

KNL DEVELOPMENTS INC. Kanata Lakes Plaza TIS

October 2017 Update

October 6, 2017

KNL Developments Inc. c/o Urbandale Construction 2193 Arch Street Ottawa, Ontario K1G 2H5

Attention: Marcel Dénommé, Director of Land Development and Planning

RE: Kanata Lakes Plaza Updated TIS

Dear Mr. Dénommé:

Dillon Consulting Limited is pleased to provide you with the updated transportation impact study for the Kanata Lakes Plaza.

Please do not hesitate to contact the undersigned if you have any questions or comments.

Sincerely,

DILLON CONSULTING LIMITED

Douglas 6

Doug Green, P. Eng. Associate

Our file:

17-6323

177 Colonnade Road Suite 101 Ottawa, Ontario Canada K2E 7J4 Telephone 613.745.2213 Fax 613.745.3491

Table of Contents

1.0	INTROE	DUCTION	1		
	1.1	Purpose			
	1.2	Proposed Development			
	1.3	Study Area	2		
2.0	SCOPE	OF ANALYSIS	3		
	2.1	Study Horizons			
	2.2	Time Periods			
	2.3	General Parameters and Methods			
3.0	EXISTIN	IG CONDITIONS	4		
	3.1	Road Network			
	3.2	Transit Network			
	3.3	Pedestrian and Bicycle Facilities			
	3.4	Existing Traffic Volumes	6		
	3.5	Existing Traffic Operations			
4.0	DEMAND FORECASTING				
	4.1	Site Trip Generation			
	4.2	Trip Distribution & Assignment	12		
5.0	FUTUR	E CONDITIONS	14		
	5.1	Road Network			
	5.2	Transit Network	15		
	5.3	Pedestrian and Bicycle Facilities	15		
	5.4	Background Auto Volumes	15		
	5.5	2023 Total Auto Conditions	15		
6.0	KANAT	A AVENUE SITE ACCESS DESIGN	19		
	6.1	Kanata Avenue Site Driveway Traffic Volume	19		
	6.2	Kanata Avenue / GFR Westbound Queue Conflict with Site Driveway			
	6.3	Eastbound Left Turn Safety Crossing Westbound Lanes	19		
	6.4	Safety of Cross Traffic between the Site and the All-Saints Driveway	19		
	6.5	Eastbound Slip Around In Right Turn Lane	20		
	6.6	Complete Street Philosophy	21		

7.0

CONCLUS	IONS AND RECOMMENDATIONS	22
7.1	Conclusions	22
7.2	Recommendations	22

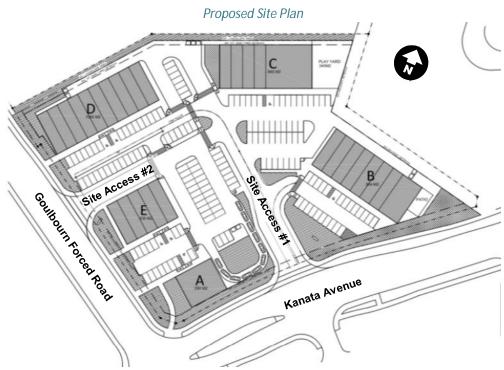
Figures

1
2
5
6
7
13
14
16
20

Tables

Table 1: Proposed Land Use	2
Table 2: Traffic Count Data and Sources	6
Table 3: Intersection Operations – Existing Traffic – Kanata Avenue / GFR	8
Table 4: Intersection Operations – Existing Traffic – Kanata Avenue / All Saints H.S. Bus Loop	8
Table 5: ITE Auto Trip Generation Rates	9
Table 6: Base Site Generated Auto Trips by Building (ITE Mode Share)	9
Table 7: ITE Trip Generation Mode Shares	10
Table 8: Base Site Generated Trips by Mode (ITE Mode Share)	10
Table 9: Kanata-Stittsville Average Mode Share within District	11
Table 10: Base Site Generated Trips by Mode (Kanata-Stittsville Mode Share)	11
Table 11: Base Site Generated Auto Trips by Building (Kanata-Stittsville Mode Share)	11
Table 12: Pass-by and Multi-Purpose Trip Reduction Rates	12
Table 13: Adjusted Site Generated Auto Trips by Building with New Trips and Pass-by Trips	12
Table 14: Trip Distribution	13
Table 15: Intersection Operations – 2023 Traffic – Kanata Avenue / GFR	17
Table 16: Intersection Operations – 2023 Traffic – GFR / Site Access #2	17

Table 17: Intersection Operations – 2023 Traffic – Kanata Avenue / All Saints H.S. Bus Loop	
Driveway / Site Access #1	. 17


Appendices

- A Level of Service Definitions
- B Detailed Synchro Reports
- C TRANS 2011 O-D Survey Results for Kanata-Stittsville

Executive Summary

KNL is proposing to develop a 39,634 ft² retail plaza on the northeast corner of the Kanata Avenue and Goulbourn Forced Road (GFR) intersection, in Kanata, ON. The proposed site plan provides full movements access to both Kanata Avenue and GFR. The proposed access to Kanata Avenue is located approximately 75m east of the Kanata Avenue intersection. The City of Ottawa has requested that the driveway location be reviewed. This transportation study has been undertaken as an update to the Kanata Avenue and Goulbourn Forced Road Commercial Development Transportation Impact Study, June 2013.

The proposed development consists of a Coffee/Donut Shop with a Drive-Thru and four other commercial retail buildings as illustrated below. The site is anticipated to be occupied in 2018.

Date: June 28, 2017

The site is expected to generate 35 and 18 eastbound left turn movements during the AM and PM peak hours respectively. The eastbound (shared left/through lane) and westbound movements at the Kanata Avenue Site Access #1 are anticipated to operate at LOS A, with turning movements from the All Saints Driveway and the site operating at LOS C or better. The intersection of Kanata Avenue and GFR is anticipated to operate at a LOS A.

The study concludes:

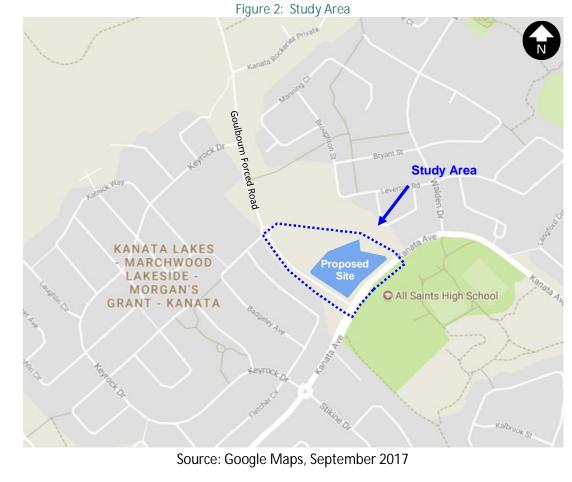
- 1) The adjacent Major Collector roadways and intersections adjacent to the site are adequate enough to accommodate the increased commercial development site;
- 2) Sidewalks, bicycle lanes, and transit infrastructure are in place to accommodate all modes of transport within the area;
- 3) The surrounding area is developing. The inclusion of a local retail node should increase pedestrian and cycling mode share while reducing the need for residents to drive to more regional centres; and,
- 4) The Kanata Avenue access location is appropriate. The risk of collision at the access is low and the location is in keeping with the Complete Street philosophy.

Immediate geometric modifications are not required. All intersections are expected to operate adequately to the 2023 horizon year. However, it is recommended that the Kanata Avenue site access is monitored over time to identify any safety issues that may manifest. These include:

- a) cross traffic between Site Access #1 and the All Saints High School bus loop driveway. As a mitigation measure, a "No Through Movement" restriction could be implemented in the northbound and southbound directions at the driveways; and,
- b) an eastbound collision issue at the site driveway. As a mitigating measure, an eastbound left turn lane could be implemented by modifying the existing median, as illustrated below.

Potential Eastbound Left Turn Design

1.0	INTRODUCTION
1.1	Purpose
	This report documents the transportation impacts and anticipated infrastructure requirements to accommodate the proposed development of a 39,634 ft ² retail plaza with site access via Kanata Avenue and Goulbourn Forced Road (GFR). This report is in support of a site plan application at the northeast corner of Kanata Avenue and GFR and is an update to the transportation impact study completed by Dillon in June 2013.
1.2	Proposed Development
	The development proposed by KNL consists of five standalone buildings totalling 39,634 ft ² of retail space. The development proposal provides two full-movements access locations, one to GFR and one to Kanata Avenue.
	The development is anticipated to be constructed and occupied by 2018. Figure 1 illustrates the proposed site plan. Table 1 indicates the proposed land use.
	Figure 1: Proposed Site Plan

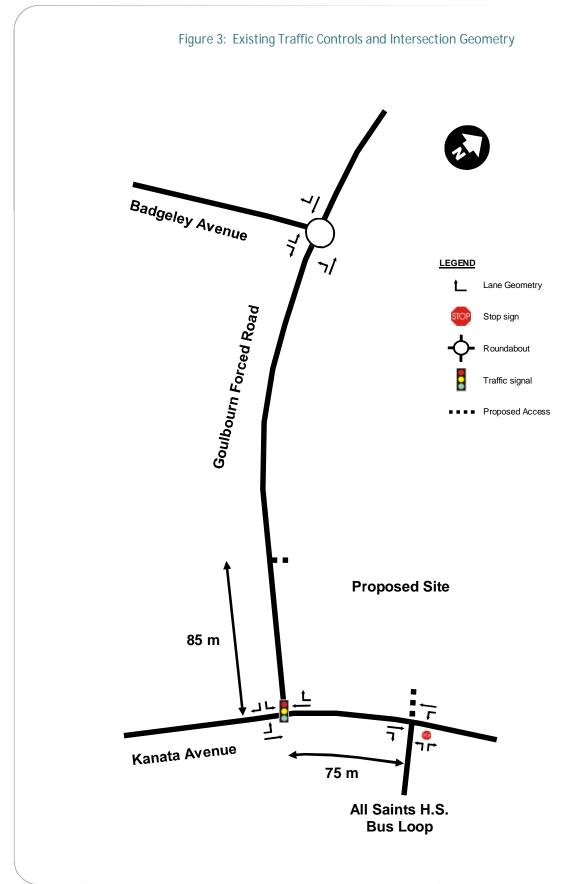


Building	Land Use Descrip ti on	Square Metres	Square Feet	
A	Coffee/Donut Shop with Drive-Through Window	290	3,122	
В	Multi-Tenant Retail / Office / Personal Service	954	10,268	
С	Multi-Tenant Retail / Office / Personal Service	848	9,128	
D	Multi-Tenant Retail / Office / Personal Service	1,060	11,410	
E	Multi-Tenant Retail / Office / Personal Service	530	5,705	
	Total	3,682	39,633	

