND TIME PERIODS

#### 2.2.1. STUDY AREA

The proposed study area is outlined below and highlighted in Figure 5.

- Eagleson/Cope intersection;
- Eagleson/Fernbank intersection;
- Cope/Site (First Air) intersection;
- Eagleson Road adjacent to the site;
- Cope Drive adjacent to the site.

Figure 5: Study Area



#### 2.2.2. TIME PERIODS

The time periods to be assessed are the weekday afternoon commuter peak hour and Saturday peak hour. Depending on the results of the forecasting report and the site-trip generation, the weekday morning peak hour traffic may be required as part of the assessment. This will be determined during the Forecasting stage of the TIA.

#### 2.2.3. HORIZON YEARS

The expected build out date for the proposed development is year 2020. The horizon year 2025, representing 5-years beyond site build out will also be assessed.

#### 2.3. EXEMPTION REVIEW

Based on the City's TIA guidelines and the proposed development, the following sections of the TIA process will be exempt, unless otherwise directed.

| Module                           | Element                      | Exemption Consideration                                                                                    |
|----------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------|
| 4.1 Development<br>Design        | 4.1.3 New Street<br>Networks | Not required for applications involving site plans.                                                        |
| 4.2 Parking                      | 4.2.2 Spillover<br>Parking   | Parking is proposed to exceed By-Law requirements.                                                         |
| 4.8 Review of<br>Network Concept | All elements                 | This development is not expected to generate 200 person trips more than the permitted zoning for the site. |

### 3. FORECASTING REPORT

### **3.1. DEVELOPMENT-GENERATED TRAVEL DEMAND**

#### 3.1.1. TRIP GENERATION AND MODE SHARES

The proposed development will consist of a number of commercial retail units totaling approximately 60,325 ft<sup>2</sup>, including a grocery store, a restaurant, two health/dental offices and other retail uses within the shopping centre. Appropriate trip generation rates for the proposed retail development were obtained from the 10<sup>th</sup> Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual, which are summarized in Table 2.

| Land Llag                                                 | Data    | Trip Rates                                |                                          |                                           |  |  |  |  |  |
|-----------------------------------------------------------|---------|-------------------------------------------|------------------------------------------|-------------------------------------------|--|--|--|--|--|
| Land Use                                                  | Source  | AM Peak                                   | PM Peak                                  | SAT Peak                                  |  |  |  |  |  |
| Shopping Centre                                           | ITE 820 | T = 0.94(X)                               | T = 3.81(X)                              | T = 4.50(X)                               |  |  |  |  |  |
| High Quality<br>Restaurant                                | ITE 931 | T = 0.73(X)                               | T = 7.80(X)                              | T = 10.68(X)                              |  |  |  |  |  |
| Medical/Dental<br>Office                                  | ITE 720 | T = 2.78(X);<br>Ln(T) = 0.89 Ln(X) + 1.31 | T = 3.46(X);<br>T = 3.39(X) + 2.02       | T = 3.10(X)                               |  |  |  |  |  |
| Supermarket                                               | ITE 850 | T = 3.82(X)                               | T = 9.24(X);<br>Ln(T) = 0.75Ln(X) + 3.21 | T = 10.34(X);<br>Ln(T) = 0.69Ln(X) + 3.61 |  |  |  |  |  |
| Notes: T = Average Vehic<br>X = 1000 ft <sup>2</sup> Gros |         |                                           |                                          |                                           |  |  |  |  |  |

| Table 2: | ITF Trip   | Generation  | Rates |
|----------|------------|-------------|-------|
| 10010 2. | II L III P | achiciation | natos |

As ITE trip generation surveys only record vehicle trips and typically reflect highly suburban locations (with little to no access by travel modes other than private automobiles), adjustment factors appropriate to the more urban study area context

were applied to attain estimates of person trips for the proposed car dealership and retail components of the development. This approach is considered appropriate within the industry for urban infill developments.

To convert ITE vehicle trip rates to person trips, an auto occupancy factor and a non-auto trip factor were applied to the ITE vehicle trip rates. Our review of available literature suggests that a combined factor of approximately 1.28 is considered reasonable to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10%. The person trip generation for the proposed shopping centre, restaurant, medical/dental offices and supermarket are summarized in Table 3.

|                            | A                                                                                                                                                                        | AM Pea | k (Person | Trips/h) | PM Pea | k (Person | Trips/h) | SAT Peak (Person Trips/h) |     |       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------|--------|-----------|----------|---------------------------|-----|-------|
| Land Use                   | Area                                                                                                                                                                     | In     | Out       | Total    | In     | Out       | Total    | In                        | Out | Total |
| Shopping<br>Centre         | 12,847 ft <sup>2</sup>                                                                                                                                                   | 9      | 7         | 16       | 30     | 34        | 64       | 39                        | 36  | 75    |
| High Quality<br>Restaurant | 3,035 ft <sup>2</sup>                                                                                                                                                    | 1      | 2         | 3        | 20     | 11        | 31       | 24                        | 18  | 42    |
| Pharmacy                   | 5,476 ft <sup>2</sup>                                                                                                                                                    | 17     | 5         | 22       | 7      | 20        | 27       | 12                        | 10  | 22    |
| Supermarket                | 38,965 ft <sup>2</sup>                                                                                                                                                   | 120    | 74        | 194      | 256    | 246       | 502      | 307                       | 295 | 602   |
|                            | Person Trips                                                                                                                                                             | 135    | 85        | 220      | 322    | 311       | 634      | 392                       | 377 | 769   |
| Less 10% Multi-            | purpose trips                                                                                                                                                            | -14    | -8        | -22      | -32    | -31       | -63      | -39                       | -38 | -77   |
| Total Person Trips 122 7   |                                                                                                                                                                          |        |           | 198      | 290    | 280       | 570      | 352                       | 339 | 692   |
|                            | Note: 1.28 factor to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10% |        |           |          |        |           |          |                           |     |       |

Table 3: Modified Person Trip Generation

The person trips shown in Table 3 for the proposed retail developments were reduced by a 10% multi-purpose rate to account for trips to more than one of the retail pads within the development. The person trips were then reduced by modal share and pass-by values based on the site's location and proximity to adjacent communities, employment, shopping uses and transit availability. Modal share and pass-by values for the proposed general retail, restaurant, medical/dental office and grocery store are summarized in Tables 4, 5, 6, and 7, respectively.

Table 4: General Retail Modal Site Trip Generation (10% multi-purpose reduction)

| Travel Mode        | Mode       | AM Peak (Person Trips/h) |     |    | PM Peak (Person Trips/h) |       |       | SAT Peak (Person Trips/h) |       |       |
|--------------------|------------|--------------------------|-----|----|--------------------------|-------|-------|---------------------------|-------|-------|
|                    | Share      | In                       | Out | In | Out                      | Total | Total | Out                       | Total | Total |
| Auto Driver        | 60%        | 4                        | 4   | 8  | 17                       | 19    | 36    | 21                        | 20    | 41    |
| Auto Passenger     | 15%        | 1                        | 1   | 2  | 4                        | 4     | 8     | 5                         | 4     | 9     |
| Transit            | 15%        | 2                        | 1   | 3  | 4                        | 4     | 8     | 6                         | 5     | 11    |
| Non-motorized      | 10%        | 1                        | 0   | 1  | 2                        | 4     | 6     | 3                         | 3     | 6     |
| Total Person Trips | 100%       | 8                        | 6   | 14 | 27                       | 31    | 58    | 35                        | 32    | 67    |
| Less Pass-by (25%) |            | -1                       | -1  | -2 | -5                       | -5    | -10   | -5                        | -5    | -10   |
| Total 'New'        | Auto Trips | 3                        | 3   | 6  | 12                       | 14    | 26    | 16                        | 15    | 31    |

| Travel Mode        | Mode       | AM Peak (Person Trips/h) |     |    | PM Peak (Person Trips/h) |       |       | SAT Peak (Person Trips/h) |       |       |
|--------------------|------------|--------------------------|-----|----|--------------------------|-------|-------|---------------------------|-------|-------|
|                    | Share      | In                       | Out | In | Out                      | Total | Total | Out                       | Total | Total |
| Auto Driver        | 60%        | 1                        | 2   | 3  | 11                       | 6     | 17    | 14                        | 10    | 24    |
| Auto Passenger     | 15%        | 0                        | 0   | 0  | 2                        | 1     | 3     | 3                         | 2     | 5     |
| Transit            | 15%        | 0                        | 0   | 0  | 3                        | 2     | 5     | 3                         | 3     | 6     |
| Non-motorized      | 10%        | 0                        | 0   | 0  | 2                        | 1     | 3     | 2                         | 1     | 3     |
| Total Person Trips | 100%       | 1                        | 2   | 3  | 18                       | 10    | 28    | 22                        | 16    | 38    |
| Less Pass-by (25%) |            | 0                        | 0   | 0  | -2                       | -2    | -4    | -3                        | -3    | -6    |
| Total 'New' A      | Auto Trips | 1                        | 2   | 3  | 9                        | 4     | 13    | 11                        | 7     | 18    |

Table 5: Restaurant Modal Site Trip Generation (10% multi-purpose reduction)

Table 6: Medical/Dental Office Modal Site Trip Generation (10% multi-purpose reduction)

| Travel Mode        | Mode       | AM Peak (Person Trips/h) |     |    | PM Peak (Person Trips/h) |       |       | SAT Peak (Person Trips/h) |       |       |
|--------------------|------------|--------------------------|-----|----|--------------------------|-------|-------|---------------------------|-------|-------|
|                    | Share      | In                       | Out | In | Out                      | Total | Total | Out                       | Total | Total |
| Auto Driver        | 60%        | 9                        | 3   | 12 | 4                        | 11    | 15    | 7                         | 6     | 13    |
| Auto Passenger     | 15%        | 2                        | 0   | 2  | 0                        | 2     | 2     | 1                         | 1     | 2     |
| Transit            | 15%        | 2                        | 1   | 3  | 1                        | 3     | 4     | 1                         | 2     | 3     |
| Non-motorized      | 10%        | 2                        | 1   | 3  | 1                        | 2     | 3     | 2                         | 0     | 2     |
| Total Person Trips | 100%       | 15                       | 5   | 20 | 6                        | 18    | 24    | 11                        | 9     | 20    |
| Total 'New'        | Auto Trips | 9                        | 3   | 12 | 4                        | 11    | 15    | 7                         | 6     | 13    |

Table 7: Grocery Store Modal Site Trip Generation (10% multi-purpose reduction)

| Travel Mode        | Mode       | AM Peak (Person Trips/h) |     |     | PM Pea | k (Person | Trips/h) | SAT Peak (Person Trips/h) |       |       |  |
|--------------------|------------|--------------------------|-----|-----|--------|-----------|----------|---------------------------|-------|-------|--|
| Traver Mode        | Share      | In                       | Out | In  | Out    | Total     | Total    | Out                       | Total | Total |  |
| Auto Driver        | 60%        | 65                       | 41  | 106 | 138    | 133       | 271      | 166                       | 160   | 326   |  |
| Auto Passenger     | 15%        | 16                       | 10  | 26  | 34     | 33        | 67       | 41                        | 39    | 80    |  |
| Transit            | 15%        | 17                       | 10  | 27  | 35     | 33        | 68       | 42                        | 40    | 82    |  |
| Non-motorized      | 10%        | 10                       | 6   | 16  | 23     | 22        | 45       | 27                        | 27    | 54    |  |
| Total Person Trips | 100%       | 108                      | 67  | 175 | 230    | 221       | 451      | 276                       | 266   | 542   |  |
| Less Pass          | -by (35%)  | -19                      | -19 | -38 | -47    | -47       | -94      | -57                       | -57   | -114  |  |
| Total 'New'        | Auto Trips | 46                       | 22  | 68  | 91     | 86        | 177      | 109                       | 103   | 212   |  |

The total site-generated vehicle trips are summarized in Table 8.

Table 8: Site Vehicle Trip Generation

| Vahiele Trip Constantion           | AM Peak (veh/hr) |     |       | PM Peak (veh/hr) |     |       | SAT | SAT Peak (veh/hr) |       |  |
|------------------------------------|------------------|-----|-------|------------------|-----|-------|-----|-------------------|-------|--|
| Vehicle Trip Generation            | In               | Out | Total | In               | Out | Total | In  | Out               | Total |  |
| Shopping Centre                    | 4                | 4   | 8     | 17               | 19  | 36    | 21  | 20                | 41    |  |
| High Quality Restaurant            | 1                | 2   | 3     | 11               | 6   | 17    | 14  | 10                | 24    |  |
| Medical/Dental Office              | 9                | 3   | 12    | 4                | 11  | 15    | 7   | 6                 | 13    |  |
| Supermarket                        | 65               | 41  | 106   | 138              | 133 | 271   | 166 | 160               | 326   |  |
| Less Shopping Centre Pass-by (25%) | -1               | -1  | -2    | -5               | -5  | -10   | -5  | -5                | -10   |  |
| Less Restaurant Pass-by (25%)      | 0                | 0   | 0     | -2               | -2  | -4    | -3  | -3                | -6    |  |
| Less Supermarket Pass-by (35%)     | -19              | -19 | -38   | -47              | -47 | -94   | -57 | -57               | -114  |  |
| Total 'New' Auto Trips             | 59               | 30  | 89    | 116              | 115 | 231   | 143 | 131               | 274   |  |

As shown in Table 8, the total number of new vehicle trips projected to be generated by the proposed development is approximately 90, 230 and 275 veh/h during the weekday morning, afternoon and Saturday peak hours. The increase in

transit trips is projected to be approximately 85 to 100 persons per hour during the weekday afternoon and Saturday peak hours. The increase in active modes travelling to/from the development is projected to be 55 to 65 persons per hour during critical peak hours. The critical peak hours are considered the weekday afternoon and Saturday peak hours and will be the focus of the assessment provided herein.

### Mode Shares

The existing mode shares outlined in Tables 4 to 7 above were derived from the 2011 OD Survey for the Kanata/Stittsville area, which are shown in Table 9 below.

| Time<br>Period |                  | 24 Hours       |                    | AM Peak Hour     |                |                    | PN               | /I Peak Ho     | Average            | Selected |       |
|----------------|------------------|----------------|--------------------|------------------|----------------|--------------------|------------------|----------------|--------------------|----------|-------|
| Mode           | From<br>District | To<br>District | Within<br>District | From<br>District | To<br>District | Within<br>District | From<br>District | To<br>District | Within<br>District | , nonago | Split |
| Driver         | 67%              | 67%            | 57%                | 59%              | 74%            | 45%                | 73%              | 61%            | 57%                | 62%      | 60%   |
| Passenger      | 16%              | 16%            | 20%                | 9%               | 7%             | 17%                | 17%              | 15%            | 23%                | 16%      | 15%   |
| Transit        | 13%              | 13%            | 3%                 | 24%              | 8%             | 4%                 | 7%               | 21%            | 2%                 | 11%      | 15%   |
| Bike/Walk      | 0%               | 0%             | 14%                | 0%               | 1%             | 20%                | 0%               | 0%             | 13%                | 5%       | 10%   |
| Other          | 4%               | 4%             | 7%                 | 7%               | 10%            | 15%                | 3%               | 3%             | 6%                 | 7%       | -     |

|                    | Trine by Drima     | w Travel Mode   | Hunt Club    |
|--------------------|--------------------|-----------------|--------------|
| Table 9: OD Survey | / 11105 by Pfillia | Ty Travel Would | - HUIIL GIUD |

These existing modal shares are used to calculate the projected traffic to/from the proposed development for the buildout year and 5-years beyond build-out. Given the planned transportation network within the vicinity of the site does not provide any significant non-auto transportation improvements, there is no rationale that the future modal splits will be different than existing.

#### **3.1.2. TRIP DISTRIBUTION**

Based on the existing traffic volume counts and the location of adjacent arterial roadways and neighbourhoods, the distribution of site-generated traffic volumes is as follows:

- 40% to/from the north/northeast via Eagleson;
- 15% to/from the south/southwest via Eagleson and/or Fernbank;
- 30% to/from the east via Cope; and
- 15% to/from the northwest via Cope.

#### 3.1.3. TRIP ASSIGNMENT

A full movement driveway connection and a right-in/right-out driveway connection to Eagleson Road are proposed to serve the subject development as well as a full-movement driveway connection to Cope Drive (via the existing First Air driveway). The full-movement driveway to Eagleson Road is proposed to be signalized and is located approximately 225 m south of the Eagleson/Cope intersection. Given these proposed driveways, 'new' and 'pass-by' site-generated vehicle trips for the proposed development are assigned to the study area network and illustrated as Figures 6 and 7, respectively.

Figure 6: 'New' Site-Generated Traffic

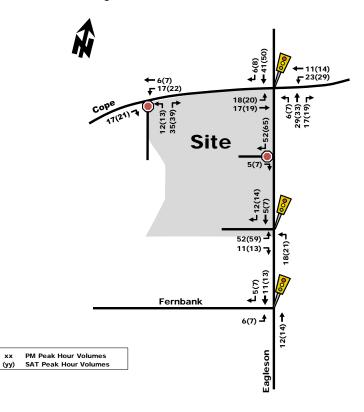
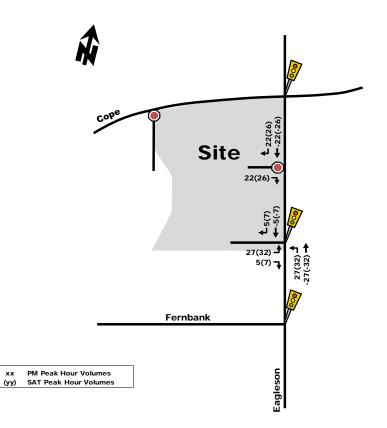




Figure 7: 'Pass-by' Site-Generated Traffic



### **3.2. BACKGROUND NETWORK TRAVEL DEMANDS**

#### 3.2.1. TRANSPORTATION NETWORK PLANS

Refer to section 2.1.3 Planned Conditions - Planned Study Area Transportation Network Changes.

#### 3.2.2. BACKGROUND GROWTH

The following background traffic growth through the immediate study area (summarized in Table 10) was calculated based on historical traffic count data (years 2010, 2014, and 2017) provided by the City of Ottawa at the Eagleson/Fernbank intersection. Detailed background traffic growth analysis is included as Appendix C.

|             | Percent Annual Change |           |          |         |  |  |  |  |  |
|-------------|-----------------------|-----------|----------|---------|--|--|--|--|--|
| Time Period | North Leg             | South Leg | West Leg | Overall |  |  |  |  |  |
| 8 hrs       | 0.46%                 | 1.42%     | -0.69%   | 0.40%   |  |  |  |  |  |
| AM Peak     | 0.14%                 | 1.85%     | -4.55%   | -0.85%  |  |  |  |  |  |
| PM Peak     | 0.34%                 | 0.85%     | 0.42%    | 0.54%   |  |  |  |  |  |

| <b>T I I I O F I</b> |                                                 | 0047   |
|----------------------|-------------------------------------------------|--------|
| Table 10: Eagleson   | / Fernbank Historical Background Growth (2010 - | ·2017) |

As shown in Table 10, the Eagleson/Fernbank intersection traffic volumes overall have remained relatively constant over the years. The overall traffic growth rates through the Eagleson/Fernbank intersection are approximately 0.5% to 2%. For the purpose of this study, the subsequent analysis of future conditions will assume 1% annual growth rate to account for area development along Eagleson Road, Fernbank Road and the surrounding area. The resulting future background traffic for the year 2019 (when the site is expected to be fully occupied) and for the horizon year 2024 (5 years after build-out) are depicted in Figures 8 and 9, respectively. For the horizon year 2024, the projected traffic volumes related to the Van Gaal Lands were included as background traffic.

#### Figure 8: Projected 2019 Baseline Traffic Volumes

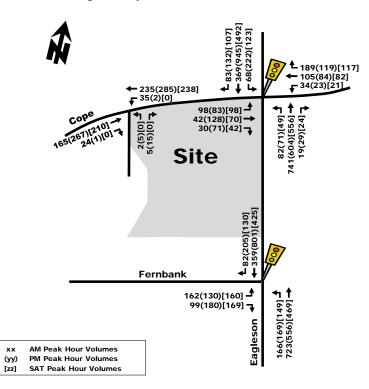
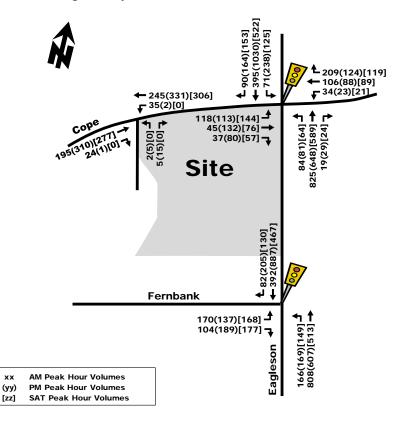




Figure 9: Projected 2024 Baseline Traffic Volumes



#### 3.2.3. OTHER DEVELOPMENTS

Refer to section 2.1.3 Planned Conditions - Other Area Developments.

### 4. STRATEGY REPORT

#### 4.1. DEVELOPMENT DESIGN

#### 4.1.1. DESIGN FOR SUSTAINABLE MODES

#### Vehicle and Bicycle Parking

Vehicle parking is proposed within surface parking lots. The parking space dimensions are noted to be 5.2 to 5.65 m in length and 2.75 m in width, which meets the City's By-Law requirements. Drive aisle widths are noted to be 6.7 to 7.4 m, which meets the City's By-Law requirements.

With regard to bicycle parking, according to the City's By-Law requirements, bicycle parking should be provided at a rate of 1 per 250 m<sup>2</sup>. Bicycle parking should be located in well-lit areas and close to main entrances.

#### Pedestrians and Transit

Sidewalks are provided on-site fronting all buildings and cross-walks/curb bulb-outs are provided crossing drive aisles. Sidewalks are proposed along Eagleson Road fronting the site connecting to on-site sidewalks. A cross-walk and pedestrian pathway is proposed at the southern portion of the site to connect to the newly constructed MUP south of the site, which also provides connection to Eagleson Road and the neighbourhoods to the south and west. A 1.8 m sidewalk is proposed

fronting the site along the existing First Air driveway to connect pedestrians to existing sidewalks along Cope Drive. Existing sidewalks are provided along both sides of Cope Drive, Fernbank Road and Eagleson Road (north of Cope Drive) and along the east side of Eagleson Road (south of Cope Drive). A 3.0 MUP is proposed along the site's Eagleson Road frontage as shown in the Site Plan (Figure 2).

Bus stops for OC Transpo routes within the vicinity of the site are located at the Cope/Akerson intersection, along Eagleson Road in the northbound direction at the Eagleson/Cope intersection and in the north and southbound directions at the signalized Eagleson/Real Canadian Superstore intersection. Walking distance to/from these bus stops ranges from 200m to 550m. Bus pads are proposed along Eagleson Road just south of Cope Drive and along Cope Drive adjacent to the site. These bus pads are shown on the attached Site Plan.

#### 4.1.2. CIRCULATION AND ACCESS

As shown on the proposed Site Plan (Figure 2), trucks will access the site via the full-movement driveway connection to the First Air driveway and sufficient space is provided for trucks to access the grocery store loading bays. To exit the site, trucks can continue around the site, behind Block D, to the proposed signalized full-movement intersection along Eagleson Road. All loading will occur on-site. The truck turning templates are provided as Appendix D.

### 4.2. PARKING

#### 4.2.1. PARKING SUPPLY

#### Vehicle and Bicycle Parking

A total of 246 surface parking spaces are proposed to serve the retail development. This amount of parking exceeds the City's minimum By-Law requirement and there is no maximum amount of parking for this site given its location. Based on the bicycle parking minimum rates, a minimum of 23 bicycle parking spaces should be provided for the retail development.

### 4.3. BOUNDARY STREET DESIGN

#### 4.3.1. EXISTING CONDITIONS

The boundary streets for the development are Eagleson Road and Cope Drive. At this time, there has not been any complete street concepts prepared for Eagleson Road or Cope Drive. The existing roadways' geometries consist of the following features:

#### Eagleson Road:

- 2 vehicle travel lanes in each direction;
- Raised median along the site's frontage;
- 2 m asphalt sidewalk on the east side of the roadway;
- No sidewalk on the west side of the roadway;
- More than 3,000 vehicles per day along Eagleson Road;
- Posted speed limit of 60 km/h, assumed operating speed of 60 to 70 km/h;
- 3.3 3.5 m wide centre lanes and 3.7 m wide curb lanes;
- Designated an Arterial Mainstreet;
- No dedicated cycling facilities adjacent to the site;
- No dedicated transit facilities; and
- No on-street parking.

Cope Drive:

- Single vehicle travel lane in each direction;
- 2 m concrete sidewalk along both sides of the roadway with 2 m boulevard;
- More than 3,000 vehicles per day along Cope Drive;
- Posted speed limit of 40 km/h increasing to 50 km/h, assumed operating speed of 40 to 50 km/h;
- >3.7 m wide travel lanes;
- No dedicated cycling facilities;
- No dedicated transit facilities; and
- No on-street parking.

The multi-modal level of service analysis for the road segments along Eagleson Road and Cope Drive adjacent to the site are summarized in Table 11, with detailed analyses provided in Appendix E.

|                                      | Level of Service  |        |                |        |         |           |               |           |  |  |  |  |
|--------------------------------------|-------------------|--------|----------------|--------|---------|-----------|---------------|-----------|--|--|--|--|
| Road Segment                         | Pedestrian (PLoS) |        | Bicycle (BLoS) |        | Transit | (TLoS)    | Truck (TkLoS) |           |  |  |  |  |
|                                      | PLoS              | Target | BLoS           | Target | TLoS    | Target    | TkLoS         | Target    |  |  |  |  |
| Eagleson Road<br>(west side of road) | F                 | С      | F              | С      | N/A     | No target | А             | D         |  |  |  |  |
| Cope Drive<br>(south side of road)   | С                 | С      | В              | В      | N/A     | No target | В             | No target |  |  |  |  |

Table 11: MMLOS - Existing Eagleson Road and Cope Drive Segments (adjacent to the site)

Given the development's location within a general urban area and along an Arterial Mainstreet (Eagleson Road), the target levels of service for pedestrians is PLoS 'C' and for cyclists BLoS 'C' along Eagleson Road and BLoS 'B' along Cope Drive. There are no transit priority plans for Eagleson Road or Cope Drive identified within the City's Affordable Network in this area and as such there is no TLoS target. As Eagleson Road forms part of the truck route, the truck target level of service is TkLoS 'D' and Cope Drive does not form part of the truck route and as such, there is no truck level of service target. As shown in Table 11 in red text, the pedestrian and cycling level of service targets are not met along Eagleson Road.

With regard to pedestrians, the combination of high traffic volumes and vehicle speeds along Eagleson Road and lack of pedestrian facilities results in a score of PLoS 'F'. With regard to cyclists, there are currently no dedicated cycling facilities along this portion of Eagleson Road. To achieve the target level of service for cyclists along this road segment of BLoS 'C', bicycle lanes would need to be implemented. As part of the road widening EA for Eagleson Road from Cope Drive to Hope Side Road, bike lanes are shown on the drawings for this segment of Eagleson Road, however, bicycle lanes are not currently provided along the widened portion of Eagleson (between Cope and the site's proposed signalized access).

### 4.3.2. PROJECTED CONDITIONS

As shown on the Site Plan (Figure 2), a 3.0 m wide MUP is proposed along the site's Eagleson frontage. There is a planned 1.2 to 2.0 m wide boulevard between the MUP and the side of Eagleson Road. This facility is planned to connect from the Eagleson/Cope intersection to the proposed Eagleson/Site signalized intersection and will accommodate both pedestrians and cyclists in the north and southbound directions. Given this proposed design, the projected pedestrian and cycling levels of service are provided in the following Table 12.

|                                      | Level of Service |           |                |        |  |  |  |  |
|--------------------------------------|------------------|-----------|----------------|--------|--|--|--|--|
| Road Segment                         | Pedestria        | an (PLoS) | Bicycle (BLoS) |        |  |  |  |  |
|                                      | PLoS             | Target    | BLoS           | Target |  |  |  |  |
| Eagleson Road<br>(west side of road) | D                | С         | A              | С      |  |  |  |  |

Table 12: MMLOS - Projected Eagleson Road Segment (adjacent to the site)

As shown in Table 12, the PLoS is increased from PLoS 'F' to PLoS 'D' with the proposed MUP and boulevard. The target PLoS 'C' is not achievable unless the vehicle speeds or volumes are reduced along Eagleson Road. The bicycle level of service target is met and exceeded by providing the proposed MUP along the site's frontage.

### 4.4. ACCESS INTERSECTION DESIGN

### 4.4.1. LOCATION AND DESIGN OF ACCESS

There are three proposed accesses to the subject development; one full-movement driveway to Cope Drive (via the First Air driveway), one right-in/right-out driveway connection to Eagleson Road and one proposed signalized full-movement driveway connection to Eagleson Road. The right-in/right-out access is located approximately 130 m south of the existing Eagleson/Cope intersection and approximately 65 m north of the proposed signalized Eagleson/Site intersection. The site driveway connection to the First Air driveway is located approximately 60 m south of Cope Drive. The proposed signalized full-movement access to Eagleson Road is located approximately 225 m south of the signalized Eagleson/Cope intersection. The location and number of site driveways meets the City's Private Approach By-Law requirements.

At the First Air/Cope intersection, a westbound left-turn lane warrant analysis was performed and a left-turn lane is not warranted at this location. The warrant analysis is included as Appendix G.

Eagleson Road is divided by an existing centre median adjacent to the proposed site. To provide full-movement access to the site, a median break is required and based on operational analysis (SYNCHRO model), signalization is appropriate for the full-movement driveway.

#### 4.4.2. INTERSECTION CONTROL

Signal warrant analysis was performed at the proposed Eagleson/Site intersection and is included as Appendix F. Based on the total projected traffic volumes outlined in Section 4.9, signalization is not warranted at this location. However, the SYNCHRO analysis indicates delays of over one minute (LoS 'F') for vehicle turning left out of the site during the weekday afternoon peak hour if the full-movement access is unsignalized. Given the SYNCHRO analysis, signalization is recommended at this location. As the signal is not warranted, it is our understanding the developer will be responsible for construction and maintenance of the signal through an agreement with the City.

#### **Turn Lane Requirements**

Left-turn storage lane warrant analysis was performed and is included as Appendix G. Based on the projected traffic volumes, a northbound left-turn lane is warranted at this location with a recommended storage length of 35 m.

With regard to an auxiliary southbound right-turn lane, the 'rule-of-thumb' for right-turn lane recommendations is that a right-turn lane is required when there are approximately 60 veh/h or more during the peak hour or if 10% or more of the traffic in the curb lane is turning right. Based on the projected vehicle volumes, an auxiliary southbound right-turn lane is recommended at the right-in/right-out driveway connection to Eagleson Road. An auxiliary southbound right-turn lane is not required at the proposed signalized Eagleson/Site driveway however an eastbound right-turn lane exiting the site is recommended to accommodate truck turning movements out of the site.

The Transportation Association of Canada (TAC) recommended minimum storage length for the southbound right-turn lane at the right-in/right-out driveway is 32 m. There is an existing southbound acceleration lane at the Eagleson/Cope intersection which ends approximately 35 m north of the site driveway. It is recommended that the acceleration lane be removed from the Eagleson/Cope intersection by extending the curb at the intersection. By removing the acceleration lane, the potential weaving movement between eastbound right-turn traffic from Cope and southbound traffic on Eagleson (destined to the site driveway) is eliminated, and the southbound auxiliary right-turn lane serving the site can be accommodated. This is considered the safest configuration, with negligible impact to operations given modest eastbound right-turn volumes of less than 100 veh/h during peak hours (see Figure 10).

The functional drawing (attached as Appendix H) illustrates the proposed configuration of the site driveway and auxiliary turn lanes, resulting storage and taper lengths, as well as existing utility information. Likely need to relocate several catch basins and a valve chamber subject to additional design work.

#### 4.4.3. INTERSECTION DESIGN - MMLOS

The MMLOS analysis for the proposed signalized intersection is outlined in Table 13 and included as Appendix I.

|               |                   | Level of Service |                |        |                |              |       |                                      |               |        |  |  |  |
|---------------|-------------------|------------------|----------------|--------|----------------|--------------|-------|--------------------------------------|---------------|--------|--|--|--|
| Intersection  | Pedestrian (PLoS) |                  | Bicycle (BLoS) |        | Transit (TLoS) |              | Truck | (TkLoS)                              | Vehicle (LoS) |        |  |  |  |
|               | PLoS              | Target           | BLoS           | Target | TLoS           | Target       | TkLoS | Target                               | LoS           | Target |  |  |  |
| Eagleson/Site | D                 | С                | F              | С      | N/A            | No<br>target | С     | Not a truck<br>route<br>intersection | A             | D      |  |  |  |

| Table 13: | MMLOS - | Proposed Eagleson/Site | Intersection |
|-----------|---------|------------------------|--------------|
|-----------|---------|------------------------|--------------|

As shown in Table 13, the pedestrian and bicycle level of service targets are not met for the proposed intersection. Similar to the other study area intersections, the width of Eagleson Road and the long cycle lengths result in low scores for pedestrian level of service. It is noteworthy that PLoS 'D' is the resulting level of service based on the delay score for pedestrians crossing Eagleson Road, the PETSI (Pedestrian Exposure to Traffic at Signalized Intersection) score for all three legs of the intersection results in PLoS 'C', which meets the target.

With regard to cyclists, a bi-directional cross-ride is proposed crossing the west leg of the intersection to connect to the north and southbound MUP. Northbound cyclists along Eagleson Road can use the intersection to turn-left to access this MUP or can dismount their bikes and walk across Eagleson Road at this intersection to access the MUP. The BLoS 'F' score is a result of the south leg having no existing cycling facilities. The north leg of the intersection results in a BLoS 'A' and the west leg experiences a BLoS 'D'.

### 4.5. TRANSPORTATION DEMAND MANAGEMENT

The proposed retail development is located within walking distance to transit stops, sidewalks are provided along all study area roadways and there are cycle lanes along some of the study area roadways. The Transportation Demand Management checklist is provided as Appendix J and highlighted below:

- Sidewalks provided fronting all buildings;
- Pedestrian crosswalks connecting to on-site and off-site pathways;
- Proposed sidewalks along Cope Drive and Eagleson Road frontages;
- Bicycle parking should be provided, however, is not identified on the current Site Plan;
- Buildings located adjacent to streets;
- Safe and direct connections for pedestrians to nearby transit stops;

Given the type of development and its location, the number of TDM strategies are limited for the subject site.

### 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT

Site access is proposed to connect to Eagleson Road and Cope Drive. Eagleson Road is designated an arterial roadway and Cope Drive is designated as a collector roadway. Based on the existing volumes travelling along Cope Drive today (450 to 550 veh/h during the peak hours) and the TIA Guidelines for road classifications, Cope Drive should be designated a major collector today (maximum of 600 veh/h during the peak hours) The projected increase in traffic volumes along Cope Drive travelling to/from the proposed development is estimated to be 35 to 44 two-way veh/h during the weekday afternoon and Saturday peak hours. This increase in traffic results in total two-way vehicle volumes of approximately 480 to 600 two-way veh/h during the peak hours, which reinforces that the roadway should ideally be designated as a major collector.

### 4.7. TRANSIT

Transit service within the vicinity of the site is provided by OC Transpo Routes #161, 164 and 256. Bus stops for all three Routes are provided at the Cope/Akerson intersection approximately 200 to 400 m walking distance from the subject site. Bus stops are also located along Eagleson Road in the northbound direction north of the Eagleson/Cope intersection and in the north and southbound directions at the signalized Eagleson/Real Canadian Superstore intersection approximately 250 m north of the Eagleson/Cope intersection.

New bus pads are proposed along Eagleson Road and Cope Drive adjacent to the site as shown on the attached Site Plan.

As shown in Section 2.1.2, the existing bus routes within the vicinity of the site have significant spare capacity. The total number of transit trips projected to travel to/from the proposed development within the peak hours is approximately 85 to 100 persons per hour during the peak hours. This amount of transit trips can be accommodated on the existing network.

### 4.8. REVIEW OF NETWORK CONCEPT

Exempt – See Section 2.3.

### 4.9. INTERSECTION DESIGN

#### 4.9.1. EXISTING CONDITIONS

The following Table 14 provides a summary of the existing traffic operations at the study area intersections based on the SYNCHRO (V9) traffic analysis software and the existing traffic volumes (Figure 4). The subject signalized intersections were assessed in terms of the volume-to-capacity (v/c) ratio and the corresponding Level of Service (LoS) for the critical movement(s). The subject signalized intersections 'as a whole' were assessed based on weighted v/c ratio. The SYNCHRO model output of existing conditions is provided within Appendix K.

|                                       |               | Weekday AM Peak (PM Peak) [Saturday] |                         |                 |             |        |  |  |  |  |  |
|---------------------------------------|---------------|--------------------------------------|-------------------------|-----------------|-------------|--------|--|--|--|--|--|
| Intersection                          | -             | Critical Moveme                      | nt                      | Interse         | ction 'as a | whole' |  |  |  |  |  |
|                                       | LoS           | max. v/c or avg.<br>delay (s)        | Movement                | Delay (s)       | LoS         | v/c    |  |  |  |  |  |
|                                       | А             | 0.58                                 | NBT                     | 12.1            | А           | 0.57   |  |  |  |  |  |
| Eagleson/Fernbank                     | (B)           | (0.70)                               | (SBT)                   | (12.3)          | (B)         | (0.64) |  |  |  |  |  |
| <u> </u>                              | [A]           | [0.46]                               | [EBL]                   | [8.8]           | [A]         | [0.42] |  |  |  |  |  |
|                                       | A             | 0.59                                 | EBL                     | 14.3            | A           | 0.36   |  |  |  |  |  |
| Eagleson/Cope/Cadence                 | (C)           | (0.77)                               | (EBL)                   | (18.1)          | (A)         | (0.48) |  |  |  |  |  |
| <u> </u>                              | [B]           | [0.65]                               | [EBL]                   | [14.7]          | [A]         | [0.38] |  |  |  |  |  |
|                                       | B             | 10.1                                 | NBL                     | 0.8             |             |        |  |  |  |  |  |
| Cope/First Air Driveway               | (B)           | (10.6)                               | (NBL)                   | (0.4)           | -           | -      |  |  |  |  |  |
| Note: Analysis of signalized intersed | ctions assume | es a PHF of 0.95 and a sa            | turation flow rate of 1 | 800 veh/h/lane. |             |        |  |  |  |  |  |

 Table 14: Existing Intersection Performance

As shown in Table 14, the study area intersections 'as a whole' are currently operating at an acceptable LoS 'B' or better during the weekday morning, afternoon and Saturday peak hours. The critical movements at study area intersections are also operating at an acceptable LoS 'C' or better during the peak hours.

Queues along Eagleson Road at Fernbank Road range between 50 to 100 m in the northbound direction during the morning peak hour and 135 to 220 m in the southbound direction during the afternoon peak hour. During the Saturday peak hour queues range between 20 to 55 m in both directions. Queues along Eagleson Road at Cope Drive range between 25 to 90 m in both directions during the morning, afternoon, and Saturday peak hours.

### Multi-Modal Level of Service – Existing Conditions

The MMLoS analysis for the two signalized intersections within the vicinity of the proposed site, Eagleson/Cope and Eagleson/Fernbank, is summarized in Table 15. The existing detailed MMLoS analysis is provided as Appendix K.

|                   | Level of Service     |        |                |        |                |              |               |        |               |        |  |
|-------------------|----------------------|--------|----------------|--------|----------------|--------------|---------------|--------|---------------|--------|--|
| Intersection      | Pedestrian<br>(PLoS) |        | Bicycle (BLoS) |        | Transit (TLoS) |              | Truck (TkLoS) |        | Vehicle (LoS) |        |  |
|                   | PLoS                 | Target | BLoS           | Target | TkLoS          | TkLoS        | TkLoS         | Target | LoS           | Target |  |
| Eagleson/Cope     | F                    | С      | F              | С      | F              | No<br>target | С             | D      | С             | D      |  |
| Eagleson/Fernbank | Е                    | С      | F              | С      | F              | No<br>target | С             | D      | В             | D      |  |

Table 15: MMLOS – Signalized Study Area Intersections

The letters identified in red text in Table 15 do not meet the MMLoS targets for their designated area (Arterial Main Street). Within the study area there are no plans for transit priority measures identified in the TMP, as such, there is no target TLoS for these intersections. At both intersections, the pedestrian and bicycle target levels of service are not met. The following discussion regarding these modes is provided:

- Eagleson/Cope:
  - Pedestrian High pedestrian level of service is difficult to achieve (PLoS 'A' is impossible to achieve) at signalized intersections. At the Eagleson/Cope intersection, pedestrians cross 6 to 7 lanes of traffic across Eagleson Road. Without significant geometric and signal timing changes to this intersection, the pedestrian level of service cannot be improved, and as such, no mitigative measures to improve the PLoS at this intersection are recommended.

- Based on the PETSI scoring system and the delay scoring system, the PLoS will remain 'F' at intersection even with the implementation of fully-protected left-turn lanes, no-right-turn-on-red restrictions, smart channelized right-turn lanes and tighter corner radii. The PLoS could be improved if the number of lanes on Eagleson was reduced.
- Bicycles Pocket bike lanes are provided along the north leg of the intersection only. Given the high speeds and multiple travel lanes along Eagleson Road, there are limited opportunities to improve the bicycle level of service at this location. The December 2017 traffic count data shows a total of 2 cyclists travelling through this intersection during the 8-hour count (0 cyclists in 8-hours in the August 2012 count). As shown on the Site Plan, a cross-ride is proposed crossing the eastbound channelized right-turn lane to connect to the proposed MUP.
  - To improve cycling level of service at this intersection, left-turn bike boxes or two-stage left-turn facility could be implemented as well as cycle lanes or cycle tracks along all four approaches.
  - The proponent is proposing to construct the cross-ride along the right-turn channel and the MUP along the south leg only.
- Eagleson/Fernbank:
  - At the Eagleson/Fernbank intersection, the Pedestrian Exposure to Traffic at Signalized Intersections (PETSI) score is PLoS 'C', which meets the City's target level of service. The delay score for pedestrians crossing Eagleson Road is PLoS 'E', which governs the overall intersection score. To improve the delay score, signal timing would have to be adjusted to provide more time to Fernbank Road. This is not recommended as it will increase delays and queues for vehicles (including trucks and buses) along Eagleson Road and the pedestrian demand crossing Eagleson Road at Fernbank is low (1 to 3 peds per hour).
  - Bicycles Pocket bike lanes are provided along the north and west legs of the intersection only. Given the high speeds and multiple travel lanes along Eagleson Road, there are limited opportunities to improve the bicycle level of service at this location. The April 2017 traffic count data shows a total of 6 cyclists travelling through this intersection during the 8-hour count (4 cyclists in 8-hours in the June 2014 count).

#### 4.9.2. TOTAL PROJECTED 2019 CONDITIONS - FULL-SITE BUILD OUT

The total projected 2019 traffic volumes were derived by superimposing the site-generated traffic volumes (Figures 6 and 7) onto projected 2019 background traffic volumes (Figure 8). The resulting total projected 2019 traffic volumes are illustrated in Figure 10.

