Phase II Environmental Site Assessment

Proposed New Riverside South Catholic Elementary School, Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario

Type of Document: Final

Client: Centre Des Ecoles Catholiques Du Centre-Est (CECC) 4000 Rue Labelle Ottawa, Ontario K1J 1A1

Project Number: OTT-00245569-A0

Prepared By: Daniel Clarke, P. Eng.

Reviewed By: Mark McCalla, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

Date Submitted: April 13, 2018

Phase II Environmental Site Assessment

Proposed New Riverside South Catholic Elementary School, Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario

Type of Document: Final

Client: Centre Des Ecoles Catholiques Du Centre-Est (CECC) 4000 Rue Labelle Ottawa, Ontario K1J 1A1

Project Number: OTT-00245869-A0

Prepared By: EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada T: 613 688-1899 F: 613 225-7337 www.exp.com

Daw land

Daniel Clarke, P.Eng. Environmental Engineer Earth and Environment

Date Submitted: April 13, 2018

Mark McCalla, P. Geo. Senior Environmental Scientist Earth and Environment

Executive Summary

EXP Services Inc. (EXP) was retained by Centre Des Ecoles Catholiques Du Centre-Est (CECCE) to complete a Phase II Environmental Site Assessment (ESA) of the proposed new riverside south catholic elementary school located at the southeast corner of Ralph Hennessey Avenue and Mount Nebo Way in Ottawa, Ontario. The purpose of the Phase II ESA is for due diligence in support of a real estate transaction. EXP understands this report will not be used to submit a Record of Site Condition due to a change in land use.

The site is located on the east side of Ralph Hennessey Avenue and south side of Mount Nebo Way in Ottawa as shown on Figure 1 in Appendix B. The site has an area of approximately 2.0 hectares and is vacant land. The subject property is in a minor institutional zoned area.

The subject site has a lower elevation than the surrounding properties, therefore there is a significant amount of fill that has to be imported to the site. Fill was being imported to the site to raise the grade of the site and therefore, there was fill of unknown quality present at the site. Much more fill material has to be imported to the site.

The findings of the Phase I ESA were presented in a report entitled *Phase I Environmental Site Assessment, Proposed Riverside South Elementary School, Ottawa, Ontario,* completed by EXP, dated April 13, 2018. The Phase I ESA identified the following APEC:

Areas of Potential Environmental Concerns	Potential Contaminants of Concern	Rationale
Subject Site		
APEC-1: Potential AST located on the south side of the former Radio C.J.R.C building located on the subject site from 1968 to 2009.	Petroleum hydrocarbons (PHC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), metals and general inorganics	Due to the potential presence of the AST at the site, there could be residual impacts to soil and groundwater.
APEC-2: Fill of unknown quality being imported to the site to raise the grade.	PHC, VOC, and metals	Due to the presence of the former building, there could be residual impacts to soil on the subject site.

Table EX.1: Areas of Potential Environmental Concern

Based on the Phase I ESA findings, a Phase II ESA was recommended to assess the soil and groundwater quality at the site from the above-noted APECs.

The Phase II ESA consisted advancing a one environmental borehole concurrently with a geotechnical investigation with a total of 13 boreholes located at the site. Soil samples were collected and submitted for laboratory analysis of PHC, BTEX, VOCs and metals.

For assessment purposes, EXP selected the Site Condition Standards (SCS), Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition for institutional property use and fine textured soil, provided in *Soil, Groundwater and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act*, Ministry of the Environment (MOECC), 2011 in accordance with Ontario Regulation 153/04 (as amended).

Based on the Phase II ESA results, the following summary is provided:

- The stratigraphy at the Site generally consists of a layer of a mixture of silty sand, silty clay, trace gravel fill material followed by silty sand and silty clay, underlain by clay, then glacial till. No petroleum impact to soil was observed.
- Groundwater was encountered at depths of 0.04 m to 2.25 m below the ground surface. No petroleum odours were observed during the sampling event. The groundwater flow direction was calculated to be to the northwest.
- The concentrations of PHC, BTEX, VOCs, and metals measured in the soil sample from MW/BH 6 were less than the laboratory detection limits and/or less then the MOECC 2011 Table 3 SCS.
- The concentrations of PHC, and BTEX measured in the groundwater sample from MW/BH 6 were less than the laboratory detection limits and/or less then the MOECC 2011 Table 3 SCS.

The subject site is at a lower elevation then surrounding properties, therefore more fill is expected to be imported to the site. However, the geotechnical investigation completed concurrently recommends Ontario Provincial Standard Specific material to be used though out the site.

If the wells are no longer needed, they should be decommissioned in accordance with Ontario Regulation 903.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

Table of Contents

Executive Summary	EX-I
1. Introduction	1
1.1 Site Description	1
1.2 Background	1
1.3 Objective	2
2. Scope of Investigation	3
3. Site Assessment Criteria	4
4. Methodology	5
4.1 Service Clearances	5
4.2 Drilling and Soil Sampling	5
4.3 Monitoring Well Installation	6
4.4 Groundwater Monitoring and Sampling	6
4.5 Deviations from CSA Standard	6
5. Findings	7
 5.1 Subsurface Conditions 5.1.1 Topsoil. 5.1.2 Fill Material. 5.1.3 Native Material 5.1.4 Glacial Till 5.1.5 Bedrock 	7 7 7 7
5.2 Groundwater	7
5.3 Quality Assurance and Quality Control Measures	8
6. Analytical Results	9
 6.1 Soil Quality 6.1.1 Petroleum Hydrocarbons including BTEX 6.1.2 VOCs 6.1.3 Metals 	9 9
6.2 Groundwater Quality6.2.1 Petroleum Hydrocarbons including BTEX	
6.3 Quality Assurance/Quality Control (QA/QC)	9
7. Conclusions	11
8. Limitation of Liability, Scope of Report, and Third Party Reliance	10
b. Elimitation of Elability, Scope of Report, and Third Party Renance	

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

List of Figures

Figure 1 – Site Location Plan Figure 2 – Site Plan

List of Appendices

Appendix A:FiguresAppendix B:Borehole LogsAppendix C:Analytical Summary TablesAppendix D:Laboratory Certificates of Analysis

1. Introduction

EXP Services Inc. (EXP) was retained by Centre Des Ecoles Catholiques Du Centre-Est (CECCE) to complete a Phase II Environmental Site Assessment ESA of proposed new riverside south catholic elementary school located at the southeast corner of Ralph Hennessey Avenue and Mount Nebo Way in Ottawa, Ontario. The purpose of the Phase II ESA is for due diligence purposes in support of a real estate transaction. Consequently, EXP understands this report will not be used to submit a Record of Site Condition due to a change in land use.

1.1 Site Description

The site is located on the east side of Ralph Hennessey Avenue and south side of Mount Nebo Way in Ottawa as shown on Figure 1 in Appendix B. The site has an area of approximately 2.0 hectares and is vacant land. The site is legally described as Part of Lot 22, Block 322, Concession 1 (Rideau Front), Geographic Township of Gloucester, City of Ottawa and the City of Ottawa PIN is part of 043302163. The subject property is in a minor institutional zoned area.

The subject site has a lower elevation than the surrounding properties, therefore there is a significant amount of fill that has to be imported to the site.

1.2 Background

The findings of the Phase I ESA were presented in a report entitled *Phase I Environmental Site Assessment, Proposed Elementary School, Mount Nebo Way at Ralph Hennessey Avenue, Ottawa, Ontario,* EXP Services Inc., dated April 13, 2018. The Phase I ESA identified the following APECs:

Areas of Potential Environmental Concerns	Potential Contaminants of Concern	Rationale
Subject Site		
APEC-1: Potential AST located on the south side of the former Radio C.J.R.C building located on the subject site from 1968 to 2009.	Petroleum hydrocarbons (PHC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), metals and general inorganics	Due to the potential presence of the AST at the site, there could be residual impacts to soil and groundwater.
APEC-2: Fill of unknown quality being imported to the site to raise the grade.	PHC, VOC, and metals	Due to the presence of the former building, there could be residual impacts to soil on the subject site.

Table 1.1: Areas of Potential Environmental Concern

Based on the Phase I ESA findings summarized above, a Phase II ESA was recommended for the Site.

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

1.3 Objective

The purpose of the Phase II ESA is to determine the presence or absence of impacts to soil and groundwater with respect to the above noted APECs. It is not the intent of the Phase II ESA to delineate any impacts. The Phase II ESA will be conducted in accordance with the standard as defined by CSA Standard Z769-00 (as amended) and will be completed or supervised by a Qualified Person from EXP.

2. Scope of Investigation

The Phase II ESA scope of work consisted of the following activities:

- Request local public utility locating companies (cable, telephone, gas, hydro) to mark any underground utilities present at the Site;
- Retain a private utility locating company to mark all underground utilities present in the vicinity of the borehole locations and to clear the individual borehole locations;
- Advance one (1) borehole at the site, and instrumented with a monitoring well to facilitate groundwater sampling;
- Collect representative soil samples for chemical analysis of BTEX, PHCs F1-F4, VOCs, and metals;
- Measure groundwater levels of the monitoring wells and collect groundwater samples from the monitoring wells for chemical analysis of BTEX, and PHCs F1-F4; and,
- Review the analytical data and prepare a report summarizing the findings.

3. Site Assessment Criteria

The assessment criteria, Site Condition Standards (SCS), applicable to a given site in Ontario are established under subsection 168.4(1) of the Environmental Protection Act. Tabulated generic criteria are provided in *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, MOE, July 2011. These criteria are based on site sensitivity (sensitive or non-sensitive), groundwater use (potable or non-potable), property use (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil type (coarse or medium to fine textured) and restoration depth (full or stratified restoration). In addition, site specific criteria may be established on the basis of the findings of a Risk Assessment carried out in accordance with Part IX and Schedule C of Ontario Regulation 153/09 (O. Reg. 153/09).

For assessment purposes, EXP selected the Table 3 SCS for institutional/ residential land use with fine and medium grained soil in a non-potable groundwater condition. The with fine and medium -grained criteria were used based on field observations of soil texture.

The selection of this category was based on the following factors:

- The predominant soil type on the site was considered to be fine and medium textured, based on field observations;
- There was no intention to carry out a stratified restoration at the site;
- More than two-thirds of the site has an overburden thickness greater than 2 m;
- The site is not located within 30 m of a surface water body or an area of natural significance;
- The property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area;
- The site is fully serviced by the City of Ottawa water distribution system and, to the best of EXP's knowledge; all properties within 250 m of the site are also serviced by the municipal water supply (i.e. there are no potable water supply wells located within the Phase One Study Area); and,
- The site is planned for institutional use.

4. Methodology

4.1 Service Clearances

Prior to the commencement of drilling, the locations of underground public utilities including telephone, fibre optic, natural gas and electrical lines were marked at the Site by locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

4.2 Drilling and Soil Sampling

On April 2, 2018, concurrently with the geotechnical investigation, a total of 13 boreholes (BH 1 to BH 13) were advanced at the site by Downing Drilling, a licensed well contractor, under the full-time supervision of EXP staff. A CME 75 drill rig with split spoon samplers was used to collect the soil samples. A monitoring well was installed in BH/MW 6 to facility groundwater sampling. The locations of the boreholes and monitoring well are presented on Figure 2 in Appendix B.

Dedicated nitrile gloves (i.e., one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during drilling activities.

EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix B.

Soil samples identified for possible laboratory analysis were collected from the dedicated sampling tube and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1, BTEX, and VOCs were collected using a soil core sampler and placed in to vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize head-space and reduce the potential for induced volatilization during storage/transport prior to analysis.

The remaining portion of each soil sample was placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual, olfactory evidence of impacts (if observed), and/or anticipated zones of impacts (i.e. groundwater table).

4.3 Monitoring Well Installation

A groundwater monitoring well was installed in MW/BH 6, and piezometer were installed in BH 1, BH 2, and BH 5. The monitoring well was installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended to O. Reg. 128/03 and was installed by licensed well contractors (Downing Drilling).

The monitoring well was constructed of a 50-mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe. The well screen has a slot size of approximately 0.25 mm (slot 10) and was sealed at the base with a PVC end cap. The annular space around the well screen was backfilled with silica sand to approximately 0.3 m above the top of the screen. The sand pack was extended above the screen to allow for compaction of the sand pack and expansion of the overlying well seal. A granular bentonite ('Hole Plug') seal was placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring well was completed with a stick up well and capped no protective steel casing was used. Details of the well installations are provided on the borehole logs in Appendix B.

4.4 Groundwater Monitoring and Sampling

Groundwater monitoring and sampling activities were conducted on April 3, 2018. Prior to sampling, the depths to groundwater in the monitoring well was measured using a water level meter and groundwater was purged from each monitoring well.

Groundwater sampling activities were completed using low-flow techniques. Purging and groundwater sampling was completed using a peristaltic pump, equipped with dedicated polyethylene tubing for each monitoring well. Groundwater samples were placed directly into the laboratory supplied bottles and/or vials and placed in a cooler containing icepacks for sample preservation purposes. The vials were inverted prior to being placed in a cooler to ensure that no head-space was present in the samples.

The representative groundwater samples were transported to Maxxam Analytics Inc. of Ottawa, under Chain of Custody protocol for chemical analysis. Sample handling/storage procedures were consistent with those outlined in Section 4.2 for soil sampling.

4.5 Deviations from CSA Standard

No deviations from the CSA Standard Z769-00 (R 2013) for Phase II ESAs, published in March 2000, were encountered during this Phase II ESA.

5. Findings

5.1 Subsurface Conditions

The detailed soil profiles encountered in the boreholes are provided on the attached borehole logs (Appendix B). Boundaries of soils indicated on the logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections.

5.1.1 Topsoil

A layer of topsoil was observed in all of the boreholes. The topsoil had a maximum thickness of 0.3 m in BH 12. No petroleum odours were identified in the topsoil material. Some topsoil was observed underneath some imported fill material as observed in BH 1, BH 2, BH 5, BH 7, BH 8, BH 10, and BH 13.

5.1.2 Fill Material

A layer of silty sand and silty clay, trace gravel in most of the boreholes. The fill had a maximum depth of 1.8 m in BH 12. No petroleum odours were identified in the fill material.

5.1.3 Native Material

Below the fill was a layer of silty sand and silty clay that extended to a maximum depth of 3 m (BH 5). followed by a layer of clay that extended to a depth of 6.7 m (BH 3). No petroleum odours were identified in the native soil.

5.1.4 Glacial Till

Below the native material was glacial till, silty sand to sandy silty, some clay, gravel, cobbles and that extended to the maximum depth drilled of 12 m (BH 2). No petroleum odours were identified in the glacial till material.

5.1.5 Bedrock

Limestone bedrock was encountered between 8.8 m and 12 m.

5.2 Groundwater

Groundwater elevations and water levels were measured at the site on April 10, 2018. Groundwater was encountered at a depth of 0.04 m to 2.25 m below the ground surface. No petroleum odours were observed during the sampling event. A summary of the elevation survey and groundwater levels for each well are shown on Table 5.1.