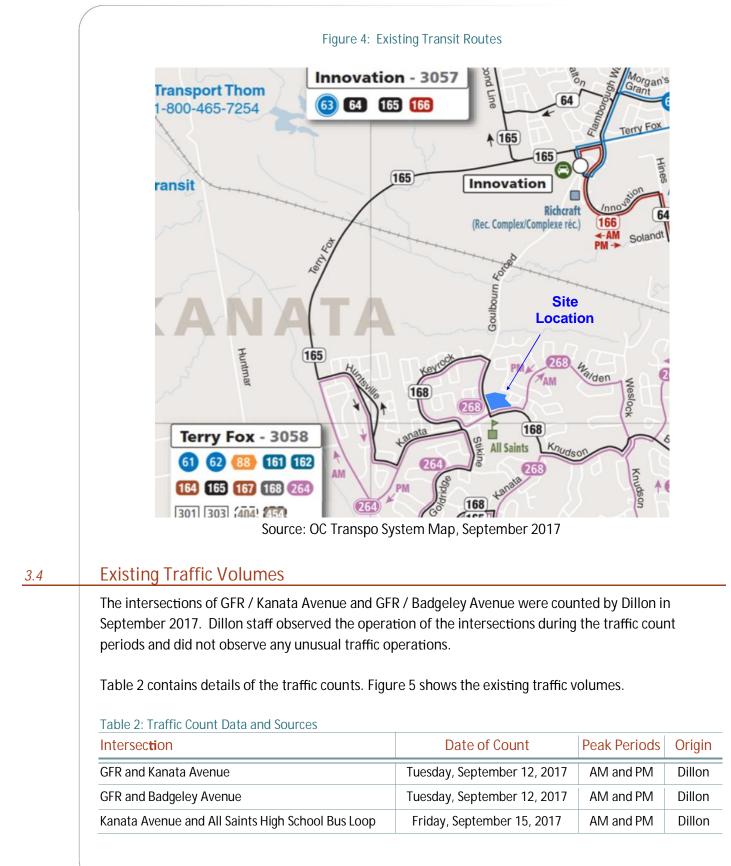
Study Area

1.3

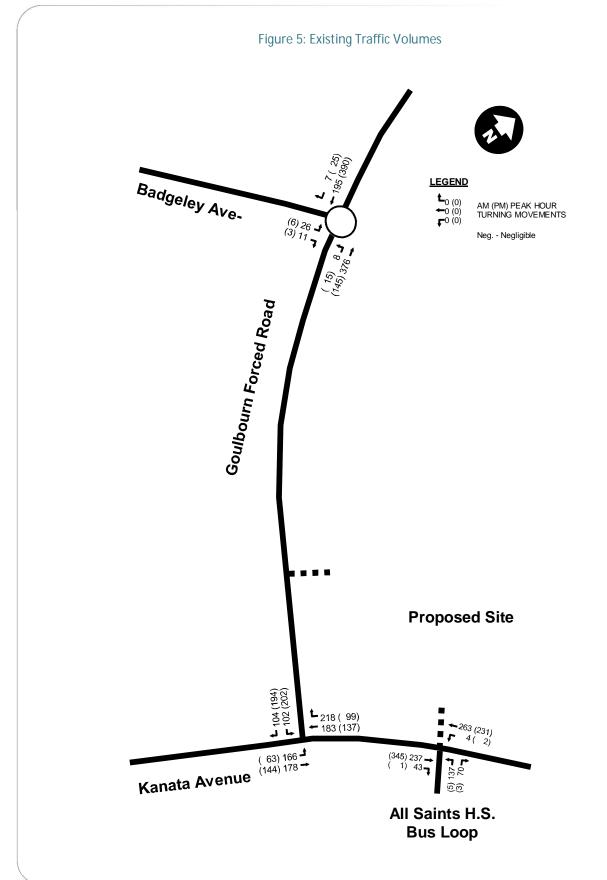
The subject site is located at the northeast corner of Kanata Avenue and GFR, in Kanata. The study area and site location are illustrated in Figure 2: Study Area


2.0 SCOPE OF ANALYSIS

2.1	Study Horizons
	The build out and occupancy of the proposed development is anticipated to occur in 2018. As such, the following horizon years were analyzed in this study:
	Horizon Year 1:2017 (Existing Traffic Operations)Horizon Year 2:2023 (Build out + 5 years)
2.2	Time Periods
	The proposed development will have peak hour traffic flows similar to the peak traffic flows of the adjacent road network. As such, analysis was undertaken for the AM and PM peak weekday commuter hours.
2.3	General Parameters and Methods
	As per the original 2013 TIS submission, this TIS has been prepared in accordance with the City of Ottawa's TIA Guidelines, October 2006.
	The analysis was completed using Trafficware's <i>Synchro Software</i> version 8.0. For the two-way stop control and roundabout analysis, the <i>Highway Capacity Manual (HCM)</i> 2010 methodology was utilized; for the signalized intersection analysis, the HCM 2000 methodology was utilized since the HCM 2010 methodology does not provide overall intersection volume-to-capacity ratio as required by the City of Ottawa's TIA Guidelines.



3.0	EXISTING CONDITIONS				
3.1	Road Network				
	Kanata Avenue and GFR are designated as Major Collector roads in the 2013 City of Ottawa Transportation Master Plan (TMP). Collector roads balance mobility and access to adjacent lands.				
	Kanata Avenue is a two-lane road that runs between Terry Fox Drive and the Highway 417 interchange at Castlefrank Road. Kanata Avenue has a posted speed limit of 40 km/hr in the vicinity of the study area. Kanata Avenue is undivided within the study area. An eastbound left turn lane and a westbound right turn lane are provided at the intersection of Kanata Avenue and GFR.				
	GFR has long been identified as a key north-south transportation spine for the Marchwood-Lakeside communities. GFR is a two-lane road between Kanata Avenue and the Terry Fox Drive/Innovation Drive intersection. GFR has a posted speed limit of 50 km/hr in the vicinity of the study area. A separate southbound left turn lane is provided at the intersection of Kanata Avenue and GFR.				
	Figure 3 illustrates the existing intersection geometry and traffic controls for the study area intersections.				
3.2	Transit Network				
	The study area is serviced by two transit routes. Route 168 is a regular service route and route 268 is an express service route. Both routes pass directly in front of the study area. The routes are presented in Figure 4.				
3.3	Pedestrian and Bicycle Facilities				
	There are existing sidewalks on both sides of Kanata Avenue and GFR within the study area. The Kanata Avenue / GFR intersection includes pedestrian push buttons and pedestrian signal count down timers. On road cycling lanes are provided on Kanata Avenue and along GFR north of Kanata Avenue to Keyrock Drive. North of Keyrock Drive, GFR is a narrow "forced" road with a rural cross-section without dedicated pedestrian or cycling facilities.				



KNL Developments Inc. Kanata Lakes Plaza TIS - October 2017 Update October 2017– 17-6323

Kanata Ave Table 3 indic	enue / Gl	-R							
Table 3 indic									
intersection	Table 3 indicates the existing intersection operation of the Kanata Avenue / GFR intersection. The intersection operates very well with a LOS of A.								
Table 3: Inter	section O	perations – Exi	sting Traffic – K	anata Aver	nue / GFR				
Peak Hour	LOS	Overa	all v/c D	elay (s)	v/c > 0.90				
AM	А	0.3	36	6.7	None				
PM	A 0.33		33	8.2 None					
Kanata Avenue / All Saints Bus Loop Driveway									
		0		•	gh School Bus	Loop intersectio	on operatior		
Table 4: Inter	section O	perations – Exi	sting Traffic – K	anata Aver	nue / All Saints	H.S. Bus Loop			
Movement	AM Pea	k Hour		PM Peak	Hour				
wovernerit	LOS	Delay (s)	Queue (veh.)	LOS	Delay (s)	Queue (veh.)			
NBL	В	14.1	1.1	В	11.7	0.0			
NBR	В	10.2	0.3	В	10.4	0.0			
WBL	A	8.7	0.0	A	8.0	0.0			
	PeakHourAMPMKanata AveTable 4 indiaTable 4 indiaThe intersecTable 4: InterMovementNBLNBR	Peak HourLOSAMAAMAPMAKanata Avenue / AlTable 4 indicates the The intersection operTable 4: Intersection operMovementLOSNBLBNBRB	Peak HourLOSOveraAMA0.3AMA0.3PMA0.3Kanata Avenue / All Saints Bus ITable 4 indicates the existing Kanata The intersection operates very wellTable 4: Intersection Operations – Exit AM Peak HourMovementAM Peak HourMovementLOSDelay (s)NBLB14.1NBRB10.2	Peak HourLOSOverall v/cDescent of the second s	Peak HourLOSOverall v/cDelay (s)AMA0.366.7PMA0.338.2Kanata Avenue / All Saints Bus Loop DrivewayTable 4 indicates the existing Kanata Avenue / All Saints High The intersection operates very well with a LOS of A.Table 4: Intersection Operations – Existing Traffic – Kanata Avenue MovementMovementAM Peak HourPM Peak PM PeakMovementLOSDelay (s)Queue (veh.)NBLB14.11.1BNBRB10.20.3B	HourLOSOverall v/cDelay (s)v/c > 0.90AMA0.366.7NonePMA0.338.2NoneKanata Avenue / All Saints Bus Loop DrivewayTable 4 indicates the existing Kanata Avenue / All Saints High School Bus The intersection operates very well with a LOS of A.Table 4: Intersection Operations – Existing Traffic – Kanata Avenue / All Saints MovementMovementAM Peak HourPM Peak HourMovementLOSDelay (s)Queue (veh.)NBLB14.11.1BNBRB10.20.3B10.4	Peak HourLOSOverall v/cDelay (s)v/c > 0.90AMA0.366.7NonePMA0.338.2NoneKanata Avenue / All Saints Bus Loop DrivewayTable 4 indicates the existing Kanata Avenue / All Saints High School Bus Loop intersection The intersection operates very well with a LOS of A.Table 4: Intersection Operations – Existing Traffic – Kanata Avenue / All Saints H.S. Bus LoopMovementAM Peak HourPM Peak HourMovementLOSDelay (s)Queue (veh.) LOSDelay (s)Queue (veh.)DO		

4.0 DEMAND FORECASTING

4.1 Site Trip Generation

The proposed development consists of five buildings with a total of 39,633 ft² of gross floor area. The Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 8th Edition, was utilized to estimate the number of vehicle trips generated for each building. Although tenants have not been identified, it has been assumed that a Coffee / Donut Shop with Drive-Through Window would be provided, with the remaining land use considered as Specialty Retail Centre.