The following Table 16 provides a summary of the total projected 2019 operations at the study area intersection based on the SYNCHRO (V10) traffic analysis software. The SYNCHRO model output of total projected conditions is provided within Appendix L.

| Critical             | Movement                                                                                           | •                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                      |                                                                                                    | ι                                                                                                                     | Intersection 'as a whole'                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| max. v/<br>avg. dela |                                                                                                    | Movement                                                                                                              | Delay (s)                                                                                                                                                                                                                   | LoS                                                                                                                                                                                                                                                                            | v/c                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0.72[0.              | .48]                                                                                               | SBT[EBL]                                                                                                              | 12.3[9.0]                                                                                                                                                                                                                   | B[A]                                                                                                                                                                                                                                                                           | 0.66[0.44]                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.85[0.              | .72]                                                                                               | EBL[EBL]                                                                                                              | 19.9[15.8]                                                                                                                                                                                                                  | A[A]                                                                                                                                                                                                                                                                           | 0.51[0.43]                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.48[0.              | .45]                                                                                               | NBT[NBT]                                                                                                              | 5.1[6.7]                                                                                                                                                                                                                    | A[A]                                                                                                                                                                                                                                                                           | 0.47[0.43]                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 9.6[9.               | .2]                                                                                                | EBR[EBR]                                                                                                              | 0.1[0.2]                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 13.6[1               | 2.5]                                                                                               | NBL[NBL]                                                                                                              | 1.4[1.4]                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ]                    | avg. dela           0.72[0.           0.85[0.           0.48[0.           9.6[9.           13.6[1. | avg. delay (s)           0.72[0.48]           0.85[0.72]           0.48[0.45]           9.6[9.2]           13.6[12.5] | avg. delay (s)         Movement           0.72[0.48]         SBT[EBL]           0.85[0.72]         EBL[EBL]           0.48[0.45]         NBT[NBT]           9.6[9.2]         EBR[EBR]           13.6[12.5]         NBL[NBL] | avg. delay (s)         Movement         Delay (s)           0.72[0.48]         SBT[EBL]         12.3[9.0]           0.85[0.72]         EBL[EBL]         19.9[15.8]           0.48[0.45]         NBT[NBT]         5.1[6.7]           9.6[9.2]         EBR[EBR]         0.1[0.2] | avg. delay (s)         Movement         Delay (s)         Los           0.72[0.48]         SBT[EBL]         12.3[9.0]         B[A]           0.85[0.72]         EBL[EBL]         19.9[15.8]         A[A]           0.48[0.45]         NBT[NBT]         5.1[6.7]         A[A]           9.6[9.2]         EBR[EBR]         0.1[0.2]         -           13.6[12.5]         NBL[NBL]         1.4[1.4]         - |  |

Table 16: Total Projected 2019 Performance at Study Area Intersections

Similar to the existing conditions, the study area intersections 'as a whole' are project to operate at acceptable levels of service of LoS 'B' or better during the weekday afternoon and Saturday peak hours. The critical movements are also

projected to operate acceptably at LoS 'D' or better. Projected queues at study area intersections are summarized in Table 17.

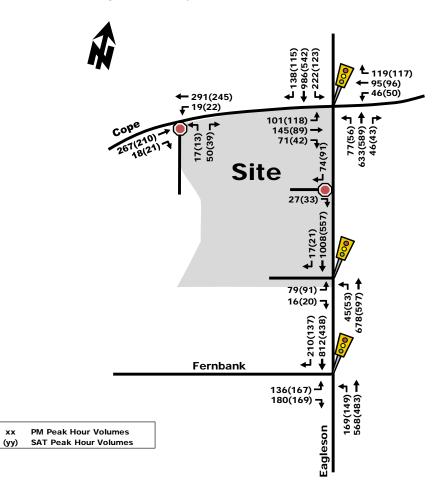



Figure 10: Total Projected 2019 Traffic Volumes

Table 17: Projected 2019 Queues at Study Area Intersections

|                                                                                                                               | Northbound                              |                  | Southb | ound  | Eastbound                               | Left-Turn        | Westbound                               |                  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|--------|-------|-----------------------------------------|------------------|-----------------------------------------|------------------|--|
| Intersection                                                                                                                  | 95 <sup>th</sup><br>Percentile<br>Queue | Average<br>Queue |        |       | 95 <sup>th</sup><br>Percentile<br>Queue | Average<br>Queue | 95 <sup>th</sup><br>Percentile<br>Queue | Average<br>Queue |  |
| Eagleson/Cope                                                                                                                 | 105 m                                   | 60 m             | 45 m   | 30 m  | #45 m                                   | 25 m             | 55 m                                    | 35 m             |  |
| Eagleson/Site                                                                                                                 | 90 m                                    | 30 m             | 10 m   | 5 m   | 30 m                                    | 20 m             | -                                       | -                |  |
| Eagleson/Fernbank                                                                                                             | 65 m                                    | 35 m             | 240 m  | 140 m | 50 m                                    | 30 m             | -                                       | -                |  |
| Note: # symbol indicates the queue is operating above capacity and queues may not clear intersection during one signal cycle. |                                         |                  |        |       |                                         |                  |                                         |                  |  |

As shown in Table 16, the projected average queues at the Eagleson/Cope and Eagleson/Site intersections range between 5m to 60m and 95<sup>th</sup> percentile queues range from 45m to 100m. At the Eagleson/Fernbank intersection, the southbound queues are projected to be approximately 140m on average during the afternoon peak hour and on occasion may extend back to the proposed development's signalized access, located approximately 240m away. When Eagleson Road is widened at this location, this queue is expected to be shorter.

The eastbound left-turn queue at the Eagleson/Cope intersection occasionally may not clear the intersection during one signal cycle. The 95<sup>th</sup> percentile queue is projected to extend approximately 50 to 60 m back from the intersection. This queue is not expected to block the site driveway (located approximately 120 m from the signal).

According to the SYNCHRO analysis, drivers turning left into the First Air/site driveway experience minimal delays (less than 1 second) on Cope Drive. In addition, Cope Drive at the site driveway is wide (approximately 14 m) and westbound through vehicles would likely have space to pass westbound left-turn vehicles to avoid delay. As such, queues along Cope Drive at the site driveway are not expected to be problematic.

With regard to the signalized site driveway, according to SYNCHRO analysis, if this driveway was unsignalized, the delays for vehicles turning left-out of the site would be over 1 minute (LoS 'F') during the afternoon peak hour. Based on the projected site driveway performance, signalization of the Eagleson/Site intersection is recommended. As mentioned in section 4.4.2, signalization at this location is not warranted based on projected traffic volumes generated by the proposed Site Plan, but is recommended based on the SYNCHRO results. The signalized intersection is projected to operate overall at an acceptable LoS 'A' during the afternoon and Saturday peak hours.

Previous transportation analysis for the proposed site access to Eagleson Road was completed in 2016 and is summarized in a Technical Memorandum, attached as Appendix M. The Tech Memo assessed the appropriate location and traffic control for the proposed driveway and it was determined that if the access was to be signalized, the appropriate location is at the southern boundary of the site. This is consistent with the proposed Site Plan (Figure 2).

### Multi-Modal Level of Service – Projected Conditions

Given there are no significant proposed geometric changes to the Eagleson/Cope or Eagleson/Fernbank intersections for the 2019 conditions, the multi-model level of service for these intersections remains the same as existing conditions, outlined in Table 15.

#### 4.9.3. TOTAL PROJECTED 2024 CONDITIONS - 5-YEARS BEYOND SITE BUILD-OUT

The total projected 2024 traffic volumes were derived by superimposing the site-generated traffic volumes (Figures 6 and 7) onto projected 2024 background traffic volumes (Figure 9), which include the Van Gaal Lands traffic projections. The resulting total projected 2024 traffic volumes are illustrated in Figure 11.

The following Table 18 provides a summary of the total projected 2024 operations at the study area intersection based on the SYNCHRO (V9) traffic analysis software. Given the widening of Eagleson Road is a Phase 2 City Project, it is expected to be completed by 2022. As such, the total projected 2024 conditions assumed a four-lane cross-section along Eagleson Road throughout the entire study area. The SYNCHRO model outputs of total projected 2024 conditions is provided within Appendix N.

|                                                                                                                 | Weekday PM Peak [SAT Peak] |                               |          |                           |      |            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|----------|---------------------------|------|------------|--|--|--|
| Intersection                                                                                                    |                            | Critical Movem                | ent      | Intersection 'as a whole' |      |            |  |  |  |
|                                                                                                                 | LoS                        | max. v/c or<br>avg. delay (s) | Movement | Delay (s)                 | LoS  | v/c        |  |  |  |
| Eagleson/Fernbank                                                                                               | A[A]                       | 0.60[0.50]                    | EBL[EBL] | 7.7[8.0]                  | A[A] | 0.44[0.29] |  |  |  |
| Eagleson/Cope/Cadence                                                                                           | D[D]                       | 0.88[0.84]                    | EBL[EBL] | 21.5[18.8]                | A[A] | 0.57[0.48] |  |  |  |
| Eagleson/Site (signalized)                                                                                      | A[A]                       | 0.41[0.33]                    | SBT[EBL] | 4.3[6.0]                  | A[A] | 0.40[0.27] |  |  |  |
| Eagleson/Site (unsignalized)                                                                                    | A[A]                       | 9.4[9.3]                      | EBR[EBR] | 0.1[0.2]                  | -    | -          |  |  |  |
| Cope/First Air Driveway                                                                                         | B[B]                       | 14.9[14.1]                    | NBL[NBL] | 1.3[1.2]                  | -    | -          |  |  |  |
| Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane. |                            |                               |          |                           |      |            |  |  |  |

#### Table 18: Total Projected 2024 Performance at Study Area Intersections

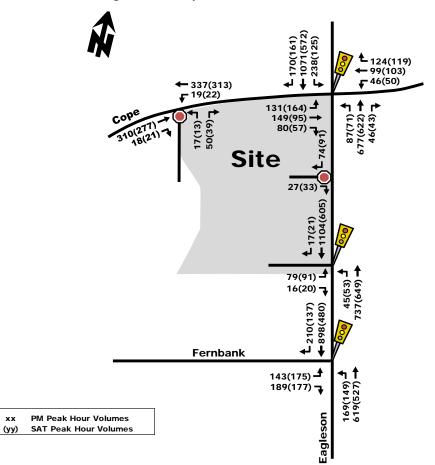



Figure 11: Total Projected 2024 Traffic Volumes

As shown in Table 18, all study area intersections are projected to operate acceptably during the weekday afternoon and Saturday peak hours. The queues along Eagleson Road are not projected to spill back into adjacent intersections.

### Multi-Modal Level of Service – Projected Conditions

хx

The MMLOS analysis for the Eagleson/Fernbank intersection assuming the widened four-lane cross-section is provided in Table 19. The analysis was completed using the Environmental Assessment drawing, included as Appendix N.

|                   | Level of Service     |        |                |        |                |              |               |        |               |        |  |  |
|-------------------|----------------------|--------|----------------|--------|----------------|--------------|---------------|--------|---------------|--------|--|--|
| Intersection      | Pedestrian<br>(PLoS) |        | Bicycle (BLoS) |        | Transit (TLoS) |              | Truck (TkLoS) |        | Vehicle (LoS) |        |  |  |
|                   | PLoS                 | Target | BLoS           | Target | TkLoS          | TkLoS        | TkLoS         | Target | LoS           | Target |  |  |
| Eagleson/Fernbank | Е                    | С      | F              | С      | D              | No<br>target | С             | D      | А             | D      |  |  |

Table 19: MMLOS - Widened Fernbank/Eagleson Intersection

As shown, the multi-modal levels of service for the widened Fernbank/Eagleson intersection are similar to the existing levels of service.

### 5. CONCLUSIONS

Based on the results summarized herein, the following transportation related conclusions are offered for each travel mode:

#### **Pedestrians**

- The transportation network surrounding the site includes sidewalks along both sides of Cope Drive and along the east side of Eagleson Road. As part of the proposed development, a MUP is planned along the west side of Eagleson Road, fronting the site;
- The existing MMLoS analysis at the signalized Eagleson/Cope and Eagleson/Fernbank intersections indicates that the pedestrian level of service at both intersections does not meeting the City's target level of service for the area. Given the wide crossings and long cycle lengths at study area intersections, the only mitigative measures that would improve the level of service for pedestrians is to reduce the number of lanes the pedestrians cross;
- The proposed signalized Eagleson/Site intersection does not meet the City's level of service targets for pedestrians, however it is close at PLoS 'D' (target is PLoS 'C'). Similar to the other study area intersections, the long cycle lengths and wide cross section results in lower scores for pedestrian level of service. It is noteworthy that all three legs of the proposed intersection meet the PETSI target PLoS 'C' and the delay score achieves the governing PLoS 'D';
- Eagleson Road, adjacent to the site, does not currently meet the target multi-modal levels of service for pedestrians. Cope Drive, adjacent to the site, does meet the target PLoS;
- The planned MUP and boulevard proposed adjacent to the site along Eagleson Road will improve the pedestrian level of service from PLoS 'F' to PLoS 'D';
- On-site crosswalks are provided at key intersections and sidewalks are provided throughout the site. A cross-walk connecting to the MUP south of the site is also provided as well as sidewalks to the study area roadways;

#### **Cycling**

- Bicycle lanes exist along Fernbank Road and along parts of Eagleson Road. A multi-use pathway (MUP) is provided south of the site;
- Eagleson Road is identified as a Spine Cycling Route, and as part of the road widening EA, cycle lanes were planned along both sides of the roadway, however there are currently no cycle lanes adjacent to the site;
- The existing MMLoS analysis at the signalized Eagleson/Cope and Eagleson/Fernbank intersections indicates that the cycling level of service at both intersections does not meeting the City's target level of service for the area;
- The proposed signalized Eagleson/Site intersection does not meet the City's level of service targets for cyclist, however, a bi-directional cross-ride is proposed crossing the west leg of the intersection to connect to the north and southbound MUP;
- At the Eagleson/Cope intersection, a cross-ride is proposed crossing the eastbound right-turn lane channel to connect to the proposed MUP;
- The proposed MUP along Eagleson Road, adjacent to the site, provides a north/south bi-directional cycling facility which meets the BLoS target for cycling. The target cycling level of service for Cope Drive is currently met;
- Bicycle parking is required and should be planned to meet the City's By-Law requirements;

#### <u>Transit</u>

- There are two new planned bus pads located adjacent to the site along Eagleson Road and along Cope Drive;
- There are no plans to provide transit priority along Eagleson Road in the City's Affordable Network, and as such, there are no transit level of service targets;

Vehicles

- The existing study area intersections are all currently operating at acceptable levels of service of LoS 'D' or better;
- The net increase in vehicle demand generated by the proposed development is approximately 230 and 275 veh/h during the weekday afternoon and Saturday peak hours, respectively;
- Based on the development within the area and historic traffic counts, a 1% per annum growth rate was applied to existing traffic volumes for the horizon years. In addition, the site-generated traffic volumes associated with the Van Gaal Lands were added to the existing traffic volumes for Horizon year 2024;
- Based on the forecasted traffic volumes for Horizon year 2019 and Horizon year 2024, the study area intersections are projected to operate with acceptable levels of service during the weekday afternoon and Saturday peak hours;

#### <u>Site Plan</u>

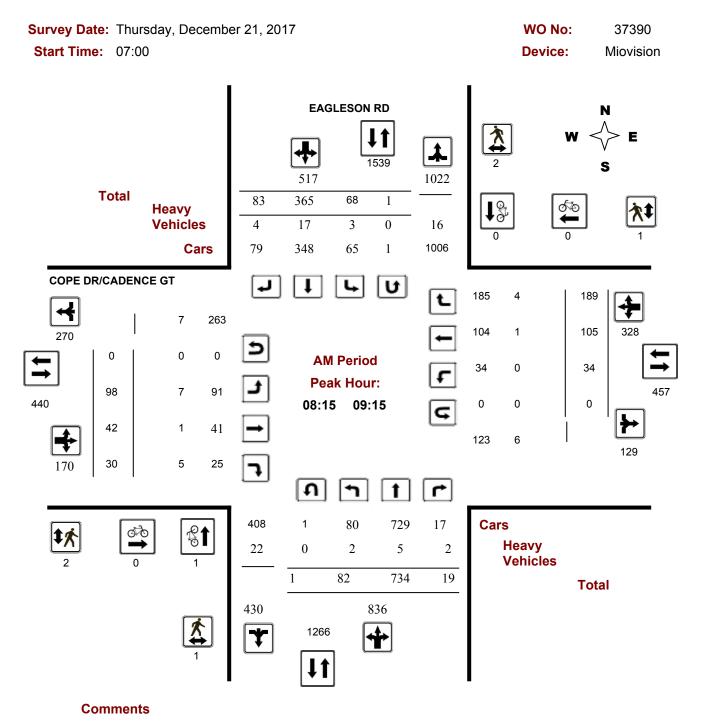
- Vehicle access is proposed via a signalized full-movement access to Eagleson Road, a right-in/right-out connection to Eagleson Road, and a full-movement connection to Cope Drive (via the First Air driveway);
  - An auxiliary southbound right-turn lane is recommended at the right-in/right-out connection to Eagleson Road;
  - There is an existing southbound acceleration lane at the Eagleson/Cope intersection which ends approximately 35 m north of the site driveway. It is recommended that the acceleration lane be removed from the Eagleson/Cope intersection by extending the curb at the intersection. By removing the acceleration lane, a potential weaving situation can be avoided and the southbound right-turn lane at the right-in/right-out access can be accommodated;
  - o A 35 m northbound left-turn lane is warranted at the proposed Eagleson/Site access intersection;
  - The proposed full-movement driveway connection to Eagleson Road is located approximately 270 m south of the Eagleson/Cope intersection. Signalization is not warranted based on the total projected traffic volumes, but is appropriate based on the SYNCHRO analysis. As the signal is not warranted, the cost of construction and maintenance of the signalized intersection is understood to be the responsibility of the proponent (until such time the signal is warranted);
- A total of 246 surface parking spaces are proposed to serve the retail development. This amount of parking exceeds the City's minimum By-Law requirement and there is no maximum amount of parking for this site given its location. Based on the bicycle parking minimum rates, a minimum of 23 bicycle parking spaces should be provided for the retail development;
- An Roadway Modification Application will be required for the Site Plan Application. A functional drawing of the proposed signalized intersection and auxiliary turn lanes at site accesses is provided as Appendix I; and
- No monitoring plan is required.

Based on the foregoing, the proposed development is recommended from a transportation perspective.

Prepared By:

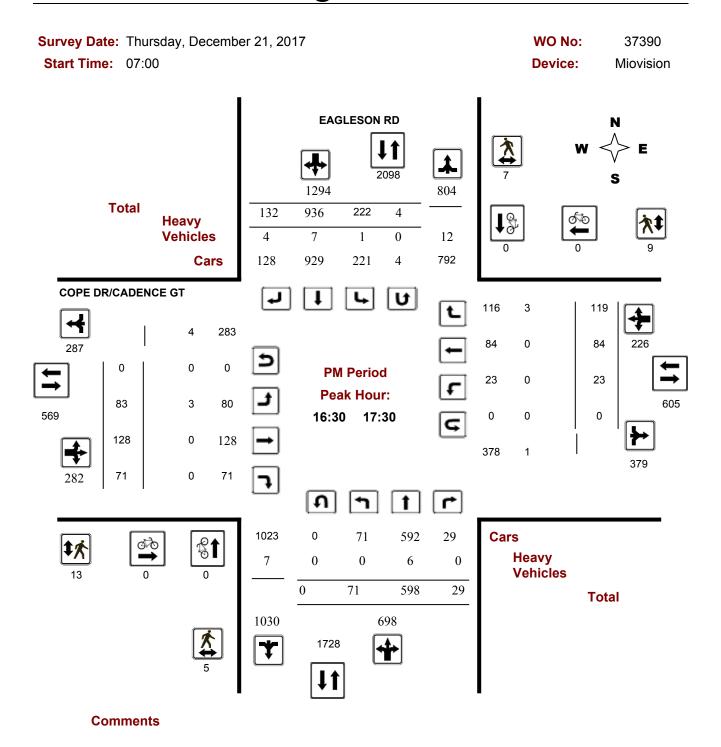
André Sponder, P.Eng. Transportation Engineer

Reviewed By:


Mark Baker, P(Eng. Senior Transportation Project Manager

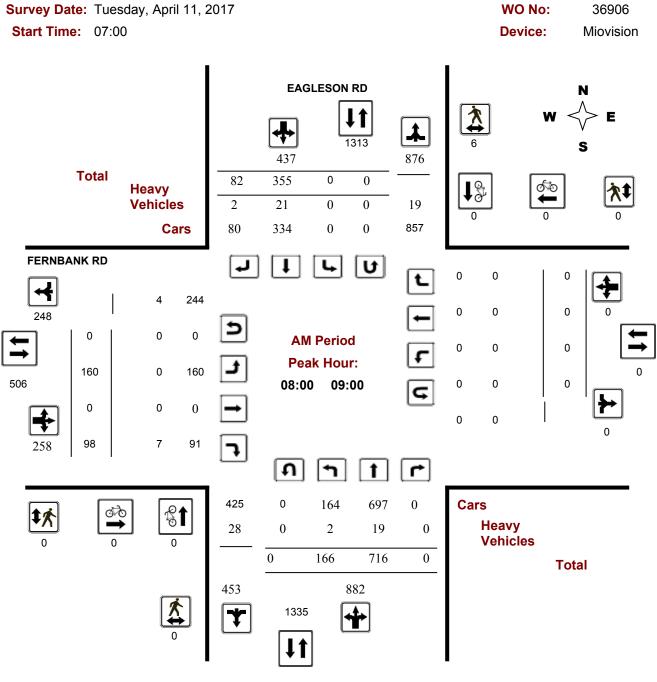







Turning Movement Count - Full Study Peak Hour Diagram EAGLESON RD @ COPE DR/CADENCE GT

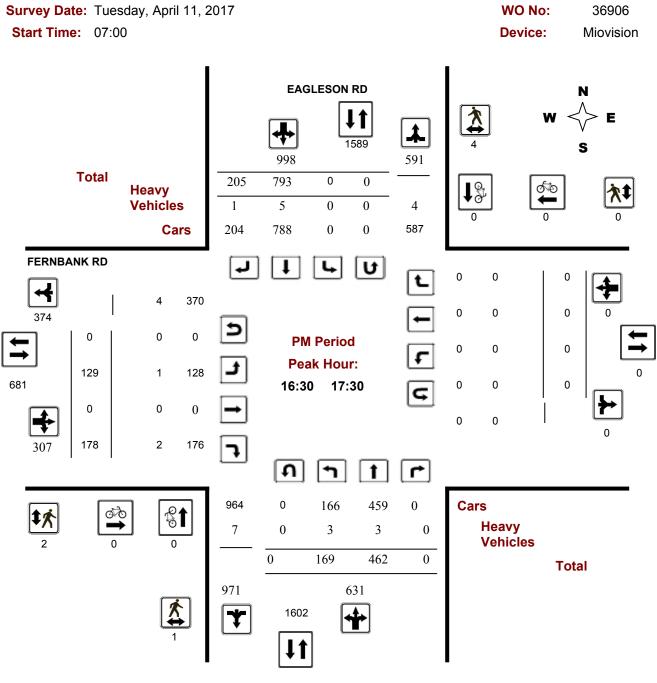





Turning Movement Count - Full Study Peak Hour Diagram EAGLESON RD @ COPE DR/CADENCE GT






Turning Movement Count - Full Study Peak Hour Diagram EAGLESON RD @ FERNBANK RD



Comments



Turning Movement Count - Full Study Peak Hour Diagram EAGLESON RD @ FERNBANK RD



Comments



#### Total Area

| Classification of<br>Accident | Rear End  | Turning<br>Movement | Sideswipe | Angle     | Approaching | Single Vehicle<br>(other) | Single vehicle<br>(Unattended<br>vehicle) | Other    | Total | ŗ    |
|-------------------------------|-----------|---------------------|-----------|-----------|-------------|---------------------------|-------------------------------------------|----------|-------|------|
| P.D. only                     | 15        | 3                   | 3         | 7         | 0           | 5                         | 0                                         | 1        | 34    | 69%  |
| Non-fatal injury              | 2         | 7                   | 0         | 5         | 0           | 0                         | 0                                         | 0        | 14    | 29%  |
| Fatal injury                  | 0         | 1                   | 0         | 0         | 0           | 0                         | 0                                         | 0        | 1     | 2%   |
| Non reportable                | 0         | 0                   | 0         | 0         | 0           | 0                         | 0                                         | 0        | 0     | 0%   |
| Total                         | 17        | 11                  | 3         | 12        | 0           | 5                         | 0                                         | 1        | 49    | 100% |
|                               | #1 or 35% | #3 or 22%           | #5 or 6%  | #2 or 24% | #7 or 0%    | #4 or 10%                 | #7 or 0%                                  | #6 or 2% |       |      |

CADENCE GT/COPE DR

| Years     | Total #<br>Collisions | 24 Hr AADT<br>Veh Volume | Days | Collisions/MEV |
|-----------|-----------------------|--------------------------|------|----------------|
| 2013-2013 | 22                    | 27,095                   | 1825 | 0.44           |

| Classification of<br>Accident | Rear End | Turning<br>Movement | Sideswipe | Angle | Approaching | Single Vehicle<br>(other) | Single vehicle<br>(Unattended<br>vehicle) | Other | Total |      |
|-------------------------------|----------|---------------------|-----------|-------|-------------|---------------------------|-------------------------------------------|-------|-------|------|
| P.D. only                     | 3        | 2                   | 2         | 4     | 0           | 2                         | 0                                         | 1     | 14    | 64%  |
| Non-fatal injury              | 0        | 4                   | 0         | 4     | 0           | 0                         | 0                                         | 0     | 8     | 36%  |
| Non reportable                | 0        | 0                   | 0         | 0     | 0           | 0                         | 0                                         | 0     | 0     | 0%   |
| Total                         | 3        | 6                   | 2         | 8     | 0           | 2                         | 0                                         | 1     | 22    | 100% |
|                               | 14%      | 27%                 | 9%        | 36%   | 0%          | 9%                        | 0%                                        | 5%    |       | -    |

#### EAGLESON RD/FERNBANK

| Years     | Total #<br>Collisions | 24 Hr AADT<br>Veh Volume | Days | Collisions/MEV |
|-----------|-----------------------|--------------------------|------|----------------|
| 2013-2013 | 23                    | 18,695                   | 1825 | 0.67           |

| Classification of<br>Accident | Rear End | Turning<br>Movement | Sideswipe | Angle | Approaching | Single Vehicle<br>(other) | Single vehicle<br>(Unattended<br>vehicle) | Other | Total |      |
|-------------------------------|----------|---------------------|-----------|-------|-------------|---------------------------|-------------------------------------------|-------|-------|------|
| P.D. only                     | 11       | 1                   | 0         | 3     | 0           | 3                         | 0                                         | 0     | 18    | 78%  |
| Non-fatal injury              | 1        | 3                   | 0         | 1     | 0           | 0                         | 0                                         | 0     | 5     | 22%  |
| Non reportable                | 0        | 0                   | 0         | 0     | 0           | 0                         | 0                                         | 0     | 0     | 0%   |
| Total                         | 12       | 4                   | 0         | 4     | 0           | 3                         | 0                                         | 0     | 23    | 100% |
|                               | 52%      | 17%                 | 0%        | 17%   | 0%          | 13%                       | 0%                                        | 0%    |       |      |

## **Collision Main Detail Summary**

OnTRAC Reporting System

### CADENCE GT & COPE DR

| Former Municip | pality: Kanata |          | Traffic     | Control: Traffic | signal    |                      | Numb              | er of Collisions: 10                   | )                                                                 |                                                                   |            |
|----------------|----------------|----------|-------------|------------------|-----------|----------------------|-------------------|----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------|
|                | DATE DAY       | TIME I   | ENV LIGH    | IMPACT<br>T TYPE | CLASS     | DIR                  | SURFACE<br>COND'N | VEHICLE<br>MANOEUVRE                   | VEHICLE TYPE                                                      | FIRST EVENT                                                       | No.<br>PED |
| 1              | 2012-01-18 We  | 07:35 C  | ilear Dawn  | Other            | P.D. only | V1 E<br>V2 W         | lce<br>lce        | Reversing<br>Turning left              | Snow plow<br>Automobile, station                                  | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 2              | 2012-06-01 Fri | 21:17 R  | ain Dark    | Angle            | P.D. only | V1 N<br>V2 E         | Wet<br>Wet        | Going ahead<br>Going ahead             | Automobile, station<br>Automobile, station                        | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 3              | 2012-06-08 Fri | 21:12 C  | ilear Dusk  | Turning          | P.D. only | V1 S<br>V2 N         | Dry<br>Dry        | Turning left<br>Going ahead            | Automobile, station<br>Pick-up truck                              | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 4              | 2012-10-14 Sun | 18:30 C  | lear Dark   | Rear end         | P.D. only | V1 N<br>V2 N<br>V3 N | Wet<br>Wet<br>Wet | Slowing or<br>Slowing or<br>Slowing or | Automobile, station<br>Automobile, station<br>Automobile, station | Other motor vehicle<br>Other motor vehicle<br>Other motor vehicle | 0          |
| 5              | 2012-12-10 Mo  | 06:24 F  | reezin Dark | Angle            | P.D. only | V1 S<br>V2 W         | lce<br>Slush      | Slowing or<br>Going ahead              | Pick-up truck<br>Pick-up truck                                    | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 6              | 2013-05-12 Sun | 16:45 R  | ain Daylig  | ht Angle         | P.D. only | V1 E<br>V2 S         | Wet<br>Wet        | Turning right<br>Unknown               | Automobile, station<br>Automobile, station                        | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 7              | 2013-08-07 We  | 17:00 R  | ain Dayli   | ht Rear end      | P.D. only | V1 S<br>V2 S         | Wet<br>Wet        | Going ahead<br>Going ahead             | Passenger van<br>Pick-up truck                                    | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 8              | 2013-09-06 Fri | 03:35 C  | lear Dark   | Single vehicle   | P.D. only | -                    | Dry               | Turning right                          | Automobile, station                                               | Ran off road                                                      | 0          |
| 9              | 2013-09-22 Sun | 19:03 C  | lear Daylig | ht Angle         | Non-fatal | V1 S<br>V2 W         | Dry<br>Dry        | Going ahead<br>Going ahead             | Automobile, station<br>Passenger van                              | Other motor vehicle<br>Other motor vehicle                        | 0          |
| 10             | 2013-10-11 Fri | 01:06 C  | lear Dark   | Single vehicle   | P.D. only | V1 S                 | Dry               | Turning left                           | Automobile, station                                               | Curb                                                              | 0          |
|                | RD, CADENCE C  | GT to FE |             |                  |           |                      |                   |                                        |                                                                   |                                                                   |            |
| Former Munici  | pality: Kanata |          | Traffic     | Control: No cor  | trol      |                      |                   | er of Collisions: 3                    |                                                                   |                                                                   |            |
|                | DATE DAY       | TIME I   | ENV LIGH    | IMPACT<br>T TYPE | CLASS     | DIR                  | SURFACE<br>COND'N | VEHICLE<br>MANOEUVRE                   | VEHICLE TYPE                                                      | FIRST EVENT                                                       | No.<br>PED |

(Note: Time of Day = "00:00" represents unknown collision time **Tuesday, March 13, 2018** 

Page 1 of 3

## **Collision Main Detail Summary**

OnTRAC Reporting System

#### FROM: 2012-01-01 TO: 2014-01-01

|                | 1 0            | -       |          |            |                   |            |              |            |                               |                                            |                                            |     |
|----------------|----------------|---------|----------|------------|-------------------|------------|--------------|------------|-------------------------------|--------------------------------------------|--------------------------------------------|-----|
| 11             | 2012-06-18 Mo  | 16:20   | Clear    | Daylight   | Rear end          | P.D. only  | V1 S<br>V2 S | Dry<br>Dry | Going ahead<br>Stopped        | Automobile, station<br>Automobile, station | Other motor vehicle<br>Other motor vehicle | 0   |
|                |                |         |          |            |                   |            | V2 S<br>V3 S | •          | Stopped                       | Passenger van                              | Other motor vehicle                        |     |
| 12             | 2012-09-14 Fri | 16.25   | Doin     | Doulight   | Rear end          | Non-fatal  |              | Dry<br>Wet | Going ahead                   | Automobile, station                        | Other motor vehicle                        | 0   |
| 12             | 2012-09-14 FII | 10.25   | Rain     | Daylight   | Real enu          | NUII-Ialai | V1 S<br>V2 S | Wet        | Going ahead                   | Automobile, station                        | Other motor vehicle                        | 0   |
|                |                |         |          |            |                   |            | V2 S<br>V3 S | Wet        | Going ahead                   | Pick-up truck                              | Other motor vehicle                        |     |
| 40             | 2013-02-24 Sun | 47.50   | 01       | Darl       | Ciala avuira a    |            |              |            | 0                             | Unknown                                    |                                            | 0   |
| 13             | 2013-02-24 Sun | 17.52   | Clear    | Dark       | Sideswipe         | P.D. only  | V1 S<br>V2 S | Wet<br>Wet | Changing lanes<br>Going ahead | Automobile, station                        | Other motor vehicle<br>Other motor vehicle | 0   |
| EAGLESON I     | RD & FERNBAN   | NK RD   |          |            |                   |            | VZ 3         | WEL        | Going aneau                   | Automobile, Station                        |                                            |     |
| Former Municip | ality: Kanata  |         |          | Traffic Co | ontrol: Traffic s | signal     |              | Numbe      | er of Collisions: 10          |                                            |                                            |     |
|                |                |         |          |            | IMPACT            |            |              | SURFACE    | VEHICLE                       |                                            |                                            | No. |
|                | DATE DAY       | TIM     | E ENV    | LIGHT      | ТҮРЕ              | CLASS      | DIR          | COND'N     | MANOEUVRE                     | VEHICLE TYPE                               | FIRST EVENT                                | PED |
| 14             | 2012-02-25 Sat | 14:11   | Drifting | Daylight   | Rear end          | P.D. only  | V1 S         | Wet        | Slowing or                    | Passenger van                              | Other motor vehicle                        | 0   |
|                |                |         | •        |            |                   | -          | V2 S         | Wet        | Slowing or                    | Passenger van                              | Other motor vehicle                        |     |
| 15             | 2012-06-25 Mo  | 15:35   | Rain     | Daylight   | Rear end          | P.D. only  | V1 S         | Wet        | Going ahead                   | Automobile, station                        | Other motor vehicle                        | 0   |
|                |                |         |          | , ,        |                   |            | V2 S         | Wet        | Slowing or                    | Automobile, station                        | Other motor vehicle                        |     |
|                |                |         |          |            |                   |            | V3 S         | Wet        | Stopped                       | Pick-up truck                              | Other motor vehicle                        |     |
| 16             | 2012-07-13 Fri | 12:51   | Clear    | Daylight   | Single vehicle    | P.D. only  | V1 N         | Dry        | Going ahead                   | Truck - closed                             | Pole (utility, tower)                      | 0   |
| 47             | 2042 40 22 Tue | 40.50   | Clear    | Deulisht   | Turnain a         | Niew fetel |              | Deri       | Turnain a laft                | Diele un truele                            |                                            | 0   |
| 17             | 2012-10-23 Tue | 16:53   | Clear    | Daylight   | Turning           | Non-fatal  | V1 N<br>V2 S | Dry<br>Dry | Turning left                  | Pick-up truck<br>Automobile, station       | Other motor vehicle<br>Other motor vehicle | 0   |
|                |                |         |          |            |                   |            | VZ 3         | Dry        | Going ahead                   | Automobile, Station                        |                                            |     |
| 18             | 2013-01-05 Sat | 18:28   | Clear    | Dark       | Single vehicle    | P.D. only  | V1 E         | Dry        | Going ahead                   | Passenger van                              | Ran off road                               | 0   |
|                |                |         |          |            |                   |            |              |            |                               |                                            |                                            |     |
| 19             | 2013-03-13 We  | 15:48   | Clear    | Daylight   | Angle             | P.D. only  | V1 E         | Dry        | Turning right                 | Pick-up truck                              | Other motor vehicle                        | 0   |
|                |                |         |          |            |                   |            | V2 S         | Dry        | Going ahead                   | Automobile, station                        | Other motor vehicle                        |     |
|                |                |         |          |            |                   |            | V3 N         | Dry        | Turning left                  | Pick-up truck                              | Other motor vehicle                        |     |
| 20             | 2013-06-16 Sun | 14.20   | Poin     | Douliabt   | Rear end          | P.D. only  |              | Wet        | Slowing or                    | Pick-up truck                              | Other motor vehicle                        | 0   |
| 20             | 2013-00-10 Sul | 1 14.30 | Rain     | Daylight   | Real enu          | P.D. Only  | VIE<br>V2E   | Wet        | Turning right                 | Passenger van                              | Other motor vehicle                        | 0   |
| 04             | 2012 07 06 Cat | 10.00   | Clear    | Douliabt   | Turning           | Non-fatal  |              |            | 00                            | U                                          | Other motor vehicle                        | 0   |
| 21             | 2013-07-06 Sat | 12:33   | Clear    | Daylight   | Turning           | Non-ratai  | V1 N<br>V2 S | Dry<br>Dry | Turning left                  | Pick-up truck                              |                                            | 0   |
|                |                |         |          |            |                   |            | vz 3         | Dry        | Going ahead                   | Automobile, station                        | Other motor vehicle                        |     |
| 22             | 2012 00 26 Ma  | 10.20   | Clear    | Duak       | Rear end          |            | V/1 C        | \//ot      | Coing chood                   | Automobile station                         | Other meter vehicle                        | 0   |
| 22             | 2013-08-26 Mo  | 19:39   | Clear    | Dusk       | Rear end          | P.D. only  | V1 S<br>V2 S | Wet<br>Wet | Going ahead<br>Stopped        | Automobile, station<br>Automobile, station | Other motor vehicle<br>Other motor vehicle | 0   |
|                |                |         |          |            |                   |            | vz 3         | vvel       | Stopped                       | Automobile, station                        |                                            |     |

(Note: Time of Day = "00:00" represents unknown collision time **Tuesday, March 13, 2018** 

Page 2 of 3

**Collision Main Detail Summary** 

OnTRAC Reporting System

#### FROM: 2012-01-01 TO: 2014-01-01

| 23 | 2013-12-18 We 17:18 Clear | Dark | Rear end | P.D. only V1 S | Wet | Going ahead | Automobile, station | Other motor vehicle | 0 |
|----|---------------------------|------|----------|----------------|-----|-------------|---------------------|---------------------|---|
|    |                           |      |          | V2 S           | Wet | Slowing or  | Automobile, station | Other motor vehicle |   |



## City Operations - Transportation Services Collision Details Report - Public Version

From: January 1, 2014 To: December 31, 2016

| Traffic Control: Tra   | ffic signal |                  |                  |                   |          | Total Collisions: 12 |                              |                     |         |  |  |
|------------------------|-------------|------------------|------------------|-------------------|----------|----------------------|------------------------------|---------------------|---------|--|--|
| Date/Day/Time          | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve     | er Vehicle type              | First Event         | No. Ped |  |  |
| 2014-Feb-07, Fri,20:45 | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left         | Automobile, station wagon    | Other motor vehicle |         |  |  |
|                        |             |                  |                  |                   | South    | Going ahead          | Automobile, station wagon    | Other motor vehicle |         |  |  |
| 2014-Jan-10, Fri,09:23 | Snow        | Angle            | P.D. only        | Slush             | South    | Turning right        | Automobile,<br>station wagon | Other motor vehicle |         |  |  |
|                        |             |                  |                  |                   | East     | Stopped              | Pick-up truck                | Other motor vehicle |         |  |  |
|                        |             |                  |                  |                   | East     | Stopped              | Automobile,<br>station wagon | Other motor vehicle |         |  |  |
| 2014-Jun-22, Sun,09:30 | Clear       | Rear end         | P.D. only        | Dry               | West     | Turning right        | Pick-up truck                | Other motor vehicle |         |  |  |
|                        |             |                  |                  |                   | West     | Turning right        | Passenger van                | Other motor vehicle |         |  |  |
| 2014-Jun-17, Tue,14:59 | Clear       | Angle            | Non-fatal injury | Dry               | North    | Going ahead          | Pick-up truck                | Other motor vehicle |         |  |  |
|                        |             |                  |                  |                   | West     | Turning left         | Pick-up truck                | Other motor vehicle |         |  |  |
| 2014-Jul-24, Thu,14:50 | Clear       | Sideswipe        | P.D. only        | Dry               | South    | Unknown              | Unknown                      | Other motor vehicle |         |  |  |
|                        |             |                  |                  |                   | South    | Stopped              | Pick-up truck                | Other motor vehicle |         |  |  |

| 2014-Jun-16, Mon,10:03 | Clear | Angle            | Non-fatal injury | Dry | West  | Turning right  | Automobile, station wagon    | Other motor<br>vehicle |
|------------------------|-------|------------------|------------------|-----|-------|----------------|------------------------------|------------------------|
|                        |       |                  |                  |     | North | Going ahead    | Pick-up truck                | Other motor<br>vehicle |
| 2014-Aug-12, Tue,20:41 | Rain  | Turning movement | P.D. only        | Wet | South | Turning left   | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |     | North | Going ahead    | Automobile,<br>station wagon | Other motor<br>vehicle |
| 2014-Feb-10, Mon,09:23 | Clear | Turning movement | Non-fatal injury | Wet | South | Turning left   | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |     | North | Going ahead    | Pick-up truck                | Other motor vehicle    |
| 2015-Jun-17, Wed,10:02 | Clear | Sideswipe        | P.D. only        | Dry | West  | Changing lanes | Pick-up truck                | Other motor<br>vehicle |
|                        |       |                  |                  |     | West  | Going ahead    | Automobile, station wagon    | Other motor<br>vehicle |
| 2016-Mar-12, Sat,19:11 | Clear | Turning movement | Non-fatal injury | Dry | North | Turning left   | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |     | South | Going ahead    | Automobile, station wagon    | Other motor<br>vehicle |
| 2015-Nov-06, Fri,19:38 | Clear | Turning movement | Non-fatal injury | Dry | North | Turning left   | Pick-up truck                | Other motor<br>vehicle |
|                        |       |                  |                  |     | South | Going ahead    | Automobile, station wagon    | Other motor<br>vehicle |
| 2016-Jun-29, Wed,08:32 | Clear | Angle            | Non-fatal injury | Dry | North | Going ahead    | Pick-up truck                | Other motor<br>vehicle |
|                        |       |                  |                  |     | West  | Turning left   | Automobile,<br>station wagon | Other motor<br>vehicle |



