SERVICING & STORMWATER MANAGEMENT REPORT MICROTEL INN & SUITES

 Project No.:
 CP-17-0199

 City File No.:
 D07-12-17-0158

Prepared for:

MasterBUILT Hotels Ltd. c/o ACTIVAR 2-107 Fourth Avenue Ottawa, ON K1S 2L1

Prepared by:

McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, ON K0A 1L0

May 9, 2018

MCINTOSH PERRY

TABLE OF CONTENTS

1.0	PROJ	ECT DESCRIPTION	1			
1.1	Pur	pose	1			
1.2	Site	Description	1			
2.0	BACK	ROUND STUDIES	2			
3.0	PRE-C	CONSULTATION SUMMARY	3			
4.0	EXIST	ING SERVICES	3			
4.1	Wa	ter Servicing	3			
4.2	San	itary Sewer	3			
4.3	Stor	rm Sewer	3			
5.0	PROP	OSED SERVICING	4			
5.1	Wa	ter Servicing	4			
5.2	San	itary Sewer	5			
5.3	Stor	rm Sewer	6			
6.0	STOR	MWATER MANAGEMENT	7			
6.1	Des	ign Criteria and Methodology	7			
6.2	Run	off Calculations	7			
6	.2.1	Pre-Development Drainage	8			
6	.2.2	Post-Development Drainage	8			
6.3	Qua	antity Control	9			
6.4	Quo	ality Control1	1			
6.5	Soa	kaway Pit1.	1			
1	1.1.1 Soakaway Pit Design		1			
1	.1.2	Storage Configuration	2			
1	.1.3	Maintenance Design Parameters1	3			
7.0	SEDIN	IENT & EROSION CONTROL	3			
8.0	SUM	MARY	4			
9.0	RECO	MMENDATION1	5			
 6.2.1 Pre-Development Drainage						

LIST OF FIGURES

Figure 1: Key Map: 340 Huntmar Drive, Ottawa2

LIST OF TABLES

Table 1: Water Demands	4
Table 2: Pre-Development Runoff Summary	8
Table 3: Post-Development Runoff Summary	8
Table 4: Allowable Release Rate Summary	9
Table 5: Post-Development Restricted Runoff Summary	. 10
Table 6: Storage Summary	. 10
Table 7: Soakaway Pit - MOECC Requirements	. 12

APPENDICES

APPENDIX A: Background Documents
APPENDIX B: City of Ottawa Pre-Consultation Notes
APPENDIX C: Watermain Flow and Fire Calculations
APPENDIX D: Sanitary Sewer Calculation
APPENDIX E: Pre-Development Drainage Plan
APPENDIX F: Post-Development Drainage Plan
APPENDIX G: Stormwater Management Calculations
APPENDIX H: City of Ottawa Design Checklist
APPENDIX I: Design Brief - Arcadia Commercial by IBI Group

1.0 PROJECT DESCRIPTION

1.1 Purpose

McIntosh Perry (MP) has been retained by Activar c/o Microtel Inn and Suites by Wyndham to prepare this Servicing and Stormwater Management Report in support of the Site Plan Control process for the proposed Microtel Inn & Suites, located at 340 Huntmar Drive within the City of Ottawa (City File No. D07-12-17-0158).

The main purpose of this report is to present a servicing design for the development in accordance with the recommendations and guidelines provided by the City of Ottawa (City), the Mississippi Valley Conservation Authority (MVCA), the Ministry of the Environment and Climate Change (MOECC) and the Ministry of Transportation (MTO). This report will address the water, sanitary and storm sewer servicing for the development, ensuring that existing and available services will adequately service the proposed development.

This report should be read in conjunction with the following drawings:

- CP-17-0199, C101 Site Grading and Drainage Plan,
- CP-17-0199, C102 Site Servicing Plan, and
- CP-17-0199, C103 Sediment & Erosion Control Plan.

1.2 Site Description

The subject property is located in the City of Ottawa within Ward 4-Kanata North. The forms part of the Kanata West Concept Plan Lands and is a part of the Arcadia Commercial Development. See Figure 1 - Site Location from the *Design Brief – Arcadia Commercial* by IBI Group in Appendix 'A' of this report for more details.

The property is part of Block 1 on registered plan 4M-1563. The subject property has been subdivided from the Arcadia Commercial Development (Block 1) as part of a severance application. The subject property is described as Parts 1-3 on registered plan 4R-30733. See Appendix 'A' of this report for copies of the registered plans. The site has an area of approximately 0.64ha. It is currently undeveloped and consists mostly of grass and vegetation. The site is bound by Huntmar Drive to the west, Country Glen Way to the east and Feedmill Creek/undeveloped land to the south. See *Figure 1 - Key Map: 340 Huntmar Drive, Ottawa*.

The subject property is a severed parcel that was previously part of an approved Site Plan proposal for the Arcadia Commercial Development. The Site Plan approval was completed for City File No.: D07-12-14-0014.

The proposed development consists of a standalone 1,470m² hotel building. Parking and drive aisles will be provided throughout the site along with landscaping. There will be two site entrances to both Country Glen Way and to a proposed internal access road (by others). See drawing *A1* - *Site Plan* by Dredge Leahy Architects Inc. within Appendix 'A' of this report for more details.

Figure 1 - Key Map: 340 Huntmar Drive, Ottawa

2.0 BACKROUND STUDIES

Background studies that have been completed for the proposed site include City of Ottawa as-built drawings, a topographical survey, a geotechnical report and a Phase I & II Environmental Site Assessment (ESA).

As-built drawings of existing services within the vicinity of the proposed site were reviewed in order to determine accurate servicing and stormwater management schemes for the site.

A topographic survey of the site was completed by McIntosh Perry Surveying Inc.

The following reports have previously been completed and are available under separate cover:

- Kanata West Master Servicing Study completed by Stantec/Cumming Cockburn Ltd./IBI Group, dated June 2006.
- Phase I Environment Site Assessment 370 Huntmar Drive completed by Paterson Group Inc., dated October 24th, 2013.
- Arcadia Retail Development Transportation Impact Study completed by Delcan, dated November 2013.
- Environmental Impact Statement Minto Arcadia Commercial Development completed by Kilgour & Associates Ltd., dated May 21st, 2014.
- Geotechnical Investigation 370 Huntmar Drive completed by Paterson Group Inc., dated June 26th, 2014.
- Design Brief Arcadia Commercial 370 Huntmar Drive completed by IBI Group, dated October 2014.

The following MOECC Environmental Compliance Application Approvals have been completed for the Arcadia Commercial development and existing stormwater management pond are available in Appendix 'A':

- Environmental Compliance Approval Number: 1359-8XNNKL Arcadia Development Phase 1 Stormwater Management Pond
- Environmental Compliance Approval Number: 5440-9W3SZT Country Glen Way Ward 4 Kanata North - Storm/Sanitary Sewer Country Glen Way

3.0 PRE-CONSULTATION SUMMARY

A pre-consultation meeting was conducted on June 16th, 2017 regarding the proposed site. The notes, including specific design parameters from the City of Ottawa, can be found in Appendix 'B'.

4.0 EXISTING SERVICES

The proposed site will connect to existing services that were constructed as part of the Arcadia Commercial Development. An as-built drawing for Country Glen Way and Arcadia Commercial Development internal access road have been included within the appendix for reference.

See drawing *C-100 - Site Servicing Plan* and drawing *C-101 - Plan and Profile Country Glen Way* by IBI Group in Appendix 'A' of this report for more details.

4.1 Water Servicing

The Arcadia Commercial Development access road located along the northern property line of the proposed site has an existing 200mm diameter watermain including valves and hydrants. There is an existing 200mm diameter service stub for the proposed site. Country Glen Way has an existing 300mm diameter watermain including valve chambers and hydrants. No connection to this main is proposed.

4.2 Sanitary Sewer

The Arcadia Commercial Development access road has an existing 250mm diameter sanitary sewer. There is an existing 250mm diameter service stub extending from EX MH212A for the proposed site. Country Glen Way has a 300mm diameter trunk sanitary sewer servicing the Arcadia Commercial Development. The proposed site will flow to this sewer, however the connection will be made via the access road.

4.3 Storm Sewer

The Arcadia Commercial Development access road has an existing storm sewer network ranging in size from 600mm diameter to 975 mm diameter. There is an existing 375mm diameter service stub extending from EX MH212 for the proposed site. Country Glen Way has an existing 1350mm diameter trunk storm sewer servicing for the Arcadia Commercial Development. There is an existing 375mm diameter service stub extending from EX MH205 for the proposed site.

5.0 PROPOSED SERVICING

5.1 Water Servicing

A new 200mm PVC diameter water service will be connected to the existing 200mm diameter stub within the Arcadia Commercial Development internal access road. The water service will tee into the 200mm watermain (200x150mm diameter) and be extended to service the proposed hotel. A private hydrant will be located on a curb island across from the entrance to the hotel.

The proposed building will be equipped with a sprinkler system for fire protection. The required fire protection from the Ontario Building Code (OBC) is 9,000 L/min (See Appendix 'C' for calculation). The required fire protection from the Fire Underwriters Survey (FUS) is 11,000 L/min (provided for information purposes only).

The water demands for the proposed building have been calculated to adhere to the *Ottawa Design Guidelines* – *Water Distribution* manual and can be found in Appendix 'C'. The results have been summarized below:

Water Demand Rate (Hotel)	225 L/(bed-space/d)
Suites	108
Average Day Demand (L/s)	0.28
Maximum Daily Demand (L/s)	0.42
Peak Hourly Demand (L/s)	0.76
FUS Fire Flow Requirement (L/s)	183.33
Max Day + Fire Flow (L/s)	183.98

Table 1: Water Demands

A water model was previously competed for the Arcadia Commercial Development by IBI Group. The water demands assigned for the site (AC180 (Blks 100,200)) were calculated as follows: the average and maximum daily demands are 0.03 L/s and 0.04 L/s respectively. The peak hourly demand was calculated as 0.08 L/s and a fire demand of 183.33 L/s. See *Design Brief – Arcadia Commercial* by IBI Group in Appendix 'I' of this report for more details. As per correspondence with IBI Group it has been confirmed that a watermain loop is not required to service the hotel on an interim basis (prior to full buildout of the development). See Appendix 'C' for correspondence.

Boundary conditions have been provided by the City of Ottawa for the current conditions and are available in Appendix 'C'. The subject site is located in pressure zone 1W. A water model was completed using Bentley's WaterCAD based on the interim conditions of the Arcadia Commercial Development. The results determined that the proposed 200mm/150mm watermain can adequately service the proposed development and provide sufficient fire flow. A pressure reducing valve is required for the site. Refer to drawing for more details. The results are available in Appendix 'C' of this report.

5.2 Sanitary Sewer

A new 200 mm diameter gravity sanitary service will be connected to the existing 250 mm diameter service stub within the internal access road for the Arcadia Commercial Development. Two sanitary manholes will be installed to service the site. A maintenance manhole (MH2A) will be installed just inside the property line as per the *City of Ottawa – Sewer Design Guidelines*.

A sanitary sewer design was previously completed for the Arcadia Commercial Development. See *Design Brief* – *Arcadia Commercial* by IBI Group in Appendix 'I' of this report for more details. Sanitary flows from the building drain to the connection on the internal access road for the Arcadia Commercial Development then to the sanitary sewer within Country Glen Way. From there, the flows are directed down Campeau Drive to Didsbury Road. The sanitary sewer within Didsbury Road then outlets to the Signature Ridge Pump Station. As per the IBI design brief the Signature Ridge Pump Station was upgraded to accommodate the Arcadia Commercial Development, including the subject site.

As noted within the IBI design Brief, the subject property falls within portions of drainage areas BLK200, BLK100, 213A, 214A and 205C. A flow of 0.76 L/s was calculated for the subject property. See Appendix 'D' for the existing sanitary design sheet and drainage area plan highlighting the specific site area and relative sanitary sewers.

The subject site is proposed to be a Microtel Inn & Suites hotel. Within the building there are a total 108 rooms along with a breakfast area and swimming pool. Based on Ontario Building Code (OBC) the suggested occupancy for the building is 216. The peak design flows for the proposed building were calculated using criteria from the *City of Ottawa – Sewer Design Guidelines, October 2012*. The proposed site (0.64ha) will generate a flow of 0.986 L/s, see the *Sanitary Flow Calculation* and *Sanitary Sewer Design Sheet* in Appendix 'D' for more details.

It is acknowledged that, from time to time, the indoor swimming pool within proposed hotel will require backwashing/flushing through routine maintenance periods. The discharge will be permitted at a determined controlled rate as determined by the Mechanical Engineer. Correspondence relating to the discharge rate can be found in Appendix 'C'. The pool will only be permitted to discharge backwash to the sanitary sewer system during off-peak hours (100:00PM to 5:00AM).

The existing 250 mm diameter sanitary sewer extended from EX. MH212A, to which the proposed service is connected, has a capacity 48.85 L/s with a 0.61% slope. Therefore, it is anticipated that there is sufficient capacity for the sanitary sewer within the Arcadia Commercial Development internal access road. Although the sanitary flow is slightly higher for the proposed development, the existing sanitary sewers will adequately service the proposed site.

5.3 Storm Sewer

A new sewer system will be extended from two existing 375 mm diameter storm stubs; Country Glen Way and the Arcadia Commercial Development Access Road. The new onsite pipe network will collect storm flows and restrict runoff prior to leaving the site. The storm service from the proposed building will be connected to the existing 375mm diameter stub along the internal access road. Proposed manhole (MH1) will collect both the weeping tile subdrain and the overflow pipe from the soakaway pit which will be further detailed in Section 6.0.

Runoff from the proposed site will be collected and directed towards the entrance on Country Glen Way where it will be connected to the existing 375mm diameter stub. A catchbasin (CB1) and catchbasin manhole (CBMH2) will collect flows form the parking lot prior to outletting to the existing stub. The storm sewers will range from 250 mm to 375 mm in diameter throughout the subject property.

The minor storm sewers will be sized for the 5-year flow without any restriction. A storm sewer design sheet was created using the rational method and City of Ottawa 5-year storm event. Storm flows will be controlled by an inlet control device (ICD) to limit flows to specified release rate as per the *Design Brief – Arcadia Commercial* by IBI Group.

The storm design sheet calculates the proper sizing of the storm pipes within the development. Drainage area information, along with respective pipe slopes and other necessary information was utilized to evaluate the performance of the storm sewer network. The time of concentration calculated for the storm sewer system is based on a 10 minute inlet time at the uppermost sewer run. Within the design sheet, pipe capacities and associated full flow velocities have been calculated. The design flow (peak flow) was checked against the theoretical capacity to ensure that each storm sewer pipe can convey the 5-year unrestricted flow.

Based on the storm sewer design completed by IBI Group for the Arcadia Commercial Development, the existing 375mm diameter stub on the internal access road has a capacity of 143.09 L/s for the 5-year storm event which is adequate for the portion of subject site draining to the outlet (37.92 L/s). The existing 375mm stub on Country Club Way has a capacity of 179.22 L/s for the 5-year storm event which is adequate for the portion of subject site draining to the outlet (122.40 L/s).

See *CP-17-0199 - POST* and *Storm Sewer Design Sheet* in Appendix 'F' of this report for more details. The Stormwater Management design for the subject property will be outlined in Section 6.0.

6.0 STORMWATER MANAGEMENT

6.1 Design Criteria and Methodology

Stormwater management for the proposed site will be maintained through positive drainage away from the proposed building and into a new underground storm sewer system. The storm system will capture the parking lot runoff and direct the flow to a restriction device located within CBMH2. The restricted flow will then release into the existing trunk sewer located in Country Glen Way. Similarly the emergency overland flow route for the proposed site will be directed to the entrance at Country Glen Way. Also, as per the Kanata West Master Servicing Study (KWMSS), the site will require a soakaway pit to be incorporated into the design. The City of Ottawa has requested at the pre-consultation meeting, that the roof of the proposed building will need to be captured and directed to the soakaway pit. The quantitative and qualitative properties of the storm runoff for both the pre & post development flows are further detailed below.

6.2 Runoff Calculations

С

Runoff calculations presented in this report are derived using the Rational Method, given as:

$$Q = 2.78CIA (L/s)$$

Where

= Runoff coefficient

I = Rainfall intensity in mm/hr (City of Ottawa IDF curves)

A = Drainage area in hectares

It is recognized that the Rational Method tends to overestimate runoff rates. As a result, the conservative calculation of runoff ensures that any stormwater management facility sized using this method is expected to function as intended.

The following coefficients were used to develop an average C for each area:

Roofs/Concrete/Asphalt	0.90
Gravel	0.60
Undeveloped and Grass	0.20

As per the *City of Ottawa - Sewer Design Guidelines*, the 5-year balanced 'C' value must be increased by 25% for a 100-year storm event to a maximum of 1.0.

As per the pre-consultation meeting with the City of Ottawa the time of concentration (Tc) used for predevelopment shall be calculated using a Tc of 20 minutes and post-development flows shall be calculated using a Tc of 10 minutes.

6.2.1 Pre-Development Drainage

The existing site drainage limits are demonstrated on the Pre-Development Drainage Area Plan See *CP-17-0199* - *PRE* in Appendix 'E' of this report for more details. A summary of the Pre-Development Runoff Calculations can be found below.

Drainage Area	Area (ha)	Runoff Coefficient (2/5-Year)	Runoff Coefficient (100-Year)	2-year Peak Flow (L/s)	5-year Peak Flow (L/s)	100-year Peak Flow (L/s)	
A1	0.64	0.20	0.25	18.38	24.81	52.96	
Total	0.64			18.38	24.81	52.96	

Table 2: Pre-Development Runoff Summary

See Appendix 'G' for calculations.

6.2.2 Post-Development Drainage

The proposed site drainage limits are demonstrated on the Post-Development Drainage Area Plan. See *CP-17-0199 - POST* in Appendix 'F' of this report for more details. A summary of the Post-Development Runoff Calculations can be found below.

Table 3: Post-Development Runoff Summary

Drainage Area	Area (ha)	Runoff Coefficient (2/5-Year)	Runoff Coefficient (100-Year)	2-year Peak Flow (L/s)	5-year Peak Flow (L/s)	100-year Peak Flow (L/s)
B1	0.15	0.90	1.00	28.25	38.33	72.98
B2	0.21	0.87	0.96	39.70	53.86	101.85
В3	0.20	0.81	0.90	34.77	47.17	89.83
B4	0.01	0.48	0.55	1.51	2.05	4.03
B5	0.07	0.41	0.47	5.74	7.79	15.31
Sub-Total 0.64		109.99	149.21	283.99		
			External D	rainage Areas		
EX1	0.10	0.90	1.00	18.76	25.45	48.47
EX2	0.02	0.90	1.00	2.93	3.98	7.57
Total	0.76			131.68	178.64	340.04

Runoff for area B1 will be restricted before outletting to the existing storm system within Arcadia Commercial Development access road. The flow will be controlled within roof drains for area B1. Runoff for area B2 & B3 and external drainage areas EX1 and EX2 will be restricted before outletting to the existing storm system within Country Glen Way. The flow will be controlled by an inlet control device located within CBMH2. The restriction

McINTOSH PERRY

device will account for the unrestricted flow (Area B4 & B5) leaving the site. See Appendix 'G' for calculations. This restriction and quality control will be further detailed in Sections 6.3 and 6.4.

6.3 Quantity Control

The total post-development runoff for the proposed site has been restricted to match the outlet flows calculated in the *Design Brief* – *Arcadia Commercial* by IBI Group. The subject property is located within 9 different drainage areas as per the *Design Brief*. A total of 6 ICD's/Roof Drains were utilized within the site area. The allocated flow for the drainage areas have been outlined below. The drainage areas associated with the subject property have been allocated total flows of 134.17 L/s and 142.85 L/s for the 5- and 100-year storm events, respectively.

Table 4: Allowable Release Rate Summary

*Existing Drainage Area	Area (ha)			ICD # / Roof Drain #		
		5-Year	100-Year			
206A/206B	0.38	85	.00	206A		
206C	0.07	10.00		206B		
206D	0.04	14.00		206C		
BLK100	0.06	2.0	00	Roof 100	Restricted	
BLK200	0.04	1.00		Roof 200		
215	0.04	10	.00	215		
**216A/216B	0.07	12.17	20.85		Unrestricted	
Total	0.70	134.17	142.85			

See Appendix 'G' for calculations.

*As per Design Brief - Arcadia Commercial by IBI Group.

**Area 216A/216B have been accounted for as unrestricted flow within the previous design.

As the ultimate stormwater design has two areas outletting to the subject site from the Design Brief by IBI Group, areas EX1 and EX2 have been accounted for within the stormwater management design. Reducing site flows will be achieved using flow restrictions and will create the need for onsite storage. Runoff from areas B1, B2, B3 & EX1 will be restricted as shown in the table below.

Drainage Area		st Developm stricted Flow		Post Development Restricted Flow (L/s)				
	2-Year	5-Year	100-Year	2-Year	5-Year	100-Year		
B1	28.25	38.33	72.98	3.12	4.68	7.80	Restricted - Roof Drains	
B2	39.70	53.86	101.85	85				
B3	34.77	47.17	89.83	96.17	108.14	108.14	Restricted - CBMH2	
EX1	18.76	25.45	48.47				CDIVITIZ	
B4	1.51	2.05	4.03	1.51	2.05	4.03		
B5	5.74	7.79	15.31	5.74	7.79	15.31	Unrestricted	
EX2	2.93	3.98	7.57	2.93	3.98	7.57		
Total	131.68	178.64	340.04	109.48	126.64	142.85		

Table 5: Post-Development Restricted Runoff Summary

See Appendix 'G' for calculations.

Runoff from Area B1 will be restricted through thirteen (13) roof drains before discharging to the new storm sewer downstream of MH#1. The total flow leaving the roof will be 3.12 L/s, 4.68 L/s and 7.80 L/s during the 2, 5 and 100-year storm events, respectively. This will result in ponding depths of 20, 30 and 50 mm for the 2, 5 and 100-year storm events, respectively. All of the storage required for this area will be located on the proposed roof, and emergency roof scuppers will be installed to ensure ponding does not exceed the proposed ponding limits.

Runoff from Areas B2 and B3 will be restricted at CBMH#2 through an IPEX Tempest HF Type E or an approved equivalent (Design Head of 2.42 m). This orifice plug will restrict areas B2 and B3 to 108.14 L/s for both the 5 and 100-year storm events. The restriction creates a water surface elevation (WSEL) of 97.74 m for the 5-year storm event and 97.90 m for the 100-year storm event. The storage for this area will be provided above the parking lot structures CB#1 and CBMH#2. See below table for details of the required and provided storage volumes.

Table 6: Storage Summary

Drainage Area	Storage Required (m ³)	Storage Available (m ³)	Depth of Ponding (m)	Storage Required (m ³)	Storage Available (m ³)	Depth of Ponding (m)	Storage Required (m ³)	Storage Available (m ³)	
	2-Year		2-Year 5-Year			100-Year			
B1	21.56	22.05	0.030	27.79	33.08	0.050	55.13	55.07	
B2 & B3	N/A		0.14	12.96	11.01	0.30	84.78	79.24	

See Appendix 'G' for calculations.

In the event that there is a rainfall above the 100yr storm event, or a blockage within the storm sewer system, an emergency overland flow route has been provided so that the storm water runoff will be conveyed towards the east entrance at Country Glen Way.

6.4 Quality Control

As per the Kanata West Master Servicing Study (KWMSS), a soakaway pit is required for the proposed site. See Appendix 'A' for the applicable excerpt. This will be furthered detailed in Section 6.5.

The development of will employ Best Management Practices (BMP's) wherever possible. The intent of implementing stormwater BMP's is to ensure that water quality and quantity concerns are addressed at all stages of development. Lot level BMP's include directing the runoff from the roof into a soakaway pit. Each proposed catch basin will be equipped with a sump, which will provide an opportunity for initial filtration of any sediment by means of particle settlement.

An IPEX Tempest HF inlet control device will restrict flows from the site, causing temporary ponding. There will be an opportunity for particle settlement during this process; however the full benefits of a larger scale endof-pipe facility will only be realized at the downstream Stormwater Management Pond. The existing SWM facility will provide the required quality control for the site. The existing storm sewer within the Arcadia Commercial Development outlets to the Campeau Drive storm sewer which outlets to an interim SWM Pond (future Pond 1 as per KWMSS) which provides the required quality control for the development prior to outletting to the Carp River. This facility has been designed to accommodate runoff from the Arcadia Commercial Development where the subject property is located. Quality control will be provided within this SWM facility, therefore no additional on-site quality treatment has been provided.

6.5 Soakaway Pit

As per the Kanata West Master Servicing Study (KWMSS) an infiltration target of 50-70mm/yr is required to be achieved on the subject site. The percolation rate from the geotechnical engineering consultant can be found in Appendix 'A' and was estimated to be between 12mm/hr to 17mm/hr for the site. An infiltration rate of 15mm/hr was used within the calculations. As per the *Geotechnical Investigation - 370 Huntmar Drive* by Paterson Group Inc., BH4 and BH5 had groundwater elevations of 97.12 m and 96.63 m respectively. Averaging those two values gives an average groundwater elevation of 96.88 that has been used as a reference for the subject site.

1.1.1 Soakaway Pit Design

A Soakaway Pit has been designed for the site in order to meet the required infiltration target as per the Ministry of the Environment (MOE) Stormwater Management Planning and Design Manual March 2003 Section 4.5.6 Roof Leader Discharge to Soakaway Pits. The Soakaway Pit will be constructed at the east side of the site within the parking area. Storm runoff from the flat roof will be collected within the storm network and discharge into the soakaway pit. The pit has been designed to meet the criteria noted in the following table:

No.	Design Element	Criteria	Proposed Works
1	Water Table Depth	The seasonally high water depth should be greater than 1m below the bottom of the soakaway pit	The water table depth is greater than 1m below the bottom of the soakaway as per the geotechnical report. (97.88 – 96.88)
2	Depth to Bedrock	The depth to bedrock should be greater than 1m below the bottom of the soakaway pit	Depth of bedrock is greater than 1m below the bottom of the soakaway pit
3	Soils	Soil percolation rate should be greater than 15mm/hr	As per the correspondence with the Geotechnical Engineer the soil percolation is between 12-17 mm/hr.
4	Storage Volume	A minimum storage volume of 5 mm over the rooftop area should be accommodated in the soakaway pit without overflowing. The maximum target storage volume should be 20 mm over the rooftop area.	The maximum target storage of 20mm over the rooftop area will be used to ensure the required infiltration is met.
5	Location	>4m from the building	Soakaway pit is >4m from the building
6	Storage Media	Trench is comprised of clear stone (50 mm dimeter) with non-woven filter cloth lining the trench	Soakaway pit is specified to have 50mm clear stone and to be lined with geotextile.
7	Conveyance Pipe	The roof leader should extend into the soakaway pit for the full length of the pit. The extension of the roof leader should be perforated to allow water to fill the pit along the length of the pipe. The perforated pipe should be located near the surface of the trench.	The roof leader has been extended to run the full length of the soakaway pit and is perforated and is located near the top of the trench.

1.1.2 Storage Configuration

The length of the trench will be maximized as the direction of flow is parallel with the Soakaway Pit. This will ensure proper distribution of water into the entire trench.

• Maximum Allowable Soakaway Pit Depth

$$d = PT / 1000$$

- d = maximum allowable depth of the soakaway pit (m)
- P = percolation rate (mm/h)
- T = drawdown time (24 48 h) (h)

See Appendix 'G' for calculations.

1.1.3 Maintenance Design Parameters

Maintenance will be required to ensure effective operation, longevity and aesthetic functioning of the SWMP and may include: sediment removal, trash removal, maintenance of vegetation and inspection of the inlet(s) and outlet(s).

Estimates of the longevity of infiltration SWMPs are based on professional opinion. Equation 7.1 and Table 7.4 from the MOE Stormwater Management Planning and Design Manual may be used as guidance for estimating longevity (based on monitoring results in literature and the native soil permeability). Recognizing the subjectiveness of Equation 7.1, there needs to be flexibility in assessing the lifespan of infiltration SWMPs based on site-specific information. As the majority of the site is made up of the proposed roof the runoff entering the SWM Area will have limited opportunity for carrying sediments to the infiltration structure.

Our recommendation for the SWM Area is to have annual inspections completed for the Soakaway pit including a CCTV of the pipe network within the SWM area. The inspection should note any sediment build-up, standing water or any trash on the within the structure. Based on the reviews maintenance may be required to ensure the SWM Area is functioning as designed.

7.0 SEDIMENT & EROSION CONTROL

Before construction begins, temporary silt fence, straw bale or rock flow check dams will be installed at all natural runoff outlets from the property. It is crucial that these controls be maintained throughout construction and inspection of sediment and erosion control will be facilitated by the Contractor or Contract Administration staff throughout the construction period.

Silt fences will be installed where shown on the final engineering plans, specifically along the downstream property limits. The Contractor, at their discretion or at the instruction of the City, MVCA or the Contract Administrator shall increase the quantity of sediment and erosion controls on-site to ensure that the site is operating as intended and no additional sediment finds its way off site. The rock flow, straw bale & silt fence check dams and barriers shall be inspected weekly and after rainfall events. Care shall be taken to properly remove sediment from the fences and check dams as required. Fibre roll barriers are to be installed at all existing curb inlet catchbasins and filter fabric is to be placed under the grates of all existing catchbasins and manholes along the frontage of the site and any new structures immediately upon installation. The measures for the existing/proposed structures is to be removed only after all areas have been paved. Care shall be taken at the removal stage to ensure that any silt that has accumulated is properly handled and disposed of. Removal of silt fences without prior removal of the sediments shall not be permitted.

Although not anticipated, work through winter months shall be closely monitored for erosion along sloped areas. Should erosion be noted, the Contractor shall be alerted and shall take all necessary steps to rectify the situation. Should the Contractor's efforts fail at remediating the eroded areas, the Contractor shall contact the City and/or MVCA to review the site conditions and determine the appropriate course of action. As the ground begins to thaw, the Contractor shall place silt fencing at all required locations as soon as ground conditions

both warrant and permit. Please see the *Site Grading, Drainage and Sediment & Erosion Control Plan* for additional details regarding the temporary measures to be installed and their appropriate OPSD references.

8.0 SUMMARY

- A new 1,470m² hotel will be constructed along the west property line at 340 Huntmar Drive.
- A new watermain, ranging in diameter from 150 mm to 200 mm watermain will be installed to service the site, connecting to the watermain on the Arcadia Commercial Development internal access road.
- A new 250mm sanitary sewer will be installed to service the proposed hotel and connect to the Arcadia Commercial Development internal access road.
- The proposed storm sewer, ranging in diameter from 250 mm to 3750 mm, will be installed throughout the site and drain to the existing storm sewers on Country Glen Way and the internal access road.
- Storage for the 5- through 100-year storm events will be provided within the parking lot areas above the proposed storm structures and on the proposed flat roof.
- An approved downstream SWM Facility (has been previously constructed to provide appropriate quality control for the Carp River.

CP-17-0199

9.0 **RECOMMENDATION**

Based on the information presented in this report, we recommend that City of Ottawa approve this Servicing and Stormwater Management Report in support of the proposed Microtel Inn & Suites.

This report is respectfully being submitted for approval.

Regards,

McIntosh Perry Consulting Engineers Ltd.