Table 5 indicates the trip generation rates and directional split (inbound/outbound) for the two assumed land uses. Trip generation data was not available for the Specialty Retail Centre for the AM Peak Hour so the trip generation data for a Shopping Centre was used instead.

ITE Code	Land Use Description	ITE Auto Trip G (auto trips per 1		Directional Split (Inbound/Outbound)		
COUE		AM PeakHour	PM Peak Hour	AM Peak Hour	PM Peak Hour	
937	Coffee/Donut Shop with Drive- Through Window	110.75	42.93	51% / 49%	50% / 50%	
814	Specialty Retail Center	Not Available	2.71	None	44% / 56%	
820	Shopping Centre	1.0	Not used	61% / 39%	Not used	

Table 5: ITE Auto Trip Generation Rates

Note: GFA means gross floor area.

Table 6 shows the site generated trips based on the ITE Trip Generation Rates. These are the 'base' values which do not include reductions to account for 'pass-by' trips and 'multi-purpose' trips which are discussed later.

Building	Assumed Land Use		AM Peak Hour			PM Peak Hour		
bulluling	Assumed Land Use	In	Out	Total	In	Out	Total	
A	Coffee/Donut Shop with Drive-Through Window		169	346	67	67	134	
В	Speciality Retail Center		4	10	12	16	28	
С	Speciality Retail Center		4	9	11	14	25	
D	Speciality Retail Center		4	11	14	17	31	
E	Speciality Retail Center	3	2	6	7	9	15	
Total		199	184	382	111	122	233	

Table 6: Base Site Generated Auto Trips by Building (ITE Mode Share)

The base site generated auto trips are calculated using trip generation rates from the ITE Trip Generation Manual. The ITE rates use data from a number of surveys taken around North America and do not necessarily reflect the trip making characteristics of the Kanata-Stittsville area. We have assumed that the ITE rates reflect a suburban location with higher auto mode share and lower alternative mode shares.

The ITE trip mode share is indicated in Table 7.

Table 7: ITE Trip Generation Mode Shares				
Mode	Mode Share			
Auto Driver	78%			
Auto Passenger	15%			
Transit	5%			
Bicycle	1%			
Pedestrian	1%			

Table 8 indicates the base number of person trips anticipated to be generated by the development assuming the ITE Trip Generation Mode Shares discussed above.

	AI	M Peak Hou	r	PM Peak Hour		
	In	Out	Total	In	Out	Total
Auto Driver	199	184	382	111	122	233
Auto Passenger	38	35	74	21	24	45
Transit	13	12	25	7	8	15
Bicycle	3	2	5	1	2	3
Pedestrian	3	2	5	1	2	3
Total Person Trips	255	235	490	142	157	299

Table 8: Base Site Generated Trips by Mode (ITE Mode Share)

Table 9 presents the 2011 Ottawa TRANS O-D mode share for the Kanata-Stittsville district. Mode share was calculated as the average of the AM and PM peak hour mode shares for trips internal to the Kanata-Stittsville district. The 2011 Ottawa TRANS O-D survey results contain a category for 'other'. The 'other' trips have been added to auto driver and bicycle mode shares. As indicated, the Kanata-Stittsville auto driver share is lower than the assumed auto driver mode share in the ITE Trip Generation Manual.

Table 9: Kanata-Stittsville Average Mode Share within District

Mode	2011 TRANS O-D Adjusted Mode Share	
Auto Driver	56%	
Auto Passenger	20%	
Transit	3%	
Bicycle	5%	
Pedestrian	16%	
Other	0%	

Table 10 indicates the base number of trips anticipated to be generated by the site for each travel mode based on the adjusted Kanata-Stittsville Mode Share.

	А	M Peak Hou	r	F	<u> </u>	
	In	Out	Total	In	Out	Total
Auto Driver	143	132	274	79	88	167
Auto Passenger	51	47	98	28	31	60
Transit	8	7	15	4	5	9
Bicycle	13	12	25	7	8	15
Pedestrian	40	38	78	23	25	48
Total Person Trips	255	235	490	142	157	299

Table 10: Base Site Generated Trips by Mode (Kanata-Stittsville Mode Share)

Table 11 indicates the base number of auto trips anticipated to be generated by each building based on the Kanata-Stittsville mode shares.

Table 11. Rase Site Generated	Auto Trins by Ruild	ding (Kanata-Stittsville Mode Share)	
	Auto mps by build		

Puilding	AN	VI Peak Hour		PM Peak Hour		
Building	In	Out	Total	In	Out	Total
A	127	122	248	48	48	96
В	4	3	7	9	11	20
С	4	3	7	8	10	18
D	5	3	8	10	12	22
E	2	2	4	5	6	11
Total	143	132	274	79	88	167

Of the trips generated by each land use, some trips will be 'pass-by' trips (i.e., a coffee/donut shop is unlikely to be the primary purpose of a trip). The ITE Trip Generation Manual was utilized to estimate the pass-by trip percentage.

The development consists of multiple buildings and land uses, therefore it has been assumed that some trips will visit another land use (i.e. multi-purpose), thus further reducing the overall trips to the site. Table 12 indicates the pass-by and multi-purpose trip reduction factors utilized to adjust the site generated auto trips.

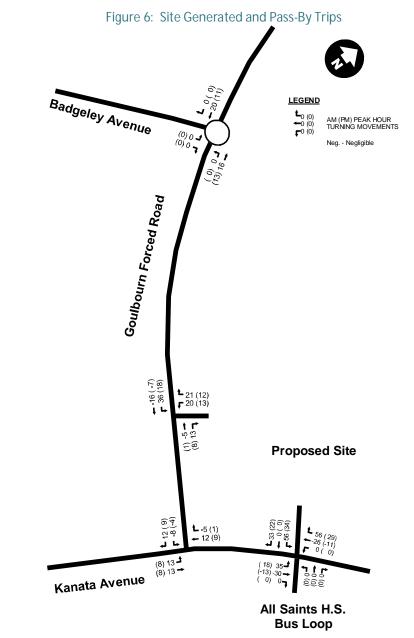
Table 12: Pass-by and Multi-Purpose Trip Reduction Rates

Building	Assumed Land Use	Pass-by Trip Percentage	Mul ti -Purpose Trip Reduc ti on	
A	Coffee/Donut Shop with Drive-Through Window	50%	0%	
B, C, D, E	Speciality Retail Center	15%	20%	

Table 13 indicates the adjusted site generated auto trips separated by new and pass-by trips; the auto trips for buildings B, C, D, and E have been reduced by 20% to account for multi-purpose trips.

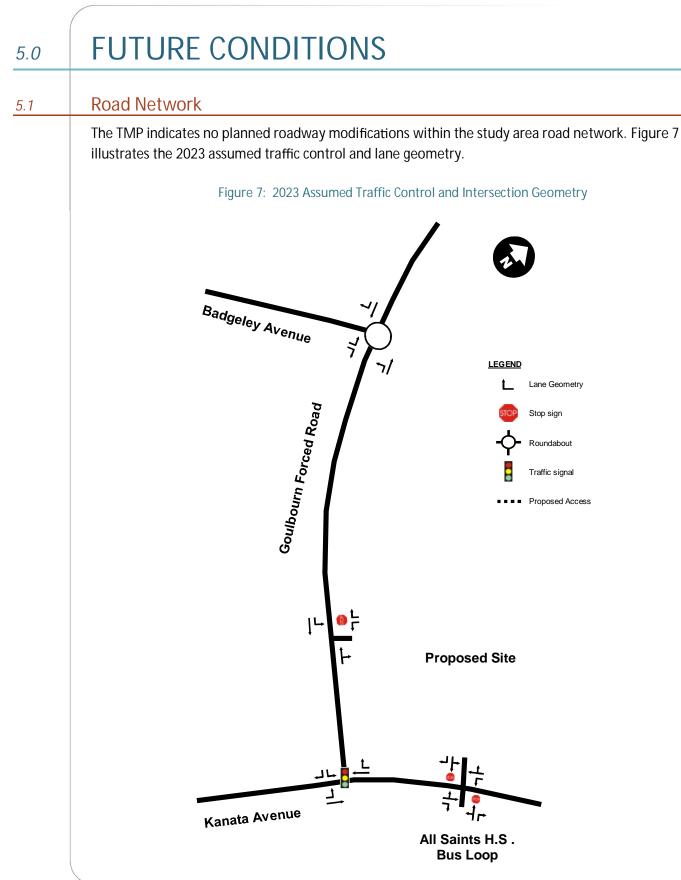
Table 13: Adjusted Site Generated Auto Trips by Building with New Trips and Pass-by Trips

	AM Peak Hour					PM Peak Hour						
Building	To	tal	Ne	W	Pass	ъ-Ву	To	tal	Ne	W	Pass	з-Ву
	In	Out	In	Out	In	Out	In	Out	In	Out	In	Out
А	127	122	65	60	62	62	48	48	24	24	24	24
В	4	2	3	2	0	0	7	9	6	8	1	1
С	3	2	3	2	0	0	6	8	5	7	1	1
D	4	3	4	2	0	0	8	10	6	9	1	1
E	2	1	2	1	0	0	4	5	3	4	1	1
Total	139	130	76	66	64	64	73	80	45	52	28	28


4.2 Trip Distribution & Assignment

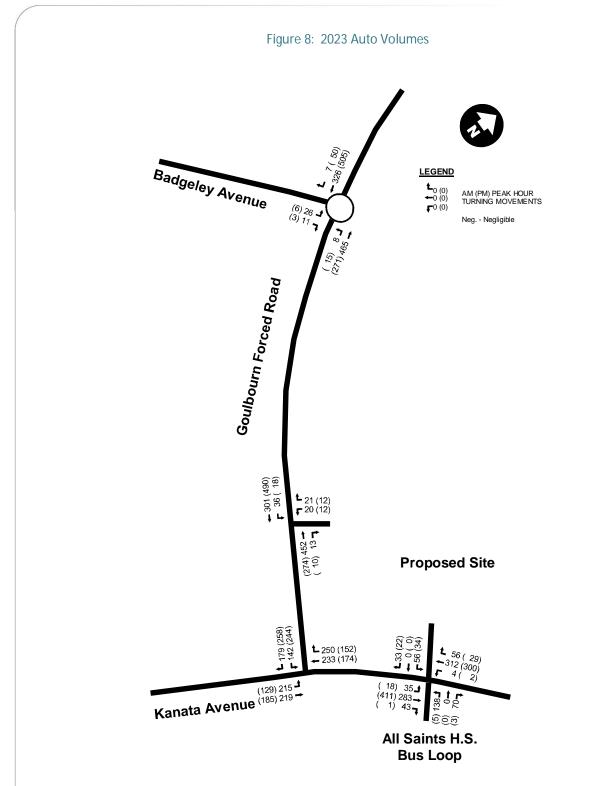
Dillon reviewed the existing turning movement characteristics within the study area and determined that approximately 40% of traffic is going to or from the east on Kanata Avenue, 35% is going to or from the west on Kanata Avenue and 25% is going to or from the north on GFR.