Monitoring Well	Ground Elevation	April 1	0, 2018
ID	(MASL)	Water Level (mbg)	Water Level (MASL)
BH 1	92.81	2.25	90.56
BH 2	92.55	1.59	90.96
BH 5	92.97	1.52	91.45
MW/BH 6	92.32	0.04	92.28

Table 5.1: Groundwater Elevations

Note: Elevations were measured using an assumed benchmark relative to mean sea level.

mbg – metres below ground

MASL – metres above sea level

Based on the water levels measured on April 10, 2018, the principal direction of groundwater flow in the overburden materials was to the northwest. EXP notes that groundwater flow directions and groundwater levels could vary across the site and can be influenced by utility trenches and other subsurface structures and may migrate in the bedding stone of nearby subsurface utility trenches or buildings.

5.3 Quality Assurance and Quality Control Measures

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data collected regarding any given Site. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collection and analysis of a blind duplicate soil sample to ensure analytical precision;
- Using dedicated and/or disposal sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and,
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Maxxam's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

6. Analytical Results

6.1 Soil Quality

One worst case soil sample from MW/BH 6 was submitted for laboratory analyses. The soil analytical results are summarized on Tables 1 to 3 in Appendix C and the Certificates of Analysis are enclosed in Appendix D.

6.1.1 Petroleum Hydrocarbons including BTEX

The PHC and BTEX concentrations in soil are shown in Table 1 in Appendix C. The concentrations of PHC and BTEX measured in the analysed soil samples were less than the laboratory detection limits and/or less than the MOECC 2011 Table 3 SCS.

6.1.2 VOCs

The VOCs concentrations in soil are shown in Table 2 in Appendix C. The concentrations of VOCs measured in the analysed soil samples were less than the laboratory detection limits and/ or less than the MOECC 2011 Table 3 SCS.

6.1.3 Metals

The metals concentrations in soil are shown in Table 3 in Appendix C. The concentrations of metals measured in the analysed soil samples were less than the laboratory detection limits and/ or were less than the MOECC 2011 Table 3 SCS.

6.2 Groundwater Quality

A groundwater sample was obtained from MW/BH6 the newly installed monitoring well. The groundwater analytical results are summarized on Tables 4 in Appendix C and the Certificates of Analysis are enclosed in Appendix D.

6.2.1 Petroleum Hydrocarbons including BTEX

The PHC and BTEX concentrations in the submitted groundwater samples are shown in Table 4 in Appendix C. The concentrations of PHC and BTEX measured in the analysed groundwater samples were less than the laboratory detection limits and/ or less than the MOECC 2011 Table 3 SCS.

6.3 Quality Assurance/Quality Control (QA/QC)

Details regarding quality assurance measures taken in the field, including instrument calibration, decontamination procedures, use of dedicated equipment, sample storage and Chain of Custody documentation were provided in Section 4, Methodology.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the *Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOE, 2004). Samples were preserved at the required temperatures in insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Certificates of Analysis were received from Maxxam reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the Maxxam Certificates of Analysis

are provided in Appendix D. A review of the Certificates of Analysis prepared by Maxxam indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg. 153/04 (as amended).

Duplicate soil sample pair MW/BH 6-S3 and its duplicate MW/BH 6-S30 were submitted for chemical analysis of BTEX and PHC F1. For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. The concentrations of BTEX and PHC F1 were less than the laboratory reported detection limits for both the primary and duplicate samples and therefore RPD could not be calculated and the data is acceptable from a RPD perspective.

The analytical program conducted by Maxxam included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. Maxxam's laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by Maxxam. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

7. Conclusions

Based on the Phase II ESA results for the proposed new riverside south catholic elementary school, the following conclusions are provided:

- The stratigraphy at the Site generally consists of a layer of a mixture of silty sand, silty clay, trace gravel fill material followed by silty sand and silty clay, underlain by clay then glacial till. No petroleum impact to soil was observed.
- Groundwater was encountered at depths of 0.04 m to 2.25 m below the ground surface. No petroleum odours were observed during the sampling event. The groundwater flow direction was calculated to be to the northwest.
- The concentrations of PHC, BTEX, VOCs, and metals measured in the soil sample from MW/BH 6 were less than the laboratory detection limits and/or less then the MOECC 2011 Table 3 SCS.
- The concentrations of PHC, and BTEX measured in the groundwater sample from MW/BH 6 were less than the laboratory detection limits and/or less then the MOECC 2011 Table 3 SCS.

The subject site is at a lower elevation then surrounding properties, therefore more fill is expected to be imported to the site. However, the geotechnical investigation completed concurrently recommends Ontario Provincial Standard Specific material to be used though out the site.

If the wells are no longer needed, they should be decommissioned in accordance with Ontario Regulation 903.

8. Limitation of Liability, Scope of Report, and Third Party Reliance

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require re-evaluation. Where special concerns exist, or by Centre Des Ecoles Catholiques Du Centre-Est ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Where applicable, recommended field services are the minimum necessary to ascertain that construction is being carried out in general conformity with building code guidelines, generally accepted practices and EXP's recommendations. Any reduction in the level of services recommended will result in EXP providing qualified opinions regarding the adequacy of the work. EXP can assist design professionals or contractors retained by the Client to review applicable plans, drawings, and specifications as they relate to the Report or to conduct field reviews during construction.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

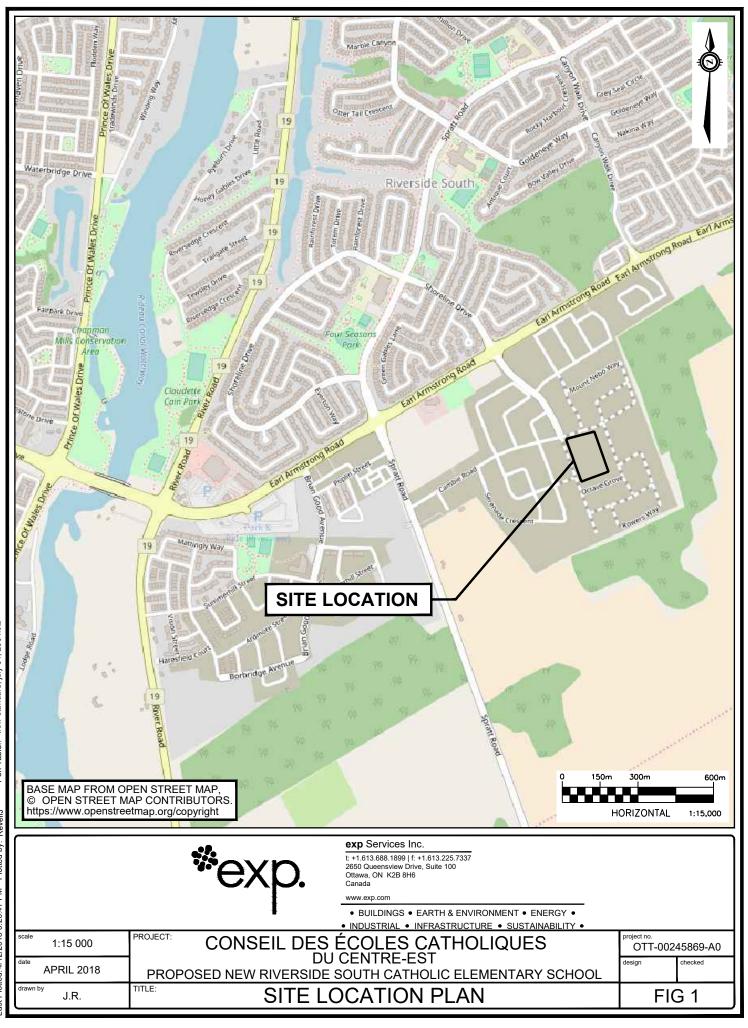
Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

Use of Report

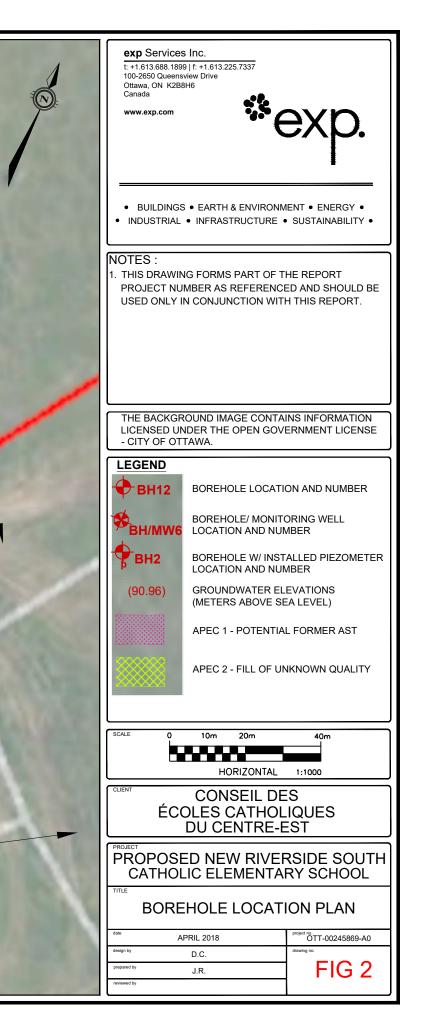
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.


Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

Appendices


Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018


Appendix A: Figures

ted by: RevellJ Pen Table:: trow standard, july 01, 2004.ctb

Filenarme: r:\240000/245000\245869-a0\245869-en.dwg Last Saved: 4/10/2018 4:35:19 PM Last Plotted: 4/12/2018 5:26:47 PM Plotted by: RevellJ

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

Appendix B: Borehole Logs

Explanation of Terms Used on Borehole Records

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

- Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- *Till:* the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

- Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
- *Stratified:* alternating layers of varying material or color with the layers greater than 6 mm thick.
- *Laminated:* alternating layers of varying material or color with the layers less than 6 mm thick.
- *Fissured:* material breaks along plane of fracture.
- *Varved:* composed of regular alternating layers of silt and clay.
- *Slickensided:* fracture planes appear polished or glossy, sometimes striated.
- *Blocky:* cohesive soil that can be broken down into small angular lumps which resist further breakdown.

- inclusion of small pockets of different soil, such as small lenses of sand scattered Lensed: through a mass of clay; not thickness.
- Seam: a thin, confined layer of soil having different particle size, texture, or color from materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

				IS	SMFE SOIL	CLASSIFIC	CATION				
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		

0.002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	200
	1					1	I	I		

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE
SILT (NONPLASTIC)		SAND	GRAVEL		
Ĩ	JNIFIED SOIL C	LASSIFICATIO	ON		

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: F	Percent or Proportion of Soil, Pp
	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5≤Pp≤10%
Little	15≤Pp≤25%
Some	30≤Pp≤45%
Mostly	50≤Pp≤100%

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of	Cohesionless Soil
	'N' Value (blows/0.3 m)
Very Loose	N<5
Loose	5≤N<10
Compact	10≤N<30
Dense	30≤N<50
Very Dense	50≤N

*ex_t

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:

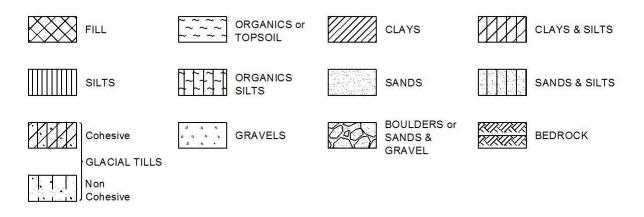

Consistency	Vane Shear Measurement (kPa)	'N' Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Table c: Consistency of Cohesive Soil

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

$\overline{\Delta}$

Open Borehole or Test Pit

Monitoring Well, Piezometer or Standpipe

V

roject:	Geotechnical Investigation - Proposed No	ew Rivers	ide	e South Catholic E	leme	entary		igure l		3	_	
ocation:	Ralph Henessey Avenue and Mount Neb	o Way, O	tta	wa, ON.				Pa	ge	1_of_2	2	
ate Drilled:	'April 2, 2018			Split Spoon Sample		Б	3	Combus	stible Va	pour Reading	ı	
rill Type:	CME-75 Track Mount Drill Rig			Auger Sample		٥	0	Natural	Moisture	Content	,	X
atum:	Geodetic Elevation			SPT (N) Value Dynamic Cone Test			- -	Undrain	rg Limits ed Triaxi			—⊖ ⊕
ogged by:	A.N. Checked by: S.P.		-	Shelby Tube Shear Strength by		-	■ + 3	Shear S	n at Failu Strength t meter Te	ру		<u>ل</u>
			_	Vane Test								
S Y M B	SOIL DESCRIPTION	Geodetic Elevation	D e p		ation I		alue 80	2	50 5	our Reading (500 750	,	A M P Unit Wt
D L			h	Shear Strength 50 100	15	50	kPa 200			ture Content % s (% Dry Weig 40 60	nht)	kN/m ³
Mixtu	: ure of silty sand and silty clay, gravel and d debris, brown and grey, moist, (loose) -								×			$\left(\right)$
	SOIL ~200mm	92.1 91.9										
	ERED SILTY SAND AND SILTY CLAY		1	0.000000000000000000000000000000000000						X		18.4
soft t	to stiff)	-										
				-5 O						X		$\langle $
	-	90.51	2									
	-	Ham	ime 	er Weight	··· ·· ··· ··	••••••	<u></u>	· · · · · · · ·	×	+ (+) + (+) + (+) + (+) + (+) + (+)	<u>····</u> ····	\bigwedge
	~	89.8	3									
CLA Brow	<u>r</u> n, wet, (very soft)		ime	er Weight						*		Λ
<u> </u>	<u>-</u> <u>Y</u>	89.2		38								
_Grey	, wet, (firm to stiff)	-	4	s=8.0								
	-			67							····	
		Ham	 nme	s = 7.0 ⊕							×:	7
	-	1	5									~\ F
		87.2		s = 6.5	:-> -> :-> ->		;;; ;;;			· · · · · · · · · · · · · · · · · · ·	····	
Silty	<u>CIAL TILL</u> sand to sandy silt, some clay, gravel,		6								::::: ::::::::::::::::::::::::::::::::	
CODD	les, boulders, grey, wet, (dense)			41								7
		86.1										Δ
- cond	amic Cone Penetration Test (DCPT) lucted from 7.0 m to Cone Refusal Depth-	-	7									
of 10	J.5 M			N.								
	-											
	-	-	8									
	-	-		X X X X X X X X X X X X X X X X X X X								
	-	1	9									
	-	-								+	<pre></pre>	

24586				~~~~				
ά.	Continued Next Page		10					
O	NOTES: 1. Borehole data requires interpretation by EXP before	WA ⁻	TER LEVEL RECO	RDS		CORE D	RILLING RECOR	D
BHL	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OF BOREHOLE	2.A 19 mm diameter standpipe piezometer installed in borehole as shown.	Completion 9 days	2.7 2.3	6.1				
ORE	3. Field work supervised by an EXP representative.	9 uays	2.5					
OFB	4. See Notes on Sample Descriptions							
POG	5.Log to be read with EXP Report OTT-00245869-A0							

Log of Borehole BH-1

Figure No. Project: Geotechnical Investigation - Proposed New Riverside South Catholic Elementary School