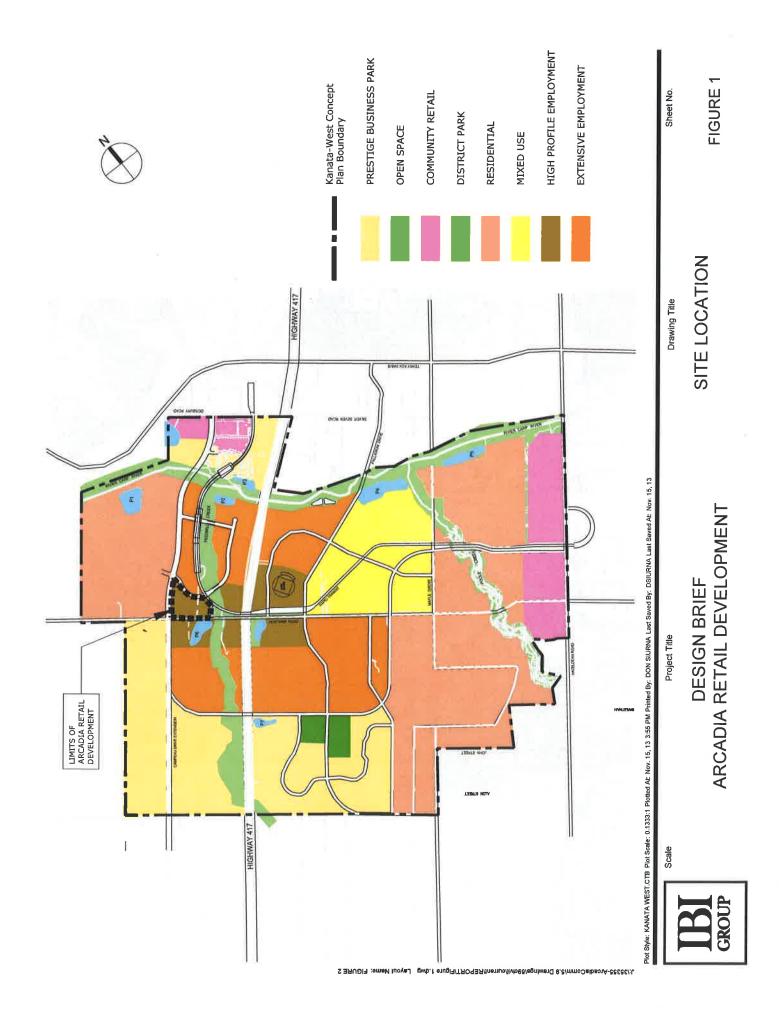
Ryan Kennedy, P.Eng. Practice Area Lead, Land Development T: 613.836.2184 x 2243 E: <u>r.kenndy@mcintoshperry.com</u>

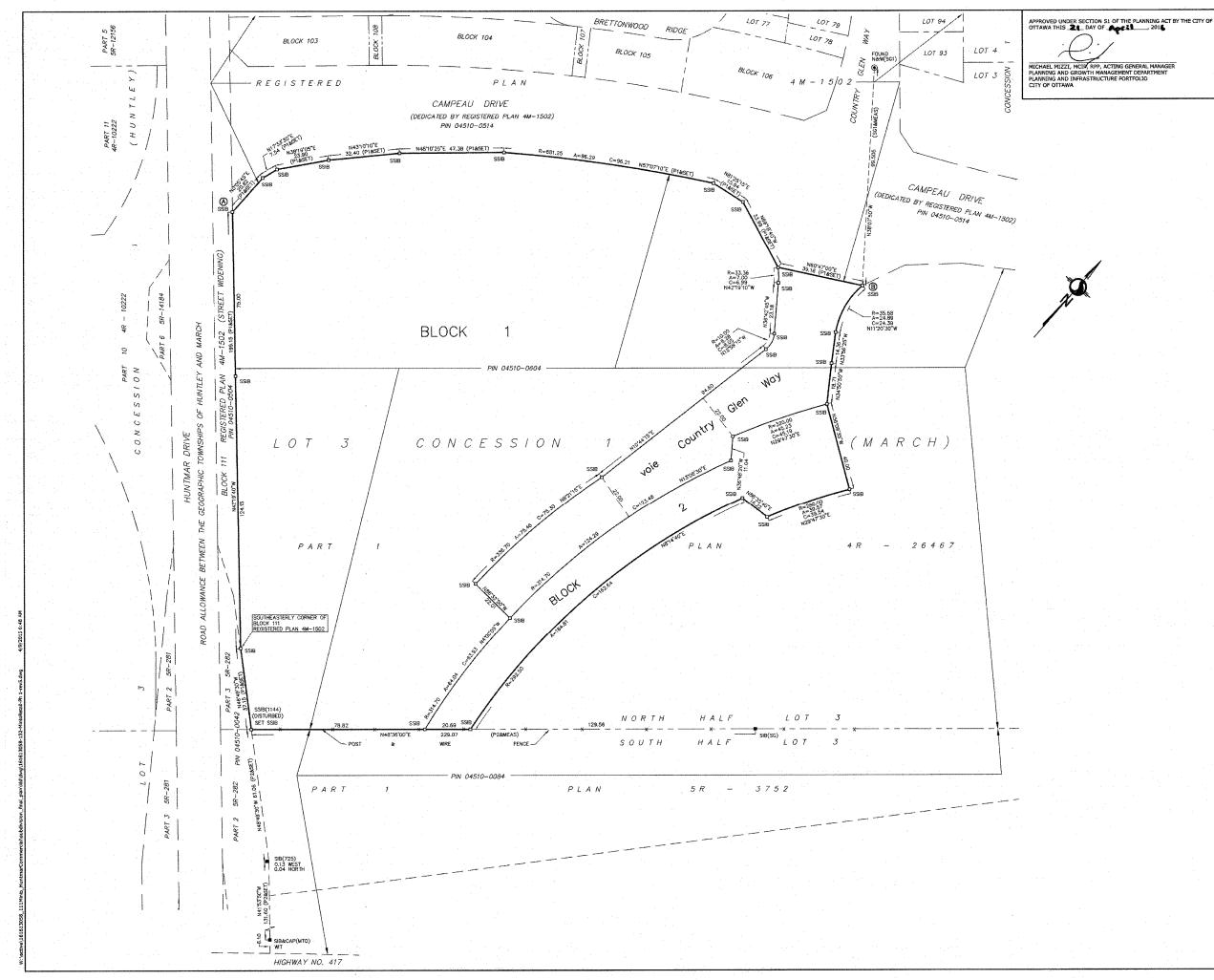
Tyler Ferguson, E.I.T. Engineering Intern, Land Development T: 613.836.2184 x 2242 E: <u>t.ferguson@mcintoshperry.com</u>

October 27, 2017 Revised: May 9, 2018

H:\01 Project - Proposals\2017 Jobs\CP\0CP-17-0199 Activar_Kanata Microtel_Huntmar & Campeau\03 - Servicing\Report\CP-17-0199_Servicing Report.docx

10.0 STATEMENT OF LIMITATIONS


This report was produced for the exclusive use of MasterBUILT Hotels Ltd c/o Activar. The purpose of the report is to assess the existing stormwater management system and provide recommendations and designs for the post-construction scenario that are in compliance with the guidelines and standards from the Ministry of the Environment and Climate Change, City of Ottawa and local approval agencies. McIntosh Perry reviewed the site information and background documents listed in Section 2.0 of this report. While the previous data was reviewed by McIntosh Perry and site visits were performed, no field verification/measures of any information were conducted.


Any use of this review by a third party, or any reliance on decisions made based on it, without a reliance report is the responsibility of such third parties. McIntosh Perry accepts no responsibility for damages, if any, suffered by any third party as a result of decisions or actions made based on this review.

The findings, conclusions and/or recommendations of this report are only valid as of the date of this report. No assurance is made regarding any changes in conditions subsequent to this date. If additional information is discovered or becomes available at a future date, McIntosh Perry should be requested to re-evaluate the conclusions presented in this report, and provide amendments, if required.

APPENDIX A BACKGROUND DOCUMENTS

McINTOSH PERRY

CERTIFICATE OF REGISTRATION PLAN 4M-1563

I CERTIFY THAT THIS PLAN IS REGISTERED IN THE LAND REGISTRY OFFICE FOR THE LAND TITLES DIVISION OF OTTAWA-CARLETON NO.4 AT 33 O'CLOCK ON THE 24 DAY OF A O'CLOCK ON THE 24 DAY OF 2016 AND ENTERED IN THE PARCEL REGISTER FOR PROPERTY H011 2016 AND ENTERED IN THE PARCEL REGISTER FOR PROPERTY IDENTIFIER 0450-0604, and that the required consents are registered as plan document number 021781949.

F. Lamort

REPRESENTATIVE FOR THE LAND REGISTRAR

THIS PLAN COMPRISES PART OF THE LAND IDENTIFIED BY PIN 04510-0604.

PLAN OF SUBDIVISION of

PART OF LOT 3 CONCESSION 1 GEOGRAPHIC TOWNSHIP OF MARCH CITY OF OTTAWA

Scale 1 ; 750

METRIC CONVERSION

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

GRID SCALE CONVERSION

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999914.

BEARING NOTE

BEARINGS HEREON ARE GRID BEARINGS DERIVED FROM THE CAN-NET VRS NETWORK MONUMENT - OTTAWA - (N 5036741.327, E 327757.614) AND FITZROY (N 5036741.327, E 327757.614) AND ARE REFERED TO THE CENTRAL MERIDIAN 76° 30' WEST LONGTUDE OF THE 3° MTM ONTARIO COORDINATE SYSTEM, NAD83 (ORIGINAL) ZONE 9.

OBSERVED REFERENCE POINTS DERIVED FROM GPS OBSERVATIONS USING THE CAN-NET VIRTUAL REFERENCE STATION NETWORK: MTM ZONE 9, NADB3 (ORIGINAL) COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10			
POINT ID NORTHING EASTING			
A	5018037.34	349095.66	
B	5018201.04	349332.80	
	NOT, IN THEMSELVES, BE USE OR BOUNDARIES SHOWN ON	D TO RE-ESTABLISH CORNER	

SURVEYOR'S CERTIFICATE

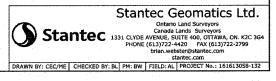
L CERTIEY THAT

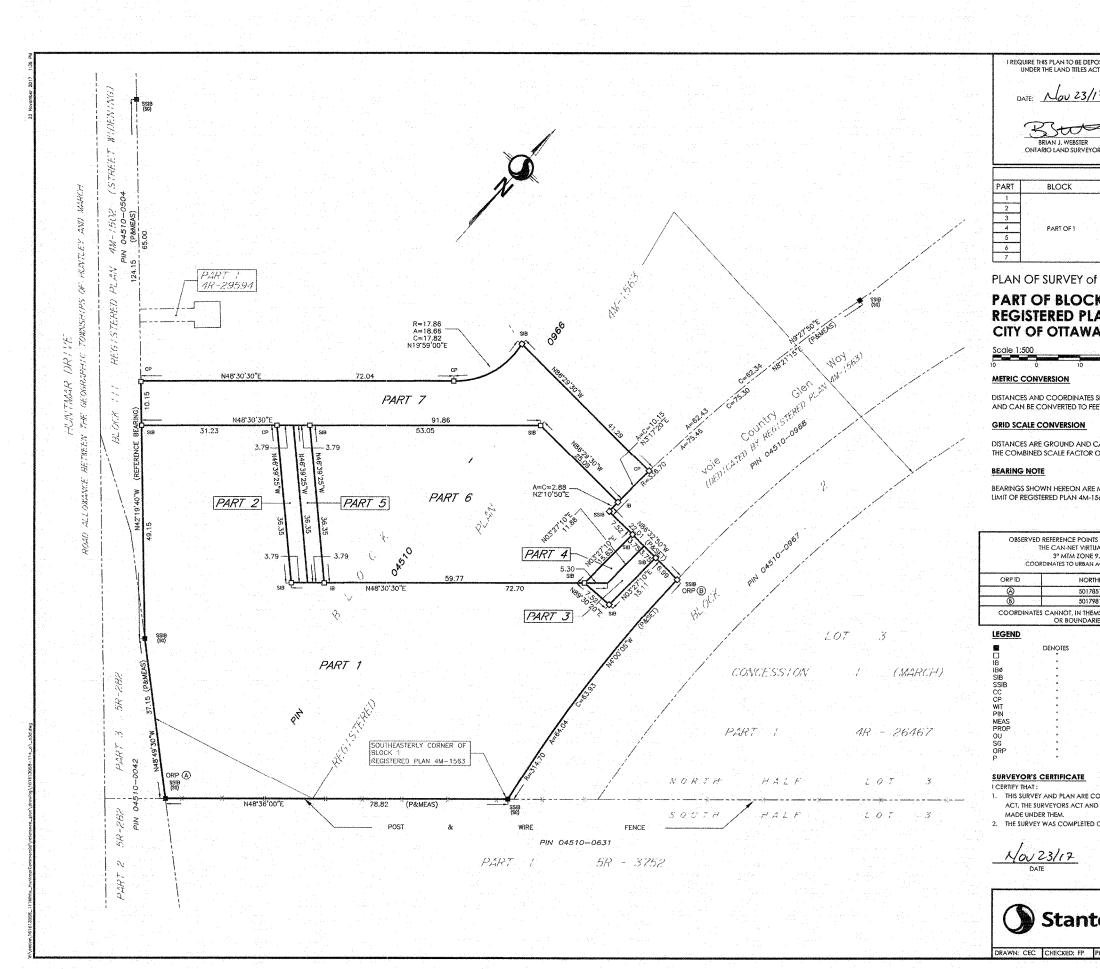
- 1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER THEM.
- 2. THE SURVEY WAS COMPLETED ON THE 24th DAY OF FEBRUARY, 2015.

Apr. 1.9/15 DATE

Bour BRIAN J. WEBSTER ONTARIO LAND SURVEYOR

OWNER'S CERTIFICATE


THIS IS TO CERTIFY THAT : 1. BLOCKS 1 AND 2 INCLUSIVE, THE STREET, NAMELY vole Country Gien Way HAVE BEEN LAID OUT IN ACCORDANCE WITH OUR INSTRUCTIONS.


2. THE STREET IS DEDICATED AS PUBLIC HIGHWAY

MINTO COMMUNITIES INC.

DATED : 04/16/16	DATED : 04/16/16
SUSAN MURPHY	BRENT STRACHAN
VICE PRESIDENT,	SENIOT VICE PRESIDENT,
DEVELOPMENT	MINTO COMMUNITIES ONTARIO
I HAVE THE AUTHORITY	1 HAVE THE AUTHORITY
TO BIND THE CORPORATION	TO BIND THE CORPORATION
LEGEND ■ DENOTES 18 • 180 • 518 • 518 • CCP • Naw • WITT • HEAD • SG • SG • P1 • P2 • SG1 •	FOUND MONUMENTS SET MONUMENTS IRON BAR ROUND IRON BAR STANDARD IRON BAR STANDARD IRON BAR STANDARD IRON BAR STANDARD IRON BAR CONCRETE PIN NALL & WASHER WITNESS RODERTY DENTIFICATION NUMBER HOPPERTY DENTIFICATION NUM

ALL SET MONUMENTS SHOWN HEREON ARE IRON BARS (IB) UNLESS OTHERWISE NOTED.

THIS PLAN TO BE DEPOS R THE LAND TITLES ACT.	REC	4R-30733 EIVED AND DEPOSITED NOVLM Def 23, 2017
BRIAN J. WEBSTER ARIO LAND SURVEYOR	REPRE	ALS CA IN LIGANS SENTATIVE FOR THE LAND FOR THE LAND TILES DIVISION TAWA-CARLETON NO. 4
	SCHEDULE	
BLOCK	PLAN	PIN
PART OF 1	4M-1563	PART OF 04510-0966

PART OF BLOCK 1 **REGISTERED PLAN 4M-1563 CITY OF OTTAWA**

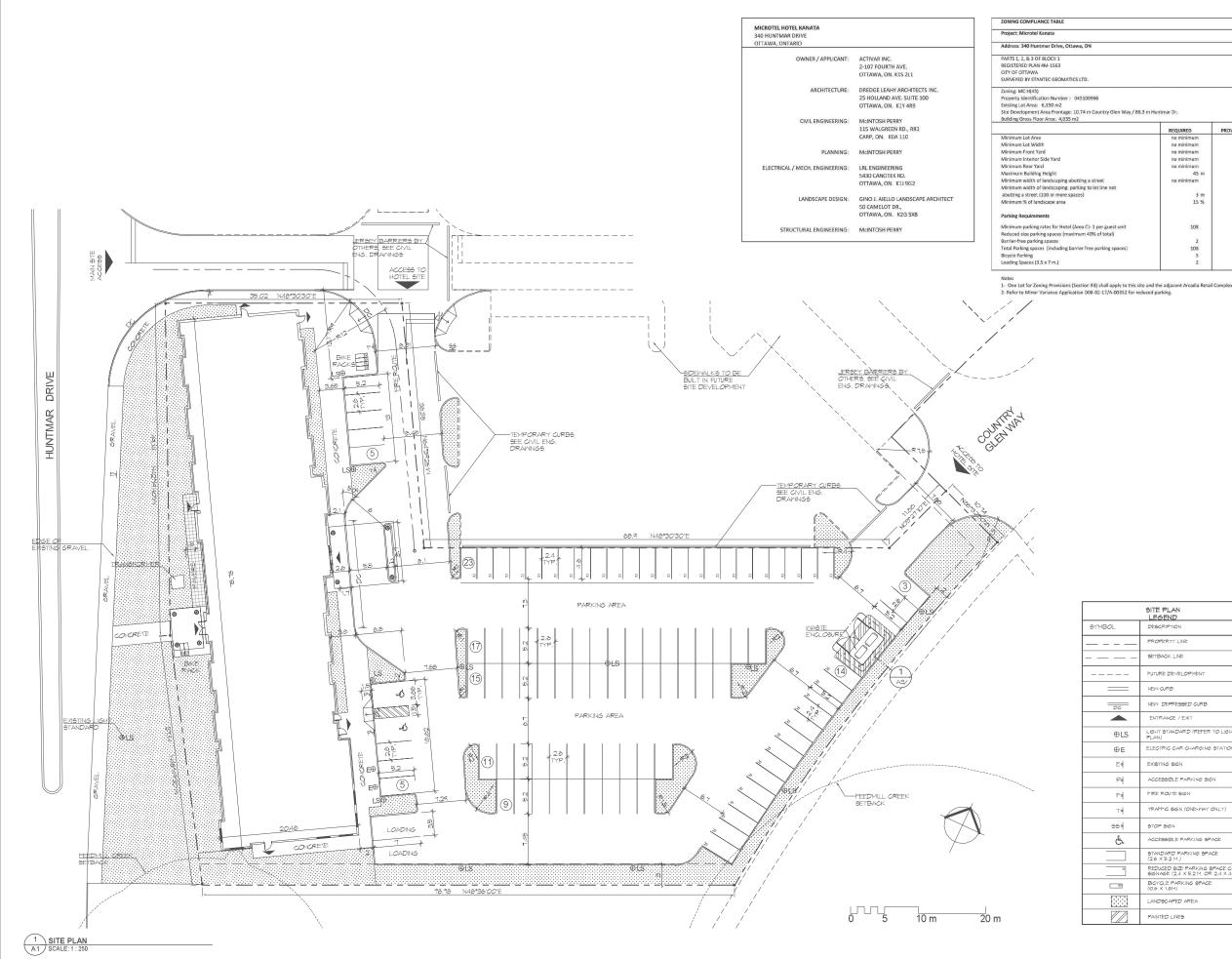
DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999914.

BEARINGS SHOWN HEREON ARE MTM GRID AND ARE REFERRED TO THE WESTERLY LIMIT OF REGISTERED PLAN 4M-1563, HAVING A BEARING OF N42º19'40"W .

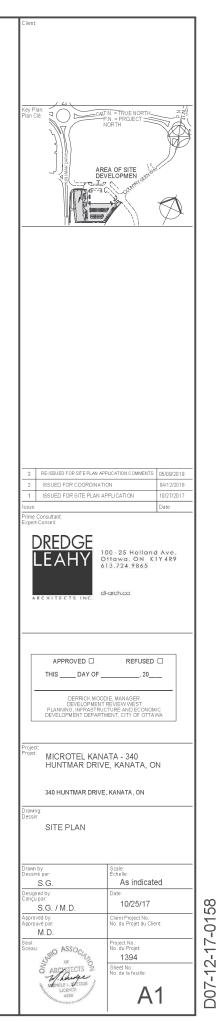
OBSERVED REFERENCE POINTS DERIVED FROM GPS OBSERVATIONS USING THE CAN-NET VIRTUAL REFERENCE STATION NETWORK:

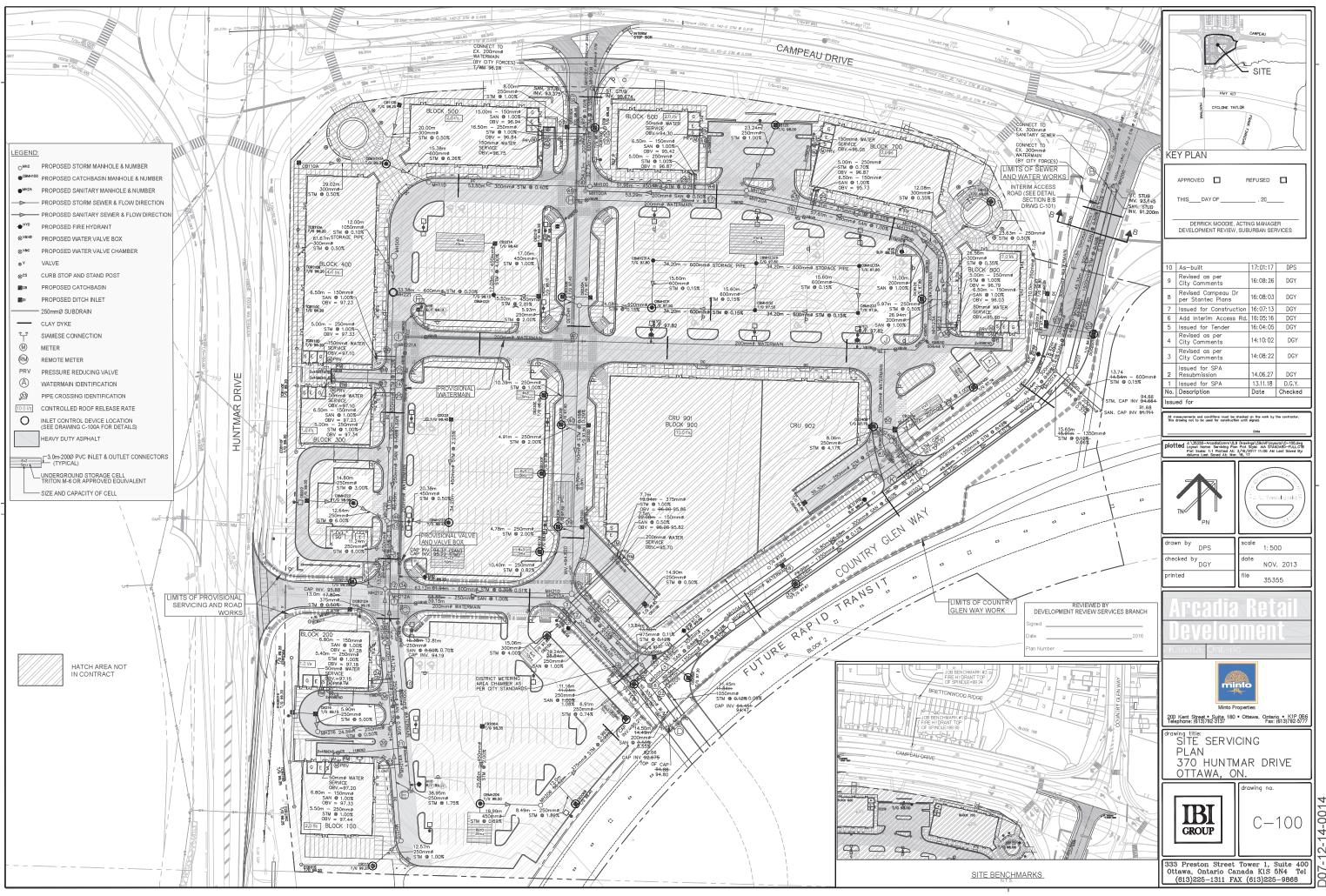
3° MTM ZONE 9, NAD83 (ORIGINALI/1997.0). COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10

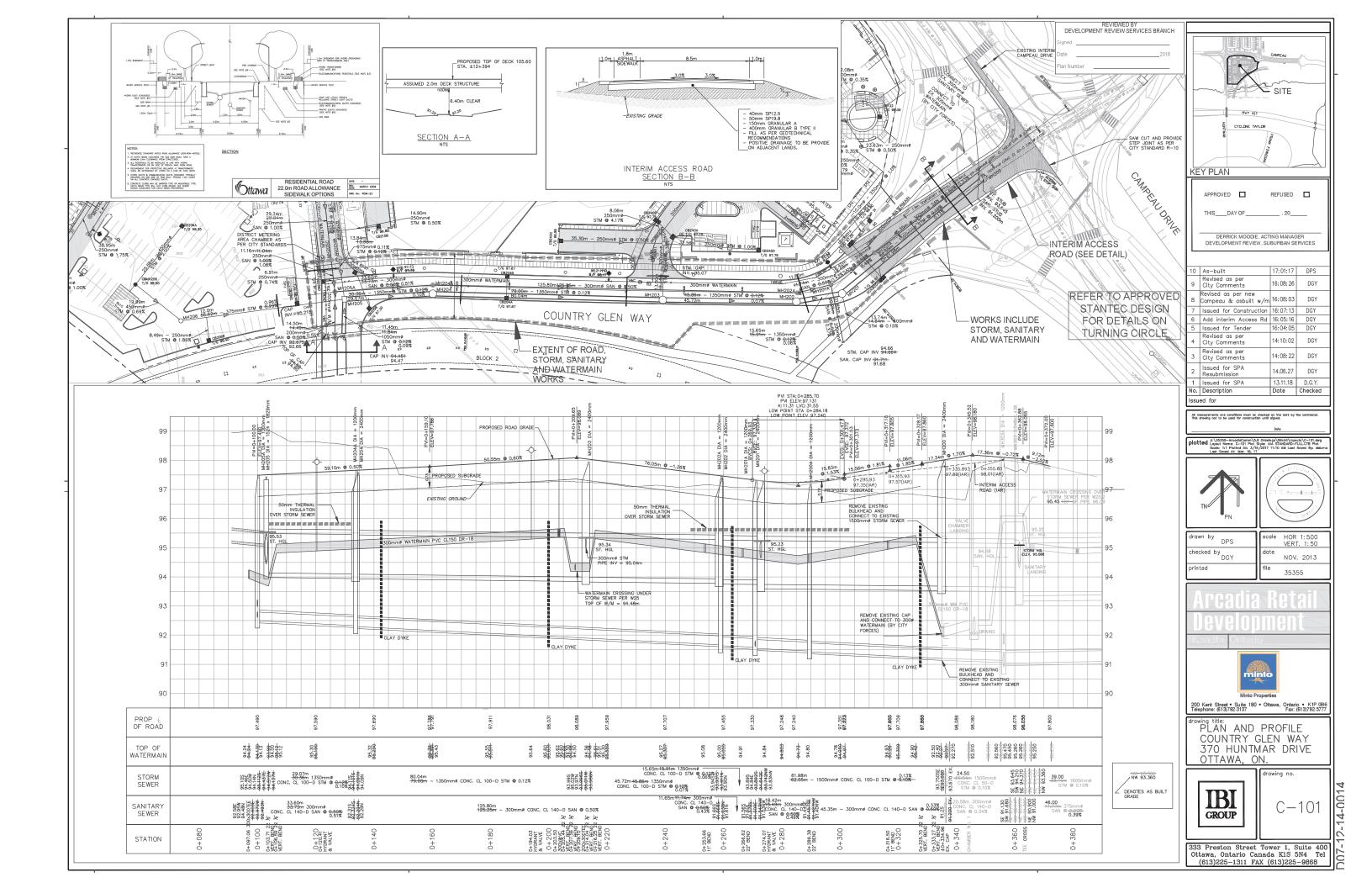

1	NORTHING	EASTING	
	5017851.66	349257.73	
11	5017981.56	349312.39	
ES CAN	INOT, IN THEMSELVES, BE US	ED TO RE-ESTABLISH CORNERS	
	OR BOUNDARIES SHOWN ON	THIS PLAN	

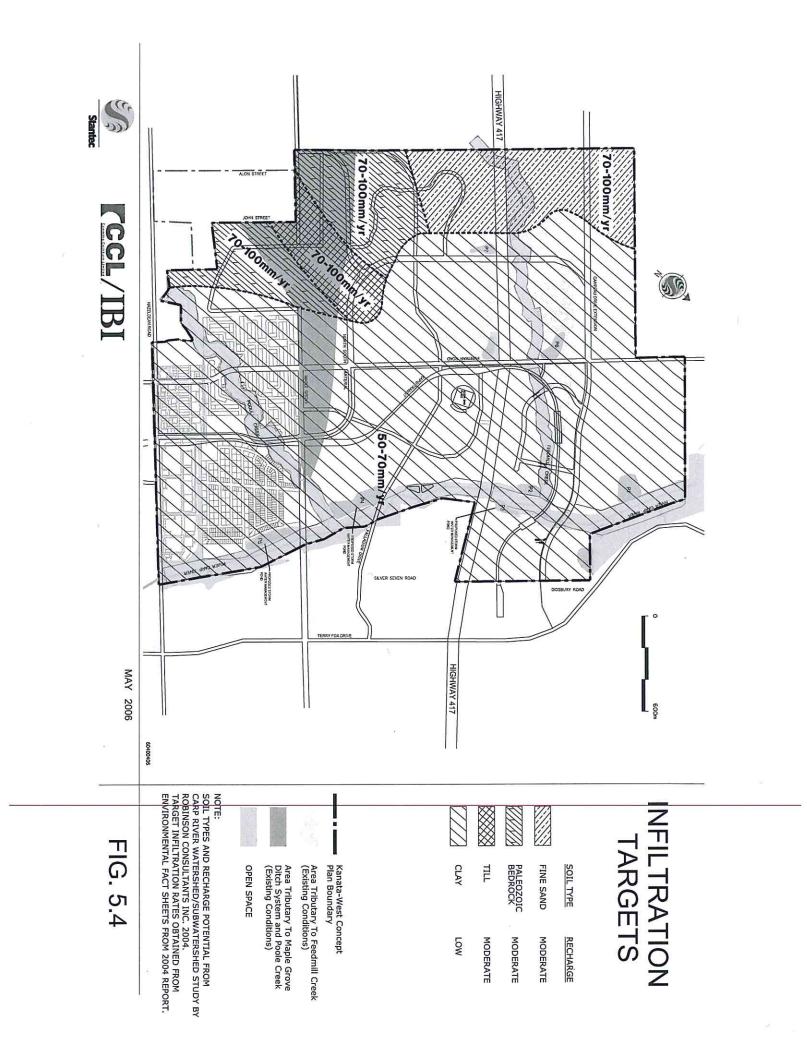
FOUND MONUMENTS SET MONUMENTS IRON BAR ROUND IRON BAR STANDARD IRON BAR SHORT STANDARD IRON BAR CUT CROSS CONCRETE PIN WITNESS DENOTE CONCRETE PIN WTINESS PROPERTY IDENTIFICATION NUMBER MEASURED PROPORTIONED ORIGIN UNKNOWN STANTEC GEOMATICS LTD. OBSERVED REFERENCE POINT REGISTERED PLAN 4M-1563

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS


2. THE SURVEY WAS COMPLETED ON THE 16th DAY OF NOVEMBER, 2017


NOV 23/17 · Ktt BRIAN J. WEBSTER ONTARIO LAND SURVEYOR Stantec Geomatics Ltd. CANADA LANDS SURVEYORS ONTARIO LAND SURVEYORS 1331 CLYDE AVENUE, SUITE 400 **Stantec** OTTAWA, ONTARIO, K2C 3G4 TEL. 613.722.4420 FAX. 613.722.2799 stantec.com DRAWN: CEC CHECKED: FP PM: FP/BW FIELD: CA PROJECT No.: 161613058-114




n Huntmar Dr.	
REQUIRED	PROVIDED
no minimum	6,350 m2
no minimum	86 m
no minimum	2 m
no minimum	0.5 m
no minimum	58 m
45 m	17 m
no minimum	>3 m
3 m	3 m
15 %	15 %
102	102
108	
	37
	2
	102
	6
2	2
	no minimum no minimum no minimum no minimum 45 m no minimum 3 m

SITE PLAN LEGEND			
BYMBOL	DESCRIPTION		
	PROPERTY LINE		
	SETBACK LINE		
	FUTURE DEVELOPMENT		
	NEW CURB		
	NEW DEPRESSED CURB		
	ENTRANGE / EXIT		
⊕LS	LIGHT STANDARD (REPER TO LIGHTING PLAN)		
θE	ELECTRIC CAR CHARGING STATION		
E٩	EXISTING SIGN		
P¢	ACCESSIBLE PARKING SIGN		
۲¢	PIRE ROUTE SIGN		
⊤¢	TRAPPIC SIGN (ONE-WAY ONLY)		
55 ·	STOP SIGN		
Ġ.	ACCESSIBLE PARKING SPACE		
	STANDARD PARKING SPACE (2,6 X 5,2 M.)		
22	RÉDUCED SIZE PARKING SPACE C/W SIGNAGE (2.4 × 5.2 M, OR 2.4 × 4.6M.)		
B	BICYCLE PARKING SPACE (0.6 × 1.6M)		
	LANDSCAPED AREA		
	PAINTED LINES		

that global climatic change may have on the stormwater infrastructure of Ontario. In this area:

- Surface storage on streets and parking lots is used in the stormwater management system during storms less frequent than the five-year storm
- ponds for water quality control only
- utilizes some of the most modern stormwater quantity control mechanisms including, orifices in the catchbasins, local infiltration, and by directing roof runoff to the lawns

Since effort has been taken to reduce the flows entering the sewer system there are few options to retrofit the existing sewer system to cope with climatic change. The study considered how the minor system might be redesigned if the design storm were to increase by 15 per cent. Existing sewer pipes would surcharge under this scenario of increased rainfall. Therefore, to convey the increased peak flows, the diameter of these pipes would need to be increased. The incremental cost of installing larger diameter pipe was estimated at about two percent of the total system cost. The additional cost of larger sewers to accommodate the increased flows expected under climate change is not large in relative terms.