Table 14 provides a summary of the trip distribution assumed for this study. Figure 6 illustrates the assignment of site traffic generated by the proposed development.



Direction (to/from)	Distribu ti on	Roads Facilita ti ng Travel
East	40%	Kanata Avenue
West	35%	Kanata Avenue
North	25%	Goulbourn Forced Road
Total	100%	

Note: Negative values are due to pass-by trips, i.e. vehicles that were previously traveling on the road network turn left into the new site.



5.2	Transit Network
	Chapter 5 of the TMP outlines the City's relevant policies regarding transit. The Innovation Park and Ride was recently completed at the intersection of Terry Fox Drive and Innovation Drive, with a planned future expansion; however, this is not anticipated to impact the site. The extension of light rail transit west to Kanata is also not expected to impact the site.
5.3	Pedestrian and Bicycle Facilities
	The TMP states that the City requires the provision of sidewalks on both sides of arterial and collector roads in urban areas, and on new roads and reconstructed roads where physical constraints allow.
	Kanata Avenue and the southern portion of GFR currently have sidewalks and on-road cycling lanes. No further improvements are anticipated with regards to pedestrian facilities.
5.4	Background Auto Volumes
	The proposed development is anticipated to be constructed and occupied in the year 2018. As per City of Ottawa TIA Guidelines, the analysis included an evaluation of traffic conditions five years post development, for the 2023 horizon year.
	The 2023 traffic volumes were forecasted by applying a 2% annual compound growth rate to 2017 traffic volumes in addition to explicitly accounting for KNL Phase 9 site generated traffic as per Dillon's report, <i>Kanata North Phase 9 Transportation Impact Study, July 2014</i> .
5.5	2023 Total Auto Conditions
	The 2023 total traffic condition represents site operations with the development in place. The traffic volumes were estimated by adding site generated traffic to the 2023 background traffic discussed in the previous section. Figure 8 illustrates total auto volumes for the 2023 time horizon.

The following sections discuss the performance of the study area intersections under 2023 total auto volumes. Detailed intersection performance worksheets are included in Appendix B.

		icates the 2	2023 traffic o	perations for th and, therefore,			R signalized intersectior ed.		
	Table 15: Inte	ersection Op	erations – 202	23 Traffic – Kana	ta Avenue	/ GFR			
	Peak Hour	LOS	Overall v			v/c > 0.90			
	AM	A	0.48	8.3	3	None			
	PM	А	0.42	9.3	}	None			
5.2	GFR / Site A	Access #2							
	movements	operate at ersection Op	a LOS B or be	etter and, there 23 Traffic – GFR	efore, miti / Site Acce	gation is not			
	Movement	LOS	Delay (s)	Queue (veh.)	LOS	Delay (s)	Queue (veh.)		
	WBL	В	13.9	0.2	В	13.6	0.1		
	WBR	В	11.5	0.1	А	9.9	0.1		
	SBL	А	8.5	0.1	А	7.9	0.0		
	Kanata Avenue / All Saints Bus Loop Driveway / Site Access #1								
5.3			NOOO			$\Delta v \cap n \cap o / \Delta H$	Saints Rus Loon Drivew		
5.3	Table 17 ind Site Access # required. Table 17: Inte Access #1	1. All turni	ng movemer	its operate at a 23 Traffic – Kana	LOS of C o	or better and	therefore, mitigation is S. Bus Loop Driveway / Si		
5.3	Table 17 ind Site Access # required. Table 17: Inte	1. All turni	ng movemer erations – 202	its operate at a 23 Traffic – Kana	LOS of C o	or better and / All Saints H.	therefore, mitigation is S. Bus Loop Driveway / Si		
5.3	Table 17 ind Site Access # required. Table 17: Inte Access #1	1. All turni	ng movemer erations – 20: AM Peak Hou	its operate at a 23 Traffic – Kana ur	LOS of C o	or better and / All Saints H. PM Peak Hou	therefore, mitigation is S. Bus Loop Driveway / Si		
3	Table 17 ind Site Access # required. Table 17: Inte Access #1 Movement	1. All turni ersection Op LOS	ng movemer erations – 20: AM Peak Hor Delay (s)	uts operate at a 23 Traffic – Kana ur Queue (veh.)	LOS of C o ta Avenue LOS	or better and / All Saints H. PM Peak Hou Delay (s)	therefore, mitigation is S. Bus Loop Driveway / Si Jr Queue (veh.)		
3	Table 17 ind Site Access # required. Table 17: Inte Access #1 Movement = NBLT	1. All turni ersection Op LOS C	ng movemer erations – 202 AM Peak Hou Delay (s) 20.6	23 Traffic – Kana ur Queue (veh.)	LOS of C of ta Avenue LOS B	or better and / All Saints H. PM Peak Hou Delay (s) 14.3	therefore, mitigation is S. Bus Loop Driveway / Si ur Queue (veh.) 0.0		
3	Table 17 ind Site Access # required. Table 17: Inte Access #1 Movement NBLT NBR	41. All turni ersection Op LOS C B	ng movemer erations – 202 AM Peak Hou Delay (s) 20.6 10.6	23 Traffic – Kana 23 Traffic – Kana ur Queue (veh.) 1.8 0.4	LOS of C of ta Avenue LOS B B	or better and / All Saints H. PM Peak Hou Delay (s) 14.3 10.9	therefore, mitigation is S. Bus Loop Driveway / Si ur Queue (veh.) 0.0 0.0		
.3	Table 17 ind Site Access # required. Table 17: Inte Access #1 Movement NBLT NBR EBLT	t1. All turni ersection Op LOS C B A	ng movemer erations – 202 AM Peak Hor Delay (s) 20.6 10.6 0.9	23 Traffic – Kana 23 Traffic – Kana ur Queue (veh.) 1.8 0.4 0.1	LOS of C of ta Avenue LOS B B A	or better and / All Saints H. PM Peak Hou Delay (s) 14.3 10.9 0.3	therefore, mitigation is S. Bus Loop Driveway / Si ur Queue (veh.) 0.0 0.0 0.0		

It should be noted that an eastbound left turn lane at the site access was not considered for the above analysis. The additional turn lane would reduce delay to eastbound through vehicles; however, it would result in a five lane cross-section which Dillon believes is not appropriate for a Collector roadway and it prioritizes vehicle movement above the safety and comfort of other modes of transportation. Given the location of the site directly across from a high school, it is especially important to create a safe and comfortable environment for pedestrians and cyclists.

As the above analysis shows, the intersection of Kanata Avenue and the All Saints High School Bus Loop / Site Access #1 will operate well without the eastbound left turn lane. The other study area intersections are also expected to operate well and therefore no mitigation is recommended.

6.0 KANATA AVENUE SITE ACCESS DESIGN

The City of Ottawa requested a detailed evaluation of the proposed site access opposite the All Saints High School Bus Loop driveway. The following have been considered:

- Traffic volume accessing the Kanata Avenue site driveway;
- Eastbound left turn conflicts with westbound lanes;
- Kanata Avenue / GFR westbound queue potential impacts on site driveway;
- Eastbound slip around safety concern;
- Safety of cross traffic between the Site and the All-Saints Driveway; and,
- Complete street philosophy.

6.1 Kanata Avenue Site Driveway Traffic Volume

The site is anticipated to generate 35 eastbound left turns from Kanata Avenue during the AM peak hour and 18 eastbound left turns during the PM peak hour. The eastbound left turn traffic volume is relatively low. The combined eastbound left and through lane delay is 0.9 seconds per vehicle. Therefore, an eastbound left turn lane is not needed to address auto capacity or delay issues.

6.2 Kanata Avenue / GFR Westbound Queue Conflict with Site Driveway

By the 2023 horizon year, the KNL Phases 7 and 9 are anticipated to be fully built-out. The westbound traffic queue at the Kanata Avenue / GFR intersection has been calculated by Synchro to extend 28 metres from the stop bar location. As such, the traffic queues at the intersection are not anticipated to block access to the site driveway during the peak commuter hours. Therefore, westbound queuing at the intersection will not impact the site access.

6.3 Eastbound Left Turn Safety Crossing Westbound Lanes

The proposed access is located within the westbound right turn taper to GFR. Eastbound left turning traffic are required to cross the westbound through, cycling and right turn lane, and must consider traffic in the westbound left turn lane to the All Saints High School Bus Loop. Kanata Avenue provides clear sightlines in the eastbound direction at the proposed site driveway, therefore, eastbound left turn sightlines will have very good sight lines the majority of the time. The eastbound left turn sightlines will be obscured by the presence of westbound left turning vehicles; however, westbound left turn volume is very low (4 and 2 veh/h during the AM and PM peak hours, respectively), and risk of collision is low.

6.4 Safety of Cross Traffic between the Site and the All-Saints Driveway

City staff raised concern regarding vehicles traveling between the Kanata Avenue site driveway and the All Saints High School Bus Loop driveway. Given the proximity of these land uses, it is very likely that

most students would walk between the two land uses signals. Traffic volume between the school and the proposed site is expected to be very low. However, vehicles wishing to make these maneuvers will experience delays up to 28 seconds during peak hours. It is recommended that the Kanata Avenue site access is monitored over time to determine if cross traffic manifests into a collision issue. A "No Through Movement" restriction could be implemented in the northbound and southbound directions at the driveways if a safety concern manifests.