## City Operations - Transportation Services Collision Details Report - Public Version

From: January 1, 2014 To: December 31, 2016

| Traffic Control: Tra   | affic signal  |                  |                  |                   |          |                    | Total Co                        | ollisions: 14       |         |
|------------------------|---------------|------------------|------------------|-------------------|----------|--------------------|---------------------------------|---------------------|---------|
| Date/Day/Time          | Environment   | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type                 | First Event         | No. Ped |
| 2014-Jan-24, Fri,17:15 | Clear         | Rear end         | P.D. only        | Ice               | South    | Slowing or stoppin | ng Pick-up truck                | Other motor vehicle |         |
|                        |               |                  |                  |                   | South    | Stopped            | Passenger van                   | Other motor vehicle |         |
|                        |               |                  |                  |                   | South    | Stopped            | Automobile, station wagon       | Other motor vehicle |         |
| 2014-Jan-25, Sat,09:43 | Drifting Snow | Angle            | Non-fatal injury | Loose snow        | South    | Going ahead        | Automobile,<br>station wagon    | Other motor vehicle |         |
|                        |               |                  |                  |                   | East     | Turning left       | Automobile,<br>station wagon    | Other motor vehicle |         |
| 2014-Apr-01, Tue,07:44 | Clear         | Rear end         | P.D. only        | Wet               | North    | Slowing or stoppin | ng Automobile,<br>station wagon | Other motor vehicle |         |
|                        |               |                  |                  |                   | North    | Stopped            | Truck - open                    | Other motor vehicle |         |
| 2014-Jul-07, Mon,07:24 | Rain          | Turning movement | P.D. only        | Wet               | North    | Turning left       | Automobile,<br>station wagon    | Other motor vehicle |         |
|                        |               |                  |                  |                   | South    | Going ahead        | Automobile, station wagon       | Other motor vehicle |         |
| 2014-Jul-16, Wed,02:25 | Clear         | SMV other        | P.D. only        | Dry               | East     | Going ahead        | Automobile,<br>station wagon    | Ran off road        |         |
| 2014-Jul-21, Mon,15:15 | Clear         | Rear end         | P.D. only        | Dry               | North    | Slowing or stoppin | ng Automobile,<br>station wagon | Other motor vehicle |         |

|                        |       |                  |                  |            | North | Stopped       | Automobile,<br>station wagon | Other motor<br>vehicle |
|------------------------|-------|------------------|------------------|------------|-------|---------------|------------------------------|------------------------|
|                        |       |                  |                  |            | North | Stopped       | Automobile, station wagon    | Other motor<br>vehicle |
|                        |       |                  |                  |            | North | Stopped       | Pick-up truck                | Other motor<br>vehicle |
| 2015-Jan-14, Wed,17:24 | Clear | Turning movement | Non-fatal injury | Dry        | North | Turning left  | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |            | South | Going ahead   | Automobile,<br>station wagon | Other motor<br>vehicle |
| 2015-Feb-14, Sat,11:04 | Snow  | Rear end         | P.D. only        | Slush      | East  | Turning left  | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |            | East  | Turning left  | Passenger van                | Other motor<br>vehicle |
| 2015-Feb-14, Sat,13:40 | Clear | Angle            | P.D. only        | Wet        | South | Turning right | Snow plow                    | Other motor<br>vehicle |
|                        |       |                  |                  |            | East  | Stopped       | Automobile,<br>station wagon | Other motor<br>vehicle |
| 2015-Jun-24, Wed,11:32 | Clear | Rear end         | Non-fatal injury | Dry        | North | Going ahead   | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |            | North | Stopped       | Pick-up truck                | Other motor<br>vehicle |
| 2015-Nov-20, Fri,16:53 | Clear | Rear end         | P.D. only        | Dry        | East  | Going ahead   | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |            | East  | Stopped       | Pick-up truck                | Other motor<br>vehicle |
| 2016-Feb-19, Fri,10:21 | Snow  | Angle            | P.D. only        | Loose snow | East  | Turning right | Automobile,<br>station wagon | Other motor<br>vehicle |
|                        |       |                  |                  |            | South | Going ahead   | Automobile, station wagon    | Other motor<br>vehicle |

| 2016-Jul-30, Sat,14:41 | Clear | Rear end         | P.D. only    | Dry | West  | Going ahead  | Automobile, station wagon | Other motor<br>vehicle |
|------------------------|-------|------------------|--------------|-----|-------|--------------|---------------------------|------------------------|
|                        |       |                  |              |     | West  | Stopped      | Pick-up truck             | Other motor<br>vehicle |
| 2016-Oct-30, Sun,17:35 | Clear | Turning movement | Fatal injury | Dry | North | Turning left | Automobile,               | Other motor            |
|                        |       |                  |              |     |       |              | station wagon             | vehicle                |
|                        |       |                  |              |     | South | Going ahead  | Motorcycle                | Other motor<br>vehicle |



## City Operations - Transportation Services Collision Details Report - Public Version

|                                        |             |                |                     |                   |          |                    | From: Janu                     | uary 1, 2014               | <b>To:</b> December 31, 201 |
|----------------------------------------|-------------|----------------|---------------------|-------------------|----------|--------------------|--------------------------------|----------------------------|-----------------------------|
| Location: EAGLE<br>Traffic Control: No |             | 1 COPE DR & Co | ontinuation of EAGL | ESON RD           |          |                    | Total C                        | ollisions: 3               |                             |
| Date/Day/Time                          | Environment | Impact Type    | Classification      | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type                | First Event                | No. Ped                     |
| 2014-Dec-28, Sun,12:11                 | Clear       | SMV other      | P.D. only           | Dry               | North    | Going ahead        | Pick-up truck                  | Pole (sign, parking meter) |                             |
| 2016-Jan-12, Tue,17:32                 | Snow        | Rear end       | Non-fatal injury    | Loose snow        | South    | Slowing or stoppin | ig Pick-up truck               | Other motor vehicle        |                             |
|                                        |             |                |                     |                   | South    | Stopped            | Automobile, station wagon      | Other motor vehicle        |                             |
|                                        |             |                |                     |                   | South    | Stopped            | Automobile, station wagon      | Other motor vehicle        |                             |
| 2016-Feb-18, Thu,17:17                 | Clear       | Rear end       | P.D. only           | Ice               | South    | Slowing or stoppin | g Automobile,<br>station wagon | Other motor vehicle        |                             |
|                                        |             |                |                     |                   | South    | Stopped            | Automobile,<br>station wagon   | Other motor vehicle        |                             |



## **City Operations - Transportation Services Collision Details Report - Public Version**

|                                                 |             |                    |                  |                   |          |                   | From: Janu                | ary 1, 2014 | To: December 31, 2016 |  |
|-------------------------------------------------|-------------|--------------------|------------------|-------------------|----------|-------------------|---------------------------|-------------|-----------------------|--|
| Location: EAGLE                                 | SON RD btwn | Continuation of EA | AGLESON RD & FEF | RNBANK RE         | C        |                   |                           |             |                       |  |
| Traffic Control: No control Total Collisions: 1 |             |                    |                  |                   |          |                   |                           |             |                       |  |
| Date/Day/Time                                   | Environment | Impact Type        | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver | · Vehicle type            | First Event | No. Ped               |  |
| 2014-Jan-15, Wed,05:50                          | Clear       | SMV other          | P.D. only        | Dry               | North    | Going ahead       | Automobile, station wagon | Curb        |                       |  |



#### Eagleson/Fernbank <u>8 hrs</u>

| 'ear | Date                     | Nort | h Leg   | South   | n Leg   | Eas   | t Leg  | Wes    | t Leg  | Total |
|------|--------------------------|------|---------|---------|---------|-------|--------|--------|--------|-------|
| ear  | Date                     | SB   | NB      | NB      | SB      | WB    | EB     | EB     | WB     | Tota  |
| 010  | Monday May 17            | 4540 | 4502    | 4110    | 4375    |       |        | 2139   | 1914   | 21580 |
| )14  | Friday June 27           | 4081 | 3910    | 4092    | 4398    |       |        | 1577   | 1442   | 19500 |
| 017  | Tuesday April 11         | 4584 | 4865    | 4840    | 4559    |       |        | 1984   | 1984   | 2281  |
|      |                          |      |         |         |         |       |        |        |        |       |
|      | Г                        | Veer |         | Cou     | nts     |       |        | % CI   | nange  |       |
|      | North Leg                | Year | NB      | SB      | NB+SB   | INT   | NB     | SB     | NB+SB  | INT   |
|      | -                        | 2010 | 4502    | 4540    | 9042    | 21580 |        |        |        |       |
|      |                          | 2014 | 3910    | 4081    | 7991    | 19500 | -13.1% | -10.1% | -11.6% | -9.6% |
|      |                          | 2017 | 4865    | 4584    | 9449    | 22816 | 24.4%  | 12.3%  | 18.2%  | 17.09 |
|      |                          |      |         |         |         |       |        |        |        |       |
|      | L<br>Regression Estimate | 2010 | 4275    | 4403    | 8678    |       |        | 1      |        |       |
|      | Regression Estimate      | 2010 | 4563    | 4401    | 8963    |       |        |        |        |       |
|      | Average Annual Change    | 2017 | 0.93%   | -0.01%  | 0.46%   |       |        |        |        |       |
| '    | average Annual Change    |      | 0.7376  | -0.0178 | 0.4078  |       |        |        |        |       |
|      | Γ                        |      |         | Cou     | nts     |       | ſ      | % Cł   | nange  |       |
|      | West Leg                 | Year | EB      | WB      | EB+WB   | INT   | EB     | WB     | EB+WB  | INT   |
|      |                          | 2010 | 2139    | 1914    | 4053    | 21580 |        |        |        |       |
|      |                          | 2014 | 1577    | 1442    | 3019    | 19500 | -26.3% | -24.7% | -25.5% | -9.6% |
|      |                          | 2017 | 1984    | 1984    | 3968    | 22816 | 25.8%  | 37.6%  | 31.4%  | 17.09 |
|      |                          |      |         |         |         |       |        |        |        |       |
|      | L<br>Regression Estimate | 2010 | 2005    | 1769    | 3773    |       |        | ļ      | ļ      |       |
|      | Regression Estimate      | 2010 | 1805    | 1709    | 3595    |       |        |        |        |       |
|      | Average Annual Change    | 2017 | -1.49%  | 0.17%   | -0.69%  |       |        |        |        |       |
|      | average Annual Change    |      | -1.4770 | 0.1778  | -0.0978 |       |        |        |        |       |
|      |                          | Year |         | Cou     |         |       |        |        | nange  |       |
|      | East Leg                 |      | EB      | WB      | EB+WB   | INT   | EB     | WB     | EB+WB  | INT   |
|      |                          | 2010 |         |         |         | 21580 |        |        |        |       |
|      |                          | 2014 |         |         |         | 19500 |        |        |        | -9.69 |
|      |                          | 2017 |         |         |         | 22816 |        |        |        | 17.09 |
|      | L                        |      |         |         |         |       |        |        |        |       |
|      | Regression Estimate      | 2010 |         |         |         |       |        |        |        |       |
|      | Regression Estimate      | 2017 |         |         |         |       |        |        |        |       |
|      | Average Annual Change    |      |         |         |         |       |        |        |        |       |
|      | Г                        | Veer |         | Cou     | nts     |       |        | % CI   | nange  |       |
|      | South Leg                | Year | NB      | SB      | NB+SB   | INT   | NB     | SB     | NB+SB  | INT   |
|      | Γ                        | 2010 | 4110    | 4375    | 8485    | 21580 |        |        |        |       |
|      |                          | 2014 | 4092    | 4398    | 8490    | 19500 | -0.4%  | 0.5%   | 0.1%   | -9.6% |
|      |                          | 2017 | 4840    | 4559    | 9399    | 22816 | 18.3%  | 3.7%   | 10.7%  | 17.09 |
|      |                          |      |         |         |         |       |        |        |        |       |
|      | L                        | 2010 | 2007    | 4250    | 0222    |       | 1      | 1      | 1      |       |
|      | Regression Estimate      | 2010 | 3987    | 4352    | 8338    |       |        |        |        |       |

 Regression Estimate
 2010
 3987
 4352

 Regression Estimate
 2017
 4675
 4528

 Average Annual Change
 2.30%
 0.57%

 4332
 8336

 4528
 9203

 67%
 1.42%

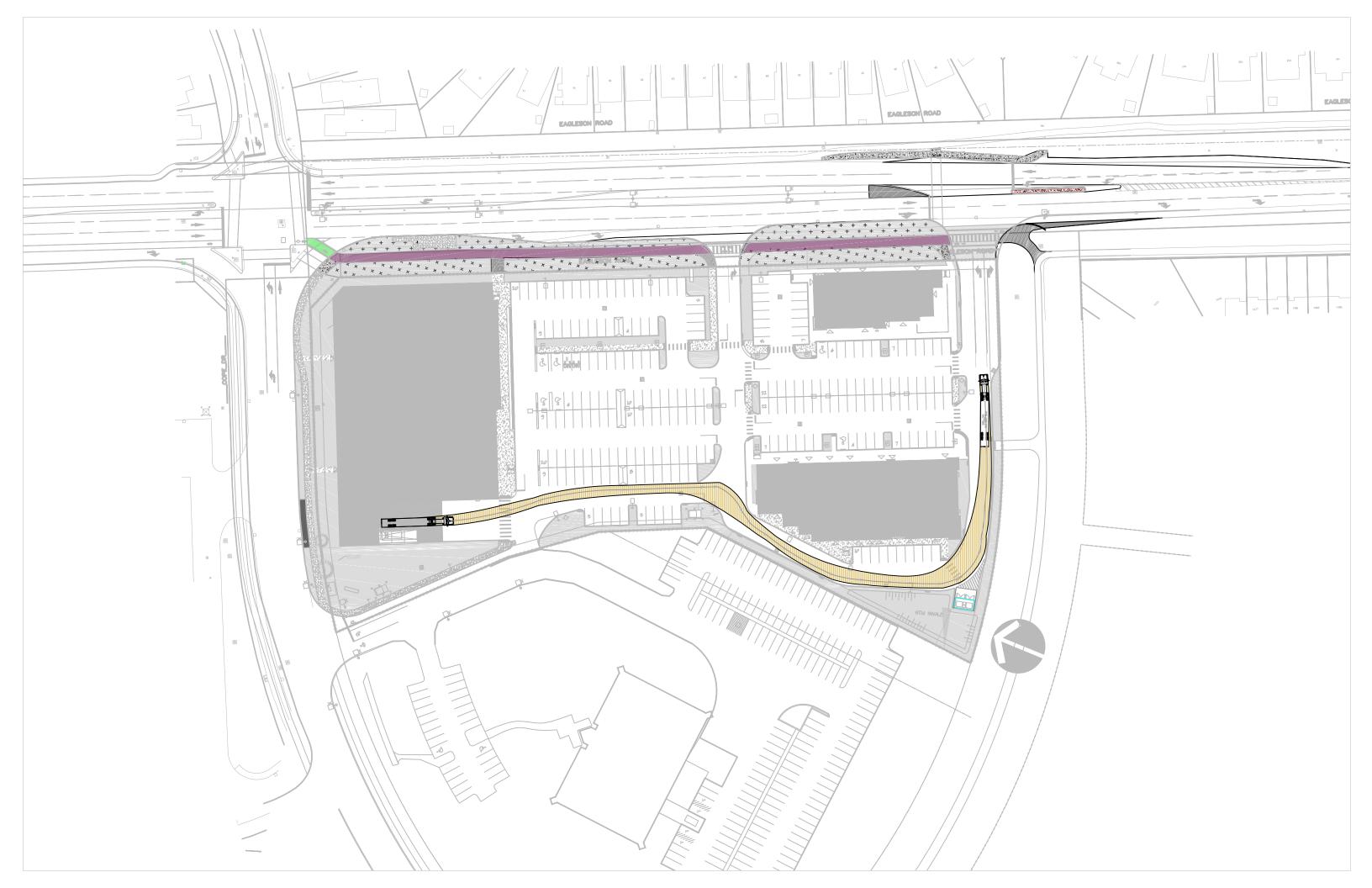
#### Eagleson/Fernbank <u>AM Peak</u>

| loar | Date                                                                | Nort         | h Leg                        | South Leg                   |                             | East Leg        |                 | West Leg       |                 | Total           |
|------|---------------------------------------------------------------------|--------------|------------------------------|-----------------------------|-----------------------------|-----------------|-----------------|----------------|-----------------|-----------------|
| /ear | Date                                                                | SB           | NB                           | NB                          | SB                          | WB              | EB              | EB             | WB              | Total           |
| 2010 | Monday May 17                                                       | 361          | 908                          | 794                         | 366                         |                 |                 | 380            | 261             | 3070            |
| 2014 | Friday June 27                                                      | 334          | 619                          | 628                         | 344                         |                 |                 | 158            | 157             | 2240            |
| 2017 | Tuesday April 11                                                    | 437          | 876                          | 882                         | 453                         |                 |                 | 258            | 248             | 3154            |
|      |                                                                     |              |                              |                             |                             |                 |                 |                |                 |                 |
|      | Γ                                                                   | Year         |                              | Cou                         |                             |                 |                 |                | nange           |                 |
|      | North Leg                                                           |              | NB                           | SB                          | NB+SB                       | INT             | NB              | SB             | NB+SB           | INT             |
|      |                                                                     | 2010         | 908                          | 361                         | 1269                        | 3070            |                 |                |                 |                 |
|      |                                                                     | 2014         | 619                          | 334                         | 953                         | 2240            | -31.8%          | -7.5%          | -24.9%          | -27.0%          |
|      |                                                                     | 2017         | 876                          | 437                         | 1313                        | 3154            | 41.5%           | 30.8%          | 37.8%           | 40.8%           |
|      | Regression Estimate                                                 | 2010         | 831                          | 341                         | 1172                        |                 |                 |                |                 |                 |
|      | Regression Estimate                                                 | 2017         | 774                          | 410                         | 1184                        |                 |                 |                |                 |                 |
|      | Average Annual Change                                               |              | -1.02%                       | 2.68%                       | 0.14%                       |                 |                 |                |                 |                 |
|      | Г                                                                   | Veen         |                              | Cou                         | nts                         |                 |                 | % Cł           | nange           |                 |
|      | West Leg                                                            | Year         | EB                           | WB                          | EB+WB                       | INT             | EB              | WB             | EB+WB           | INT             |
|      | -                                                                   | 2010         | 380                          | 261                         | 641                         | 3070            |                 |                |                 |                 |
|      |                                                                     | 2014         | 158                          | 157                         | 315                         | 2240            | -58.4%          | -39.8%         | -50.9%          | -27.0%          |
|      |                                                                     | 2017         | 258                          | 248                         | 506                         | 3154            | 63.3%           | 58.0%          | 60.6%           | 40.8%           |
|      | Regression Estimate<br>Regression Estimate<br>Average Annual Change | 2010<br>2017 | 337<br>200<br>- <b>7.15%</b> | 234<br>211<br><b>-1.41%</b> | 570<br>412<br><b>-4.55%</b> |                 |                 |                | <u> </u>        |                 |
|      | Average Annual Change                                               |              | -7.1578                      |                             |                             |                 | 1               |                |                 |                 |
|      | Factler                                                             | Year         | 60                           | Cou                         |                             |                 | 58              |                | nange           | 1.017           |
|      | East Leg                                                            | 2010         | EB                           | WB                          | EB+WB                       | <i>INT</i> 3070 | EB              | WB             | EB+WB           | INT             |
|      |                                                                     |              |                              |                             |                             | 2240            |                 |                |                 | 07.00           |
|      |                                                                     | 2014<br>2017 |                              |                             |                             |                 |                 |                |                 | -27.09<br>40.8% |
|      |                                                                     | 2017         |                              |                             |                             | 3154            |                 |                |                 | 40.8%           |
|      | L                                                                   | 2010         |                              |                             |                             |                 |                 |                |                 |                 |
|      | Regression Estimate                                                 | 2010         |                              |                             |                             |                 |                 |                |                 |                 |
|      | Regression Estimate<br>Average Annual Change                        | 2017         |                              |                             |                             |                 |                 |                |                 |                 |
|      | Г                                                                   |              |                              | Cou                         | nts                         |                 |                 | % Cł           | nange           |                 |
|      |                                                                     | Year         | NB                           | SB                          | NB+SB                       | INT             | NB              | SB             | NB+SB           | INT             |
|      | South Leg                                                           |              |                              |                             |                             |                 |                 | 1              | 1               |                 |
|      | South Leg                                                           | 2010         | 794                          | 366                         | 1160                        | 3070            |                 |                |                 |                 |
|      | South Leg                                                           | 2010<br>2014 |                              | 366<br>344                  | 1160<br>972                 | 3070<br>2240    | -20.9%          | -6.0%          | -16.2%          | -27.09          |
|      | South Leg                                                           |              | 794                          |                             |                             |                 | -20.9%<br>40.4% | -6.0%<br>31.7% | -16.2%<br>37.3% |                 |
|      | South Leg                                                           | 2014         | 794<br>628                   | 344                         | 972                         | 2240            |                 |                |                 | -27.09<br>40.8% |

 Regression Estimate
 2010
 733
 346
 1078

 Regression Estimate
 2017
 800
 426
 1226

 Average Annual Change
 1.27%
 3.03%
 1.85%


# Eagleson/Fernbank <u>PM Peak</u>

| ar  | Date                                         | Nort | h Leg | South  | Leg East |      | t Leg | Wes    | West Leg |       |
|-----|----------------------------------------------|------|-------|--------|----------|------|-------|--------|----------|-------|
| ar  | Date                                         | SB   | NB    | NB     | SB       | WB   | EB    | EB     | WB       | Total |
| )10 | Monday May 17                                | 1010 | 532   | 563    | 955      |      |       | 283    | 369      | 3712  |
| )14 | Friday June 27                               | 915  | 544   | 618    | 1065     |      |       | 317    | 241      | 3700  |
| )17 | Tuesday April 11                             | 998  | 591   | 631    | 971      |      |       | 307    | 374      | 3872  |
|     |                                              |      |       |        |          |      |       |        |          |       |
|     | Г                                            |      |       | Cou    | nts      |      |       | % Cł   | nange    |       |
|     | North Leg                                    | Year | NB    | SB     | NB+SB    | INT  | NB    | SB     | NB+SB    | INT   |
|     |                                              | 2010 | 532   | 1010   | 1542     | 3712 | 112   | 00     | 110700   | ,,,,, |
|     |                                              | 2010 | 544   | 915    | 1459     | 3700 | 2.3%  | -9.4%  | -5.4%    | -0.3% |
|     |                                              | 2014 | 591   | 998    | 1589     | 3872 | 8.6%  | 9.1%   | 8.9%     | 4.6%  |
|     |                                              | 2017 | 391   | 990    | 1369     | 3072 | 0.076 | 9.170  | 0.7/0    | 4.070 |
|     | L                                            |      |       |        |          |      |       |        |          |       |
|     | Regression Estimate                          | 2010 | 526   | 985    | 1511     |      |       |        |          |       |
|     | Regression Estimate                          | 2017 | 583   | 965    | 1547     |      |       |        |          |       |
|     | Average Annual Change                        |      | 1.48% | -0.30% | 0.34%    |      |       |        |          |       |
|     | Γ                                            | Year |       | Cou    |          |      |       |        | nange    |       |
|     | West Leg                                     | Tear | EB    | WB     | EB+WB    | INT  | EB    | WB     | EB+WB    | INT   |
|     |                                              | 2010 | 283   | 369    | 652      | 3712 |       |        |          |       |
|     |                                              | 2014 | 317   | 241    | 558      | 3700 | 12.0% | -34.7% | -14.4%   | -0.3% |
|     |                                              | 2017 | 307   | 374    | 681      | 3872 | -3.2% | 55.2%  | 22.0%    | 4.6%  |
|     |                                              |      |       |        |          |      |       |        |          |       |
|     | Regression Estimate                          | 2010 | 289   | 332    | 621      |      |       |        |          |       |
|     | Regression Estimate                          | 2017 | 315   | 324    | 639      |      |       |        |          |       |
|     | Average Annual Change                        |      | 1.24% | -0.32% | 0.42%    |      |       |        |          |       |
|     | Г                                            |      |       | Cou    | nts      |      |       | % Cł   | nange    |       |
|     | East Leg                                     | Year | EB    | WB     | EB+WB    | INT  | EB    | WB     | EB+WB    | INT   |
|     |                                              | 2010 |       |        |          | 3712 |       |        |          |       |
|     |                                              | 2014 |       |        |          | 3700 |       |        |          | -0.3% |
|     |                                              | 2014 |       |        |          | 3872 |       |        |          | 4.6%  |
|     |                                              | 2017 |       |        |          | 3072 |       |        |          | 4.076 |
|     | L                                            |      | 1     |        |          |      | 1     | 1      | 1        |       |
|     | Regression Estimate                          | 2010 |       |        |          |      |       |        |          |       |
|     | Regression Estimate<br>Average Annual Change | 2017 |       |        |          |      |       |        |          |       |
|     | Г                                            | Veer |       | Cou    | nts      |      |       | % Cł   | nange    |       |
|     | South Leg                                    | Year | NB    | SB     | NB+SB    | INT  | NB    | SB     | NB+SB    | INT   |
|     | Γ                                            | 2010 | 563   | 955    | 1518     | 3712 |       |        |          |       |
|     |                                              | 2014 | 618   | 1065   | 1683     | 3700 | 9.8%  | 11.5%  | 10.9%    | -0.3% |
|     |                                              | 2017 | 631   | 971    | 1602     | 3872 | 2.1%  | -8.8%  | -4.8%    | 4.6%  |
|     |                                              |      |       |        |          |      |       |        |          |       |
|     | Regression Estimate                          | 2010 | 568   | 984    | 1551     |      |       |        |          |       |
|     | Regression Estimate                          | 2017 | 637   | 1009   | 1646     |      |       |        |          |       |
|     |                                              |      |       |        |          |      |       |        |          |       |

0.85%

Regression Estimate Average Annual Change 1009 **0.37%** 2017 637 1.66%





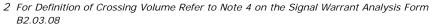


# Multi-Modal Level of Service - Segments Form

| Consultant | PARSONS  | Project | 10 Cope |
|------------|----------|---------|---------|
| Scenario   | Existing | Date    | Mar-18  |
| Comments   |          |         |         |
|            |          |         |         |

| SECMENTS   |                                                           | Street A | Eagleson           | Eagleson        | Соре                   | Соре                   | Section | Section | Section | Section | Section |
|------------|-----------------------------------------------------------|----------|--------------------|-----------------|------------------------|------------------------|---------|---------|---------|---------|---------|
| SEGMENTS   |                                                           | Street A | West               | East            | South                  | North                  | 5       | 6       | 7       | 8       | 9       |
|            | Sidewalk Width<br>Boulevard Width                         |          | no sidewalk<br>n/a | ≥ 2 m<br>< 0.5  | ≥ 2 m<br>0.5 - 2 m     | ≥2 m<br>0.5 - 2 m      |         |         |         |         |         |
|            | Avg Daily Curb Lane Traffic Volume                        |          | > 3000             | > 3000          | > 3000                 | > 3000                 |         |         |         |         |         |
| Pedestrian | Operating Speed<br>On-Street Parking                      |          | > 60 km/h<br>no    | > 60 km/h<br>no | > 30 to 50 km/h<br>no  | > 30 to 50 km/h<br>no  |         |         |         |         |         |
| est        | Exposure to Traffic PLoS                                  | -        | F                  | F               | С                      | С                      | -       | -       | -       | -       | -       |
| ede        | Effective Sidewalk Width                                  |          |                    |                 |                        |                        |         |         |         |         |         |
| Å          | Pedestrian Volume                                         |          |                    |                 |                        |                        |         |         |         |         |         |
|            | Crowding PLoS                                             |          | -                  | -               | -                      | -                      | -       | -       | -       | -       | -       |
|            | Level of Service                                          |          | -                  | -               | -                      | -                      | -       | -       | -       | -       | -       |
|            | Type of Cycling Facility                                  |          | Mixed Traffic      | Mixed Traffic   | Mixed Traffic          | Mixed Traffic          |         |         |         |         |         |
|            | Number of Travel Lanes                                    |          | 4-5 lanes total    | 4-5 lanes total | ≤ 2 (no<br>centreline) | ≤ 2 (no<br>centreline) |         |         |         |         |         |
|            | Operating Speed                                           |          | ≥ 60 km/h          | ≥ 60 km/h       | >40 to <50 km/h        | >40 to <50 km/h        |         |         |         |         |         |
|            | # of Lanes & Operating Speed LoS                          |          | F                  | F               | В                      | В                      | -       | -       | -       | -       | -       |
| Bicycle    | Bike Lane (+ Parking Lane) Width                          |          |                    |                 |                        |                        |         |         |         |         |         |
| C X        | Bike Lane Width LoS                                       | -        | -                  | -               | -                      | -                      | -       | -       | -       | -       | -       |
| Bi         | Bike Lane Blockages                                       |          |                    |                 |                        |                        |         |         |         |         |         |
|            | Blockage LoS<br>Median Refuge Width (no median = < 1.8 m) |          | -                  | -               | -                      | -                      | -       | -       | -       | -       | -       |
|            | No. of Lanes at Unsignalized Crossing                     |          |                    |                 |                        |                        |         |         |         |         |         |
|            | Sidestreet Operating Speed                                |          |                    |                 |                        |                        |         |         |         |         |         |
|            | Unsignalized Crossing - Lowest LoS                        |          | -                  | -               | -                      | -                      | -       | -       | -       | -       | -       |
|            | Level of Service                                          |          | -                  | -               | -                      | -                      | -       | -       | -       | -       | -       |
| sit        | Facility Type                                             |          | Mixed Traffic      | Mixed Traffic   | Mixed Traffic          | Mixed Traffic          |         |         |         |         |         |
| ans        | Friction or Ratio Transit:Posted Speed                    | D        | Vt/Vp ≥ 0.8        | Vt/Vp ≥ 0.8     | Vt/Vp ≥ 0.8            | Vt/Vp ≥ 0.8            |         |         |         |         |         |
| Transit    | Level of Service                                          |          | D                  | D               | D                      | D                      | -       | -       | -       | -       | -       |
|            | Truck Lane Width                                          |          | > 3.7 m            | > 3.7 m         | > 3.7 m                | > 3.7 m                |         |         |         |         |         |
|            | Travel Lanes per Direction                                | В        | > 1                | > 1             | 1                      | 1                      |         |         |         |         |         |
| Truck      | Level of Service                                          | D        | А                  | А               | В                      | В                      | -       | -       | -       | -       | -       |

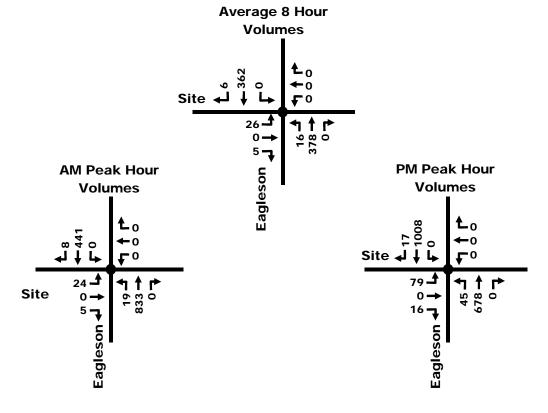



#### Eagleson/Site - (peak hour signal warrant)

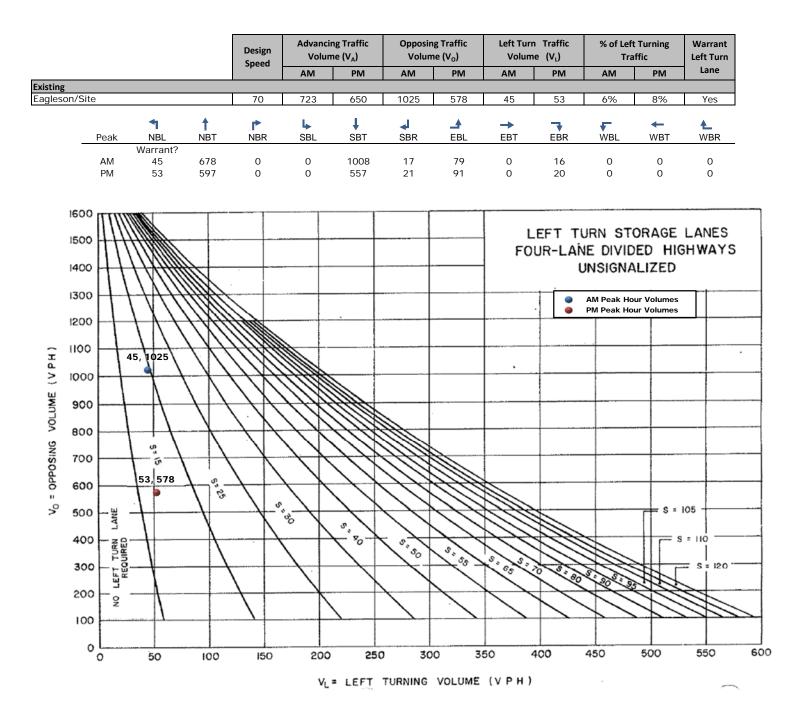
|              | Signal              |             | <u> </u>                                                                                                      | Minimum<br>Requirement for Two<br>Lane Roadways                       | C           | Compliance |         |
|--------------|---------------------|-------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|------------|---------|
|              | Signal<br>Warrant   | Description |                                                                                                               | Free Flow -<br>Operating Speed<br>Greater Than or<br>Equal to 70 km/h | Sectional % | Entire %   | Warrant |
|              | 1.<br>Minimum       | (1) A       | Vehicle Volume, All Approaches<br>for Each of the Heaviest 8 Hours<br>of on Average Day, and                  | 600                                                                   | 132%        | 17%        |         |
| Intersection | Vehicular<br>Volume | (4) B       | Vehicle Volume, Along Minor<br>Streets for Each of the Same 8<br>Hours                                        | 180                                                                   | 17%         | 1770       | 52%     |
| Inters       | 2. Delay to         | (1) A       | Vehicle Volume, Along Major<br>Street for Each of the Heaviest 8<br>Hours of an Average Day, and              | 600                                                                   | 127%        | 52%        | Νο      |
|              | Cross<br>Traffic    |             | Combined Vehicle and<br>Pedestrian Volume <u>Crossing</u> the<br>Major Street for Each of the<br>Same 8 Hours | 50                                                                    | 52%         | 5270       |         |

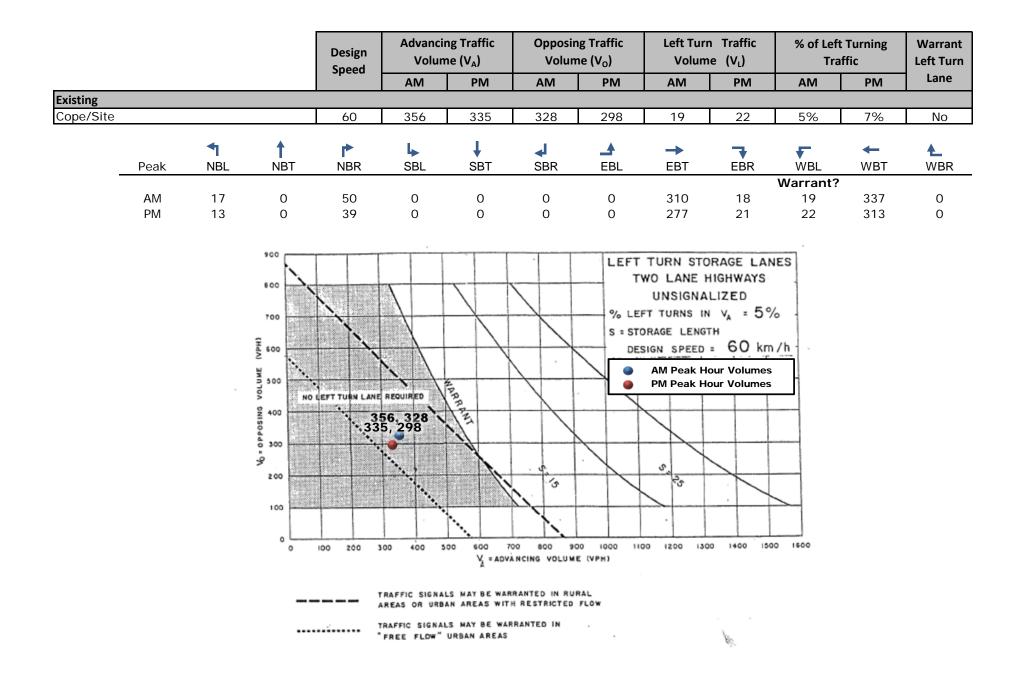
Notes

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

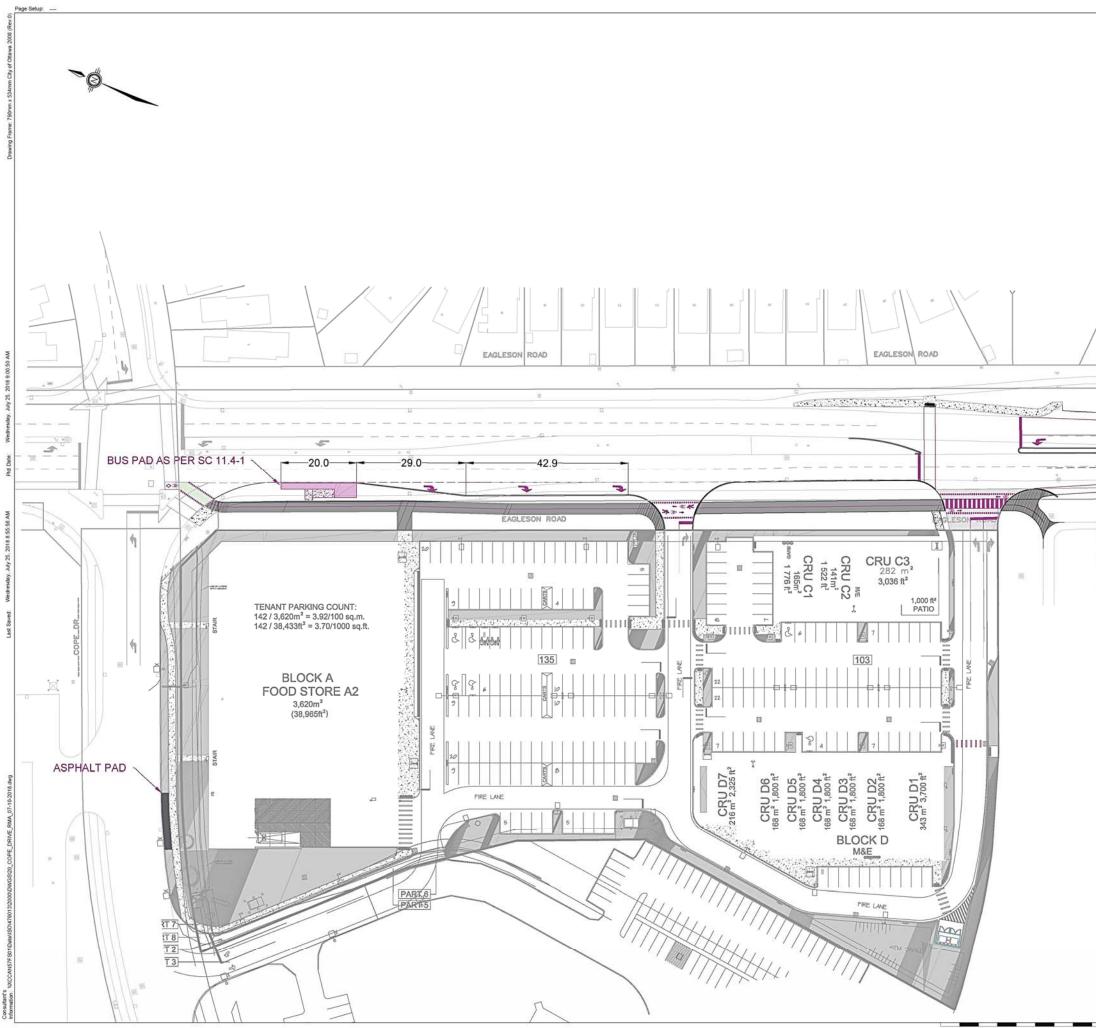

Yes




*3* The Lowest Sectional Percentage Governs the Entire Warrant


4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50% (Warrant 1B only)






# Appendix G









|       |           |             | 20                  | Cop             | e Drive                                                                     |                  |               |                 |                 |
|-------|-----------|-------------|---------------------|-----------------|-----------------------------------------------------------------------------|------------------|---------------|-----------------|-----------------|
|       |           |             |                     |                 |                                                                             |                  | -             |                 |                 |
|       |           |             | Fu                  | nctiona         | al Design                                                                   |                  |               | 76575<br>neet 1 | Owg. No<br>OO   |
|       |           |             |                     |                 |                                                                             |                  |               |                 |                 |
|       |           |             | PA                  | RS              | ONS                                                                         | 5                | Des.          |                 | hk'd,           |
|       |           |             |                     |                 |                                                                             |                  | Dwn.          | мјм             | hk'd.           |
|       |           |             |                     |                 |                                                                             |                  | Scale:<br>Om  | HORIZO<br>5 10  | NTAL            |
|       | NC        | DTE: T      | The location of ut  | tilities is app | roximate only, the exa<br>utility companies cond<br>nsible for adequate pro | ct location sho  | uld be determ | ined by cons    | ulting          |
|       |           | No.         | of utilities and sh | all be respo    | Description                                                                 | stection from da | amage.        | By              | Date<br>(dd/mm/ |
| 5 "// | SNOF      | 01          |                     |                 | Conceptual Plan<br>City Comments                                            |                  |               | MJM<br>MJM      | 01/05/1         |
|       | REVISIONS |             |                     |                 |                                                                             |                  |               |                 |                 |
|       |           |             |                     |                 |                                                                             | EAG              | LESON         | ROAD            |                 |
|       |           |             |                     |                 |                                                                             |                  |               |                 |                 |
|       |           |             |                     |                 |                                                                             | 96               |               | 2               |                 |
|       |           |             |                     |                 |                                                                             |                  | E.            |                 |                 |
|       |           | _           |                     |                 |                                                                             |                  |               | _               |                 |
| 5     | 5         |             |                     |                 |                                                                             |                  |               |                 |                 |
|       |           |             |                     |                 |                                                                             |                  |               |                 | _               |
| - 1   | \$        |             |                     | 3               | *                                                                           |                  | *             |                 |                 |
|       |           |             |                     |                 | _                                                                           |                  |               |                 |                 |
|       |           |             |                     |                 |                                                                             |                  |               |                 | E               |
|       |           |             |                     |                 |                                                                             |                  |               | 5               |                 |
|       | \         | -           |                     | 1               |                                                                             | 1                | 1             | -               | 1               |
|       | 1         |             |                     |                 |                                                                             |                  |               |                 |                 |
|       |           |             |                     | 1               |                                                                             |                  |               |                 | 19480           |
|       |           |             |                     |                 |                                                                             |                  |               |                 |                 |
|       |           |             | 40                  | _               |                                                                             |                  |               |                 |                 |
|       |           |             |                     | 9477            | 51.79 51.01                                                                 | 393 94           | 6             |                 |                 |
|       |           | $\setminus$ |                     | 94.77           | 54.79 56AT                                                                  | 1483 946         | 5.            |                 |                 |
|       |           |             |                     | 14.77           | 51.78 56.81                                                                 | 1483 148         | 0             |                 |                 |
|       |           |             |                     | 9477            | 5479 Tuda                                                                   | 5883 HB          | 6             |                 |                 |
|       |           |             |                     | 34.77           | NUT NUT                                                                     | 1483 148         | 6             |                 |                 |
|       |           |             |                     | 9477            | N29 N88                                                                     | 148.3 148        | 6             |                 |                 |
|       |           |             |                     | 9477            | 17 J                                                                        | 5983 568         | 6             |                 |                 |
|       |           |             |                     | 9677            | NR M                                                                        | 543 44           | 6             |                 |                 |
|       |           |             |                     | 9877            | NR M                                                                        | 1883 188         | 6             |                 |                 |
|       |           |             |                     | 9477            | NR M                                                                        | 183 18           | ā.            |                 |                 |
|       |           |             |                     | - 9677          | NR M                                                                        | 5043 H4          | ā.            |                 |                 |
|       |           |             |                     | 9477            | NR M                                                                        | 5983 Hig         | a             |                 |                 |
|       |           |             |                     | 1677            | NR M                                                                        | 5983 Hig         | •             |                 |                 |
|       |           |             |                     | 1677            | NR M                                                                        | 5883 KB          |               |                 |                 |
|       |           |             |                     | 9077            | NR M                                                                        | 5883 588         | 6             |                 |                 |
|       |           |             |                     | 807             | NR M                                                                        | 1983 98          | 6             |                 |                 |
|       |           |             |                     | 907             | NR M                                                                        | 1983 98          | 6             |                 |                 |
|       |           |             |                     | 807             | NR M                                                                        | 1982 98          |               |                 |                 |
|       |           |             |                     | 807             | NR M                                                                        | 1982 98          |               |                 |                 |
|       |           |             |                     | 907             | N3 50                                                                       | 1082 68          |               |                 |                 |
|       |           |             |                     | 807             | N3 50                                                                       | 1083 68          | 6. I          |                 |                 |
|       |           |             |                     | 807             | N3 50                                                                       | 1083 68          |               |                 |                 |
|       |           |             |                     | 807             | N3 50                                                                       | 1083 68          | 6. I          |                 |                 |
|       |           |             |                     | 807             | N3 50                                                                       | 1083 68          |               |                 |                 |
|       |           |             |                     | 907             | N3 58                                                                       | 1003             | 6. I          |                 |                 |
|       |           |             |                     | 907             | N3 M                                                                        | 1003             | 6. I          |                 |                 |
|       |           |             |                     | 807             | N3 M                                                                        | 1003             | 6. I          |                 |                 |
|       |           |             |                     | 87              | N3 M                                                                        | 1003             | 6. I          |                 |                 |
|       |           |             |                     | 87              | N3 M                                                                        | 1883 He          | 6. I          |                 |                 |