Similar studies concur with this approach (Infrastructure Canada December 2006). "A study in North Vancouver found that drainage infrastructure could be "adapted to more intense rainfall events by gradually upgrading key sections of pipe during routine, scheduled infrastructure maintenance. When changes to infrastructure such as pipe size *are* necessary, it is predicted to be less costly than the possible losses due to failed infrastructure"

Changes in the Upper Carp Subwatershed

This is a large subwatershed, approximately 5000 hectares. Of this, 3000 hectares is approved for urban development in the City's Official Plan, in Stittsville and Kanata, including Kanata West.

The Kanata West Development Area is planned to be implemented over a 20 +/- year period allowing any new policies and information to be incorporated as development proceeds. As part of the Carp River Restoration Project, one of the few permanent water flow monitoring systems in Ottawa has been put in place for Kanata West. The results from this monitoring will be beneficial in determining the effects of climate change over time and the adaptive management measures that can be put in place to accommodate increased flows and assist in developing municipal policies.

Continuous monitoring of water level and/or streamflow (year round) will occur at three locations in the upper Carp River watershed: Carp River at Richardson Side Road, Carp River at Maple Grove Road, and Poole Creek at Maple Grove Road. All of these streamflow monitoring stations will be permanent gauges as part of the ongoing MVC long term monitoring program. Data from the Kinburn gauge may also be useful in assessing long term trends.

While the imperviousness of Kanata West development is expected to be typical or slightly higher than historic urban development (due to intensification requirements in the Provincial Policy Statement), both the Carp River Subwatershed Study and the Master Servicing Study require that infiltration rates be maintained. This requirement is being implemented with each development application and also moderates the increase in runoff resulting from urbanization.

Natural Environment (NE) 20%

All three alternatives will have essentially the same impact on the natural environment. Alternative I has a minor increased impact due to the number of ponds (8) and there location within the KWCP.

5.5.2 Selection of Stormwater Management Alternatives

Based on the above evaluation, Alternative III is selected as the preferred stormwater management alternative. This option offers the greatest amount of flexibility for phasing opportunities while providing an economical servicing solution that meets the objectives of the Carp River Watershed/Subwatershed Study.

5.6 Best Management Practices

The Carp River Watershed/Subwatershed Study (Robinson Consultants, November 2004) proposes target infiltration rates of 104 mm/yr and 73 mm/yr for areas of moderate and low recharge, respectively, within the KWCP. To meet the identified infiltration targets suggested the following best management practices (BMP's) were recommended and are shown on Figures 7.3.3 through 7.3.7 in Appendix 3.4.

- Subsurface Infiltration;
- Biofilters;
- Wet ponds; and
- Dry ponds.

A water balance and subsurface hydrogeological investigation at the detailed design stage will dictate which of the proposed BMPs will be selected for specific developments.

Given the establishment of the dominant soil associations that exist in the Study area (see Figure 5.4), and considering the extent of the poorly draining soils within the nearly flat topography, it is apparent that drainage in the Study area is primarily governed by the characteristics of the poorly draining silty clay to clay soils underlying all but a small percentage of the Study area. As a result, the establishment of the infiltration rates of the soils can be simplified to reflect the silty clay to clay soils and the till material over bedrock. Table 5.6 below summarizes the anticipated infiltration rates of these two principal soil groups, based on soil characteristics and borehole data regarding degree of compaction.

Soil Groups	Estimated Infiltration Rates ¹ (mm/yr)	Percent of Annual Rainfall Infiltrated
Castor, Dalhousie, North Gower (silty clay to clay)	50-70 mm/yr	5-7
Anstruther, Farmington, Nepean (sandy loams to till)	70-100 mm/yr	7-11

Table 5.6 -Summary of Infiltration Rates of Principal Soil Groups

Ministry of the Environment Ministère de l'Environnement

ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 1359-8XNNKL Issue Date: September 17, 2012

Minto Communities Inc. 180 Kent St, No. 200 Ottawa, Ontario K1P 0B6

Site Location: Arcadia Development - Phase I 450 Huntmar Drive City of Ottawa, ON

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

the establishment of stormwater management *Works* for the collection, transmission, treatment and disposal of stormwater runoff from a catchment area of approximately 9 hectares, to provide Normal Level of water quality protection and to attenuate post-development peak flows to pre-development levels, discharging to the Carp River, for all storm events up to and including the 100-year return storm, consisting of the following:

Stormwater Management System

an interim stormwater management system to service the Arcadia Development Phase I, located to the east of Phase I and II developments, relying on the following:

- An interim wetland having a design minimum liquid retention volume of approximately 4,377m³ at elevation 94.22m, which includes Phase II drainage area and external arterial and commercial lands for a total drainage area of 36 hectares, with a controlled discharge flow rate of 8.03m³/sec.
- The wetland is equipped with a forebay of approximately 12m wide average and 113m in length and a bottom elevation of 92.45m with a permanent pool elevation of 93.00m, draining to the wet cell through a submerged permeable rock check dam.
- An outlet structure comprised of two components, a 400mm diameter 10m in length corrugated steel pipe (CSP) outlet pipe and an overflow weir of 4m in length with an overflow invert at 94.00m and rip rap protection.
- A baseflow drain to provide extended release of flow from the facility with a drain invert at 93.00m, 12 m in length comprised of clear stone trench wrapped in geotextile fabric.
- An outlet ditch of approximately 330m length with an upstream invert of 92.60m and a downstream invert of 91.70m, discharging to the Carp River.

The above, including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned *Works*.

For the purpose of this environmental compliance approval, the following definitions apply:

"Approval" means this entire document and any schedules attached to it, and the application;

"Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;

"District Manager" means the District Manager of the Ottawa District Office;

"EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;

"Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;

"Owner" means Minto Communities Inc. and its successors and assignees;

"OWRA" means the Ontario Water Resources Act , R.S.O. 1990, c. O.40, as amended;

"Regional Director" means the Regional Director of the Eastern Region of the Ministry;

" *Source Protection Plan"* means a drinking water source protection plan prepared under the Clean Water Act, 2006; and

"Works" means the sewage works described in the Owner's application, and this Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

(1) The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Works* is notified of this *Approval* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

(2) Except as otherwise provided by these conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Approval*, and the application for approval of the W *orks*.

(3) Where there is a conflict between a provision of any document in the schedule referred to in this *Approval* and the conditions of this *Approval*, the Conditions in this *Approval* shall take precedence, and where there is a conflict between the documents in the schedule, the document bearing the most recent date shall prevail.

(4) Where there is a conflict between the documents listed in the Schedulesubmitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.

(5) The Conditions of this *Approval* are severable. If any Condition of this *Approval*, or the application of any requirement of this *Approval* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *Approval* shall not be affected thereby.

2. EXPIRY OF APPROVAL

The approval issued by this *Approval* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Approval*.

3. CHANGE OF OWNER

The *Owner* shall notify the *District Manager* and the *Director,* in writing, of any of the following changes within thirty (30) days of the change occurring:

(a) change of Owner;

(b) change of address of the Owner;

(c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the Business Names Act , R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager;* and

(d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the Corporations Information Act, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager.*

4. OPERATION AND MAINTENANCE .

(1) The *Owner* shall ensure that the design minimum liquid retention volume(s) is maintained at all times *.*

(2) TThe *Owner* shall conduct visual inspections of the SWM facility at the time of conducting the monitoring sampling required in Condition 6, prepare a photo record of the facility and, if necessary, clean and maintain the *Works* to prevent the excessive buildup of sediments and/or vegetation.

(3) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the Owner's offices for inspection by the *Ministry*. The logbook shall include the following:

(a) the name of the Works; and

(b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

5. RECORD KEEPING

The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance and monitoring

activities required by this Approval.

6. MONITORING PROGRAM

(1) Upon commencement of operation of the *Works*, the *Owner* shall implement a monitoring program based on water levels and effluent discharge from the site during the following number of events until such time when the works are decommissioned and/or replaced with the ultimate stormwater management facility.

Table 1 - Monitoring Program			
Parameter	Frequency	Sample Type	
(milligrams per litre unless)			
otherwise indicated)			
Sample point: Pond's			
influent			
Total Suspended Solids	as per subsection (2)	Composite (*)	
Sample point: Pond's			
effluent			
Flow drawdown estimate	as per subsection (2)	field	
(m³/sec)			
Total Suspended Solids	as per subsection (2)	three equal volume grab	
		samples	
Total Phosphorus	as per subsection (2)	three equal volume grab	
		samples	
Temperature (°C)	as per subsection (2)	field	
Pond and Carp River water	as per subsection (2)	field	
levels (m)			

Note: (*) Composite samples collected utilizing automated equipment or a minimum of three equal volume grab samples per sample event.

(2) The *Owner* shall implement the monitoring program with the following minimum sample event frequency:

- (a) Two (2) small rainfall events (less than 7mm);
- (b) Two (2) medium rainfall events (7-15 mm); and
- (c) Three (3) large rainfall events (greater than 15 mm).

(3) The *Owner* shall submit an annual stormwater monitoring report to the *District Manager* by March 31 of each calendar year and provide a copy to the City of Ottawa's Infrastructure Approvals Division - Planning Branch and to the Planning and Growth Management Department so the City can review and include results in the Kanata West Overall Monitoring Report. The annual reports shall cover the monitoring period for the previous calendar year.

(4) The *Owner* shall provide a copy of the annual monitoring reports and its associated data to the City of Ottawa, so that the City can review it and include those results in the City's Annual Overall

Monitoring Report in accordance with the Implementation Plan for the Kanata West Development Area.

(5) The Owner shall include in the annual monitoring reports for the reporting period the following:

(a) a description of the physical works, its location, and how it is designed to function;

(b) monitoring results and interpretation of data for acuracy or deviation from the design quality and quantity controls and confirm the current hydrological and hydraulic models and an estimate of baseflow from the stormwater management (SWM) facility;

(c) an evaluation of the pond's performance and its ability to meet the design performance criteria of 70% TSS removal (during the monitoring period);

(d) an estimate of the percentage of build out for the contributing drainage area of the SWM facility;

(e) an estimate of the SWM facility's baseflow and flow drawdown characteristics;

(f) a description of any consideration that may need to be implemented upon transition and/or decommissioning of the interim facility once an ultimate SWM facility is provided;

(g) estimated of the flow drawdown characteristics of the SWM facility;

(h) a description of any operating problems encountered and corrective actions taken during the reporting period and the need to further investigation in the following reporting period for pond refinements or ways of improving the performance of the facility to meet the performance target;

(i) any need for modifications of the monitoring program;

(j) a summary of any complaints received during the reporting period and any steps taken to address the complaints;

(k) inspection logs and facility photos taken at time of monitoring events; and

(I) any other information as required by the District Manager from time to time.

7. SOURCE WATER PROTECTION

The *Owner* shall, within sixty (60) calendar days of the Minister of the Environment posting approval of a *Source Protection Plan* on the environmental registry established under the Environmental Bill of Rights, 1993 for the area in which this *Approval* is applicable, apply to the *Director* for an amendment to this *Approval* that includes the necessary measures to conform with all applicable policies in the approved *Source Protection Plan*.

Schedule A

Environmental Compliance Approval (ECA) supporting documents:

1. Application for the Approval of Municipal and Private Water and Sewage Works submitted by Fairouz Wahab, P.Eng., Project Manager of Minto Communities Inc, dated June 7, 2012 and supporting documentation.

2. Technical Memo from the Model Keeper, Greenland International Consulting to Don Herweyer of the City of Ottawa, dated June 20, 2012.

3. Arcadia Phase I Stormwater Management Report, Rev 2- MOE Submission, prepared by IBI Group of Ottawa, ON, dated June 2012.

4. Arcadia Interim SWMF Design Brief, Rev 3 - MOE Submission, prepared by IBI Group of Ottawa, ON, dated June 2012.

5. Letter from Peter Spal, P.Eng. of IBI Group to Edgar Tovilla, P.Eng. of the MOE, dated September 4, 2012, in response to information requested.

6. City of Ottawa's Kanata West Overall Monitoring Plan, City of Ottawa's website printout dated September 4, 2012.

The reasons for the imposition of these terms and conditions are as follows:

1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Approval* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.

2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment...

3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved *Works* and to ensure that subsequent owners of the works are made aware of the *Approval* and continue to operate the works in compliance with it.

4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected .

5. Condition 5 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.

6. Condition 6 is included to enable the *Owner* to evaluate and demonstrate the performance of the *Works*, on a continual basis, so that the *Works* are properly operated and maintained at a level which is consistent with the Implementation Plan - Kanata West Development Area report, the Carp River Overall Monitoring Program and requirements specified in the Minister's Decision Letter of March 30, 2011, and that the *Works* does not cause any impairment to the receiving watercourse.

7. Condition 7 is included to ensure that the works covered by this *Approval* will conform to the significant threat policies and designated Great Lakes policies in the *Source Protection Plan.*

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

 The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
 The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5	AND	The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5
--	-----	---

* Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 17th day of September, 2012

Mansoor Mahmood, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

ET/ c: District Manager, MOE Ottawa Peter Spal, P. Eng., IBI Group

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

> ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 5440-9W3SZT Issue Date: May 1, 2015

Minto Communities Inc. 180 Kent Street West, No. 200 Ottawa, Ontario K1P 0B6

Site Location: Country Glen Way - Ward 4 Kanata North Lot Part of 3, Concession 1 March City of Ottawa

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

Installation of storm and sanitary sewers to provide service for the Arcadia Retail Development site in the Community of Kanata West, City of Ottawa. The proposed works are as follows:

Storm sewers (250-1500mm dia.) on Country Glen Way, from the parking lot near the southeast entrance of the mall, discharging to existing storm sewers on Campeau Drive;

Sanitary sewers (200-300mm dia.) on Country Glen Way, from the southeast entrance of the mall, discharging to existing sanitary sewers on Campeau Drive;

including control measures during construction and all other appurtenances essential for the proper operation of the aforementioned works;

all in accordance with the supporting documents listed in Schedule "A" forming part of this Approval.

Schedule "A"

Applications for Environmental Compliance Approval, dated February 12, 2015, received April 15, 2015, submitted by Minto Communities Inc.;

Engineering Drawings dated November 2013, prepared by Demetrius Yannoulopoulos of IBI Group;

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

 The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
 The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5	AND	The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 2 St. Clair Avenue West, Floor 12A Toronto, Ontario
		M4V 1L5

* Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 1st day of May, 2015

Edgardo Tovilla, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

HZ/ c: District Manager, MOECC Ottawa Demetrius Yannoulopoulos, IBI Group

Tyler Ferguson

Subject:

RE: 340 Huntmar - Percolation Rate

From: Scott Dennis <<u>sdennis@Patersongroup.ca</u>> Sent: Thursday, April 26, 2018 4:13 PM To: Curtis Melanson <<u>c.melanson@mcintoshperry.com</u>> Cc: Mat Mault (<u>mat.mault@activar.ca</u>) <<u>mat.mault@activar.ca</u>>; Benjamin Clare <<u>b.clare@mcintoshperry.com</u>>; David Gilbert <<u>DGilbert@Patersongroup.ca</u>> Subject: RE: 340 Huntmar - Percolation Rate

Curtis,

The estimated percolation rate for the silty clay at the 340 Huntmar Site is 35 to 50 mins/cm. This is based on data from a nearby site on Palladium Drive. Please let me know if you require additional information.

Regards, Scott Dennis Geotechnical Engineer

patersongroup

Solution Oriented Engineering

T: (613) 226-7381 ext. 332 154 Colonnade Road South Ottawa, Ontario K2E 7J5

APPENDIX B CITY OF OTTAWA PRE-CONSULTATION NOTES

Peter Kirkimtzis

From:	McCreight, Laurel <laurel.mccreight@ottawa.ca></laurel.mccreight@ottawa.ca>
Sent:	Monday, June 26, 2017 2:26 PM
То:	'Mat Mault'
Cc:	Curtis Melanson; m.dredge@dl-arch.ca
Subject:	Pre-Consultation Follow-Up: 340 Huntmar
Attachments:	RE: Pre-consultation Request for Kanata Microtel Inn & Suites; Plan & Study List.pdf

Hi Mat,

Sorry for the delay in following up on our pre-consultation meeting on Friday June 16th regarding 340 Huntmar Drive. Please find a summary of our meeting below, as well as a Plan and Study list attached.

General

- Proposal for a Microtel Inn & Suites
- Land is part of a previously approved Minto for Arcadia Retail Complex
- Will sever off parcel for hotel
 - o Will require a Severance application to the <u>Committee of Adjustment</u>
 - Please consult with Amanda Marsh (<u>amanda.marsh@ottawa.ca</u>) the Committee of Adjustment Planner on the severance application
- Possibly short on parking
 - Review <u>Section 106(3)</u> of the Zoning By-law for requirements on small car parking to potentially meet parking requirements
 - If parking requirements cannot be met, a <u>Minor Variance</u> can be applied for at the Committee of Adjustment
- Please use the address of 340 Huntmar and not 370
 - o The Committee of Adjustment will assign a new address as part of the severance process
- A new <u>Site Plan Control application</u> (New- Manager Approval, Public Consultation) will be required as a result of the severance
- Please refer to the link for "Guide to Preparing Studies and Plans" in the attached plan/study list for proper submission requirements

Engineering

- Looking for verification regarding as-builts by Minto in order to support servicing through their site
- Water age analysis required
- An infiltration gallery will be required for the site, as this was missed in the previous Arcadia Site Plan and is required through the Kanata West Master Servicing Study
 - o The geotechnical investigation will provide the percolation rate
 - A Joint Use and Maintenance Agreement with be required
 - Can be done through the severance process
- The site has an existing ECA
 - o What type of amendment is needed/required to proceed
 - Will require confirmation from MOE
- Please contact Mark Fraser (<u>mark.fraser@ottawa.ca</u>) for any engineering questions

Urban Design

- Keep in mind the treatment of internal drive aisles
- Respect the design of the commercial site in terms of parking in the middle

- Take advantage of the Feedmill Creek Corridor
 - Think of putting the pool component creekside near the future pedestrian pathway (which will be on the north side of the creek)
 - o Outdoor patio outside of pool area
 - Access to outdoor trail network
- Design of hotel
 - o Contemporary and appropriate
 - Please provide a stronger base- masonry on 1st floor
 - o Provide a secondary access out to Huntmar on the backside of the building

Urban Design Review Panel

- The proposed development is subject to review by the <u>Urban Design Review Panel</u>
- The submission requirements and agenda schedule is contained in the UDRP link above
- An informal preconsultation is not necessary
- This can be run congruently with the site plan
- Will try to be on the agenda within the first month of site plan application being submitted
 - Items to be aware of from previous UDRP (Arcadia site plan)
 - Reference the Kanata West Concept Plan
 - Address the public realm (Huntmar)
 - The Queensway is a scenic entry route; describe what would be seen from the highway
 - Animation of end treatments

Transportation

• See attached e-mail from Riley Carter's for preliminary comments (the West Group's new Project Manager for transportation is Rosanna Baggs)

Please do not hesitate to contact me if you have any questions.

Regards, Laurel

Laurel McCreight MCIP, RPP Planner Development Review West

Development Review West Urbaniste Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 16587 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

APPENDIX C WATERMAIN FLOW & FIRE CALCULATIONS

McINTOSH PERRY

Tyler Ferguson

Subject:

RE: Follow-up on water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

From: Lance Erion <<u>lerion@IBIGroup.com</u>> Sent: Monday, November 27, 2017 2:02 PM To: Allan Kyd <<u>AKyd@minto.com</u>>; Ryan Kennedy <<u>r.kennedy@mcintoshperry.com</u>> Cc: Curtis Melanson <<u>c.melanson@mcintoshperry.com</u>>; Benjamin Clare <<u>b.clare@mcintoshperry.com</u>> Subject: RE: Follow-up on water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Based on the daily water consumption and the required fire flow demand our water model shows that a second watermain feed is not required to service the hotel site.

Regards,

Lance Erion P.ENG

Associate

IBI GROUP 400-333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 516 fax +1 613 225 9868

іві

Defining the cities of tomorrow ibigroup.com

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message. NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Allan Kyd [mailto:AKyd@minto.com]

Sent: Monday, November 27, 2017 1:29 PM

To: 'Ryan Kennedy' <<u>r.kennedy@mcintoshperry.com</u>>; Lance Erion <<u>lerion@IBIGroup.com</u>> Cc: Curtis Melanson <<u>c.melanson@mcintoshperry.com</u>>; Benjamin Clare <<u>b.clare@mcintoshperry.com</u>> Subject: Follow-up on water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Thanks Ryan. Much appreciated.

Lance is this what you're looking for?

Let me know.

Thanks,

Allan

Allan Kyd Leasing Manager From: Ryan Kennedy [mailto:r.kennedy@mcintoshperry.com] Sent: Monday, November 27, 2017 1:24 PM To: Allan Kyd Cc: Lance Erion (lerion@ibigroup.com); Curtis Melanson; Benjamin Clare Subject: RE: Question regarding water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Hi Allan,

Per IBI's request below, please note the following demands for the hotel:

- Average daily demand = 0.28 L/s
- Maximum daily demand = 0.41 L/s
- Peak hour demand = 0.75 L/s
- Fire demand = 150 L/s

Hope this helps -let me know if you require anything further.

Thanks.

Ryan Kennedy, P. Eng.

Practice Area Lead | Land Development 115 Walgreen Road, RR 3, Carp, ON K0A 1L0 T. 613.836.2184 (ext 2243) | F. 613.836.3742 | C. 613.868.5790

r.kennedy@mcintoshperry.com | www.mcintoshperry.com

Mcintosh Perry

Confidentiality Notice – If this email wasn't intended for you, please return or delete it. If you want to read all of the legal language around this concept, click here .

From: Benjamin Clare Sent: Friday, November 24, 2017 10:54 AM To: Curtis Melanson <<u>c.melanson@mcintoshperry.com</u>> Subject: FW: Question regarding water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Hi Curtis,

See below, for your input. Please also copy me when you respond to Allan re: servicing plans, easements, etc.

Thanks,

Benjamin Clare, MCIP RPP

Senior Land Use Planner T. 613.836.2184 (ext 2290) | C. 613.552.0925 From: Allan Kyd [<u>mailto:AKyd@minto.com</u>] Sent: November-24-17 10:38 AM To: Benjamin Clare <<u>b.clare@mcintoshperry.com</u>> Cc: Ed Ireland <<u>ed.ireland@IBIGroup.com</u>>; Jean-Michel Le Blanc <<u>JLeBlanc@minto.com</u>>; Curtiss Scarlett <<u>CScarlett@minto.com</u>>; 'Lance Erion' <<u>lerion@IBIGroup.com</u>> Subject: Question regarding water consumption requirements - Country Glen Way Construction Drawings - Arcadia Hotel

Hi Ben,

We're trying to finalize our water loop requirements and our 'civil' was asking what the hotel's:

aily consumption requirements and
 fire demand

Capacity currently provided is:

> My analysis shows the fire flow available, in our design we calculated a fire flow demand of 183.3 l/s for retail. Does the Hotel require a higher fire flow than 194 l/s, also the City can require a second water main connection if the average flow exceeds 50,000 l/day, do you have the Hotel's daily water demand.

Could you let us know? See Lance's email below for more detail.

Τx,

AK

-----Original Message-----From: Lance Erion [mailto:lerion@IBIGroup.com] Sent: Friday, November 24, 2017 9:51 AM To: Allan Kyd Cc: Ed Ireland; Jean-Michel Le Blanc; Curtiss Scarlett Subject: RE: AKs reply to completion of interior water loop - Country Glen Way Construction Drawings - Arcadia Hotel

There is no issue with pressure or water stagnating as a hotel is a high user of water. I need to know the fire demand for the hotel and the daily water consumption, can you request this from the hotel's civil engineer.

Regards,

Lance Erion P.Eng Associate IBI Group 400-333 Preston Street Ottawa ON K1S 5N4 Canada

tel 613 225 1311 ext 516 fax 613 225 9868 email lerion@IBIGroup.com web www.ibigroup.com

NOTE: This e-mail message and attachments may contain privileged and confidential information. If you have received this message in error, please immediately notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

-----Original Message-----From: Allan Kyd [mailto:AKyd@minto.com] Sent: Friday, November 24, 2017 7:08 AM To: Lance Erion <lerion@IBIGroup.com> Cc: Ed Ireland <ed.ireland@IBIGroup.com>; Jean-Michel Le Blanc <JLeBlanc@minto.com>; Curtiss Scarlett <CScarlett@minto.com> Subject: AKs reply to completion of interior water loop - Country Glen Way Construction Drawings - Arcadia Hotel

Thanks for getting back Lance. I think we're less concerned with the water service capacity being able to service the hotel requirements but will get confirmation that we're OK. What we wanted to know is, will the City require us to complete the primary loop to Campeau Dr. before allowing the Hotel to use their water service. Apparently there could be some concern about water stagnating in the pipe and perhaps some pressure issues. I've heard the City typically wants the water to have two primary service outlets to be operational. Not exactly sure as this is not my area of expertise. Is that something you can provide us some direction on?

Let us know would you.

Thanks,

Allan Sent from my iPad

Allan Kyd Leasing Manager Minto Properties 200-180 Kent St, Ottawa, ON, K1P 0B6 T 613.786.7934 | F 6137863001 minto.com

You are receiving this email because you may have expressly consented to receive commercial electronic messages from Minto Group of Companies (Minto Properties Inc, Minto Communities Canada Inc., Minto Communities LLC.) and affiliates. To unsubscribe, please click here. Contact Minto Group of Companies at 200-180 Kent Street, Ottawa ON K1P 0B6 or 1-877-751-2852. Click here to access our privacy policy.

Boundary Conditions 340 Huntmar Drive.

Information Provided

Date provided: 25 April 2018

	Demand		
Scenario	L/min L/s		
Average Daily Demand	16.8	0.3	
Maximum Daily Demand	24.6	0.4	
Peak Hour	45	0.8	
Fire Flow Demand	11000	183.3	

of connections

1

Location

Results

Connection 1 - 340 Huntmar Drive

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	162.0	82.6
Peak Hour	158.0	76.9
Max Day plus Fire (11,000 l/min)	147.8	70.8

¹ Ground Elevation = 103.91 m

Considerations

1. Pressure reducing valves are to be installed due to pressure exceeding 80 psi (552 kPa) as per City of Ottawa Water Design Guidelines.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

CP-17-0199 - 340 Huntmar Drive - Water Demands

Project:	340 Huntmar Drive	
Project No.:	CP-17-0199	
Designed By:	PGK	
Checked By:	RPK	
Date:	May 9, 2018	
Site Area:	0.65 gross ha	
Bed-Space:	108 Suites	

AVERAGE DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	350	L/c/d
Industrial - Light	35,000	L/gross ha/d
Industrial - Heavy	55,000	L/gross ha/d
Shopping Centres	2,500	L/(1000m² /d
Hospital	900	L/(bed/day)
Schools	70	L/(Student/d)
Trailer Parks no Hook-Ups	340	L/(space/d)
Trailer Park with Hook-Ups	800	L/(space/d)
Campgrounds	225	L/(campsite/d)
Mobile Home Parks	1,000	L/(Space/d)
Motels	150	L/(bed-space/d)
Hotels	225	L/(bed-space/d)
Tourist Commercial	28,000	L/gross ha/d
Othe Commercial	28,000	L/gross ha/d
AVERAGE DAILY DEMAND	0.28	L/s

MAXIMUM DAILY DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	2.5 x avg. day	L/c/d
Industrial	1.5 x avg. day	L/gross ha/d
Commercial	1.5 x avg. day	L/gross ha/d
Institutional	1.5 x avg. day	L/gross ha/d
MAXIMUM DAILY DEMAND	0.42	L/s

MAXIMUM HOUR DEMAND

DEMAND TYPE	AMOUNT	UNITS
Residential	2.2 x max. day	L/c/d
Industrial	1.8 x max. day	L/gross ha/d
Commercial	1.8 x max. day	L/gross ha/d
Institutional	1.8 x max. day	L/gross ha/d
MAXIMUM HOUR DEMAND	0.76	L/s

WATER DEMAND DESIGN FLOWS PER UNIT COUNT CITY OF OTTAWA - WATER DISTRIBUTION GUIDELINES, JULY 2010

CP-17-0199 - 340 Huntmar Drive - OBC Fire Calculations

Project:	340 Huntmar Drive
Project No.:	CP-17-0199
Designed By:	PGK
Checked By:	RPK
Date:	May 9, 2018

Ontario 2006 Building Code Compendium (Div. B - Part 3)

Water Supply for Fire-Fighting - Hotel

Building is classified as Group: D (from table 3.2.2.55) Building is of noncombustable construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2, including loadbearging walls, columns and arches.

From Div. B A-3.2.5.7. of the Ontario Building Code - 3. Building On-Site Water Supply:

(a) Q = K x V x Stot

where:

Q = minimum supply of water in litres

K = water supply coefficient from Table 1

V = total building volume in cubic metres

Stot = total of spatial coefficient values from the property line exposures on all sides as obtained from the formula:

Stot = 1.0 + [Sside1+Sside2+Sside3+...etc.]