6.5 Eastbound Slip Around In Right Turn Lane

Kanata Avenue provides an eastbound right turn lane to the All Saints High School bus loop driveway, which is directly opposite the site access. City staff raised a potential concern regarding eastbound through traffic utilizing the eastbound right turn lane as a slip around, creating a conflict with westbound left-turning traffic into the school driveway.

The forecasted eastbound left turn traffic volumes (35 and 18 veh/h during the AM and PM peak hours) are low. The westbound left turns to the All Saints High School bus loop are very low (4 and 2 veh/h during the AM and PM peak hours, respectively). Queues and delays to eastbound left turn vehicles are low, anticipated to be 8 seconds per turning vehicle with queues of less than one vehicle. An eastbound through vehicle slipping around an eastbound left turning vehicle would be visible to a westbound left turning vehicle, and speeds will be low. Collision risk between westbound left turns and eastbound slip vehicles is expected to be low. It is recommended that the driveway operations are monitored and mitigations measures implemented should a collision issue manifest.

Figure 9 illustrates a potential eastbound left turn lane design with a short taper that can be implemented if a collision issue manifest.

Figure 9: Potential Eastbound Left Turn Design

6.6 Complete Street Philosophy

The City of Ottawa adopted a Complete Streets philosophy in 2015. The philosophy recognizes that street design must serve the residents that live, play, and learn within their neighbourhoods. The policy seeks to balance the quality of life for the adjacent neighbours over the movement of automobiles.

Kanata Avenue and GFR are both classified as collector roadways. In the past, these roadways have performed the function of moving cars through the corridor. There are a number of All-Way Stop controlled intersections along Kanata Avenue, indicating a history of neighbourhood concern regarding traffic volume and speed, as these intersections are now acting as traffic calming measures, in addition to providing traffic control.

The lane geometry of Kanata Avenue immediately east of the GFR intersection provides a westbound right turn lane, a cycling lane, and a through travel lane. In the eastbound direction, the roadway provides a through travel lane, a cycling lane and a right turn lane into the All Saints High School. The roadway cross-section, with the various turning lanes, is generally not in keeping with a residential collector roadway function. The turning lanes promote higher speed operation and higher traffic volumes, which are not in keeping with the residential character of the neighbourhood or the Complete Streets philosophy. Over the long term, the City should consider the operating environment of Kanata Avenue and consider designs that are more pedestrian and cycling friendly as compared to the existing wide roadway and auxiliary turn lane design. Also, the intersection of Kanata Avenue / GFR may be more appropriate as a roundabout, which is more in keeping with the Complete Street philosophy.

Kanata Avenue provides direct access to local streets, public parks, schools and commercial lands. The roadway supports high volumes of pedestrians, cyclists, and active modes users. The function of a collector roadway is to balance access and mobility, and travel speeds are intended to be kept low. As such, providing access to the site as proposed by KNL is in keeping with the Complete Street philosophy.

7.0	CONCLUSIONS AND RECOMMENDATIONS
	The subject site is located on the northeast corner of the Goulbourn Forest Road and Kanata Avenue intersection in Kanata.
	 The proposed development is anticipated to be constructed and occupied by 2018 and consists of: A total development site of 39,634 ft² retail plaza; and, Five buildings with a variety of retail land uses.
7.1	Conclusions
	 The adjacent Major Collector roadways and intersections adjacent to the site are adequate to accommodate the increased commercial development site; Sidewalks, bicycle lanes, and transit infrastructure are in place to accommodate all modes of
	 transport within the area; 3) The surrounding area is developing. The inclusion of a local retail node should increase pedestrian and cycling mode share while reducing the need for residents to drive to more regional centres; and 4) The Kanata Avenue access location is appropriate. The risk of collision at the access is low and the location is in keeping with the Complete Street philosophy.
7.2	Recommendations
	 It is recommended that the Kanata Avenue site access is monitored over time to identify any safety issues that may manifest, these include: a) cross traffic between the Site and the All Saints High School bus loop driveway manifests in a collision issue, a "No Through Movement" restriction could be implemented in the northbound and southbound directions at the driveways; and, b) an eastbound collision issue at the site driveway. As a mitigating measure, an eastbound left turn lane could be implemented by modifying the existing median, as illustrated in Figure 9. Immediate geometric modifications are not required; all intersections are expected to operate adequately to the 2023 horizon year.

Appendix A

Level of Service Definitions

LEVEL OF SERVICE ANALYSIS AT UNSIGNALIZED INTERSECTIONS⁽¹⁾

The term "level of service" implies a qualitative measure of traffic flow at an intersection. It is dependent upon the vehicle delay and vehicle queue lengths at approaches. The level of service at unsignalized intersections is often related to the delay accumulated by flows on the minor streets, caused by all other conflicting movements. The following table describes the characteristics of each level.

Level of Service	Features
А	Little or no traffic delay occurs. Approaches appear open, turning movements are easily made, and drivers have freedom of operation.
В	Short traffic delays occur. Many drivers begin to feel somewhat restricted in terms of freedom of operation.
С	Average traffic delays occur. Operations are generally stable, but drivers emerging from the minor street may experience difficulty in completing their movement. This may occasionally impact on the stability of flow on the major street.
D	Long traffic delays occur. Motorists emerging from the minor street experience significant restriction and frustration. Drivers on the major street will experience congestion and delay as drivers emerging from the minor street interfere with the major through movements.
E	Very long traffic delays occur. Operations approach the capacity of the intersection.
F	Saturation occurs, with vehicle demand exceeding the available capacity. Very long traffic delays occur.

Highway Capacity Manual - Special Report No. 209, Transportation Research Board, 1985.

(1)

LEVEL OF SERVICE DEFINITIONS

To assist in clarifying the arithmetic analysis associated with traffic engineering, it is often useful to refer to Level of Service (LOS). The term LOS implies a qualitative measure of traffic flow at an intersection. It is dependent upon vehicle delay and vehicle queue lengths at the approaches. The LOS is usually calculated in terms of the ratio between traffic volumes and approach capacity, or Volume to Capacity (V/C) ratio.

The City of Ottawa has adopted criteria that directly relate the V/C ratio of a signalized intersection to a LOS rating.

The following table describes the categories and characteristics of each level:

LOS	FEATURES	V/C RATIO
A	At this level of service, almost no signal phase is fully utilized by traffic. Very seldom does a vehicle wait longer than one red indication. The approach appears open, turning movements are easily made and drivers have freedom of operation.	0-0.60
В	At this level, an occasional signal phase is fully utilized and many phases approach full use. Many drivers begin to feel somewhat restricted within platoons of vehicles approaching the intersection.	0.61-0.70
С	At this level, the operation is stable though with more frequent fully utilized signal phases. Drivers feel more restricted and occasionally may have to wait more than one red signal indication, and queues may develop behind turning vehicles. This level is normally employed in urban intersection design.	0.71-0.80
D	At this level, the motorist experiences increasing restriction and instability of flow. There are substantial delays to approaching vehicles during short peaks within the peak period, but there are enough cycles with lower demand to permit occasional clearance of developing queues and prevent excessive backups.	0.81-0.90
E	At this level, capacity is reached. There are long queues of vehicles waiting upstream of the intersection, and delays to vehicles may extend to several signal cycles.	0.91-1.00
F	At this level, saturation occurs, with vehicle demand exceeding the available capacity.	> 1.00

Appendix B

Detailed Synchro Reports

Intersection							
Int Delay, s/veh	3.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	237	43	4	263	138	70	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	-	None		None	
Storage Length	-	150	250	-	0	60	
Veh in Median Storage, #	0	-	-	0	1	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	6	47	75	3	20	7	
Mvmt Flow	258	47	4	286	150	76	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	258	0	553	258	
Stage 1		-		-	258	-	
Stage 2	-	-		-	295	-	
Critical Hdwy	-	-	4.85	-	6.6	6.27	
Critical Hdwy Stg 1	-	-	-	-	5.6	-	
Critical Hdwy Stg 2	-	-	-	-	5.6	-	
Follow-up Hdwy	-	-	2.875	-	3.68	3.363	
Pot Cap-1 Maneuver	-		979	-	465	769	
Stage 1	-	-		-	745		
Stage 2		-		-	716	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver		-	979	-	463	769	
Mov Cap-2 Maneuver	-	-		-	544	-	
Stage 1		-		-	745	-	
Stage 2	-	-		-	713		
Approach	EB		WB		NB		

Minor Lane/Major Mvmt	NBLn11	VBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	544	769	-	-	979	-
HCM Lane V/C Ratio	0.276	0.099	-	-	0.004	-
HCM Control Delay (s)	14.1	10.2	-	-	8.7	-
HCM Lane LOS	В	В	-	-	Α	-
HCM 95th %tile Q(veh)	1.1	0.3	-	-	0	-

0.1

0

12.8 B

	•	-	+	~	*	*	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	۲	•	•	1	<u> </u>	1	
Volume (vph)	166	178	183	218	102	104	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1626	1534	1561	1441	1595	1469	
Flt Permitted	0.62	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1054	1534	1561	1441	1595	1469	
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	
Adj. Flow (vph)	208	222	229	272	128	130	
RTOR Reduction (vph)	0	0	0	120	0	97	
Lane Group Flow (vph)	208	222	229	152	128	33	
Heavy Vehicles (%)	4%	16%	14%	5%	6%	3%	
Turn Type	Perm	NA	NA	Perm	Perm	Perm	
Protected Phases		2	6				
Permitted Phases	2			6	4	4	
Actuated Green, G (s)	22.1	22.1	22.1	22.1	9.2	9.2	
Effective Green, g (s)	23.6	23.6	23.6	23.6	10.7	10.7	
Actuated g/C Ratio	0.56	0.56	0.56	0.56	0.25	0.25	
Clearance Time (s)	5.5	5.5	5.5	5.5	5.5	5.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	588	855	870	803	403	371	
v/s Ratio Prot		0.14	0.15				
v/s Ratio Perm	c0.20			0.11	c0.08	0.02	
v/c Ratio	0.35	0.26	0.26	0.19	0.32	0.09	
Uniform Delay, d1	5.1	4.8	4.8	4.6	12.8	12.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	0.2	0.2	0.1	0.5	0.1	
Delay (s)	5.5	5.0	5.0	4.7	13.3	12.2	
Level of Service	A	А	А	А	В	В	
Approach Delay (s)		5.2	4.9		12.7		
Approach LOS		А	А		В		
Intersection Summary							
HCM 2000 Control Delay			6.7	Н	CM 2000	Level of Service	Α
HCM 2000 Volume to Cap	acity ratio		0.36				
Actuated Cycle Length (s)			42.3	S	um of los	t time (s)	9.5
Intersection Capacity Utiliz	ation		51.7%	IC	U Level	of Service	Α
Analysis Period (min)			15				
0.111.0.11							