Appendix I Proposed Eagleson/Site MMLoS Analysis

#### Multi-Modal Level of Service - Intersections Form

| Consultant | PARSONS | Project | 10 Cope |
|------------|---------|---------|---------|
| Scenario   | Future  | Date    | Mar-18  |
| Comments   |         |         |         |
|            |         |         |         |

|            | INTERSECTIONS                                               |                                      | Eagles                         | on/Site |                                 |                                            | Widened Eagl                         | eson/Fernbank              |                                               |
|------------|-------------------------------------------------------------|--------------------------------------|--------------------------------|---------|---------------------------------|--------------------------------------------|--------------------------------------|----------------------------|-----------------------------------------------|
|            | Crossing Side                                               | NORTH                                | SOUTH                          | EAST    | WEST                            | NORTH                                      | SOUTH                                | EAST                       | WEST                                          |
|            | Lanes                                                       | 4                                    | 4                              |         | 3                               | 5                                          | 5                                    | 0 - 2                      | 3                                             |
|            | Median                                                      | No Median - 2.4 m                    | No Median - 2.4 m              |         | No Median - 2.4 m               | No Median - 2.4 m                          | No Median - 2.4 m                    | No Median - 2.4 m          |                                               |
|            | Conflicting Left Turns                                      | Permissive                           | No left turn / Prohib.         |         | Permissive                      | Permissive                                 | No left turn / Prohib.               | No left turn / Prohib.     | Protected/<br>Permissive                      |
|            | Conflicting Right Turns                                     | No right turn                        | Permissive or yield<br>control |         | Permissive or yield<br>control  | No right turn                              | Permissive or yield<br>control       | No right turn              | Permissive or yield<br>control                |
|            | Right Turns on Red (RToR) ?                                 | RTOR allowed                         | RTOR allowed                   |         | RTOR allowed                    | RTOR allowed                               | RTOR allowed                         | RTOR allowed               | RTOR allowed                                  |
|            | Ped Signal Leading Interval?                                | No                                   | No                             |         | No                              | No                                         | No                                   | No                         | No                                            |
| rian       | Right Turn Channel                                          | No Channel                           | No Channel                     |         | No Channel                      | No Channel                                 | No Channel                           | No Channel                 | No Channel                                    |
| sti        | Corner Radius                                               | 5-10m                                | 0-3m                           |         | 5-10m                           | 10-15m                                     | 0-3m                                 | 0-3m                       | 10-15m                                        |
| Pedestrian | Crosswalk Type                                              | Zebra stripe hi-vis<br>markings      | Std transverse<br>markings     |         | Zebra stripe hi-vis<br>markings | Std transverse<br>markings                 | Std transverse<br>markings           | Std transverse<br>markings | Std transverse<br>markings                    |
|            | PETSI Score                                                 | 62                                   | 64                             |         | 74                              | 42                                         | 48                                   | 101                        | 70                                            |
|            | Ped. Exposure to Traffic LoS                                | С                                    | С                              | -       | С                               | E                                          | D                                    | А                          | С                                             |
|            | Cycle Length                                                | 120                                  |                                |         | 120                             | 120                                        | 120                                  | 120                        | 120                                           |
|            | Effective Walk Time                                         | 23                                   |                                |         | 53                              | 7                                          | 7                                    | 120                        | 58                                            |
|            | Average Pedestrian Delay                                    | 39                                   |                                |         | 19                              | 53                                         | 53                                   | 0                          | 16                                            |
|            | Pedestrian Delay LoS                                        | D                                    | -                              | -       | В                               | E                                          | E                                    | Α                          | В                                             |
|            | Level of Osmics                                             | D                                    | С                              | -       | С                               | E                                          | E                                    | Α                          | С                                             |
|            | Level of Service                                            |                                      | C                              | )       |                                 |                                            | l i                                  | E                          |                                               |
|            | Approach From                                               | NORTH                                | SOUTH                          | EAST    | WEST                            | NORTH                                      | SOUTH                                | EAST                       | WEST                                          |
|            | Bicycle Lane Arrangement on Approach                        | Curb Bike Lane,<br>Cycletrack or MUP | Mixed Traffic                  |         | Mixed Traffic                   | Pocket Bike Lane                           | Curb Bike Lane,<br>Cycletrack or MUP |                            | Pocket Bike Lane                              |
|            | Right Turn Lane Configuration                               |                                      |                                |         | ≤ 50 m                          | Bike lane shifts to the left of right turn | Not Applicable                       |                            | Bike lane shifts to<br>the left of right turn |
|            | Right Turning Speed                                         |                                      |                                |         | ≤ 25 km/h                       | ≤ 25 km/h                                  | Not Applicable                       |                            | ≤ 25 km/h                                     |
| e          | Cyclist relative to RT motorists                            | Not Applicable                       | #N/A                           | -       | D                               | D                                          | Not Applicable                       | -                          | D                                             |
| <u> </u>   | Separated or Mixed Traffic                                  | Separated                            | Mixed Traffic                  | -       | Mixed Traffic                   | Separated                                  | Separated                            | -                          | Separated                                     |
| Bicycle    | Left Turn Approach                                          |                                      | One lane crossed               |         | One lane crossed                |                                            | ≥ 2 lanes crossed                    |                            | No lane crossed                               |
|            | Operating Speed                                             |                                      | ≥ 60 km/h                      |         | ≤ 40 km/h                       |                                            | ≥ 60 km/h                            |                            | ≥ 60 km/h                                     |
|            | Left Turning Cyclist                                        | -                                    | F                              | -       | В                               | -                                          | F                                    | -                          | С                                             |
|            | Lovel of Service                                            | -                                    | #N/A                           | -       | D                               | -                                          | F                                    | -                          | D                                             |
|            | Level of Service                                            |                                      | #N                             | /A      |                                 |                                            |                                      | F                          |                                               |
| .#         | Average Signal Delay                                        | ≤ 10 sec                             | ≤ 10 sec                       |         |                                 | ≤ 10 sec                                   | 0 sec                                |                            | ≤ 30 sec                                      |
| su         |                                                             | В                                    | В                              | -       | -                               | В                                          | Α                                    | -                          | D                                             |
| Transit    | Level of Service                                            |                                      | E                              | 3       |                                 |                                            | I                                    | D                          |                                               |
|            | Effective Corner Radius                                     | > 15 m                               |                                |         | > 15 m                          | > 15 m                                     |                                      |                            | > 15 m                                        |
| ĸ          | Number of Receiving Lanes on Departure<br>from Intersection | 1                                    |                                |         | ≥ 2                             | 1                                          |                                      |                            | ≥ 2                                           |
| Truck      |                                                             | С                                    | -                              | -       | Α                               | С                                          | -                                    | -                          | Α                                             |
|            | Level of Service                                            |                                      | C                              | ;       |                                 |                                            | (                                    | C                          |                                               |
| 0          | Volume to Capacity Ratio                                    |                                      | 0.0 -                          | 0.60    |                                 | 0.0 - 0.60                                 |                                      |                            |                                               |
| Auto       | Level of Service                                            |                                      | A                              |         |                                 |                                            |                                      | 4                          |                                               |
|            |                                                             |                                      |                                |         |                                 |                                            |                                      |                            |                                               |

Appendix J Transportation Demand Management Checklist

## **TDM-Supportive Development Design and Infrastructure Checklist:**

Non-Residential Developments (office, institutional, retail or industrial)

| Legend   |                                                                                                                |  |
|----------|----------------------------------------------------------------------------------------------------------------|--|
| REQUIRED | The Official Plan or Zoning By-law provides related guidance that must be followed                             |  |
| BASIC    | The measure is generally feasible and effective, and in most cases would benefit the development and its users |  |
| BETTER   | The measure could maximize support for users of sustainable modes, and optimize development performance        |  |

|          | TDM-s | supportive design & infrastructure measures:<br>Non-residential developments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Check if completed &<br>add descriptions, explanations<br>or plan/drawing references |
|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|          | 1.    | WALKING & CYCLING: ROUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |
|          | 1.1   | Building location & access points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |
| BASIC    | 1.1.1 | Locate building close to the street, and do not locate parking areas between the street and building entrances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| BASIC    | 1.1.2 | Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| BASIC    | 1.1.3 | Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
|          | 1.2   | Facilities for walking & cycling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |
| REQUIRED | 1.2.1 | Provide convenient, direct access to stations or major<br>stops along rapid transit routes within 600 metres;<br>minimize walking distances from buildings to rapid<br>transit; provide pedestrian-friendly, weather-protected<br>(where possible) environment between rapid transit<br>accesses and building entrances; ensure quality<br>linkages from sidewalks through building entrances to<br>integrated stops/stations (see Official Plan policy 4.3.3)                                                                                                                                                                                                | □<br>N⁄A                                                                             |
| REQUIRED | 1.2.2 | Provide safe, direct and attractive pedestrian access<br>from public sidewalks to building entrances through<br>such measures as: reducing distances between public<br>sidewalks and major building entrances; providing<br>walkways from public streets to major building<br>entrances; within a site, providing walkways along the<br>front of adjoining buildings, between adjacent buildings,<br>and connecting areas where people may congregate,<br>such as courtyards and transit stops; and providing<br>weather protection through canopies, colonnades, and<br>other design elements wherever possible (see Official<br><i>Plan policy 4.3.12</i> ) |                                                                                      |

|          | TDM-s | supportive design & infrastructure measures:<br>Non-residential developments                                                                                                                                                                                                                                                                                                                                                                                          | Check if completed &<br>add descriptions, explanations<br>or plan/drawing references |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| REQUIRED | 1.2.3 | Provide sidewalks of smooth, well-drained walking<br>surfaces of contrasting materials or treatments to<br>differentiate pedestrian areas from vehicle areas, and<br>provide marked pedestrian crosswalks at intersection<br>sidewalks (see Official Plan policy 4.3.10)                                                                                                                                                                                              |                                                                                      |
| REQUIRED | 1.2.4 | Make sidewalks and open space areas easily<br>accessible through features such as gradual grade<br>transition, depressed curbs at street corners and<br>convenient access to extra-wide parking spaces and<br>ramps (see Official Plan policy 4.3.10)                                                                                                                                                                                                                 |                                                                                      |
| REQUIRED | 1.2.5 | Include adequately spaced inter-block/street cycling and<br>pedestrian connections to facilitate travel by active<br>transportation. Provide links to the existing or planned<br>network of public sidewalks, multi-use pathways and on-<br>road cycle routes. Where public sidewalks and multi-use<br>pathways intersect with roads, consider providing traffic<br>control devices to give priority to cyclists and<br>pedestrians (see Official Plan policy 4.3.11) |                                                                                      |
| BASIC    | 1.2.6 | Provide safe, direct and attractive walking routes from building entrances to nearby transit stops                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| BASIC    | 1.2.7 | Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |
| BASIC    | 1.2.8 | Design roads used for access or circulation by cyclists<br>using a target operating speed of no more than 30 km/h,<br>or provide a separated cycling facility                                                                                                                                                                                                                                                                                                         |                                                                                      |
|          | 1.3   | Amenities for walking & cycling                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                    |
| BASIC    | 1.3.1 | Provide lighting, landscaping and benches along<br>walking and cycling routes between building entrances<br>and streets, sidewalks and trails                                                                                                                                                                                                                                                                                                                         | □<br>Unknown                                                                         |
| BASIC    | 1.3.2 | Provide wayfinding signage for site access (where<br>required, e.g. when multiple buildings or entrances<br>exist) and egress (where warranted, such as when<br>directions to reach transit stops/stations, trails or other<br>common destinations are not obvious)                                                                                                                                                                                                   | □<br>N/A                                                                             |

|          | TDM-s | supportive design & infrastructure measures:<br>Non-residential developments                                                                                                                                                                                            | Check if completed &<br>add descriptions, explanations<br>or plan/drawing references |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|          | 2.    | WALKING & CYCLING: END-OF-TRIP FACILI                                                                                                                                                                                                                                   | TIES                                                                                 |
|          | 2.1   | Bicycle parking                                                                                                                                                                                                                                                         |                                                                                      |
| REQUIRED | 2.1.1 | Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)                                                                                                                              | Bicycle parking will be required                                                     |
| REQUIRED | 2.1.2 | Provide the number of bicycle parking spaces specified<br>for various land uses in different parts of Ottawa;<br>provide convenient access to main entrances or well-<br>used areas (see Zoning By-law Section 111)                                                     |                                                                                      |
| REQUIRED | 2.1.3 | Ensure that bicycle parking spaces and access aisles<br>meet minimum dimensions; that no more than 50% of<br>spaces are vertical spaces; and that parking racks are<br>securely anchored (see Zoning By-law Section 111)                                                |                                                                                      |
| BASIC    | 2.1.4 | Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists                                                                       |                                                                                      |
| BETTER   | 2.1.5 | Provide bicycle parking spaces equivalent to the<br>expected number of commuter and customer/visitor<br>cyclists, plus an additional buffer (e.g. 25 percent extra)<br>to encourage other cyclists and ensure adequate<br>capacity in peak cycling season               |                                                                                      |
|          | 2.2   | Secure bicycle parking                                                                                                                                                                                                                                                  |                                                                                      |
| REQUIRED | 2.2.1 | Where more than 50 bicycle parking spaces are<br>provided for a single office building, locate at least 25%<br>of spaces within a building/structure, a secure area<br>(e.g. supervised parking lot or enclosure) or bicycle<br>lockers (see Zoning By-law Section 111) | □ N/A – not more than 50 spaces                                                      |
| BETTER   | 2.2.2 | Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)                                                                                                                            |                                                                                      |
|          | 2.3   | Shower & change facilities                                                                                                                                                                                                                                              | ·                                                                                    |
| BASIC    | 2.3.1 | Provide shower and change facilities for the use of active commuters                                                                                                                                                                                                    |                                                                                      |
| BETTER   | 2.3.2 | In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters                                                                                                          |                                                                                      |
|          | 2.4   | Bicycle repair station                                                                                                                                                                                                                                                  |                                                                                      |
| BETTER   | 2.4.1 | Provide a permanent bike repair station, with commonly<br>used tools and an air pump, adjacent to the main<br>bicycle parking area (or secure bicycle parking area, if<br>provided)                                                                                     |                                                                                      |

|        | TDM-s | supportive design & infrastructure measures:<br>Non-residential developments                                                                                                               | Check if completed &<br>add descriptions, explanations<br>or plan/drawing references |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|        | 3.    | TRANSIT                                                                                                                                                                                    |                                                                                      |
|        | 3.1   | Customer amenities                                                                                                                                                                         |                                                                                      |
| BASIC  | 3.1.1 | Provide shelters, lighting and benches at any on-site transit stops                                                                                                                        | □<br>N/A                                                                             |
| BASIC  | 3.1.2 | Where the site abuts an off-site transit stop and<br>insufficient space exists for a transit shelter in the public<br>right-of-way, protect land for a shelter and/or install a<br>shelter | □<br>N/A                                                                             |
| BETTER | 3.1.3 | Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building                                                                          | □<br>N/A                                                                             |
|        | 4.    | RIDESHARING                                                                                                                                                                                |                                                                                      |
|        | 4.1   | Pick-up & drop-off facilities                                                                                                                                                              |                                                                                      |
| BASIC  | 4.1.1 | Provide a designated area for carpool drivers (plus taxis<br>and ride-hailing services) to drop off or pick up<br>passengers without using fire lanes or other no-stopping<br>zones        |                                                                                      |
|        | 4.2   | Carpool parking                                                                                                                                                                            |                                                                                      |
| BASIC  | 4.2.1 | Provide signed parking spaces for carpools in a priority<br>location close to a major building entrance, sufficient in<br>number to accommodate the mode share target for<br>carpools      |                                                                                      |
| BETTER | 4.2.2 | At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement                                                                   |                                                                                      |
|        | 5.    | CARSHARING & BIKESHARING                                                                                                                                                                   |                                                                                      |
|        | 5.1   | Carshare parking spaces                                                                                                                                                                    |                                                                                      |
| BETTER | 5.1.1 | Provide carshare parking spaces in permitted non-<br>residential zones, occupying either required or provided<br>parking spaces (see Zoning By-law Section 94)                             |                                                                                      |
|        | 5.2   | Bikeshare station location                                                                                                                                                                 |                                                                                      |
| BETTER | 5.2.1 | Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection                                              |                                                                                      |

|          | TDM-s | supportive design & infrastructure measures:<br>Non-residential developments                                                                                                                                                                                                                        | Check if completed &<br>add descriptions, explanations<br>or plan/drawing references |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|          | 6.    | PARKING                                                                                                                                                                                                                                                                                             |                                                                                      |
|          | 6.1   | Number of parking spaces                                                                                                                                                                                                                                                                            | _                                                                                    |
| REQUIRED | 6.1.1 | Do not provide more parking than permitted by zoning,<br>nor less than required by zoning, unless a variance is<br>being applied for                                                                                                                                                                |                                                                                      |
| BASIC    | 6.1.2 | Provide parking for long-term and short-term users that<br>is consistent with mode share targets, considering the<br>potential for visitors to use off-site public parking                                                                                                                          | □<br>N/A                                                                             |
| BASIC    | 6.1.3 | Where a site features more than one use, provide<br>shared parking and reduce the cumulative number of<br>parking spaces accordingly <i>(see Zoning By-law</i><br><i>Section 104)</i>                                                                                                               | □<br>N/A                                                                             |
| BETTER   | 6.1.4 | Reduce the minimum number of parking spaces<br>required by zoning by one space for each 13 square<br>metres of gross floor area provided as shower rooms,<br>change rooms, locker rooms and other facilities for<br>cyclists in conjunction with bicycle parking (see Zoning<br>By-law Section 111) |                                                                                      |
|          | 6.2   | Separate long-term & short-term parking areas                                                                                                                                                                                                                                                       |                                                                                      |
| BETTER   | 6.2.1 | Separate short-term and long-term parking areas using<br>signage or physical barriers, to permit access controls<br>and simplify enforcement (i.e. to discourage employees<br>from parking in visitor spaces, and vice versa)                                                                       | □<br>N/A                                                                             |
|          | 7.    | OTHER                                                                                                                                                                                                                                                                                               | ·                                                                                    |
|          | 7.1   | On-site amenities to minimize off-site trips                                                                                                                                                                                                                                                        |                                                                                      |
| BETTER   | 7.1.1 | Provide on-site amenities to minimize mid-day or mid-commute errands                                                                                                                                                                                                                                | □<br>N/A                                                                             |

Appendix K SYNCHRO and MMLoS Analysis: Existing Conditions

#### Multi-Modal Level of Service - Intersections Form

| Consultant           | PARSONS  | Project | 10 Cope |
|----------------------|----------|---------|---------|
| Scenario<br>Comments | Existing | Date    | Mar-18  |
|                      |          |         |         |

| Properties         Consisting State         North         State         North         State         North         State           Median         North         State         North         North <th></th> <th>INTERSECTIONS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | INTERSECTIONS                        |                   |                   |                        |                        |                  |                  |                 |                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------|-------------------|-------------------|------------------------|------------------------|------------------|------------------|-----------------|---------------------|--|
| Laws         Ave         7         6         4         5         3         3         0         2         3           Vertice         Conticing Left Turis         Particle I         Particle I         Particle I         Particle I         Particle II         Particle III         Particle IIII         Particle IIII         Particle IIIII         Particle IIIIIII         Particle IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                      |                   |                   |                        |                        |                  |                  |                 |                     |  |
| Motan         Motan         Motan         And         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                      |                   |                   |                        |                        |                  |                  |                 |                     |  |
| Promission         Provide of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                      |                   | -                 |                        | -                      |                  | 0                |                 |                     |  |
| Provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                      |                   |                   | Protected/             | Protected/             |                  |                  |                 | Protected/          |  |
| Pigg Pigg Pigg Pigg Pigg Pigg Pigg Pigg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Conflicting Right Turns              |                   |                   | Permissive or yield    | Permissive or yield    | No right turn    |                  | No right turn   | Permissive or yield |  |
| Regist Tun Channel         Convertional with<br>Receiving Law         No Channel         No Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Right Turns on Red (RToR) ?          |                   |                   |                        |                        | RTOR allowed     |                  | RTOR prohibited |                     |  |
| Profit         Production         Processing Lane         Proc Landma         Pro Landma         Proc Landma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Ped Signal Leading Interval?         | No                | No                | No                     | No                     | No               | No               | No              | No                  |  |
| $ \begin{split} \begin{tabular}{ c c c c c c } \hline PdC Exclose to Triffic LOS & F & F & D & E & B & B & A & C \\ \hline PdC Exclose tries triffic LOS & F & F & D & E & B & B & A & C \\ \hline PdC Exclose tries triffic LOS & F & F & D & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ian      | Right Turn Channel                   |                   | No Channel        |                        |                        | No Channel       | No Channel       | No Channel      | No Channel          |  |
| $ \begin{split} \begin{tabular}{ c c c c c } \hline PdC Exclose to Triffic LoS & F & F & D & E & B & B & A & C \\ \hline PdC Exclose trie to Triffic LOS & F & F & D & E & B & B & A & C \\ \hline PdC Exclose trie to Triffic LOS & F & F & D & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | str      | Corner Radius                        | 15-25m            | 5-10m             | 10-15m                 | 10-15m                 | 10-15m           | 0-3m             | 0-3m            | 10-15m              |  |
| $ \begin{split} \begin{tabular}{ c c c c c } \hline PdC Exclose to Triffic LoS & F & F & D & E & B & B & A & C \\ \hline PdC Exclose trie to Triffic LOS & F & F & D & E & B & B & A & C \\ \hline PdC Exclose trie to Triffic LOS & F & F & D & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ede      | Crosswalk Type                       |                   |                   |                        |                        |                  |                  |                 |                     |  |
| $ \begin{array}{ c c c c c c } \hline \hline \begin{tabular}{ c c c } \hline 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120 & 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | PETSI Score                          | 6                 | 26                | 54                     | 38                     | 75               | 81               | 104             | 70                  |  |
| $ \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Ped. Exposure to Traffic LoS         | F                 | F                 | D                      | E                      | В                | В                | А               | С                   |  |
| $ \frac{\text{Average Pedestrian Delay LoS}}{\text{Pedestrian Delay LoS}} = \frac{43}{8} + \frac{43}{6} + \frac{35}{6} + \frac{55}{6} + \frac{53}{6} + \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Cycle Length                         | 120               | 120               | 120                    | 120                    | 120              | 120              | 120             | 120                 |  |
| $ \frac{Pedestrian Delay LoS}{Pedestrian Delay LoS} = E = D C = E = A = B = A = B = Level of Service F = C = C = C + C + C = C + C + C + C + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                      |                   |                   |                        |                        |                  |                  |                 |                     |  |
| F         F         D         E         E         E         A         C           Approach From         NORTH         SOUTH         E         E         E         A         C           Approach From         NORTH         SOUTH         EAST         WEST           Approach         South         South         South         South         EAST         WEST         NORTH         EAST         WEST           Approach         South         South         South         South         South         Sout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | Average Pedestrian Delay             |                   |                   |                        |                        |                  |                  |                 |                     |  |
| $ \begin{array}{ c c c c c } \hline I \\ I \\$ |          | Pedestrian Delay LoS                 | E                 | E                 | D                      | С                      | E                | E                | A               | В                   |  |
| $ \begin{split} \begin{tabular}{ c c c c } \hline PC & P & P & P & P & P & P & P & P & P $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                      | F                 | F                 | D                      | E                      | E                | E                | Α               | С                   |  |
| $ \begin{array}{ c c c c c } \hline \mbox{Separated or Approach} \\ \hline \mbox{Right Turn Lane Configuration} \\ \hline Right Turn Lane Con$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Level of Service                     |                   | F                 | :                      |                        | E                |                  |                 |                     |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Approach From                        | NORTH             | SOUTH             | EAST                   | WEST                   | NORTH            | SOUTH            | EAST            | WEST                |  |
| Night full falle Onligitationleft of right turn2 50 m2 50 m0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Bicycle Lane Arrangement on Approach | Pocket Bike Lane  | Mixed Traffic     | Mixed Traffic          | Mixed Traffic          | Pocket Bike Lane | Mixed Traffic    |                 | Pocket Bike Lane    |  |
| $ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Right Turn Lane Configuration        |                   | ≤ 50 m            | ≤ 50 m                 | ≤ 50 m                 |                  | ≤ 50 m           |                 |                     |  |
| Separated or Mixed Traffic     Separated     Mixed Traffic     Mixed Traffic     Mixed Traffic     Separated     Mixed Traffic     Separated       Left Turn Approach     \$2 lanes crossed     \$2 lanes crossed     One lane crossed     Separated or Mixed Traffic     Mixed Traffic     Mixed Traffic     Mixed Traffic     Separated     No lane crossed     One lane crossed     One lane crossed     One lane crossed     One lane crossed     Se0 km/h     \$e0 km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Right Turning Speed                  | ≤ 25 km/h         | ≤ 25 km/h         | ≤ 25 km/h              | ≤ 25 km/h              | ≤ 25 km/h        | ≤ 25 km/h        |                 | ≤ 25 km/h           |  |
| $ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ø        | Cyclist relative to RT motorists     | D                 | D                 | D                      | D                      | D                | D                | -               | D                   |  |
| $ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ē        | Separated or Mixed Traffic           | Separated         | Mixed Traffic     | Mixed Traffic          | Mixed Traffic          | Separated        | Mixed Traffic    | -               | Separated           |  |
| $ \frac{\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bicy     | Left Turn Approach                   | ≥ 2 lanes crossed | ≥ 2 lanes crossed | One lane crossed       | One lane crossed       | No lane crossed  | One lane crossed |                 | No lane crossed     |  |
| F + F + D + D + D + D + D + F + D + D +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Operating Speed                      | ≥ 60 km/h         | ≥ 60 km/h         | > 40 to $\leq$ 50 km/h | > 40 to $\leq$ 50 km/h | ≥ 60 km/h        | ≥ 60 km/h        |                 | ≥ 60 km/h           |  |
| Level of Service       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Left Turning Cyclist                 | F                 | F                 | D                      | D                      | С                | F                | -               | С                   |  |
| Image: stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                      | F                 | F                 | D                      | D                      | D                | F                | -               | D                   |  |
| Image: Second ServiceBCEFCC-FFettive Corner RadiusNumber of Receiving Lanes on Departure<br>from Intersection>15 m>15 m <t< td=""><th></th><td>Level of Service</td><td></td><td>F</td><td></td><td></td><td></td><td>i</td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Level of Service                     |                   | F                 |                        |                        |                  | i                | -               |                     |  |
| Effective Corner Radius         >15 m         15 m         >15 m         >15 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>.</u> | Average Signal Delay                 | ≤ 10 sec          | ≤ 20 sec          | ≤ 40 sec               | > 40 sec               | ≤ 20 sec         | ≤ 20 sec         |                 | > 40 sec            |  |
| Effective Corner Radius         >15 m         15 m         >15 m         >15 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | usi.     |                                      | В                 | С                 | E                      | F                      | С                | С                | -               | F                   |  |
| Yumber of Receiving Lanes on Departure<br>from Intersection         1         1         ≥2         ≥2         1         1           Level of Service         C         A         A         C         -         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tra      | Level of Service                     |                   | F                 | •                      |                        |                  | i                | -               |                     |  |
| Image: section of service       Image: section of service     Image: section of service     Image: section of service     Image: section of service     Image: section of service       Image: section of service     Image: section of service     Image: section of service     Image: section of service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Effective Corner Radius              | > 15 m            | > 15 m            | > 15 m                 | > 15 m                 | > 15 m           |                  |                 | > 15 m              |  |
| Level of Service C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÷        |                                      | 1                 | 1                 | ≥2                     | ≥2                     | 1                |                  |                 | 1                   |  |
| Level of Service C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ę        |                                      | С                 | С                 | А                      | А                      | С                | -                | -               | С                   |  |
| Volume to Capacity Ratio         0.71 - 0.80         0.61 - 0.70           Level of Service         C         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Level of Service                     |                   | C                 | ;                      |                        |                  | (                | C               |                     |  |
| Level of Service C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0        | Volume to Capacity Ratio             |                   | 0.71 -            | 0.80                   |                        | 0.61 - 0.70      |                  |                 |                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aut      | Level of Service                     |                   | C                 | ;                      |                        |                  | E                | 3               |                     |  |

## Existing - AM 1: Eagleson & Fernbank

|                                          | ۶            | $\mathbf{r}$ | 1           | 1        | Ļ            | ~           |
|------------------------------------------|--------------|--------------|-------------|----------|--------------|-------------|
| Lane Group                               | EBL          | EBR          | NBL         | NBT      | SBT          | SBR         |
| Lane Configurations                      | ٢            | 1            | ۲           | 1        | 1            | 1           |
| Traffic Volume (vph)                     | 160          | 98           | 166         | 716      | 355          | 82          |
| Future Volume (vph)                      | 160          | 98           | 166         | 716      | 355          | 82          |
| Lane Group Flow (vph)                    | 168          | 103          | 175         | 754      | 374          | 86          |
| Turn Type                                | Prot         | Perm         | pm+pt       | NA       | NA           | Perm        |
| Protected Phases                         | 4            |              | 5           | 2        | 6            |             |
| Permitted Phases                         |              | 4            | 2           | _        |              | 6           |
| Detector Phase                           | 4            | 4            | 5           | 2        | 6            | 6           |
| Switch Phase                             |              |              |             |          |              |             |
| Minimum Initial (s)                      | 10.0         | 10.0         | 5.0         | 10.0     | 10.0         | 10.0        |
| Minimum Split (s)                        | 26.0         | 26.0         | 11.0        | 16.0     | 26.0         | 26.0        |
| Total Split (s)                          | 30.0         | 30.0         | 14.0        | 60.0     | 46.0         | 46.0        |
| Total Split (%)                          | 33.3%        | 33.3%        | 15.6%       | 66.7%    | 51.1%        | 51.1%       |
| Yellow Time (s)                          | 3.7          | 3.7          | 3.7         | 3.7      | 3.7          | 3.7         |
| All-Red Time (s)                         | 2.3          | 2.3          | 2.3         | 2.3      | 2.3          | 2.3         |
| Lost Time Adjust (s)                     | -2.0         | -2.0         | -2.0        | -2.0     | -2.0         | -2.0        |
| Total Lost Time (s)                      | 4.0          | 4.0          | 4.0         | 4.0      | 4.0          | 4.0         |
| Lead/Lag                                 | U.F          | 1.0          | Lead        | J.L      | Lag          | Lag         |
| Lead-Lag Optimize?                       |              |              | Yes         |          | Yes          | Yes         |
| Recall Mode                              | None         | None         | None        | C-Max    | C-Max        | C-Max       |
| Act Effct Green (s)                      | 16.4         | 16.4         | 65.6        | 65.6     | 51.1         | 51.1        |
| Actuated g/C Ratio                       | 0.18         | 0.18         | 0.73        | 0.73     | 0.57         | 0.57        |
| v/c Ratio                                | 0.54         | 0.10         | 0.26        | 0.73     | 0.37         | 0.10        |
| Control Delay                            | 39.5         | 8.3          | 5.3         | 8.6      | 13.2         | 3.2         |
| Queue Delay                              | 0.0          | 0.0          | 0.0         | 0.0      | 0.0          | 0.0         |
| Total Delay                              | 39.5         | 8.3          | 5.3         | 8.6      | 13.2         | 3.2         |
| LOS                                      | 57.5<br>D    | 0.5<br>A     | J.J         | 0.0<br>A | 13.2<br>B    | J.2<br>A    |
| Approach Delay                           | 27.6         | ~            | л           | 8.0      | 11.4         | ~           |
| Approach LOS                             | 27.0<br>C    |              |             | 8.0<br>A | B            |             |
| Queue Length 50th (m)                    | 26.7         | 0.0          | 7.5         | 50.2     | 32.3         | 0.0         |
| Queue Length 95th (m)                    | 42.9         | 11.9         | 16.9        | 98.1     | 63.3         | 7.1         |
| Internal Link Dist (m)                   | 273.1        | 11.7         | 10.7        | 122.5    | 263.5        | 1.1         |
| Turn Bay Length (m)                      | 175.0        |              | 35.0        | 122.0    | 203.0        | 40.0        |
|                                          | 489          | 511          | 35.0<br>681 | 1299     | 1012         | 40.0<br>897 |
| Base Capacity (vph)                      | 489          |              |             |          |              |             |
| Starvation Cap Reductn                   |              | 0            | 0           | 0        | 0            | 0           |
| Spillback Cap Reductn                    | 0            | 0<br>0       | 0<br>0      | 0<br>0   | 0<br>0       | 0<br>0      |
| Storage Cap Reductn<br>Reduced v/c Ratio | 0.34         |              | 0.26        | 0.58     | 0.37         |             |
|                                          | 0.34         | 0.20         | 0.26        | 0.58     | 0.37         | 0.10        |
| Intersection Summary                     |              |              |             |          |              |             |
| Cycle Length: 90                         |              |              |             |          |              |             |
| Actuated Cycle Length: 90                |              |              |             |          |              |             |
| Offset: 0 (0%), Referenced to phas       | e 2:NBTL and | 6:SBT, Sta   | rt of Green |          |              |             |
| Natural Cycle: 65                        |              |              |             |          |              |             |
| Control Type: Actuated-Coordinate        | d            |              |             |          |              |             |
| Maximum v/c Ratio: 0.58                  |              |              |             |          |              |             |
| Intersection Signal Delay: 12.1          |              |              |             | Int      | tersection L | OS: B       |
| Intersection Capacity Utilization 55.    | .8%          |              |             | IC       | U Level of S | Service B   |
| Analysis Period (min) 15                 |              |              |             |          |              |             |
| Collies and Dhasson 1. Earlisson (       | 0 Fornhank   |              |             |          |              |             |
| Splits and Phases: 1: Eagleson &         | & Ferndank   |              |             |          |              |             |
| 🔨 Ø2 (R) 🛛 🎍                             |              |              |             |          |              |             |
| 60 s                                     |              |              |             |          |              |             |
|                                          |              |              |             |          |              |             |

 Ø2 (R)
 ✓ Ø4

 60 s
 30 s

 Ø5
 Ø6 (R)

 14 s
 46 s

## Existing - AM 2: Eagleson & Cope/Cadence

|                                                    | ≯         | <b>→</b>  | 1            | -     | ×            | 1           | Ť          | 1           | Ŧ           | 1          |  |
|----------------------------------------------------|-----------|-----------|--------------|-------|--------------|-------------|------------|-------------|-------------|------------|--|
| _ane Group                                         | EBL       | EBT       | WBL          | WBT   | WBR          | NBL         | NBT        | SBL         | SBT         | SBR        |  |
| ane Configurations                                 | ľ         | 4Î        | 1            | 1     | 1            | ľ           | <b>∱</b> } | 1           | <u></u>     | 1          |  |
| raffic Volume (vph)                                | 98        | 42        | 34           | 105   | 189          | 82          | 734        | 68          | 365         | 83         |  |
| uture Volume (vph)                                 | 98        | 42        | 34           | 105   | 189          | 82          | 734        | 68          | 365         | 83         |  |
| ane Group Flow (vph)                               | 103       | 76        | 36           | 111   | 199          | 86          | 793        | 72          | 384         | 87         |  |
| Furn Type                                          | Perm      | NA        | Perm         | NA    | Perm         | pm+pt       | NA         | pm+pt       | NA          | Perm       |  |
| Protected Phases                                   |           | 4         |              | 8     |              | 5           | 2          | 1           | 6           |            |  |
| Permitted Phases                                   | 4         |           | 8            |       | 8            | 2           |            | 6           |             | 6          |  |
| Detector Phase                                     | 4         | 4         | 8            | 8     | 8            | 5           | 2          | 1           | 6           | 6          |  |
| Switch Phase                                       |           |           |              |       |              |             |            |             |             |            |  |
| Ainimum Initial (s)                                | 10.0      | 10.0      | 10.0         | 10.0  | 10.0         | 5.0         | 10.0       | 5.0         | 10.0        | 10.0       |  |
| Ainimum Split (s)                                  | 28.5      | 28.5      | 28.5         | 28.5  | 28.5         | 11.0        | 32.0       | 11.0        | 32.0        | 32.0       |  |
| Total Split (s)                                    | 40.0      | 40.0      | 40.0         | 40.0  | 40.0         | 13.0        | 57.0       | 13.0        | 57.0        | 57.0       |  |
| otal Split (%)                                     | 36.4%     | 36.4%     | 36.4%        | 36.4% | 36.4%        | 11.8%       | 51.8%      | 11.8%       | 51.8%       | 51.8%      |  |
| 'ellow Time (s)                                    | 3.0       | 3.0       | 3.0          | 3.0   | 3.0          | 3.7         | 3.7        | 3.7         | 3.7         | 3.7        |  |
| II-Red Time (s)                                    | 3.5       | 3.5       | 3.5          | 3.5   | 3.5          | 2.3         | 2.3        | 2.3         | 2.3         | 2.3        |  |
| lost Time Adjust (s)                               | -2.5      | -2.5      | -2.5         | -2.5  | -2.5         | -2.0        | -2.0       | -2.0        | -2.0        | -2.0       |  |
| Fotal Lost Time (s)                                | -2.5      | -2.5      | -2.3         | -2.3  | -2.3         | -2.0        | -2.0       | -2.0        | -2.0<br>4.0 | -2.0       |  |
| .ead/Lag                                           | 4.0       | 4.0       | 4.0          | 4.0   | 4.0          | 4.0<br>Lead | 4.0<br>Lag | 4.0<br>Lead | 4.0<br>Lag  | 4.0<br>Lag |  |
|                                                    |           |           |              |       |              | Yes         | Yes        | Yes         | •           | Yes        |  |
| Lead-Lag Optimize?                                 | Merro     | Mone      | Mona         | Mone  | Mona         |             |            |             | Yes         |            |  |
| Recall Mode                                        | None      | None      | None         | None  | None         | None        | C-Max      | None        | C-Max       | C-Max      |  |
| Act Effct Green (s)                                | 17.8      | 17.8      | 17.8         | 17.8  | 17.8         | 81.2        | 73.8       | 80.7        | 73.5        | 73.5       |  |
| Actuated g/C Ratio                                 | 0.16      | 0.16      | 0.16         | 0.16  | 0.16         | 0.74        | 0.67       | 0.73        | 0.67        | 0.67       |  |
| /c Ratio                                           | 0.59      | 0.26      | 0.18         | 0.39  | 0.48         | 0.12        | 0.35       | 0.14        | 0.17        | 0.08       |  |
| Control Delay                                      | 55.7      | 25.9      | 39.7         | 43.9  | 9.3          | 4.3         | 9.5        | 4.6         | 8.3         | 2.0        |  |
| Queue Delay                                        | 0.0       | 0.0       | 0.0          | 0.0   | 0.0          | 0.0         | 0.0        | 0.0         | 0.0         | 0.0        |  |
| Total Delay                                        | 55.7      | 25.9      | 39.7         | 43.9  | 9.3          | 4.3         | 9.5        | 4.6         | 8.3         | 2.0        |  |
| OS                                                 | E         | С         | D            | D     | A            | А           | А          | A           | А           | А          |  |
| Approach Delay                                     |           | 43.0      |              | 23.6  |              |             | 9.0        |             | 6.8         |            |  |
| Approach LOS                                       |           | D         |              | С     |              |             | A          |             | A           |            |  |
| Queue Length 50th (m)                              | 20.8      | 8.3       | 6.8          | 21.6  | 0.0          | 3.7         | 36.7       | 3.1         | 15.5        | 0.0        |  |
| Queue Length 95th (m)                              | 36.0      | 19.8      | 14.9         | 35.5  | 18.0         | 9.6         | 59.7       | 8.3         | 27.5        | 5.8        |  |
| nternal Link Dist (m)                              |           | 120.8     |              | 109.6 |              |             | 168.2      |             | 158.5       |            |  |
| Furn Bay Length (m)                                | 38.0      |           | 20.0         |       | 10.0         | 60.0        |            | 47.0        |             | 125.0      |  |
| Base Capacity (vph)                                | 353       | 568       | 411          | 583   | 630          | 748         | 2265       | 512         | 2265        | 1044       |  |
| Starvation Cap Reductn                             | 0         | 0         | 0            | 0     | 0            | 0           | 0          | 0           | 0           | 0          |  |
| Spillback Cap Reductn                              | 0         | 0         | 0            | 0     | 0            | 0           | 0          | 0           | 0           | 0          |  |
| Storage Cap Reductn                                | 0         | 0         | 0            | 0     | 0            | 0           | 0          | 0           | 0           | 0          |  |
| Reduced v/c Ratio                                  | 0.29      | 0.13      | 0.09         | 0.19  | 0.32         | 0.11        | 0.35       | 0.14        | 0.17        | 0.08       |  |
| ntersection Summary                                |           |           |              |       |              |             |            |             |             |            |  |
| Cycle Length: 110                                  |           |           |              |       |              |             |            |             |             |            |  |
| Actuated Cycle Length: 110                         |           |           |              |       |              |             |            |             |             |            |  |
| Offset: 57 (52%), Referenced to phase              | 2:NBTL a  | nd 6:SBTL | Start of Gre | en    |              |             |            |             |             |            |  |
| Vatural Cycle: 75                                  |           |           |              |       |              |             |            |             |             |            |  |
| Control Type: Actuated-Coordinated                 |           |           |              |       |              |             |            |             |             |            |  |
| Maximum v/c Ratio: 0.59                            |           |           |              |       |              |             |            |             |             |            |  |
| ntersection Signal Delay: 14.1                     |           |           |              | Int   | tersection L | S. B        |            |             |             |            |  |
| ntersection Capacity Utilization 52.7%             |           |           |              |       | U Level of S |             |            |             |             |            |  |
|                                                    | )         |           |              | iC    | U LEVELUI S  | DEI VILE A  |            |             |             |            |  |
| Analysis Period (min) 15                           |           |           |              |       |              |             |            |             |             |            |  |
|                                                    |           |           |              |       |              |             |            |             |             |            |  |
| Splits and Phases: 2: Eagleson & C                 | ope/Cader | ice       |              |       |              |             |            |             |             |            |  |
| Splits and Phases: 2: Eagleson & C<br>91<br>92 (R) | ope/Cader | ice       |              |       |              |             | 40         | i4          |             |            |  |

| Ø1         | 🚽 🔨 Ø2 (R)   | <u>→</u> Ø4    |
|------------|--------------|----------------|
| 13 s       | 57 s         | 40 s           |
| <b>Ø</b> 5 | ● \$\_Ø6 (R) | <i>∲</i><br>Ø8 |
| 13 s       | 57 s         | 40 s           |