							From
К	18	from Table 1 pg A-31) (Worst case occupancy {E / F2} 'K' v	alue used)				Figure 1
V	17,149	Total building volume in m ³ .)					(A-32)
Stot	1.7	From figure 1 pg A-32)		Snorth	6.934	m	0.3
Q =	524,751.75	-		Seast	60.266	m	0.0
-				Ssouth	4.925	m	0.5
From Table 2: Required Minim	um Water Supply Fi	ow Rate (L/s)		Swest	14.597	m	0.0

*approximate distances

From Table 2: Required Minimum Water Supply Flow Rate (L/s)

9000 L/min (if Q >270,000 L) 2378 gpm

CP-17-0199 - 340 Huntmar Drive - Fire Underwriters Survey (FUS) Fire Calculations

Project:	340 Huntmar Drive
Project No.:	CP-17-0199
Designed By:	PGK
Checked By:	RPK
Date:	May 9, 2018

From the Fire Underwriters Survey (1999)

From Part II – Guide for Determination of Required Fire Flow Copyright I.S.O.: $F = 220 \text{ x C x } \sqrt{A}$ Where: F = Required fire flow in liters per minute C = Coefficient related to the type of construction.

The total floor area in square meters (including all storey's, but excluding basements at least A = 50 percent below grade) in the building being considered.

1 of 2

A. Determine The Coefficient Related To The Type Of Construction

The building is considered to be of ordinary construction type. Therefore,

C = 1.00

B. Determine Ground Floor Area

As provided by the Architect: Floor Area (One Floor) = 1,008.75 m² A = 4,035.00m²

This floor area represents the final build-out of the development; as outlined on the Site Plan drawing.

4.00

C. Determine Height in Storeys

From Architectural Drawings: Number of Storeys =

D. Calculate Required Fire Flow

F = 220 x C x vA F = 220.0013,974.76 L/min. F =

4035.00 X V

1.00

Х

E. Determine Increase or Decrease Based on Occupancy

From note 2, Page 18 of the Fire Underwriter Survey:				
Low Hazard - Hotel				
No Change				
Occupancy Decrease	=	0.00 L/min.		
F	=	13,974.76 L/min.		

CP-17-0199 - 340 Huntmar Drive - Fire Underwriters Survey (FUS) Fire Calculations

2 of 2

F. Determine the Decrease, if any for Sprinkler Protection

From note 3, Page 18 of the Fire Underwriter Survey:

- The flow requirement may be reduced by up to 50% for complete automatic sprinkler protection depending upon adequacy of the system.
- The credit for the system will be a maximum of 30% for an adequately designed system conforming to NFPA 13 and other NFPA sprinkler standards.
- Additional credit of 10% if water supply is standard for both the system and fire department hose lines
- If sprinkler system is fully supervised system, an additional 10% credit is granted
- The entire building will be installed with a fully automated, standardized with the City of Ottawa Fire Department and fully supervised.
- Therefore the value obtained in Step E is reduced by 30% (The building is sprinklered with a standard system and fire department hose lines)
 - Reduction = 13,974.76 L/min. X 30%

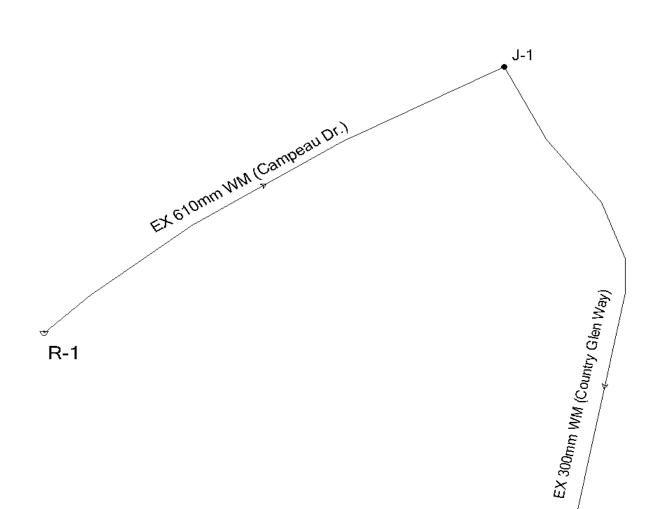
Reduction = 4,192.43 L/min.

G. Determine the Total Increase for Exposures

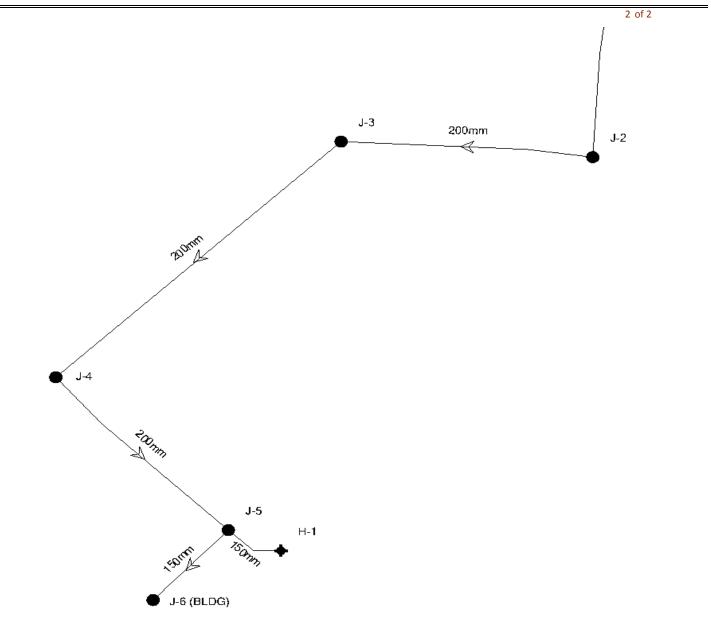
From note 4, Page 18 of the Fire Underwriter Survey: Exposure distance to the concept future development layout adjacent to the proposed site on the north and east sides of the building will likely be between 30.1m-45m or greater.
There are no existing buildings surrounding the remainder of the site that are within 45m.
Therefore the charge for exposure is 10% of the value obtained in Step E. Increase = 13,974.76 L/min. X 10%

H. Determine the Total Fire Demand

.


To the answer obtained in E, substract the value obtained in F and add the value obtained in G Fire flow should be no less than 2,000L/min. and the maximum value shoul not exceed 45,000L/min.

> F = 13,974.76 L/min. - 4,192.43 L/min. + 1,397.48 L/min. F = 11,179.81 L/min.


Therefore, after rounding to the nearest 1,000 L/min, the total required fire flow for the development is 11,000 L/min (3,434 GPM).

1 of 2

Average Day

				5	,
Label	Elevation	Demand	Pressure	Hydraulic Grade	
	(m)	(L/min)	(psi)	(m)	
J-1	92.50	0.00	98.65	162.00	
J-2	94.24	0.00	96.18	162.00	
J-3	95.61	0.00	94.24	162.00	
J-4	96.98	0.00	92.29	162.00	
J-5	96.77	0.00	92.59	162.00	
J-6 (BLDG)	97.38	16.80	91.73	162.00	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i (SELECTseries 6) [08.11.06.113] Page 1 of 1

Peak Hourly

					_
Label	Elevation (m)	Demand (L/min)	Pressure (psi)	Hydraulic Grade (m)	
J-1	92.50	0.00	92.97	158.00	1
J-2	94.24	0.00	90.50	158.00	1
J-3	95.61	0.00	88.56	158.00	1
J-4	96.98	0.00	86.61	158.00	1
J-5	96.77	0.00	86.91	158.00	1
J-6 (BLDG)	97.38	45.60	86.05	158.00	1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i (SELECTseries 6) [08.11.06.113] Page 1 of 1

					,			
ID	Label	Is Fire Flow Run Balanced?	Satisfies Fire Flow Constraints?	Fire Flow (Needed) (L/min)	Fire Flow (Available) (L/min)	Pressure (psi)	Elevation (m)	Demand (L/min)
112	H-1	True	True	11,000.00	11,157.75	72.29	96.87	0.00
108	J-1	False	False	11,000.00	(N/A)	78.50	92.50	0.00
103	J-2	False	False	11,000.00	(N/A)	76.03	94.24	0.00
104	J-3	False	False	11,000.00	(N/A)	74.08	95.61	0.00
101	J-4	False	False	11,000.00	(N/A)	72.14	96.98	0.00
96	J-5	False	False	11,000.00	(N/A)	72.43	96.77	0.00
99	J-6 (BLDG)	False	False	11,000.00	(N/A)	71.57	97.38	25.20

Max Day + Fire Flow

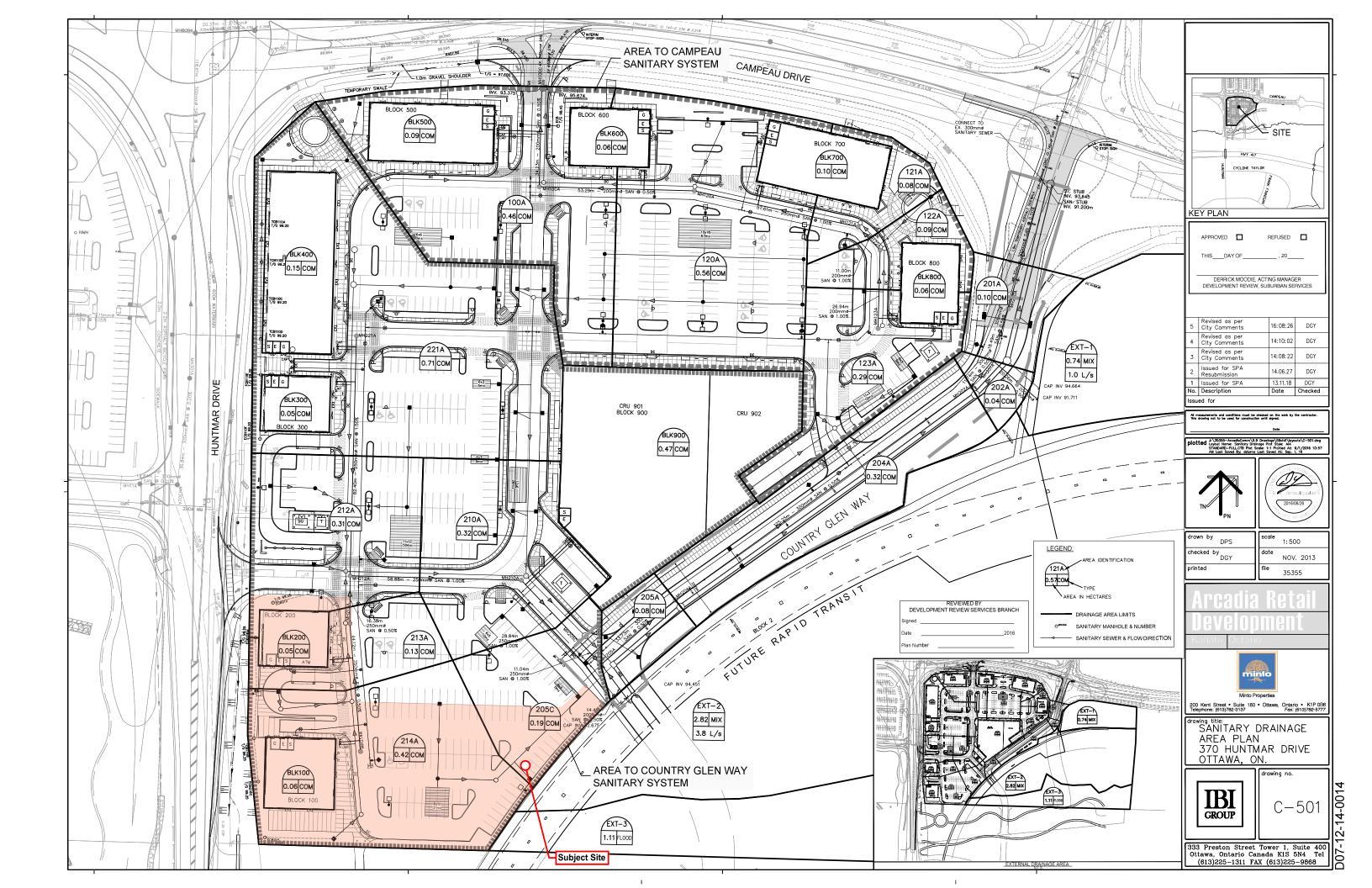
CP-17-0199 - Huntmar.wtg 28/04/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i (SELECTseries 6) [08.11.06.113] Page 1 of 1

APPENDIX D SANITARY SEWER CALCULATIONS

McINTOSH PERRY

IBI Group 400-333 Preston Street


Ottawa, Ontario K1S 5N4

	LOCATION							RESIDENTIA	L						ICI ARE	AS			INFIL	TRATION ALLO	OWANCE	TOTAL			The second second	PROPOSED	SEWER DESIGN			
			1		UNI	T TYPES		AREA	POPL	JLATION	PEAK	PEAK			REA (Ha)			PEAK	ARI	EA (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	VELOCITY	AVA	AILABLE
STREET	AREA ID	FROM	TO MH	SF	SD	TH	APT	(Ha)	IND	CUM	FACTOR	FLOW (L/s)	INSTITUTIONA IND CU		MMERCIAL		DUSTRIAL	FLOW	IND	CUM	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	(actual)		APACITY
		INH	NIH .				/					(L/5)	IND CO	A IND	CUM	IND	CUM	(L/s)					(-/-/	(,	((70)	(m/s)	(m/s)	L/s	(%)
	BLK800	BLK800A	MAIN						0.0	0.0	4.00	0.00	0.0	0.06	0.06		0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.50	150	1.00	0.871	-	15.82	99.57
	123A	MH123A	MH122A						0.0	0.0	4.00	0.00	0.0	0.29	0.35		0.00	0.30	0.29	0.35	0.10	0.40	24.02	26.04	-					
	122A	MH122A	MHIZIA					1	0.0	0.0	4.00	0.00	0.0				0.00	0.38	0.09	0.44	0.12	0.40	34.22	26.94	200	1.00	1.055		33.81	98.83
			-	_				1.000			220.5				-											1.00	1.055		33.71	98.52
	BLK700	BLK700A	MAIN						0.0	0.0	4.00	0.00	0.0	0.10	0.10	-	0.00	0.09	0.10	0.10	0.03	0,11	15.89	6.50	150	1.00	0.871		15.77	99.28
	121A	MH121A	MH120A						0.0	0.0	4.00	0.00	0.0	0.05	0.62		0.00	0.54	0.08	0.62	0.17	0.71	34.22	57.61	200	1.00	1.055		33.50	97.92
	BLK600	BLK600A	MAIN	-	1				0.0	0.0	4.00	0.00	0.0	0.06	0.04		0.00	0.05	0.06	0.05	0.02	0.07	15.89	6.50	150	1.00				
	4004				1			-							-				0.00			0.07	13.83	8.50	150	1.00	0.871		15.82	99.57
	120A	MH120A	MH100A				-		0.0	0.0	4.00	0.00	0.0	0.55	1.24		0.00	1.08	0.56	1.24	0.35	1.42	24.19	53.29	200	0.50	0.746		22.77	94.12
	BLK500	BLK500A	MAIN						0.0	0.0	4.00	0.00	0.0	0.09	0.09		0.00	0.08	0.09	0.05	0.03	0.10	15.89	15.00	150	1.00	0.871		15.78	99.35
	100A	MHIODA	MH100C						0.0	0.0	4.00	0.00	0.0	0.46	1.79	-	0.00	1.55	0.45	1.79	0.50	2.06	24.19	34.23	200	0.50				
		MH100C	EXMH301A						0.0	0.0				0.00	and the second se		0.00	1.55	0.00	1.79	0.50	2.06	24.19	23.50	200	0.50	0.746		22.14	91.51 91.51
							-			-				_	_	_	_			-				1.11.12.00						
	BLK400	BLK400A	MAIN				-	-	0.0	0.0	4.00	0.00	0.0	0.15	0.15		0.00	0.13	0.15	0.15	0.04	0.17	15.89	6.50	150	1.00	0.871		15.72	98.92
	BLK300	BLK300A	MAIN						0.0	0.0	4.00	0.00	0.0				0.00	0.04	0.05	0.05	0.01	0.06	15.89	6.50	150	1.00	0.871		15.72	98.92
	221A	MHZZIA	MH212A	-					0.0	0.0	4.00	0.00	0.0	0.71	0.91	-	0.00	0.79	0.71	0:91	0.25	1.04	75.98	82.40	250	1.50	1.500	0.733		
				-						1.000													73.30	82.40	230	1.50	1.500	0.522	74.94	98.63
	BLK100 BLK200	BLK100A BLK200A	MAIN				-		0.0	0.0	4.00	0.00	0.0				0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.85	150	1.00	0.871		15.82	99.57
	DENIEGO	DENEGON		Ne. Sterr		1	1/2012	10000	0.0	0.0	4,00	0.00	0.0	0.05	0.03		0.00	0.04	0.05	0.05	0.01	0.06	15.89	6.75	150	1.00	0.871		15.83	99.64
	214A	MH214A	MH213A		and the second	-	11.		0.0	0.0	4.00	0.00	0.0	0.42	0.53		0.00	0.46	0.42	0.53	0.15	0.61	43.87	44.12	250	0.50	0.866	0.301	43.26	98.61
	213A	MH213A	MH212A						0.0	0.0	4.00	0.00	0.0	0.15	0.66	-	0.00	0.57	0.33	0.65	0.18	0.76	43.87	16.38	250	0.50	0.866	0.325	43.11	98.27
	212A	MH212A	MH210A			1			0.0	0.0	4.00	0.00	0.0	0.31	1.88	-	0.00	1.63	0.31	1.88	0.53	2.16	62.04	58.88						
																_				1.000			02.04	30.00	250	1.00	1.224	0.551	59.88	96.52
	BLK900	BLK900A	MAIN						0.0	0.0	4.00	0.00	0.0	0.47	0.47		0.00	0.41	0.47	0.47	0.13	0.54	11.23	22.08	150	0.50	0.616		10.69	95-20
	210A	MH210A	MH205C						0.0	0.0	4.00	0.00	0.0			_	0.00	2.32	0.32	2.67	0.75	3.07	62.04	28.84	250	1.00	1.224	0.633	58.97	95.06
		MH205C	MH205A			·			0.0	0.0	4.00	0.00	0.0	0.19	2.86	-	0.00	2.48	0.19	2.86	0.80	3.28	62.04	11.04	250	1.00	1.224	0.633	58.76	94.71
External South mixed	EXT 2	STUB	MH205A			-			0.0	0.0	4.00	0.00	0.0		0.00		0.00	3.01	2.82	2.82	0.79	3.80	24.19	14.51	200	0.50	0.746		20.39	84.29
Street 1	205A	MH205A	MILZOAA				-		0.0	0.0	4.00	0.00	0.0	0.02	2.94	-	0.00										1	(112		GHES
Street 1	203A	MHZDAA	MH202A			-		1	0.0	0.0	4.00	0.00	0.0		3.26	-	0.00	5.56	0.08	5:76	1.61	7.18	71.33	33.73 125.25	300	0.50	0.978	0.620	64.16	89.94
Street 1	202A	MH202A	MH201A						0.0	0.0	4.00	0.00	0.0				0.00	5.87	0.04	6.12	1.71	7.59	71.33	11.74	300	0.50	0.978	0.628	63.79 63.75	89.43 89.36
External East Mix	EXT-1	Stub	MH201A						0.0	0.0	4.00	0.00	0.0		0.00	-	0.00	0.70	0.74	0.74								0.055		1.000
				-												100	0.00	0.79	0.74	0.74	0.21	1.00	24.19	20.27	200	0.50	0.746		23.19	95.87
Street 1	201A 200A	MH201A MH200A	MH200A	-					0.0	0.0	4.00	0.00	0.00			-	0.00	6.75	0.10	6.96	1.95	8.70	71.33	18.49	300	0.50	0.978	0.659	62.63	87.80
Street 1	2004	EX CAP	EX CAP EXMH303A	-				1.00000	0.0	0.0	4.00	0.00	0.00 0.00		3.40	0.00	0.00	6.75	0.00	6.96 6.96	1.95	8.70 8.70	58.82 58.82	45.35 20.50	300 300	0.34	0.806	0.630	50.12	85.20
								1				10 C								0.00		dird	50.02	20.30	300	0.34	0.806	0.630	50.12	85.20
Design Parameters:				Notes:	gs coefficient	(n) =		0.013			Designed:		RM		No.		C TO BE AND	- and the	12 11 1 11 1	Revision Issued for S			Silver and	- 11 p		1022 0 0	Dat		- 1- S- 1- S	
Residential		ICI Areas			d (per capita):		350	D L/day	300) L/day					2,	-	S 110		Revis	sed as per City (11/15/			
SF 3.4 p/p/u			Peak Factor	152	on allowance			B L/s/Ha		L/s/Ha	Checked:		DY	100 1000	3.	-		1000		sed as per City (the second s				_		6/24/2 8/22/2			
TH/SD 2.7 p/p/u		10 L/Ha/day	1,5		tial Peaking F	actor:									4.	1			110000	sed as per City (and the second se			-		-	10/2/2			
APT 1.8 p/p/u		10 L/Ha/day	1,5			ormula = 1+(14									1000								A 8		(•					
Other 60 p/p/Ha		10 L/Ha/day 10 L/Ha/day	MOE Chart		where P = p	population in	thousands				Dwg. Refere	nce:	12345-501		-	The Defe	-		_											
	1700	o Linaloay		1							L				A COMPANY AND A	File Referen 12345.5.7					Date:			-VC>01211			Sheet	(No:	CONTRACTOR OF THE	And the second second

10

SANITARY SEWER DESIGN SHEET

PROJECT: NAME OF PROJECT LOCATION: CITY OF OTTAWA CLIENT: NAME OF CLIENT

Tyler Ferguson

Subject:

RE: Microtel Kanata Pool Backwash Info

From: Nicolas Seguin <<u>nseguin@lrl.ca</u>> Sent: Tuesday, April 3, 2018 3:23 PM To: Curtis Melanson <<u>c.melanson@mcintoshperry.com</u>> Cc: Martin Tessier <<u>mtessier@lrl.ca</u>>; Mathieu Mault <<u>mat.mault@activar.ca</u>> Subject: Microtel Kanata Pool Backwash Info

Hi Curtis,

As discussed on the phone, we don't have a precise value for this at this stage of the project. The pool equipment will be designed by a pool equipment supplier. The pump will be sized based on the required filtration rate of the pool which will be determined by many factors.

This said, on past projects we have seen backwash values go up to 140gpm which would be the worst case.

Let me know if you have other questions on this and I will help as best I can.

Thank you, Nicolas Séguin, P.Eng. Mechanical Engineer

LRL Associates Ltd.

5430 Canotek Road Ottawa, Ontario K1J 9G2

T (613) 842-3434 or (877) 632-5664 ext 264
 C (613) 915-6072

F (613) 842-4338 E <u>nseguin@lrl.ca</u>

W www.lrl.ca

Project:	CP-17-0199 - Microtel Inn & Suites
Designed By:	TDF
Checked By:	RPK
Date:	May 9, 2018

Sanitary Flow Calculations

1. Building Occupancy

The maximum number of suites will be 108 units with a breakfast area and Swimming Pool as per draft architectural floor plans.

2. Daily Volume in Litres

As per the extract of the City of Ottawa Sewer Design Guidelines, Appendix 4-A; Daily Sewage Flow for Motels and Hotels;

Residential Portion

With full housekeeping facilities	= 225 Liters/Person/Day
Non-Residential Portion	
With Dining Room	= 125 Liters/Seat/Day

As per the extract of the City of Ottawa Sewer Design Guidelines, Appendix 4-A; Daily Sewage Flow for Parks, Beaches, Picnic Grounds, Public Swimming Pools;

 Swimming pools & beaches with Bathrooms, showers and toilets

3. Peak Flow (Q/p)

- Q_{Residential}(p) = F x P Where: F = 225 Litres/Person/Day P = 216 People (Occupancy as per Section 3.1.17.1 in OBC)
 Therefore, Q_{Residential} (p) = (225) x (108) = <u>48,600 L/Day (0.563 L/s)</u>
- Therefore, $Q_{\text{Residential}}(p) = (223) \times (100) = \frac{40,000 \text{ L/Day}(0.503 \text{ L/})}{100}$
- $Q_{Non-Residential}(p) = F \times P$ Where: F = 125 Litres/Seat/DayP = 52 Seats
- Therefore, Q_{Non-Residential} (p) = (125) x (52) = <u>6,500 L/Day (0.075 L/s)</u>
- Q_{Pool}(p) = F x P Where: F = 40 Litres/Person/Day P = 42 People (Occupancy as per Section 3.1.17.1 in OBC)
 Therefore, Q₂ : (p) = (40) x (42) = 1.680 L/Day (0.019 L/s)
- Therefore, Q_{Pool} (p) = (40) x (42) = <u>1,680 L/Day (0.019 L/s)</u>

• Q_{TOTAL} = Q_{Residential} + Q_{Non-Residential} + Q_{Pool} Where:

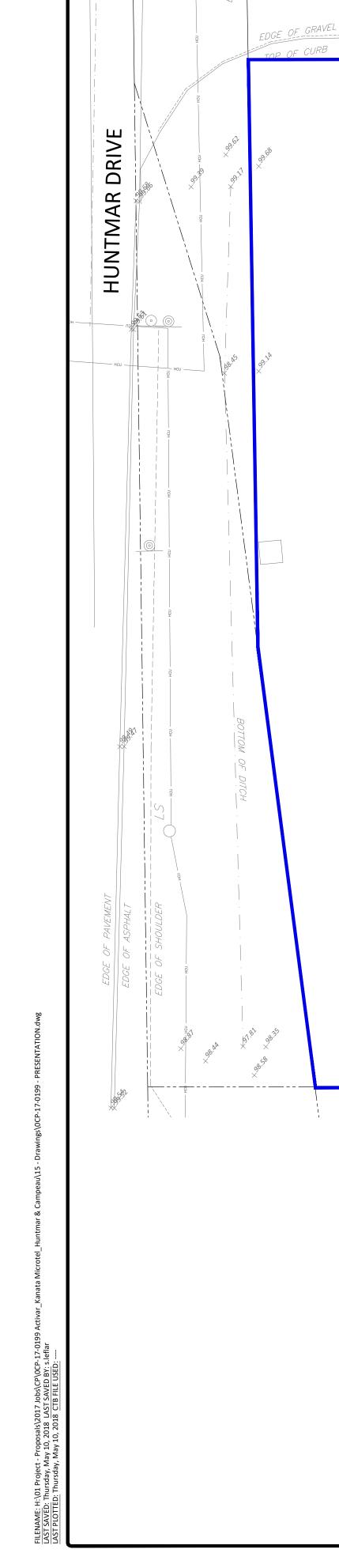
Q _{Residential}	= 48,600 L/Day
Q _{Non-Residential}	= 6,500 L/Day
Q _{Pool}	= 1,680 L/Day

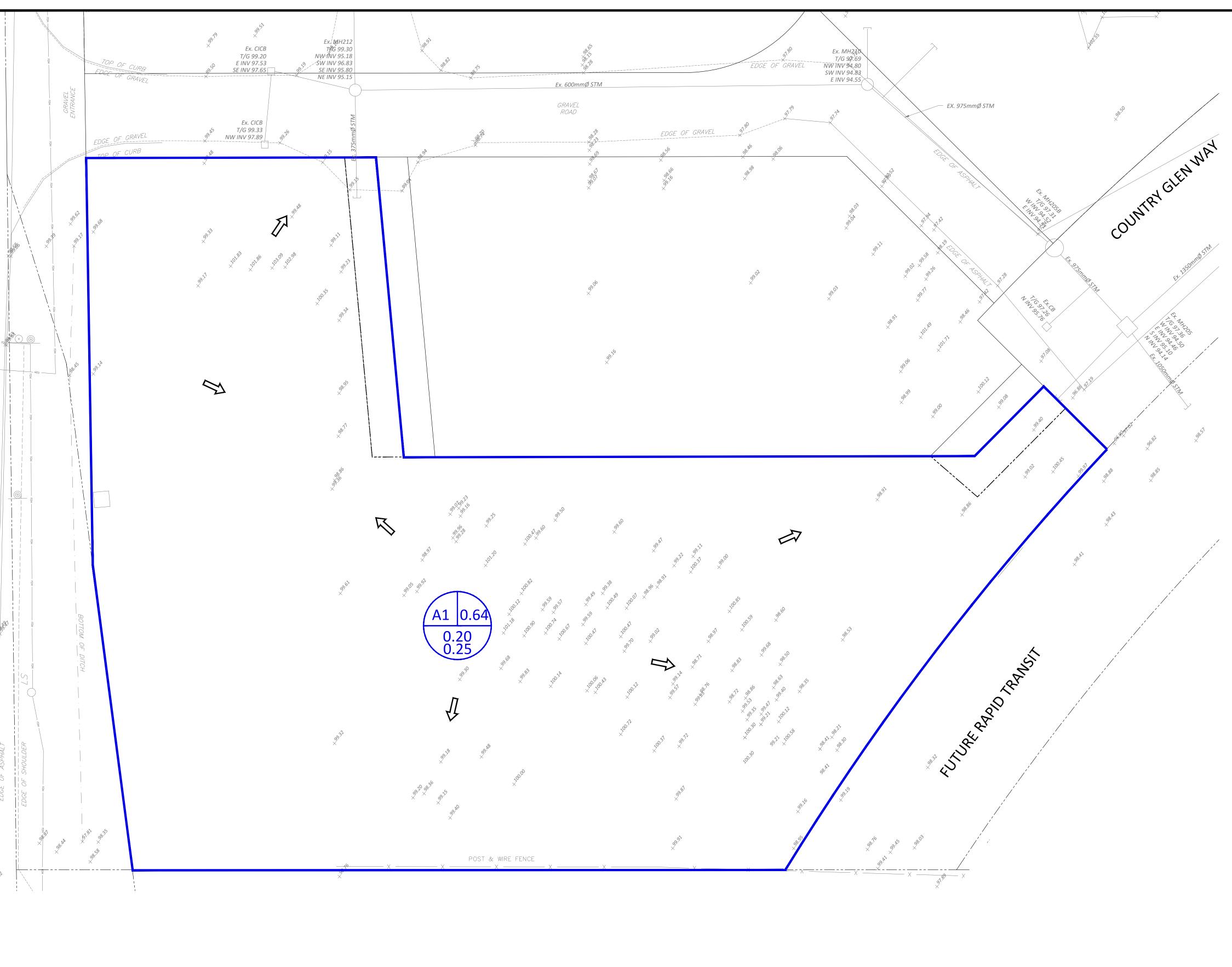
• Therefore, Q_{TOTAL} = (48,600) + (6,500) + (1,680) = <u>56,780 L/Day (0.657 L/s)</u>

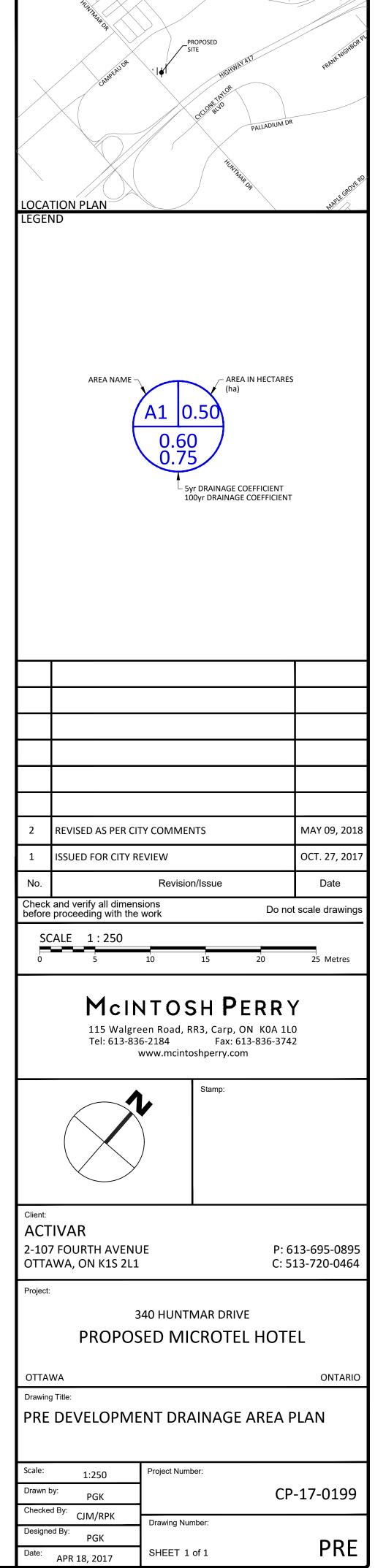
• Q_{TOTAL} * Peaking Factor = Q_{PEAK} (p)

 $Q_{PEAK}(p) =$ (0.657) x (1.5) $Q_{PEAK}(p) =$ **0.986 L/s**

It is anticipated that there will be no issues with capacity constraints within the existing sanitary main as the amount of flow leaving the site is negligible compared to the pipe capacity. Therefore, the existing 250mm sanitary main within the internal access road for the Arcadia Commercial Development will have sufficient capacity to accommodate the increased flows for the new development.