4 1 1

HCM Signalized Intersection Capacity Analysis 4: Kanata Ave & Goulbourn Forced Road

٠

Intersection Capacity U Analysis Period (min) c Critical Lane Group

Dillon Consulting Limited

HCM 2010 Roundabout 6: Goulbourn Forced Road & Badgeley Ave

HCM Control Delay, s HCM LOS

Synchro 8 Report

2017 Traffic (Base) AM Peak Hour

Dillon Consulting Limited

Synchro 8 Report

2017 Traffic (Base) AM Peak Hour

HCM 2010 TWSC	2017 Traffic (Base)
3: All Saints Bus Loop & Kanata Ave	PM Peak Hour

Intersection).2						
Int Delay, s/veh 0	J.Z						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol. veh/h	345	1	2	231	5	3	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sian Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None		None	
Storage Length	-	150	250	-	0	60	
Veh in Median Storage, #	0			0	1		
Grade, %	0		-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	1	0	0	4	0	0	
Mymt Flow	375	1	2	251	5	3	
	010		-	201		Ŭ	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	375	0	630	375	
Stage 1		-		-	375	-	
Stage 2	-	-	-	-	255	-	
Critical Hdwy	-		4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-			-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver		-	1195	-	449	676	
Stage 1	-	-	-	-	699	-	
Stage 2	-			-	792	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-		1195	-	448	676	
Mov Cap-2 Maneuver	-	-	-	-	541	-	
Stage 1					699		
Stage 2	-	-	-	-	791	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.1		11.2		
HCM LOS					В		
Minor Lane/Major Mvmt	NBLn1 NBLn2		EBR WBL	WBT			
Capacity (veh/h)	541 676		- 1195				
HCM Lane V/C Ratio	0.01 0.005	-	- 0.002	-			
HCM Control Delay (s)	11.7 10.4		- 8				
HCM Lane LOS	B B	-	- A	-			
HCM 95th %tile Q(veh)	0 0	-	- 0	-			

Intersection			
Intersection Delay, s/veh	71		
Intersection LOS	A		
IIIIel Section LOS	A		
Approach	EB	NB	SB
Entry Lanes	1	1	1
Conflicting Circle Lanes	1	1	1
Adj Approach Flow, veh/	'h 44	451	237
Demand Flow Rate, veh	/h 47	471	246
Vehicles Circulating, veh	1/h 238	33	11
Vehicles Exiting, veh/h	19	252	493
Follow-Up Headway, s	3.186	3.186	3.186
Ped Vol Crossing Leg, #	/h 0	0	0
Ped Cap Adj	1.000	1.000	1.000
Approach Delay, s/veh	4.8	8.2	5.4
Approach LOS	A	A	А
Lane	Left	Left	Left
Designated Moves	IR	IT	TR
Assumed Moves	LR LR	IT	TR
RT Channelized	LR	LI	IR
Lano Litil 1	000	1.000	1.000
	.000	1.000	1.000
Critical Headway, s 5	.193	5.193	5.193
Critical Headway, s 5 Entry Flow, veh/h	.193 47	5.193 471	5.193 246
Critical Headway, s 5 Entry Flow, veh/h Cap Entry Lane, veh/h	.193 47 891	5.193 471 1093	5.193 246 1118
Critical Headway, s 5 Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor 0	.193 47 891 .936	5.193 471 1093 0.958	5.193 246 1118 0.963
Critical Headway, s 5 Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor 0 Flow Entry, veh/h	.193 47 891 .936 44	5.193 471 1093 0.958 451	5.193 246 1118 0.963 237
Critical Headway, s 5 Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor 0 Flow Entry, veh/h Cap Entry, veh/h	47 891 936 44 834	5.193 471 1093 0.958 451 1048	5.193 246 1118 0.963 237 1076
Critical Headway, s 5 Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor 0 Flow Entry, veh/h Cap Entry, veh/h V/C Ratio 0	47 891 936 44 834 0.053	5.193 471 1093 0.958 451 1048 0.431	5.193 246 1118 0.963 237 1076 0.220
Critical Headway, s 5 Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor 0 Flow Entry, veh/h Cap Entry, veh/h V/C Ratio 0 Control Delay, s/veh	47 891 936 44 834 0.053 4.8	5.193 471 1093 0.958 451 1048 0.431 8.2	5.193 246 1118 0.963 237 1076 0.220 5.4
Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	47 891 936 44 834 0.053	5.193 471 1093 0.958 451 1048 0.431	5.193 246 1118 0.963 237 1076 0.220

HCM Signalized In 4: Kanata Ave & G					is		2017 Traf	fic (Base PM Peak Ho
	<u>•••••••</u>		+	•	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	1	1	†	1	1	1		
Volume (vph)	63	144	137	99	202	194		
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1642	1762	1712	1469	1658	1469		
Flt Permitted	0.65	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	1122	1762	1712	1469	1658	1469		
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80		
Adj. Flow (vph)	79	180	171	124	252	242		
RTOR Reduction (vph)	0	0	0	74	0	146		
Lane Group Flow (vph)	79	180	171	50	252	96		
Heavy Vehicles (%)	3%	1%	4%	3%	2%	3%		
Turn Type	Perm	NA	NA	Perm	Perm	Perm		
Protected Phases		2	6					
Permitted Phases	2			6	4	4		
Actuated Green, G (s)	14.7	14.7	14.7	14.7	14.3	14.3		
Effective Green, g (s)	16.2	16.2	16.2	16.2	15.8	15.8		
Actuated g/C Ratio	0.40	0.40	0.40	0.40	0.40	0.40		
Clearance Time (s)	5.5	5.5	5.5	5.5	5.5	5.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	454	713	693	594	654	580		
v/s Ratio Prot		c0.10	0.10		0.45			
v/s Ratio Perm	0.07			0.03	c0.15	0.07		
v/c Ratio	0.17	0.25	0.25	0.08	0.39	0.16		
Uniform Delay, d1	7.6	7.9	7.9	7.3	8.6	7.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2								
Delay (s) Level of Service	7.8 A	8.1 A	8.1 A	7.4 A	9.0 A	8.0 A		
Approach Delay (s)	A	A 8.0	7.8	A	8.5	A		
Approach LOS		8.0 A	7.8 A		8.5 A			
••		~	~		л			
Intersection Summary								
HCM 2000 Control Delay			8.2	H	CM 2000	Level of Service	A	
HCM 2000 Volume to Capa	acity ratio		0.33					
Actuated Cycle Length (s)			40.0		um of los		9.5	
Intersection Capacity Utiliza Analysis Period (min)	ation		55.1% 15	IC	CU Level (of Service	В	

HCM 2010 Roundabout
6: Goulbourn Forced Road & Badgeley Ave

Intersection LOS	A					
Approach		EB	NB		SB	
Entry Lanes		1	1		1	
Conflicting Circle Lane	es	1	1		1	
Adj Approach Flow, ve	:h/h	11	189		488	
Demand Flow Rate, w	eh/h	11	192		497	
Vehicles Circulating, v	eh/h	468	7		18	
Vehicles Exiting, veh/h		47	472		181	
Follow-Up Headway, s		3.186	3.186		3.186	
Ped Vol Crossing Leg,	#/h	0	0		0	
Ped Cap Adj		1.000	1.000		1.000	
Approach Delay, s/veh	1	5.2	4.8		8.2	
Approach LOS		Α	A		Α	
Lane	Left		Left	Left		
Designated Moves	LR		LT	TR		
Assumed Moves	LR		LT	TR		
RT Channelized						
Lane Util	1.000		1.000	1.000		
Critical Headway, s	5.193		5.193	5.193		
Entry Flow, veh/h	11		192	497		
Cap Entry Lane, veh/h	708		1122	1110		
Entry HV Adj Factor	1.000		0.982	0.982		
Flow Entry, veh/h	11		189	488		
Cap Entry, veh/h	708		1102	1089		
V/C Ratio	0.016		0.171	0.448		
Control Delay, s/veh	5.2		4.8	8.2		
				٨		
LOS	A		A	A		

Dillon Consulting Limited

Synchro 8 Report

4: Kanata Ave & G								
	٦	→	+	*	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	<u>۲</u>	+	•	1	<u>۲</u>	1		
Volume (vph)	215	219	233	250	142	179		
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1626	1548	1589	1441	1610	1483		
Flt Permitted	0.58	1.00	1.00	1.00	0.95	1.00		
Satd, Flow (perm)	986	1548	1589	1441	1610	1483		
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80		
Adj. Flow (vph)	269	274	291	312	178	224		
RTOR Reduction (vph)	207	0	271	146	0	157		
Lane Group Flow (vph)	269	274	291	140	178	67		
Heavy Vehicles (%)	4%	15%	12%	5%	5%	2%		
Turn Type	Perm	NA	NA	Perm	Perm	Perm		
Protected Phases	reilli	2	6	reiiii	Pellili	Pelli		
Permitted Phases	2	2	0	6	4	4		
Actuated Green, G (s)	23.6	23.6	23.6	23.6	12.5	12.5		
Effective Green, g (s)	25.0	25.0	25.0	25.0	12.5	12.5		
Actuated q/C Ratio	0.53	0.53	0.53	0.53	0.30	0.30		
Clearance Time (s)	5.5	5.5	5.5	5.5	5.5	5.5		
	5.5 3.0		5.5 3.0	3.0	3.0	3.0		
Vehicle Extension (s)		3.0						
Lane Grp Cap (vph)	525	824	846	767	478	440		
v/s Ratio Prot	.0.07	0.18	0.18	0.10	.0.11	0.04		
v/s Ratio Perm	c0.27			0.12	c0.11	0.04		
v/c Ratio	0.51	0.33	0.34	0.22	0.37	0.15		
Uniform Delay, d1	7.1	6.2	6.3	5.8	13.1	12.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.8	0.2	0.2	0.1	0.5	0.2		
Delay (s)	7.9	6.5	6.5	6.0	13.6	12.3		
Level of Service	А	A	А	A	В	В		
Approach Delay (s)		7.2	6.2		12.9			
Approach LOS		A	A		В			
Intersection Summary								
HCM 2000 Control Delay			8.3	Н	CM 2000	Level of Service	e A	
HCM 2000 Volume to Capa	icity ratio		0.48					
Actuated Cycle Length (s)	1		47.1	S	um of los	t time (s)	9.5	
ntersection Capacity Utilization	ation		51.7%	IC	U Level	of Service	A	
Analysis Period (min)			15					