## Existing - AM 3: First Air & Cope

|                                                 | _           | ~        | 4           | +          | •            | ~      |  |
|-------------------------------------------------|-------------|----------|-------------|------------|--------------|--------|--|
| Movement                                        | -<br>FDT    |          | -           | WDT        | ۱<br>NDL     | -      |  |
| Movement                                        | EBT         | EBR      | WBL         | WBT        | NBL          | NBR    |  |
| Lane Configurations                             | <b>1</b> /5 | 24       | 25          | <b>4</b>   | M            | F      |  |
| Traffic Volume (veh/h)<br>Future Volume (Veh/h) | 165<br>165  | 24<br>24 | 35<br>35    | 235<br>235 | 2<br>2       | 5<br>5 |  |
|                                                 | Free        | 24       | 30          | Free       |              | C      |  |
| Sign Control<br>Grade                           | o%          |          |             | 0%         | Stop<br>0%   |        |  |
|                                                 | 0%          | 0.05     | 0.95        | 0%         | 0%           | 0.95   |  |
| Peak Hour Factor                                |             | 0.95     |             |            |              |        |  |
| Hourly flow rate (vph)<br>Pedestrians           | 174         | 25       | 37          | 247        | 2            | 5      |  |
|                                                 |             |          |             |            |              |        |  |
| Lane Width (m)                                  |             |          |             |            |              |        |  |
| Walking Speed (m/s)                             |             |          |             |            |              |        |  |
| Percent Blockage                                |             |          |             |            |              |        |  |
| Right turn flare (veh)                          |             |          |             |            |              |        |  |
| Median type                                     | None        |          |             | None       |              |        |  |
| Median storage veh)                             |             |          |             |            |              |        |  |
| Upstream signal (m)                             |             |          |             | 145        |              |        |  |
| pX, platoon unblocked                           |             |          |             |            | 0.96         |        |  |
| vC, conflicting volume                          |             |          | 199         |            | 508          | 186    |  |
| vC1, stage 1 conf vol                           |             |          |             |            |              |        |  |
| vC2, stage 2 conf vol                           |             |          |             |            |              |        |  |
| vCu, unblocked vol                              |             |          | 199         |            | 462          | 186    |  |
| tC, single (s)                                  |             |          | 4.1         |            | 6.4          | 6.2    |  |
| tC, 2 stage (s)                                 |             |          |             |            |              |        |  |
| tF (s)                                          |             |          | 2.2         |            | 3.5          | 3.3    |  |
| p0 queue free %                                 |             |          | 97          |            | 100          | 99     |  |
| cM capacity (veh/h)                             |             |          | 1373        |            | 519          | 856    |  |
| Direction, Lane #                               | EB 1        | WB 1     | NB 1        |            |              |        |  |
| Volume Total                                    | 199         | 284      | 7           |            |              |        |  |
| Volume Left                                     | 0           | 37       | 2           |            |              |        |  |
| Volume Right                                    | 25          | 0        | 5           |            |              |        |  |
| cSH                                             | 1700        | 1373     | 722         |            |              |        |  |
| Volume to Capacity                              | 0.12        | 0.03     | 0.01        |            |              |        |  |
| Queue Length 95th (m)                           | 0.0         | 0.6      | 0.2         |            |              |        |  |
| Control Delay (s)                               | 0.0         | 1.2      | 10.0        |            |              |        |  |
| Lane LOS                                        |             | A        | В           |            |              |        |  |
| Approach Delay (s)                              | 0.0         | 1.2      | 10.0        |            |              |        |  |
| Approach LOS                                    |             |          | В           |            |              |        |  |
| Intersection Summary                            |             |          |             |            |              |        |  |
| Average Delay                                   |             |          | 0.8         |            |              |        |  |
| Intersection Capacity Utilization               |             |          | 39.1%       | ICI        | J Level of S | envice |  |
| Analysis Period (min)                           |             |          | 39.1%<br>15 | ICI        | D LEVEL UL S | CIVICE |  |
| Analysis Penou (IIIII)                          |             |          | 10          |            |              |        |  |

## Existing - PM 1: Eagleson & Fernbank

|                                      | ٦            | $\mathbf{F}$ | 1             | Ť            | Ŧ            | 4        |
|--------------------------------------|--------------|--------------|---------------|--------------|--------------|----------|
| Lane Group                           | EBL          | EBR          | NBL           | NBT          | SBT          | SBR      |
| Lane Configurations                  | ٢            | 1            | ٢             | 1            | 1            | 1        |
| Traffic Volume (vph)                 | 129          | 178          | 169           | 550          | 793          | 205      |
| Future Volume (vph)                  | 129          | 178          | 169           | 550          | 793          | 205      |
| Lane Group Flow (vph)                | 136          | 187          | 178           | 579          | 835          | 216      |
| Turn Type                            | Prot         | Perm         | pm+pt         | NA           | NA           | Perm     |
| Protected Phases                     | 4            |              | 5             | 2            | 6            |          |
| Permitted Phases                     |              | 4            | 2             |              |              | 6        |
| Detector Phase                       | 4            | 4            | 5             | 2            | 6            | 6        |
| Switch Phase                         |              |              |               |              |              |          |
| Minimum Initial (s)                  | 10.0         | 10.0         | 5.0           | 10.0         | 10.0         | 10.0     |
| Minimum Split (s)                    | 27.0         | 27.0         | 11.0          | 16.0         | 27.0         | 27.0     |
| Total Split (s)                      | 27.0         | 27.0         | 15.0          | 93.0         | 78.0         | 78.0     |
| Total Split (%)                      | 22.5%        | 22.5%        | 12.5%         | 77.5%        | 65.0%        | 65.0%    |
| Yellow Time (s)                      | 3.7          | 3.7          | 3.7           | 3.7          | 3.7          | 3.7      |
| All-Red Time (s)                     | 2.3          | 2.3          | 2.3           | 2.3          | 2.3          | 2.3      |
| Lost Time Adjust (s)                 | -2.0         | -2.0         | -2.0          | -2.0         | -2.0         | -2.0     |
| Total Lost Time (s)                  | 4.0          | 4.0          | 4.0           | 4.0          | 4.0          | 4.0      |
| Lead/Lag                             |              |              | Lead          |              | Lag          | Lag      |
| Lead-Lag Optimize?                   |              |              | Yes           |              | Yes          | Yes      |
| Recall Mode                          | None         | None         | None          | C-Max        | C-Max        | C-Max    |
| Act Effct Green (s)                  | 17.1         | 17.1         | 94.9          | 94.9         | 80.7         | 80.7     |
| Actuated g/C Ratio                   | 0.14         | 0.14         | 0.79          | 0.79         | 0.67         | 0.67     |
| v/c Ratio                            | 0.56         | 0.50         | 0.44          | 0.41         | 0.70         | 0.20     |
| Control Delay                        | 56.4         | 10.8         | 6.8           | 5.3          | 13.9         | 1.0      |
| Queue Delay                          | 0.0          | 0.0          | 0.0           | 0.0          | 0.0          | 0.0      |
| Total Delay                          | 56.4         | 10.8         | 6.8           | 5.3          | 13.9         | 1.0      |
| LOS                                  | 50.4<br>E    | 10.8<br>B    | 0.8<br>A      | 5.3<br>A     | 13.9<br>B    | 1.0<br>A |
| Approach Delay                       | 30.0         | U            | А             | 5.7          | ы<br>11.3    | A        |
| Approach LOS                         | 30.0<br>C    |              |               | 5.7<br>A     | B            |          |
| Queue Length 50th (m)                | 30.3         | 0.0          | 8.0           | 34.3         | 135.8        | 1.5      |
| Queue Length 95th (m)                | 30.3<br>47.8 | 18.8         | 8.0<br>16.9   | 34.3<br>63.1 | 220.0        | 0.0      |
| Internal Link Dist (m)               | 231.7        | 10.0         | 10.9          | 121.4        | 193.6        | 0.0      |
| Turn Bay Length (m)                  | 175.0        |              | 35.0          | 121.4        | 173.0        | 40.0     |
|                                      | 324          | 111          | 35.0<br>418   | 1410         | 1199         | 40.0     |
| Base Capacity (vph)                  |              | 441          |               |              |              |          |
| Starvation Cap Reductn               | 0            | 0            | 0             | 0            | 0            | 0        |
| Spillback Cap Reductn                | 0            | 0<br>0       | 0             | 0            | 0            | 0        |
| Storage Cap Reductn                  | 0 42         |              | 0<br>0.43     | 0            | 0<br>0.70    | 0        |
| Reduced v/c Ratio                    | 0.42         | 0.42         | 0.43          | 0.41         | 0.70         | 0.20     |
| Intersection Summary                 |              |              |               |              |              |          |
| Cycle Length: 120                    |              |              |               |              |              |          |
| Actuated Cycle Length: 120           |              |              |               |              |              |          |
| Offset: 29 (24%), Referenced to ph   | ase 2:NBTL a | nd 6:SBT, S  | Start of Gree | en           |              |          |
| Natural Cycle: 80                    |              |              |               |              |              |          |
| Control Type: Actuated-Coordinate    | d            |              |               |              |              |          |
| Maximum v/c Ratio: 0.70              |              |              |               |              |              |          |
| Intersection Signal Delay: 12.1      |              |              |               | In           | tersection L | OS: B    |
| Intersection Capacity Utilization 72 | .3%          |              |               |              | U Level of S |          |
| Analysis Period (min) 15             |              |              |               | 10           |              |          |
|                                      |              |              |               |              |              |          |
| Splits and Phases: 1: Eagleson a     | & Fernhank   |              |               |              |              |          |
| Č▲                                   |              |              |               |              |              |          |
| 🔨 Ø2 (R) 🛛                           |              |              |               |              |              |          |
| 93 s                                 |              |              |               |              |              |          |
|                                      |              |              |               |              |              |          |

 <sup>1</sup> Ø2 (R)

 93 s

 <sup>1</sup> Ø5
 <sup>1</sup> Ø6 (R)

 15 s

 <sup>7</sup> 78 s

## Existing - PM 2: Eagleson & Cope/Candence

| ane Configurations in ano Configurations in a configurations in a configurations in a configuration (vph) in a configura                                                                                                                                                                                   |                                    | ٦             | -          | 4            | -    | 1            | Ť         | 5    | Ļ     | -     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------|------------|--------------|------|--------------|-----------|------|-------|-------|
| ane Configurations       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lane Group                         | EBL           | EBT        | WBL          | WBT  | NBL          | NBT       | SBL  | SBT   | SBR   |
| raffic Volume (sph) 83 128 23 84 71 598 222 936 132 ane Group Flow (sph) 87 210 24 213 75 660 234 965 132 ane Group Flow (sph) 87 210 24 213 75 660 234 965 132 ane Group Flow (sph) 87 210 24 213 75 660 234 965 132 ane Group Flow (sph) 87 210 24 213 75 660 234 965 132 ane Group Flow (sph) 87 210 24 213 75 660 234 965 132 ane Group Flow (sph) 87 20 97 1 6 6 6 betted Phases 4 8 5 2 1 6 6 6 betted Phase 4 8 5 2 1 6 6 6 betted Phase 4 8 5 2 1 6 6 6 betted Phase 4 8 5 2 1 6 6 6 betted Phase 4 8 7 7 5 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |               |            |              |      |              |           |      |       |       |
| "jure Volume (ph)       83       128       23       84       71       598       222       936       132         ane Group Flow (vph)       87       210       24       213       75       660       234       985       139         Um Tyce       Perm       NA       Perm       NA       pm-pt       NA       pm-pt       NA       Perm       Na       Na       Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |               |            |              |      |              |           |      |       |       |
| ane Group Flow (vph)       87       210       24       213       75       660       234       985       139         Particled Phases       4       8       5       2       1       6         Permited Phases       4       8       5       2       1       6         Minimum Inilia (s)       100       100       100       50       100       50       100       100         Minimum Inilia (s)       100       100       100       100       50       100       50       000       30       320       320       320       320       320       320       320       320       320       320       320       320       320       320       320       320       32       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |               |            |              |      |              |           |      |       |       |
| Perm       NA       Perm       NA       pm-pt       NA       Perm       NA       Perm       NA       Perm       NA       Pm-pt       NA       Pm-pt       NA       Pm-pt       NA       Pm       NA       Pm-pt       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |               |            |              |      |              |           |      |       |       |
| Prodeciae Phases         4         8         5         2         1         6           Premited Phases         4         8         8         2         6         6           Selector Phase         4         4         8         8         2         1         6         6           Switch Phase         6         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |               | NA         |              | NA   | pm+pt        | NA        |      |       |       |
| Delector Phase       4       4       8       8       5       2       1       6       6         Switch Phase       10.0       10.0       10.0       10.0       5.0       10.0       5.0       10.0       10.0       10.0         Minimum Spit (s)       28.5       28.5       28.5       11.0       32.0       11.0       32.0       32.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Protected Phases                   |               |            |              |      |              |           |      |       |       |
| Switch Phase       10.0       10.0       10.0       10.0       5.0       10.0       5.0       10.0       32.0       11.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       32.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0 <td>Permitted Phases</td> <td>4</td> <td></td> <td>8</td> <td></td> <td>2</td> <td></td> <td>6</td> <td></td> <td>6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Permitted Phases                   | 4             |            | 8            |      | 2            |           | 6    |       | 6     |
| $\begin{tabular}{ c                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detector Phase                     | 4             | 4          | 8            | 8    | 5            | 2         | 1    | 6     | 6     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Switch Phase                       |               |            |              |      |              |           |      |       |       |
| Total Split (%)       34.2%       34.2%       34.2%       34.2%       34.2%       34.2%       10.0%       45.0%       20.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8%       55.8% <td>Minimum Initial (s)</td> <td></td> <td></td> <td></td> <td></td> <td>5.0</td> <td></td> <td>5.0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum Initial (s)                |               |            |              |      | 5.0          |           | 5.0  |       |       |
| fold Split (%)       34.2%       34.2%       34.2%       34.2%       34.2%       34.2%       34.2%       37       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum Split (s)                  |               |            |              |      |              |           |      |       |       |
| fellow Time (s)       3.0       3.0       3.0       3.0       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Split (s)                    |               |            |              |      |              |           |      |       |       |
| Ni-Red Time (s)       3.5       3.5       3.5       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       1.3 <td>Total Split (%)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Split (%)                    |               |            |              |      |              |           |      |       |       |
| ost Time Adjust (s)       -2.5       -2.5       -2.5       -2.0       -2.0       -2.0       -2.0         folal Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0         ead/Lag       Lead       Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |               |            |              |      |              |           |      |       |       |
| folal Lost Time (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |               |            |              |      |              |           |      |       |       |
| ead/Lag       Lead       Lag       Lead       Lag       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |               |            |              |      |              |           |      |       |       |
| ead-Lag Optimize?       Yes       Yes<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | 4.0           | 4.0        | 4.0          | 4.0  |              |           |      |       |       |
| Recall Mode         None         None         None         None         None         None         C-Max         C-Max <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>0</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |               |            |              |      |              | 0         |      | 0     |       |
| Act Effct Green (s)       21.4       21.4       21.4       21.4       21.4       83.0       74.0       90.2       79.9       79.9         Actuated g/C Ratio       0.18       0.18       0.18       0.18       0.18       0.62       0.75       0.67       0.67       0.67       0.67       0.67       0.67       0.67       0.67       0.67       0.61       0.13       0.01       0.01       0.02       0.01       0.02       0.01       0.01       0.01       0.01       0.01       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |               |            |              |      |              |           |      |       |       |
| Actuated g/C Ratio       0.18       0.18       0.18       0.18       0.18       0.69       0.62       0.75       0.67       0.67 <i>ic</i> Ratio       0.77       0.66       0.21       0.62       0.18       0.32       0.41       0.44       0.13         Control Delay       85.4       49.5       43.9       39.3       5.3       10.0       7.1       11.7       2.1         Dueue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |               |            |              |      |              |           |      |       |       |
| vic Ratio       0.77       0.66       0.21       0.62       0.18       0.32       0.41       0.44       0.13         Control Delay       85.4       49.5       43.9       39.3       5.3       10.0       7.1       11.7       2.1         Dueue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |               |            |              |      |              |           |      |       |       |
| Control Delay       85.4       49.5       43.9       39.3       5.3       10.0       7.1       11.7       2.1         Duce Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |               |            |              |      |              |           |      |       |       |
| Dueue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |               |            |              |      |              |           |      |       |       |
| fotal Delay       85.4       49.5       43.9       39.3       5.3       10.0       7.1       11.7       2.1         LOS       F       D       D       D       A       B       A       B       A         Approach Delay       60.0       39.8       9.6       9.9       Approach LOS       E       D       A       A         Dueue Length 50th (m)       19.8       41.3       4.9       33.1       3.1       27.7       13.4       55.7       0.0         Dueue Length 95th (m)       36.4       61.4       12.1       53.8       8.6       48.6       27.7       88.1       8.4         Internal Link Dist (m)       120.2       75.8       245.0       169.6       125.0         Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |               |            |              |      |              |           |      |       |       |
| LOS       F       D       D       D       A       B       A       B       A         Approach Delay       60.0       39.8       9.6       9.9         Approach LOS       E       D       A       A         Dueue Length 50th (m)       19.8       41.3       4.9       33.1       3.1       27.7       13.4       55.7       0.0         Dueue Length 95th (m)       36.4       61.4       12.1       53.8       8.6       48.6       27.7       88.1       8.4         Itemaal Link Dist (m)       120.2       75.8       245.0       169.6       125.0         Sase Capacity (vph)       195       537       199       544       41.3       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |               |            |              |      |              |           |      |       |       |
| Approach Delay       60.0       39.8       9.6       9.9         Approach LOS       E       D       A       A         Dueue Length 50th (m)       19.8       41.3       4.9       33.1       3.1       27.7       13.4       55.7       0.0         Dueue Length 95th (m)       36.4       61.4       12.1       53.8       8.6       48.6       27.7       88.1       8.4         nemal Link Dist (m)       120.2       75.8       245.0       169.6       125.0         Sase Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |               |            |              |      |              |           |      |       |       |
| Approach LOS       E       D       A       A         Dueue Length 50th (m)       19.8       41.3       4.9       33.1       3.1       27.7       13.4       55.7       0.0         Dueue Length 95th (m)       36.4       61.4       12.1       53.8       8.6       48.6       27.7       88.1       8.4         nternal Link Dist (m)       120.2       75.8       245.0       169.6       109.6         Urm Bay Length (m)       38.0       20.0       60.0       47.0       125.0       125.0         Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td>Г</td><td></td><td>U</td><td></td><td>А</td><td></td><td>A</td><td></td><td>A</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Г             |            | U            |      | А            |           | A    |       | A     |
| Ducue Length 50th (m)       19.8       41.3       4.9       33.1       3.1       27.7       13.4       55.7       0.0         Ducue Length 95th (m)       36.4       61.4       12.1       53.8       8.6       48.6       27.7       88.1       8.4         nternal Link Dist (m)       120.2       75.8       245.0       169.6       125.0         Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |               |            |              |      |              |           |      |       |       |
| Dueue Length 95th (m)       36.4       61.4       12.1       53.8       8.6       48.6       27.7       88.1       8.4         Internal Link Dist (m)       38.0       20.0       60.0       47.0       125.0         Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 10.8          |            | 10           |      | 21           |           | 13/  |       | 0.0   |
| nternal Link Dist (m)       120.2       75.8       245.0       169.6         Furn Bay Length (m)       38.0       20.0       60.0       47.0       125.0         Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |               |            |              |      |              |           |      |       |       |
| Furn Bay Length (m)       38.0       20.0       60.0       47.0       125.0         Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | 50.4          |            | 12.1         |      | 0.0          |           | 21.1 |       | 0.4   |
| Base Capacity (vph)       195       537       199       544       413       2078       652       2258       1057         Starvation Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td>38.0</td><td>120.2</td><td>20.0</td><td>15.0</td><td>60.0</td><td>240.0</td><td>47.0</td><td>107.0</td><td>125.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | 38.0          | 120.2      | 20.0         | 15.0 | 60.0         | 240.0     | 47.0 | 107.0 | 125.0 |
| Starvation Cap Reductin       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td></td> <td>537</td> <td></td> <td>544</td> <td></td> <td>2078</td> <td></td> <td>2258</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |               | 537        |              | 544  |              | 2078      |      | 2258  |       |
| Spillback Cap Reductn       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |               |            |              |      |              |           |      |       |       |
| Storage Cap Reductin       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th0< th=""></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |               |            |              |      |              |           |      |       |       |
| Reduced v/c Ratio 0.45 0.39 0.12 0.39 0.18 0.32 0.36 0.44 0.13   Intersection Summary   Cycle Length: 120   Actuated Cycle Length: 120   Offset: 14 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green   Vatural Cycle: 75   Control Type: Actuated-Coordinated   Maximum v/c Ratio: 0.77   Intersection Signal Delay: 18.2   Intersection Capacity Utilization 65.5%   Intersection Capacity Utilization 65.5%   Splits and Phases:   2: Eagleson & Cope/Candence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |               |            |              |      |              |           |      |       |       |
| Intersection Summary         Cycle Length: 120         Actuated Cycle Length: 120         Offset: 14 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green         Vatural Cycle: 75         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.77         Intersection Signal Delay: 18.2         Intersection Capacity Utilization 65.5%         Intersection Capacity Utilization 65.5%         Splits and Phases:         2: Eagleson & Cope/Candence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reduced v/c Ratio                  |               |            |              |      |              |           |      |       |       |
| Actuated Cycle Length: 120<br>Diffset: 14 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green<br>Vatural Cycle: 75<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.77<br>Intersection Signal Delay: 18.2<br>Intersection Capacity Utilization 65.5%<br>Intersection Capacity Utilization 65.5%<br>ICU Level of Service C<br>Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence<br>Value Value V                                                                                                                                                            | ntersection Summary                |               |            |              |      |              |           |      |       |       |
| Diffset: 14 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green         Vatural Cycle: 75         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.77         Intersection Signal Delay: 18.2         Intersection Capacity Utilization 65.5%         Intersection Capacity Utilization 65.5%         Splits and Phases:         2: Eagleson & Cope/Candence         Image: Maximum v/or Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cycle Length: 120                  |               |            |              |      |              |           |      |       |       |
| Vatural Cycle: 75<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.77<br>Intersection Signal Delay: 18.2<br>Intersection Capacity Utilization 65.5%<br>ICU Level of Service C<br>Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actuated Cycle Length: 120         |               |            |              |      |              |           |      |       |       |
| Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.77<br>Intersection Signal Delay: 18.2 Intersection LOS: B<br>Intersection Capacity Utilization 65.5% ICU Level of Service C<br>Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence<br>\$\stacksymbol{y1} \$\stacksymbol{y2} (R) \$y2                                                                                                 | Offset: 14 (12%), Referenced to ph | nase 2:NBTL a | nd 6:SBTL, | Start of Gre | en   |              |           |      |       |       |
| Maximum v/c Ratio: 0.77<br>ntersection Signal Delay: 18.2 Intersection LOS: B<br>ntersection Capacity Utilization 65.5% ICU Level of Service C<br>Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence<br>\$\sum_{01} \$\sum_{02} (R) \$\sum_{04} \$\sum_{05} \$\sum_{04} \$\ | Natural Cycle: 75                  |               |            |              |      |              |           |      |       |       |
| Intersection LOS: B<br>Intersection Capacity Utilization 65.5% ICU Level of Service C<br>Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence<br>ICU Level of Service C<br>ICU Level of Se              | Control Type: Actuated-Coordinate  | ed            |            |              |      |              |           |      |       |       |
| ntersection Capacity Utilization 65.5% ICU Level of Service C<br>Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence<br>1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |               |            |              |      |              |           |      |       |       |
| Analysis Period (min) 15<br>Splits and Phases: 2: Eagleson & Cope/Candence<br>$\phi_1 \phi_2$ (R)<br>$\phi_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |               |            |              |      |              |           |      |       |       |
| Splits and Phases: 2: Eagleson & Cope/Candence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | .5%           |            |              | IC   | U Level of S | Service C |      |       |       |
| ∮ø1 ∮ø2 (R)ø4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis Period (min) 15           |               |            |              |      |              |           |      |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Splits and Phases: 2: Eagleson     | & Cope/Cande  | ence       |              |      |              |           |      | -     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ø1                                 | ∎ ¶ Ø2 (R     | ()         |              |      |              |           | 2    | ∲ø4   |       |
| 23.5 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 s                               | 54 s          |            |              |      |              |           |      |       |       |

| Ø1         | 🚽 🔨 Ø2 (R) | <i>-</i> <b>→</b> Ø4 |
|------------|------------|----------------------|
| 25 s       | 54 s       | 41 s                 |
| <b>Ø</b> 5 | ∲ Ø6 (R) 📮 | ₩Ø8                  |
| 12 s       | 67 s       | 41 s                 |

## Existing - PM 3: First Air & Cope

|                                             |             |             | ~           | -             |              | •      |
|---------------------------------------------|-------------|-------------|-------------|---------------|--------------|--------|
|                                             | -           | •           | 1           | -             |              | 1      |
| Movement                                    | EBT         | EBR         | WBL         | WBT           | NBL          | NBR    |
| Lane Configurations                         | ¢Î          |             |             | <del>با</del> | - M          |        |
| Traffic Volume (veh/h)                      | 267         | 1           | 2           | 285           | 5            | 15     |
| Future Volume (Veh/h)                       | 267         | 1           | 2           | 285           | 5            | 15     |
| Sign Control                                | Free        |             |             | Free          | Stop         |        |
| Grade                                       | 0%          |             |             | 0%            | 0%           |        |
| Peak Hour Factor                            | 0.95        | 0.95        | 0.95        | 0.95          | 0.95         | 0.95   |
| Hourly flow rate (vph)                      | 281         | 1           | 2           | 300           | 5            | 16     |
| Pedestrians                                 |             |             |             |               |              |        |
| Lane Width (m)                              |             |             |             |               |              |        |
| Walking Speed (m/s)                         |             |             |             |               |              |        |
| Percent Blockage                            |             |             |             |               |              |        |
| Right turn flare (veh)                      |             |             |             |               |              |        |
| Median type                                 | None        |             |             | None          |              |        |
| Median storage veh)                         |             |             |             |               |              |        |
| Upstream signal (m)                         |             |             |             | 144           |              |        |
| pX, platoon unblocked                       |             |             |             |               |              |        |
| vC, conflicting volume                      |             |             | 282         |               | 586          | 282    |
| vC1, stage 1 conf vol                       |             |             |             |               |              |        |
| vC2, stage 2 conf vol                       |             |             |             |               |              |        |
| vCu, unblocked vol                          |             |             | 282         |               | 586          | 282    |
| tC, single (s)                              |             |             | 4.1         |               | 6.4          | 6.2    |
| tC, 2 stage (s)                             |             |             |             |               |              |        |
| tF (s)                                      |             |             | 2.2         |               | 3.5          | 3.3    |
| p0 queue free %                             |             |             | 100         |               | 99           | 98     |
| cM capacity (veh/h)                         |             |             | 1280        |               | 472          | 757    |
| Direction, Lane #                           | EB 1        | WB 1        | NB 1        |               | =            |        |
| Volume Total                                | 282         | 302         | 21          |               |              |        |
| Volume Left                                 | 282         | 302         | 21<br>5     |               |              |        |
| Volume Right                                | 1           | 2           | 5<br>16     |               |              |        |
| cSH                                         | 1700        | 1280        | 662         |               |              |        |
|                                             |             |             |             |               |              |        |
| Volume to Capacity<br>Queue Length 95th (m) | 0.17<br>0.0 | 0.00<br>0.0 | 0.03<br>0.7 |               |              |        |
|                                             |             |             |             |               |              |        |
| Control Delay (s)                           | 0.0         | 0.1         | 10.6        |               |              |        |
| Lane LOS                                    | 0.0         | A           | B           |               |              |        |
| Approach Delay (s)                          | 0.0         | 0.1         | 10.6        |               |              |        |
| Approach LOS                                |             |             | В           |               |              |        |
| Intersection Summary                        |             |             |             |               |              |        |
| Average Delay                               |             |             | 0.4         |               |              |        |
| Intersection Capacity Utilization           |             |             | 27.5%       | ICI           | J Level of S | ervice |
| Analysis Period (min)                       |             |             | 15          |               |              |        |
|                                             |             |             |             |               |              |        |

#### Existing - SAT 1: Eagleson & Fernbank

|                                        | ٦            | $\mathbf{r}$ | •            | t            | ţ            | ~            |
|----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lane Group                             | EBL          | EBR          | NBL          | NBT          | SBT          | SBR          |
| Lane Configurations                    | ۲            | 1            | 7            | 1            | 1            | 1            |
| Traffic Volume (vph)                   | 158          | 167          | 149          | 464          | 421          | 130          |
| Future Volume (vph)                    | 158          | 167          | 149          | 464          | 421          | 130          |
| Lane Group Flow (vph)                  | 166          | 176          | 157          | 488          | 443          | 137          |
| Turn Type                              | Prot         | Perm         | Perm         | NA           | NA           | Perm         |
| Protected Phases                       | 4            |              |              | 2            | 6            |              |
| Permitted Phases                       |              | 4            | 2            | _            |              | 6            |
| Detector Phase                         | 4            | 4            | 2            | 2            | 6            | 6            |
| Switch Phase                           |              |              |              |              |              |              |
| Minimum Initial (s)                    | 10.0         | 10.0         | 10.0         | 10.0         | 10.0         | 10.0         |
| Minimum Split (s)                      | 27.0         | 27.0         | 16.0         | 16.0         | 27.0         | 27.0         |
| Total Split (s)                        | 27.0         | 27.0         | 53.0         | 53.0         | 53.0         | 53.0         |
| Total Split (%)                        | 33.8%        | 33.8%        | 66.3%        | 66.3%        | 66.3%        | 66.3%        |
| Yellow Time (s)                        | 3.7          | 33.070       | 3.7          | 3.7          | 3.7          | 3.7          |
| All-Red Time (s)                       | 2.3          | 2.3          | 2.3          | 2.3          | 2.3          | 2.3          |
| Lost Time Adjust (s)                   | -2.0         | -2.0         | -2.0         | -2.0         | -2.0         | -2.0         |
| Total Lost Time (s)                    | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          |
| Lead/Lag                               | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          |
| Lead-Lag Optimize?                     |              |              |              |              |              |              |
| Recall Mode                            | None         | None         | Мах          | Мах          | Мах          | Мах          |
| Act Effct Green (s)                    | 15.3         | 15.3         | 49.1         | 49.1         | 49.1         | 49.1         |
| Actuated g/C Ratio                     | 0.21         | 0.21         | 49.1<br>0.68 | 49.1<br>0.68 | 49.1<br>0.68 | 49.1<br>0.68 |
| v/c Ratio                              | 0.21         | 0.21         | 0.68         | 0.68         | 0.88         | 0.68         |
|                                        | 0.46<br>29.2 |              | 0.28         |              | 0.37         |              |
| Control Delay                          |              | 6.6          |              | 7.1          |              | 1.5          |
| Queue Delay                            | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          | 0.0          |
| Total Delay                            | 29.2         | 6.6          | 7.1          | 7.1          | 6.7          | 1.5          |
| LOS<br>Annreach Delau                  | C            | А            | А            | A            | A            | А            |
| Approach Delay                         | 17.6         |              |              | 7.1          | 5.5          |              |
| Approach LOS                           | В            |              |              | A            | A            |              |
| Queue Length 50th (m)                  | 19.8         | 0.0          | 6.6          | 22.9         | 20.1         | 0.0          |
| Queue Length 95th (m)                  | 35.6         | 13.3         | 20.6         | 55.2         | 48.7         | 5.8          |
| Internal Link Dist (m)                 | 344.8        |              |              | 208.3        | 172.6        |              |
| Turn Bay Length (m)                    | 175.0        |              | 35.0         |              |              | 40.0         |
| Base Capacity (vph)                    | 539          | 602          | 567          | 1209         | 1209         | 1072         |
| Starvation Cap Reductn                 | 0            | 0            | 0            | 0            | 0            | 0            |
| Spillback Cap Reductn                  | 0            | 0            | 0            | 0            | 0            | 0            |
| Storage Cap Reductn                    | 0            | 0            | 0            | 0            | 0            | 0            |
| Reduced v/c Ratio                      | 0.31         | 0.29         | 0.28         | 0.40         | 0.37         | 0.13         |
| Intersection Summary                   |              |              |              |              |              |              |
| Cycle Length: 80                       |              |              |              |              |              |              |
| Actuated Cycle Length: 72.5            |              |              |              |              |              |              |
| Natural Cycle: 55                      |              |              |              |              |              |              |
| Control Type: Actuated-Uncoordinat     | hor          |              |              |              |              |              |
| Maximum v/c Ratio: 0.46                | .cu          |              |              |              |              |              |
| Intersection Signal Delay: 8.8         |              |              |              | In           | tersection L | N -20        |
| <b>o</b> ,                             | 00/          |              |              |              |              |              |
| Intersection Capacity Utilization 51.3 | 0.70         |              |              | IC           | U Level of S | belvice A    |
| Analysis Period (min) 15               |              |              |              |              |              |              |
|                                        |              |              |              |              |              |              |

Splits and Phases: 1: Eagleson & Fernbank

| ↑ ø 2 | 📌 ø4 |
|-------|------|
| 53 s  | 27 s |
|       |      |
| 53 s  |      |

## Existing - SAT 2: Eagleson & Cope/Cadence

|                                          | ٦            | <b>→</b>     | 4            | -            | 1            | 1            | 1            | ŧ            | 4            |
|------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Lane Group                               | EBL          | EBT          | WBL          | WBT          | NBL          | NBT          | SBL          | SBT          | SBR          |
| Lane Configurations                      | ۲.<br>۲      | 4Î           | 2            | 4Î           | 1            | <b>∱</b> }   | 7            | <u></u>      | 1            |
| Traffic Volume (vph)                     | 98           | 70           | 21           | 82           | 49           | 550          | 123          | 487          | 107          |
| Future Volume (vph)                      | 98           | 70           | 21           | 82           | 49           | 550          | 123          | 487          | 107          |
| Lane Group Flow (vph)                    | 103          | 118          | 22           | 209          | 52           | 604          | 129          | 513          | 113          |
| Turn Type                                | Perm         | NA           | Perm         | NA           | pm+pt        | NA           | pm+pt        | NA           | Perm         |
| Protected Phases                         |              | 4            |              | 8            | 5            | 2            | 1            | 6            |              |
| Permitted Phases                         | 4            |              | 8            |              | 2            |              | 6            |              | 6            |
| Detector Phase                           | 4            | 4            | 8            | 8            | 5            | 2            | 1            | 6            | 6            |
| Switch Phase                             |              |              |              |              |              |              |              |              |              |
| Minimum Initial (s)                      | 10.0         | 10.0         | 10.0         | 10.0         | 5.0          | 10.0         | 5.0          | 10.0         | 10.0         |
| Minimum Split (s)                        | 28.5         | 28.5         | 28.5         | 28.5         | 11.0         | 32.0         | 11.0         | 32.0         | 32.0         |
| Total Split (s)                          | 31.0         | 31.0         | 31.0         | 31.0         | 16.0         | 43.0         | 16.0         | 43.0         | 43.0         |
| Total Split (%)                          | 34.4%        | 34.4%        | 34.4%        | 34.4%        | 17.8%        | 47.8%        | 17.8%        | 47.8%        | 47.8%        |
| Yellow Time (s)                          | 3.0          | 3.0          | 3.0          | 3.0          | 3.7          | 3.7          | 3.7          | 3.7          | 3.7          |
| All-Red Time (s)                         | 3.5          | 3.5          | 3.5          | 3.5          | 2.3          | 2.3          | 2.3          | 2.3          | 2.3          |
| Lost Time Adjust (s)                     | -2.5         | -2.5         | -2.5         | -2.5         | -2.0         | -2.0         | -2.0         | -2.0         | -2.0         |
| Total Lost Time (s)                      | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          | 4.0          |
| Lead/Lag                                 |              |              |              |              | Lead         | Lag          | Lead         | Lag          | Lag          |
| Lead-Lag Optimize?                       | News         | News         | News         | NL           | Yes          | Yes          | Yes          | Yes          | Yes          |
| Recall Mode                              | None         | None         | None         | None         | None         | C-Max        | None         | C-Max        | C-Max        |
| Act Effct Green (s)                      | 18.1<br>0.20 | 18.1<br>0.20 | 18.1<br>0.20 | 18.1<br>0.20 | 58.5<br>0.65 | 50.1<br>0.56 | 62.6<br>0.70 | 56.1<br>0.62 | 56.1<br>0.62 |
| Actuated g/C Ratio<br>v/c Ratio          | 0.20         | 0.20         | 0.20         | 0.20         | 0.65         | 0.56         | 0.70         | 0.62         | 0.62         |
| Control Delay                            | 0.00<br>51.9 | 22.8         | 27.5         | 23.3         | 5.6          | 12.4         | 6.0          | 9.9          | 2.7          |
| Queue Delay                              | 0.0          | 0.0          | 0.0          | 23.3         | 0.0          | 0.0          | 0.0          | 9.9<br>0.0   | 0.0          |
| Total Delay                              | 0.0<br>51.9  | 22.8         | 27.5         | 23.3         | 0.0<br>5.6   | 12.4         | 6.0          | 9.9          | 2.7          |
| LOS                                      | 51.9<br>D    | 22.0<br>C    | 27.5<br>C    | 23.3<br>C    | 5.0<br>A     | 12.4<br>B    | 0.0<br>A     | 9.9<br>A     | 2.7<br>A     |
| Approach Delay                           | U            | 36.3         | U            | 23.7         | ~            | 11.9         | ~            | 8.2          | А            |
| Approach LOS                             |              | D            |              | 23.7<br>C    |              | B            |              | 0.2<br>A     |              |
| Queue Length 50th (m)                    | 16.6         | 12.4         | 3.1          | 19.3         | 2.2          | 26.8         | 5.8          | 21.4         | 0.0          |
| Queue Length 95th (m)                    | 30.8         | 24.2         | 8.4          | 36.0         | 7.0          | 48.2         | 14.7         | 38.3         | 8.0          |
| Internal Link Dist (m)                   | 00.0         | 117.0        | 0.1          | 75.8         |              | 262.7        |              | 169.6        | 0.0          |
| Turn Bay Length (m)                      | 38.0         |              | 20.0         | . 0.0        | 60.0         |              | 47.0         | . 57.10      | 125.0        |
| Base Capacity (vph)                      | 234          | 529          | 343          | 545          | 685          | 1877         | 592          | 2113         | 989          |
| Starvation Cap Reductn                   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Spillback Cap Reductn                    | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Storage Cap Reductn                      | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| Reduced v/c Ratio                        | 0.44         | 0.22         | 0.06         | 0.38         | 0.08         | 0.32         | 0.22         | 0.24         | 0.11         |
| Intersection Summary<br>Cycle Length: 90 |              |              |              |              |              |              |              |              |              |
| Actuated Cycle Length: 90                | _            |              |              |              |              |              |              |              |              |
| Offset: 22 (24%), Referenced to ph       | ase 2:NBTL a | ind 6:SBTL,  | Start of Gre | een          |              |              |              |              |              |
| Natural Cycle: 75                        |              |              |              |              |              |              |              |              |              |
| Control Type: Actuated-Coordinate        | d            |              |              |              |              |              |              |              |              |
| Maximum v/c Ratio: 0.66                  |              |              |              |              |              |              |              |              |              |
| Intersection Signal Delay: 14.7          |              |              |              |              | tersection L |              |              |              |              |
| Intersection Capacity Utilization 57     | .8%          |              |              | IC           | U Level of S | Service B    |              |              |              |
| Analysis Period (min) 15                 |              |              |              |              |              |              |              |              |              |
| Splits and Phases: 2: Eagleson &         | & Cope/Cader | nce          |              |              |              |              |              |              |              |
| •ø1 •                                    | Ø2 (R)       |              |              |              |              |              | 2            | ¢ø4          |              |
| 16 s 43                                  | s            |              |              |              |              |              | 31           | s            |              |

| Ø1         | Ø2 (R) | <b>⊸</b> ø4 |
|------------|--------|-------------|
| 16 s       | 43 s   | 31 s        |
| <b>Ø</b> 5 | Ø6 (R) | <b>₩</b> Ø8 |
| 16 s       | 43 s   | 31 s        |

## Existing - SAT 3: Site & Cope

|                                   | <b>→</b>   |      | ~        | +          | •             | 1      |   |
|-----------------------------------|------------|------|----------|------------|---------------|--------|---|
| Movement                          | EBT        | EBR  | ▼<br>WBL | WBT        | NBL           | NBR    |   |
| Lane Configurations               | <u>لەت</u> | LDIV | WDL      | <u>۳۵۷</u> | MDL M         | NUN    | _ |
| Traffic Volume (veh/h)            | 210        | 2    | 2        | 238        | <b>T</b><br>2 | 2      |   |
| Future Volume (Veh/h)             | 210        | 2    | 2        | 230        | 2             | 2      |   |
| Sign Control                      | Free       | 2    | 2        | Free       | Stop          | 2      |   |
| Grade                             | 0%         |      |          | 0%         | 0%            |        |   |
| Peak Hour Factor                  | 0.95       | 0.95 | 0.95     | 0.95       | 0.95          | 0.95   |   |
| Hourly flow rate (vph)            | 221        | 2    | 2        | 251        | 2             | 2      |   |
| Pedestrians                       | 221        | 2    | 2        | 231        | 2             | 2      |   |
| Lane Width (m)                    |            |      |          |            |               |        |   |
| Walking Speed (m/s)               |            |      |          |            |               |        |   |
| Percent Blockage                  |            |      |          |            |               |        |   |
| Right turn flare (veh)            |            |      |          |            |               |        |   |
| Median type                       | None       |      |          | None       |               |        |   |
| Median storage veh)               | NOLE       |      |          | NULLE      |               |        |   |
| Upstream signal (m)               |            |      |          | 141        |               |        |   |
| pX, platoon unblocked             |            |      |          | 141        |               |        |   |
| vC, conflicting volume            |            |      | 223      |            | 477           | 222    |   |
| vC1, stage 1 conf vol             |            |      | 223      |            | 4//           | 222    |   |
| vC2, stage 2 conf vol             |            |      |          |            |               |        |   |
| vCu, unblocked vol                |            |      | 223      |            | 477           | 222    |   |
| tC, single (s)                    |            |      | 4.1      |            | 6.4           | 6.2    |   |
| tC, 2 stage (s)                   |            |      | 4.1      |            | 0.4           | 0.2    |   |
| tF (s)                            |            |      | 2.2      |            | 3.5           | 3.3    |   |
| p0 queue free %                   |            |      | 100      |            | 100           | 100    |   |
| cM capacity (veh/h)               |            |      | 1346     |            | 546           | 818    |   |
| · · ·                             |            |      |          |            | 540           | 010    |   |
| Direction, Lane #                 | EB 1       | WB 1 | NB 1     |            |               |        |   |
| Volume Total                      | 223        | 253  | 4        |            |               |        |   |
| Volume Left                       | 0          | 2    | 2        |            |               |        |   |
| Volume Right                      | 2          | 0    | 2        |            |               |        |   |
| cSH                               | 1700       | 1346 | 655      |            |               |        |   |
| Volume to Capacity                | 0.13       | 0.00 | 0.01     |            |               |        |   |
| Queue Length 95th (m)             | 0.0        | 0.0  | 0.1      |            |               |        |   |
| Control Delay (s)                 | 0.0        | 0.1  | 10.5     |            |               |        |   |
| Lane LOS                          |            | А    | В        |            |               |        |   |
| Approach Delay (s)                | 0.0        | 0.1  | 10.5     |            |               |        |   |
| Approach LOS                      |            |      | В        |            |               |        |   |
| Intersection Summary              |            |      |          |            |               |        |   |
| Average Delay                     |            |      | 0.1      |            |               |        |   |
| Intersection Capacity Utilization |            |      | 24.9%    | ICI        | J Level of S  | ervice |   |
| Analysis Period (min)             |            |      | 15       | 100        | 20001010      | 000    |   |
|                                   |            |      | 15       |            |               |        |   |