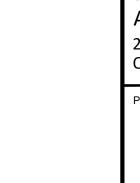

SANITARY SEWER DESIGN SHEET


McINTOSH PERRY


PROJECT: 340 HUNTMAR DRIVE LOCATION: KANATA, ONTARIO CLIENT: ACTIVAR

	LOCA	TION						1	RESIDENTIA								ICI ARE	4S			INFILT	RATION ALL	OWANCE	FLOW				SEWER DAT	A		
1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
						UNI	T TYPES		AREA	POPU	ATION		PEAK			A	REA (ha)			PEAK	AR	EA (ha)	FLOW	DESIGN	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
STREET	AREA II)	FROM MH	то	SF	SD	тн	ΑΡΤ	(ha)	IND	сим	PEAK	FLOW	INSTITU	TIONAL	COL	MMERCIAL	IND	USTRIAL	FLOW	IND	сим	(L/s)	FLOW	(L/s)	(m)	(mm)	(%)	(full)	CAP	PACITY
			MH	MH	эг	30	In	AFI	(iia)	IND	COIN	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)	IND	COIN	(L/3)	(L/s)	(L/3)	(11)	(1111)	(/0)	(m/s)	L/s	(%)
			BUILDING	MH1A					0.00	0.0	0.0	4.00	0.00								0.15	0.15	0.04	1.03	48.39	12.05	200	2.00	1.492	47.36	97.889
			MH1A	MH2A					0.00	0.0	0.0	4.00	0.00		See	e Sanitary	/ Flow Calcu	altions		0.99	0.49	0.64	0.18	1.17	20.24	23.51	200	0.35	0.624	19.08	94.24%
			MH2A	Ex.MH212A					0.00	0.0	0.0	4.00	0.00								0.00	0.64	0.18	1.17	48.45	12.80	250	0.61	0.956	47.29	97.60%
esign Parameters:					Notes:							Designed:					No.					Revision							Date		
					1. Mannir	ngs coefficier	nt (n) =		0.013					PGK			1.	ISSUED F	DR CITY REV	'IEW								(OCT. 27, 201	7	
Residential		IC	l Areas		2. Deman	d (per capita	a):	350	L/day								2.	REVISED	AS PER CITY	COMMENTS									MAY 9, 2018		
SF 3.4 p/p/u				Peak Factor	3. Infiltra	ion allowan	ce:	0.28	L/s/Ha			Checked:																			
TH/SD 2.7 p/p/u	INST	50,000 L	/Ha/dav	1.5	4. Reside	ntial Peaking	Factor:							RPK																	
APT 2.3 p/p/u	COM	50,000 L		1.5				14/(4+P^0.5)))																						
Other 60 p/p/Ha	IND	35,000 L		MOE Chart				n thousands	-			Project No.	:																		
p, p, p,			,,				h - h					,,		CP-17-0199															Sheet No:		
														Ci 17-015.															1 of 1		

APPENDIX E PRE-DEVELOPMENT PLAN



APPENDIX F POST-DEVELOPMENT PLAN

IBI Group 400-333 Preston Street

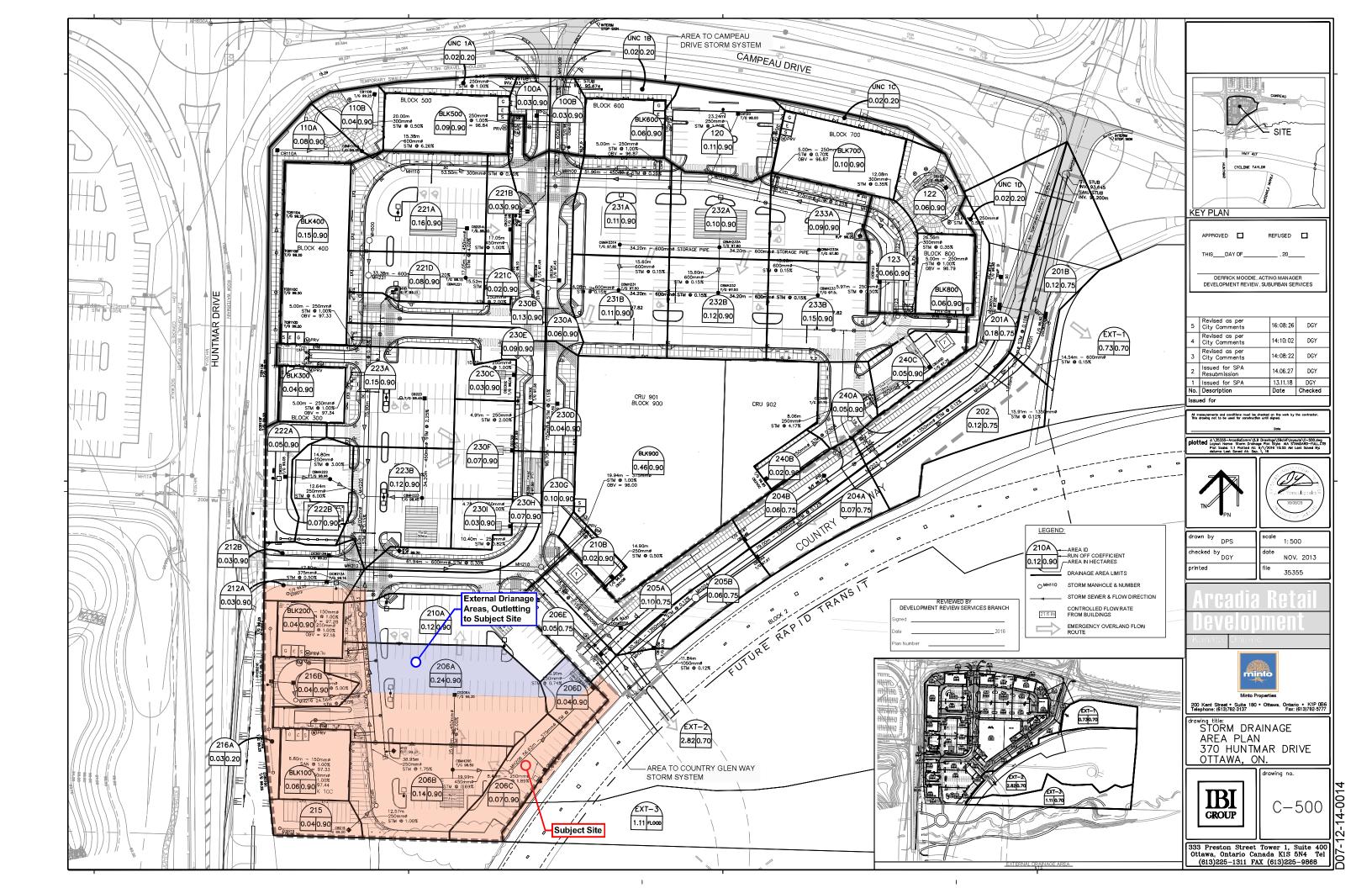
Ottawa, Ontario

K1S 5N4

	LOCATION	1	1	-		A (Ha)									ESIGN FLOW										SEWER DAT	A					is from upstrear			
STREET	AREA ID	FROM	то			C=		IND				TOTAL					10yr PEAK					LENGTH		PIPE SIZE (m.	m)	SLOPE	VELOCITY	AVAIL	CAP (Syr)	surcharged	upstream	HGL*	FF**	Freeboar
		MH	MH	0.20	0.70	0.75	0.90	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	(L/s)	(m)	DIA	W	н	(%)	(m/s)		(%)	pipe	obvert	m	m	п				
	223A	CB223	CBMH223	-			0.15	0.38	0.29	10.00	0.21	10.21	104.19	122.14	178.56	39.10				20.40	446.45		150											
	223B	CBMH223	MH220							10.00	0.21	10.47				69.65				39.10 69.65	446.15 210.32	34.20	450 450			2.25			91.24%					
					1											00100				05.05	210.32	20.36	430			0.50	1.281	140.67	66.88%					
	8	MH220	MH212					0.00	2.18	12.21	0.44	12:65	93.82	109.93	160.62	204.22				204.22	248.09	22.60	600			0.15	0.850	43.86	17.68%	നമം	95.84	95.84		
	7474	0.000431																												1				
	212A 212B	CICB212A CICB212B		-		-		0.08		10.00	0.12	10.12			178.56	7.82				7.82	62.04	8.61	250			1.00	1.224		87.39%					
		CICOLICO		ľ.			0.05	0.00	No. of Concession, Name	10.12	0.00	10120	103.38	121.42	1/1.45	13.33				15.55	151.96	11.24	250			6.00	2.999	136.41	89.77%					
	215	CB215	MH215				0.04	0.10	0.10	10.00	0.17	10.17	104.19	122.14	178.56	10.43				10.43	62.04	12.57	250		-	1.00	1.224	51.61	83,19%				1	
				-																					1									
	BLK100	BLK100	MAIN	-			0.06	0.15	0.15	10.00	0.07	10.07	104.19	122.14	178.56	15.64	_			15.64	62.04	5.50	250			1.00	1.224	46.40	74.79%			97.23	99.60	2,
	1	MH215	MH214	-				0.00	19 24	10.17	0.40	10.57	103.30	121.09	177.01	25.85	_			25.85	82.07	38.05	250			4.75	4 600							
										aniar .	0.10		100.00		arrive.	ALCOIN.C				23.03	02.07	38.95	230			1.75	1.620	56.22	68.51%	no	97.23	97.23		
	216A	RYCB216	CB216	0.03						10.00	0.05	and the second s		122.14	-	1.74		A		1.74	124.08	7.40	250			4.00	2.449	122.34	98.60%					
	2168	CB216	MH216				0.04	0.10	0,12	10.00	0.04	10.04	104.19	122.14	178.56	12.17				12.17	138.72	5.90	250			5.00	2.738	126.56						
		MHZ16	M11714	-	-			0.00	0.12	10.05	0.47	10.53	102.02	131.03	178.10	12.13			/	42.42	40.07													
		WITTELLU	Children and	-				0.00	14-4-F	10000	0.47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	105.35	121.03	170.10	12.15				12.13	43.87	24.56	250			0.50	0.866	31.73	72.34%	no	97.07	97.07		
	BLK200	BLK200	MAIN				0.04	0.10	0.10	10.00	0.07	10.07	104.19	122.14	178.56	10.43				10.43	62.04	5.40	250			1.00	1.224	51.61	83.19%	-		96.55	99.55	3.
																																20.33	33.33	2.4
	*	MH213	MH213	-				1.4	0.47	10.57	0.40	10.97	101.27		173.49	47.30				47.30		27.00	375				1.134		63.43%	no	96.55	96.55		
		IVINZIS	NUMATA.	-				0.00	_0.97	10.97	0.26	11.23	99.34	116.43	170.16	46.40				46.40	129.34	17.80	375			0.50	1.134	82.94	64.13%	no	96.39	96.39		
		MH212	DISHM					0.00	2.79	11.23	0.86	17.69	98.12	114.98	168.05	274.12				274.12	350.85	61.94	600			0.30	1.202	76.72	21.87%	по	95.74	95.74	1	
		l l									11104-1																	10//2	21.0770	110	33.74	53.74		
	210A	CB210A	2460/				0.12	0.30	0.10	10.00	0.09	10.09	104.19	122.14	178.56	31.28				31.28	201.76	15.06	300			4.00	2.765	170.48	84.50%					
	BLK900	BLK900	MAIN				0.46	1.15	8.15.1	10.00	0.21	10.21 -	104.19	122.14	178.56	119.92				119.92	182.91	19.94	375			1.00	1.004	C2 00	24.4494					
				1																113.32	102.51	13.34	3/3			1.00	1.604	62.99	34.44%			95.56	98.10	2.5
RESSED LOADING	210B	CB210B	ACA)N				0.02	0.05	15.05	10.00	0.29	10.25	104.19	122.14	178.56	5.21				5.21	43.87	14.90	250	-		0.50	0.866	38.65	88.11%					
		AHAID	MH205B	-				an and a	7.55	100.04	0.41	14.15	07.00	102.02	150.05	662.26		-										v						
			IVIT2056		-			CONCERCION OF	1.55	13.70	0.41	14.15	87.88	102.93	150.35	663.26		_		663.26	905.48	28.86	975			0.15	1.175	242.23	26.75%	no	95.56	95.56		
	206E	CICB206D	MAIN	1		0.09		0.19	0.19	10.00	0.02	10.02	104.19	122.14	178.56	19.55				19.55	87.74	2.57	250			2.00	1.731	68.18	77 77%					
]																			LIUU	1.7.51	00.10	11.12.0					
		MH205B	MH205					0.00	7.74		0.20	14.14	86.42	101.22	147.84	668.51		_		668.51	905.48	13.88	975			0.15	1.175	236.97	26.17%	no	95.50	95.50		
	206A	CB206A	CBMH206	-			0.24	0.60	0.60	10.00	0.17	10.17	104.19	122.14	178.56	62.57				62.57	420.62	25.00	450											
	206B	CBMH206	MH206							10.00	0.17	10.17	-		178.56					98.23	420.63 210.32	25.66	450 450			2.00	2.562	358.07 112.09						
				1								Contraction of the local division of the loc								30.23	-10192	13,35	430			0.30	1.201	112.09	33.29%					
	206C	CB206B	MAIN					0.18	0.18	10.00	0.08	10.08	104.19	122.14	178.56	18.25				18.25	85.29	8.49	250			1.89	1.683	67.04	78.60%					
	206D	CB206C	MAIN	-			0.04	0.10	0.10	10.00	0.02	10.02	104.19	122.14	178.56	10.43				10.43	87.74	2.32	250			2.00	1.731	77.31						
		MHZOG	MH205				-	0.00	3.23	10.43	0.59	11.02	101.99	119.55	174.75	125.04				125.04	182.91	56.62	275			1.00								
		I HILLING		-			-	APA MAN			0,35		101.55	119,35	114.13	123,04				123.04	102.91	20.02	375	_		1.00	1.604	57.87	31.64%	no	96.05	96.05		
nal South	EXT-2	STUB	- NH205		2.82			5.49	5.49	12.00	0.17	12.17	94.70	110.96	162.13	519.66				519.66	986.85	11.55	1050			0.12	1.104	467.19	47.34%	00	95.50	95.50		

121

STORM SEWER DESIGN SHEET


PROJECT: Arcadia Commercial

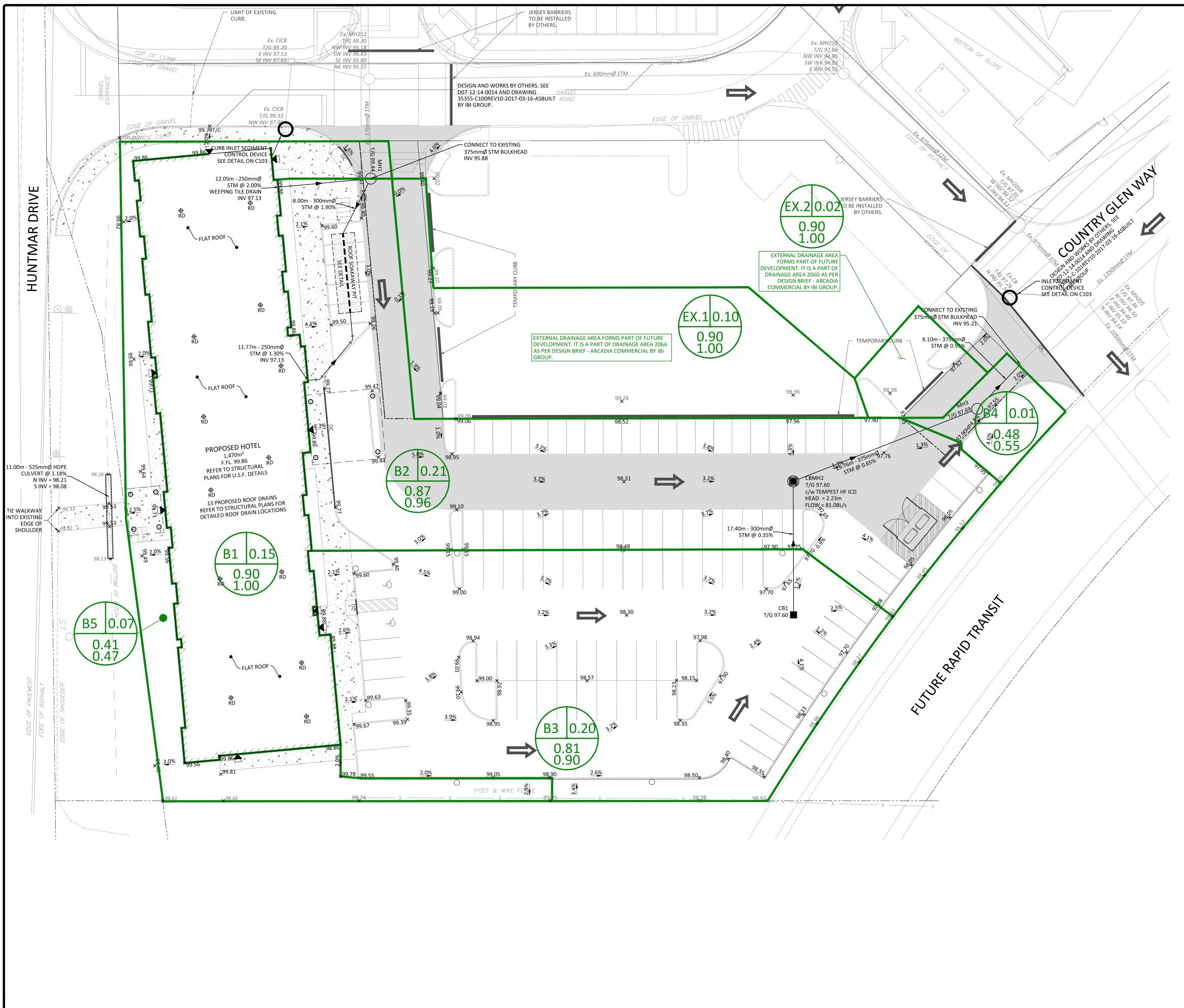
LOCATION: CITY OF OTTAWA

CLIENT: Minto Development Group

"HGL at obvert of pipe if pipe Is not surcharged

** Finished floor for slab on grade commercial building ***Freeboard is from upstream MH HGL to FF

STORM SEWER DESIGN SHEET


PROJECT: 340 HUNTMAR DRIVE LOCATION: KANATA, ONTARIO

CLIENT: ACTIVAR

CONTRIBUTING AREA (ha) 8 9 10 LOCATION RATIONAL DESIGN FLOW 3 6 7 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 FROM CUMUL INLET TIME TOTAL i (10) i (100) 5yr PEAK 10yr PEAK 100yr PEAK FIXED DESIGN CAPACITY LENG то INDIV i (5) STREET AREA ID C-VALUE AREA мн мн AC AC (min) IN PIPE (min) (mm/hr) (mm/hr) (mm/hr) FLOW (L/s) FLOW (L/s) FLOW (L/s) FLOW (L/s) (L/s) (Roof INFIL. TRENCH 0.90 0.15 0.13 0.13 10.00 0.14 10.14 104.19 122.14 38.33 38.33 70.74 11. B1 178.56 B1 Roof MH1 0.90 0.00 0.00 0.13 10.14 0.07 10.21 103.46 121.27 177.28 38.06 38.06 139.06 8. Ex.MH212 0.00 0.13 37.92 143.09 MH1 0.00 10.21 0.17 10.38 103.09 120.85 176.66 37.92 13. CB1 CBMH2 0.87 0.21 0.19 0.19 10.00 0.35 104.19 122.14 178.56 53.86 53.86 59.68 17. B2 10.35 EX1 0.90 0.10 0.09 CBMH2 MH3 0.44 0.33 124.26 147.47 25. B3 0.81 0.16 10.35 10.69 102.36 119.98 175.38 124.26 0.20 Ex.BLKHD 0.00 0.44 10.69 122.25 178.28 MH3 0.00 0.09 10.77 100.70 118.03 172.52 122.25 8.: 0.00 0.44 Ex.BLKHD Ex.MH205 0.00 10.77 0.13 10.90 100.28 117.53 171.79 121.74 179.22 12. 121.74 Definitions: PGK No. Revision otes: signed Q = 2.78CiA, where: 1. Mannings coefficient (n) = 0.013 ISSUED FOR CITY REVIEW REVISED AS PER CITY COMMENTS 1. Q = Peak Flow in Litres per Second (L/s) 2. Checked: A = Area in Hectares (ha) RPK = Rainfall intensity in millimeters per hour (mm/hr) [i = 998.071 / (TC+6.053)^0.814] 5 YEA 5 YEAR [i = 1174.184 / (TC+6.014)^0.816] 10 YEAR Project No.: CP-17-0199 [i = 1735.688 / (TC+6.014)^0.820] 100 YEAR

MCINTOSH PERRY

			SEWER DAT	4			
25	26	27	28	29	30	31	32
NGTH	1	PIPE SIZE (mm)		SLOPE	VELOCITY	AVAIL C	CAP (5yr)
(m)	DIA	w	н	(%)	(m/s)	(L/s)	(%)
1.77	250			1.30	1.396	32.41	45.82%
8.00	300			1.90	1.906	101.00	72.63%
3.00	375			0.61	1.255	105.17	73.50%
7.40	300			0.35	0.818	5.82	9.75%
5.76	375			0.65	1.293	23.21	15.74%
8.10	375			0.95	1.564	56.03	31.43%
2.00	375			0.96	1.572	57.47	32.07%
					Date		
					OCT. 27, 2017		
					MAY 9, 2018		
					Sheet No:		
					1 of 1		

		<i>k</i>			
	TUNINA AR OF		/		
	· Cp		PPOSED		BOR
	UD8	SITE		//	FRANKWGHBOR
	CAMPERN DR		High	<u> </u>	Ň
	\searrow		CONSTANOS PALL		
			PALL	ADIUM DR	
		// (\mathbf{X}		
			*UNINASR DR		×.
	TION PLAN		49		NARLAGOVE
LEGEI					· · · · · -
	AREA NAME –		∕− AREA IN HI	ECTARES	
			(ha)		
	4	B1 0.			
		0.60			
		0.75			
		L 5yr 100	DRAINAGE COEFFI	CIENT FICIENT	
				\rightarrow	
				\dashv	
				\square	
2	REVISED AS PER CIT	Y COMMEN	rs		MAY. 08, 201
1	ISSUED FOR CITY R	EVIEW			OCT. 27, 201
No.		Revision	/Issue		Date
Check before	and verify all dimens proceeding with the	ions work		Do not s	scale drawing
	ALE 1:250				
0	5	10	15 20		25 Metres
	McIN	ITOS	H PER	RY	
	115 Walgre	en Road, RR	3, Carp, ON K	0A 1L0	
	Tel: 613-836 \	5-2184 www.mcintos	Fax: 613-83 hperry.com	\$6-3742	
		<u> </u>	Ohum		
			Stamp:		
Client:		I			
	T VAR 7 FOURTH AVENU	IF		D. C1	3-695-0895
	WA, ON K1S 2L1				3-695-0895 3-720-0464
Project:					
		40 HUNTN	IAR DRIVE		
			ROTEL H	OTE	L
				• • = •	-
OTTA	WA				ONTARIO
Drawing				_	
	T DEVELOPN	IENT DR	AINAGE A	REA	PLAN
		IENT DR	AINAGE A	REA	PLAN
		IENT DR		REA	PLAN
POS Scale: Drawn b	T DEVELOPN 1:250 ^{DY:} PGK				PLAN 17-0199
POS Scale: Drawn b Checke	DEVELOPN 1:250 ^{Dy:} PGK ^{d By:} CJM/RPK		er:		
POS Scale: Drawn b	DEVELOPN 1:250 ^{Dy:} PGK ^{d By:} CJM/RPK	Project Numbe	or: Der:		

APPENDIX G STORMWATER MANAGEMENT CALCULATIONS

AVERAGE PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area A1	EXISTING SITE - DEVELOPMENT AREA						
Туре	C (2-yr & 5-yr)	C (2-yr & 5-yr) C (100-yr) Area (m²) Product (5-yr) Product (1					
LANDSCAPE	0.20	0.25	6352.61	1270.52	1588.15		
Avg C	0.20	0.25					

AVERAGE POST-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area B1	PROPOSED HOTEL						
Туре	C (2-yr & 5-yr)	C (2-yr & 5-yr) C (100-yr) Area (m²) Product (5-yr) Product (10					
HARD	0.90	1.00	1470.19	1323.17	1470.19		
Avg C	0.90	1.00					

Area B2	DRAINS TO CBMH3						
Туре	C (2-yr & 5-yr)	C (2-yr & 5-yr) C (100-yr) Area (m²) Product (5-yr) Product (
HARD	0.90	1.00	2037.59	1833.83	2037.59		
LANDSCAPE	0.20	0.25	99.80	19.96	24.95		
Avg C	0.87	0.96					

Area B3	DRAINS TO CB1						
Туре	C (2-yr & 5-yr)	C (2-yr & 5-yr) C (100-yr) Area (m ²) Product (5-yr)					
HARD	0.90	1.00	1738.23	1564.41	1738.23		
LANDSCAPE	0.20	0.25	272.44	54.49	68.11		
Avg C	0.81	0.90					

Area B4	UNCONTROLLED						
Туре	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)		
HARD	0.90	1.00	58.72	52.85	58.72		
LANDSCAPE	0.20	0.25	88.78	17.76	22.19		
Avg C	0.48	0.55					

Area B5	UNCONTROLLED						
Туре	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)		
HARD	0.90	1.00	193.38	174.04	193.38		
LANDSCAPE	0.20	0.25	462.67	92.53	115.67		
Avg C	0.41	0.47					

External Drainage Areas									
Area EX1		DRAINS TO CBMH2							
Туре	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	n ²) Product (5-yr) Product (100					
HARD	0.90	1.00	976.43	878.78	976.43				
Avg C	0.90	1.00							

Area EX2	UNCONTROLLED *						
Туре	C (2-yr & 5-yr)	C (100-yr)	Area (m²)	Product (5-yr)	Product (100-yr)		
HARD	0.90	1.00	152.54	137.29	152.54		
Avg C	0.90	1.00					

*Undevleoped area within external drainage areas have been calcualted as hard surface to represent the worst case scenario.

CP-17-0199 - 340 HUNTMAR DRIVE

Tc (min)	2-Year (mm/hr)	5-Year (mm/hr)	100-Year (mm/hr)	
20.00	52.03	70.25	119.95	PRE-DEVELOPMENT
10.00	76.81	104.19	178.56	POST-DEVELOPMENT

PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area	Drainage Area (ha)	Balanced Runoff Coefficient (C) 2-yr & 5-yr	Balanced Runoff Coefficient (C) 100-yr	2-yr Flow Rate (I/s)	5-yr Flow Rate (I/s)	100-yr Flow Rate (I/s)
A1	0.64	0.20	0.25	18.38	24.81	52.96
Total	0.64			18.38	24.81	52.96

POST-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Area	Drainage Area (ha)	Balanced Runoff Coefficient (C) 2-yr & 5-yr	Balanced Runoff Coefficient (C) 100-yr	2-yr Flow Rate (I/s)	5-yr Flow Rate (I/s)	100-yr Flow Rate (I/s)
B1	0.15	0.90	1.00	28.25	38.33	72.98
B2	0.21	0.87	0.96	39.70	53.86	101.85
B3	0.20	0.81	0.90	34.77	47.17	89.83
B4	0.01	0.48	0.55	1.51	2.05	4.03
B5	0.07	0.41	0.47	5.74	7.79	15.31
Sub-Total	0.64			109.99	149.21	283.99
		Exte	ernal Drainage Ai	reas		
EX1	0.10	0.90	1.00	18.76	25.45	48.47
EX2	0.02	0.90	1.00	2.93	3.98	7.57
Total	0.76			131.68	178.64	340.04

CP-17-0199 - 340 HUNTMAR DRIVE

REQUIRED RESTRICTED FLOW

Existing Drainage Area	Area (ha)	*Release Rate as per Design Brief - Arcadia I Commercial		ICD # / Roof Drain #	
		5-Year	100-Year		
206A/206B	0.38	85	85.00		
206C	0.07	10	.00	206B	
206D	0.04	14	.00	206C	Restricted
BLK100	0.06	2.	00	Roof 100	Restricted
BLK200	0.04	1.	00	Roof 200	
215	0.04	10.00		215	
216A/216B	0.07	12.17 20.85			Unrestricted
Total	0.70	134.17 142.85			

*Release rate was created by combining the release rates from applicable drianage areas for the subject site as per the Design Brief - Arcadia Commercial by IBI Group. See Appendix 'I' for complete report.