Dillon Consulting Limited

Synchro 8 Report

HCM 2010 TWSC	2023 Total Traffic
3: All Saints Bus Loop/Site Access #1 & Kanata Ave	AM Peak Hou
Intersection	

Int Delay, s/veh	5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Vol, veh/h	35	283	43	4	312	56	138	0	70	56	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Sto
RT Channelized			None		-	None			None			Non
Storage Length	-	-	150	250	-	-	-	-	60	-	-	6
Veh in Median Storage, #		0	-	-	0	-	-	1	-	-	1	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	9
Heavy Vehicles, %	0	7	47	75	4	0	20	0	7	0	0	(
Mvmt Flow	38	308	47	4	339	61	150	0	76	61	0	3
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	400	0	0	308	0	0	762	793	308	762	762	370
Stage 1			-		-	-	384	384		378	378	
Stage 2	-	-	-	-	-	-	378	409	-	384	384	
Critical Hdwy	4.1		-	4.85	-	-	7.3	6.5	6.27	7.1	6.5	6.
Critical Hdwy Stg 1	-	-	-	-	-	-	6.3	5.5	-	6.1	5.5	
Critical Hdwy Stg 2			-		-	-	6.3	5.5	-	6.1	5.5	
Follow-up Hdwy	2.2	-	-	2.875	-	-	3.68	4	3.363	3.5	4	3.3
Pot Cap-1 Maneuver	1170		-	933	-	-	300	323	720	324	337	680
Stage 1	-	-	-	-	-	-	604	615	-	648	619	
Stage 2			-		-	-	609	600		643	615	
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1170		-	933	-	-	274	308	720	280	322	680
Mov Cap-2 Maneuver	-	-	-	-	-	-	379	402	-	392	421	
Stage 1			-		-	-	579	590		621	616	
Stage 2	-	-	-	-	-	-	574	597	-	551	590	
Approach	FB			WB			NB			SB		
HCM Control Delay, s	0.8			0.1			17.2			13.9		
HCM LOS	0.0			0.1			C			В		
Minor Lane/Major Mvmt	NBLn1	VBLn2	EBL	EBT EBR	WBL	WBT	WBR SBLn1	SBLn2				
Capacity (veh/h)	379	720	1170		933	-	- 392	680				
HCM Lane V/C Ratio	0.396	0.106	0.033		0.005	-	- 0.155	0.053				
HCM Control Delay (s)	20.6	10.6	8.2	0 -	8.9		- 15.9	10.6				
HCM Lane LOS	С	В	А	Α-	A	-	- C	В				

Dillon Consulting Limited

Intersection							
Int Delay, s/veh	1						
-							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Vol. veh/h	20	21	452	13	36	301	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None	-	None		None	
Storage Length	0	60	-	-	250	-	
Veh in Median Storage, #	1	-	0	-		0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	0	0	4	0	0	3	
Mvmt Flow	22	23	491	14	39	327	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	903	498	0	0	505	0	
Stage 1	498			-		-	
Stage 2	405	-	-	-	-	-	
Critical Hdwy	6.4	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	310	576	-	-	1070	-	
Stage 1	615	-	-	-	-	-	
Stage 2	678	-	-		-		
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	299	576	-		1070	-	
Mov Cap-2 Maneuver	425	-	-	-	-	-	
Stage 1	615						
Stage 2	653	-	-	-	-	-	
	11.00						

Approach	WB					NB	SB
HCM Control Delay, s	12.7					0	0.9
HCM LOS	В						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)		-	425	576	1070	-	
HCM Lane V/C Ratio	-	-	0.051	0.04	0.037	-	
HCM Control Delay (s)	-	-	13.9	11.5	8.5	-	
HCM Lane LOS	-	-	В	В	Α	-	
HCM 95th %tile Q(veh)	-	-	0.2	0.1	0.1	-	

	-	-	13.7	11.J	0.0	-		
ICM Lane LOS	-	-	В	В	Α	-		
ICM 95th %tile Q(veh)	-	•	0.2	0.1	0.1	-		

Synchro 8 Report

HCM Signalized In 4: Kanata Ave & G					15		2023 Total Traffi PM Peak Hou
	٨	-	+	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
ane Configurations	5	1	1	1	ň	1	
/olume (vph)	129	185	174	152	244	258	
deal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1658	1762	1712	1483	1658	1483	
Flt Permitted	0.62	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1085	1762	1712	1483	1658	1483	
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	
Adj. Flow (vph)	161	231	218	190	305	322	
RTOR Reduction (vph)	0	0	0	98	0	212	
ane Group Flow (vph)	161	231	218	92	305	110	
Heavy Vehicles (%)	2%	1%	4%	2%	2%	2%	
Furn Type	Perm	NA	NA	Perm	Perm	Perm	
Protected Phases		2	6				
Permitted Phases	2			6	4	4	
Actuated Green, G (s)	20.7	20.7	20.7	20.7	14.2	14.2	
Effective Green, g (s)	22.2	22.2	22.2	22.2	15.7	15.7	
Actuated g/C Ratio	0.48	0.48	0.48	0.48	0.34	0.34	
Clearance Time (s)	5.5	5.5	5.5	5.5	5.5	5.5	
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
ane Grp Cap (vph)	524	852	828	717	567	507	
//s Ratio Prot		0.13	0.13				
//s Ratio Perm	c0.15			0.06	c0.18	0.07	
//c Ratio	0.31	0.27	0.26	0.13	0.54	0.22	
Jniform Delay, d1	7.2	7.0	7.0	6.5	12.2	10.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
ncremental Delay, d2	0.3	0.2	0.2	0.1	1.0	0.2	
Delay (s)	7.5	7.2	7.2	6.6	13.2	10.9	
evel of Service	A	A	A	A	В	В	
Approach Delay (s)		7.3	6.9		12.0		
Approach LOS		A	A		В		
ntersection Summary							
HCM 2000 Control Delay			9.3	Н	CM 2000	Level of Service	A
HCM 2000 Volume to Capa	acity ratio		0.42				
Actuated Cycle Length (s)			45.9		um of los		9.5
ntersection Capacity Utiliz	ation		57.6%	IC	U Level	of Service	В
Analysis Period (min)			15				

HCM 2010 TWSC	
3: All Saints Bus Loop/Site Access #1 & Ka	nata Ave

2023 Total Traffic PM Peak Hour

Intersection Int Delay, s/veh	1.2													
int Delay, siven	1.2													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	N	BL	NBT	NBR	SBL	SBT	SB
Vol. veh/h	18	411	1		2	300	29		5	0	3	34	0	
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0	0	0	
Sign Control	Free	Free	Free		Free	Free	Free	St	top	Stop	Stop	Stop	Stop	Sto
RT Channelized		-	None				None				None			Nor
Storage Length		-	150		250	-	-		-		60	-	-	
Veh in Median Storage, #		0				0				1		-	1	
Grade, %		0	-		-	0				0	-	-	0	
Peak Hour Factor	92	92	92		92	92	92		92	92	92	92	92	
Heavy Vehicles, %	0	1	0		0	3	0		0	0	0	0	0	
Mymt Flow	20	447	1		2	326	32		5	0	3	37	0	
www.criow	20	447			2	520	52		5	0	J	57	Ŭ	
Major/Minor	Major1			М	ajor2			Mine	or1			Minor2		
Conflicting Flow All	358	0	0		447	0	0	8	332	848	447	832	832	3
Stage 1			-		-		-	4	86	486	-	346	346	
Stage 2		-	-		-		-	3	346	362	-	486	486	
Critical Hdwy	4.1		-		4.1				7.1	6.5	6.2	7.1	6.5	6
Critical Hdwy Stg 1		-	-		-		-	(6.1	5.5	-	6.1	5.5	
Critical Hdwy Stg 2			-						6.1	5.5	-	6.1	5.5	
Follow-up Hdwy	2.2	-	-		2.2		-		3.5	4	3.3	3.5	4	3
Pot Cap-1 Maneuver	1212	-			1124			2	91	301	616	291	307	70
Stage 1		-	-		-		-	5	666	554	-	674	639	
Stage 2		-						6	74	629	-	566	554	
Platoon blocked. %			-					-						
Mov Cap-1 Maneuver	1212		-		1124			2	76	294	616	284	300	70
Mov Cap-2 Maneuver		-						3	94	395	-	401	402	
Stage 1									54	542		659	638	
Stage 2		-	-		-	-			50	628	-	551	542	
5														
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0.3				0				13			13.1		
HCM LOS									В			В		
Minor Lane/Major Mvmt	NBLn1		EBL		EBR	WBL		WBR SBL						
Capacity (veh/h)	394	616	1212	-	-				01	705				
HCM Lane V/C Ratio	0.014			-	-	0.002	-	- 0.0						
HCM Control Delay (s)	14.3	10.9	8	0	-	8.2		- 14	4.9	10.3				
HCM Lane LOS	В	В	A	Α	-	A	-	-	В	В				
		0	0	-		0			0.3	0.1				
HCM 95th %tile Q(veh)	0	0	0	-	-	0	-	- (0.3	U. I				

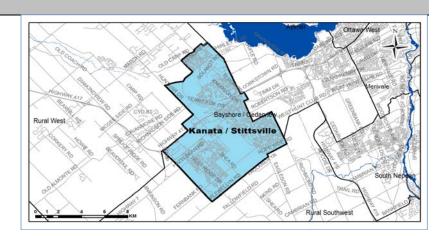
Dillon Consulting Limited

Synchro 8 Report

HCM 2010 TWSC	2023 Total Traffic
5: Goulbourn Forced Road & Site Acces #2	PM Peak Hour