				-		tanda	rd Per	etration Te	est N Va	lue	Pa		our Readi	2	ISI	
G N L	S Y M		Geodeti	e		20	4			80	2	50 5	00 7	50	Ă	Natu
v	S Y B O L	SOIL DESCRIPTION	Elevatio	n p t h	Shear	Stren	gth			kPa	1		ture Conte s (% Dry V		SAMPLES	Unit kN/ı
	L			10		50	10 • • • • •	00 <u>15</u>	50 2 •••••	200 ••••••		<u>20</u>	40 - - : - : - : :	60 • • • • • • • • •		
			82.3				\sim		<u>.</u>							
		Cone Refusal at 10.5 m Dept	th													
	TES:		WΔT	ERI	EVEL R	ECO	RDS				00)RE DRI	LLING R	ECORD		
1.	Borehole da use by othei	ta requires interpretation by EXP before	Elapsed		Water			Hole Ope	n	Run	Dep	th	% Re		R	2D %
	•	ameter standpipe piezometer installed in shown.	Time Completion	L	<u>_evel (m</u> 2.7)	-	<u>To (m)</u> 6.1		No.	(m)				
			9 days		2.3			0.1								
		upervised by an EXP representative.														
		on Sample Descriptions					1									
5.	Log to be re	ad with EXP Report OTT-00245869-A0	1				1									

OI	NOTES:	WA	TER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
BHL	1. Borehole data requires interpretation by EXP before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
щ	2 A 10 mm diameter standning nigzameter installed in	Time	Level (m)	<u>To (m)</u>	No.	(m)		
BOREHOLE	2.A 19 mm diameter standpipe piezometer installed in borehole as shown.	Completion	2.7	6.1				
픲		9 days	2.3					
뜅	3. Field work supervised by an EXP representative.							
OFB	4. See Notes on Sample Descriptions							
Ö	5. Log to be read with EXP Report OTT-00245869-A0							
21								

Project No: <u>OTT-00245869-A0</u>

oject:	Geotechnical Investigation - Pro						holic	Elem	entary		Figure Pa		1_ of	2		I
ocation:	Ralph Henessey Avenue and M	ount Neb	o Way, C	Otta	awa, ON											
	'April 3, 2018			-	Split Spo Auger Sa		•	е				stible Vap Moisture		ding		□ ×
ill Type:	CME-75 Track Mount Drill Rig			-	SPT (N)	Valu	е		0		Atterbe	rg Limits			⊢	-O
atum:	Geodetic Elevation			-	Dynamic Shelby T		e Tes	st				ned Triaxia n at Failu				\oplus
gged by:	A.N. Checked by:	S.P.			Shear St Vane Te		th by		+ s			Strength b ometer Te				
S Y M B O	SOIL DESCRIPTION		Geodetic Elevation	D e p)	andar 20	d Pen 4(Test N Va	lue 80	Na	atural Moist	i00 7 ture Conte	'50 ent %	i) S A M P	Natura Unit W
L			m 92.55	h h	Shear S	Streng	th 10	01	50 2	kPa 200	Atter	berg Limits	s (% Dry V 40	Veight) 60	LES	kN/m
	re of silty sand, silty clay and top n and dark brown, wet, (compact				.∵.12 .⊙							×				
	SOIL ~100mm	, 	91.9 91.8													
	RED SILTY SAND AND SILTY n, moist, (very loose to loose/soft	CLAY -	-	1	6 .Q							×			ΞX	19.6
firm)		-	90.95	5				****							÷/	
rootle	ts from 0.8 m to 1.4 m depths				2 :							×				
		_	1	2											Ë	
	frogmonto from 2.2 m to 2.0 m d	_	-		2: : : : : : Q: : : : : :	• : • : • : • :	<u></u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + +	· • • • • •	×.	+ (+) -> (+ + (+) -> (+	· · · · · · · ·	<u>*</u> }	19.6
	fragments from 2.3 m to 2.9 m d		89.6	3												
<u>CLA</u> Grey,	<u>r</u> wet, (stiff)		Har	nm	er Weight								×		2	
		_				62	:::									ĥ
		_	Har	nm	er Weight-	= 5.	2	<u> </u>								
			88.2		Ŷ										2	
Silty :	<u>CIAL TILL</u> sand to sandy silt, some rootlets,							÷	69							
	es, boulders, grey, wet, (compac dense)	t to _	-	5				****			×				<u> </u>	
		_	-					****								
		_	-	6		.25		****								
		_				• O:	<u></u>	****			X				X	
		_		7												
				ľ												
		_														7
		_	-	8	0: 		::: :::	***** *****			X				<u> </u>	
																¥
		_]					<u></u>								
		_		9												
		_	-					····		- 85 - O	×				<u> </u>	1
///// /TES:	Continued Next Page		<u> </u>	_ 10) L	1. : .:	:.::ľ		<u></u>			1.::::::		1	.:1	1
	equires interpretation by EXP before	Elaps		RI	LEVEL RE Water	CO		lole Op	en	Run	C	ORE DRI	LLING RI % Re			RQD %
A 19 mm diame	eter standpipe piezometer installed in	Comple	ne		Level (m) 3.0			<u>To (m)</u> 10.1		No.	(m 10.1 -	1)	100			33
borehole as sho	own.	8 da			1.6					2	10.4		100			97

Log of Borehole <u>BH-2</u>

Geotechnical Investigation - Proposed New Riverside South Catholic Elementary School

Figure No. 2 _

Τ	s Y		Geodetic	De	5	Stan	idard Pe	netra	ation T	est N Va	ue		stible Vapo 50 50		ing (ppm) 750	S A	Natur
	SYMBOL	SOIL DESCRIPTION	Elevation	p t	Shee	20 r Str	rength	40	6	0	30 kPa	Na Atter	tural Moisti berg Limits	ure Conte (% Drv)	ent % Weight)	ΡI	Unit V
	Ľ		m 82.55	h 10		50	1	00	15		00		20 4	0		E S	kN/n
		LIMESTONE BEDROCK	82.5	10		::		÷						· · · · · · · ·			Run
	X	LIMESTONE BEDROCK Horizontal and vertical fractures, grey, (poor			1::::		<u></u>			· · · · · · · · · · · · · · · · · · ·				• • • • • • •		-	Tur
K	$\langle \rangle$	and exellent quality)				::	1 · · · · · · · · · · · · · · · · · · ·	÷		*****	*****						
	\gg			11													
K	$\langle \rangle$			``			1221	÷	122	2212	<u> </u>						Rur
	\gg																
ĺ	$\langle\!\langle A$						1331		:::::	::::							
	\mathbb{X}		80.6	12			··· ·· ·			*****							
		Borehole Terminated at 12.0 m Depth		12		:	* * * *		::::								
						:	::::		::::								
						:		E	::::								
						:	::::	E									
						:			:::								
						:	:::::	E	:::								
						:	::::		:::								
						:	::::	Ë	:::								
						:		E	::::								
						:	::::		:::	::::				::::			
						:	::::										
						:			::::								
						:	::::	÷	:::								
						:	::::		::::								
						:			::::								
						1	:::::	E	:::								
						:	::::										
						:	::::	E									
						:	:::::	E	:::								
					:::	:	\vdots \vdots \vdots \vdots		:::	::::		::::		::::			
						:			::::								
						:	::::	E	:::								
						:	::::										
						:	::::	E									
						:	::::		:::								
						:	::::		:::								
						-			::::								
						:	:::::	E	:::								
					1	:	::::		:::		1::::	::::					
						:	::::	E	:::								
						:	:::::										
						:	::::		:::								
						:	::::	Ë	:::								
						:	:::::	E	:::								
						:	::::	E	:::								
						:											
						:		E	:::								
						:			:::								
						:		E	:::								
						:		E	:::								
						:		E	:::								
						:	::::	E	:::								
			1	1	1	· +		+ +			+ • • • •				+ • • • •		

LOG	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	TER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
BH	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OLE	2. A 19 mm diameter standpipe piezometer installed in	Completion	3.0	10.1	1	10.1 - 10.4	100	33
ΕH	borehole as shown.	8 days	1.6		2	10.4 - 12	100	97
ORI	3. Field work supervised by an EXP representative.							
DF B	4. See Notes on Sample Descriptions							
LOG (5. Log to be read with EXP Report OTT-00245869-A0							

Project:

Project No: <u>OTT-00245869-A0</u>

	Logo	of Bo	D	rehole	Bł	1-3			F	vn
Project No:	OTT-00245869-A0							5	C	mp.
Project:	Geotechnical Investigation - Proposed Ne	ew Riversi	ide	South Catholic El	lementa		Figure No.			I
Location:	Ralph Henessey Avenue and Mount Neb	o Way, O	tta	wa, ON.			Page	<u>1</u> of <u>1</u>	-	
Date Drilled:	'April 2, 2018		_	Split Spoon Sample		\boxtimes	Combustible V	apour Reading		
Drill Type:	CME-75 Track Mount Drill Rig		_	Auger Sample SPT (N) Value			Natural Moistur Atterberg Limits		⊢	× ⊙
Datum:	Geodetic Elevation		-	Dynamic Cone Test Shelby Tube			Undrained Tria: % Strain at Fail	xial at	-	\oplus
Logged by:	A.N. Checked by: S.P.			Shear Strength by Vane Test		+ s	Shear Strength Penetrometer 1			▲
G Y M W B U O L	SOIL DESCRIPTION	Geodetic Elevation m 92.64	D e p t h	Standard Penetra 20 40 Shear Strength 50 100	tion Test N 60 150	Value 80 kPa 200	250 Natural Moi	apour Reading (ppr 500 750 isture Content % its (% Dry Weight) 40 60	A M P	Unit Wt.
grav loos	ure of silty sand and silty clay, trace el, roots, brown and grey, wet, (very/	92.2	1	2			×	A. A. A. A. A. A. A. A. A.	X	19.2

4

· · · ·

÷

s=4.8 Hammer Weight

53 s=4.4

• • • • •

H

4

 \cdot : \cdot : \cdot

•••••

 $\cdot : \cdot : \cdot :$

2

89.7

87.0

85.9

89.64

Hammer Weight

3 Hammer Weignt

firm)

depths

CLAY Grey, wet, (firm to stiff)

Roots and rootlets from 0.4 m to 1.4 m

CLAY Shell fragments, grey, moist, (very stiff)

Borehole Terminated at 6.7 m Depth

Ţ

245869 - RIVERSIDE SOUTH SCHOOL.GPJ TROW OTTAWA.GDT 4/13/18

1.0.01

· · · · · · · ·

 $\{\cdot,\cdot\} \in$

 \cdots

4-1-2-4

 \cdots

.....

.....

1.5 1.2.4.1

 $\cdot : \cdot : \cdot :$

• • • • • • •

 $i \rightarrow i \rightarrow i$

:....

• • • • • • •

 $\cdot \cdot \cdot \cdot \cdot$

.......

.....

÷ • • • •

·· · · · · · 3.4

· · · · · · ·

÷ (•) ÷

 \leftrightarrow (\cdot) \leftrightarrow

2

÷ ; ; ; ;

×

×

.

÷÷÷

 $\sim \cdots \sim$

 $\leftrightarrow \leftrightarrow \phi$

 \square

4-1-2-4

< • • • • • • •

< • ÷ • ÷

÷÷

....

· · · · ·

÷ • ÷ • ÷

· • • • • • •

• • • • • • •

 $|\cdot\rangle$ \diamond $|\cdot\rangle$ $|\cdot\rangle$ $|\cdot\rangle$ $|\cdot\rangle$ $|\cdot\rangle$ $|\cdot\rangle$ $|\cdot\rangle$

X

X

2000

X

344

 $\dot{\cdot}$

 \cdots

......

1.0.0

so.								
LOG	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WAT	TER LEVEL RECO	RDS		CORE DF	RILLING RECOR	D
	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OLE	2. Borehole backfilled with cuttings upon completion	Completion	3.0	6.1				
BOREHOL	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00245869-A0							

-	Geotechnical Investigation - Pro						atholic	Elem	entary		Figure P	No age	6 1_ of			
	Ralph Henessey Avenue and M		o way	y, Oti												
	'April 3, 2018					Spoor San	n Sampl nple	е		-			apour Rea e Content	-		□ ×
	CME-75 Track Mount Drill Rig					(N) Va	alue Cone Tes	.+	С)		erg Limits ned Triax		I		- O
	Geodetic Elevation				Shel	by Tub	be			1	% Stra	in at Fail	ure			\oplus
gged by:	A.N. Checked by:	S.P.				ar Stre Test	ngth by		+ s	-		Strength ometer T				
S Y B O			Geod		De				Fest N Va			250		750	S A M P	Natura
B O L	SOIL DESCRIPTION		Eleva m 92.2		h	20 ear Stre 50	40 ength 10			80 kPa 200	Atte	atural Moi erberg Lim 20	sture Cont its (% Dry ' 40	ent % Weight) 60		Unit W kN/m
	I <mark>OIL</mark> ~100mm		92.2 92.1		0 4					200					Ň	17.4
Brown	RED SILTY SAND AND SILTY n, moist, (very loose to loose/sof	t to -	-					÷ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			· · · · · · · · ·					17.2
firm)		_			1 5			<u></u>							\mathbb{N}	170
															<u> </u>	17.9
		_	1		2										\mathbb{N}	
			90.0		2			>120				*				4
CLAY Browr	, wet, (very stiff)	_		Ham	ner We	ght										
			89.2		φ		.77						X		\mathbb{N}	
CLAY	wet, (firm to stiff)			Hamr	³	ght	s = 8.0									
Giey,		_	-		Φ	48								×	X	
		_		Hamr	ner We	s = 8.	0									
					Φ	53								×	X	
		_		Hamr	ner We	:s=7	.3									
		_	-		Φ 5			<u></u>						×	ЦX	
							32 ⊨	<pre></pre>)		D	1
<u>CLAY</u>	,		86.5				0.5									
-Silt se	ams, grey, wet, (stiff to very stif	if) –	-		6			<u></u>	·····							
_		_	-	Hamr	ner We	$\overline{\cdot}$		***** ****** 7. * * * *					×		ΞX	
								>120 +							h	
		_			7			·····								
		-	-													,
		_	_		8 8 8			····					Χ		X	
							· 77								h	
		_					s=6.4	* : * * *								
		-	-		9											
		-				\cdots	67 +	·····								
						1211										
1/1/1/1	Continued Next Page				10	••••	· · · · · · · · · · · · · · · ·		<u></u>							1
	equires interpretation by EXP before	Elaps	sed	ATER	Wat	er	ORDS	lole Op		Run	De	pth	RILLING F % Re			QD %
	led with cuttings upon completion.	Tin Compl	ne	-	Level N/A			To (m N/A		<u>No.</u> 1	1)	n) - 11.7	100			31
Field work super	vised by an EXP representative.									2	11.7 13.1	- 13.1	64 100			34 61