ACTUAL STORM WATER RUNOFF FROM SITE (L/s)

Area	Post-Development Unrestricted (I/s)		Post-Deve				
	2-yr	5-yr	100-yr	2-yr*	5-yr	100-yr	
B1	28.25	38.33	72.98	3.12	4.68	7.80	RESTRICTED - ROOF DRAINS
B2	39.70	53.86	101.85			RESTRICTED -	
B3	34.77	47.17	89.83	89.83 96.17 108.14 48.47	33 96.17 108.14 10	108.14	CBMH2
EX1	18.76	25.45	48.47			CDIVINZ	
B4	1.51	2.05	4.03	1.51	2.05	4.03	
B5	5.74	7.79	15.31	5.74	7.79	15.31	UNRESTRICTED
EX2	2.93	3.98	7.57	2.93	3.98	7.57	
Total	131.68	178.64	340.04	109.48	126.64	142.85	

*2-Year Storm Event Flows Unrestricted for Areas B2/B3/EX1

STORAGE REQUIRMENTS FOR AREA B2 & B3

5-YEAR STORM EVENT

Тс	l (mm/hr)	Runoff (I/s) B2	Runoff (I/s) B3	Runoff (l/s) EX1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m ³)
10	104.20	53.87	47.18	25.46	108.14	18.36	11.01
20	70.30	36.34	31.83	17.17	108.14	-22.80	-27.36
30	53.90	27.86	24.40	13.17	108.14	-42.71	-76.88
40	44.20	22.85	20.01	10.80	108.14	-54.49	-130.77
50	37.70	19.49	17.07	9.21	108.14	-62.38	-187.13
60	32.90	17.01	14.90	8.04	108.14	-68.20	-245.53
70	29.40	15.20	13.31	7.18	108.14	-72.45	-304.30

Maximum Storage Required (m³) = 11.01

100-YEAR STORM EVENT								
Тс	l (mm/hr)	Runoff (I/s) B2	Runoff (I/s) B3	Runoff (I/s) EX1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m ³)	
10	178.60	101.88	89.85	48.48	108.14	132.06	79.24	
20	120.00	68.45	60.37	32.57	108.14	53.25	63.90	
30	91.90	52.42	46.23	24.95	108.14	15.46	27.82	
40	75.10	42.84	37.78	20.39	108.14	-7.14	-17.14	
50	64.00	36.51	32.20	17.37	108.14	-22.07	-66.21	
60	55.90	31.89	28.12	15.17	108.14	-32.96	-118.67	
70	49.80	28.41	25.05	13.52	108.14	-41.17	-172.90	

Maximum Storage Required (m³) = 79.24

STORAGE OCCUPIED IN AREA B2 & B3

5-YEAR STORM EVENT

Other Storage A	reas on Site	V	Vater Elev. (m) =	97.74	
Location	T/G	INV. (out)	Area (m²)	Depth (m)	Volume (m ³)
CB1	97.60	95.58	117.90	0.14	6.85
CBMH2	97.60	95.48	118.62	0.14	6.11
				Total	12.96

Storage Available (m³) =	12.96
Storage Required (m ³) =	11.01

100-YEAR STORM EVENT

Other Storage A	reas on Site	Water Elev. (m) =		97.90	
Location	T/G	INV. (out)	Area (m ²)	Depth (m)	Volume (m ³)
CB1	97.60	95.58	285.30	0.30	38.84
CBMH2	97.60	95.48	388.18	0.30	45.94
				Total	84.78

Storage Available (m ³) =	84.78	
Storage Required (m ³) =	79.24	

STORAGE REQUIRMENTS FOR AREA B1

2-YEAR STORM EVENT

Тс	l (mm/hr)	Runoff (I/s) B1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m ³)
40	32.90	12.10	3.12	8.98	21.56
50	28.00	10.30	3.12	7.18	21.54

Maximum Storage Required (m³) =

Maximum Storage Required (m³) =

21.56

27.79

5-YEAR STORM EVENT

Тс	l (mm/hr)	Runoff (I/s) B1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m ³)
30	53.90	19.83	4.68	15.15	27.26
40	44.20	16.26	4.68	11.58	27.79
50	37.70	13.87	4.68	9.19	27.56
60	32.90	12.10	4.68	7.42	26.72
70	29.40	10.81	4.68	6.13	25.77

100-YEAR STORM EVENT							
Тс	l (mm/hr)	Runoff (I/s) B1	Allowable Outflow (I/s)	Runoff To Be Stored (I/s)	Storage Required (m ³)		
30	91.90	37.56	7.80	29.76	53.57		
40	75.10	30.69	7.80	22.89	54.95		
50	64.00	26.16	7.80	18.36	55.07		
60	55.90	22.85	7.80	15.05	54.17		
70	49.80	20.35	7.80	12.55	52.73		

Maximum Storage Required (m³) = 55.07

STORAGE OCCUPIED IN AREA B1

2-YEAR STORM EVENT

Roof Storage						
Location *Area (m ²) Depth (m) Volume						
Roof Drain	1102.64	0.020	22.05			
		Total	22.05			

5-YEAR STORM EVENT

Roof Storage						
Location *Area (m ²) Depth (m) Volume (m ³						
Roof Drain 1102.64		0.030	33.08			
		Total	33.08			

100-YEAR STORM EVENT

Roof Storage				
Location *Area (m ²) Depth (m) Volume				
Roof Drain	1102.64	0.050	55.13	
		Total	55.13	

*Area is calcualted using 75% of the total roof area

Storage Available (m ³) =	22.05
Storage Required (m ³) =	21.56

Storage Available (m ³) =	33.08
Storage Required (m ³) =	27.79

Storage Available (m³) =	55.13
Storage Required (m ³) =	55.07

SOAKAWAY PIT SIZING

Soakaway Pit Sizing as per MOE Stormwater Management Planning and Design Manual (March 2003) Maximum allowable depth:

Equation;			
	d= <u>PT</u> 1,000	where;	d= maximum allowable depth of the soakway pit
	1,000		P= percolation rate (Table 4.1) (mm/h) T = drawdown time (24 to 48 hours)
Site Perameters;			
	P= 15.00 mm/hr		
	T= 24 hours		
Therefore;	d 0.24 m		
	d= <u>0.36</u> m		
Minimum volume required:			
Site Perameters;			
	A= 1,470.19 m ²	where;	A= building area
	d= 20 mm		d= depth of roof ponding (5mm - 20mm)
Therefore;	3		
	$V = 29.40 \text{ m}^3$		
Area required for the propos	sed soakaway pit:		
	A= 81.68 m ²		

Roof Drain Flow (B1)

Roof Drains Summary				
Type of Control Device	Watts Drianage - Accutrol Weir			
Number of Roof Drians	13			
	2-Year 5-Year 100 Year			
Rooftop Storage	22.05	33.08	55.13	
Storage Depth (mm)	0.020 0.030 0.050			
Flow (Per Roof Drain) (L/s)	0.24	0.36	0.60	
Total Flow (L/s)	3.12	4.68	7.80	

Flow Rate Vs. Build-Up (One Weir)			
Depth (mm)	Flow (L/s)		
15	0.18		
20	0.24		
25	0.30		
30	0.36		
35	0.42		
40	0.48		
45	0.54		
50	0.60		
55	0.66		

*Roof Drain model to be Accutrol Weirs, See attached sheets *Roof Drain Flow information taken from Watts Drainage website

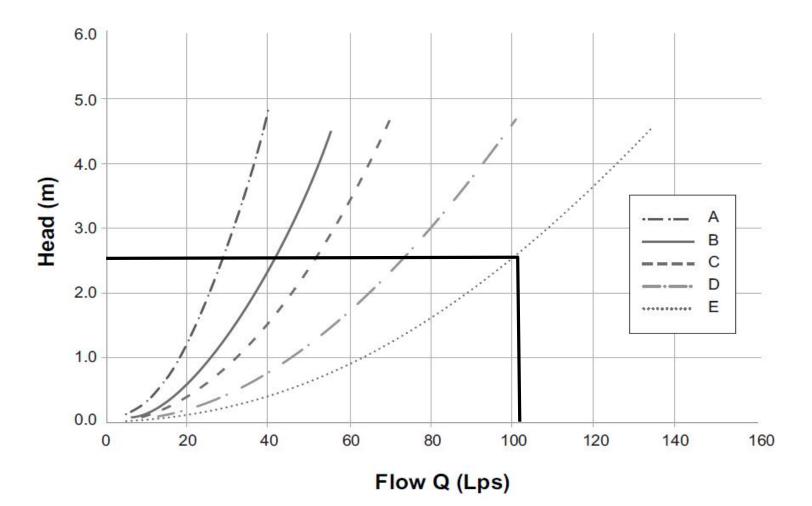
CALCULATING ROOF FLOW EXAMPLES

1 roof drain during a 5 year storm elevation of water = 25mm Flow leaving 1 roof drain = (1 x 0.30 L/s) = 0.30 L/s

1 roof drain during a 100 year storm elevation of water = 50mm Flow leaving 1 roof drain = (1 x 0.60 L/s) = 0.60 L/s

4 roof drains during a 5 year storm elevation of water = 25mm Flow leaving 4 roof drains = (4 x 0.30 L/s) = 1.20 L/s

4 roof drains during a 100 year storm elevation of water = 50mm Flow leaving 4 roof drains = (4 x 0.60 L/s) = 2.40 L/s


Roof Drain Flow				
Flow (L/s)	Storage Depth (mm)	Drains Flow (L/s)		
0.18	15	2.34		
0.24	20	3.12		
0.30	25	3.90		
0.36	30	4.68		
0.42	35	5.46		
0.48	40	6.24		
0.54	45	7.02		
0.60	50	7.80		
0.66	55	8.58		
0.72	60	9.36		
0.78	65	10.14		
0.84	70	10.92		
0.90	75	11.70		
0.96	80	12.48		
1.02	85	13.26		
1.08	90	14.04		
1.14	95	14.82		
1.20	100	15.60		
1.26	105	16.38		
1.32	110	17.16		
1.38	115	17.94		
1.44	120	18.72		
1.50	125	19.50		
1.56	130	20.28		
1.62	135	21.06		
1.68	140	21.84		
1.74	145	22.62		
1.80	150	23.40		

Note:

The flow leaving through a restricted roof drain is based on flow vs. head information

CBMH 2 - IPEX TEMPEST HF ICD FLOW CURVE (TO BE VERIFIED WITH MANUFACTURER) HEAD = 2.42 FLOW = 108.14

Type = E

Chart 3: HF & MHF Preset Flow Curves

PRODUCT INFORMATION: TEMPEST HF & MHF ICD

Product Description

Our HF, HF Sump and MHF ICD's are designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter or larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 5 preset flow curves, these ICDs have the ability to provide constant flow rates: 91ps (143 gpm) and greater

Product Function

TEMPEST HF (High Flow): designed to manage moderate to higher flows 15 L/s (240 gpm) or greater and prevent the propagation of odour and floatables. With this device, the cross-sectional area of the device is larger than the orifice diameter

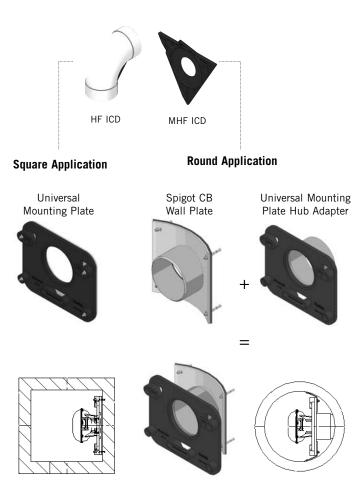
and has been designed to limit head losses. The HF ICD can also be ordered without flow control when only odour and floatable control is required.

TEMPEST HF (High Flow) Sump: The height of a sewer outlet pipe in a catch basin is not always conveniently located. At times it may be located very close to the catch basin floor, not providing enough sump for one of the other TEMPEST ICDs with universal back plate to be installed. In these applications, the HF Sump is offered. The

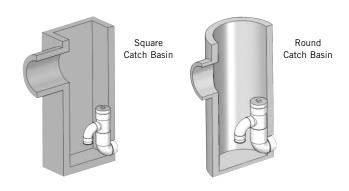
HF Sump offers the same features and benefits as the HF ICD; however, is designed to raise the outlet in a square or round catch basin structure. When installed, the HF sump is fixed in place and not easily removed. Any required service to the device is performed through a clean-out located in the top of the device which can be often accessed from ground level.

TEMPEST MHF (Medium to High Flow):

The MHF plate or plug is designed to control flow rates 9 L/s (143 gpm) or greater. It is not designed to prevent the propagation of odour and floatables.



Product Construction

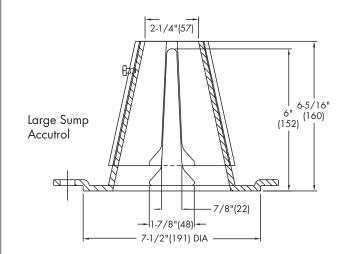

The HF, HF Sump and MHF ICDs are built to be light weight at a maximum weight of 6.8 Kg (14.6 lbs).

Product Applications

The HF and MHF ICD's are available to accommodate both square and round applications:

The HF Sump is available to accommodate low to no sump applications in both square and round catch basins:

WATTS	Adjustable Accutrol Weir Tag:	Adjustable Flow Control for Roof Drains
-------	----------------------------------	--


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) x 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Wair Opening	1"	2"	3"	4"	5"	6"
Weir Opening Exposed		Flow Ro	ate (galle	ons per	minute)	
Fully Exposed	5	10	15	20	25	30
3/4	5	10	13.75	17.5	21.25	25
1/2	5	10	12.5	15	17.5	20
1/4	5	10	11.25	12.5	13.75	15
Closed	5	5	5	5	5	5

Job Name

Job Location

Engineer

Adjustable Upper Cone Fixed Weir

Contractor _

Contractor's P.O. No.

Representative ____

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca **Latin America:** Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

A Watts Water Technologies Company

APPENDIX H CITY OF OTTAWA DESIGN CHECKLIST

City of Ottawa

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

Criteria	Location (if applicable)
Executive Summary (for larger reports only).	N/A
Date and revision number of the report.	On Cover
Location map and plan showing municipal address, boundary, and layout of proposed development.	Appendix E
□ Plan showing the site and location of all existing services.	Site Servicing Plan (C102)
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	1.1 Purpose 1.2 Site Description
	6.0 Stormwater Management
Summary of pre-consultation meetings with City and other approval agencies.	Appendix A
 Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, 	1.1 Purpose
Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and	1.2 Site Description
develop a defendable design criteria.	6.0 Stormwater Management
□ Statement of objectives and servicing criteria.	3.0 Pre-Consultation Summary

Identification of existing and proposed infrastructure available in the immediate area.	N/A
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
Proposed phasing of the development, if applicable.	N/A
Reference to geotechnical studies and recommendations concerning servicing.	Section 2.0 Backround Studies
 All preliminary and formal site plan submissions should have the following information: Metric scale North arrow (including construction North) Key plan Name and contact information of applicant and property owner Property limits including bearings and dimensions Existing and proposed structures and parking areas Easements, road widening and rights-of-way Adjacent street names 	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)

4.2 Development Servicing Report: Water

Criteria	Location (if applicable)
□ Confirm consistency with Master Servicing Study, if available	N/A
Availability of public infrastructure to service proposed development	N/A
□ Identification of system constraints	N/A
Identify boundary conditions	N/A
Confirmation of adequate domestic supply and pressure	N/A
 Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development. 	Appendix B
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
Address reliability requirements such as appropriate location of shut-off valves	N/A
Check on the necessity of a pressure zone boundary modification.	N/A
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	N/A

 Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions. 	N/A
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
 Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. 	Appendix B
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A

4.3 Development Servicing Report: Wastewater

Criteria	Location (if applicable)
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	N/A
Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 5.2 Sanitary Sewer

 Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) 	N/A
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	N/A
 Description of proposed sewer network including sewers, pumping stations, and forcemains. 	Section 5.2 Sanitary Sewer
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
 Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. 	N/A
Special considerations such as contamination, corrosive environment etc.	N/A

4.4 Development Servicing Report: Stormwater Checklist

Criteria	Location (if applicable)
Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 6.0 Stormwater Management
Analysis of available capacity in existing public infrastructure.	N/A
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Pre & Post-Development Plans
□ Water quantity control objective (e.g. controlling post- development peak flows to pre-development level for storm events ranging from the 2 or 5-year event (dependent on the receiving sewer design) to 100-year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 6.0 Stormwater Management
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 6.0 Stormwater Management
 Description of the stormwater management concept with facility locations and descriptions with references and supporting information. 	Section 6.0 Stormwater Management
Set-back from private sewage disposal systems.	N/A
□ Watercourse and hazard lands setbacks.	N/A
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	N/A
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
 Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5-year return period) and major events (1:100-year return period). 	Appendix F

Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	Site Grading, Drainage, Sediment & Erosion Control Plan
Calculate pre-and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 6.0 Stormwater Management Appendix F
Any proposed diversion of drainage catchment areas from one outlet to another.	Section 6.0 Stormwater Management
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Section 6.0 Stormwater Management
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post- development flows up to and including the 100-year return period storm event.	Appendix A
Identification of potential impacts to receiving watercourses	N/A
Identification of municipal drains and related approval requirements.	N/A
 Descriptions of how the conveyance and storage capacity will be achieved for the development. 	Section 6.0 Stormwater Management
100-year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Site Grading, Drainage, Sediment & Erosion Control Plan (C101)
Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A

 Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors. 	Section 7.0 Sediment & Erosion Control
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
Identification of fill constraints related to floodplain and geotechnical investigation.	N/A

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

Criteria	Location (if applicable)
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	N/A
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
Changes to Municipal Drains.	N/A
 Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.) 	N/A

4.6 Conclusion Checklist

Criteria	Location (if applicable)
Clearly stated conclusions and recommendations	Section 8.0 Summary
	Section 9.0 Recommendations
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	All are stamped
 All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario 	All are stamped

APPENDIX I DESIGN BRIEF - ARCADIA COMMERICAL BY IBI GROUP

REPORT PROJECT: 35355-5.2.2

Design Brief Arcadia Commercial 370 Huntmar Drive City of Ottawa

Prepared for Minto Properties by IBI Group

October 2014

IBI GROUP REPORT DESIGN BRIEF ARCADIA COMMERCIAL 370 HUNTMAR DRIVE CITY OF OTTAWA Submitted to Minto Properties

Table of Contents

1	Introd	uction	1
	1.1	Scope	1
	1.2	Background	1
	1.3	Subject Property	1
	1.4	Phasing	2
	1.5	Previous Studies	2
	1.6	Environmental Issues	3
	1.7	Geotechnical Considerations	3
2	Water	Supply	4
	2.1	Existing Conditions	4
	2.2	Design Criteria	4
	2.3	Proposed Water Plan	5
3	Waste	water Disposal	6
	3.1	Existing Conditions	6
	3.2	Master Servicing Studies	6
	3.3	Design Criteria	6
	3.4	Recommended Wastewater Plan	7
	3.5	Hydraulic Grade Line	7
	3.6	Sewer Calculations	7
4	Storm	water Management	9
	4.1	Existing Conditions	9
	4.2	Minor Storm Sewers Design Criteria	9
	4.3	Stormwater Management	9
	4.4	Hydraulic Grade Line 1	2
5	Sedim	ent and Erosion Control Plan	3
6	Geote	chnical1	4

Table of Contents (continued)

7 Approvals and Permit Requirements			15
	7.1	City of Ottawa	15
	7.2	Province of Ontario	15
8	Recom	mendations	16

List of Appendices

Appendix A –	Development Servicing Study Checklist
	Architects Site Plan
	Water Network Analysis
	General Plan C-100
	Notes and Details C-100A

- Appendix B Sanitary Tributary Area Plan C-501 Sanitary Sewer Design Sheet
- Appendix C Storm Tributary Area Plan C-500 Storm Sewer Design Sheet Modified Rational Method Design Sheets Site Ponding Plan C-400
- Appendix D Sediment and Erosion Control Plan C-900 Paterson Group Geotechnical Report Grading Plan C-200

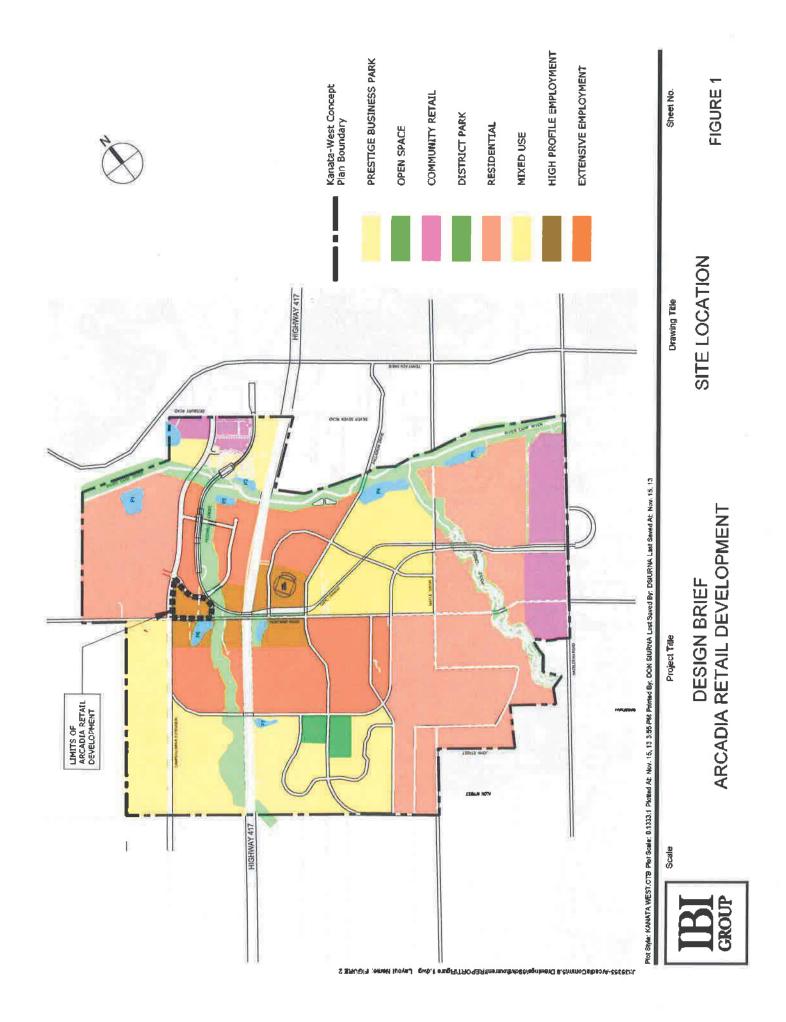
1 Introduction

1.1 Scope

The property owner, Minto Properties, wishes to proceed with the development of the subject lands at 370 Huntmar Drive, in accordance with the policies set out by the Planning Department of the City of Ottawa. This Design Brief is being prepared in support of the Site Plan Application for the development of the current draft plan, which identifies lands located in the Kanata West Business Park. This report will present a detailed servicing scheme to support development of the subject properties, including sections on water supply, wastewater disposal, minor and major stormwater management and erosion and sediment control.

This parcel of land is part of the proponent's larger "Arcadia" development lands which are currently being developed. This parcel is referred to as Stage 5 in other previously approved Minto reports, including "Conceptual Site Servicing Arcadia Stages 1, 2, 5 and 8", and "Arcadia Interim SWMF", which provide details related to the construction and operation of the downstream infrastructure which will service these lands.

This report was prepared in accordance with the Servicing Study Guidelines for Development Applications in the City of Ottawa. **Appendix A** contains a customized copy of the City's checklist which can be used as a quick reference for the location within this study report of each of the checklist items.


1.2 Background

In 2002, the City of Ottawa expanded its urban area to include the lands currently known as Kanata West. In March 2003, Ottawa City Council approved the general land use and development principles of the Kanata West Concept Plan (KWCP). The plan is a mixed-use community that will include a population of about 17,000 persons in 6,300 households, 24,000 jobs and approximately 1 million square meters of commercial space. Subsequent to approval of the KWCP, several supporting technical documents, including the Kanata West Master Servicing Study (KWSS), were prepared. The KWSS provided a master servicing plan for the entire KWCP, including major infrastructure such as water supply, wastewater disposal and stormwater management.

1.3 Subject Property

As shown in **Figure 1**, the subject property is located at the southeast quadrant of Huntmar Drive and Campeau Drive, and is part of the Kanata West Business Park (KWBP). The KWBP is proposed to include several types of non-residential uses including Prestige Business Park, High Profile Employment and Extensive Employment.

The proposed 5.0 Ha development will be a mixture of attached and free standing buildings. The total commercial grass floor area will be approximately 10,500 m², see Master Site Plan SPA-1 in **Appendix A**.

1.4 Phasing

The Owner's intent at this time is to proceed immediately upon SPA approval to service the entire development in a single phase, with building construction to occur as tenants are secured.

1.5 Previous Studies

1. Kanata West Concept Plan

The Kanata West Concept Plan (KWCP) was approved by the City of Ottawa in 2003. The plan provides a framework for the current and future development of the Kanata West lands. It also provides the guidelines and requirements for concept planning, the recommended concept plan, and an implementation strategy. The plan focuses on development of the urban lands with mix uses including office, housing, retail, institutional, entertainment and leisure activities.

2. Kanata West Servicing Study

The Kanata West Servicing Study (KWSS) was completed by the City of Ottawa in 2006. That study provided detailed guidelines for provision of major municipal infrastructure in support of the Kanata West Concept Plan. Among other things it provided guidelines and criteria for water supply, wastewater collection and stormwater management.

3. Third Party Review

The Third Party Review (TPR) was completed after potential omissions in the stormwater management model for KWSS were identified. The TPR was commissioned to be an arm's length review of the model to ensure that it was property calibrated and validated.

4. Signature Ridge Pump Station Hydraulic Grade Line Analysis

A March 2012 report by IBI Group was completed for Minto Properties and completed an update to the Signature Ridge Pump Station sanitary hydraulics. The report predicted HGL's for several scenarios for the tributary sewers including the sanitary sewer servicing the subject parcel. The HGL analysis was further refined in September 2012 based on current overflow proposals by the City.

5. Implementation Plan – Kanata West Development Area

This Plan was prepared for the City of Ottawa and the Kanata West Land Owners Group. The Implementation Plan recognizes that Kanata West is a large planning area which will take years to fully develop and therefore includes a mixture of short and long-term development plans and the associated infrastructure requirements to support them. The Plan builds on the framework of the KWCP and KWSS and provides updated comments for future approvals and the actions that would bring about the approval requirements. The Plan further reviews actions that would be conducted if "triggered" by an event or set of circumstances, while allowing sufficient flexibility to ensure that appropriate changes to the undertaking(s), once identified, are made.

6. Conceptual Site Servicing Arcadia Stages 1, 2, 5 & 8 Kanata West – Minto Communities

This IBI Group report, completed in September 2012, provided a high level conceptual site servicing plan specifically for Minto Arcadia Lands, including the subject site which is Stage 5 of the report. The report focused on details related to water supply, wastewater disposal and stormwater management.

7. Arcadia interim Stormwater Management Facility Design Brief June 2012

This IBI Group report outlines the design of the interim SWM Facility to service Minto's Arcadia development lands, including these commercial lands, until such time as the ultimate stormwater management facility is constructed.

1.6 **Environmental Issues**

In July 2012, Kilgour & Associates prepared and submitted, as part of the Stage 1 approval, an Intergraded Environmental Review (IER) for the entire 80 ha Minto property. The report assessed the natural features on the site including trees, watercourses, fish and fish habitat and species at risk. The report findings concluded that the project had no significant effect on the existing natural features on the site, as the value of the features was low due to the past history of agricultural activity. It did identify that there are three (3) watercourses on the site: the Carp River, Feedmill Creek and an unnamed creek, for which specific conditions have been put on the development through the "Carp River, Poole Creek and Feedmill Creek Restoration Plan", the "Kanata West Implementation Plan" and the "Carp River, Poole Creek and Feedmill Creek Corridor Width Limits Rationale".

1.7 Geotechnical Considerations

The Owner has commissioned a preliminary geotechnical investigation for the proposed development. The preliminary report was based on information from 21 boreholes on the subject site. The report (No. PG3045-1R) was updated by Paterson Group Inc. in June 2014.

The objectives of the investigations include:

- Determination of the subsoil and groundwater conditions;
- Provision of geotechnical recommendations pertaining to the design and development of the subject site including construction considerations.

•

Among other items, the reports comment on the following:

Site grading:

- **Design for Earthquakes** • Corrosion potential;
- Foundation design;
- Pavement structure;
- Infrastructure construction:
- Groundwater Control
- Grade raise considerations •

Most of the soils on site consist of silty clay underlain by glacial till layer. While many other geotechnical recommendations are provided in the reports, two of those include maximum grade raises in the order of 2 meters and long-term groundwater lowering be controlled with the use of clay dykes in sewer trenches.

2 Water Supply

2.1 Existing Conditions

The Kanata West community is located in the City's 3W water pressure zone. Potable water to this area is pressurized at the Glen Cairn Pump Station where a major water storage reservoir (Glen Cairn Reservoir) is located. Major watermains into this pressure zone from the pump station are located along Castlefrank Road (going north), Hazeldean Road and Campeau Drive (going west) and Terry Fox Drive (going south). In support of the KWCP which includes the subject site, the June 2006 Master Servicing Study completed a review of the existing water plan adjacent to the KWCP and made recommendations for improvements and expansion to the City's water transmission and distribution system to support the proposed development.

As part of the development of Phase 1 of the Arcadia subdivision located north of Campeau Drive adjacent to the commercial site, a 600 mm diameter watermain was extended from Didsbury Road to Huntmar Drive along the future Campeau Drive ROW. The 600 mm diameter watermain is currently in service and Phase 1 has been constructed. A 300 mm diameter watermain has been extended west across Campeau Drive to service the Tanger commercial development which is currently under construction. The 600 mm diameter watermain is being extended south along Huntmar Drive to connect to existing watermains on Cyclone Taylor Boulevard south of Highway 417. Construction of the 600 mm diameter watermain is being completed in two stages with the work on Huntmar Drive at Campeau Drive currently under construction and the Highway 417 to be crossing completed in early 2015.

Two watermain stubs have been provided from the 600 mm watermain on Campeau Drive that will be used to service the commercial site. A 300 mm diameter main is provided at the intersection of Campeau Drive and Country Glen Way and a 200 mm diameter main from Campeau Drive approximately 100 meters east of Huntmar Drive.

2.2 Design Criteria

In order to determine the watermain plan needed to adequately service the subject site, a hydraulic model was prepared using H20 MAP software by MWH Soft Inc. The City of Ottawa supplied boundary conditions at the intersection of Campeau Drive and Huntmar Drive. The specific boundary conditions are:

Max Day and Fire Flow	= 152.0 m
Peak Hour	= 155.1 m
Max Pressure Check	= 163.1 m

As stated in the boundary conditions, the 300 mm diameter watermain on Campeau Drive at Huntmar Drive is required to be interconnected to the 600 mm watermain at Huntmar Drive and Campeau Drive. The connection has recently been completed and the watermain will be in service in September 2014.

Water consumption rates for the commercial site and adjacent subdivision is taken from Table 4.2 of the Ottawa Design Guideline Water Distribution. For the commercial site, a rate of 2500 L/(1000 m²/d) is used for each of the 9 blocks. In the Master Servicing Study a rate of 50,000l/ha/day is used for commercial areas, for a gross area of 5 ha, the basic day flow rate calculates as 2.9 l/s while the basic day rate calculated using the floor area of each block adds up to 0.31 l/s. Water demands for development west of Huntmar Road are also included in the water model. The calculated demands are tabulated in **Appendix A**.

In order to determine the fire flow requirements, calculations based on the criteria of the Fire Underwriters Survey was carried out for several blocks. The calculations resulted in a maximum

fire flow requirement of 183.3 l/s (11,000 l/min) which has been applied to all nodes in the commercial site. A copy of the calculations are included in **Appendix A**.

2.3 Proposed Water Plan

A figures showing the water model for the Arcadia commercial site are included in **Appendix A** along with the results of the hydraulic modelling.

A computer model of the water distribution network for the Arcadia development was developed using the H20MAP water program provided by MWH Soft Inc. Water demands and HGL boundary conditions as described in Section 2.2 were incorporated into the model. The results of the hydraulic analysis are as follows:

SCENARIO	ARCADIA COMMERCIAL SITE
Basic Day Pressure	624.6 to 644.2 kPa (90.6 to 93.4 psi)
Maximum Day plus Fire Design Fire Flow	Minimum 253.3 l/s (15,198 l/min)
Peak Hour Pressure	542.6 to 562.2 kPa (78.7 to 81.5 psi)

For all nodes the basic day pressure exceeds 552 kPa (80 psi) requiring all buildings to have pressure reducing valves installed. Pressure reducing valves will be installed immediately downstream of the isolation valve inside the buildings located downstream of the water meter and be maintained by the building owner in accordance with Technical Bulletin ISDTB-2014-02. Sizing of the pressure reducing valves will be conducted by the building's mechanical engineer. The basic day pressure does not exceed the maximum 689 kPa (100 psi) at any node in the system. All nodes exceed the required fire flow while maintaining a residual pressure of 140 kPa (20 psi) at any node in the system. Peak hour pressures in excess of the minimum requirement of 276 kPa (40 psi) at all nodes.