Appendix L SYNCHRO Analysis: Projected 2019 Conditions

# Projected 2019 - PM 1: Eagleson & Fernbank

|                                                         | ۶            | $\mathbf{r}$ | •             | Ť        | Ŧ              | ~         |
|---------------------------------------------------------|--------------|--------------|---------------|----------|----------------|-----------|
| Lane Group                                              | EBL          | EBR          | NBL           | NBT      | SBT            | SBR       |
| Lane Configurations                                     | <u> </u>     | 1            | 1             | <b>↑</b> | <u> </u>       | 1         |
| Traffic Volume (vph)                                    | 136          | 180          | 169           | 568      | 812            | 210       |
| Future Volume (vph)                                     | 136          | 180          | 169           | 568      | 812            | 210       |
| Lane Group Flow (vph)                                   | 143          | 189          | 178           | 598      | 855            | 221       |
| Turn Type                                               | Prot         | Perm         | pm+pt         | NA       | NA             | Perm      |
| Protected Phases                                        | 4            |              | 5             | 2        | 6              |           |
| Permitted Phases                                        |              | 4            | 2             |          |                | 6         |
| Detector Phase                                          | 4            | 4            | 5             | 2        | 6              | 6         |
| Switch Phase                                            |              |              |               |          |                |           |
| Minimum Initial (s)                                     | 10.0         | 10.0         | 5.0           | 10.0     | 10.0           | 10.0      |
| Minimum Split (s)                                       | 27.0         | 27.0         | 11.0          | 16.0     | 27.0           | 27.0      |
| Total Split (s)                                         | 27.0         | 27.0         | 15.0          | 93.0     | 78.0           | 78.0      |
| Total Split (%)                                         | 22.5%        | 22.5%        | 12.5%         | 77.5%    | 65.0%          | 65.0%     |
| Yellow Time (s)                                         | 3.7          | 3.7          | 3.7           | 3.7      | 3.7            | 3.7       |
| All-Red Time (s)                                        | 2.3          | 2.3          | 2.3           | 2.3      | 2.3            | 2.3       |
| Lost Time Adjust (s)                                    | -2.0         | -2.0         | -2.0          | -2.0     | -2.0           | -2.0      |
| Total Lost Time (s)                                     | 4.0          | 4.0          | 4.0           | 4.0      | 4.0            | 4.0       |
| Lead/Lag                                                |              |              | Lead          |          | Lag            | Lag       |
| Lead-Lag Optimize?                                      |              |              | Yes           |          | Yes            | Yes       |
| Recall Mode                                             | None         | None         | None          | C-Max    | C-Max          | C-Max     |
| Act Effct Green (s)                                     | 17.4         | 17.4         | 94.6          | 94.6     | 80.4           | 80.4      |
| Actuated g/C Ratio                                      | 0.14         | 0.14         | 0.79          | 0.79     | 0.67           | 0.67      |
| v/c Ratio                                               | 0.58         | 0.50         | 0.45          | 0.43     | 0.72           | 0.20      |
| Control Delay                                           | 56.9         | 10.7         | 7.2           | 5.6      | 13.8           | 0.8       |
| Queue Delay                                             | 0.0          | 0.0          | 0.0           | 0.0      | 0.0            | 0.0       |
| Total Delay                                             | 56.9         | 10.7         | 7.2           | 5.6      | 13.8           | 0.8       |
| LOS                                                     | E            | В            | A             | A        | В              | A         |
| Approach Delay                                          | 30.6         | _            |               | 5.9      | 11.2           |           |
| Approach LOS                                            | С            |              |               | A        | В              |           |
| Queue Length 50th (m)                                   | 31.9         | 0.0          | 8.1           | 36.9     | 142.7          | 0.3       |
| Queue Length 95th (m)                                   | 50.1         | 19.0         | 16.9          | 66.3     | 230.0          | 0.0       |
| Internal Link Dist (m)                                  | 190.5        |              |               | 91.6     | 231.7          | 0.0       |
| Turn Bay Length (m)                                     | 175.0        |              | 35.0          |          | _5             | 40.0      |
| Base Capacity (vph)                                     | 324          | 443          | 403           | 1406     | 1195           | 1089      |
| Starvation Cap Reductn                                  | 0            | 0            | 0             | 0        | 0              | 0         |
| Spillback Cap Reductn                                   | 0            | 0            | 0             | 0        | 0              | 0         |
| Storage Cap Reductn                                     | 0            | 0            | 0             | 0        | 0              | 0         |
| Reduced v/c Ratio                                       | 0.44         | 0.43         | 0.44          | 0.43     | 0.72           | 0.20      |
| Intersection Summary                                    |              |              |               |          | =              |           |
| Cycle Length: 120                                       |              |              |               |          |                |           |
|                                                         |              |              |               |          |                |           |
| Actuated Cycle Length: 120                              |              |              | Nort of Cro   |          |                |           |
| Offset: 29 (24%), Referenced to pha                     | ase 2:NBTL a | na 6:281, 3  | start of Gree | en       |                |           |
| Natural Cycle: 80<br>Control Type: Actuated Coordinated | 1            |              |               |          |                |           |
| Control Type: Actuated-Coordinated                      | 1            |              |               |          |                |           |
| Maximum v/c Ratio: 0.72                                 |              |              |               |          | lava a the set |           |
| Intersection Signal Delay: 12.3                         | 20/          |              |               |          | tersection L   |           |
| Intersection Capacity Utilization 73.                   | 3%           |              |               | IC       | U Level of S   | Service D |
| Analysis Period (min) 15                                |              |              |               |          |                |           |
| Splits and Phases: 1: Eagleson 8                        | Fernbank     |              |               |          |                |           |
|                                                         |              |              |               |          |                |           |
| Ø2 (R)                                                  |              |              |               |          |                |           |
| 93 s                                                    |              |              |               |          |                |           |

**Ø**5 Ø6 (R) 78 s

15 s

## Projected 2019 - PM 2: Eagleson & Cope/Cadence

|                                                 | ٦                | -            | 4            | ←         | 1            | 1         | 5        | Ļ           | ~        |  |
|-------------------------------------------------|------------------|--------------|--------------|-----------|--------------|-----------|----------|-------------|----------|--|
| ane Group                                       | EBL              | EBT          | WBL          | WBT       | NBL          | NBT       | SBL      | SBT         | SBR      |  |
| ane Configurations                              | 7                | 4            | ٢            | ef 🗍      | ۲            |           | ۲        | <u>††</u>   | 1        |  |
| Traffic Volume (vph)                            | 101              | 145          | 46           | 95        | 77           | 633       | 222      | 986         | 138      |  |
| uture Volume (vph)                              | 101              | 145          | 46           | 95        | 77           | 633       | 222      | 986         | 138      |  |
| ane Group Flow (vph)                            | 106              | 228          | 48           | 225       | 81           | 714       | 234      | 1038        | 145      |  |
| Furn Type                                       | Perm             | NA           | Perm         | NA        | pm+pt        | NA        | pm+pt    | NA          | Perm     |  |
| Protected Phases                                |                  | 4            |              | 8         | 5            | 2         | 1        | 6           |          |  |
| Permitted Phases                                | 4                |              | 8            |           | 2            |           | 6        |             | 6        |  |
| Detector Phase                                  | 4                | 4            | 8            | 8         | 5            | 2         | 1        | 6           | 6        |  |
| Switch Phase                                    |                  |              |              |           |              |           |          |             |          |  |
| Vinimum Initial (s)                             | 10.0             | 10.0         | 10.0         | 10.0      | 5.0          | 10.0      | 5.0      | 10.0        | 10.0     |  |
| /linimum Split (s)                              | 28.5             | 28.5         | 28.5         | 28.5      | 11.0         | 32.0      | 11.0     | 32.0        | 32.0     |  |
| Fotal Split (s)                                 | 41.0             | 41.0         | 41.0         | 41.0      | 12.0         | 54.0      | 25.0     | 67.0        | 67.0     |  |
| Fotal Split (%)                                 | 34.2%            | 34.2%        | 34.2%        | 34.2%     | 10.0%        | 45.0%     | 20.8%    | 55.8%       | 55.8%    |  |
| fellow Time (s)                                 | 3.0              | 3.0          | 3.0          | 3.0       | 3.7          | 3.7       | 3.7      | 3.7         | 3.7      |  |
| All-Red Time (s)                                | 3.5              | 3.5          | 3.5          | 3.5       | 2.3          | 2.3       | 2.3      | 2.3         | 2.3      |  |
| ost Time Adjust (s)                             | -2.5             | -2.5         | -2.5         | -2.5      | -2.0         | -2.0      | -2.0     | -2.0        | -2.0     |  |
| Total Lost Time (s)                             | 4.0              | 4.0          | 4.0          | 4.0       | 4.0          | 4.0       | 4.0      | 4.0         | 4.0      |  |
| .ead/Lag                                        | ч.0              | -T.U         | 0.1          | U.F       | Lead         | Lag       | Lead     | Lag         | Lag      |  |
| _ead-Lag Optimize?                              |                  |              |              |           | Yes          | Yes       | Yes      | Yes         | Yes      |  |
| Recall Mode                                     | None             | None         | None         | None      | None         | C-Max     | None     | C-Max       | C-Max    |  |
| Act Effct Green (s)                             | 23.4             | 23.4         | 23.4         | 23.4      | 80.9         | 71.7      | 88.2     | 77.7        | 77.7     |  |
| Actuated g/C Ratio                              | 0.20             | 0.20         | 0.20         | 0.20      | 0.67         | 0.60      | 0.74     | 0.65        | 0.65     |  |
| //c Ratio                                       | 0.85             | 0.20         | 0.20         | 0.62      | 0.07         | 0.36      | 0.44     | 0.03        | 0.03     |  |
| Control Delay                                   | 93.9             | 48.5         | 49.3         | 39.9      | 5.6          | 9.8       | 8.3      | 13.5        | 2.4      |  |
| Queue Delay                                     | 0.0              | 0.0          | 0.0          | 0.0       | 0.0          | 0.0       | 0.0      | 0.0         | 0.0      |  |
| Fotal Delay                                     | 93.9             | 48.5         | 49.3         | 39.9      | 5.6          | 9.8       | 8.3      | 13.5        | 2.4      |  |
| _OS                                             | ,,               | 40.5<br>D    | 47.3<br>D    | 57.7<br>D | 3.0<br>A     | A         | 0.5<br>A | 13.3<br>B   | 2.4<br>A |  |
| Approach Delay                                  | 1                | 62.9         | D            | 41.5      | ~            | 9.4       | Λ        | 11.5        | ~        |  |
| Approach LOS                                    |                  | 02.9<br>E    |              | 41.5<br>D |              | 9.4<br>A  |          | B           |          |  |
| Queue Length 50th (m)                           | 24.5             | 45.8         | 10.0         | 37.4      | 3.2          | 23.6      | 14.2     | 62.6        | 0.0      |  |
| Queue Length 95th (m)                           | #43.4            | 43.8<br>64.8 | 20.1         | 56.7      | 9.1          | 42.0      | 30.9     | 103.2       | 9.3      |  |
| nternal Link Dist (m)                           | #43.4            | 118.1        | 20.1         | 75.8      | 7.1          | 118.6     | 30.9     | 169.6       | 7.3      |  |
| Furn Bay Length (m)                             | 38.0             | 110.1        | 20.0         | 75.0      | 60.0         | 110.0     | 47.0     | 109.0       | 125.0    |  |
| Base Capacity (vph)                             | 197              | 537          | 194          | 541       | 384          | 2007      | 614      | 2195        | 1033     |  |
|                                                 | 0                | 0            | 0            | 0         | 304<br>0     | 2007      | 014      | 2195        | 0        |  |
| Starvation Cap Reductn<br>Spillback Cap Reductn | 0                | 0            | 0            | 0         | 0            | 0         | 0        | 0           | 0        |  |
|                                                 | 0                | 0            | 0            | 0         | 0            | 0         | 0        | 0           | 0        |  |
| Storage Cap Reductn<br>Reduced v/c Ratio        | 0.54             | 0.42         | 0.25         | 0.42      | 0.21         | 0.36      | 0.38     | 0.47        | 0.14     |  |
| Reduced we Rallo                                | 0.54             | 0.42         | 0.25         | 0.42      | 0.21         | 0.50      | 0.50     | 0.47        | 0.14     |  |
| ntersection Summary                             |                  |              |              |           |              |           |          |             |          |  |
| Cycle Length: 120                               |                  |              |              |           |              |           |          |             |          |  |
| Actuated Cycle Length: 120                      |                  |              |              |           |              |           |          |             |          |  |
| Offset: 14 (12%), Referenced to p               | phase 2:NBTL a   | nd 6:SBTL,   | Start of Gre | een       |              |           |          |             |          |  |
| Natural Cycle: 75                               |                  |              |              |           |              |           |          |             |          |  |
| Control Type: Actuated-Coordina                 | ted              |              |              |           |              |           |          |             |          |  |
| Maximum v/c Ratio: 0.85                         |                  |              |              |           |              |           |          |             |          |  |
| ntersection Signal Delay: 19.9                  |                  |              |              |           | ersection L  |           |          |             |          |  |
| ntersection Capacity Utilization 6              | 07.9%            |              |              | ICI       | U Level of S | Service C |          |             |          |  |
| Analysis Period (min) 15                        |                  |              |              |           |              |           |          |             |          |  |
| 95th percentile volume excee                    |                  | eue may be   | longer.      |           |              |           |          |             |          |  |
| Queue shown is maximum after                    | er two cycles.   |              |              |           |              |           |          |             |          |  |
| Splits and Phases: 2: Eaglesor                  | n & Cope/Cader   | ce           |              |           |              |           |          |             |          |  |
| ø1                                              |                  | <u>،</u>     |              |           |              |           |          |             |          |  |
| - (/) [                                         | Ø2 (R            | )            |              |           |              |           |          | <b>₽</b> Ø4 |          |  |
|                                                 | 54 s             |              |              |           |              |           |          | 0           |          |  |
| 25 s                                            | J# 5             |              |              |           |              |           | 41       | 2           |          |  |
| 25 s<br>↑ Ø5 ↓ Ø6 (R)                           | J <del>T</del> 5 |              |              |           |              |           |          | ø8          |          |  |

## Projected 2019 - PM 5: Eagleson & Site

|                                      | ≯             | *           | *            | †        | Ļ             |      | •  |
|--------------------------------------|---------------|-------------|--------------|----------|---------------|------|----|
| Lane Group                           | EBL           | EBR         | NBL          | NBT      | SBT           |      |    |
| Lane Configurations                  | <u> </u>      | 1           |              | <u> </u> | 1001          |      |    |
| Traffic Volume (vph)                 | 79            | 16          | 45           | 678      | 1008          |      |    |
| Future Volume (vph)                  | 79            | 16          | 45           | 678      | 1008          |      |    |
| Lane Group Flow (vph)                | 83            | 17          | 47           | 714      | 1079          |      |    |
| Turn Type                            | Prot          | Perm        | Perm         | NA       | NA            |      |    |
| Protected Phases                     | 4             | 1 01111     | 1 01111      | 2        | 6             |      |    |
| Permitted Phases                     |               | 4           | 2            |          |               |      |    |
| Detector Phase                       | 4             | 4           | 2            | 2        | 6             |      |    |
| Switch Phase                         |               |             |              |          |               |      |    |
| Minimum Initial (s)                  | 10.0          | 10.0        | 10.0         | 10.0     | 10.0          |      |    |
| Minimum Split (s)                    | 30.9          | 30.9        | 26.9         | 26.9     | 23.9          |      |    |
| Total Split (s)                      | 47.0          | 47.0        | 73.0         | 73.0     | 73.0          |      |    |
| Total Split (%)                      | 39.2%         | 39.2%       | 60.8%        | 60.8%    | 60.8%         |      |    |
| Yellow Time (s)                      | 3.3           | 3.3         | 3.7          | 3.7      | 3.7           |      |    |
| All-Red Time (s)                     | 2.6           | 2.6         | 2.2          | 2.2      | 2.2           |      |    |
| Lost Time Adjust (s)                 | -1.9          | -1.9        | -1.9         | -1.9     | -1.9          |      |    |
| Total Lost Time (s)                  | 4.0           | 4.0         | 4.0          | 4.0      | 4.0           |      |    |
| Lead/Lag                             | ч. <b>v</b>   | 1.0         | ч. <b>0</b>  |          | U.U           |      |    |
| Lead-Lag Optimize?                   |               |             |              |          |               |      |    |
| Recall Mode                          | None          | None        | C-Max        | C-Max    | C-Max         |      |    |
| Act Effct Green (s)                  | 15.8          | 15.8        | 100.2        | 100.2    | 100.2         |      |    |
| Actuated g/C Ratio                   | 0.13          | 0.13        | 0.84         | 0.84     | 0.84          |      |    |
| v/c Ratio                            | 0.37          | 0.08        | 0.04         | 0.48     | 0.38          |      |    |
| Control Delay                        | 50.8          | 17.4        | 3.7          | 4.3      | 1.8           |      |    |
| Queue Delay                          | 0.0           | 0.0         | 0.0          | 0.1      | 0.0           |      |    |
| Total Delay                          | 50.8          | 17.4        | 3.7          | 4.4      | 1.8           |      |    |
| LOS                                  | D             | B           | 3.7<br>A     | A        | A             |      |    |
| Approach Delay                       | 45.1          | U           | Л            | 4.3      | 1.8           |      |    |
| Approach LOS                         | 43.1<br>D     |             |              | 4.5<br>A | A             |      |    |
| Queue Length 50th (m)                | 18.6          | 0.0         | 1.3          | 27.5     | 14.0          |      |    |
| Queue Length 95th (m)                | 30.0          | 6.0         | 6.0          | 67.6     | 17.4          |      |    |
| Internal Link Dist (m)               | 83.5          | 0.0         | 0.0          | 231.7    | 59.7          |      |    |
| Turn Bay Length (m)                  | 05.5          | 30.0        | 35.0         | 231.7    | 57.7          |      |    |
| Base Capacity (vph)                  | 607           | 554         | 370          | 1490     | 2823          |      |    |
| Starvation Cap Reductn               | 007           | 0           | 0            | 91       | 0             |      |    |
| Spillback Cap Reductn                | 0             | 0           | 0            | 0        | 73            |      |    |
| Storage Cap Reductin                 | 0             | 0           | 0            | 0        | 0             |      |    |
| Reduced v/c Ratio                    | 0.14          | 0.03        | 0.13         | 0.51     | 0.39          |      |    |
|                                      | 0.14          | 0.05        | 0.15         | 0.01     | 0.37          |      |    |
| Intersection Summary                 |               |             |              |          |               |      |    |
| Cycle Length: 120                    |               |             |              |          |               |      |    |
| Actuated Cycle Length: 120           |               |             |              |          |               |      |    |
| Offset: 10 (8%), Referenced to pha   | ase 2:NBTL an | d 6:SBT, St | art of Greer | า        |               |      |    |
| Natural Cycle: 65                    |               |             |              |          |               |      |    |
| Control Type: Actuated-Coordinate    | ed            |             |              |          |               |      |    |
| Maximum v/c Ratio: 0.48              |               |             |              |          |               |      |    |
| Intersection Signal Delay: 5.1       |               |             |              | In       | tersection LO | S: A |    |
| Intersection Capacity Utilization 54 | 1.5%          |             |              |          | U Level of Se |      |    |
| Analysis Period (min) 15             |               |             |              |          |               |      |    |
| ,,,,                                 |               |             |              |          |               |      |    |
| Splits and Phases: 5: Eagleson       | & Site        |             |              |          |               |      |    |
| <b>▲</b>                             |               |             |              |          |               |      |    |
| 🗾 Ø2 (R)                             |               |             |              |          |               | 2    | Ø4 |
| 73 s                                 |               |             |              |          |               | 47 s |    |
|                                      |               |             |              |          |               |      |    |
| 🛉 🕈 Ø6 (R)                           |               |             |              |          |               |      |    |
| 73 s                                 |               |             |              |          |               |      |    |

73 e

## Projected 2019 - PM 3: First Air & Cope

|                                   |      | /        |           | Ŧ         | •            | *      |
|-----------------------------------|------|----------|-----------|-----------|--------------|--------|
|                                   | -    | *        | •         |           | 7            | 1      |
| Movement                          | EBT  | EBR      | WBL       | WBT       | NBL          | NBR    |
| Lane Configurations               | 4    |          |           | 4         | ۳.           | 1      |
| Traffic Volume (veh/h)            | 267  | 18       | 19        | 291       | 17           | 50     |
| Future Volume (Veh/h)             | 267  | 18       | 19        | 291       | 17           | 50     |
| Sign Control                      | Free |          |           | Free      | Stop         |        |
| Grade                             | 0%   |          |           | 0%        | 0%           |        |
| Peak Hour Factor                  | 0.95 | 0.95     | 0.95      | 0.95      | 0.95         | 0.95   |
| Hourly flow rate (vph)            | 281  | 19       | 20        | 306       | 18           | 53     |
| Pedestrians                       |      |          |           |           |              |        |
| Lane Width (m)                    |      |          |           |           |              |        |
| Walking Speed (m/s)               |      |          |           |           |              |        |
| Percent Blockage                  |      |          |           |           |              |        |
| Right turn flare (veh)            |      |          |           |           |              |        |
| Median type                       | None |          |           | None      |              |        |
| Median storage veh)               |      |          |           |           |              |        |
| Upstream signal (m)               |      |          |           | 142       |              |        |
| pX, platoon unblocked             |      |          |           |           |              |        |
| vC, conflicting volume            |      |          | 300       |           | 636          | 290    |
| vC1, stage 1 conf vol             |      |          |           |           |              |        |
| vC2, stage 2 conf vol             |      |          |           |           |              |        |
| vCu, unblocked vol                |      |          | 300       |           | 636          | 290    |
| tC, single (s)                    |      |          | 4.1       |           | 6.4          | 6.2    |
| tC, 2 stage (s)                   |      |          |           |           |              |        |
| tF (s)                            |      |          | 2.2       |           | 3.5          | 3.3    |
| p0 queue free %                   |      |          | 98        |           | 96           | 93     |
| cM capacity (veh/h)               |      |          | 1261      |           | 435          | 749    |
| Direction, Lane #                 | EB 1 | WB 1     | NB 1      | NB 2      |              |        |
| Volume Total                      | 300  | 326      | 18        | 53        |              |        |
| Volume Left                       | 0    | 20       | 18        | 0         |              |        |
| Volume Right                      | 19   | 0        | 0         | 53        |              |        |
| cSH                               | 1700 | 1261     | 435       | 749       |              |        |
| Volume to Capacity                | 0.18 | 0.02     | 0.04      | 0.07      |              |        |
| Queue Length 95th (m)             | 0.18 | 0.02     | 1.0       | 1.7       |              |        |
| Control Delay (s)                 | 0.0  | 0.4      | 13.6      | 10.2      |              |        |
| Lane LOS                          | 0.0  | 0.0<br>A | 13.0<br>B | 10.2<br>B |              |        |
| Approach Delay (s)                | 0.0  | 0.6      | 11.1      | D         |              |        |
| Approach LOS                      | 0.0  | 0.0      | B         |           |              |        |
|                                   |      |          | В         |           |              |        |
| Intersection Summary              |      |          |           |           |              |        |
| Average Delay                     |      |          | 1.4       |           |              |        |
| Intersection Capacity Utilization |      |          | 42.6%     | ICL       | J Level of S | ervice |
| Analysis Period (min)             |      |          | 15        |           |              |        |

## Projected 2019- SAT 1: Eagleson & Fernbank

|                                       | ۶           | $\mathbf{r}$ | •           | t           | ţ            | ~      |
|---------------------------------------|-------------|--------------|-------------|-------------|--------------|--------|
| Lane Group                            | EBL         | EBR          | NBL         | NBT         | SBT          | SBR    |
| Lane Configurations                   | ۲           | 1            | ۲           | •           | 1            | 1      |
| Traffic Volume (vph)                  | 167         | 169          | 149         | 483         | 438          | 137    |
| Future Volume (vph)                   | 167         | 169          | 149         | 483         | 438          | 137    |
| Lane Group Flow (vph)                 | 176         | 178          | 157         | 508         | 461          | 144    |
| Turn Type                             | Prot        | Perm         | Perm        | NA          | NA           | Perm   |
| Protected Phases                      | 4           |              |             | 2           | 6            |        |
| Permitted Phases                      |             | 4            | 2           | _           | -            | 6      |
| Detector Phase                        | 4           | 4            | 2           | 2           | 6            | 6      |
| Switch Phase                          |             |              | _           |             | -            | -      |
| Minimum Initial (s)                   | 10.0        | 10.0         | 10.0        | 10.0        | 10.0         | 10.0   |
| Minimum Split (s)                     | 27.0        | 27.0         | 16.0        | 16.0        | 27.0         | 27.0   |
| Total Split (s)                       | 27.0        | 27.0         | 53.0        | 53.0        | 53.0         | 53.0   |
| Total Split (%)                       | 33.8%       | 33.8%        | 66.3%       | 66.3%       | 66.3%        | 66.3%  |
| Yellow Time (s)                       | 3.7         | 33.070       | 3.7         | 3.7         | 3.7          | 3.7    |
| All-Red Time (s)                      | 2.3         | 2.3          | 2.3         | 2.3         | 2.3          | 2.3    |
| Lost Time Adjust (s)                  | -2.0        | -2.0         | 2.3<br>-2.0 | 2.3<br>-2.0 | 2.3<br>-2.0  | -2.0   |
|                                       | -2.0<br>4.0 |              | -2.0<br>4.0 |             |              |        |
| Total Lost Time (s)                   | 4.0         | 4.0          | 4.0         | 4.0         | 4.0          | 4.0    |
| Lead/Lag                              |             |              |             |             |              |        |
| Lead-Lag Optimize?                    | N.L         | News         | N.4         | N 4         | N.4          | P.4    |
| Recall Mode                           | None        | None         | Max         | Max         | Max          | Max    |
| Act Effct Green (s)                   | 15.6        | 15.6         | 49.2        | 49.2        | 49.2         | 49.2   |
| Actuated g/C Ratio                    | 0.21        | 0.21         | 0.68        | 0.68        | 0.68         | 0.68   |
| v/c Ratio                             | 0.48        | 0.38         | 0.29        | 0.42        | 0.38         | 0.13   |
| Control Delay                         | 29.6        | 6.6          | 7.3         | 7.4         | 7.0          | 1.5    |
| Queue Delay                           | 0.0         | 0.0          | 0.0         | 0.0         | 0.0          | 0.0    |
| Total Delay                           | 29.6        | 6.6          | 7.3         | 7.4         | 7.0          | 1.5    |
| LOS                                   | С           | A            | A           | А           | A            | A      |
| Approach Delay                        | 18.0        |              |             | 7.4         | 5.7          |        |
| Approach LOS                          | В           |              |             | А           | А            |        |
| Queue Length 50th (m)                 | 21.2        | 0.0          | 6.9         | 24.9        | 21.8         | 0.0    |
| Queue Length 95th (m)                 | 37.7        | 13.4         | 20.9        | 58.2        | 51.3         | 5.9    |
| Internal Link Dist (m)                | 344.8       |              |             | 208.3       | 198.5        |        |
| Turn Bay Length (m)                   | 175.0       |              | 35.0        |             |              | 40.0   |
| Base Capacity (vph)                   | 537         | 602          | 549         | 1204        | 1204         | 1071   |
| Starvation Cap Reductn                | 0           | 0            | 0           | 0           | 0            | 0      |
| Spillback Cap Reductn                 | 0           | 0            | 0           | 0           | Ŭ<br>Û       | Ũ      |
| Storage Cap Reductn                   | 0           | 0            | 0           | 0           | 0            | 0      |
| Reduced v/c Ratio                     | 0.33        | 0.30         | 0.29        | 0.42        | 0.38         | 0.13   |
| Reduced we Railo                      | 0.55        | 0.50         | 0.27        | 0.42        | 0.50         | 0.15   |
| Intersection Summary                  |             |              |             |             |              |        |
| Cycle Length: 80                      |             |              |             |             |              |        |
| Actuated Cycle Length: 72.8           |             |              |             |             |              |        |
| Natural Cycle: 55                     |             |              |             |             |              |        |
| Control Type: Actuated-Uncoordina     | ited        |              |             |             |              |        |
| Maximum v/c Ratio: 0.48               |             |              |             |             |              |        |
| Intersection Signal Delay: 9.0        |             |              |             | Int         | tersection L | OS: A  |
| Intersection Capacity Utilization 52. | 8%          |              |             |             | U Level of S |        |
| Analysis Period (min) 15              | 070         |              |             | 10          |              | NUCE A |
|                                       |             |              |             |             |              |        |
|                                       |             |              |             |             |              |        |

Splits and Phases: 1: Eagleson & Fernbank

| ↑ ø 2 | 📌 ø4 |
|-------|------|
| 53 s  | 27 s |
|       |      |
| 53 s  |      |

## Projected 2019- SAT 2: Eagleson & Cope/Cadence

| Lane Group         EBL         EBT         WBL         WBT         NBL         NBT         SBL         SBT         SBR           Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Traffic Volume (vph)       118       89       50       96       56       589       123       542       115         Future Volume (vph)       118       89       50       96       56       589       123       542       115         Lane Group Flow (vph)       124       138       53       224       59       665       129       571       121         Turn Type       Perm       NA       Perm       NA       pm+pt       NA       pm+pt       NA       pm+pt       NA       pm+pt       NA       pm+pt       NA       Perm       Perm       NA       pm+pt       NA       pm+pt       NA       pm+pt       NA       pm+pt       NA       Perm       Perm       NA       pm+pt       NA       pm+pt       NA       Perm       Perm       NA       pm+pt       NA       pm+pt       NA       Perm       Perm       NA       Perm       NA       Pm+pt       NA       Perm       NA       pm+pt       NA       Perm       NA       Perm       NA       Perm       NA       Perm       NA       Perm       NA       Pat       NA       NA       NA       NA       NA       NA       NA       NA                                                                                                                                                                               |
| Future Volume (vph)         118         89         50         96         56         589         123         542         115           Lane Group Flow (vph)         124         138         53         224         59         665         129         571         121           Tum Type         Perm         NA         Perm         NA         pm+pt         NA         pm+pt         NA         Perm           Protected Phases         4         8         5         2         1         6           Permitted Phases         4         8         8         5         2         1         6         6           Switch Phase         4         8         8         5         2         1         6         6           Minimu Initial (s)         10.0         10.0         10.0         5.0         10.0         10.0         10.0           Minimus Split (s)         28.5         28.5         28.5         11.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0                                                                                                               |
| Lane Group Flow (vph)         124         138         53         224         59         665         129         571         121           Turn Type         Perm         NA         Perm         NA         pm+pt         NA         pm-pt         NA         pm-pt         NA         perm           Protected Phases         4         8         5         2         1         6         6         6           Detector Phase         4         4         8         8         5         2         1         6         6           Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turn Type         Perm         NA         Perm         NA         pm+pt         <                                                   |
| Protected Phases         4         8         5         2         1         6           Permitted Phases         4         8         2         6         6           Detector Phase         4         8         8         5         2         1         6         6           Detector Phase         4         8         8         5         2         1         6         6           Switch Phase         3         10.0         10.0         10.0         5.0         10.0         5.0         10.0         10.0         10.0         10.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         32.0         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7                                                                                                        |
| Detector Phase         4         4         8         8         5         2         1         6         6           Switch Phase         10.0         10.0         10.0         10.0         5.0         10.0         10.0         10.0           Minimum Initial (s)         10.0         10.0         10.0         5.0         11.0         32.0         32.0           Total Split (s)         31.0         31.0         31.0         16.0         43.0         16.0         43.0         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%                                     |
| Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         5.0         10.0         5.0         10.0         10.0           Minimum Split (s)         28.5         28.5         28.5         28.5         11.0         32.0         11.0         32.0         32.0           Total Split (s)         31.0         31.0         31.0         31.0         31.0         31.0         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%         47.8%                |
| Minimum Initial (s)       10.0       10.0       10.0       10.0       5.0       10.0       5.0       10.0       10.0         Minimum Split (s)       28.5       28.5       28.5       28.5       28.5       28.5       11.0       32.0       11.0       32.0       32.0         Total Split (s)       31.0       31.0       31.0       31.0       31.0       44.4%       34.4%       34.4%       17.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       42.8       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3                                                                                                         |
| Minimum Split (s)       28.5       28.5       28.5       28.5       28.5       11.0       32.0       11.0       32.0       32.0         Total Split (s)       31.0       31.0       31.0       31.0       31.0       16.0       43.0       16.0       43.0       43.0         Total Split (s)       34.4%       34.4%       34.4%       34.4%       17.8%       47.8%       17.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       47.8%       48.2       40.0       4.0       4.0       4.0 <td< td=""></td<>                                                                                     |
| Total Split (s)         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0         31.0                                  |
| Total Split (%)       34.4%       34.4%       34.4%       34.4%       17.8%       47.8%       17.8%       47.8%       47.8%         Yellow Time (s)       3.0       3.0       3.0       3.0       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       3.7       <                                                                                                                                                             |
| Yellow Time (s)       3.0       3.0       3.0       3.7       3.7       3.7       3.7       3.7         All-Red Time (s)       3.5       3.5       3.5       3.5       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.3       2.4       2.0       2.0       2.0                                                                                                                                                                            |
| All-Red Time (s)       3.5       3.5       3.5       3.5       2.3       2.3       2.3       2.3       2.3         Lost Time Adjust (s)       -2.5       -2.5       -2.5       -2.5       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       -2.0       <                                                                                                                         |
| Lost Time Adjust (s)         -2.5         -2.5         -2.5         -2.0         -2.0         -2.0         -2.0         -2.0         -2.0           Total Lost Time (s)         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0                                                                     |
| Total Lost Time (s)         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0                                                                         |
| Lead/Lag         Lead         Lag         Lead         Lag         Lead-Lag         Optimize?         Yes                                                                       |
| Lead-Lag Optimize?         Yes                                                                          |
| Recall Mode         None         None         None         None         C-Max         None         C-Max         Can         Can         Ca |
| Act Effct Green (s)       20.0       20.0       20.0       20.0       56.8       48.2       60.0       51.7       51.7         Actuated g/C Ratio       0.22       0.22       0.22       0.63       0.54       0.67       0.57       0.57         v/c Ratio       0.72       0.35       0.22       0.54       0.10       0.37       0.25       0.29       0.13         Control Delay       54.7       24.5       28.6       24.7       5.3       10.9       7.1       12.2       3.1         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                    |
| Actuated g/C Ratio         0.22         0.22         0.22         0.22         0.63         0.54         0.67         0.57         0.57           v/c Ratio         0.72         0.35         0.22         0.54         0.10         0.37         0.25         0.29         0.13           Control Delay         54.7         24.5         28.6         24.7         5.3         10.9         7.1         12.2         3.1           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                |
| v/c Ratio       0.72       0.35       0.22       0.54       0.10       0.37       0.25       0.29       0.13         Control Delay       54.7       24.5       28.6       24.7       5.3       10.9       7.1       12.2       3.1         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       54.7       24.5       28.6       24.7       5.3       10.9       7.1       12.2       3.1         LOS       D       C       C       A       B       A       B       A         Approach Delay       38.8       25.4       10.4       10.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                           |
| Control Delay         54.7         24.5         28.6         24.7         5.3         10.9         7.1         12.2         3.1           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                           |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""></th<>                                                               |
| Total Delay         54.7         24.5         28.6         24.7         5.3         10.9         7.1         12.2         3.1           LOS         D         C         C         C         A         B         A         B         A           Approach Delay         38.8         25.4         10.4         10.0         10.0           Approach LOS         D         C         B         B         B         A           Queue Length 50th (m)         19.9         16.0         7.5         23.1         2.5         24.0         6.5         26.4         0.0           Queue Length 95th (m)         36.0         28.5         15.6         40.3         6.5         30.0         15.6         45.2         8.8           Internal Link Dist (m)         113.9         122.3         99.3         169.6         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LOS         D         C         C         C         A         B         A         B         A           Approach Delay         38.8         25.4         10.4         10.0         10.0           Approach LOS         D         C         B         B         B         A           Queue Length 50th (m)         19.9         16.0         7.5         23.1         2.5         24.0         6.5         26.4         0.0           Queue Length 95th (m)         36.0         28.5         15.6         40.3         6.5         30.0         15.6         45.2         8.8           Internal Link Dist (m)         113.9         122.3         99.3         169.6         125.0           Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approach Delay         38.8         25.4         10.4         10.0           Approach LOS         D         C         B         B           Queue Length 50th (m)         19.9         16.0         7.5         23.1         2.5         24.0         6.5         26.4         0.0           Queue Length 95th (m)         36.0         28.5         15.6         40.3         6.5         30.0         15.6         45.2         8.8           Internal Link Dist (m)         113.9         122.3         99.3         169.6           Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Approach LOS         D         C         B         B           Queue Length 50th (m)         19.9         16.0         7.5         23.1         2.5         24.0         6.5         26.4         0.0           Queue Length 95th (m)         36.0         28.5         15.6         40.3         6.5         30.0         15.6         45.2         8.8           Internal Link Dist (m)         113.9         122.3         99.3         169.6           Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Queue Length 50th (m)         19.9         16.0         7.5         23.1         2.5         24.0         6.5         26.4         0.0           Queue Length 95th (m)         36.0         28.5         15.6         40.3         6.5         30.0         15.6         45.2         8.8           Internal Link Dist (m)         113.9         122.3         99.3         169.6           Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Queue Length 95th (m)         36.0         28.5         15.6         40.3         6.5         30.0         15.6         45.2         8.8           Internal Link Dist (m)         113.9         122.3         99.3         169.6           Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Internal Link Dist (m)         113.9         122.3         99.3         169.6           Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Turn Bay Length (m)         38.0         20.0         60.0         47.0         125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Starvation Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                |
| Spillback Cap Reductin         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                |
| Storage Cap Reductin         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                  |
| Reduced v/c Ratio         0.53         0.26         0.16         0.41         0.09         0.37         0.23         0.29         0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cycle Length: 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Actuated Cycle Length: 90<br>Offset: 22 (24%) Referenced to phase 2:NRTL and 6:SRTL. Start of Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Offset: 22 (24%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green<br>Natural Cycle: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Control Type: Actuated-Coordinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Maximum v/c Ratio: 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Intersection Signal Delay: 15.8 Intersection LOS: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Intersection Capacity Utilization 60.4% ICU Level of Service B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| manyora i onou (min) i a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Splits and Phases: 2: Eagleson & Cope/Cadence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ▶ø1 Ø2 (R) →Ø4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Ø1         | Ø2 (R) | <b>⊸</b> <u></u> <u>ø</u> 4 |
|------------|--------|-----------------------------|
| 16 s       | 43 s   | 31 s                        |
| <b>Ø</b> 5 | Ø6 (R) | <b>₩</b> Ø8                 |
| 16 s       | 43 s   | 31 s                        |

## Projected 2019- SAT 5: Eagleson & Site

|                                         | ۶        | $\mathbf{r}$ | •             | Ť     | Ļ                  |             |
|-----------------------------------------|----------|--------------|---------------|-------|--------------------|-------------|
| Lane Group                              | EBL      | EBR          | NBL           | NBT   | SBT                |             |
| Lane Configurations                     | ٢        | 1            | ۲             | 1     | <b>≜t</b> ≽        |             |
| Traffic Volume (vph)                    | 91       | 20           | 53            | 597   | 557                |             |
| Future Volume (vph)                     | 91       | 20           | 53            | 597   | 557                |             |
| Lane Group Flow (vph)                   | 96       | 21           | 56            | 628   | 608                |             |
| Turn Type                               | Prot     | Perm         | Perm          | NA    | NA                 |             |
| Protected Phases                        | 4        | T CHI        | T CHI         | 2     | 6                  |             |
| Permitted Phases                        | т        | 4            | 2             | 2     | 0                  |             |
| Detector Phase                          | 4        | 4            | 2             | 2     | 6                  |             |
| Switch Phase                            | 4        | 4            | 2             | 2     | 0                  |             |
| Minimum Initial (s)                     | 10.0     | 10.0         | 10.0          | 10.0  | 10.0               |             |
| Minimum Split (s)                       | 30.9     | 30.9         | 26.9          | 26.9  | 26.9               |             |
|                                         | 32.0     |              | 58.0          | 58.0  | 58.0               |             |
| Total Split (s)                         |          | 32.0         |               |       |                    |             |
| Total Split (%)                         | 35.6%    | 35.6%        | 64.4%         | 64.4% | 64.4%              |             |
| Yellow Time (s)                         | 3.3      | 3.3          | 3.7           | 3.7   | 3.7                |             |
| All-Red Time (s)                        | 2.6      | 2.6          | 2.2           | 2.2   | 2.2                |             |
| Lost Time Adjust (s)                    | -1.9     | -1.9         | -1.9          | -1.9  | -1.9               |             |
| Total Lost Time (s)                     | 4.0      | 4.0          | 4.0           | 4.0   | 4.0                |             |
| Lead/Lag                                |          |              |               |       |                    |             |
| Lead-Lag Optimize?                      |          |              |               |       |                    |             |
| Recall Mode                             | None     | None         | C-Max         | C-Max | C-Max              |             |
| Act Effct Green (s)                     | 15.4     | 15.4         | 70.6          | 70.6  | 70.6               |             |
| Actuated g/C Ratio                      | 0.17     | 0.17         | 0.78          | 0.78  | 0.78               |             |
| v/c Ratio                               | 0.33     | 0.08         | 0.10          | 0.45  | 0.23               |             |
| Control Delay                           | 34.3     | 11.4         | 5.2           | 6.7   | 2.4                |             |
| Queue Delay                             | 0.0      | 0.0          | 0.0           | 0.0   | 0.0                |             |
| Total Delay                             | 34.3     | 11.4         | 5.2           | 6.7   | 2.4                |             |
| LOS                                     | С        | В            | А             | А     | А                  |             |
| Approach Delay                          | 30.2     |              |               | 6.6   | 2.4                |             |
| Approach LOS                            | С        |              |               | А     | А                  |             |
| Queue Length 50th (m)                   | 15.4     | 0.0          | 1.8           | 29.4  | 7.7                |             |
| Queue Length 95th (m)                   | 24.0     | 5.1          | 8.8           | 88.6  | 11.8               |             |
| Internal Link Dist (m)                  | 96.9     |              |               | 198.5 | 56.8               |             |
| Turn Bay Length (m)                     | ,,       | 30.0         | 35.0          | 17010 | 0010               |             |
| Base Capacity (vph)                     | 527      | 486          | 584           | 1398  | 2645               |             |
| Starvation Cap Reductn                  | 0        | 400<br>0     | 0             | 0     | 0                  |             |
| Spillback Cap Reductn                   | 0        | 0            | 0             | 0     | 0                  |             |
| Storage Cap Reductn                     | 0        | 0            | 0             | 0     | 0                  |             |
| Reduced v/c Ratio                       | 0.18     | 0.04         | 0.10          | 0.45  | 0.23               |             |
|                                         | 0.10     | 0.04         | 0.10          | 0.40  | 0.23               |             |
| Intersection Summary                    |          |              |               |       |                    |             |
| Cycle Length: 90                        |          |              |               |       |                    |             |
| Actuated Cycle Length: 90               |          | 1/ 057       |               |       |                    |             |
| Offset: 19 (21%), Referenced to phase   | 2:NBTL a | nd 6:SBT, S  | start of Gree | en    |                    |             |
| Natural Cycle: 60                       |          |              |               |       |                    |             |
| Control Type: Actuated-Coordinated      |          |              |               |       |                    |             |
| Maximum v/c Ratio: 0.45                 |          |              |               |       |                    |             |
| Intersection Signal Delay: 6.7          |          |              |               |       | tersection LOS: A  |             |
| Intersection Capacity Utilization 48.2% |          |              |               | IC    | U Level of Service | e A         |
| Analysis Period (min) 15                |          |              |               |       |                    |             |
| Splits and Phases: 5: Eagleson & Si     | te       |              |               |       |                    |             |
| Ø2 (R)                                  |          |              |               |       |                    | <b>∕</b> Ø4 |
| 58 c                                    |          |              |               |       |                    | 32 s        |
|                                         |          |              |               |       |                    | 52.5        |

Ø6 (R)

8.9

## Projected 2019- SAT 3: First Air & Cope

| · · · · · · · · · · · · · · · · · · · |          | >    | 4     | ←    | •            | ~      |
|---------------------------------------|----------|------|-------|------|--------------|--------|
|                                       |          | •    | -     |      | ١            | -      |
| Movement                              | EBT      | EBR  | WBL   | WBT  | NBL          | NBR    |
| Lane Configurations                   | <b>}</b> | 01   | 00    | ्री  | <u></u>      | 1      |
| Traffic Volume (veh/h)                | 210      | 21   | 22    | 245  | 13           | 39     |
| Future Volume (Veh/h)                 | 210      | 21   | 22    | 245  | 13           | 39     |
| Sign Control                          | Free     |      |       | Free | Stop         |        |
| Grade                                 | 0%       |      |       | 0%   | 0%           |        |
| Peak Hour Factor                      | 0.95     | 0.95 | 0.95  | 0.95 | 0.95         | 0.95   |
| Hourly flow rate (vph)                | 221      | 22   | 23    | 258  | 14           | 41     |
| Pedestrians                           |          |      |       |      |              |        |
| Lane Width (m)                        |          |      |       |      |              |        |
| Walking Speed (m/s)                   |          |      |       |      |              |        |
| Percent Blockage                      |          |      |       |      |              |        |
| Right turn flare (veh)                |          |      |       |      |              |        |
| Median type                           | None     |      |       | None |              |        |
| Median storage veh)                   |          |      |       |      |              |        |
| Upstream signal (m)                   |          |      |       | 138  |              |        |
| pX, platoon unblocked                 |          |      |       |      |              |        |
| vC, conflicting volume                |          |      | 243   |      | 536          | 232    |
| vC1, stage 1 conf vol                 |          |      |       |      |              |        |
| vC2, stage 2 conf vol                 |          |      |       |      |              |        |
| vCu, unblocked vol                    |          |      | 243   |      | 536          | 232    |
| tC, single (s)                        |          |      | 4.1   |      | 6.4          | 6.2    |
| tC, 2 stage (s)                       |          |      |       |      |              |        |
| tF (s)                                |          |      | 2.2   |      | 3.5          | 3.3    |
| p0 queue free %                       |          |      | 98    |      | 97           | 95     |
| cM capacity (veh/h)                   |          |      | 1323  |      | 497          | 807    |
| Direction, Lane #                     | EB 1     | WB 1 | NB 1  | NB 2 |              |        |
| Volume Total                          | 243      | 281  | 14    | 41   |              |        |
| Volume Left                           | 0        | 23   | 14    | 0    |              |        |
| Volume Right                          | 22       | 0    | 0     | 41   |              |        |
| cSH                                   | 1700     | 1323 | 497   | 807  |              |        |
| Volume to Capacity                    | 0.14     | 0.02 | 0.03  | 0.05 |              |        |
| Queue Length 95th (m)                 | 0.0      | 0.4  | 0.7   | 1.2  |              |        |
| Control Delay (s)                     | 0.0      | 0.8  | 12.5  | 9.7  |              |        |
| Lane LOS                              | 2.5      | A    | B     | A    |              |        |
| Approach Delay (s)                    | 0.0      | 0.8  | 10.4  |      |              |        |
| Approach LOS                          | 2.5      |      | В     |      |              |        |
| Intersection Summary                  |          |      |       |      |              |        |
| Average Delay                         |          |      | 1.4   |      |              |        |
| Intersection Capacity Utilization     |          |      | 41.2% | ICI  | J Level of S | onvico |
| Analysis Period (min)                 |          |      | 41.2% | ICL  | Level OL 2   | ervice |
| Analysis Penou (MIN)                  |          |      | 15    |      |              |        |

Appendix M Assessment of Site Vehicular Assess Technical Memorandum



## Technical Memorandum

8 August 2016

476013 - 01000

Date:

Project:

| Re:   | Commercial Development 20 Cope Drive        |
|-------|---------------------------------------------|
| From: | Mark Baker, P.Eng./Amer Al-Merabi (Parsons) |
| Copy: | Jeff Parkes (Taggart)                       |
| To:   | Riley Carter (City of Ottawa)               |

Assessment of Site Vehicular Access

## BACKGROUND

In 2013, Parsons (formerly Delcan) prepared a Community Transportation Study (CTS) in support of a rezoning application by Taggart Realty Management for the subject site. At the time, the Site Plan featured a full movement access to the development via Cope Drive (shared with the adjacent First Air Building) and two right-in/right-out connections to Eagleson Road.