Log of Borehole <u>BH-4</u>

Figure No. Project: Geotechnical Investigation - Proposed New Riverside South Catholic Elementary School

s		Geodetic	P	Sta	andar	d Pe	netration 7	Fest N V	alue	Comt	ousti	ible Vapo	our Readi	ng (ppm)	ş	
Y M	SOIL DESCRIPTION	Elevation	D e p		20	4	0 6	60	80		250) 50	00 7	50	M	N U
SY MBOL		m	t h	Shear S					kP	a Atte			ure Conte (% Dry V		SAMPLES	k
	CLAY	82.2	10	- 3 . ↔ i ↔	50 	1	00 1	50 1	200	:: ::::	20	<u>4</u>	0 6	50 • • • • • • •	s	┢
	Silt seams, grey, wet, (stiff to very stiff)			Ŏ::::							×	\$			ŧχ	
	(continued)	81.7		\cdot	<u> </u>	:::: :::::::::::::::::::::::::::::::::	• • • • • •	· · · · · ·	<u></u>	::::::	:	<u> :::::::</u>	· · · · · · · · ·		\square	
	GLACIAL TILL								*****		1	} ··· { · } · ? ·:· ? · ? ·				,
ØŽ/	Silty sand to sandy silt, some gravel, cobbles					5	0 for 75 n	nm							ŧV	
K	and boulders, grey, wet		11			÷		$ \cdot\rangle$	· · · · · ·			• • • • •	• • • • • •	$\sim \sim \sim$	łA	
$\forall /$	LIMESTONE BEDROCK	80.9										• • • • • •		\sim		
\bigotimes	Horizontal and vertical fractures, (poor and	-			<u> : : :</u>	<u>:::</u> :		<u> </u>	: : : : :	;;;;;;;;	::	; :: ; : ; :				
$\mathbb{X}//$	fair quality)											; ; .; . ; ; . ; .				
\mathbb{N}		-	12					::::	; ; ; ; ; ;		::	;;;;;				
$\mathbb{V}/$; .			; ; ; ; ; ;			1	
K															1	
$\langle \rangle \rangle$		1									÷Ŀ					
K																
\bigotimes		-	13													
K				2	1:1:3	: <u>: : :</u> :		2221	24:22	:::::::	21:	2 :: : : : :	::::::::	2222		
\bowtie	S	-			<u> </u>	· · · · ·				*****	<u>+</u> +	} ↔ (+}+ 1 + + +				
K//								1.5 2 1	(†) (÷)	:	:1:	\$		13213 1	1	
\bigotimes			14		••••				S		-	••••••		$\langle \cdot, \cdot, \cdot \rangle$	1	
Ľ			14			÷:::	::::::::::::::::::::::::::::::::::::::	1221	<u>.</u>		÷	· · · · · · ·				
X		77.8							****		÷ -	;;.;. ;;.				
	Borehole Terminated at 14.4 m Depth					::										
					1::	÷÷		1:::	: : : :	: : : :	:	::::				
						÷÷										
						::			: : : : :							
						::		1 : : :	: : : : :	: : : :	:	::::				
						÷÷										
						÷÷										
				1 : : : : : : : : : : : : : : : : : : :		÷÷		1:::	: : : : :	: : : :	:	::::				
						÷÷										
						::										
						::			: : : : :		:					
						÷÷										
				::::	1::	÷÷		1:::	: : : :	: : : :	:	: : : : :				
						::										
					1::	÷÷		1:::	: : : :	: : : :	:	: : : : :	1 : : : :			
						÷÷										
						÷÷										
				::::	1::	÷÷		1:::	: : : :	: : : :	:	: : : : :				
						÷÷										
						::			: : : : :							
				1 : : : : : : : : : : : : : : : : : : :	1::	÷÷		1:::	: : : :	: : : :	:	::::		1 : : : :		
						::										
						÷÷										
				1 : : : : : : : : : : : : : : : : : : :	1::	÷÷		1:::	: : : : :	: : : :	:	::::				
						÷÷					1			::::		
						::				: : : :	:					
					1::	::					:	::::				
						÷÷				: : : :				1::::		
						::			: : : :	: : : :	:					
						÷÷				: : : :	:					
					1::	÷÷	::::	1:::	: : : :	: : : :	:	::::	::::	1::::		
					1::	::				: : : :	:					
						÷÷				: : : :	1			::::		
						÷÷			: : : :	: : : :	:	::::				
1		1	1	1	1::	::	1 : : : :	1:::	: : : : :	: : : :	: 1	: : : :	1::::	1::::	l	1

ĽOĞ	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
BH	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OLE	2. Borehole backfilled with cuttings upon completion.	Completion	N/A	N/A	1	11.3 - 11.7	100	31
Ť	3. Field work supervised by an EXP representative.				2	11.7 - 13.1	64	34
F BOR	4. See Notes on Sample Descriptions				3	13.1 - 14.4	100	61
LOG OI	5. Log to be read with EXP Report OTT-00245869-A0							

Project No: <u>OTT-00245869-A0</u>

Project No: Project:	OTT-00245869-A0 Geotechnical Investigation - Proposed N								Figure I	No	7	_		
Location:	Ralph Henessey Avenue and Mount Net						entary	301001	Pa	ge	1_ of	1		
		0 vvay, O	แล	wa, Or	4.									
Date Drilled:				Split Spo Auger S	oon Sam ample	ple					pour Read e Content	ding		□ ×
Orill Type:	CME-75 Track Mount Drill Rig			SPT (N)	Value		С	-	Atterber	g Limits		F		-Ð
Datum:	Geodetic Elevation			Dynamic Shelby 1	c Cone To Fube	est		- 	Undrain % Strair	n at Failu	ıre			\oplus
ogged by:	A.N. Checked by: S.P.			Shear S Vane Te	trength b st	у	+ s	-	Shear S Penetro					
s Y		Geodetic	D		andard Pe	enetration	Fest N Va	lue			our Readii 500 7	ng (ppm) 50	S A P	Natural
G M W B L O	SOIL DESCRIPTION	Elevation m	e p t h	Shear	20 4 Strength	40 0	60	80 kPa			sture Conte ts (% Dry V		P L L L L L L L S	Unit Wt kN/m ³
		92.97	0		50 1	00 1	50	200	2	20 	40 6	50 	Š	
Mixter Mixter	ure of silty sand, silty clay, gravel and oil, brown and dark brown, moist, (loose) -	_		•: O						×			ĽŇ	
	SOIL ~150mm	92.3 92.1											F	
	ERED SILTY SAND AND SILTY CLAY - e gravel, brown, moist, (very loose to	-	1	0						X			X	19.1
	e/soft to firm)	91.47												
				•5 •••						×			X	18.7
	-		2										\mathbb{P}	
	-	-		2 Q			1.5 č. 1.5			×			W	
		90.0											Δ	
<u>CLA</u> Grev	Y, wet, (firm to stiff)		3	1									$\overline{\mathbb{N}}$	
	-	-		29 29										
	_	– Ham	me	s = 4.0 Veignt										
			'	0								×	X	
	-	1		s=4	.0								P	
	-	Harr	5	er Weignt ↓									¥X	
					53 #								'n	
	-	87.2		s ·····s	= 4.4									
GLA Silty	CIAL TILL sand to sandy silt, some clay, gravel,		6							1				
cobt	bles and boulders, grey, wet, (very dense)								×				Ŵ	
	-												Δ	
	-	-	7					******						
	_						100							
P/L2	Auger Refusal at 7.7 m Depth	85.3				60 for	φ		×				×	

- 245869 -					: : : : :		: : : : : : : :			
H LOGS -	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WA ⁻ Elapsed	TER LEVEL RECOR	RDS Hole Open	CORE DRILLING RECORD					
LOG OF BOREHOLE B	 2. A 19 mm diameter standpipe piezometer installed in borehole as shown. 3. Field work supervised by an EXP representative. 	Time Completion 9 days	Level (m) 3.3 1.5	<u>To (m)</u> 7.6	No.	(m)				
	4. See Notes on Sample Descriptions5. Log to be read with EXP Report OTT-00245869-A0									

Log of Borehole <u>BH-5A</u> *exr										
Project No:	OTT-00245869-A0	- `								
Project:	Geotechnical Investigation - Proposed New	Figure No. <u>8</u> pol Page. 1 of 1	I							
Location:	Ralph Henessey Avenue and Mount Nebo	· ••••••••••••••••••••••••••••••••••••								
Date Drilled:	'April 4, 2018		Split Spoon Sample	Combustible Vapour Reading						
Drill Type:	CME-75 Track Mount Drill Rig		Auger Sample II SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ──⊖					
Datum:	Geodetic Elevation		Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus					
Logged by:	A.N. Checked by: S.P.		Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test						
G S M B C L	SOIL DESCRIPTION	Geodetic Elevation m 92.97	D Standard Penetration Test N Value e 20 40 60 80 t Shear Strength k 50 100 150 200	Pa Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	S A P Unit Wt. E S					
Pow/	er Augered to a 1.5 m Depth		`		4 1 1					

L	ÕL		m	h	Shear Streng	ıth		kPa		its (% Dry Weight)	LES	kN/m
_			92.97	0		100 150	20	0	20	40 60	- Ī	
	\otimes	Power Augered to a 1.5 m Depth			13213213	211213213	3.3.3			;‡;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	31	
	$\times\!\!\times\!\!\times$				13213113	211212213	333			:::::::::::::::::::::::::::::::::::::::	31	
	\otimes	_	-			*******	****	· · · · · · · · · ·		**********	<u>.</u>	
	\times				12212112	*******	÷ • • • • •	• • • • • • • • •		**********	<u>::</u>	
	$\times\!\!\times\!\!\times$			1	1.2.2.1.2.1.2	*******	$\dot{\cdot}$			*******	÷-	
	\otimes			1		******	÷			* + * * * * * * * *	÷	
	\otimes										31	
	$\sim\sim$		91.5				÷ : · ? ·	• • • • • • • • • • •			<u></u>	
		Dynamic Cone Penetration Test (DCPT) conducted from 1.8 m to Cone Refusal Depth									<u>:</u> :	
		conducted from 1.8 m to Cone Refusal Depth			 ☆ : : : : + : : :	*****	÷ : : : :	····	-: : : : -: : : : :	:+::::::	÷+	
	-	_of 9.6 m	_	2	H	******	<u></u>			: : : : : : : :	<u></u>	
					1823213	*******				• • • • • • • • • • • • •	¥1	
					18213113						X1	
		—	-			*****					<u>.</u>	
					16						±1	
							$\left\{ \left\{ \cdot,\cdot,\cdot\right\} \right\}$	• • • • • • •			÷1	
		_		3	1	*******	÷ • • • •	• • • • • • • •		· · · · · · · · · · · · · · ·	···	
ļ					18212813	*******				;‡?;;;?!;??;	::	
		_	_		11:::::::::::::::::::::::::::::::::::::	*******				::::::::::::		
ļ					le sistis	entenselet	::::				31	
					1201010	+++++++++++	$\langle \cdot \cdot \cdot \rangle$	• • • • • • • •	0.000	******	·:+	
		_	-	4		***	÷ : : :			• • • • • • • • • • • •	÷1	
					16313413	214213243	3333		3 63 3 5 5 3 3 5 6	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	31	
					12313213	211213213	333	::::::::		:::::::::::::::::::::::::::::::::::::::	31	
		_	-		H:::::::::::::::::::::::::::::::::::::	<u> </u>	<u> : : : :</u>	• • • • • • • • • • • • • • • • • • • •		} 	<u>.</u>	
					12:22:22	<u>\$14\$13\$43</u>	$\frac{1}{2}$	• • • • • • • • •		**********	<u>:</u> !	
				_	11:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	*******	$\dot{\cdot}$	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·	* + * * * * * + * * *		
		_		5		****					÷	
											<u> </u>	
		_	_				÷ · · · · ·	• • • • • • • • • •			<u> </u>	
											::	
											÷1	
	ŀ	_	-	6		***					<u>.</u>	
						*******	$\dot{\cdot}$	····		• • • • • • • • • • • •	÷+	
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\langle \cdot \cdot \cdot \rangle$	• • • • • • • •			₩	
		—				*******	÷ ; · ; ·			5 - 6 - 5 - 5 - 6 - 6 - 7 - 7	<u>.</u>	
						211213213	3.1.3			;‡;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	31	
		_	_	7		····				******		
					12212412		<u> </u>	:::::::::		:::::::::::::::::::::::::::::::::::::::	31	
					000000000	A	$\langle \cdot \cdot \cdot \rangle$	• • • • • • • •	$\circ \circ $	) - (· ) - (· ) - (· )	÷	
	-	_	-			******		• • • • • • •		;   ; ; ; ; ;   ; ; ;		
					13313113	312 <b>)</b> (1)	3333				31	
ļ					12212412		::::	::::::::		:::::::::::::::::::::::::::::::::::::::	31	
ļ		_	1	8				• • • • • • • • • •			<u>;</u>	
ļ											31	
		_	_			/		· · · · · · · · · · · · ·			<u>;</u>	
											÷1	
					1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2						÷1	
		_	$\neg$	9	<b>!!</b>	<u>e de la de la de</u>					<u>.</u>	
ļ					10000000		·····					
										; ; ; ; . ; .		
		Cono Bofueal at 0.6 m Donth	83.4	_		******	÷ : : :		+ <del>: : : :   : : :</del> :	;		
		Cone Refusal at 9.6 m Depth									:	
			I	I							:	
	TES:		WA	TER L	EVEL RECO	RDS		CORE DRILLING RECORD			D	
1. Borehole data requires interpretation by EXP before Elap use by others Tin				Water	Hole Open	-	Run	Depth	% Rec.		2D %	
		ïme	L	_evel (m)	To (m)		No.	(m)				
	Boreho	ble backfilled with cuttings upon completion.										
5.1	Field w	vork supervised by an EXP representative.										
	·											