The proposed water distribution system for this development is shown on the General Plan of Services drawing C-100 with additional notes and details on Details drawing C-100A in **Appendix A**.

3 Wastewater Disposal

3.1 Existing Conditions

The Signature Ridge Pump Station (SRPS) is the wastewater outlet for all lands in the KWCP north of Highway 417, including the subject site. The SRPS was constructed in 1991 with an ultimate capacity of 250 l/s to service an area of Kanata, both north and south of Highway 417 including Signature Ridge, Interstitial lands, the Broughton/Richardson lands and developments along Palladium Drive south of Highway 417. This station is being upgraded to accommodate additional lands as per the KWSS.

3.2 Master Servicing Studies

The Kanata West Master Servicing Study (KWSS) was completed in 2006 in support of the KWCP. It recommended a wastewater master plan for the entire KWCP. For lands north of Highway 417, including the subject site, all wastewater flows are to be routed to the SRPS. The KWSS Section 4.3 recommended that the capacity of the pump station be upgraded to 400 l/s to accommodate the wastewater flow from the expanded drainage area. The relevant portion of KWSS Section 4.3 is included in **Appendix B**. To convey flows from the subject site, the 2006 report recommended that a 525 mm diameter sewer be constructed in the extended Campeau Drive across Huntmar Drive into the subject site. Because of hydraulic gradient constraints, the 2006 KWSS was very conservative with recommendations for sub-trunk sanitary sewer sizes.

Subsequent to completion of the KWSS report, several additional reviews have been completed with respect to sanitary HGL and overflow impacts at the SRPS. The most recent of these is the "Signature Ridge Pump Station Hydraulic Grade Line Analysis (IBI Group July 2014) completed for Minto Properties in support of its Arcadia development. The HGL analysis was further refined in July 2014 based on more up-to-date development conditions with the construction of Phase 1 Arcadia and Richardson Ridge.

As part of Arcadia's Stage 2 development the 375 mm diameter sanitary sewer sub-trunk was extended along Campeau Drive to Huntmar Drive. This sewer will provide the wastewater outlet for the subject site.

3.3 Design Criteria

In accordance with the City's current "Ottawa Sewer Design Guidelines", the following design criteria were used to predict wastewater flow rates for the subject site and to size the sanitary sewers:

- Minimum velocity 0.6 m/s
- Maximum velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Residential average flow 350 L/c/d
- Commercial (Employment Area) average flow 50,000 L/gross ha/d
- Industrial (Business Park) average flow 35,000 L/gross ha/d
- Residential peaking factor Harmon Formula
- Commercial/Institutional peaking factor 1.5
- Industrial peaking factor as per the guidelines
- Infiltration inflow 0.28 l/s effective gross ha
- Minimum allowable slopes as listed below

DIAMETER	SLOPE
200	0.320
250	0.240
300	0.816
375	0.140
450	0.111
525 and larger	0.100

3.4 Recommended Wastewater Plan

The recommended wastewater plan for the subject site is shown on Drawing C-100 along with details on drawing C-100A. The plan recommends that all wastewater flows from the subject site be conveyed to the Campeau Drive sewer. The 375 mm diameter sanitary sewer currently terminates at Huntmar Drive and has two connection points for the subject site. The west connection point is a 200 mm \emptyset sanitary service stub, while the east is a 300 mm \emptyset sanitary sewer stub.

3.5 Hydraulic Grade Line

The above referenced July 2014 technical Memorandum by IBI Group estimated the full buildout hydraulic grade line (HGL) at the intersection of Campeau Drive and north entrance to be 95.47 m, and at Campeau Drive and Street 1, 94.76 m. The lowest finished floor elevation for all of the Arcadia commercial development is 98.10 m and since all buildings will be slab on grade type, the sanitary HGL will not negatively impact the development.

3.6 Sewer Calculations

The on-site sanitary sewers have been designed in accordance with City of Ottawa and Ministry of the Environment of Ontario (MOE) criteria. The detailed sanitary sewer design sheets and related sanitary drainage area plan C-501 are included in **Appendix B**.

The July 2012 Site Servicing Report 'Arcadia – Kanata West Ph 1' by IBI Group identified conceptually the servicing for the 9.84 Ha parcel of land south of Campeau Drive. This site comprises approximately 5.2 Ha of that area. The Campeau Drive sewer was designed and constructed assuming 0.85 Ha of commercial lands connecting to MH301A and 9.99 Ha of mixed use lands (3.82 Industrial, 3.82 Residential, 1.35 Ha commercial) connecting to MH 303A, with peak flows of 0.98 I/s and 9.77 I/s, respectively, for a total of 10.75 I/s. This site generates approximately 5.95 I/s peak flow – 2.06 I/s to MH 301A and 3.89 I/s to MH 303A. The minor (1.08 I/s) increase in flow to MH 301A has no negative impact on the system as it has over 34 I/s spare capacity up to MH 303A.

As noted above, the site is comprised of slab on grade construction (no basements). The minor (1.08 l/s) increase in flow from MH 301A to 303A will not negatively impact this site. There are existing houses along Campeau Drive and the current freeboard between the HGL and USF is approximately 1.18 m at MH301A. It is anticipated that any minor HGL adjustment (1 to 2 cm) due to the 1.08 l/s at this MH will leave these units with in excess of 1 m of freeboard.

The remaining lands from the 9.84 Ha parcel has been divided into two external areas; EXT1(0.74 Ha) which is north of the future Rapid Transit Line, and EXT2 (2.82 Ha), south of the

Rapid Transit Line. These areas will be mixed use development areas and will split prorate the residual flow assigned this area. 10.75 L/S less 2.06 l/s and less 3.89 l/s equals 4.8 l/s which will be split 1.0 l/s for EXT1 and 3.8 for EXT2.

The total flow from this 9.84 Ha area to the Campeau Drive trunk sewer is 2.06 + 3.89 + 1.0 + 3.8 = 10.75 l/s. As a comparison, the KWSS had applied 50,000.00 l/Ha/d for this area which would equate to 11.29 l/s peak flow when using Peak Factor 1.5 and infiltration rate of 0.28 l/s/Ha. To this end, the total flow from this area to the Campeau Drive sewer and SRPS is less than the flow allocated in the KWSS.

4 Stormwater Management

4.1 Existing Conditions

As previously noted, the subject site, which is located east of Huntmar Drive north of the proposed Rapid Transit Route and Feedmill Creek is currently vacant except for a temporary sales trailer for Minto's residential lands. The site was previously stripped and the excavated material was used to preload the initial phase of Minto's residential development. As such, the topography is fairly consistent and ranges from about 100 m in the west to about 97 m in the east.

As part of the Arcadia development Stage 1 works, an interim SWM facility was constructed in the future Stage 4 area to service Stages 1, 2 and 5. Storm sewers within Stage 1 and the portion of Campeau Drive fronting on Stage 1 are currently in service and outlet to the interim SWM facility.

Details related to the design elements of the stormwater management facility are presented in the previously approved report entitled "Arcadia Interim SWMF Design Brief, June 2012". This section of the report will focus only on the onsite stormwater system proposed for the site.

4.2 Minor Storm Sewers Design Criteria

The minor storm sewers for this site will be sized based on the recommendations of the KWSS and standards of both the City of Ottawa and the provincial Ministry of the Environment. Some of the key criteria will include the following:

•	Design Return Periods:	Local and Collector Roads	1:5 yr (Ottawa)
•	Sewer Sizing by Rational Method		
•	Runoff Coefficients:	Roof	C=0.90
		Asphalt	C=0.90
		Landscaped Areas	C=0.2
•	Initial T of C	10 min	
•	Min Velocity:	City Design Guidelines	0.80 m/s

The SWM report for the neighbourhood recommended that for the subject lands, runoff discharged to the downstream storm system should be limited to 240 l/s/Ha.

The minor storm sewers for the subject site, will be sized based on the rational method and the City of Ottawa 1:5 yr. event. Minor storm flow into these sewers will be controlled by Inlet Control Devices (ICD) to limit flows and prevent sewer surcharging.

The minor storm sewer system is illustrated on the General Plan C-100 plus additional specifications and details are provided on Drawing C-100A. The storm sewer design sheets and related Storm Sewer Drainage Area plans C-500 is included in **Appendix C**.

The servicing report for Arcadia Phase 1 included capacity for 163 l/s and 1822 l/s at MH's 301 and 303 in Campeau Drive. The detail design sheets note the peak flows of 158.8 and 1354.27 at MH's 301 and 303 respectively. To this end, no negative impact on the existing downstream system is anticipated.

4.3 Stormwater Management

In accordance with the neighbourhood SWM, the site is proposed to outlet to the existing Campeau Drive storm sewer, which outlets to the Interim SWM pond and eventually to the future Pond 1 as per KWDA Master Servicing Report. The downstream sewers and interim SWMF have been constructed and are operational. As per the recommendation of the Servicing Report

for the downstream storm sewers, all drainage from this site is restricted to a maximum release rate of 240 l/s/ha.

In order to control flow into the downstream sewers, Inlet Control Devices (ICD) and roof drain restrictors are proposed. These flow control devices will be required to restrict flow into the minor system and to the downstream storm sewers, to a maximum of 240 I/s/Ha, or 192 I/s for the 0.8 Ha tributary to MH 301 in Campeau Drive, and 1027.2 I/s for the 4.28 ha tributary to MH 303 in Campeau Drive for a total of 1219.2 I/s.

The KWSS identified the major storm route for these lands to discharge to Feedmill Creek. This site will be designed to accommodate the 100 year event with minimal over flow off site, however, should a major event in excess of the 1:100 year event occur, runoff which exceeds the available spare storage would be routed along the parking lot and internal roads to Feedmill Creek. Figure C-500 in **Appendix C** also illustrates the proposed major storm routing for the site system.

As noted above, the development must limit flow to the storm trunk sewer to 240 I/s/Ha during a 1:100 year rainfall event to provide flood protection for downstream properties. In order to control flow into the downstream sewers to meet this criteria, Inlet Control Devices (ICD) are proposed. Drawing C-100 illustrates the location of ICD's for the various inlets and roof drains and drawing C-100A provides additional details on the ICD's. These ICD's restrict flow into the minor system resulting in ponding as illustrated on drawing C-400. The modified rational method was used to determine the volume of storage required to capture the 100 year event while limiting the accumulated flow to the downstream storm sewers to a maximum of 240 I/s/Ha.

Approximately 0.19 Ha will shed uncontrolled runoff to the Huntmar Road and Campeau Drive storm sewers. The net allowable from the site shall be reduced by the 100 yr. flow provided by this area which is approximately 46.66 l/s. To this end the maximum allowable flow from the onsite sewers is 1219.2 l/s - 46.66 l/s = 1172.54 l/s.

Based on the proposed ICD's during a 100 yr. event, a total of 1142 l/s is being allowed into the system, while a maximum of 1357.48 m³ of storage has been provided as summarized in the table below. The modified rational method analysis is included in **Appendix C** along with the above noted drawings. It can be noted that on site storage (roof top, inline and surface), attenuates the 100 year event with minimal overflow to future phases.

ICD #	TRIBUTARY AREA (m²)	100 YR. FLOW (I/s)	100 YR. STORAGE (m³)	5 YR. FLOW (I/s)	5 YR. STORAGE (m³)
100	600	30	4.17	15	2.07
110	1100	40	20.65	20	20.65
120	1100	15	34.51	7.5	14.76
122	600	10	19.52	5	19.52
123	600	15	1.74	7.5	1.74
201	2900	60	11.06	30	19.97
204	1300	55	1.82	27.5	1.82
205	1600	60	4.33	30	4.33
206A	3800	85	104.32	42.5	37.34
206B	700	10	29.25	5	9.27
206C	400	14	9.27	7	5.52
206D	500	60	1.68	30	0.52
210A	1200	77	13.50	38.5	10.52
212	600	24	3.73	12	3.73
215	400	10	7.07	5	3.59
221	2900	85	69.97	42.5	69.83
222	1200	15	31.00	7.5	16.98
223	2700	32	116.57	16	57.66
230B	1900	70	32.11	35	10.57
230C	300	10	6.49	5	5.52
230D	1300	67	21.16	33.5	3.97
230F	700	38	11.77	34	5.52
230G	1200	53	43.07	26.5	27.57
2301	300	11	8.62	5.5	5.52
231	6800	150	204.32	75	139.9
240A	500	10	14.22	5	11.57
240C	500	10	15.07	5	5.52
Roof 100	600	2	26.48	2	11.12
Roof 200	400	1	19.3	1	8.31
Roof 300	400	1	19.3	1	8.31
Roof 400	1500	4	70.97	4	30.4
Roof 500	900	2	44.93	2	19.51
Roof 600	600	2	26.48	2	11.12
Roof 700	1000	2	51.44	2	22.49
Roof 800	600	2	26.48	2	11.12
Roof 900	4600	10	231.11	10	100.49
TOTAL	47700	1142	1357.48	584	738.33

4.4 Hydraulic Grade Line

The storm HGL is dictated by downstream infrastructure. The storm HGL within the existing storm sewer on Campeau Drive is at 96.05 m and 95.09 m at existing MH's 301 and 303 respectively. The sewers are not surcharged at these points and since the internal sewers are restricted to meet the downstream system design requirements and sized to accommodate the restricted flow. The onsite sewers will not be surcharged and as such the HGL will follow the obvert of the pipes. Additionally, this is a slab on grade development and the City requirement for 0.3 m freeboard to USF to protect basements from flooding is a mute point. The minimum freeboard from the onsite HGL (obvert of storm sewer) to finished floor elevation is 1.51 m. Additional columns have been added on the storm sewer design sheet to identify relationship between HGL (obvert of pipe) and FF for buildings.

5 Sediment and Erosion Control Plan

During construction, existing stream and conveyance system can be exposed to significant sediment loadings. Although construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- seepage barriers will be constructed in any temporary drainage ditches;
- filter cloths will remain on open surface structure such as manholes and filter socks on catchbasins until structures are commissioned and put into use.

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

In order to reduce sediment loading to the adjacent lands via overland flow, seepage barriers will be installed along the property limits will be used. Light Duty Silt Fence Barrier as per OPSD 219.110. All seepage barriers will be inspected and maintained as needed.

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed theses structures will be covered to prevent sediment from entering the minor storm sewer system. Until the parking lots are asphalted and curbed, all catchbasins and manholes will be constructed with a geotextile filter fabric located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

During construction of any development both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer system is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rear yard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stock piling of imported construction materials is generally not a concern. These materials are quickly used and in mitigative measures stated previously, such as and filter fabric in catchbasins and manholes help to manage these concerns.

Roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only temporary event since the materials are quickly moved off site.

To reduce the potential for tracking of sediment off-site, mud mats will be constructed at each entrance and maintained until site is ready for paving.

A sediment and erosion control plan is provided as Drawing C-900 in Appendix D.

6 Geotechnical

Paterson Group prepared a geotechnical report updated June 26, 2014 for the subject lands. A copy of the Paterson report has been provided in **Appendix D**. The report provides recommendations for various site servicing and building construction issues. The recommendations impacting site servicing include, but are not limited to the following, see report for details:

- Permissible grade raise: 2 m within 5 m of building 3 m elsewhere.
- Pavement Structure: The following is the recommended pavement structure.

	THICKN	ESS (mm)
PAVEMENT STRUCTURE	CAR PARK AREA	ACCESS LANES & HEAVY TRUCK PARKING
Superpave 12.5	50	40
Superpave 19.0		50
Granular "A"	150	150
Granular "B" Type II	400	450

- Pavement Structure Drainage: Subdrains at CB's 3 m long orthogonally or longitudinally when along a curb.
- Pipe Bedding and Backfill: 150-300 mm OPSS Granular 'A' crushed stone bedding compacted to 95% SPMDD. Cover to extend 300 mm above pipe obvert to be OPSS Granular 'A' compacted to 95% SPMDD.
- Clay Seals: To be provided at 60 m intervals

The proposed Grading Plan C-200 is included in **Appendix D**. The grading plan was prepared with a view to limit grade raise to 2.0 m or less. Paterson Group has reviewed this plan and via their comments to the City dated June 26, 2014, Item #13 included in **Appendix D** noting their concurrence of the plan from a geotechnical perspective.

Infiltration targets for the proposed site were outlined in Figure 5.4 of the KWSS. The soil type within the proposed development area is characterized as clay with low recharge potential. The infiltration target for the area, as identified within the KWSS, is 50-70mm/year. The site is primarily comprised of impervious parking lot and roof surfaces. Infiltration targets for the neighbourhood are detailed under a separate approved report, IBI Arcadia Stage 2 SWM Report and Stage 2 Inlet Design Brief dated September 2014. Section 3.2 of that report identifies how the target for the neighbourhood is to be achieved; summary calculations including these commercial lands are included in **Appendix D**, illustrating an infiltration rate of 122 mm/yr for the neighbourhood which exceeds the 50-70 mm/yr required.

7 Approvals and Permit Requirements

7.1 City of Ottawa

The City of Ottawa will review all and approve most development applications as they relate to provision of water supply, wastewater collection and stormwater conveyance and treatment. Ultimately, the City will issue final approvals for construction including:

- MOE Section 53 Application for Sewers
- Form 1 for Watermains
- Commence Work Notifications
- Site Plan Approval

7.2 Province of Ontario

At the time of final design approvals, the Ministry of Ontario (MOE) will approve the local sewers under Section 53 of the Ontario Water Resources Act and issue an Environmental Compliance Approval. Also if required, the MOE will issue a Permit To Take Water (PTTW).

8 Recommendations

The development of 370 Huntmar Drive will be completed by extension of existing external infrastructure, including water, wastewater and stormwater systems. This report provides sufficient information and demonstrates that water, wastewater and stormwater systems required to develop this site have been designed in accordance with MOE and City of Ottawa current level of service requirements and/or requirements of the existing downstream systems. This report therefore recommends that the City provide the relevant approvals and Commence Work Notifications as needed to start site construction.

CESSIC: Report Prepared By Yaphoricaculos £ Demetrius Yannoulopoulos, P. Eng.

Associate Director

J:\35355-ArcadiaComm\5.2 Reports\5.2.2 Civil\2014-08-25\CTR-design-brf-2014-08-25.docx\

APPENDIX A

×

ARCADIA DEVELOPMENT

Development Servicing Study Checklist

4.1 General Content

- Executive Summary Not applicable
- \Box Date and revision number of the report On cover
- Location map and plan showing municipal address, boundary, and layout of proposed development key map Figure 1
- Plan showing the site and location of all existing services Drawing C-100
- Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere Section 1
- Summary of Pre-consultation Meetings with City and other approval agencies Section 1
- □ Reference and confirm conformance to higher level studies and reports (master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria – Overall: Section 1, Water: Section 2, Sanitary: Section 3, Storm: Section 4
- Statement of objectives and servicing criteria Overall: Section 1, Water: Section 2, Sanitary: Section 3, Storm: Section 4
- □ Identification of existing and proposed infrastructure available in the immediate area –*Water Section 2;* Sanitary; Section 3, Storm Section 4
- □ Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available) Carp River, Section 1
- Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts *not applicable*
- Proposed phasing of the development, if applicable -- Section 1
- Reference to geotechnical studies and recommendations concerning servicing Sections 1 & 7
- All preliminary and formal site plan submissions should have the following information:
 - Metric scale
 - North arrow (including construction North)
 - Key plan
 - · Name and contact information of applicant and property owner
 - Property limits including bearings and dimensions
 - Existing and proposed structures and parking areas
 - Easements, road widening and rights-of-way
 - Adjacent street names
 - See detail drawings

4.2 Development Servicing Report: Water

- Confirm consistency with Master Servicing Study, if available Section 2
- Availability of public infrastructure to service proposed development Section 2
- Identification of system constraints Section 2
- □ Identify boundary conditions Section 2
- Confirmation of adequate domestic supply and pressure Section 2
- Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development Section 2
- Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure decuding valves Section 2
- Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design Section 2
- Address reliability requirements such as appropriate location of shut-off valves Section 2
- Check on the necessity of a pressure zone boundary modification Not applicable
- □ Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range Section 2
- Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions – Section 2
- Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation *Not required*.
- Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines Section 2
- Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference – Section 2

4.3 Development Servicing Report: Wastewater

- Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure *Section 3*
- Confirm consistency with Master Servicing Study and/or justifications for deviations Section 3
- □ Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers *Not applicable*
- Description of existing sanitary sewer available for discharge of wastewater from proposed development Section 3
- Verify available capacity in downstream Sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Section 3
- Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format Section 3
- Description of proposed sewer network including sewers, pumping stations, and forcemains Section 3
- Discussion of previously identified environmental constraints and impact on servicing (environmental constrains are related to imitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality) Section 4
- Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development - Section 3
- Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity Not applicable
- Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding – Not applicable
- Special considerations such as contamination, corrosive environment etc *Not applicable*

4.4 Development Servicing Report: Stormwater Checklist

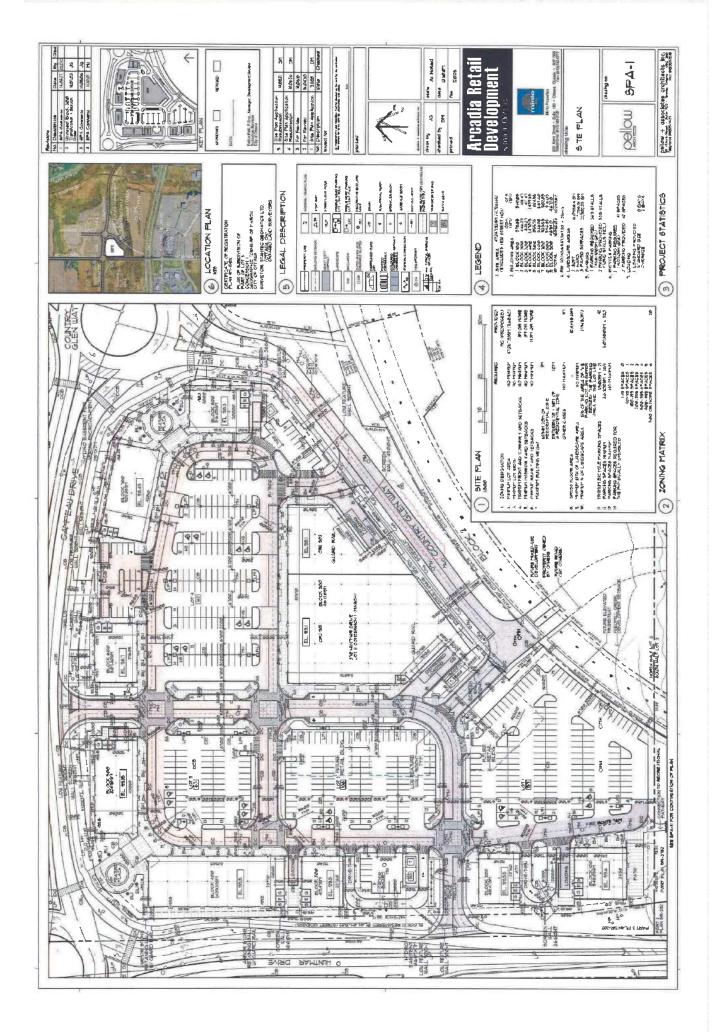
- Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Section 4
- Analysis of available capacity in existing public infrastructure Section 4
- \Box A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern *Section 4*

- □ Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects Section 4
- \Box Water quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements *Not applicable*
- \Box Description of the stormwater management concept with facility locations and descriptions with references and supporting information *Not applicable*
- Set-back from private sewage disposal systems Not applicable
- □ Watercourse and hazard lands setbacks Not applicable

 \square Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed – *Section 1*

Confirm consistency with subwatershed and Master Servicing Study, if applicable study exists – Section 4

- □ Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period) Not applicable
- Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals Section 4
- □ Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions *Not applicable*
- \square Any proposed diversion of drainage catchment areas from one outlet to another Not applicable
- Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities Section 4
- If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event Section 4
- Identification of potential impacts to receiving watercourses *Not applicable*
- Identification of municipal drains and related approval requirements Not applicable
- Descriptions of how the conveyance and storage capacity will be achieved for the development Not applicable
- □ 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading Section 4
- Inclusion of hydraulic analysis including hydraulic grade line elevations Not applicable
- Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors - Section 5


- \Box Identification of floodplains proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions – *Not applicable*
- Identification of fill constraints related to floodplain and geotechnical investigation Section 6

4.5 Approval and Permit Requirements: Checklist

- □ Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams or defined in the Act. Section 7
- Application for Certificate of Approval (CofA) under the Ontario Water Resources Act Section 7
- Changes to Municipal Drains not applicable
- Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation – Section 7

4.6 Conclusion Checklist

- Clearly stated conclusions and recommendations Section 8
- □ Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency *not applicable*
- All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario -Section 8

Lance Erion

From: Sent: To: Cc: Subject:	Fraser, Mark [Mark.Fraser@ottawa.ca] Tuesday, August 26, 2014 2:54 PM Lance Erion Demetrius Yannoulopoulos; Ogilvie, Chris RE: D07-12-14-0014_370 Huntmar Drive (Arcadia Commercial Development) - Request for Undeted Reundary Conditions
Attachments:	Updated Boundary Conditions FUS Fireflow Block 900.pdf; CCS_WaterDemands.pdf

Lance,

Please find below City of Ottawa watermain boundary conditions as requested based on the provided water demand and fire flow demand requirements.

Water Demand and Fire Flow Requirements:

Proposed Development Location: 370 Huntmar Drive Average Daily Demand = 0.31 L/s Max Daily Demand = 0.44 L/s Peak Hour Demand = 0.83 L/s Fire Flow = 183.3 L/s

City of Ottawa Watermain Boundary Conditions:

PKHR = 155.1m MXDY+Fire = 152.0 m Max HGL = 163.1m

Please note that the boundary conditions provided are based on the following:

- Boundary condition location is on the existing 305mm dia. watermain, about 25m north of the E-W 305mm watermain on Campeau Drive at Huntmar Drive.
- As required for all development beyond the initial 200 units approved for the Arcadia development, it is assumed that the 610mm Campeau feedermain extension south on Huntmar to Cyclone-Taylor is in operation.
- To supply the required fire demand provided, the future interconnection between the 610 and the 305 on Campeau Drive at Huntmar Drive (as per 2013-01-18 IBI report, Campeau Drive Watermain, Didsbury to Huntmar Road) MUST BE CONSTRUCTED.
- Pressure Reducing Valves (PRV) are likely required for this development.

Please refer to City of Ottawa, Ottawa Design Guidelines – Water Distribution, First Edition, July 2010, WDG001 Clause 4.2.2 for watermain pressure and demand objectives.

These boundary conditions are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

If you have any questions please let me know.

	UOND ISI	4					×	ATERMAN	DEMAND	WATHING NO CALCULATION SHEET	ION SHEE						
		345 PRESTON STREET														FILE	35355.5.7
CROOT	OTTAWA, ON	N,				_	PROJECT :	-	ARCADIA	ARCADIA COMMERCIAL	7				DATE	DATE PRINTED:	16-Aug-14
	K18 BNK						LOCATION:		CITY OF OTTAWA							DESIGNE	LE
						_	DEVELOPER :		MINTO							PAGE	1 OF 1
		RESIDENTIAL	ENTIAL	Π	NON	151	LIAL	AVI	AVERAGE DAILY	1LY	MA			MAX		RLY	FIRE
NODE		UNITS			INDTRL	COMM.	RETAIL		DEMAND (Vs)	(s)	õ	DEMAND (VS)	\$)	ă	DEMAND (Vs)	6	DEMAND
	ŝ	SD & TH	1S	NJO	(ha.)	(ha.)	(m²)	Res	Non-res.	Total	Res.	Non-res.	Total	Res	Non-res.	Total	(I/min)
ARCADIA COMMERCIAL																	
AC-120 (Blk 800)							547	0.00	0.02	0.02	0.00	0.02	0.02	00'0	0.04	0.04	11,000
AC-130 (Blks 600,700)							1472	0.00	0.04	0.04	000	0.06	0.06	0.00	0.12	0.12	11,000
AC-140 (Blk 500)							856	0.00	0.02	0.02	0.00	0.04	0.04	00 0	0,07	20.0	11,000
AC-160 (Biks 300,400)							1918	0.00	0.06	0.06	00'0	0.08	0.08	00.0	0.15	0.15	11,000
AC-180 (Biks 100,200)							1025	0.00	0.03	0.03	00.0	0.04	0.04	00'0	0.08	0.08	11,000
AC-190 (Blk 900)							4694	0.00	0.14	0.14	0.00	0.20	0.20	0.00	25.0	0.37	11,000
TOTAL										0.31			0.44			0.83	
ADCADIA STAGE 4																1	
PH1-100		4		Ŧ				0.04	0.00	0.04	0.11	00.0	0.11	0.24	0.00	0.24	10,000
PH1-101		4		=				0.04	0.00	0.04	0.11	00.0	0.11	0.24	0010	0.24	10,000
PH1-105		2		14				0.05	0.00	0.05	0.14	0.00	0.14	0.30	0.00	0.30	10,000
PH1-110		8		22				0.09	0.00	0.09	0.22	00'0	0.22	0.48	0.00	0.48	10,000
PH1-115		80		22				0.09	00.0	0.09	0.22	0.00	0.22	D.48	0.00	0.48	10,000
PH1-120		s		14				0.05	0.00	0.05	0.14	0'00	0,14	0:30	0.00	0.30	10,000
PH1-160	Φ	φ		4				0,19	0;0	0.19	0.47	0.00	0.47	1 04	8	1.04	10,000
PH1-170	80	æ		8				0.20	0.00	0.20	0.49	000	0.49	1.09	0.00	1.09	10,000
PH1-180		~		8				0.08	0:00	0.08	0 16	000	0 19	0 43	0.00	0.42	10,000
PH1-185		~ 0		<u>e</u>				80 0	80	0.08	0.19	0.00	0.19	0.42	80,0	0.42	10,000
PH1-190		о		24				0.10	000	0.10	0.25	0.00	0.25	0.54	00.0	0.54	10,000
PH1-200		<u>e</u> !		2				0.18	8.0		0.44	8.0	0.44	020	0.0	080	00001
PH1-210		4		8				0.19	00.00	0.19	0.46	0.0	0.46	20.1	8.0	1.02	10,000
PH1-220		20		8				60.0	00:0	50.0	0.22	00.0	0.22	0.48	00.0	0.48	000'01
PH1-230				20				0.10	0000	6.15	85°D	8.9	0.00	201	8.0	31	000/01
DL41-250				5 5				0.15		0.10	470	000	0.3p	0.00	8 8	3	
PH1-260	: :			5 6				0.15	000	0.15	038	000	80		000	0.83	10.000
PH1-270	12			4				0.17	00.0	0.17	0.41	000	0.41	0.91	00.0	16.0	10.000
PH1-280	4			4				0.17	00.0	0.17	0.41	0.00	0.41	0.91	0.0	16.0	10,000
C-140					65.40	19.10		0.00	37.55	37.55	0.00	56.32	56.32	0.00	101.38	101.38	10,000
								012021100	0								
	DESIDEN	DESIDENTIAL DENSITIES	SITIES				ALCO DAILY DEMAND		RN				MAY HOL	MAY HOURI V DEMAND	CN.		
					Ċ		AVG. DAIL	T DEMANU									
	- Single F	- Single Family (SF)			3.4	n/d/d	- Residential - Industrial (Business Park)	il 'Rusinese P	(Jare)	25000	35 000 1 / ha / dav		- Residential - Industrial (Business Park)	al (Reinoce F	Park)	1.929	1.920 / cap / day 94 500 / ha / day
	- Semi De	- Semi Detached (SD) & Townhouse (TH)	() & Townb	(HT) estic	2.7	n/ n/ n	- Commercial (Employment Area	al (Employ	ment Area	50.000	50.000 I / ha / dav		- Comment	- Commercial (Employment Area	ment Area	135.000 I/ ha / day	ha/dav
							- Retail (Shopping Centre)	opping Cen	tre)	2.500	2.500 I / 1000m ² / day		- Retail (Sh	- Retail (Shopping Centre)	itre)	6.750 1	6.750 1/ 1000m ² / day
	- Stacked	- Stacked Townhouse (ST)	e (ST)		2.3	n/d/d	MAX. DAILY DEMAND	Y DEMAND					FIRE FLOW	2			
							- Residential	-		875	875 1 / cap / day		·	- SF, SD & TH	Ŧ		1/min
							- Industrial (Business Park)	(Business F	ark)	22,500	<u>52,500</u> 1/ ha / day 75 000 1/ ha / day			- Retail		11.000	1 / min
								Commercial (Employment Area	ment Area	100/C/	250 11 102 102 12	-					
							- Ketaii (Sri	Retail (Shopping Centre)	tre)	0110	Van 1/ 1000m / 0av	day					