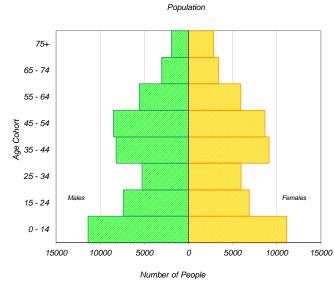
Intersection				_				
Int Delay, s/veh	0.5							
···· = -··· j / -· · · ··								
Movement	WBL	WBR			NBT	NBR	SBL	SBT
Vol. veh/h	12	12			274	8	18	490
Conflicting Peds, #/hr	0	0			0	0	0	470
Sian Control	Stop	Stop			Free	Free		Free
RT Channelized	5100	None			-	None		None
Storage Length	0	60				None	250	-
Veh in Median Storage,		-			0		200	0
Grade, %					0			0
Peak Hour Factor	92	92			92	92	92	92
Heavy Vehicles, %	0	0			2	0	0	2
Mymt Flow	13	13			298	9	20	533
Martin Battana	LP A						Matura	
Major/Minor	Minor1 874	302		N	Major1	0	Major2 307	0
Conflicting Flow All	874				0	-		0
Stage 1	302 572							
Stage 2	572	6.2					4.1	
Critical Hdwy	6.4 5.4	6.2					4.1	-
Critical Hdwy Stg 1	5.4					-		
Critical Hdwy Stg 2	5.4	3.3					2.2	
Follow-up Hdwy Pot Cap-1 Maneuver	3.5	3.3					1265	-
	323	742					1205	
Stage 1 Stage 2	7 55 569						-	-
Platoon blocked. %	204							
Mov Cap-1 Maneuver	318	742					1265	-
Mov Cap-1 Maneuver	432	742					1205	
Stage 1	432				-			-
Stage 2	755 560							
Stage Z	200							
Approach	WB				NB		SB	
HCM Control Delay, s	11.8				0		0.3	
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1V	VBLn2	SBL	SBT			
Capacity (veh/h)	-	- 432	742	1265	-			
HCM Lane V/C Ratio	-	- 0.03	0.018	0.015	-			
HCM Control Delay (s)	-	- 13.6	9.9	7.9	-			
HCM Lane LOS	-	- B	A	Α	-			
HCM 95th %tile Q(veh)	-	- 0.1	0.1	0	-			

Appendix C

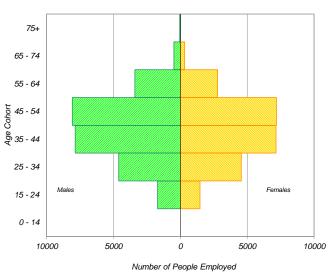

TRANS 2011 O-D Survey Results for Kanata-Stittsville

Demographic Characteristics

Population Employed Population Households	105,210 49,640 38.010	Actively Tra Number of V Area (km ²)		83,460 64,540 82,6
riousenolus	38,010	Alea (kiii)		82.0
Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		24,670	19,590	44,260
Part Time Employed		1,540	3,840	5,380
Student		13,630	13,410	27,040
Retiree		6,480	8,350	14,820
Unemployed		850	940	1,790
Homemaker		160	3,310	3,470
Other		350	1,010	1,360
Total:		47,690	50,440	98,120
Traveller Characteristics		Male	Female	Total
Transit Pass Holders			6,920	
		5,940	,	12,860
Licensed Drivers		36,280	36,790	73,070
Telecommuters		200	380	580
Trips made by residents		135,300	143,330	278,630



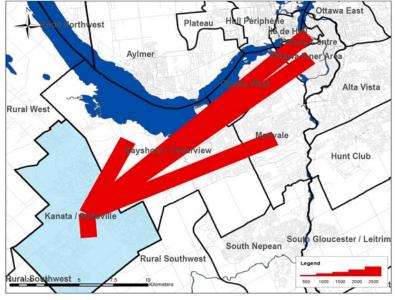
Household Size		
1 person	5,810	15%
2 persons	11,660	31%
3 persons	7,490	20%
4 persons	8,890	23%
5+ persons	4,160	11%
Total:	38,010	100%


Households by Vehicle Availability				
0 vehicles	3%			
1 vehicle	14,090	37%		
2 vehicles	19,110	50%		
3 vehicles	3,000	8%		
4+ vehicles	770	2%		
Total:	38,010	100%		

Households by Dwelling 1	Гуре			
Single-detached 21,610				
Semi-detached	3,890	10%		
Townhouse	10,550	28%		
Apartment/Condo	1,960	5%		
Total:	38,010	100%		

Selected Indicators	
Daily Trips per Person (age 5+)	2.84
Vehicles per Person	0.61
Number of Persons per Household	2.77
Daily Trips per Household	7.33
Vehicles per Household	1.70
Workers per Household	1.31
Population Density (Pop/km2)	1270

Employed Population


* In 2005 data was only collected for household members aged 11^{*} therefore these results cannot be compared to the 2011 data.

Travel Patterns

Top Five Destinations of Trips from Kanata - Stittsville

AM Peak Period

	Summary of Trips to and	from Kanata - S	Stittsville		
	AM Peak Period (6:30 - 8:59)	Destinations of	(Drigins of	
		Trips From		Trips To	
1	Districts	District	% Total	District	% Total
	Ottawa Centre	4,560	8%	140	0%
	Ottawa Inner Area	3,350	6%	970	2%
	Ottawa East	660	1%	260	1%
	Beacon Hill	280	0%	170	0%
	Alta Vista	1,810	3%	660	1%
	Hunt Club	490	1%	420	1%
	Merivale	3,410	6%	1,200	3%
	Ottawa West	2,020	4%	840	2%
	Bayshore / Cedarview	5,010	9%	2,420	5%
	Orléans	290	1%	500	1%
	Rural East	100	0%	30	0%
	Rural Southeast	50	0%	260	1%
	South Gloucester / Leitrim	60	0%	140	0%
	South Nepean	690	1%	1,800	4%
	Rural Southwest	1,130	2%	1,850	4%
	Kanata / Stittsvile	30,360	54%	30,360	66%
	Rural West	1,050	2%	3,250	7%
	Île de Hull	670		30	0%
	Hull Périphérie	160	0%	30	0%
	Plateau	100	0%	230	0%
	Aylmer	0	0%	190	0%
	Rural Northwest	20		60	0%
	Pointe Gatineau	20	0%	80	0%
	Gatineau Est	0		60	0%
1	Rural Northeast	30		50	0%
	Buckingham / Masson-Angers	30	0%	10	0%
	Ontario Sub-Total:	55,320	98%	45,270	98%
	Québec Sub-Total:	1,030	2%	740	2%
	Total:	56,350	100%	46,010	100%

Trips by Trip Purpose

24 Hours	From District	To District		Within District		
Work or related	27,180	29%	17,020	18%	14,550	9%
School	7,070	7%	2,500	3%	15,110	9%
Shopping	6,070	6%	9,150	10%	22,480	14%
Leisure	8,450	9%	10,590	11%	17,090	11%
Medical	2,520	3%	1,170	1%	2,660	2%
Pick-up / drive passenger	6,570	7%	5,470	6%	15,190	9%
Return Home	33,610	35%	45,620	48%	65,770	41%
Other	3,560	4%	3,590	4%	8,440	5%
Total:	95,030	100%	95,110	100%	161,290	100%
AM Peak (06:30 - 08:59)	From District	-	o District	14/3	thin District	
Work or related	18,030	69%	11,020	70%	7,430	24%
School	4,890	19%	2,280	15%	11,740	39%
Shopping	170	1%	320	2%	760	3%
Leisure	340	1%	400	3%	780	3%
Medical	330	1%	230	1%	350	1%
Pick-up / drive passenger	1,260	5%	580	4%	4,760	16%
Return Home	290	1%	380	2%	1,980	7%
Other	670	3%	430	3%	2,560	8%
Total:	25,980	100%	15,640	100%	30,360	100%
PM Peak (15:30 - 17:59)	From District	1	To District Within District			
Work or related	390	2%	350	1%	930	2%
School	370	2%	0	0%	90	0%
Shopping	1,030	5%	1,910	7%	5,100	14%
Leisure	2,140	11%	3,080	11%	4,130	11%
Medical	230	1%	180	1%	400	1%
Pick-up / drive passenger	1,980	10%	1,980	7%	3,410	9%
Return Home	12,130	64%	20,550	71%	21,560	58%
Other	680	4%	860	3%	1,850	5%
Total:	18,950	100%	28,910	100%	37,470	100%
Peak Period (%)	Total:	9	6 of 24 Hours	Within District (%)		:t (%)
24 Hours	351,430				46%	
AM Peak Period	71,980		20%		42%	
PM Peak Period	85,330		24%		44%	

Trips by Primary Travel Mode

24 Hours	From District		To District	W	ithin District	
Auto Driver	63,470	67%	63,830	67%	92,190	57%
Auto Passenger	15,220	16%	14,920	16%	31,880	20%
Transit	12,200	13%	12,270	13%	4,050	3%
Bicycle	360	0%	410	0%	960	1%
Walk	40	0%	50	0%	21,080	13%
Other	3,730	4%	3,660	4%	11,130	7%
Total:	95,020	100%	95,140	100%	161,290	100%
AM Peak (06:30 - 08:59)	From District		To District	Wi	ithin District	
Auto Driver	15,360	59%	11,530	74%	13,630	45%
Auto Passenger	2,450	9%	1,160	7%	5,050	17%
Transit	6,230	24%	1,290	8%	1,210	4%
Bicycle	30	0%	80	1%	220	1%
Walk	0	0%	40	0%	5,730	19%
Other	1,900	7%	1,560	10%	4,510	15%
Total:	25,970	100%	15,660	100%	30,350	100%
PM Peak (15:30 - 17:59)	From District		To District	Wi	ithin District	
Auto Driver	13,850	73%	17,660	61%	21,240	57%
Auto Passenger	3,240	17%	4,270	15%	8,570	23%
Transit	1,270	7%	5,980	21%	670	2%
Bicycle	40	0%	100	0%	260	1%
Walk	40	0%	0	0%	4,570	12%
Other	520	3%	910	3%	2,160	6%
Total:	18,960	100%	28,920	100%	37,470	100%
Avg Vehicle Occupancy	From District		To District	W	ithin District	
24 Hours	1.24		1.23		1.35	
AM Peak Period	1.16		1.10		1.37	
PM Peak Period	1.23		1.24		1.40	
Transit Modal Split	From District		To District	Wi	ithin District	
24 Hours	13%		13%		3%	
AM Peak Period	26%		9%		6%	
PM Peak Period	7%		21%		2%	