LOG OF BORE 4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00245869-A0

Projec	ct:	Geotechnical Investigation - Propo	osed New Rivers	side	e South Cat	holic	Elemen	itary S		Figure N	-	9 1 of	- 1		I
ocati	ion:	Ralph Henessey Avenue and Mou	nt Nebo Way, C	Otta	awa, ON.				_	Pag	ye	1_ of	_1_		
)ate [	Drilled:	'April 2, 2018		_	Split Spoon S	Sample		$\boxtimes$		Combus	tible Vap	our Rea	iding		
Drill Ty	/pe:	CME-75 Track Mount Drill Rig		_	Auger Samp SPT (N) Valu					Natural M Atterberg		Content	ŀ		× ⊸
Datum	n:	Geodetic Elevation		_	Dynamic Cor		_			Undraine % Strain	- ed Triaxia		•		⊕
.ogge	d by:	A.N. Checked by: S.	P.		Shelby Tube Shear Streng	th by		■ + s		Shear St Penetror	trength b	У			
				_	Vane Test										
SY MBO		SOIL DESCRIPTION	Geodetic Elevation	E e p t	) Standar	d Penet 40	ration Tes 60	t N Value 80		25		00	ing (ppm) 750 ent %		Natura Unit W
				h	Shear Stren 50		150	20	kPa	Atterb	erg Limits	s (% Dry \ 10	Weight) 60	LES	kN/m
		ire of silty sand and silty clay, roots,	92.32	2	.5. ⊙						×			X	
	8 S	n and dark brown, moist, (loose)	91.6												4
	Brow	ERED SILTY SAND AND SILTY CL m, moist, (very loose to loose/soft to	<u>AY</u>	1	7				<u></u>		<b>X</b>			$\mathbb{N}$	
	firm)							· · · · · · ·		· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				4
			_		2									$\mathbb{N}$	
			90.1	2		<u> </u>	• • • • • • • • • • • • • • • • • • • •	· · · · · · · ·	··· · · · · · · · · · · · · · · · · ·	• • • • • • • •	····×		· • · · · · · · · · · · · · · · · · · ·	<u>-</u>	,
	Brow	<u>Y</u> 'n, moist, (very soft)	_		1					· · · · · · · · ·					
			89.4		0						··· X			ľ	18.7
	-CLA Grey	<u>Y</u> , wet, (soft to stiff)	_	3	∵:S=5.3										
	-		_											· · ·	
			Har		S = 7.0										
				Ϊ	Ф								×		
	_		Har		S = 4.0 er vveignt	<u></u>									}
			— — —	5	$\Phi$ : $\cdot$								<b>X</b>	X	
								· · · · · · ·		· · · · · · · · ·	• • • • • • • • • • • • • • • • • • •				
			_		S=4.									:	
	_ CLA	v	86.2	6		<u> </u>	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · ·	· · · · · · · · · · · ·	• • • • • • •	• • • • • • • • • • • •				,
		e gravel, grey, wet, (firm)	_		.5. ⊙						×			X	
	Dyna	amic Cone Penetration Test (DCPT) ucted from 7.0 m to Cone Refusal [	85.6												
	- cond of 8.8		Depth —	7											
	-		_												
			_	8											
	-				····			·····		····	· · · · · · · · · · · · · · · · · · ·				
		Cone Refusal at 8.8 m Depth													
IOTES:						::!:						1::::	1::::		
1.Boreł	nole data r	requires interpretation by EXP before	WATE	RI	LEVEL RECO Water		le Open		Run	CO Dept		LLING F	ECORD		QD %
	y others mm diame	eter monitoring well installed as shown.	Time		Level (m) 2.4		To (m) 6.1	-+	No.	(m)		70110			v, ترید.
		ervised by an EXP representative.	9 days		0.0		•••								

use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQI
2.A 50 mm diameter monitoring well installed as shown.	Completion	2.4	6.1				
3. Field work supervised by an EXP representative.	9 days	0.0					
4. See Notes on Sample Descriptions							
5. Log to be read with EXP Report OTT-00245869-A0							

	Log o	f Bo	J	rehole	BH	-7		2	yn
Project No:	OTT-00245869-A0			-			<b>5 10</b>		
Project:	Geotechnical Investigation - Proposed Net	w Riversi	de	South Catholic Ele	ementar	<u>/ Sc</u> hoo	Figure No. <u>10</u> N Page. 1 of 1		I
Location:	Ralph Henessey Avenue and Mount Nebo	way, O	ttav	wa, ON.			·		
Date Drilled:	'April 5 2018		. :	Split Spoon Sample	[	$\triangleleft$	Combustible Vapour Reading		
Drill Type:	CME-75 Track Mount Drill Rig			Auger Sample SPT (N) Value	-	∎ ⊃	Natural Moisture Content Atterberg Limits	⊢	× ⊸
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		-	Undrained Triaxial at % Strain at Failure		$\oplus$
Logged by:	A.N. Checked by: S.P.		;	Shear Strength by Vane Test	-	+ s	Shear Strength by Penetrometer Test		<b></b>
S Y MBO	SOIL DESCRIPTION	Geodetic Elevation	D e p t	Standard Penetratio	on Test N V 60	/alue 80 kPa	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	) SA PL	Natural Unit Wt.

		Geodetic	e	2	h	40	6	60	80	2	50 5	500 7	50	Â	Natu Unit V
SO V M SO	IL DESCRIPTION	Elevation	p t	Shear S	trength	40		50	kPa	Atter	tural Mois berg Limit	ture Conte s (% Dry V	nt % Veight)	MPLES	kN/n
Ľ		0 ^m	n	5		100	1	50 2	200				50	E S	KIN/II
FILL		v	0								1		1	$\langle \rangle$	
Mixture of sand	gravel and clay, brown, wet,		2			::E:		12212	<u>+:::::</u> :		1.2.2.2.2	1	1:::::	VI	
	graver and clay, brown, wet,		l P:					1.2.2.2.2			1.2.2.2.2	\$::: <b>X</b>		ΛI	
(very loose)		-0.6			****		*****	12222	1:::::		1:2:2:2	<u> </u>		$\square$	
<u>x¹/_y</u> <u><b>TOPSOIL</b></u> ~200m	ım	-0.8		12	····	: + :	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot$	$[\cdot;\cdot;\cdot]$	$+ \cdot \cdot \cdot \cdot \cdot \cdot$	+ $+$ $+$ $+$ $+$ $+$	$\{\cdot\}\oplus\{\cdot\}$	$+\cdots$	$1 \div \cdots \div 1$	NΛ	
FILL				. 🔿 : -				13333				X	133331	ΥL	
Mixture of silty sc	and and silty clay, brown,	-	1		· · · · · · · · · · · · · · · · · · ·	:1:	<del></del>	1.3 3 3 3	1:::::		1.3.3.5.3	1			
	and and silly day, brown,			· · · · · ·	• • • • • •		• • • • •	$ \cdot\rangle$ $\langle\cdot\rangle$	$+ \cdots + \cdots$	$\dot{\cdot}$	$1 \cdot 2 \cdot 2 \cdot 2$	+	$  \cdot \cdot \cdot \cdot \cdot  $	$\left( \rightarrow \right)$	
wet, (loose to cor	npact)			8				1.5 3.6 5	1		1.5	1	1.5.5.5.5	$\mathbb{N}$	
		-		<del>::</del>	• <del>• • •</del>	: : :		1 : : : :	+ : : : : :	+ : : : :	<b>  : : : :</b>	+ X : :	+ : : : : · · · · ·	XI	
		-1.8		÷ • • • • •		143		1.5 8 1.5	1		1.5.5.7.5	1	1.5.5.54	/ \	
\reworked appeara	ance				•••••	:   :	•••••	<u> </u>	+ : : : : :	+	+	+ * * * * *	<u>   </u>		
Borehole Ter	minated at 1.8 m Depth														
										1					

의	NOTES: 1. Borehole data requires interpretation by EXP before	WA	TER LEVEL RECO	RDS		CORE D	RILLING RECOR	D
E BH	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREHOL	3. Field work supervised by an EXP representative.							
B	4. See Notes on Sample Descriptions							
-0G OF	5. Log to be read with EXP Report OTT-00245869-A0							

	Loa of	Borehole	<b>BH-8</b>		avn
Project No:	OTT-00245869-A0			Figure No. 11	
Project:	Geotechnical Investigation - Proposed New F	Riverside South Catholic El	ementary Schoo	ol	I
Location:	Ralph Henessey Avenue and Mount Nebo W	/ay, Ottawa, ON.		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'April 4, 2018	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-75 Track Mount Drill Rig	Auger Sample ——— SPT (N) Value		Natural Moisture Content Atterberg Limits	<b>×</b> ──⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	$\oplus$
Logged by:	A.N. Checked by: S.P.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	<b></b>
S	Ge	eodetic D Standard Penetrat	tion Test N Value	Combustible Vapour Reading (ppm)	S A Natural

	~	S Y		Geodetic	D		Sta	Indaro	l Pen	etration 7	est N Va	ue	Combus 2	stible Vap 50 5	our Readir 600 7	ng (ppm) S 50 M nt % P		Natural
	G W L	SYMBOL	SOIL DESCRIPTION	Elevation	e p t			0	40	) (	60	30	Nat	ural Mois	ture Conte s (% Dry W	nt %	ι	Jnit Wt
	L	PL		m	h	She		Streng	th 10	0 1	50 2	kPa 200				50 S		kN/m ³
			FILL	92.13	0					<u></u>	20				40			
		$\times\!\!\times\!\!\times$	Mixture of silty sand and silty clay, brown,			2		• • • • •		$\dot{\cdot}$				×		l::::::IV	1	
		$\bigotimes$	– moist, (very loose) –	91.5												<u> </u> /\		
		$\tilde{\mathbf{x}}$	TOPSOIL ~150mm	91.3											*****		Ż	
		- 1/2		01.0				::::		:::::	13333			×		1:::::IV	1	19.0
			LAYERED SILTY SAND AND SILTY CLAY           Brown, moist to wet, (loose/firm to stiff)	1	1					:::::	.::::					<u> :::::</u> //		13.0
						22	· · · · ·	::: <u>:</u>	<u>:::</u>	$\therefore \therefore \therefore$	$  \cdot \cdot \cdot \cdot \cdot \cdot \rangle$	<u>+ : : : : : :</u>	$\dot{\cdot}$	$22 \pm 22$	<u>+-:::</u> :	1::::::::::::::::::::::::::::::::::::::	7	
							:	• : • :	····	$\langle \cdot : \cdot \rangle \langle \cdot \rangle$	$\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$	+ : · : · · · ·			$+\cdots$	<u>  :: : : :  </u>	1	19.3
				90.3		122			÷::	$\frac{1}{2}$	12212	łiżżi		×	łżżżż	<u>leeste l</u> A		19.5
		·	Borobolo Terminated at 1.8 m Denth	90.3			<del></del>		<del>::</del>	****		+ : : : : :			+ • • • • •			
245869 - RIVERSIDE SOUTH SCHOOL.GPJ TROW OTTAWA.GDT 4/13/18			Borehole Terminated at 1.8 m Depth															
	NO	TES:			 													

LOG	NOTES: 1.Borehole data requires interpretation by EXP before use by others	WA	FER LEVEL RECO	RDS		CORE DF	RILLING RECOR	D
	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
IOLE	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREHOLE	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-00245869-A0							

	Log o	f Bo	rehole l	<b>BH-9</b>		evn
Project No:	OTT-00245869-A0		_		Figure No. 12	CNP
Project:	Geotechnical Investigation - Proposed Ne	ew Riverside	South Catholic Elem	nentary Schoo	5	I
Location:	Ralph Henessey Avenue and Mount Nebo	o Way, Otta	wa, ON.			-
Date Drilled:	'April 4, 2018		Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-75 Track Mount Drill Rig		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation		Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	$\oplus$
Logged by:	A.N. Checked by: S.P.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	<b>A</b>
S		Geodetic D	Standard Penetration	Test N Value	Combustible Vapour Reading (ppr	m) S A Natural

[	_	s		Geodetic	D	D	Sta	andaı	d Pe	netra	tion T	est N Val	ue	Combu	stible V 50	apour Readi 500 7	ng (ppm) 50	S	Natural
	G W L	SY MBOL	SOIL DESCRIPTION	Elevation	e p	p	2	20	4	10	6	0 8	30	Na	tural Mo	isture Conte nits (% Dry V	nt %	SAZ₽_LШS	Unit Wt.
	-	0 L		92.4 m	ť	n	hear S	Stren 50		00	15	50 2	kPa 00		berg Lir 20		veigni) 60	ES	kN/m ³
ł		<u>× 1/</u> .	TOPSOIL ~400mm	92.4	0	0 3		Ĩ		Ĭ			<u> </u>		Ī.		Ĩ	Ň	
				92.0		Ö.									1333	×		XI	
	-		-LAYERED SILTY SAND AND SILTY CLAY -			12	<u></u>		÷:-					[	1			$\square$	
		1/	Brown, wet, (very loose to loose/soft)			4			÷		·: ::	••••••			1.1.1.1			М	
					1	1	· · · · ·				***				×	· · · · · · · · · · · · · · · · · · ·		XI	18.6
													*****					( )	
						3								÷ ; ; ; ;	1.5.5.7			M	
	ľ			00.0		0										*		M	
	ŀ		Borehole Terminated at 1.8 m Denth	90.6		-							+ • • • • •			++++++		4	
245869 - RIVERSIDE SOUTH SCHOOL. GPJ TROW OTTAWA. GDT 4/13/18			Borehole Terminated at 1.8 m Depth																
	NO	TES:																	

ĽOĞ	NOTES: 1.Borehole data requires interpretation by EXP before use by others	WAT	TER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
ÓLE	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREHOLE	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00245869-A0							

Log	of	Bore	eho	le	BH-	10
-				_		

Project No: <u>OTT-00245869-A0</u>

[%] exp.
-------------------

Project No:	011-00245869-A0		Figure No. 13	
Project:	Geotechnical Investigation - Proposed New Riverside	e South Catholic Elementary Schoo		I
Location:	Ralph Henessey Avenue and Mount Nebo Way, Otta	awa, ON.	Page. <u>1</u> of <u>1</u>	
Date Drilled:	'April 4, 2018	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-75 Track Mount Drill Rig	Auger Sample  SPT (N) Value  O	Natural Moisture Content Atterberg Limits	× ⊢⊸
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	$\oplus$
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	<b>A</b>

G W L	SY MBO L	SOIL DESCRIPTION		Dep		Fest N Value	Combustible Vap 250	00 750	A	Natural Unit Wt.
Ľ	B O L		m .92.56	p t h	Shear Strength	kPa 50 200	Natural Mois Atterberg Limit 20	s (% Dry Weigh	nt) L E S	kN/m ³
		FILL Mixture of silty sand and silty clay, trace gravel, decayed grass shoots, dark grey and	92.3 92.1		<b>2</b> :		×		X	
		black, wet, (very loose)	91.4	1			×		X	17.5
		Mixture of silty sand and silty clay, trace gravel, decayed grass shoots, reddish brown to brown, dark grey and black, wet, (loose)	90.8				*		X	
- 245869 - RIVERSIDE SOUTH SCHOOL.GPJ TROW OTTAWA.GDT 4/13/18		reworked appearance LAYERED SILTY SAND AND SILTY CLAY Rootlets, decayed grass shoots, brown, wet, (toose/firm) Borehole Terminated at 1.8 m Depth	90.8							

LOG	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WAT	FER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
		Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
ÓLE	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREHOLE	3. Field work supervised by an EXP representative.							
F BO	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00245869-A0							

	Log of Boi	rehole BH	I-11		exn
Project No:	OTT-00245869-A0			Figure No. 14	CAP.
Project:	Geotechnical Investigation - Proposed New Riversid	e South Catholic Elementa		5	1
Location:	Ralph Henessey Avenue and Mount Nebo Way, Otta	awa, ON.		Fage. <u>1</u> 01 <u>1</u>	_
Date Drilled:	'April 4, 2018	Split Spoon Sample	$\boxtimes$	Combustible Vapour Reading	
Drill Type:	CME-75 Track Mount Drill Rig	Auger Sample		Natural Moisture Content	×
		SPT (N) Value Dynamic Cone Test	0	Atterberg Limits Undrained Triaxial at	Е
Datum:	Geodetic Elevation	Shelby Tube		% Strain at Failure	$\oplus$
Logged by:	A.N. Checked by: S.P.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	<b></b>