Since receiving the approved rezoning, Taggart has been actively seeking prospective tenants for the anchor grocery store. As part of this process, the importance of providing a full movement vehicle connection to Eagleson Drive has emerged. The purpose of the ensuing report is to identify the opportunities and constraints of providing such a full movement connection to/from Eagleson Road, and to identify its ideal placement relative to adjacent signalized intersections. Once this important site access issue is resolved, a formal Transportation Impact Study (TIS) can be prepared, if necessary, to support the Site Plan Application (SPA).

## CONTEXT

The subject site is located in the southwest quadrant of the Eagleson/Cope intersection (see Figure 1). The parcel's frontage is approximately 240m along Eagleson Road, whereas the existing site access to First Air via Cope Road is located approximately 120m west of the Eagleson/Cope intersection. The center-to-center spacing between Cope Drive, and the adjacent signalized intersection to the south (at Fernbank Road) is approximately 490m.

The posted speed limit on Eagleson Road is 60 km/h. Note that Eagleson Road transitions from a four-lane divided to a two-lane undivided cross-section just south of the subject site. The widening of Eagleson Road to four lanes from this transition point south to Hope Side Road is identified in the 2013 TMP as a Phase 2 Road Project (2020-2025). The subject EA was completed in 2008.

## **CONCEPTS CONSIDERED**

Based on preliminary discussions, several concepts were identified for providing a vehicle site access to/from Eagleson Road:

- 1. Signalized, full movement driveway situated about midway along the site's frontage; the resulting intersection spacing would be approximately 150m south of Cope Drive and 340m north of Fernbank Road;
- 2. Signalized, full movement driveway situated near the southern extent of the site; the resulting intersection spacing would be approximately 225m south of Cope Drive and 265m north of Fernbank Road;
- Unsignalized, partial movement driveway (no left-turn out of the site) situated about midway along the site's frontage; the resulting intersection spacing would be approximately 150m south of Cope Drive and 340m north of Fernbank Road;

Included as Appendix A are functional plans of Concept 1, 2, and two variations of Concept 3. Concept 3a uses the existing median and maintains two lanes, whereas Concept 3b is widened into three lanes by trimming the median width.



Figure 1: Local Context



## **DESIGN GUIDANCE**

According to the Ontario Traffic Manual (OTM) Book 12, the preferred spacing for traffic signal control is **215m** (setting aside requirements for optimal signal coordination). This distance is considered necessary to allow motorists to recognize and react to each traffic control device. Furthermore, the specified distance of 215m within 60 km/h environments will generally permit adequate left-turn storage to be provided where back-to-back left turns lanes are needed (storage plus adequate taper).

With regards to signal visibility, the OTM specifies the minimum distance from which the signal must be clearly visible for various speeds. For 85<sup>th</sup> percentile speeds ranging between 60 km/h and 80 km/h, the minimum distance is between 110m and 165m. Although a recent speed survey is currently not available, it is assumed the 85<sup>th</sup> percentile speed at this location is approximately 70 km/h, in which case the minimum distance for signal visibility is **135m**.

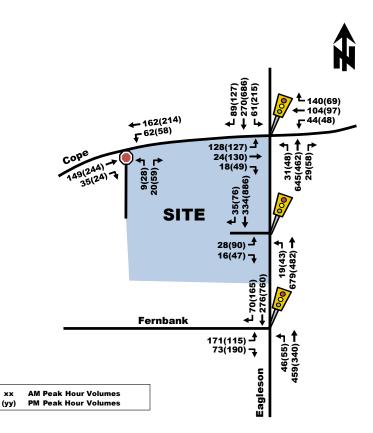
Based on the foregoing design guidance for new signalized intersections, the intersection spacing associated with Concept 1 (150m) does <u>not</u> satisfy the preferred spacing of 215m, and just satisfies the sight distance value of 135m. The intersection spacing associated with Concept 2 (225m) does satisfy both elements.

## **ANALYSIS**

## **UPDATED TRAFFIC GENERATION/DISTRIBUTION/ASSIGNMENT**

The Site Plan contained within the original CTS was comprised of a number of commercial retail units totalling approximately 5,208 m<sup>2</sup> GFA, including a food store, restaurant, bank (with drive-through), and other specialty retail uses. The projected number of "new" auto trips identified in the CTS was 72 veh/h in the AM peak hour and 218 veh/h in the PM peak hour. The assumed modal share was 60% auto driver, 15% passenger, 15% transit and 10% non-motorized (biking & walking).

The updated Site Plan now proposed is comprised of a slightly higher GFA of 5,590 m<sup>2</sup>, including a larger food store and adjoining retail, bank (with drive-through), and other specialty retail uses. The number of "new" auto trips, assuming the same modal shares noted above, is projected to be slightly higher at **106 veh/h** in the AM peak hour and **272 veh/h** in the PM peak hour.


For the purposes of this assessment, the vehicle distribution identified in the original CTS was used. However, most of the residential growth communities are located to the south of the subject site, and therefore over time there is likely to be shift in distribution to favour more traffic to/from the south/southwest.

| 40%  | to/from the North/Northeast (via Eagleson)                 |
|------|------------------------------------------------------------|
| 15%  | to/from the South/Southwest (via Eagleson and/or Fernbank) |
| 30%  | to/from the East (via Cope)                                |
| 15%  | to/from the Northwest (via Cope)                           |
| 100% | -                                                          |

The assumed traffic assignment will be influenced by the type of connection provided to Eagleson Road, namely rightin/right-out, full-movement, and some variation. Shown below in Figure 2 and 3 are the total projected traffic volumes associated with two basic configurations: a full movement, signalized connection; and an unsignalized, right-in/right out/left-in connection to Eagleson Road, respectively.

The one notable change as a result of restricting the left-out from the subject site to Eagleson Road is the additional loading to the corresponding eastbound left-turn movement at the Eagleson/Cope/Cadence intersection (+90 veh/h in the critical PM peak hour).





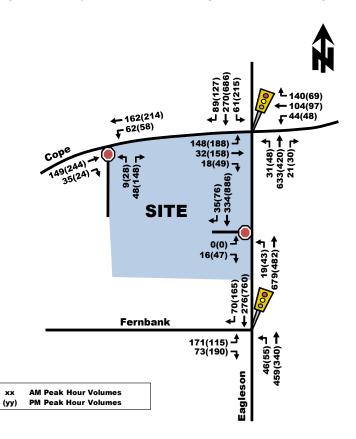



Figure 3: Total Projected Traffic Volumes – Unsignalized Connection at Eagleson

#### WARRANTS FOR TRAFFIC SIGNAL CONTROL AND AUXILLIARY TURN LANES

Based on the projected traffic volumes identified in Figure 2, warrants for traffic signal control (TSC) at the Eagleson/site intersection are <u>not satisfied</u> (40% warranted). Therefore, any installation of traffic signals, as well as the on-going maintenance, would be at the developer's expense. The traffic signal warrant analysis is provided as Appendix B.

With regards to the need for an auxiliary northbound left-turn lane serving the site driveway, the analysis (based on TAC guidelines) indicates that a short turn lane is <u>warranted</u>. From an operational perspective, however, an auxiliary northbound left-turn lane is not considered necessary. Converting the median lane, of the two existing northbound lanes at this location, to a shared left-through movement lane is adequate as the performance of the intersection is not impacted (see section below). The auxiliary lane warrant analysis is provided as Appendix C.

#### **INTERSECTION CAPACITY ANALYSIS/QUEUING**

SYNCHRO (V9) traffic analysis software was used to determine the performance at the four study area intersections, including two adjacent signalized intersections and the site driveway connections to Cope Drive and Eagleson Road, respectively. The results are summarized below in Table 1 (signalized, full-movement site access connection to Eagleson) and Table 2 (unsignalized, no left-turn out of the site to Eagleson).

The subject signalized intersections were assessed in terms of the volume-to-capacity (v/c) ratio and the corresponding Level of Service (LoS) for the critical movement(s). The subject signalized intersections 'as a whole' were assessed based on weighted v/c ratio, whereas the subject unsignalized intersections were assessed in terms of delay and the corresponding Level of Service (LoS) for the critical movement(s). The SYNCHRO model output of existing conditions is provided within Appendix D (signalized alternative) & Appendix E (unsignalized alternative).

|                                                                                                            |             |                               | Weekday AM             | Peak (PM Peak)        |           |            |
|------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|------------------------|-----------------------|-----------|------------|
| Intersection                                                                                               |             | Critical Move                 | ment                   | In                    | tersectio | n          |
|                                                                                                            | LoS         | max. v/c or<br>avg. delay (s) | Movement               | Delay (s)             | LoS       | v/c        |
| Eagleson/Fernbank                                                                                          | A(B)        | 0.56(0.70)                    | EBL(SBT)               | 13.6(16.0)            | A(B)      | 0.43(0.63) |
| Eagleson/Cope/Cadence                                                                                      | D(B)        | 0.84(0.68)                    | EBL(EBL)               | 17.6(15.7)            | A(A)      | 0.46(0.39) |
| Eagleson/Site Access <sup>1</sup>                                                                          | A(A)        | 0.27(0.38)                    | NBT(EBL)               | 3.2(5.8)              | A(A)      | 0.26(0.33) |
| Eagleson/Site Access <sup>2</sup>                                                                          | A(A)        | 0.24(0.38)                    | NBT(EBL)               | 3.2(5.8)              | A(A)      | 0.24(0.36) |
| Cope/Site Access                                                                                           | B(B)        | 10.2(11.9)                    | NBL(NBL)               | 1.9(2.5)              | -         | -          |
| Note: Analysis of signalized intersec<br>1. No auxiliary northbound lef<br>2. Auxiliary northbound left-tu | t-turn lane |                               | d a saturation flow ra | te of 1800 veh/h/lane | <u>.</u>  |            |

#### Table 1: Projected Intersection Capacity Analysis (Signalized Entrance Concept 1 and 2)

Table 2: Projected Intersection Capacity Analysis (Unsignalized Entrance Concept 3)

|      |                               | Weekday AM                                                                | Peak (PM Peak)                                                                                                                                                                                                                                    |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                              |
|------|-------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Critical Mover                | nent                                                                      | Ir                                                                                                                                                                                                                                                | ntersectio                                                                                                                                     | n                                                                                                                                                                                                                                                                                                                                                                                            |
| LoS  | max. v/c or<br>avg. delay (s) | Movement                                                                  | Delay (s)                                                                                                                                                                                                                                         | LoS                                                                                                                                            | v/c                                                                                                                                                                                                                                                                                                                                                                                          |
| A(B) | 0.56(0.70)                    | EBL(SBT)                                                                  | 13.8(10.9)                                                                                                                                                                                                                                        | A(B)                                                                                                                                           | 0.43(0.63)                                                                                                                                                                                                                                                                                                                                                                                   |
| D(D) | 0.88(0.82)                    | EBL(EBL)                                                                  | 19.4(17.9)                                                                                                                                                                                                                                        | A(A)                                                                                                                                           | 0.46(0.42)                                                                                                                                                                                                                                                                                                                                                                                   |
| A(B) | 9.3(10.3)                     | EBR(EBR)                                                                  | 0.3(0.7)                                                                                                                                                                                                                                          | -                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                            |
| A(B) | 9.9(12.2)                     | NBL(NBL)                                                                  | 2.4(3.8)                                                                                                                                                                                                                                          | -                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                            |
|      | A(B)<br>D(D)<br>A(B)          | LoSmax. v/c or<br>avg. delay (s)A(B)0.56(0.70)D(D)0.88(0.82)A(B)9.3(10.3) | Max         Movement           LoS         max. v/c or<br>avg. delay (s)         Movement           A(B)         0.56(0.70)         EBL(SBT)           D(D)         0.88(0.82)         EBL(EBL)           A(B)         9.3(10.3)         EBR(EBR) | LoSmax. v/c or<br>avg. delay (s)MovementDelay (s)A(B)0.56(0.70)EBL(SBT)13.8(10.9)D(D)0.88(0.82)EBL(EBL)19.4(17.9)A(B)9.3(10.3)EBR(EBR)0.3(0.7) | Critical Movement         Intersection           LoS         max. v/c or<br>avg. delay (s)         Movement         Delay (s)         LoS           A(B)         0.56(0.70)         EBL(SBT)         13.8(10.9)         A(B)           D(D)         0.88(0.82)         EBL(EBL)         19.4(17.9)         A(A)           A(B)         9.3(10.3)         EBR(EBR)         0.3(0.7)         - |

As shown for both signalized and unsignalized alternatives, all study area intersections, on the whole, are projected to operate at LoS 'B' or better during weekday AM and PM peak hours. The eastbound left-turn at the Eagleson/Cope/ Cadence intersection is shown to approach capacity (LoS 'D'; v/c of 0.84 during the AM peak hour) assuming a full movement site connection to Eagleson Road. The same movement is shown to essentially be operating at capacity as a result of restricting the eastbound left-turn out of the site (LoS 'D'; v/c of 0.88 during the AM peak hour). As a mitigation measure, allocating a permitted and protected phase for the eastbound left-turn movement will result in a LoS 'A' for both alternatives with a v/c ratio of 0.37 and 0.43 in the AM and PM peak hours, respectively.

As previously mentioned, the TAC guidelines warrant an auxiliary left-turn lane at the Eagleson/Site access based on the traffic volumes during the PM peak hour, however the Synchro analysis indicates negligible change in the v/c ratio for the critical movement and the intersection 'as a whole'.

With regards to projected vehicle delay, the SYNCHRO analysis indicates approximately 6 seconds of average delay in the PM peak hour for vehicles using the northbound left-turn movement to access the site at the signalized intersection on Eagleson (assume no auxiliary turn lane is provided). The same movement in the unsignalized alternative has an average delay of less than 1 second in the critical PM peak hour.

Concerning projected queueing, the SYNCHRO analysis indicates the following assuming Concept 1 or 2 (<u>signalized</u>, full movement site driveway to/from Eagleson Road):

- northbound 95<sup>th</sup> percentile queue at the Eagleson/Cope/Cadence intersection 45m AM peak hour and 40m PM peak hour;
  - both projections are considerably less than the available storage (between Cope and the site driveway) of 150m for Concept 1 or 225m for Concept 2;
  - northbound queue spillback is only expected to be a concern when the northbound volume on Eagleson approaches 1,300 veh/h (compared to 500 to 650 veh/h currently projected);
- southbound 95<sup>th</sup> percentile queue at the proposed Eagleson/site intersection 10m AM peak hour and 40m PM peak hour;
  - both projections are considerably less than the available storage (between Cope and the site driveway) of 150m for Concept 1 or 225m for Concept 2;
  - southbound queue spillback is only expected to be a concern when the southbound volume on Eagleson approaches 1,800 veh/h (compared to just under 900 veh/h currently projected);
  - eastbound 95<sup>th</sup> percentile queue at the Eagleson/Cope/Cadence intersection 50m AM peak hour and 40m;
    - the 95<sup>th</sup> percentile queue length during the AM peak hour exceeds capacity (i.e. vehicles may not clear during one cycle);
    - as a mitigation measure, allocate a permitted and protected phase to the eastbound left-turn movement, which will allow vehicles to clear out in one cycle thus eliminating any potential spillback issue;
    - eastbound queue spillback is not a major concern due the long storage length available for the leftturning vehicles extending from the Cope/Site Access intersection to the adjacent signalized intersection at Eagleson.

The SYNCHRO analysis indicates the following queuing issues when considering Concept 3 (unsignalized site driveway connection to/from Eagleson Road, with the outbound left-turn from the site restricted):

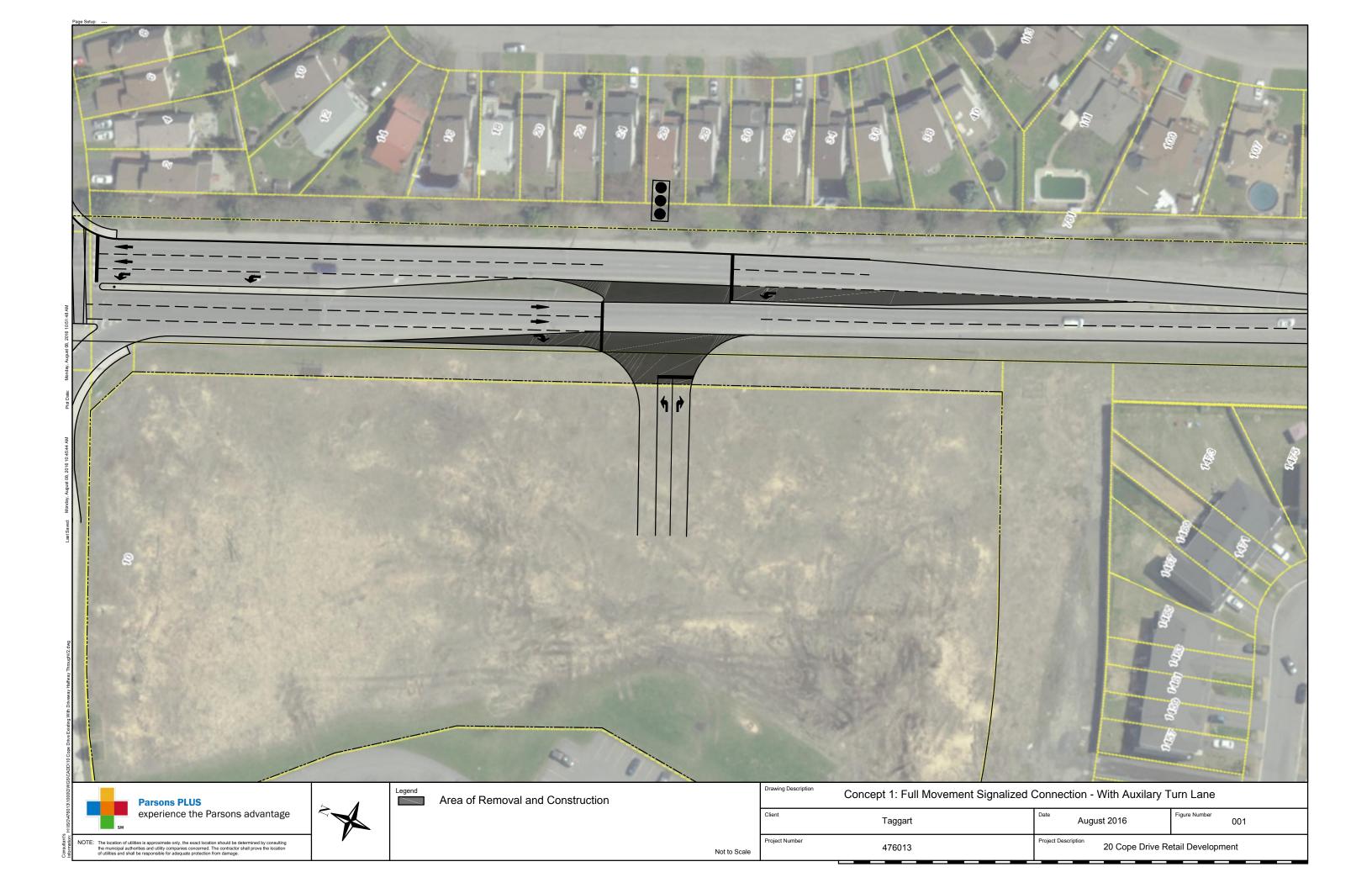
- eastbound 95<sup>th</sup> percentile queue at the Eagleson/Cope/Cadence intersection 60m AM peak hour and 65m PM peak hour;
  - the 95<sup>th</sup> percentile queue during the AM and PM peak hours exceed capacity (i.e. vehicles may not clear during one cycle), therefore spillback may occur between consecutive cycles;
  - as a mitigation measure, allocate a permitted and protected phase to the eastbound left-turn movement which will allow vehicles to clear out in one cycle thus eliminating any potential spillback issue;
  - eastbound queue spillback is not a major concern due the long storage length available for the leftturning vehicles extending from the Cope/Site Access intersection to the adjacent signalized intersection at Eagleson.

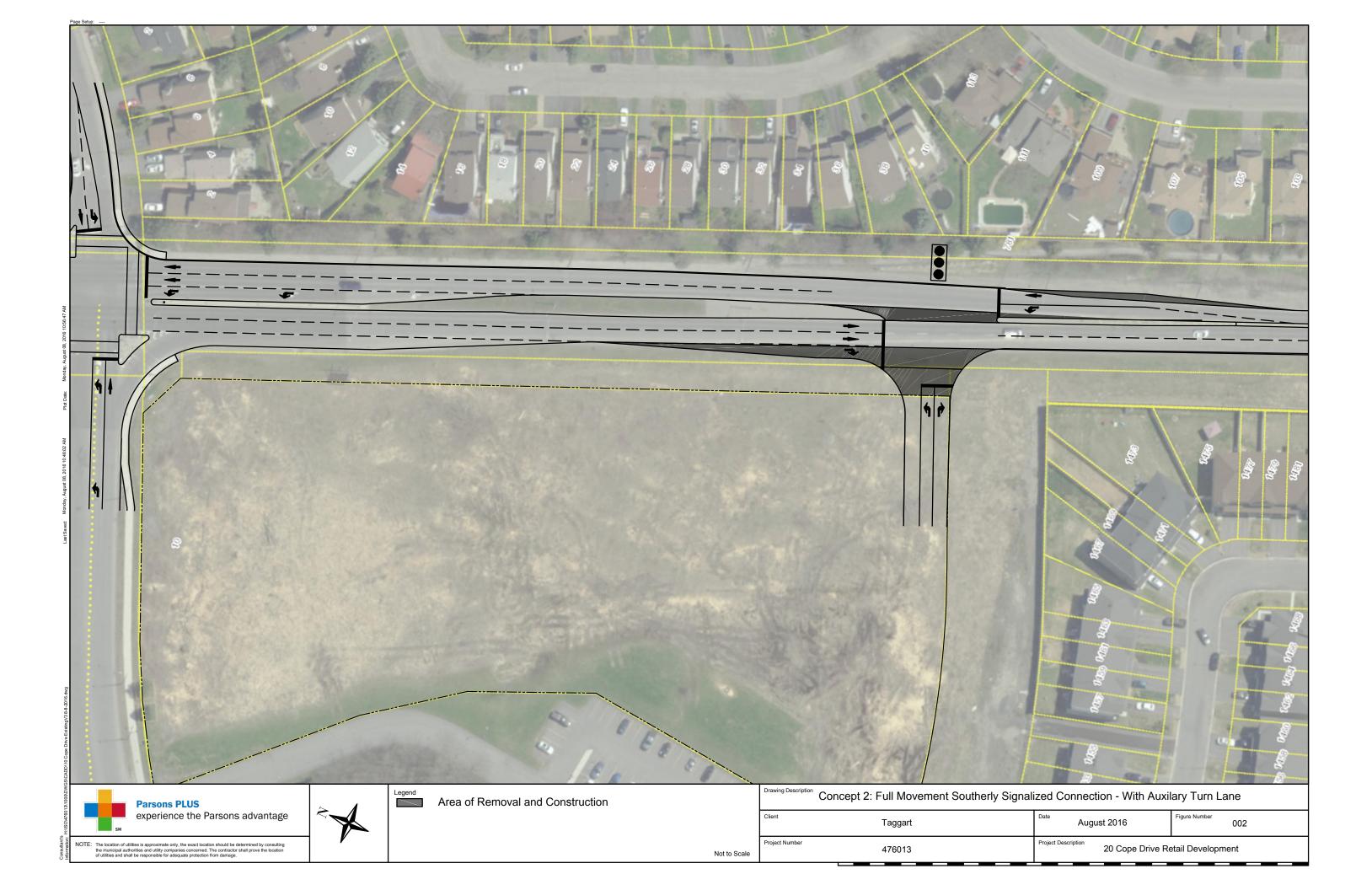
## **CONCLUSIONS AND RECOMMENDATIONS**

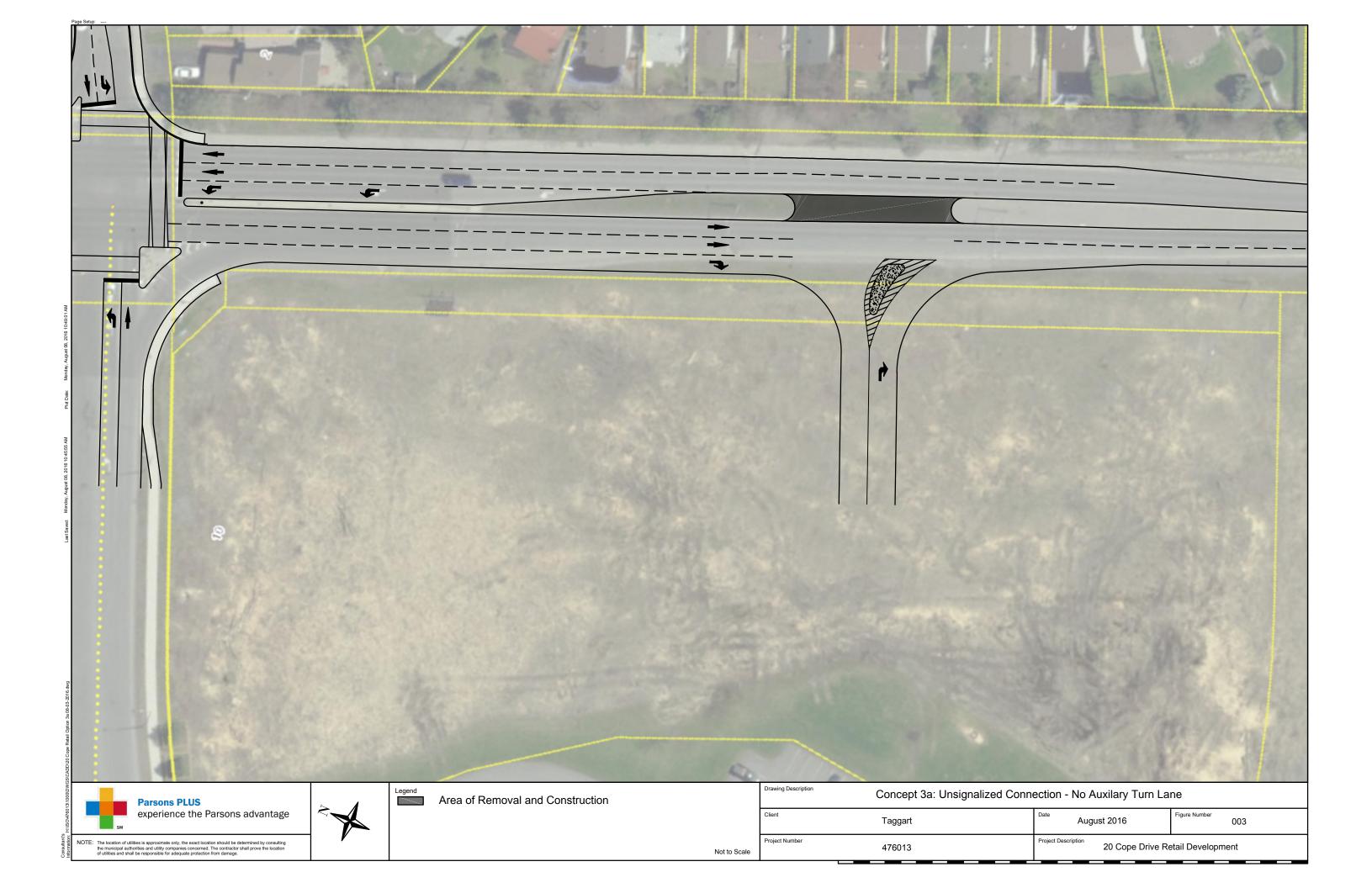
Signalized Intersection – Full Movement Site Driveway

- Concept 1 does not satisfy the preferred spacing value of 215m, but the sight distance value of 135m is just satisfied. Based on the projected traffic volumes, there are no forecasted queueing issues that would result in spillback through adjacent signalized intersections.
- Concept 2 does satisfy both the preferred spacing value of 215m and the sight distance value of 135m. Based on the projected traffic volumes, there are no forecasted queueing issues that would result in spillback through adjacent signalized intersections.
- Both Concept 1 and 2 require the installation of unwarranted traffic signal control (40% warranted), as well as on-going maintenance agreements/costs.

- The more southerly placement of the driveway associated with Concept 2 is not centrally located within the site, and not conducive to ideal circulation within the site.
- All study area intersections, 'as a whole' and critical movements, are projected to operate at an excellent LoS 'B' with the exception of the eastbound left-turning movement at Eagleson/Cope/Cadence operating at LoS 'D' in the morning peak hour.
- Projected queue lengths along Eagelson Road are shorter than available storage present between adjacent intersections.


Unsignalized Intersection - Right-in / Right-out / Left-in Site Driveway


- Concept 3 provides inbound movements from both the north and south, as well as the outbound movement to the south. Site traffic destined northbound on Eagleson Road is estimated to be up to 55 veh/h during the critical PM peak hour.
- The eastbound left-turn restriction at the Eagleson site connection results in additional loading of the same movement at the Eagleson/Cope/Cadence intersection.
- All study area intersections, 'as a whole' and critical movements, are projected to operate at an excellent LoS 'B' with the exception of the eastbound left-turning movement at Eagleson/Cope/Cadence operating at LoS 'D' in the morning and afternoon peak hour.
- If no mitigation measures are implemented, the 95<sup>th</sup> percentile queue length during the afternoon peak hour is projected to be 65m.
  - A potential mitigation measure to reduce the queue length would be to allocate a permitted and protected phase to the eastbound left-turn movement.


Based on the foregoing, Concept 3a is considered the recommended configuration for the site vehicular connection to Eagleson Road. It eliminates the need to install an unwarranted traffic signal and provides very good connectivity to/from the south. Any traffic destined to the north (or east/west on Cope Drive) has a very viable alternative to travel northbound through the site to access Cope Drive and the signalized intersection to Eagleson Road. If a signalized option is selected for the Eagleson Road site driveway, no operational issues are forecasted.



Functional Concept Plans







|                                                        | Page Setup:                                                                                                                                                                                                                                                                                    |                   |                         |              |                     |                          |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|--------------|---------------------|--------------------------|
|                                                        |                                                                                                                                                                                                                                                                                                | 3                 |                         |              |                     | 33                       |
| A Plot Date: Monday, August 08, 2016 10:31:05 AM       |                                                                                                                                                                                                                                                                                                |                   |                         |              |                     |                          |
| Last Saved: Wednesday, August 03, 2016 5:39:56 P       | 8                                                                                                                                                                                                                                                                                              |                   |                         |              |                     |                          |
| 1000/DWGS\CADD\20 Cope Retail Option 3b 08-03-2016.dwg |                                                                                                                                                                                                                                                                                                | Legend Area of Re | emoval and Construction |              | Prawing Description | concept 3b: Unsignalized |
| 1:\ISO\476013\10                                       | Parsons PLUS<br>experience the Parsons advantage                                                                                                                                                                                                                                               |                   |                         |              | Client              | Taggart                  |
| Information: F.                                        | NOTE: The location of utilities is approximate only, the exact location should be determined by consulting<br>the municipal authorities and utility companies concerned. The contractor shall prove the location<br>of utilities and shall be responsible for adequate protection from damage. | 1 🖡               |                         | Not to Scale | Project Number      | 476013                   |



Appendix N SYNCHRO and MMLoS Analysis: Projected 2024 Conditions

# Projected 2024 PM 1: Eagleson & Fernbank

|                                      | ٦            | $\mathbf{F}$ | 1             | 1          | Ŧ            | ~     |
|--------------------------------------|--------------|--------------|---------------|------------|--------------|-------|
| Lane Group                           | EBL          | EBR          | NBL           | NBT        | SBT          | SBR   |
| Lane Configurations                  | ۲            | 1            | ٢             | <b>†</b> † | <b>†</b> †   | 1     |
| Traffic Volume (vph)                 | 143          | 189          | 169           | 619        | 898          | 210   |
| Future Volume (vph)                  | 143          | 189          | 169           | 619        | 898          | 210   |
| Lane Group Flow (vph)                | 151          | 199          | 178           | 652        | 945          | 221   |
| Turn Type                            | Prot         | Perm         | pm+pt         | NA         | NA           | Perm  |
| Protected Phases                     | 4            |              | 5             | 2          | 6            |       |
| Permitted Phases                     |              | 4            | 2             |            |              | 6     |
| Detector Phase                       | 4            | 4            | 5             | 2          | 6            | 6     |
| Switch Phase                         |              |              |               |            |              |       |
| Minimum Initial (s)                  | 10.0         | 10.0         | 5.0           | 10.0       | 10.0         | 10.0  |
| Minimum Split (s)                    | 27.0         | 27.0         | 11.0          | 16.0       | 27.0         | 27.0  |
| Total Split (s)                      | 27.0         | 27.0         | 15.0          | 93.0       | 78.0         | 78.0  |
| Total Split (%)                      | 22.5%        | 22.5%        | 12.5%         | 77.5%      | 65.0%        | 65.0% |
| Yellow Time (s)                      | 3.7          | 3.7          | 3.7           | 3.7        | 3.7          | 3.7   |
| All-Red Time (s)                     | 2.3          | 2.3          | 2.3           | 2.3        | 2.3          | 2.3   |
| Lost Time Adjust (s)                 | -2.0         | -2.0         | -2.0          | -2.0       | -2.0         | -2.0  |
| Total Lost Time (s)                  | 4.0          | 4.0          | 4.0           | 4.0        | 4.0          | 4.0   |
| Lead/Lag                             |              |              | Lead          |            | Lag          | Lag   |
| Lead-Lag Optimize?                   |              |              | Yes           |            | Yes          | Yes   |
| Recall Mode                          | None         | None         | None          | C-Max      | C-Max        | C-Max |
| Act Effct Green (s)                  | 17.7         | 17.7         | 94.3          | 94.3       | 80.0         | 80.0  |
| Actuated g/C Ratio                   | 0.15         | 0.15         | 0.79          | 0.79       | 0.67         | 0.67  |
| v/c Ratio                            | 0.60         | 0.51         | 0.39          | 0.24       | 0.42         | 0.20  |
| Control Delay                        | 57.5         | 10.6         | 6.1           | 4.0        | 3.6          | 0.9   |
| Queue Delay                          | 0.0          | 0.0          | 0.0           | 0.0        | 0.0          | 0.0   |
| Total Delay                          | 57.5         | 10.6         | 6.1           | 4.0        | 3.6          | 0.9   |
| LOS                                  | E            | B            | A             | A          | A            | A     |
| Approach Delay                       | 30.8         | U            | / .           | 4.4        | 3.1          |       |
| Approach LOS                         | C            |              |               | A          | A            |       |
| Queue Length 50th (m)                | 33.6         | 0.0          | 8.4           | 17.8       | 13.1         | 0.0   |
| Queue Length 95th (m)                | 52.6         | 19.3         | 16.9          | 28.7       | 16.0         | 0.0   |
| Internal Link Dist (m)               | 190.5        | . 7.0        | .0.7          | 91.6       | 236.6        | 0.0   |
| Turn Bay Length (m)                  | 175.0        |              | 35.0          | /1.0       | 200.0        | 40.0  |
| Base Capacity (vph)                  | 324          | 451          | 464           | 2663       | 2260         | 1084  |
| Starvation Cap Reductn               | 0            | 401          | 404           | 2003       | 0            | 0     |
| Spillback Cap Reductin               | 0            | 0            | 0             | 0          | 0            | 0     |
| Storage Cap Reductin                 | 0            | 0            | 0             | 0          | 0            | 0     |
| Reduced v/c Ratio                    | 0.47         | 0.44         | 0.38          | 0.24       | 0.42         | 0.20  |
|                                      | 0.47         | 0.44         | 0.30          | 0.24       | 0.42         | 0.20  |
| Intersection Summary                 |              |              |               |            |              |       |
| Cycle Length: 120                    |              |              |               |            |              |       |
| Actuated Cycle Length: 120           |              |              |               |            |              |       |
| Offset: 29 (24%), Referenced to ph   | ase 2:NBTL a | nd 6:SBT, S  | Start of Gree | en         |              |       |
| Natural Cycle: 65                    |              |              |               |            |              |       |
| Control Type: Actuated-Coordinate    | d            |              |               |            |              |       |
| Maximum v/c Ratio: 0.60              |              |              |               |            |              |       |
| Intersection Signal Delay: 7.7       |              |              |               | In         | tersection L | OS: A |
| Intersection Capacity Utilization 54 | .4%          |              |               |            | U Level of S |       |
| Analysis Period (min) 15             |              |              |               |            |              |       |
|                                      |              |              |               |            |              |       |
| Splits and Phases: 1: Eagleson a     | & Fernbank   |              |               |            |              |       |
| (p) -                                |              |              |               |            |              |       |
| 🔍 Ø2 (R) 💗                           |              |              |               |            |              |       |
| 93.5                                 |              |              |               |            |              |       |