Image: Section of the section of t	G W L	SY MBOL	SOIL DESCRIPTION	Geodetic Elevation	D e p t h	Sta 2 Shear S	0 4	netration 1 40 6		ue 30 kPa	25	stible Vapour 50 500 ural Moisture erg Limits (%	75	50 nt %	SAMPLES	Natural Unit Wt. kN/m ³
Mixture of silty sand, silty clay and topsoil, decayed grass shoots, reddish brown to brown to dark grey to black, wet, (loose) 90.7 Borehole Terminated at 1.8 m Depth				92.48		5	0 1	00 1	50 2	00				0	<u>s</u>	
Borehole Terminated at 1.8 m Depth			<ul> <li>FILL Mixture of silty sand, silty clay and topsoil, decayed grass shoots, reddish brown to</li> <li>brown to dark grey to black, wet, (loose)</li> </ul>			<u>.</u>						×				
2458669 - R	245869 - RIVERSIDE SOUTH SCHOOL.GPJ TROW OTTAWA.GDT 4/13/18		Borehole Terminated at 1.8 m Depth	90.7											· · · ·	

LOGS	NOTES: 1. Borehole data requires interpretation by EXP before	WA ⁻	TER LEVEL RECO	RDS		CORE D	RILLING RECOR	D
BH	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OLE	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREHOLE	3. Field work supervised by an EXP representative.							
BO	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00245869-A0							

Log of Borehole E	<u>3H-</u> 2	<u> 2</u>
-------------------	--------------	-----------

Project No: <u>OTT-00245869-A0</u>

*exp.
-------

Project No.	011-00245869-A0		Figure No. 15	
Project:	Geotechnical Investigation - Proposed New Riverside	e South Catholic Elementary Scho	ol	1
Location:	Ralph Henessey Avenue and Mount Nebo Way, Otta	awa, ON.	Page. <u>1</u> of <u>1</u>	
Date Drilled:	'April 4, 2018	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-75 Track Mount Drill Rig	Auger Sample	Natural Moisture Content	×
Datum:	Geodetic Elevation	SPT (N) Value O Dynamic Cone Test Shelby Tube	Atterberg Limits Undrained Triaxial at % Strain at Failure	⊕
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	<b></b>

G	;	SY MBOL	SOIL DESCRIPTION	Geodetic	De		Star 20		d Per 4			Test 60	N Valu 8			25		500	7	50	n) S A M P	Natural
G W L	·	B	SOIL DESCRIPTION	Elevation m	e p t h	She	ear St	treng	th					kPa	At		ral Moi erg Limi				PLES	Unit Wt. kN/m ³
	⊹	L <u>\ 14.</u> · .	TOPSOIL ~300mm	92.53	0		50	<u>)</u> :	10	00	1	50	2	0		20	)	40	•••••	50 	<u> </u>	
	ŀ			92.2		.5. ⊙			<										×		÷Χ	17.7
		14	Brown, wet, (very loose to loose/soft to firm)			<u> </u>		<u></u>				13	<u></u>						• • • • •		<u> </u>	
						.5															$\mathbb{R}$	
			roots and rootlets from 0.3 m to 1.2 m depths $$		1	0			<u>.</u>				÷:							×	÷ΪÅ	17.8
									<u>.</u>				÷ : · · ·				• • • •			$  \cdot \cdot \cdot \rangle$		
						3		· · · · · · · · · · · · · · · · · · ·	÷ : ·		***		***** ****					×	} · · · · · <del>: · · ·</del>		÷Χ	
	Ŀ			90.7		133		<u></u>	<u></u>			1.5	<u></u>						<u></u>		<u> </u>	
IS - 245869 - RIVERSIDE SOUTH SCHOOL.GPJ TROW OTTAWA.GDT 4/13/18			Borehole Terminated at 1.8 m Depth																			

0	NOTES: 1. Borehole data requires interpretation by EXP before	WA	FER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
BHL	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
10LE	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREH	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-00245869-A0							

	Log of Bo	rehole Bł	<b></b> 13	8 🔅	eyn
Project No:	OTT-00245869-A0			-	CAP.
Project:	Geotechnical Investigation - Proposed New Riversi	de South Catholic Elemen	tary Scho	5	I
Location:	Ralph Henessey Avenue and Mount Nebo Way, O	ttawa, ON.			
Date Drilled:	'April 5, 2018	Split Spoon Sample	$\boxtimes$	Combustible Vapour Reading	
Drill Type:	CME-75 Track Mount Drill Rig	Auger Sample SPT (N) Value	<b>■</b> ○	Natural Moisture Content Atterberg Limits	× ⊢⊸
Datum:	Geodetic Elevation	Dynamic Cone Test – Shelby Tube		Undrained Triaxial at % Strain at Failure	$\oplus$
Logged by:	A.N. Checked by: S.P.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
S	Geodetic	Standard Penetration Test	N Value	Combustible Vapour Reading (ppm)	S A Natural

		ş		Geodetic	D		andard F	enetration	Test N Val	le	Combu	stible Vap 50 5	our Readii 00 7	ng (ppm) 50	S A	Natural
G W L	₹.	SY MBOL	SOIL DESCRIPTION	Elevation	e p t	2	20	40	60 8	80	2 Nat	tural Moist	ure Conte	nt %	SAMPLES	Unit Wt.
	-	ŏ		m	h		-			kPa				/eight)	E	kN/m ³
	┥		<b>F</b> U	92.77	0		50 1 · · · · ·	100	150 2	00		204	0	50 	s	
	k	$\times\!\!\times\!\!\times$	FILL Mixture of sand, gravel and clay, brown, wet,			2:									VI	
	K	$\otimes$	(vom (lagga)							•••••			×	,	ΛI	
	ŀ	XX		92.2								1	<del>           </del>	1 :: : : : : {		
	ŀ	<u></u>	TOPSOIL ~250mm	91.9		7						1			VI	
	ŀ		_LAYERED SILTY SAND AND SILTY CLAY _		1				1			1	×	<u>  : : : :  </u> ,	ΛI	
	ŀ		Brown, wet, (loose/soft to firm)									1.5.2.5		13333¥		
	ŀ					4						1		:: : : : :  \	VI	
						9						×			ΛI	
	ŀ	· [ · ] ·	Daugh als Taunche de dat 4.0 m Dauth	91.0								1		ľ	4	
S - 245869 - RIVERSIDE SOUTH SCHOOL.GPJ TROW OTTAWA.GDT 4/13/18			Borehole Terminated at 1.8 m Depth													

_	NOTES: 1. Borehole data requires interpretation by EXP before	WA ⁻	TER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
E BH	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
<b>1OLE</b>	2. Borehole backfilled with cuttings upon completion.	Completion	dry					
BOREHOL	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-00245869-A0							

EXP Services Inc.

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

# Appendix C: Analytical Summary Tables

# TABLE 1SOIL ANALYTICAL RESULTS (μg/g)PETROLEUM HYDROCARBONS and BTEXProposed Elementary School Riverside South

Parameter	Table 3'		MW/BH 6-S30 (dup of MW/BH 6-S3)	
Sample Date (d/m/y)	Institutional/	2-Apr-18	2-Apr-18	
Sample Depth (mbsg)	residential	1.5 - 2.1	1.5 - 2.1	
Benzene	0.17	<0.020	<0.020	
Toluene	6	<0.020	<0.020	
Ethylbenzene	15	<0.020	<0.020	
m-Xylene & p-Xylene	NV	<0.040	<0.040	
o-Xylene	NV	<0.020	<0.020	
Total Xylenes	25	<0.040	<0.040	
PHC F1	65	<10	<10	
PHC F2	150	<10	NA	
PHC F3	1300	<50	NA	
PHC F4	5600	<50	NA	

NOTES:

MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3, Use within in a non-potable groundwater, institutional/ residential standards, fine and medium grained soil.

 Shaded
 Concentration exceeds MOECC Table 3 institutional/ residential soil quality standard.

 NA
 Not Analyzed

 NV
 No Value

# TABLE 2 SOIL ANALYTICAL RESULTS (μg/g) VOLATILE ORGANIC COMPOUNDS Proposed Elementary School Riverside South

Parameter	MOECC Table 3 ¹	MW/BH 6-S1
Sample Date (d/m/y)	Institutional/	2-Apr-18
Sample Depth (mbsg)	residential	0 - 0.6
Acetone	28	<0.50
Benzene	0.17	<0.020
Bromodichloromethane	13	<0.050
Bromoform	0.26	< 0.050
Bromomethane	0.05	< 0.050
Carbon Tetrachloride	0.12	< 0.050
Chlorobenzene	2.7	< 0.050
Chloroform	0.18	< 0.050
Dibromochloromethane	9.4	< 0.050
1,2-Dichlorobenzene	4.3	< 0.050
1,3-Dichlorobenzene	6	< 0.050
1,4-Dichlorobenzene	0.097	< 0.050
1,1-Dichloroethane	11	< 0.050
1,2-Dichloroethane	0.05	< 0.050
1,1-Dichloroethylene	0.05	<0.050
Cis-1,2-Dichloroethylene	30	< 0.050
Trans-1,2-Dichloroethylene	0.75	<0.050
1,2-Dichloropropane	0.085	< 0.050
Cis-1,3-Dichloropropylene	NV	< 0.030
Trans-1,3-Dichloropropylene	NV	<0.000
Ethylbenzene	15	<0.020
Ethylene Dibromide	0.05	<0.020
Methyl Ethyl Ketone	44	< 0.50
Methylene Chloride	0.96	< 0.050
Methyl Isobutyl Ketone	4.3	< 0.50
Methyl-t-Butyl Ether	1.4	< 0.050
Styrene	2.2	< 0.050
1,1,1,2-Tetrachloroethane	0.05	<0.050
1,1,2,2-Tetrachloroethane	0.05	< 0.050
Toluene	6	<0.020
Tetrachloroethylene	2.3	<0.050
1,1,1-Trichloroethane	3.4	<0.050
1,1,2-Trichloroethane	0.05	<0.050
Trichloroethylene	0.52	< 0.050
Vinyl Chloride	0.022	<0.020
m-Xylene & p-Xylene	NV	<0.020
o-Xylene	NV	<0.020
Total Xylenes	25	<0.020
Dichlorodifluoromethane	25	<0.050
Hexane(n)	34	< 0.050
Trichlorofluoromethane	5.8	< 0.050
1,3-Dichloropropene (cis + trans)	0.083	< 0.050
NOTES:		0.000

NOTES:

1

MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3, Use within in a non-potable groundwater, institutional/ residential standards, fine and medium grained soil.

Shaded Concentration exceeds MOECC Table 3 institutional/ residential soil quality standard.

NA Not Analyzed

NV No Value

# TABLE 3 SOIL ANALYTICAL RESULTS (µg/g) METALS Proposed Elementary School Riverside South

Parameter	Table 3 ¹				
Sample Date (d/m/y)	Institutional/	2-Apr-18			
Sample Depth (mbsg)	residential	0 - 0.6			
Antimony	7.5	<0.20			
Arsenic	18	1.6			
Barium	390	270			
Beryllium	5	0.93			
Cadmium	1.2	0.24			
Chromium	160	61			
Cobalt	22	14			
Copper	180	29			
Lead	120	10			
Molybdenum	6.9	1.8			
Nickel	130	31			
Selenium	2.4	<0.50			
Silver	25	<0.20			
Thallium	1	0.26			
Vanadium	86	54			
Zinc	340	100			
Boron (Total)	120	7.2			
Uranium	23	3.2			

NOTES:

Shaded

NA

NV

MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3, Use within in a non-potable groundwater, institutional/ residential standards, fine and medium grained soil. Concentration exceeds MOECC Table 3 institutional/ residential soil quality standard. Not Analyzed

No Value

¹ 

# TABLE 4GROUNDWATER ANALYTICAL RESULTS (μg/L)PETROLEUM HYDROCARBONS and BTEXProposed Elementary School Riverside South

Parameter	MOECC Table 3 ¹	MW/BH 6
Sample Date (d/m/y)	Institutional/ residential	3-Apr-18
Benzene	430	<0.20
Toluene	18000	2
Ethylbenzene	2300	<0.20
Total Xylenes	4200	<0.40
PHC F1	750	<25
PHC F2	150	<100
PHC F3	500	<200
PHC F4	500	<200

NOTES:

 1
 MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3, Use within in a non-potable groundwater, institutional/ residential standards, fine and medium grained soil.

 Shaded
 Concentration exceeds MOECC Table 3 institutional/ residential soil quality standard.

 NA
 Not Analyzed

 NV
 No Value

EXP Services Inc.

Centre Des Ecoles Catholiques Du Centre-Est Phase II Environmental Site Assessment Proposed New Riverside South Elementary School Ralph Hennessey Avenue and Mount Nebo Way, Ottawa, Ontario OTT-00245869-A0 April 13, 2018

# **Appendix D: Laboratory Certificates of Analysis**



Your Project #: OTT-00245869-A Your C.O.C. #: 102805

#### Attention: Mark Devlin

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2018/04/10 Report #: R5072713 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B873851 Received: 2018/04/03, 16:10

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2018/04/09	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2018/04/05	2018/04/05	OTT SOP-00001	CCME Hydrocarbons

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



Your Project #: OTT-00245869-A Your C.O.C. #: 102805

#### Attention: Mark Devlin

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2018/04/10 Report #: R5072713 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B873851 Received: 2018/04/03, 16:10

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jonathan Urben, Senior Project Manager Email: jurben@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 9



exp Services Inc Client Project #: OTT-00245869-A Sampler Initials: MAD

# PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		GJO529		
Sampling Date		2018/04/03		
		15:00		
COC Number		102805		
	UNITS	BH6	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	5475300
Toluene	ug/L	2.0	0.20	5475300
Ethylbenzene	ug/L	<0.20	0.20	5475300
o-Xylene	ug/L	<0.20	0.20	5475300
p+m-Xylene	ug/L	<0.40	0.40	5475300
Total Xylenes	ug/L	<0.40	0.40	5475300
F1 (C6-C10)	ug/L	<25	25	5475300
F1 (C6-C10) - BTEX	ug/L	<25	25	5475300
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5470767
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5470767
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5470767
Reached Baseline at C50	ug/L	Yes		5470767
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	105		5475300
4-Bromofluorobenzene	%	100		5475300
D10-Ethylbenzene	%	113		5475300
D4-1,2-Dichloroethane	%	98		5475300
o-Terphenyl	%	111		5470767
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			



Petroleum Hydro. CCME F1 & BTEX in Water

Petroleum Hydrocarbons F2-F4 in Water

Report Date: 2018/04/10

exp Services Inc Client Project #: OTT-00245869-A Sampler Initials: MAD

2018/04/09

2018/04/05

Lyndsey Hart

Fatemeh Habibagahi

# **TEST SUMMARY**

Maxxam ID: Sample ID: Matrix:					Shipped:	2018/04/03 2018/04/03
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

5475300

5470767

N/A

2018/04/05

HSGC/MSFD

GC/FID

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca



Maxxam Job #: B873851 Report Date: 2018/04/10 exp Services Inc Client Project #: OTT-00245869-A Sampler Initials: MAD

# **GENERAL COMMENTS**

Each te	mperature is the	average of up t
I	Package 1	5.7°C
Cooler	custody seal was	present and int
Results	relate only to th	e items tested.



Maxxam Job #: B873851 Report Date: 2018/04/10

### QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00245869-A Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5470767	o-Terphenyl	2018/04/05	110	30 - 130	112	30 - 130	112	%		
5475300	1,4-Difluorobenzene	2018/04/09	105	70 - 130	104	70 - 130	105	%		
5475300	4-Bromofluorobenzene	2018/04/09	94	70 - 130	93	70 - 130	95	%		
5475300	D10-Ethylbenzene	2018/04/09	116	70 - 130	112	70 - 130	114	%		
5475300	D4-1,2-Dichloroethane	2018/04/09	98	70 - 130	100	70 - 130	99	%		
5470767	F2 (C10-C16 Hydrocarbons)	2018/04/05	98	50 - 130	100	80 - 120	<100	ug/L	NC	50
5470767	F3 (C16-C34 Hydrocarbons)	2018/04/05	98	50 - 130	100	80 - 120	<200	ug/L	NC	50
5470767	F4 (C34-C50 Hydrocarbons)	2018/04/05	98	50 - 130	100	80 - 120	<200	ug/L	NC	50
5475300	Benzene	2018/04/09	101	70 - 130	105	70 - 130	<0.20	ug/L	7.1	40
5475300	Ethylbenzene	2018/04/09	95	70 - 130	96	70 - 130	<0.20	ug/L	6.5	40
5475300	F1 (C6-C10) - BTEX	2018/04/09					<25	ug/L	11	40
5475300	F1 (C6-C10)	2018/04/09	96	70 - 130	114	70 - 130	<25	ug/L	8.1	40
5475300	o-Xylene	2018/04/09	100	70 - 130	103	70 - 130	<0.20	ug/L	1.1	40
5475300	p+m-Xylene	2018/04/09	93	70 - 130	95	70 - 130	<0.40	ug/L	3.4	40
5475300	Toluene	2018/04/09	88	70 - 130	89	70 - 130	<0.20	ug/L	1.2	40
5475300	Total Xylenes	2018/04/09					<0.40	ug/L	2.2	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Maxxam Job #: B873851 Report Date: 2018/04/10 exp Services Inc Client Project #: OTT-00245869-A Sampler Initials: MAD

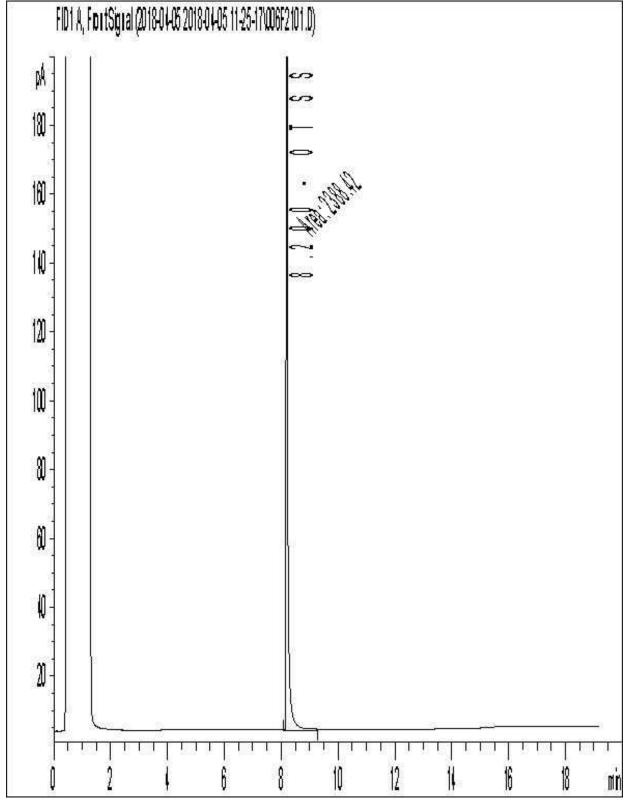
# VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAM F		Report I	nformation	(if diffe	ers from	m invo	oice)	100		CHAIN OF CUSTODY RECORD Project Information (where applicable)					-	102805 Page of Turnaround Time (TAT) Required						
mpany Name: EXP Services 2	Company	Name:								Quotation	100	2 38 717		11111	33	-		R	Regular TAT	-		
ntact Name: Mark Devlin /Do	CONTRACTOR AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI	lame:	San							P.O. #/ AFI	E#:		~ 1	Corp	9-2-	(ince)		PLE	ASE PROVIDE	ADVAN	NCE NOT	ice for rush pi
dress: 100-2650 Quy			Jun	<u>~c</u>						Project #:		OT	-+-	00	24 5	5 86	4-A		Rush TAT	(Surc	charges	will be applied
Dr. ottama										Site Locati	on:		1011						1 Day	2	2 Days	3-4 Da
one: 613 688 1494 Fax:	Phone:	- Constan		gol:	Fax:				2	Site #:									100			
all:	Email:			-						Sampled B	ly:		M	AD				Date Red	juired:			
MOE REGULATED DRINKING W	ATER OR WATER INTENDED FO	R HUMAN CONSU	IMPTION M	IUST BI	E SUBN	AITTED	D ON TI	HE MAX	KAM DF	INKING WAT	TER CH	AIN OF CL	JSTODY					Rush Co	nfirmation #	1:		
Regulation 153	Other Reg			-	-	-	-	-	-	Analysis	Reque	sted	1	-	-				ar a cartair		TORY U	SE ONLY
Table 2 Ind/Comm Coarse		ry Sewer Bylaw Sewer Bylaw			-	3	-4			1.42	2							1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ISTODY SEAL Y. / N		co	OLER TEMPER
Table 3 Agri/ Other	PWQO Region	·			Hg / CrVI					1.6		14	1.1					Presen	t Intaci	tj i		
Table FOR RSC (PLEASE CIRCLE) Y / N	Other (Specify)	TAT REQUIRED)		8	etals / H			NICS		(8 - SWH								y	7		6	615
Ide Criteria on Certificate of Analysis: Y / N				<b>IBMITT</b>	CLE) M			INORGANICS	ALS	tals, H							YZE					
SAMPLES MUST BE KEPT COOL ( < 10 $^\circ$ C ) FROM TI	ME OF SAMPLING UNTIL DELIVI	ERY TO MAXXAM		NERS SI	D (CIRC		-16	ALS & I	AS METALS	TALS PMS Me			12.2				T ANALYZE				~	
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED		CONTAIL	IELD FILTERED	STEX/ PHC F1	-2 - F4	VOCs REG 153 METALS &	REG 153 ICPMS	153 MET Cr VI, ICP	1	144					DO NOT	COOLING	MEDIA PRESE	INT:	( Y	Y N.
SAMPLE IDENTIFICATION	(YYYY/MM/DD)	(HH:MM)	MATRIX	# OF 0	FIELD	BTEX/	PHCs F2 -	VOCs REG 1	REG 1	REG 1 (Hg. C					3		ногр-	1998	1.10	со	OMMEN	ITS
BH6	2018/04/03	3:00pm	GW	4		X	X															
		/																		1	10 1	6.10
		12.112					1												03-A	pr-1	10 1	0.10
	and the second second																	Jona	than U	TDe		111
	and the second	Pre Bi		24.5						B	FC	ENE	Th IA	01	TAM	In	-	11 18 18 1	B873	851	1	
			1				-														001	1
			N.S.											1				VIV	6.76.2		*2	Ten ser
	Contraction Said	1.43								1					1							
	State Real												10							ON	5 0	sue
			12.0													11				51	,	
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MI	(1)	-	RECE	IVED	BY: (Sig	gnature/	Print)	10.0.40	D	ATE: (YYYY)	/MM/C	D)	TIME	(HH:M	M)			MAX	NAXX	OB#
A. 1.8-1-	2018/04/03	4:06	V			-	T .			10	2	18/0	4/0	3	16	. 10	3					


available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

White: Maxxam - Yellow: Client

exp Services Inc Client Project #: OTT-00245869-A Client ID: BH6

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.



Your Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Your C.O.C. #: 102863

#### **Attention: Daniel Clarke**

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2018/04/06 Report #: R5067901 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B871983 Received: 2018/04/02, 13:30

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	1	N/A	2018/04/05		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	2	N/A	2018/04/05	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	1	2018/04/04	2018/04/05	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS (1)	1	2018/04/04	2018/04/04	CAM SOP-00447	EPA 6020B m
Moisture (1)	2	N/A	2018/04/04	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture (1)	1	N/A	2018/04/06	CAM SOP-00445	Carter 2nd ed 51.2 m
Volatile Organic Compounds in Soil (1)	1	N/A	2018/04/05	CAM SOP-00228	EPA 8260C m

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Your C.O.C. #: 102863

#### Attention: Daniel Clarke

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2018/04/06 Report #: R5067901 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B871983

Received: 2018/04/02, 13:30

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jonathan Urben, Senior Project Manager Email: jurben@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 15



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

# **RESULTS OF ANALYSES OF SOIL**

Maxxam ID		GJF223		GJF224		GJF225		
Sampling Date		2018/04/02 11:30		2018/04/02 11:40		2018/04/02		
COC Number		102863		102863		102863		
	UNITS	BH 6-S1	QC Batch	BH 6-S3	QC Batch	BH 6-S30	RDL	QC Batch
Inorganics								
Moisture	%	25	5469868	29	5468703	29	1.0	5472799
RDL = Reportable Dete	ction Limit							
QC Batch = Quality Cor	the I Betel							



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

Maxxam ID		GJF223		
Sampling Date		2018/04/02		
		11:30		
COC Number		102863		
	UNITS	BH 6-S1	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	5469143
Acid Extractable Arsenic (As)	ug/g	1.6	1.0	5469143
Acid Extractable Barium (Ba)	ug/g	270	0.50	5469143
Acid Extractable Beryllium (Be)	ug/g	0.93	0.20	5469143
Acid Extractable Boron (B)	ug/g	7.2	5.0	5469143
Acid Extractable Cadmium (Cd)	ug/g	0.24	0.10	5469143
Acid Extractable Chromium (Cr)	ug/g	61	1.0	5469143
Acid Extractable Cobalt (Co)	ug/g	14	0.10	5469143
Acid Extractable Copper (Cu)	ug/g	29	0.50	5469143
Acid Extractable Lead (Pb)	ug/g	10	1.0	5469143
Acid Extractable Molybdenum (Mo)	ug/g	1.8	0.50	5469143
Acid Extractable Nickel (Ni)	ug/g	31	0.50	5469143
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	5469143
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	5469143
Acid Extractable Thallium (Tl)	ug/g	0.26	0.050	5469143
Acid Extractable Uranium (U)	ug/g	3.2	0.050	5469143
Acid Extractable Vanadium (V)	ug/g	54	5.0	5469143
	ug/g	100	5.0	5469143



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

# VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		GJF223		
Sampling Date		2018/04/02		
		11:30		
COC Number		102863		
	UNITS	BH 6-S1	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	5468781
Volatile Organics	•			
Acetone (2-Propanone)	ug/g	<0.50	0.50	5467202
Benzene	ug/g	<0.020	0.020	5467202
Bromodichloromethane	ug/g	<0.050	0.050	5467202
Bromoform	ug/g	<0.050	0.050	5467202
Bromomethane	ug/g	<0.050	0.050	5467202
Carbon Tetrachloride	ug/g	<0.050	0.050	5467202
Chlorobenzene	ug/g	<0.050	0.050	5467202
Chloroform	ug/g	<0.050	0.050	5467202
Dibromochloromethane	ug/g	<0.050	0.050	5467202
1,2-Dichlorobenzene	ug/g	<0.050	0.050	5467202
1,3-Dichlorobenzene	ug/g	<0.050	0.050	5467202
1,4-Dichlorobenzene	ug/g	<0.050	0.050	5467202
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	5467202
1,1-Dichloroethane	ug/g	<0.050	0.050	5467202
1,2-Dichloroethane	ug/g	<0.050	0.050	5467202
1,1-Dichloroethylene	ug/g	<0.050	0.050	5467202
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	5467202
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	5467202
1,2-Dichloropropane	ug/g	<0.050	0.050	5467202
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	5467202
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	5467202
Ethylbenzene	ug/g	<0.020	0.020	5467202
Ethylene Dibromide	ug/g	<0.050	0.050	5467202
Hexane	ug/g	<0.050	0.050	5467202
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	5467202
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	5467202
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	5467202
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	5467202
Styrene	ug/g	<0.050	0.050	5467202
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	5467202
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	5467202
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

# VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		GJF223		
Sampling Date		2018/04/02		
		11:30		
COC Number		102863		
	UNITS	BH 6-S1	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.050	0.050	5467202
Toluene	ug/g	<0.020	0.020	5467202
1,1,1-Trichloroethane	ug/g	<0.050	0.050	5467202
1,1,2-Trichloroethane	ug/g	<0.050	0.050	5467202
Trichloroethylene	ug/g	<0.050	0.050	5467202
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	5467202
Vinyl Chloride	ug/g	<0.020	0.020	5467202
p+m-Xylene	ug/g	<0.020	0.020	5467202
o-Xylene	ug/g	<0.020	0.020	5467202
Total Xylenes	ug/g	<0.020	0.020	5467202
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	100		5467202
D10-o-Xylene	%	134 (1)		5467202
D4-1,2-Dichloroethane	%	96		5467202
D8-Toluene	%	97		5467202
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
(1) Recovery or RPD for this parameter i quality control for this analysis meets ac			s. The c	overall



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

# **PETROLEUM HYDROCARBONS (CCME)**

Maxxam ID		GJF224			GJF225		
					GJFZZ5		
Sampling Date		2018/04/02 11:40			2018/04/02		
COC Number		102863			102863		
	UNITS	BH 6-S3	RDL	QC Batch	BH 6-S30	RDL	QC Batch
BTEX & F1 Hydrocarbons	0.1110	5110 00		QC Daten	511 0 000		Qe butten
Benzene	ug/g	<0.020	0.020	5469847	<0.020	0.020	5469847
Toluene	ug/g	<0.020	0.020	5469847	<0.020	0.020	5469847
Ethylbenzene	ug/g	<0.020	0.020	5469847	<0.020	0.020	5469847
o-Xylene	ug/g	<0.020	0.020	5469847	<0.020	0.020	5469847
p+m-Xylene	ug/g	<0.040	0.040	5469847	<0.040	0.040	5469847
Total Xylenes	ug/g	<0.040	0.040	5469847	<0.040	0.040	5469847
F1 (C6-C10)	ug/g	<10	10	5469847	<10	10	5469847
F1 (C6-C10) - BTEX	ug/g	<10	10	5469847	<10	10	5469847
F2-F4 Hydrocarbons			•			•	
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5469687			
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5469687			
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	5469687			
Reached Baseline at C50	ug/g	Yes		5469687			
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	99		5469847	100		5469847
4-Bromofluorobenzene	%	101		5469847	101		5469847
D10-Ethylbenzene	%	92		5469847	96		5469847
D4-1,2-Dichloroethane	%	105		5469847	106		5469847
o-Terphenyl	%	99		5469687			
RDL = Reportable Detection I	imit						
QC Batch = Quality Control B	atch						



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

### **TEST SUMMARY**

Maxxam ID: GJF223 Sample ID: BH 6-S1 Matrix: Soil					Collected: 2018/04/02 Shipped: Received: 2018/04/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5468781	N/A	2018/04/05	Automated Statchk
Strong Acid Leachable Metals by ICPMS	ICP/MS	5469143	2018/04/04	2018/04/04	Daniel Teclu
Moisture	BAL	5469868	N/A	2018/04/04	Prgya Panchal
Volatile Organic Compounds in Soil	GC/MS	5467202	N/A	2018/04/05	Juan Pangilinan
Maxxam ID: GJF224 Sample ID: BH 6-S3 Matrix: Soil					Collected: 2018/04/02 Shipped: Received: 2018/04/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5469847	N/A	2018/04/05	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5469687	2018/04/04	2018/04/05	Zhiyue (Frank) Zhu
Moisture	BAL	5468703	N/A	2018/04/04	Prgya Panchal
Maxxam ID: GJF225 Sample ID: BH 6-S30 Matrix: Soil					Collected: 2018/04/02 Shipped: Received: 2018/04/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
•					
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5469847	N/A	2018/04/05	Georgeta Rusu



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.3°C

Cooler custody seal was present and intact.