Ø6 (R) ^\_<mark>Ø5</mark>

15 s

## Projected 2024 PM 2: Eagleson & Cope/Cadence

|                                                              | ٦               | -          | 4            | ←     | 1            | 1         | 1     | Ļ         | 1        |  |
|--------------------------------------------------------------|-----------------|------------|--------------|-------|--------------|-----------|-------|-----------|----------|--|
| Lane Group                                                   | EBL             | EBT        | WBL          | WBT   | NBL          | NBT       | SBL   | SBT       | SBR      |  |
| Lane Configurations                                          | ň               | Þ          | 5            | ţ,    | 5            | †î≽       | ٦     | <b>††</b> | 1        |  |
| Traffic Volume (vph)                                         | 131             | 149        | 46           | 99    | 87           | 677       | 238   | 1071      | 170      |  |
| Future Volume (vph)                                          | 131             | 149        | 46           | 99    | 87           | 677       | 238   | 1071      | 170      |  |
| Lane Group Flow (vph)                                        | 138             | 241        | 48           | 235   | 92           | 761       | 251   | 1127      | 179      |  |
| Turn Type                                                    | Perm            | NA         | Perm         | NA    | pm+pt        | NA        | pm+pt | NA        | Perm     |  |
| Protected Phases                                             |                 | 4          |              | 8     | 5            | 2         | 1     | 6         |          |  |
| Permitted Phases                                             | 4               |            | 8            |       | 2            |           | 6     |           | 6        |  |
| Detector Phase                                               | 4               | 4          | 8            | 8     | 5            | 2         | 1     | 6         | 6        |  |
| Switch Phase                                                 |                 |            |              |       |              |           |       |           |          |  |
| Vinimum Initial (s)                                          | 10.0            | 10.0       | 10.0         | 10.0  | 5.0          | 10.0      | 5.0   | 10.0      | 10.0     |  |
| Vinimum Split (s)                                            | 28.5            | 28.5       | 28.5         | 28.5  | 11.0         | 32.0      | 11.0  | 32.0      | 32.0     |  |
| Total Split (s)                                              | 41.0            | 41.0       | 41.0         | 41.0  | 12.0         | 54.0      | 25.0  | 67.0      | 67.0     |  |
| Total Split (%)                                              | 34.2%           | 34.2%      | 34.2%        | 34.2% | 10.0%        | 45.0%     | 20.8% | 55.8%     | 55.8%    |  |
| fellow Time (s)                                              | 3.0             | 3.0        | 3.0          | 3.0   | 3.7          | 3.7       | 3.7   | 3.7       | 3.7      |  |
| All-Red Time (s)                                             | 3.5             | 3.5        | 3.5          | 3.5   | 2.3          | 2.3       | 2.3   | 2.3       | 2.3      |  |
| Lost Time Adjust (s)                                         | -2.5            | -2.5       | -2.5         | -2.5  | -2.0         | -2.0      | -2.0  | -2.0      | -2.0     |  |
| Fotal Lost Time (s)                                          | 4.0             | 4.0        | 4.0          | 4.0   | 4.0          | 4.0       | 4.0   | 4.0       | 4.0      |  |
| _ead/Lag                                                     | 1.0             | 1.0        | 1.0          | 1.0   | Lead         | Lag       | Lead  | Lag       | Lag      |  |
| _ead-Lag Optimize?                                           |                 |            |              |       | Yes          | Yes       | Yes   | Yes       | Yes      |  |
| Recall Mode                                                  | None            | None       | None         | None  | None         | C-Max     | None  | C-Max     | C-Max    |  |
| Act Effct Green (s)                                          | 27.2            | 27.2       | 27.2         | 27.2  | 75.6         | 66.6      | 84.2  | 71.9      | 71.9     |  |
| Actuated g/C Ratio                                           | 0.23            | 0.23       | 0.23         | 0.23  | 0.63         | 0.56      | 0.70  | 0.60      | 0.60     |  |
| //c Ratio                                                    | 0.88            | 0.60       | 0.32         | 0.57  | 0.29         | 0.41      | 0.51  | 0.56      | 0.18     |  |
| Control Delay                                                | 89.4            | 42.5       | 41.2         | 35.3  | 8.5          | 13.1      | 11.0  | 17.1      | 2.5      |  |
| Queue Delay                                                  | 0.0             | 0.0        | 0.0          | 0.0   | 0.0          | 0.0       | 0.0   | 0.0       | 0.0      |  |
| Total Delay                                                  | 89.4            | 42.5       | 41.2         | 35.3  | 8.5          | 13.1      | 11.0  | 17.1      | 2.5      |  |
| LOS                                                          | F               | 42.5<br>D  | -1.2<br>D    | D     | 0.5<br>A     | B         | B     | B         | 2.5<br>A |  |
| Approach Delay                                               | •               | 59.6       | D            | 36.3  | 7.           | 12.6      | U     | 14.5      | 7.       |  |
| Approach LOS                                                 |                 | E          |              | D     |              | B         |       | B         |          |  |
| Queue Length 50th (m)                                        | 31.5            | 46.1       | 9.5          | 37.6  | 4.4          | 29.1      | 18.4  | 80.8      | 0.0      |  |
| Queue Length 95th (m)                                        | #55.4           | 64.9       | 18.9         | 56.7  | 10.3         | 34.6      | 37.0  | 117.3     | 10.4     |  |
| Internal Link Dist (m)                                       | #33.4           | 206.5      | 10.7         | 75.8  | 10.5         | 117.8     | 57.0  | 169.6     | 10.4     |  |
| Turn Bay Length (m)                                          | 38.0            | 200.5      | 20.0         | 75.0  | 60.0         | 117.0     | 47.0  | 107.0     | 125.0    |  |
| Base Capacity (vph)                                          | 213             | 537        | 20.0         | 541   | 322          | 1868      | 566   | 2030      | 980      |  |
| Starvation Cap Reductn                                       | 0               | 0          | 207          | 0     | 0            | 0         | 0     | 2030      | 0        |  |
| Spillback Cap Reductn                                        | 0               | 0          | 0            | 0     | 0            | 0         | 0     | 0         | 0        |  |
| Storage Cap Reductn                                          | 0               | 0          | 0            | 0     | 0            | 0         | 0     | 0         | 0        |  |
| Reduced v/c Ratio                                            | 0.65            | 0.45       | 0.23         | 0.43  | 0.29         | 0.41      | 0.44  | 0.56      | 0.18     |  |
| Reduced we realio                                            | 0.05            | 0.45       | 0.25         | 0.45  | 0.27         | 0.41      | 0.44  | 0.00      | 0.10     |  |
| ntersection Summary                                          |                 |            |              |       |              |           |       |           |          |  |
| Cycle Length: 120                                            |                 |            |              |       |              |           |       |           |          |  |
| Actuated Cycle Length: 120                                   |                 |            | Clark of Cre |       |              |           |       |           |          |  |
| Offset: 14 (12%), Referenced to p                            | Dhase Z:INBTL a | NU 0:581L, | Start of Gre | en    |              |           |       |           |          |  |
| Natural Cycle: 75                                            | ha d            |            |              |       |              |           |       |           |          |  |
| Control Type: Actuated-Coordinat                             | ted             |            |              |       |              |           |       |           |          |  |
| Maximum v/c Ratio: 0.88                                      |                 |            |              | Lat   |              |           |       |           |          |  |
| ntersection Signal Delay: 21.5                               |                 |            |              |       | ersection L  |           |       |           |          |  |
| ntersection Capacity Utilization 7                           | 1.5%            |            |              | IC    | U Level of S | Service C |       |           |          |  |
| Analysis Period (min) 15                                     | de eenestes     |            | lanaa        |       |              |           |       |           |          |  |
| 95th percentile volume excee<br>Queue shown is maximum after |                 | eue may be | ionger.      |       |              |           |       |           |          |  |
| Splits and Phases: 2: Eaglesor                               | n & Cope/Cader  | ice        |              |       |              |           |       |           |          |  |
| ↓ <sub>Ø1</sub>                                              | <b>*†</b>       |            |              |       |              |           | 1     |           |          |  |
| F (A)                                                        | 🛛 🔊 Ø2 (R       | )          |              |       |              |           |       | ₱Ø4       |          |  |
| - 01                                                         |                 |            |              |       |              |           |       |           |          |  |
| 25 s                                                         | 54 s            |            |              |       |              |           | 41    |           |          |  |
| 25 s<br>★ Ø5 ↓ Ø6 (R)                                        | 54 s            |            |              |       |              |           |       | s<br>Ø8   |          |  |

## Projected 2024 PM 5: Eagleson & Site

|                                        | ۶          | $\mathbf{i}$ | 1           | Ť         | Ļ                    |             |
|----------------------------------------|------------|--------------|-------------|-----------|----------------------|-------------|
| Lane Group                             | EBL        | EBR          | NBL         | NBT       | SBT                  |             |
| Lane Configurations                    | ۲          | 1            | ٦           | <b>††</b> | <b>≜</b> †⊅          |             |
| Traffic Volume (vph)                   | 79         | 16           | 45          | 737       | 1104                 |             |
| Future Volume (vph)                    | 79         | 16           | 45          | 737       | 1104                 |             |
| Lane Group Flow (vph)                  | 83         | 10           | 47          | 776       | 1180                 |             |
| Turn Type                              | Prot       | Perm         | Perm        | NA        | NA                   |             |
| Protected Phases                       | 4          | I CIIII      | I CIIII     | 2         | 6                    |             |
| Permitted Phases                       | 4          | 4            | C           | ۷         | 0                    |             |
|                                        | 4          | 4            | 2           | 2         | 1                    |             |
| Detector Phase                         | 4          | 4            | 2           | 2         | 6                    |             |
| Switch Phase                           | 10.0       |              |             |           | 10.0                 |             |
| Minimum Initial (s)                    | 10.0       | 10.0         | 10.0        | 10.0      | 10.0                 |             |
| Minimum Split (s)                      | 30.9       | 30.9         | 26.9        | 26.9      | 23.9                 |             |
| Total Split (s)                        | 47.0       | 47.0         | 73.0        | 73.0      | 73.0                 |             |
| Total Split (%)                        | 39.2%      | 39.2%        | 60.8%       | 60.8%     | 60.8%                |             |
| Yellow Time (s)                        | 3.3        | 3.3          | 3.7         | 3.7       | 3.7                  |             |
| All-Red Time (s)                       | 2.6        | 2.6          | 2.2         | 2.2       | 2.2                  |             |
| Lost Time Adjust (s)                   | -1.9       | -1.9         | -1.9        | -1.9      | -1.9                 |             |
| Total Lost Time (s)                    | 4.0        | 4.0          | 4.0         | 4.0       | 4.0                  |             |
| Lead/Lag                               |            |              |             |           |                      |             |
| Lead-Lag Optimize?                     |            |              |             |           |                      |             |
| Recall Mode                            | None       | None         | C-Max       | C-Max     | C-Max                |             |
| Act Effct Green (s)                    | 15.8       | 15.8         | 100.2       | 100.2     | 100.2                |             |
| Actuated g/C Ratio                     | 0.13       | 0.13         | 0.84        | 0.84      | 0.84                 |             |
| v/c Ratio                              | 0.13       | 0.08         | 0.04        | 0.27      | 0.42                 |             |
| Control Delay                          | 50.8       | 17.4         | 4.1         | 2.8       | 2.4                  |             |
| Queue Delay                            | 0.0        | 0.0          | 0.0         | 0.0       | 0.0                  |             |
| Total Delay                            | 50.8       | 17.4         | 4.1         | 2.8       | 2.4                  |             |
|                                        |            |              |             |           |                      |             |
| LOS<br>Anneach Deleu                   | D          | В            | А           | A         | A                    |             |
| Approach Delay                         | 45.1       |              |             | 2.8       | 2.4                  |             |
| Approach LOS                           | D          |              |             | A         | A                    |             |
| Queue Length 50th (m)                  | 18.6       | 0.0          | 1.4         | 13.1      | 19.9                 |             |
| Queue Length 95th (m)                  | 30.0       | 6.0          | 6.1         | 31.3      | 27.5                 |             |
| Internal Link Dist (m)                 | 83.5       |              |             | 204.3     | 60.9                 |             |
| Turn Bay Length (m)                    |            | 30.0         | 35.0        |           |                      |             |
| Base Capacity (vph)                    | 607        | 554          | 329         | 2831      | 2825                 |             |
| Starvation Cap Reductn                 | 0          | 0            | 0           | 0         | 0                    |             |
| Spillback Cap Reductn                  | 0          | 0            | 0           | 0         | 0                    |             |
| Storage Cap Reductn                    | 0          | 0            | 0           | 0         | 0                    |             |
| Reduced v/c Ratio                      | 0.14       | 0.03         | 0.14        | 0.27      | 0.42                 |             |
|                                        |            |              |             |           |                      |             |
| ntersection Summary                    |            |              |             |           |                      |             |
| Cycle Length: 120                      |            |              |             |           |                      |             |
| Actuated Cycle Length: 120             |            |              |             |           |                      |             |
| Offset: 0 (0%), Referenced to phase    | 2:NBTL and | i 6:SBT, Sta | rt of Green |           |                      |             |
| Natural Cycle: 60                      |            |              |             |           |                      |             |
| Control Type: Actuated-Coordinated     |            |              |             |           |                      |             |
| Maximum v/c Ratio: 0.42                |            |              |             |           |                      |             |
| Intersection Signal Delay: 4.6         |            |              |             |           | tersection LOS: A    |             |
| Intersection Capacity Utilization 54.5 | %          |              |             | IC        | U Level of Service A |             |
| Analysis Period (min) 15               |            |              |             |           |                      |             |
| Splits and Phases: 5: Eagleson &       | Site       |              |             |           |                      |             |
|                                        | JIL        |              |             |           |                      | <u>↓</u>    |
| Ø2 (R)                                 |            |              |             |           |                      | <b>₹</b> Ø4 |
| 73 s                                   |            |              |             |           |                      | 47 s        |
| ac (p)                                 |            |              |             |           |                      |             |

🕴 🕈 Ø6 (R)

## Projected 2024 PM 3: First Air & Cope

|                                   |        | ~        | 4         | Ļ         | *            | ~      |
|-----------------------------------|--------|----------|-----------|-----------|--------------|--------|
|                                   | -      | *        |           |           | 1            | -      |
| Movement                          | EBT    | EBR      | WBL       | WBT       | NBL          | NBR    |
| Lane Configurations               | Þ      |          |           | र्स       | ۳.           | 1      |
| Traffic Volume (veh/h)            | 310    | 18       | 19        | 337       | 17           | 50     |
| Future Volume (Veh/h)             | 310    | 18       | 19        | 337       | 17           | 50     |
| Sign Control                      | Free   |          |           | Free      | Stop         |        |
| Grade                             | 0%     |          |           | 0%        | 0%           |        |
| Peak Hour Factor                  | 0.95   | 0.95     | 0.95      | 0.95      | 0.95         | 0.95   |
| Hourly flow rate (vph)            | 326    | 19       | 20        | 355       | 18           | 53     |
| Pedestrians                       |        |          |           |           |              |        |
| Lane Width (m)                    |        |          |           |           |              |        |
| Walking Speed (m/s)               |        |          |           |           |              |        |
| Percent Blockage                  |        |          |           |           |              |        |
| Right turn flare (veh)            |        |          |           |           |              |        |
| Median type                       | None   |          |           | None      |              |        |
| Median storage veh)               |        |          |           |           |              |        |
| Upstream signal (m)               |        |          |           | 144       |              |        |
| pX, platoon unblocked             |        |          |           |           | 1.00         |        |
| vC, conflicting volume            |        |          | 345       |           | 730          | 336    |
| vC1, stage 1 conf vol             |        |          |           |           |              |        |
| vC2, stage 2 conf vol             |        |          |           |           |              |        |
| vCu, unblocked vol                |        |          | 345       |           | 730          | 336    |
| tC, single (s)                    |        |          | 4.1       |           | 6.4          | 6.2    |
| tC, 2 stage (s)                   |        |          |           |           |              |        |
| tF (s)                            |        |          | 2.2       |           | 3.5          | 3.3    |
| p0 queue free %                   |        |          | 98        |           | 95           | 92     |
| cM capacity (veh/h)               |        |          | 1214      |           | 383          | 706    |
| Direction, Lane #                 | EB 1   | WB 1     | NB 1      | NB 2      |              |        |
| Volume Total                      | 345    | 375      | 18        | 53        |              |        |
| Volume Left                       | 0<br>0 | 20       | 18        | 0         |              |        |
| Volume Right                      | 19     | 20       | 0         | 53        |              |        |
| cSH                               | 1700   | 1214     | 383       | 706       |              |        |
| Volume to Capacity                | 0.20   | 0.02     | 0.05      | 0.08      |              |        |
| Queue Length 95th (m)             | 0.20   | 0.02     | 1.1       | 1.8       |              |        |
| Control Delay (s)                 | 0.0    | 0.4      | 1.1       | 1.0       |              |        |
| Lane LOS                          | 0.0    | 0.0<br>A | 14.9<br>B | 10.5<br>B |              |        |
|                                   | 0.0    | 0.6      | ы<br>11.6 | D         |              |        |
| Approach Delay (s)                | 0.0    | 0.0      | 11.0<br>B |           |              |        |
| Approach LOS                      |        |          | В         |           |              |        |
| Intersection Summary              |        |          |           |           |              |        |
| Average Delay                     |        |          | 1.3       |           |              |        |
| Intersection Capacity Utilization |        |          | 45.1%     | ICL       | J Level of S | ervice |
| Analysis Period (min)             |        |          | 15        |           |              |        |

## Projected 2024 PM 4: Eagleson & Site

|                                   | ٨    |      |       |           | 1            | ,      |
|-----------------------------------|------|------|-------|-----------|--------------|--------|
|                                   | -    |      |       | <b>†</b>  | ¥            | ~      |
| Movement                          | EBL  | EBR  | NBL   | NBT       | SBT          | SBR    |
| Lane Configurations               |      | 1    |       | <b>††</b> | <b>††</b>    | 1      |
| Traffic Volume (veh/h)            | 0    | 27   | 0     | 816       | 1094         | 74     |
| Future Volume (Veh/h)             | 0    | 27   | 0     | 816       | 1094         | 74     |
| Sign Control                      | Stop |      |       | Free      | Free         |        |
| Grade                             | 0%   |      |       | 0%        | 0%           |        |
| Peak Hour Factor                  | 0.95 | 0.95 | 0.95  | 0.95      | 0.95         | 0.95   |
| Hourly flow rate (vph)            | 0    | 28   | 0     | 859       | 1152         | 78     |
| Pedestrians                       |      |      |       |           |              |        |
| Lane Width (m)                    |      |      |       |           |              |        |
| Walking Speed (m/s)               |      |      |       |           |              |        |
| Percent Blockage                  |      |      |       |           |              |        |
| Right turn flare (veh)            |      |      |       |           |              |        |
| Median type                       |      |      |       | None      | None         |        |
| Median storage veh)               |      |      |       |           |              |        |
| Upstream signal (m)               |      |      |       | 85        | 132          |        |
| pX, platoon unblocked             | 0.83 | 0.81 | 0.81  | 00        | 152          |        |
| vC, conflicting volume            | 1582 | 576  | 1230  |           |              |        |
| vC1, stage 1 conf vol             | 1302 | 570  | 1250  |           |              |        |
| vC2, stage 2 conf vol             |      |      |       |           |              |        |
| vCu, unblocked vol                | 1016 | 0    | 804   |           |              |        |
| tC, single (s)                    | 6.8  | 6.9  | 4.1   |           |              |        |
| tC, 2 stage (s)                   | 0.0  | 0.7  | 1.1   |           |              |        |
| tF (s)                            | 3.5  | 3.3  | 2.2   |           |              |        |
| p0 queue free %                   | 100  | 97   | 100   |           |              |        |
| cM capacity (veh/h)               | 195  | 874  | 658   |           |              |        |
|                                   |      |      |       |           |              |        |
| Direction, Lane #                 | EB 1 | NB 1 | NB 2  | SB 1      | SB 2         | SB 3   |
| Volume Total                      | 28   | 430  | 430   | 576       | 576          | 78     |
| Volume Left                       | 0    | 0    | 0     | 0         | 0            | 0      |
| Volume Right                      | 28   | 0    | 0     | 0         | 0            | 78     |
| cSH                               | 874  | 1700 | 1700  | 1700      | 1700         | 1700   |
| Volume to Capacity                | 0.03 | 0.25 | 0.25  | 0.34      | 0.34         | 0.05   |
| Queue Length 95th (m)             | 0.8  | 0.0  | 0.0   | 0.0       | 0.0          | 0.0    |
| Control Delay (s)                 | 9.3  | 0.0  | 0.0   | 0.0       | 0.0          | 0.0    |
| Lane LOS                          | А    |      |       |           |              |        |
| Approach Delay (s)                | 9.3  | 0.0  |       | 0.0       |              |        |
| Approach LOS                      | А    |      |       |           |              |        |
| Intersection Summary              |      |      |       |           |              |        |
| Average Delay                     |      |      | 0.1   |           |              |        |
| Intersection Capacity Utilization |      |      | 41.9% | ICI       | J Level of S | ervice |
| Analysis Period (min)             |      |      | 15    | 101       |              |        |
|                                   |      |      | 15    |           |              |        |

## Projected 2024 SAT 1: Eagleson & Fernbank

|                                       | ۶            | $\mathbf{r}$ | 1     | t         | ţ            | ~         |
|---------------------------------------|--------------|--------------|-------|-----------|--------------|-----------|
| Lane Group                            | EBL          | EBR          | NBL   | NBT       | SBT          | SBR       |
| Lane Configurations                   | ۲            | 1            | ۲     | <u>††</u> | <u>††</u>    | 1         |
| Traffic Volume (vph)                  | 175          | 177          | 149   | 527       | 480          | 137       |
| Future Volume (vph)                   | 175          | 177          | 149   | 527       | 480          | 137       |
| Lane Group Flow (vph)                 | 184          | 186          | 157   | 555       | 505          | 144       |
| Turn Type                             | Prot         | Perm         | Perm  | NA        | NA           | Perm      |
| Protected Phases                      | 4            |              |       | 2         | 6            |           |
| Permitted Phases                      |              | 4            | 2     |           |              | 6         |
| Detector Phase                        | 4            | 4            | 2     | 2         | 6            | 6         |
| Switch Phase                          |              |              |       |           |              |           |
| Minimum Initial (s)                   | 10.0         | 10.0         | 10.0  | 10.0      | 10.0         | 10.0      |
| Minimum Split (s)                     | 27.0         | 27.0         | 16.0  | 16.0      | 27.0         | 27.0      |
| Total Split (s)                       | 27.0         | 27.0         | 53.0  | 53.0      | 53.0         | 53.0      |
| Total Split (%)                       | 33.8%        | 33.8%        | 66.3% | 66.3%     | 66.3%        | 66.3%     |
| Yellow Time (s)                       | 3.7          | 3.7          | 3.7   | 3.7       | 3.7          | 3.7       |
| All-Red Time (s)                      | 2.3          | 2.3          | 2.3   | 2.3       | 2.3          | 2.3       |
| Lost Time Adjust (s)                  | -2.0         | -2.0         | -2.0  | -2.0      | -2.0         | -2.0      |
| Total Lost Time (s)                   | 4.0          | -2.0         | 4.0   | -2.0      | -2.0         | -2.0      |
| Lead/Lag                              | 4.0          | 4.0          | 4.0   | 4.0       | 4.0          | 4.0       |
| Lead-Lag Optimize?                    |              |              |       |           |              |           |
| Recall Mode                           | Nono         | None         | Max   | Max       | Max          | Мах       |
| Act Effct Green (s)                   | None<br>15.8 | 15.8         | 49.2  | 49.2      | 49.2         | 49.2      |
| .,                                    |              |              |       |           |              |           |
| Actuated g/C Ratio                    | 0.22         | 0.22         | 0.67  | 0.67      | 0.67         | 0.67      |
| v/c Ratio                             | 0.50         | 0.39         | 0.28  | 0.24      | 0.22         | 0.13      |
| Control Delay                         | 29.9         | 6.5          | 7.3   | 5.5       | 5.4          | 1.5       |
| Queue Delay                           | 0.0          | 0.0          | 0.0   | 0.0       | 0.0          | 0.0       |
| Total Delay                           | 29.9         | 6.5          | 7.3   | 5.5       | 5.4          | 1.5       |
| LOS                                   | С            | А            | А     | А         | А            | А         |
| Approach Delay                        | 18.1         |              |       | 5.9       | 4.5          |           |
| Approach LOS                          | В            |              |       | А         | А            |           |
| Queue Length 50th (m)                 | 22.2         | 0.0          | 6.9   | 12.4      | 11.2         | 0.0       |
| Queue Length 95th (m)                 | 39.4         | 13.5         | 20.7  | 26.0      | 23.5         | 5.9       |
| Internal Link Dist (m)                | 344.8        |              |       | 208.3     | 204.5        |           |
| Turn Bay Length (m)                   | 175.0        |              | 35.0  |           |              | 40.0      |
| Base Capacity (vph)                   | 535          | 606          | 558   | 2282      | 2282         | 1068      |
| Starvation Cap Reductn                | 0            | 0            | 0     | 0         | 0            | 0         |
| Spillback Cap Reductn                 | 0            | 0            | 0     | 0         | 0            | 0         |
| Storage Cap Reductn                   | 0            | 0            | 0     | 0         | 0            | 0         |
| Reduced v/c Ratio                     | 0.34         | 0.31         | 0.28  | 0.24      | 0.22         | 0.13      |
| Intersection Summary                  |              |              |       |           |              |           |
|                                       |              |              |       |           |              |           |
| Cycle Length: 80                      |              |              |       |           |              |           |
| Actuated Cycle Length: 73             |              |              |       |           |              |           |
| Natural Cycle: 55                     |              |              |       |           |              |           |
| Control Type: Actuated-Uncoordina     | ited         |              |       |           |              |           |
| Maximum v/c Ratio: 0.50               |              |              |       |           |              |           |
| Intersection Signal Delay: 8.0        |              |              |       |           | tersection L |           |
| Intersection Capacity Utilization 43. | 0%           |              |       | IC        | U Level of S | Service A |
| Analysis Period (min) 15              |              |              |       |           |              |           |
|                                       |              |              |       |           |              |           |

Splits and Phases: 1: Eagleson & Fernbank

| ↑ ø 2 | 📌 ø4 |
|-------|------|
| 53 s  | 27 s |
|       |      |
| 53 s  |      |

## Projected 2024 SAT 2: Eagleson & Cope/Cadence

|                                                                                                                                                                                                                        | ٦                              | -          | 4            | -     | 1            | 1     | 1     | Ļ           | 1     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|--------------|-------|--------------|-------|-------|-------------|-------|--|
| ane Group                                                                                                                                                                                                              | EBL                            | EBT        | WBL          | WBT   | NBL          | NBT   | SBL   | SBT         | SBR   |  |
| ane Configurations                                                                                                                                                                                                     | ň                              | 4Î         | 7            | ¢î    | ۲            |       | ۲     | <u>††</u>   | 1     |  |
| raffic Volume (vph)                                                                                                                                                                                                    | 164                            | 95         | 50           | 103   | 71           | 622   | 125   | 572         | 161   |  |
| uture Volume (vph)                                                                                                                                                                                                     | 164                            | 95         | 50           | 103   | 71           | 622   | 125   | 572         | 161   |  |
| ane Group Flow (vph)                                                                                                                                                                                                   | 173                            | 160        | 53           | 233   | 75           | 700   | 132   | 602         | 169   |  |
|                                                                                                                                                                                                                        |                                |            |              |       |              |       |       |             |       |  |
| urn Type                                                                                                                                                                                                               | Perm                           | NA         | Perm         | NA    | pm+pt        | NA    | pm+pt | NA          | Perm  |  |
| otected Phases                                                                                                                                                                                                         |                                | 4          | 0            | 8     | 5            | 2     | 1     | 6           | ,     |  |
| ermitted Phases                                                                                                                                                                                                        | 4                              |            | 8            |       | 2            |       | 6     |             | 6     |  |
| etector Phase                                                                                                                                                                                                          | 4                              | 4          | 8            | 8     | 5            | 2     | 1     | 6           | 6     |  |
| witch Phase                                                                                                                                                                                                            |                                |            |              |       |              |       |       |             |       |  |
| inimum Initial (s)                                                                                                                                                                                                     | 10.0                           | 10.0       | 10.0         | 10.0  | 5.0          | 10.0  | 5.0   | 10.0        | 10.0  |  |
| nimum Split (s)                                                                                                                                                                                                        | 28.5                           | 28.5       | 28.5         | 28.5  | 11.0         | 32.0  | 11.0  | 32.0        | 32.0  |  |
| otal Split (s)                                                                                                                                                                                                         | 31.0                           | 31.0       | 31.0         | 31.0  | 16.0         | 43.0  | 16.0  | 43.0        | 43.0  |  |
| tal Split (%)                                                                                                                                                                                                          | 34.4%                          | 34.4%      | 34.4%        | 34.4% | 17.8%        | 47.8% | 17.8% | 47.8%       | 47.8% |  |
| ellow Time (s)                                                                                                                                                                                                         | 3.0                            | 3.0        | 3.0          | 3.0   | 3.7          | 3.7   | 3.7   | 3.7         | 3.7   |  |
| I-Red Time (s)                                                                                                                                                                                                         | 3.5                            | 3.5        | 3.5          | 3.5   | 2.3          | 2.3   | 2.3   | 2.3         | 2.3   |  |
|                                                                                                                                                                                                                        | -2.5                           | -2.5       | -2.5         | -2.5  | -2.0         | -2.0  | -2.0  | -2.0        | -2.0  |  |
| st Time Adjust (s)                                                                                                                                                                                                     |                                |            |              |       |              |       |       |             |       |  |
| otal Lost Time (s)                                                                                                                                                                                                     | 4.0                            | 4.0        | 4.0          | 4.0   | 4.0          | 4.0   | 4.0   | 4.0         | 4.0   |  |
| ad/Lag                                                                                                                                                                                                                 |                                |            |              |       | Lead         | Lag   | Lead  | Lag         | Lag   |  |
| ead-Lag Optimize?                                                                                                                                                                                                      |                                |            |              |       | Yes          | Yes   | Yes   | Yes         | Yes   |  |
| ecall Mode                                                                                                                                                                                                             | None                           | None       | None         | None  | None         | C-Max | None  | C-Max       | C-Max |  |
| ct Effct Green (s)                                                                                                                                                                                                     | 23.2                           | 23.2       | 23.2         | 23.2  | 53.7         | 44.6  | 56.7  | 48.1        | 48.1  |  |
| tuated g/C Ratio                                                                                                                                                                                                       | 0.26                           | 0.26       | 0.26         | 0.26  | 0.60         | 0.50  | 0.63  | 0.53        | 0.53  |  |
| c Ratio                                                                                                                                                                                                                | 0.83                           | 0.35       | 0.20         | 0.49  | 0.14         | 0.42  | 0.28  | 0.33        | 0.19  |  |
| ontrol Delay                                                                                                                                                                                                           | 61.7                           | 22.3       | 26.2         | 22.9  | 6.3          | 15.8  | 8.4   | 14.4        | 3.0   |  |
| Jeue Delay                                                                                                                                                                                                             | 0.0                            | 0.0        | 0.0          | 0.0   | 0.0          | 0.0   | 0.0   | 0.0         | 0.0   |  |
|                                                                                                                                                                                                                        | 61.7                           | 22.3       | 26.2         | 22.9  | 6.3          | 15.8  | 8.4   | 14.4        | 3.0   |  |
| otal Delay                                                                                                                                                                                                             |                                |            |              |       |              |       |       |             |       |  |
| )S                                                                                                                                                                                                                     | E                              | C          | С            | C     | А            | B     | А     | B           | А     |  |
| pproach Delay                                                                                                                                                                                                          |                                | 42.8       |              | 23.5  |              | 14.9  |       | 11.4        |       |  |
| pproach LOS                                                                                                                                                                                                            |                                | D          |              | С     |              | В     |       | В           |       |  |
| ueue Length 50th (m)                                                                                                                                                                                                   | 27.1                           | 16.8       | 6.9          | 23.0  | 4.1          | 45.0  | 8.3   | 33.0        | 0.0   |  |
| ueue Length 95th (m)                                                                                                                                                                                                   | #57.0                          | 32.2       | 15.7         | 43.0  | 5.0          | 63.3  | 16.1  | 48.5        | 10.4  |  |
| ternal Link Dist (m)                                                                                                                                                                                                   |                                | 114.3      |              | 122.3 |              | 100.3 |       | 169.6       |       |  |
| Irn Bay Length (m)                                                                                                                                                                                                     | 38.0                           |            | 20.0         |       | 60.0         |       | 47.0  |             | 125.0 |  |
| ase Capacity (vph)                                                                                                                                                                                                     | 244                            | 529        | 312          | 538   | 577          | 1669  | 500   | 1810        | 889   |  |
| arvation Cap Reductn                                                                                                                                                                                                   | 0                              | 0          | 0            | 0     | 0            | 0     | 0     | 0           | 0     |  |
| billback Cap Reductn                                                                                                                                                                                                   | 0                              | 0          | 0            | 0     | 0            | 0     | 0     | 0           | 0     |  |
|                                                                                                                                                                                                                        | 0                              | 0          | 0            | 0     | 0            | 0     | 0     | 0           | 0     |  |
| orage Cap Reductn                                                                                                                                                                                                      |                                |            |              |       |              |       |       |             |       |  |
| duced v/c Ratio                                                                                                                                                                                                        | 0.71                           | 0.30       | 0.17         | 0.43  | 0.13         | 0.42  | 0.26  | 0.33        | 0.19  |  |
| ersection Summary<br>rcle Length: 90<br>:tuated Cycle Length: 90<br>fset: 22 (24%), Referenced to pl<br>atural Cycle: 75<br>ontrol Type: Actuated-Coordinate<br>aximum v/c Ratio: 0.83<br>ersection Signal Delay: 18.6 |                                | nd 6:SBTL, | Start of Gre |       | ersection L( | JS∙ B |       |             |       |  |
| tersection Capacity Utilization 63<br>nalysis Period (min) 15<br>95th percentile volume exceed                                                                                                                         | ls capacity, que               | eue may be | longer.      |       | U Level of S |       |       |             |       |  |
| Queue shown is maximum afte<br>lits and Phases: 2: Eagleson                                                                                                                                                            | er two cycles.<br>& Cope/Cader | nce        |              |       |              |       |       |             |       |  |
| ø <sub>01</sub>                                                                                                                                                                                                        | Ø2 (R)                         |            |              |       |              |       |       | <b>⊅</b> Ø4 |       |  |
| 5 s 43                                                                                                                                                                                                                 | s<br>Ø6 (R)                    |            |              |       |              |       | 31    | s<br>Ø8     |       |  |

16 s

43

# Projected 2024 SAT 5: Eagleson & Site

|                                        | ۶           | $\mathbf{r}$ | 1              | Ť         | Ļ                    |             |  |
|----------------------------------------|-------------|--------------|----------------|-----------|----------------------|-------------|--|
| Lane Group                             | EBL         | EBR          | NBL            | NBT       | SBT                  |             |  |
| Lane Configurations                    | 7           | 1            | ň              | <b>††</b> | <b>≜</b> †⊳          |             |  |
| Traffic Volume (vph)                   | 91          | 20           | 53             | 649       | 605                  |             |  |
| Future Volume (vph)                    | 91          | 20           | 53             | 649       | 605                  |             |  |
| ane Group Flow (vph)                   | 96          | 21           | 56             | 683       | 659                  |             |  |
| Furn Type                              | Prot        | Perm         | Perm           | NA        | NA                   |             |  |
| Protected Phases                       | 4           |              |                | 2         | 6                    |             |  |
| Permitted Phases                       |             | 4            | 2              |           |                      |             |  |
| Detector Phase                         | 4           | 4            | 2              | 2         | 6                    |             |  |
| Switch Phase                           |             |              | _              |           | -                    |             |  |
| Minimum Initial (s)                    | 10.0        | 10.0         | 10.0           | 10.0      | 10.0                 |             |  |
| Vinimum Split (s)                      | 30.9        | 30.9         | 26.9           | 26.9      | 26.9                 |             |  |
| Fotal Split (s)                        | 31.0        | 31.0         | 59.0           | 59.0      | 59.0                 |             |  |
| Fotal Split (%)                        | 34.4%       | 34.4%        | 65.6%          | 65.6%     | 65.6%                |             |  |
| Yellow Time (s)                        | 3.3         | 34.470       | 3.7            | 3.7       | 3.7                  |             |  |
| All-Red Time (s)                       | 2.6         | 2.6          | 2.2            | 2.2       | 2.2                  |             |  |
| Lost Time Adjust (s)                   | 2.0<br>-1.9 | 2.0<br>-1.9  | -1.9           | -1.9      | -1.9                 |             |  |
| Total Lost Time (s)                    | -1.9        | -1.9         | -1.9           | -1.9      | -1.9<br>4.0          |             |  |
| Lead/Lag                               | 4.0         | 4.0          | 4.0            | 4.0       | 4.0                  |             |  |
|                                        |             |              |                |           |                      |             |  |
| Lead-Lag Optimize?                     | Mona        | None         | C May          | C May     | C Mov                |             |  |
| Recall Mode                            | None        | None         | C-Max          | C-Max     | C-Max                |             |  |
| Act Effct Green (s)                    | 15.4        | 15.4         | 70.6           | 70.6      | 70.6                 |             |  |
| Actuated g/C Ratio                     | 0.17        | 0.17         | 0.78           | 0.78      | 0.78                 |             |  |
| /c Ratio                               | 0.33        | 0.08         | 0.10           | 0.26      | 0.25                 |             |  |
| Control Delay                          | 34.3        | 11.4         | 5.3            | 4.5       | 3.4                  |             |  |
| Queue Delay                            | 0.0         | 0.0          | 0.0            | 0.0       | 0.0                  |             |  |
| otal Delay                             | 34.3        | 11.4         | 5.3            | 4.5       | 3.4                  |             |  |
| .OS                                    | С           | В            | А              | А         | A                    |             |  |
| Approach Delay                         | 30.2        |              |                | 4.5       | 3.4                  |             |  |
| Approach LOS                           | С           |              |                | А         | A                    |             |  |
| Queue Length 50th (m)                  | 15.4        | 0.0          | 1.8            | 13.6      | 10.8                 |             |  |
| Queue Length 95th (m)                  | 24.0        | 5.1          | 8.9            | 37.0      | 25.3                 |             |  |
| nternal Link Dist (m)                  | 96.9        |              |                | 204.5     | 55.8                 |             |  |
| Furn Bay Length (m)                    |             | 30.0         | 35.0           |           |                      |             |  |
| Base Capacity (vph)                    | 508         | 469          | 552            | 2657      | 2645                 |             |  |
| Starvation Cap Reductn                 | 0           | 0            | 0              | 0         | 0                    |             |  |
| Spillback Cap Reductn                  | 0           | 0            | 0              | 0         | 0                    |             |  |
| Storage Cap Reductn                    | 0           | 0            | 0              | 0         | 0                    |             |  |
| Reduced v/c Ratio                      | 0.19        | 0.04         | 0.10           | 0.26      | 0.25                 |             |  |
| Intersection Summary                   |             |              |                |           |                      |             |  |
|                                        |             |              |                |           |                      |             |  |
| Cycle Length: 90                       |             |              |                |           |                      |             |  |
| Actuated Cycle Length: 90              |             | ACDT CH      | at of Case and |           |                      |             |  |
| Offset: 0 (0%), Referenced to phase 2  | INBIL and   | o:SBT, Sta   | it of Green    |           |                      |             |  |
| latural Cycle: 60                      |             |              |                |           |                      |             |  |
| Control Type: Actuated-Coordinated     |             |              |                |           |                      |             |  |
| laximum v/c Ratio: 0.33                |             |              |                |           |                      |             |  |
| ntersection Signal Delay: 6.0          |             |              |                |           | tersection LOS: A    |             |  |
| ntersection Capacity Utilization 45.0% | 0           |              |                | IC        | U Level of Service A | <i>_</i>    |  |
| Analysis Period (min) 15               |             |              |                |           |                      |             |  |
| Splits and Phases: 5: Eagleson & S     | iite        |              |                |           |                      |             |  |
|                                        | -           |              |                |           |                      | <u></u>     |  |
| Ø2 (R)                                 |             |              |                |           |                      | <b>√</b> Ø4 |  |
| 59 s                                   |             |              |                |           |                      | 31 s        |  |

Ø6 (R)

٥.

## Projected 2024 SAT 3: First Air & Cope

| ·                                 | -    | ~    | ~           | +    | •          | *      |
|-----------------------------------|------|------|-------------|------|------------|--------|
|                                   | -    | •    | •           |      | 7          | 1      |
| Movement                          | EBT  | EBR  | WBL         | WBT  | NBL        | NBR    |
| Lane Configurations               | ¢Î   |      |             | ŧ    | ľ          | 1      |
| Traffic Volume (veh/h)            | 277  | 21   | 22          | 313  | 13         | 39     |
| Future Volume (Veh/h)             | 277  | 21   | 22          | 313  | 13         | 39     |
| Sign Control                      | Free |      |             | Free | Stop       |        |
| Grade                             | 0%   |      |             | 0%   | 0%         |        |
| Peak Hour Factor                  | 0.95 | 0.95 | 0.95        | 0.95 | 0.95       | 0.95   |
| Hourly flow rate (vph)            | 292  | 22   | 23          | 329  | 14         | 41     |
| Pedestrians                       |      |      |             |      |            |        |
| Lane Width (m)                    |      |      |             |      |            |        |
| Walking Speed (m/s)               |      |      |             |      |            |        |
| Percent Blockage                  |      |      |             |      |            |        |
| Right turn flare (veh)            |      |      |             |      |            |        |
| Median type                       | None |      |             | None |            |        |
| Median storage veh)               |      |      |             |      |            |        |
| Upstream signal (m)               |      |      |             | 138  |            |        |
| pX, platoon unblocked             |      |      |             |      |            |        |
| vC, conflicting volume            |      |      | 314         |      | 678        | 303    |
| vC1, stage 1 conf vol             |      |      |             |      |            |        |
| vC2, stage 2 conf vol             |      |      |             |      |            |        |
| vCu, unblocked vol                |      |      | 314         |      | 678        | 303    |
| tC, single (s)                    |      |      | 4.1         |      | 6.4        | 6.2    |
| tC, 2 stage (s)                   |      |      |             |      |            |        |
| tF (s)                            |      |      | 2.2         |      | 3.5        | 3.3    |
| p0 queue free %                   |      |      | 98          |      | 97         | 94     |
| cM capacity (veh/h)               |      |      | 1246        |      | 410        | 737    |
| Direction, Lane #                 | EB 1 | WB 1 | NB 1        | NB 2 |            | -      |
| Volume Total                      | 314  | 352  | 14          | 41   |            |        |
| Volume Left                       | 0    | 23   | 14          | 41   |            |        |
| Volume Right                      | 22   | 23   | 14          | 41   |            |        |
| cSH                               | 1700 | 1246 | 410         | 737  |            |        |
|                                   | 0.18 | 0.02 | 410<br>0.03 | 0.06 |            |        |
| Volume to Capacity                |      |      |             |      |            |        |
| Queue Length 95th (m)             | 0.0  | 0.4  | 0.8         | 1.3  |            |        |
| Control Delay (s)                 | 0.0  | 0.7  | 14.1        | 10.2 |            |        |
| Lane LOS                          | 0.0  | A    | B           | В    |            |        |
| Approach Delay (s)                | 0.0  | 0.7  | 11.2        |      |            |        |
| Approach LOS                      |      |      | В           |      |            |        |
| Intersection Summary              |      |      |             |      |            |        |
| Average Delay                     |      |      | 1.2         |      |            |        |
| Intersection Capacity Utilization |      |      | 46.5%       | ICL  | Level of S | ervice |
| Analysis Period (min)             |      |      | 15          |      |            |        |
|                                   |      |      |             | ICL  | Level of S | ervice |

## Projected 2024 SAT 4: Eagleson & Site

|                                   |            |               |            |           | 1            | ,      |
|-----------------------------------|------------|---------------|------------|-----------|--------------|--------|
|                                   | ٦          | $\rightarrow$ | 1          | <b>†</b>  | ÷            | -      |
| Movement                          | EBL        | EBR           | NBL        | NBT       | SBT          | SBR    |
| Lane Configurations               |            | 1             |            | <u>††</u> | <u>††</u>    | 1      |
| Traffic Volume (veh/h)            | 0          | 33            | 0          | 740       | 593          | 91     |
| Future Volume (Veh/h)             | 0          | 33            | 0          | 740       | 593          | 91     |
| Sign Control                      | Stop       |               |            | Free      | Free         |        |
| Grade                             | 0%         |               |            | 0%        | 0%           |        |
| Peak Hour Factor                  | 0.95       | 0.95          | 0.95       | 0.95      | 0.95         | 0.95   |
| Hourly flow rate (vph)            | 0.70       | 35            | 0.70       | 779       | 624          | 96     |
| Pedestrians                       | 0          | 55            | 0          | ,,,,      | 024          | 70     |
| Lane Width (m)                    |            |               |            |           |              |        |
| Walking Speed (m/s)               |            |               |            |           |              |        |
| Percent Blockage                  |            |               |            |           |              |        |
| Right turn flare (veh)            |            |               |            |           |              |        |
| Median type                       |            |               |            | None      | None         |        |
| Median storage veh)               |            |               |            | NULLE     | NULLE        |        |
| Upstream signal (m)               |            |               |            | 80        | 124          |        |
| pX, platoon unblocked             | 0.94       | 0.91          | 0.91       | δU        | 124          |        |
| vC, conflicting volume            | 0.94       | 312           | 720        |           |              |        |
| vC1, stage 1 conf vol             | 1014       | 312           | 720        |           |              |        |
| vC1, stage 2 conf vol             |            |               |            |           |              |        |
|                                   | 626        | 61            | 507        |           |              |        |
| vCu, unblocked vol                | 626<br>6.8 | 61<br>6.9     | 507<br>4.1 |           |              |        |
| tC, single (s)                    | 0.0        | 0.9           | 4.1        |           |              |        |
| tC, 2 stage (s)                   | 25         | 2.2           | 2.2        |           |              |        |
| tF (s)                            | 3.5        | 3.3           | 2.2        |           |              |        |
| p0 queue free %                   | 100        | 96            | 100        |           |              |        |
| cM capacity (veh/h)               | 392        | 906           | 964        |           |              |        |
| Direction, Lane #                 | EB 1       | NB 1          | NB 2       | SB 1      | SB 2         | SB 3   |
| Volume Total                      | 35         | 390           | 390        | 312       | 312          | 96     |
| Volume Left                       | 0          | 0             | 0          | 0         | 0            | 0      |
| Volume Right                      | 35         | 0             | 0          | 0         | 0            | 96     |
| cSH                               | 906        | 1700          | 1700       | 1700      | 1700         | 1700   |
| Volume to Capacity                | 0.04       | 0.23          | 0.23       | 0.18      | 0.18         | 0.06   |
| Queue Length 95th (m)             | 0.9        | 0.0           | 0.0        | 0.0       | 0.0          | 0.0    |
| Control Delay (s)                 | 9.1        | 0.0           | 0.0        | 0.0       | 0.0          | 0.0    |
| Lane LOS                          | А          |               |            |           |              |        |
| Approach Delay (s)                | 9.1        | 0.0           |            | 0.0       |              |        |
| Approach LOS                      | А          |               |            |           |              |        |
| Intersection Summary              |            |               |            |           |              |        |
| Average Delay                     |            |               | 0.2        |           |              |        |
| Intersection Capacity Utilization |            |               | 27.3%      |           | J Level of S | ervice |
| Analysis Period (min)             |            |               | 15         | 100       |              | 011100 |
|                                   |            |               | 13         |           |              |        |