Sample GJF223 [BH 6-S1] : The recovery for the extraction surrogate compound was above the upper control limit for duplicate analyses of the soil sample. Visible loss of methanol was observed in this sample. As a result, there is an increased level of uncertainty associated with the values reported for this sample.

Sample GJF225 [BH 6-S30] : Please add moisture to the vials for this sample.

Results relate only to the items tested.



Maxxam Job #: B871983 Report Date: 2018/04/06

# QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5467202	4-Bromofluorobenzene	2018/04/04	101	60 - 140	103	60 - 140	101	%		
5467202	D10-o-Xylene	2018/04/04	128	60 - 130	120	60 - 130	118	%		
5467202	D4-1,2-Dichloroethane	2018/04/04	95	60 - 140	102	60 - 140	103	%		
5467202	D8-Toluene	2018/04/04	100	60 - 140	97	60 - 140	95	%		
5469687	o-Terphenyl	2018/04/05	99	60 - 130	98	60 - 130	97	%		
5469847	1,4-Difluorobenzene	2018/04/04	101	60 - 140	102	60 - 140	99	%		
5469847	4-Bromofluorobenzene	2018/04/04	101	60 - 140	101	60 - 140	100	%		
5469847	D10-Ethylbenzene	2018/04/04	101	60 - 140	94	60 - 140	88	%		
5469847	D4-1,2-Dichloroethane	2018/04/04	107	60 - 140	107	60 - 140	104	%		
5467202	1,1,1,2-Tetrachloroethane	2018/04/04	103	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5467202	1,1,1-Trichloroethane	2018/04/04	103	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5467202	1,1,2,2-Tetrachloroethane	2018/04/04	100	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5467202	1,1,2-Trichloroethane	2018/04/04	98	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5467202	1,1-Dichloroethane	2018/04/04	100	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5467202	1,1-Dichloroethylene	2018/04/04	100	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5467202	1,2-Dichlorobenzene	2018/04/04	103	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5467202	1,2-Dichloroethane	2018/04/04	97	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5467202	1,2-Dichloropropane	2018/04/04	99	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5467202	1,3-Dichlorobenzene	2018/04/04	104	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5467202	1,4-Dichlorobenzene	2018/04/04	104	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5467202	Acetone (2-Propanone)	2018/04/04	91	60 - 140	100	60 - 140	<0.50	ug/g	NC	50
5467202	Benzene	2018/04/04	100	60 - 140	98	60 - 130	<0.020	ug/g	NC	50
5467202	Bromodichloromethane	2018/04/04	99	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5467202	Bromoform	2018/04/04	99	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5467202	Bromomethane	2018/04/04	104	60 - 140	100	60 - 140	<0.050	ug/g	NC	50
5467202	Carbon Tetrachloride	2018/04/04	103	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5467202	Chlorobenzene	2018/04/04	102	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5467202	Chloroform	2018/04/04	102	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5467202	cis-1,2-Dichloroethylene	2018/04/04	102	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5467202	cis-1,3-Dichloropropene	2018/04/04	92	60 - 140	94	60 - 130	<0.030	ug/g	NC	50
5467202	Dibromochloromethane	2018/04/04	100	60 - 140	103	60 - 130	<0.050	ug/g	NC	50



#### Maxxam Job #: B871983 Report Date: 2018/04/06

# QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5467202	Dichlorodifluoromethane (FREON 12)	2018/04/04	107	60 - 140	98	60 - 140	<0.050	ug/g	NC	50
5467202	Ethylbenzene	2018/04/04	99	60 - 140	92	60 - 130	<0.020	ug/g	NC	50
5467202	Ethylene Dibromide	2018/04/04	101	60 - 140	108	60 - 130	<0.050	ug/g	NC	50
5467202	Hexane	2018/04/04	99	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5467202	Methyl Ethyl Ketone (2-Butanone)	2018/04/04	87	60 - 140	100	60 - 140	<0.50	ug/g	NC	50
5467202	Methyl Isobutyl Ketone	2018/04/04	88	60 - 140	102	60 - 130	<0.50	ug/g	NC	50
5467202	Methyl t-butyl ether (MTBE)	2018/04/04	97	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5467202	Methylene Chloride(Dichloromethane)	2018/04/04	104	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
5467202	o-Xylene	2018/04/04	99	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5467202	p+m-Xylene	2018/04/04	98	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5467202	Styrene	2018/04/04	100	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5467202	Tetrachloroethylene	2018/04/04	107	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5467202	Toluene	2018/04/04	100	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
5467202	Total Xylenes	2018/04/04					<0.020	ug/g	NC	50
5467202	trans-1,2-Dichloroethylene	2018/04/04	104	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5467202	trans-1,3-Dichloropropene	2018/04/04	92	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
5467202	Trichloroethylene	2018/04/04	106	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5467202	Trichlorofluoromethane (FREON 11)	2018/04/04	103	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5467202	Vinyl Chloride	2018/04/04	100	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
5468703	Moisture	2018/04/04							0	20
5469143	Acid Extractable Antimony (Sb)	2018/04/04	84	75 - 125	107	80 - 120	<0.20	ug/g	NC	30
5469143	Acid Extractable Arsenic (As)	2018/04/04	99	75 - 125	104	80 - 120	<1.0	ug/g	5.7	30
5469143	Acid Extractable Barium (Ba)	2018/04/04	NC	75 - 125	98	80 - 120	<0.50	ug/g	1.6	30
5469143	Acid Extractable Beryllium (Be)	2018/04/04	106	75 - 125	105	80 - 120	<0.20	ug/g	4.1	30
5469143	Acid Extractable Boron (B)	2018/04/04	88	75 - 125	102	80 - 120	<5.0	ug/g	7.0	30
5469143	Acid Extractable Cadmium (Cd)	2018/04/04	101	75 - 125	103	80 - 120	<0.10	ug/g	NC	30
5469143	Acid Extractable Chromium (Cr)	2018/04/04	NC	75 - 125	97	80 - 120	<1.0	ug/g	1.1	30
5469143	Acid Extractable Cobalt (Co)	2018/04/04	94	75 - 125	100	80 - 120	<0.10	ug/g	3.3	30
5469143	Acid Extractable Copper (Cu)	2018/04/04	NC	75 - 125	101	80 - 120	<0.50	ug/g	0.13	30
5469143	Acid Extractable Lead (Pb)	2018/04/04	103	75 - 125	104	80 - 120	<1.0	ug/g	0.21	30
5469143	Acid Extractable Molybdenum (Mo)	2018/04/04	98	75 - 125	102	80 - 120	<0.50	ug/g	NC	30

#### Page 11 of 15

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca



Maxxam Job #: B871983 Report Date: 2018/04/06

# QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5469143	Acid Extractable Nickel (Ni)	2018/04/04	NC	75 - 125	101	80 - 120	<0.50	ug/g	2.4	30
5469143	Acid Extractable Selenium (Se)	2018/04/04	96	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
5469143	Acid Extractable Silver (Ag)	2018/04/04	98	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
5469143	Acid Extractable Thallium (TI)	2018/04/04	101	75 - 125	103	80 - 120	<0.050	ug/g	6.0	30
5469143	Acid Extractable Uranium (U)	2018/04/04	100	75 - 125	101	80 - 120	<0.050	ug/g	0.15	30
5469143	Acid Extractable Vanadium (V)	2018/04/04	NC	75 - 125	100	80 - 120	<5.0	ug/g	2.4	30
5469143	Acid Extractable Zinc (Zn)	2018/04/04	NC	75 - 125	103	80 - 120	<5.0	ug/g	2.8	30
5469687	F2 (C10-C16 Hydrocarbons)	2018/04/05	101	50 - 130	99	80 - 120	<10	ug/g	NC	30
5469687	F3 (C16-C34 Hydrocarbons)	2018/04/05	105	50 - 130	105	80 - 120	<50	ug/g	NC	30
5469687	F4 (C34-C50 Hydrocarbons)	2018/04/05	108	50 - 130	106	80 - 120	<50	ug/g	NC	30
5469847	Benzene	2018/04/04	100	60 - 140	102	60 - 140	<0.020	ug/g	NC	50
5469847	Ethylbenzene	2018/04/04	98	60 - 140	98	60 - 140	<0.020	ug/g	NC	50
5469847	F1 (C6-C10) - BTEX	2018/04/04					<10	ug/g	NC	30
5469847	F1 (C6-C10)	2018/04/04	101	60 - 140	99	80 - 120	<10	ug/g	NC	30
5469847	o-Xylene	2018/04/04	103	60 - 140	104	60 - 140	<0.020	ug/g	NC	50
5469847	p+m-Xylene	2018/04/04	99	60 - 140	100	60 - 140	<0.040	ug/g	NC	50
5469847	Toluene	2018/04/04	94	60 - 140	94	60 - 140	<0.020	ug/g	NC	50
5469847	Total Xylenes	2018/04/04					<0.040	ug/g	NC	50
5469868	Moisture	2018/04/04							1.5	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



exp Services Inc Client Project #: OTT-00245869-AO Site Location: RIVER SIDE SOUTH SCHOOL Sampler Initials: DC

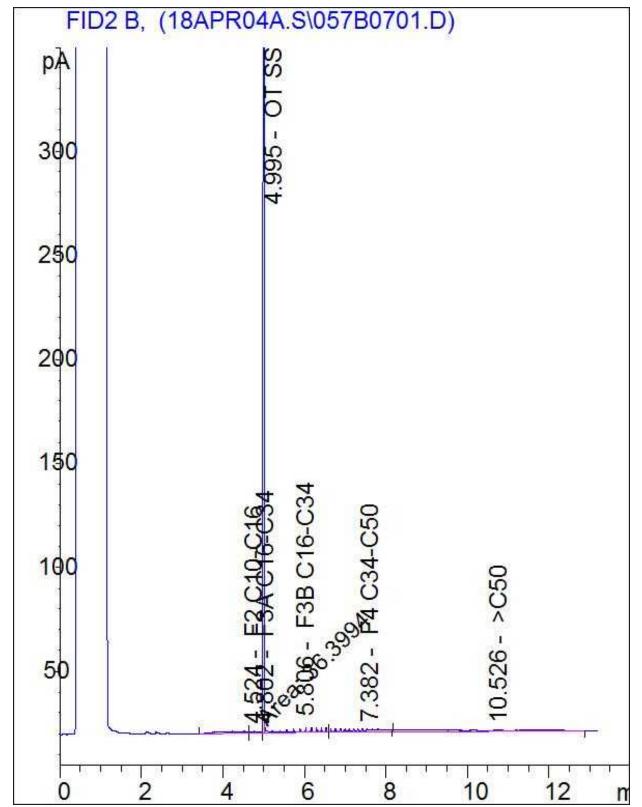
## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Camere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


Invoice Information			Report	Information	(if dif	fers fro	om inv	oice)				10100010	N OF CUSTOR	100 10 200 200		102863 Page ( of /		
ompany Name: CXD		Company	Name:	SAM-	0						Quotation #: STIEGM 3			3		Regular TAT (5-7 days) Most analyses		
ontact Name: Daniel Clark		Contact N		111		lus.					P.O. #/ AFE					PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJEC		
idress: 100-7650 que		Address:									Project #:		0TT-0024	15869	7.40	Rush TAT (Surcharges will be applied)		
0 14949								48			Site Location		R. Ver Sig			2 Days 3-4 Days		
ione: Fax:		Phone:				Fax:					Site #:					~/		
nail: Daniel Clark Dexi	7(4,	Email:				-					Sampled B	y;	20	4		Date Required:		
MOE REGULATED DRINKIN	WATER OR WATER I	INTENDED FOR	HUMAN CONS	SUMPTION M	UST B	IE SUBI	MITTE	D ON T	HE MAX	IXAM E	RINKING WAT	ER CH	HAIN OF CUSTODY		<b>File</b>	Rush Confirmation #:		
Regulation 153	ССМЕ	Other Reg	ulations y Sewer Bylaw			_	_	_	-	-	Analysis	Reque	ested		-	LABORATORY USE ONLY		
Table Z     Ind/Comm     Coarse       Table 3     Agri/ Other       Table       FOR RSC (PLEASE CIRCLE)     Y / N	MISA PWQO Other (1 REG 55	Region Specify)	Sewer Bylaw		иттер	Metals / Hg / CrVI				TURNICS	, HWS - 8)					CODLER TEMPERATUR Present Intact		
ude Criteria on Certificate of Analysis: Y / N		1.	Start Street		S SUBN	CIRCLE)				METALS	Metals				ANALYZE			
SAMPLES MUST BE KEPT COOL ( < 10 °C ) FROM	TIME OF SAMPLING	UNTIL DELIVE	RY TO MAXXAN	И	AINERS	ERED (C	E	7		PMS N	METALS 1, ICPMS				NOT AI	CODLING MEDIA PRESENT:		
SAMPLE IDENTIFICATION		'E SAMPLED (Y/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTAINE	FIELD FILTERED	BTEX/ PHC F1	PHCs F2 - F4	VOCS	REG 153 ICPMS METALS	REG 153 M (Hg, Cr VI, I				ногр- ро	COMMENTS		
BH6-51	Api	1-12/18	11:30	50:1	4	1			X	X								
BH6=53	1,		11:40	50:1	3	1	X	X										
BH6-5330	١	ſ		50.1	1	1	X											
				1.1														
																RECEIVED IN OTTAW		
		02-Aj	pr-18 13	:30							24.1					HEOEIVLUITS		
	Jon	athan Ui	rben 															
	1	<b>B</b> 87198	83				_									Onice		
	MVA						_				1.51							
		01	FT-001								11115							
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/	/MM/DD)	TIME: (HH:M	1M)		REC	EIVED	BY: (Sig	gnature,	/Print)	-	D	DATE: (YYYY/MM/DD)	TIME:	(HH:MM)	MAXXAM JOB #		

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

exp Services Inc Client Project #: OTT-00245869-AO Project name: RIVER SIDE SOUTH SCHOOL Client ID: BH 6-S3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.