Fire Flow Requirement from Fire Underwriters Survey

Building Floc	or Area B	lock 900				
F = 220C√A		floor area	4,694	m²		
С	1.0)	C =	1.5	wood frame	
А	4,694	m^2			ordinary	
F	15,073	l/min			non-combustible fire-resistive	
use	15,000			0.0	116-16999446	
Occupancy A	Adjustme	<u>nt</u>			non-combustible limited combustible	
Use		0%			combustible free burning	
Adjustment		0	l/min		free burning rapid burning	
Fire flow		15,000	l/min			
Sprinkler Adj	ustment				system conforming to complete automatic sy	
Use		30%				
Adjustment		4500	l/min			
Exposure Ad	ljust <u>ment</u>				Separation C	-
Building Face	e S	Separation	Charge		0 to 3m 3.1 to 10m	+25% +20%
north			0%		10.1 to 20m 20.1 to 30m	+15% +10%
east		37	5%		30.1 to 45m	+5%
south			0% 0%			
west			0%			
Total			5%			
Adjustment			750	l/min		
Fire flow Use			11,250 11,000			

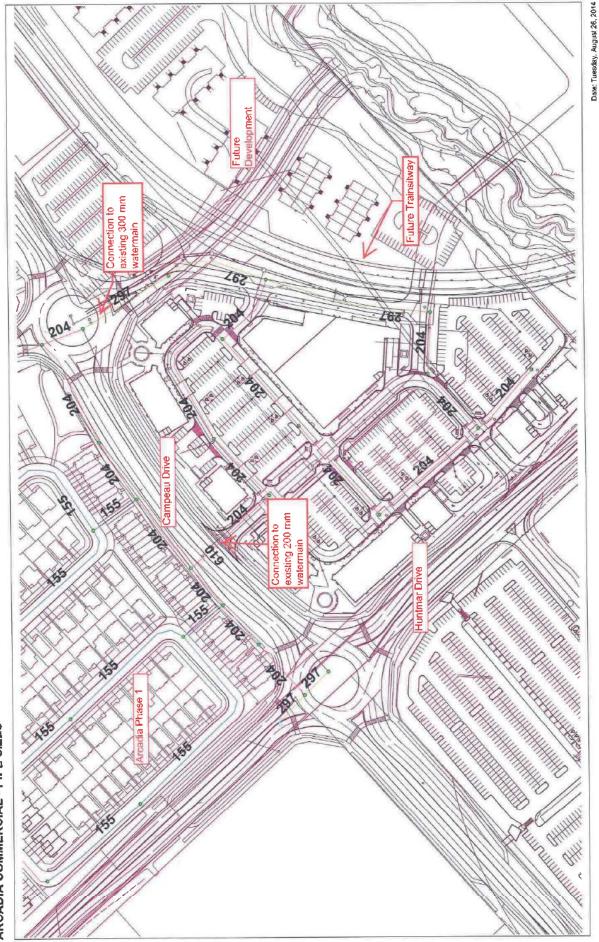
Note: This is the highest value for all buildings and will be used as the fire flow rate for the site

Fire Flow Requirement from Fire Underwriters Survey

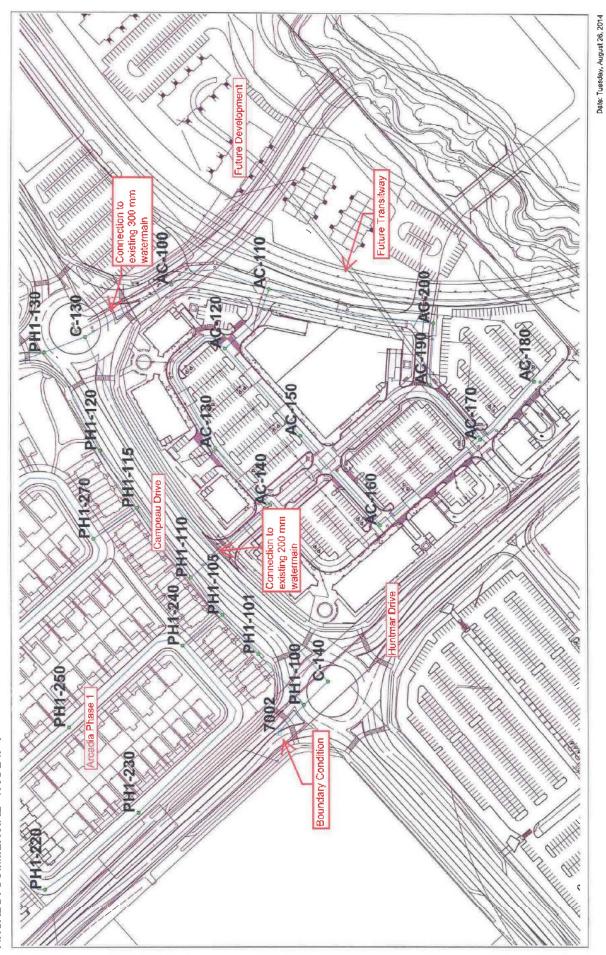
Building Floor Area Block 400

a.

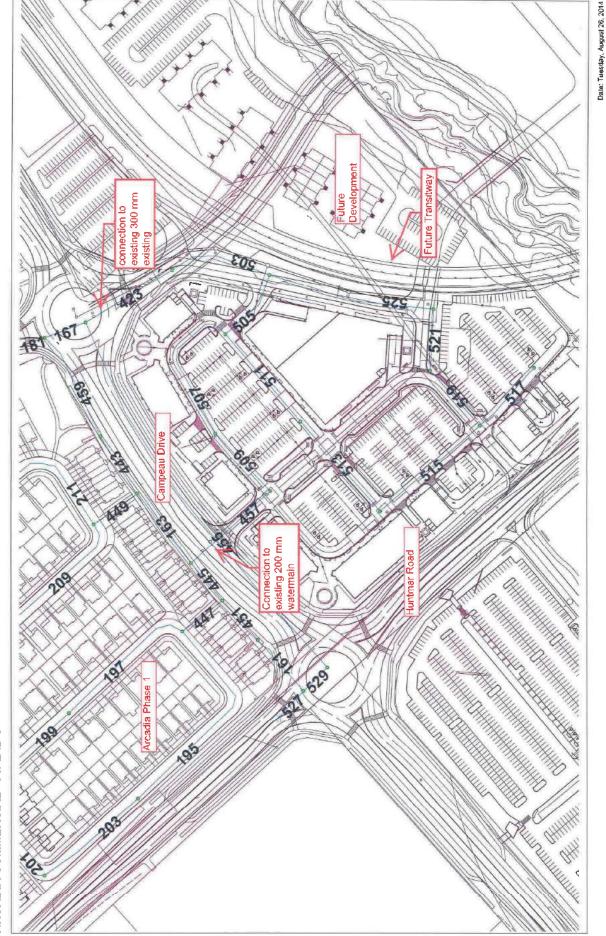
4


F = 220C√A		floor area	1,470	m²			
С	1.0		C =	-	15	wood frame	
A	1,470	m ²	0				
A	1,470					ordinary non-combustile	
F	8,435	Vmin				fire-resistive	
use	8,000				0.0	Ine reciperte	
Occupancy Ac	djustmen	<u>t</u>			-25%	non-combustile	
		_			-15%	limited combustile	
Use		0%			0%	combustile	
						free burning	
Adjustment			l/min		+25%	rapid burning	
Fire flow		8,000	l/min				
Sprinkler Adju	<u>istment</u>					system conforming to	
11.0		200/			-50%	complete automatic s	ystem
Use		30%					
Adjustment		2400	l/min				
rajuotinont		2100					
Exposure Adju	ustment					Separation (Charge
						0 to 3m	+25%
Building Face	S	eparation	Charge			3.1 to 10m	+20%
						10.1 to 20m	+15%
north			0%	6		20.1 to 30m	+10%
east		10	20%	6		30.1 to 45m	+5%
south		8	20%	6			
west			0%	6			
Total			40%	6			
Adjustment			3,200	l/mi	in		
Fire flow			8,800	1/mi	in		
Use			9,000				
090			9,000	1111			

Fire Flow Requirement from Fire Underwriters Survey


Building Floor Area Block 700

E - 0000 /k		floor area	4,694	m²			
F = 220C√A							
С	1.0)	C =	1.5	wood f	rame	
А	934	m ²		1.0	ordinar	У	
_						mbustile	
F use	6,724 7,000			0.6	fire-res	istive	
use	1,000	WTT1016					
Occupancy A	diustme	nt		-25%	non-co	mbustile	
						combustile	
Use		0%			combu		
A			44		free bu	-	
Adjustment Fire flow			Vmin Vmin	+25%	rapid b	uming	
LIG HOM		7,000	WITHER				
Sprinkler Adju	stment			-30%	system	conforming to l	NFPA 13
					-	ete automatic sy	
Use		30%					
Adjustment		2100	l/min				
_							
Exposure Adju	<u>ustment</u>					Separation C	-
Building Face		Separation	Chorae			0 to 3m 3.1 to 10m	+25% +20%
Dulluling I ace		separation	Charge			10.1 to 20m	+20%
north			0%			20.1 to 30m	+10%
east		13				30.1 to 45m	+5%
south			0%				
west		37	5%				
Total			20%				
			2070				
Adjustment			1,400	l/min			
Fire flow			6,300	l/min			
Use			6,000				


1.

ARCADIA COMMERCIAL - PIPE SIZES

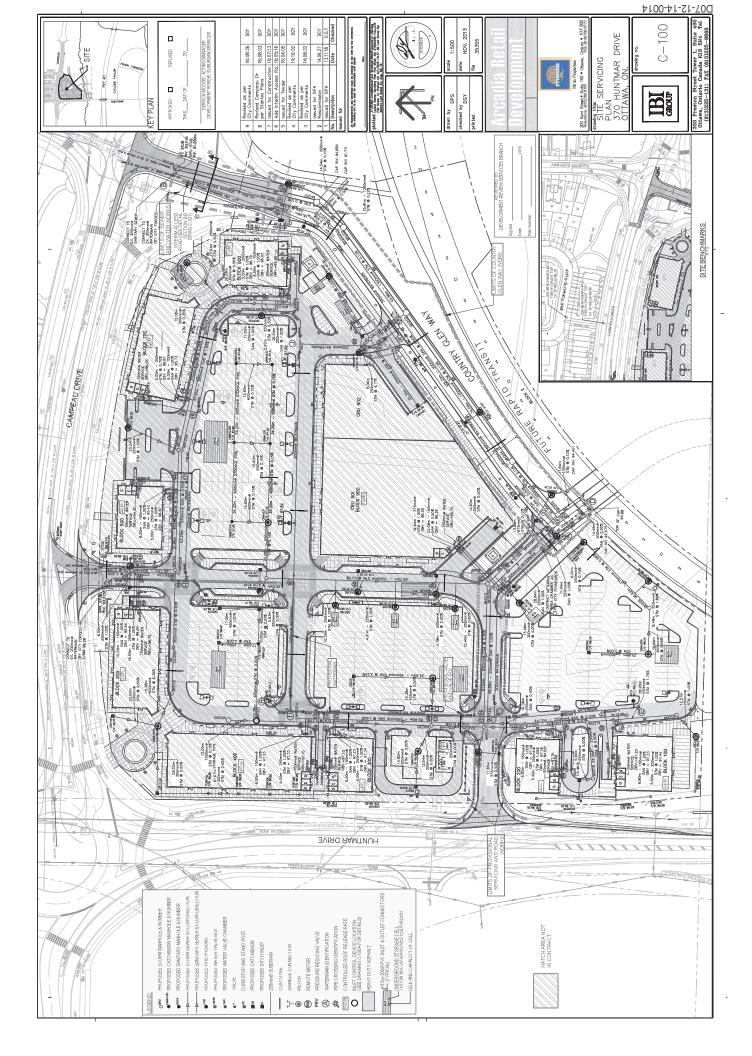
ARCADIA COMMERCIAL - NODE ID'S

ARCADIA COMMERCIAL - PIPE ID'S

		١D	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1		AC-100	0.00	97.40	163.04	643.21
2		AC-110	0.00	97.90	163.04	638.31
3	圓	AC-120	0.02	97.95	163.04	637.82
4		AC-130	0.04	98.30	163.04	634.41
5		AC-140	0.02	98.50	163.04	632.46
6		AC-150	0.00	97.85	163.04	638.80
7		AC-160	0.06	99.10	163.04	626.55
8		AC-170	0.00	99.20	163.04	625.57
9		AC-180	0.03	99.30	163.04	624.59
10		AC-190	0.14	97.75	163.04	639.78
11	(init	AC-200	0.00	97.30	163.04	644.19
12		C-130	0.00	98.10	163.04	636.35
13		C-140	37.55	100.20	163.04	615.77
14		PH1-100	0.04	100.25	163.06	615.53
15		PH1-101	0.04	99.50	163.05	622.78
16		PH1-105	0.05	99.00	163.05	627.61
17		PH1-110	0.09	98.65	163.04	631.00
18		PH1-115	0.09	98.20	163.04	635.39
19		PH1-120	0.05	98.10	163.04	636.36
20		PH1-130	00,0	97.90	163.04	638.31
21	1	PH1-160	0.19	97.15	163.04	645.66
22		PH1-170	0.20	97.25	163.04	644.68
23		PH1-180	0.08	97.25	163.04	644.68
24	3	PH1-185	0.08	96.95	163.04	647.62
25		PH1-190	0.10	97.10	163.04	646.15
26		PH1-200	0.18	97.15	163.04	645.67
27		PH1-210	0.19	97.80	163.04	639.30
28		PH1-220	0.09	99.70	163.04	620.68
29	s	PH1-230	0.15	99.60	163.04	621.67
30		PH1-240	0.10	99.70	163.04	620.72
31		PH1-250	0.15	97.90	163.04	638.33
32		PH1-260	0.15	97.50	163.04	642.24
33		PH1-270	0.17	98.15	163.04	635.87
34	13	PH1-280	0.17	97.20	163.04	645.17

Basic Day HGL 163.1 m - Junction Report

		1D	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1		AC-100	0.00	97.40	154.67	561.22
2		AC-110	0.00	97.90	154.67	556.32
3		AC-120	0.04	97.95	154.67	555.85
4		AC-130	0.12	98.30	154.68	552.51
5		AC-140	0.07	98.50	154.69	550.59
6	黨	AC-150	0.00	97.85	154.67	556.83
7		AC-160	0.15	99.10	154.67	544.57
8	(iiiii)	AC-170	0.00	99.20	154.67	543.59
9		AC-180	0.08	99.30	154.67	542.61
10		AC-190	0.37	97.75	154.67	557.79
11		AC-200	0.00	97.30	154.67	562.20
12	1	C-130	0.00	98.10	154.67	554.35
13	1	C-140	101.38	100.20	154.67	533.78
14		PH1-100	0.24	100.25	154.85	535.01
15	20	PH1-101	0.24	99.50	154.77	541.64
16		PH1-105	0.30	99.00	154.72	545.99
17		PH1-110	0.48	98.65	154.69	549.19
18		PH1-115	0.48	98.20	154.68	553.43
19		PH1-120	0.30	98.10	154.67	554.38
20		PH1-130	0.00	97.90	154.67	556.31
21		PH1-160	1.04	97.15	154.66	563.57
22		PH1-170	1.09	97.25	154.66	562.55
23		PH1-180	0.42	97.25	154.66	562.54
24		PH1-185	0.42	96.95	154.66	565.48
25		PH1-190	0.54	97.10	154.66	564.01
26	100	PH1-200	0.96	97.15	154.66	563.52
27		PH1-210	1.02	97.80	154.66	557.16
28	ATT2	PH1-220	0.48	99.70	154.66	538.54
29		PH1-230	0.83	99.60	154.66	539.57
30	1	PH1-240	0.53	99.70	154.69	538.84
31		PH1-250	0.83	97.90	154.67	556.26
32		PH1-260	0.83	97.50	154.66	560.10
33	1	PH1-270	0.91	98.15	154.66	553.78
34	100	PH1-280	0.91	97.20	154.66	563.03


Peak Hour HGL 155.1 m - Junction Report

Ind Critical Node 10 Critical Node 10 AC-180 AC-180 AC-180 AC-190 AC-190 AC-190 PH1-200 PH1-112 AC-190 PH1-120 PH1-120 AC-190 PH1-1200 PH1-200 AC-190 PH1-200 PH1-200 AC-190 PH1-200 PH1-200 AC-141 PH1-200 PH1-200 AC-141	I Node 1 Critical Node 1 Market Firs-From Available Flow Available Flow Critical Node 2 Critical Node 2 Critical Node 2 House Available Design Flow Critical Node 2 (m) (m) (14) (14)	147.05 605.24 81.4.63 AC-186 134.46 311.12	146.54 657.34 62.150 134.24 111.80 657.94	146.83 514.46 514.48 AC-120 139.96 112.23 514.49	142.84 409.56 AC-130 138.96 112.50 496.54	142.30 424.74 424.78 AC-140 138.96 112.78 424.74	1008 348.76 348.78 AC-150 138.96 112.13 368.78	118,26 334,84 AC-160 138,96 118,36 354,84	140.12 353.27 355.80 A.C-160 134.69 113.26 353.20	130,00 255,28 255,28 AC-160 138,96 113,56 255,28	141.40 424.72 409.83 AC-190 139.96 112.03 409.83	144.47 580.25 634.74 AC-200 159.87 111.88 554.74	618.56 B18.25 PH1-1C1 139.37 113.78 618.66	147.41 617.01 565.42 PM1-103 139.87 113.28 555.40	147,56 574,77 574,76 PH1-110 138,37 112,33 574,77	146.60 549.37 569.37 PH1.15 139.96 112.48 509.37	145.82 475.21 475.21 PH1-120 139.96 112.38 475.21	112.18 651.73	142,11 357,46 247,46 PH1-160 139,96 111,43 M57,45	139.90 327.15 327.17 PH4-170 139.86 111.83 827.17	138.11 315.49 315.51 PH1-160 133.96 111.33 315.51	(23.11 224.01 224.01 PH1-185 139.96 111.23 224.01	139.39 327.87 327.58 PH1-190 139.96 111.38 327.89	138.49 335.23 320.49 PH1-200 132.96 111.43 320.49	135,72 286,96 289,50 PH1-220 134,60 111,47 296,97	131.97 227.67 237.68 PH4-226 139.96 13.96 237.86 3	118.86 160.46 PH1-200 139.95 113.88 180.46	138.37 294.74 294.75 PH1-240 199.96 113.98 294.75	123,90 20231 20231 PH1-260 138,96 112.18 202.31	125.10 208.36 208.36 PH1-260 139.96 111.78 208.36	213 27 200 2010 2010 2013 2013 2013 2013 2013
Total Demand (Us) 193,33 193,35 193,35 193,35 193,45 193,45 193,45 193,45 193,45 193,45 193,45 193,45 193,45 193,45 193,45 194,50 196,82 196,82 196,82 196,82 196,82 196,82 196,82 196,82 196,82 196,82 196,82 196,82 196,92 196,92 196,92 196,92 197,16 197,16 197,16 197,16 196,82 196,82 196,82 196,82 196,82 196,82 196,92 196,100 196,100000000000000000000000000000000000										_	_			4	4	4					-	e									-
D - Fireflow Design Report AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 AC-106 PH1-10 PH1-10 PH1-10 PH1-10 PH1-10 PH1-200 PH	Totel Demand (Us)	103 92	18-3 4.1	- BELSK	103.30	183.97	103.23	183.44	183.33	183.37	153.53	183,33	156.81	166.84	166.92	166.92	156.84	186.70	167.17	167.19	184.80	186.89	168.05	187 14	167 16	168.92	167.08	166 94	147.08	167.08	
	m - Fireflow Deakgn Repar	1								AC-180	AC-490	AC.200																			

Date: Tuesday, August 28, 2014, Page 1

	9	From Node	To Node	(u)		Roughnoos	(L/1)	(\$)U(2)	(m)	(m/km)
Ŧ	101	PH1-100	PH1-101	46.05	204.00	110.00	14.49	0.44	0.07	1.60
-	163	PH1-110	PH1-115	59.67	204.00	110.00	5.79	0.18	0.02	0.29
m		PH1-130	C-130	29.61	204.00	110.00	-1.20	0.04	0.000	0.02
4	181	PH1-130	PH1-160	60.05	204.00	110.00	3.27	0.10	0.01	0.10
- 10	183	PH1-160	PH1-170	69.47	204.00	110.00	2.23	10.07	0.00	0.05
	185	PH1-170	PH1-180	85.41	204.00	110.00	1,14	0.02	0.00	0.01
-	187	PH1-180	PH1-190	70.16	204.00	110.00	0.30	0.01	0.000	0.00
	189	PH1-150	PH1-200	76.23	204.00	110.00	-0.24	0.01	0.0000	00000
	181	PH1-200	PH1-210	69.87	204.00	110.00	-0.91	0.03	0.000	0.01
10	165	PH1-230	PH1-240	152.92	156.00	100.00	-1.88	0.10	0.03	0.17
H	197	PH1-250	PH1-240	101.05	125.00	140.00	-2.13	D.12	0.02	0.22
12	81	PH1-280	PH1-210	88.07	155.00	140.00	1.36	0.07	0.01	0.09
	201	PH1-210	PH1-230	72.36	204.00	110.00	20.0-	0.02	00000	0:00
14	203	PH1-220	PH1-230	61.93	155.00	160.00	-1.05	D.06	0.00	0.06
	100 JOT	PH1-200	PH1-260	38.75	155,00	100.00	-0.23	0.01	0,00,0	0.00
18	200	PH1-260	PH1-270	03.20	156.00	160.00	-1.11	0.08	0.01	0.06
17	211 (III	PH1-280	PH1-270	146,23	155.00	100.00	-0.92	0.05	0.01	0.04
18	213	002-LHd	PH1-190	98.43	155,00	190.00	0.01	0.000	0.60	0.00
19	215	PH1-130	PH1-185	74.29	204.00	110,00	0.42	0.01	0.000	000
22	423	AC-100	C-130	68.35	007.002	120.00	2.25	0.03	0.000	0.01
51	443	PHI-115	PH1-120	46.70	204.00	110.00	2.37	0.07	0/10	90'0
52	445	PH1-105	PH1-110	33.01	204.00	110.00	B.34	6770	0.02	0.71
23	447	PH1-240	PH1-105	34,25	155.00	140.00	-4.60	0.24	0.03	0.87
24	449	PH1-270	PH1-115	36.93	156.00	100.00	-2.94	0.18	0.01	0.38
35	451	101-1H4	PH1-105	38.08	204.00	110.00	14.25	D.44	0.06	1.55
26	466	C-130	C-140	269.14	610.00	120,00	1.05	0.00	0.000	0,000
21	457	PH1-110	AC-140	12.77	204.00	110.00	3,08	0.09	0.01	80'0
38	450	PH1-120	PH1-130	77.46	204.00	110.00	2.07	9.06	000	0.04
ន	202	AC-100	AG-110	20.63	297.00	120.00	-2.25	0.03	0000	0.01
90	805	AC-110	AC-120	51.75	204.00	110.00	-2.00	0.06	0.00	0.04
31	205	AC-120	AC-130	105.72	204.00	110.00	-2,69	0.00	0.01	Q.0\$
32	509	AC-130	AC-140	54.17	204,00	110.00	-3.01	0.03	0.00	60'0
8	511	AC-120	AC-150	78.22	204.00	110.00	0.85	0.03	00010	0.01
34	0130 0113	AC-150	AC-160	81.42	204.00	110.00	0.85	0.03	00010	0.01
35		AC-170	AC-160	89.40	204.00	110.00	-0.70	0.02	0000	0.01
36	517	AC-180	AC-170	83	204.00	110.00	-0.03	0.00	0.00	00:00
5	519	AG-180	AC-570	60.38	204,00	110.00	-0.62	0.02	0.000	000
38	521 521	AC-190	AC-200	41.61	204.00	110.00	0.25	0.01	0.0000	0.000
39	525	AC-110	AG-200	113.05	00/262	120.00	-0.25	0.00	0.0000	0.000
\$		PH1-100	7002	24.69	297.00	120.00	+115.06	1,06	0.25	10.15

Date: Tuesday, August 26, 2014, Page 1

																			_							Þ100-		
	SITE		rever rimozen	APPROVED A	THIS DAY OF	DEFINICK MOODIE, ACTING MANAGER DEVELOPMENT REVIEW, SUELABAN SERVICES		6:08:26	6 Revised per Interim 16:05:16 DCY 5 Issued for Tender 16:04:05 DCY 4 Revised safer 14:10:02 DCY	Revised as per City Comments 14:08:22 Issued for SPA	Z Resubmission 14.06.27 DGY 1 Issued for SPA 1.3.11.18 DCY No. Description Date Checked	Issued for As reaction and the weak to assue the Association and an as the servere.	Pas Phototed <u>AVX00-Joconfordamen VA3 Brandrop Vaceth Va-100A.4m</u> phototed <u>AVX00-Joconfordamen VA3 Brandrop Vaceth Vaceth Vaceth</u> phototed <u>AVX00-Joconfordamen VA3 Brandrop Vaceth</u> (17 Results JA 8/)/AP(1 (1048 AB 10/)) (104 Results JA 10/) (104 R	outrate Last Sense Jul Al, 20, 10	and the second sec	CONCRETE NO.		checked by DGY date NDV. 2013 printed file 35355	Arcadia Retail	Development		entropy	Minto Properties 200 Kant Straet+ Suita 180 + Ottowe, Onland + KIP 085 Telephone. (613)762-9137	drawing the: DETAILS AND SCHEDULES 370 JUI INITMAD DDIVE	OTTAWA, ON.	IBI C-100A	CHOOL	333 Preston Street Tower 1, Suite 400 Ottawa, Ontario Canada K1S 5N4 Tel (613)225-1311 FAX (613)225-9968
21.5.5 (CMM) 2.0.5 (CMM) 2.0.5 (CMM) CMM (CMM) CMM, CMM, CMM (CMM) CMM)	и представителя представителя представителя представителя представителя представителя представителя по предста представителя представителя представителя представителя представителя представителя представителя представителя с в открытивание представителя представителя представителя представителя представителя представителя представит с в открытивание представителя представителя представителя представителя представителя представителя представите	Stat. 21, 42, 05, 1440, 1445, 1445, 1444, 144	али по при	ED PER CITY C	42. INNOTE NULCES 10 TO READ AL DERIO, LENS, ANU LEVES ALLAS PER UPON TRUET MALTINEE. ALLARIMMENT DE LINES INTERNET PROSTEMENT ALLAS ANU LEVES ALLAS PER UNTER DE LA DEL ALLARIMMENTAL IN LONDELS INFORMEMENT DES ANOTES ALLAS DE LATO FERALORIZATION CONTOURCE DE INSTALLES ALLAS DE REGISTRATION AND LES ADO FERALORIZATIONAL DE LA DE ALTRACES MEETO DE INSTALLES ALLAS DE REGISTRATIONAL DE LA DE LATO FERALORIZATIONAL ALTRACES MEETO DE INSTALLES ALLAS DE REGISTRATIONAL DE LA DE LATO FERALORIZATIONAL ALTRACES MEETO DE INSTALLES ALLAS DE REGISTRATIONAL DE LA DE	али Антект и сти ливия холканием. Колка по полнования на повет и или повет и пове Кактор от ами таковата и повет и повет тектор пакти за екс и п и и по повет и повет и повет повет и по	4. Any INSTEMAN MITH, ILS, THIRT, 4. COMERSED MERNAL, INSULATION AS FEB. CT. 16: 07136 OTTAMA INSURPLANE LIVE AND ADDRESS TRANSMISSION ADDRESS IN THE ADVECTOR ADDRESS A ADDRESS ADDRESS AD	CONSECTION TO BUSTING WARRAMONT DE INCLUCEDATINE COST FART HE WARRAMON INSTAULATION THAS COST INCLUED RANGT ARBIER OF REALOUTST TO THIS SUPPOND. 5.0 PARAMONE, LOTT ANNI VARIANCE OF REALOND THIS SUPPONDENCE. A COMPANIANT DE REVENCE PRIOR OF INTERNA COMPANIANT DE REVENCE PARAMONE.	3. COMPACTOR TO DERIVE PARAMENTOR MULTICAL DE LA DELINITARIA DE LA PRESENTACIÓN DE LA DELINITARIA DELINA DELINA DELINITARIA DELINITARIA DELIN	2.5 OFFINITOR TO PREASES SUBJECT AND CONTRIDUENT OF THE SECTION OF THE GENERATIVAL ISONEER FROM TO THE COMMISSIONEER OF PLACE BART OF THE SAME 4 ATLL TO BE PLACED AND COMPACTED FRET THE GENERAMICAL REPORT FEOLINGEMENT. 5 D. SUMMALLIN DIRVEL AND	OT GANULAR I MATERIA TORTESTINO AND CERTIFICATORI POLITIRE GENERANDALI ENDIRESTINA THE Material Linest The Endormon Figure Andread Structures of the Generandul Reform. 6.0 Ganuar Politicaense. To epilalate only uponapproval at the Generandal Endirestones of Ganuar Politicaense.	2. CONTRACTOR TO UTIPLY, FLUCE AND COMPACT COMPLICATION AND ETEM IN INCC REQUEST INTEL THE CONTRACTOR OF DATA TO A CONTRACT COMPLICATION AND ETEM IN INCC REQUEST INTEL ADM ESTIMATION CONTRACTOR AND ESTIMATION AND CONTRACT CONTRACT AND A CONTRACT ADDRESS INTEL ADM ESTIMATION OF DATA TO A CONTRACT ADDRESS OF ADDRESS OF ADDRESS AND A CONTRACT ADDRESS ADDRESS ADDRESS IN TRACTOR ADDRESS OF ADDRESS AND A CONTRACT ADDRESS INTEL ADDRESS CONTRACT ADDRESS IN TRACTOR ADDRESS OF ADDRESS AND A CONTRACT ADDRESS CONTRACT ADDRESS ADDRESS OF ADDRESS OF ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS ADDRESS OF ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS CONTRACT ADDRESS ADDRESS CONTRACT ADDRESS	обмиция и поставлят. Колтанските по предуктивные полнает казна, име предукти и околодии селитите водамана милии и передокали, казнаем сили и полни и и околоде на менения вода предуктивает предуктивает и предуктивает полнает по предуктивает и полнает манениемых в передокальта и предуктивает полнает полнает полнает полнает полнает полнает полнает манениемых в передокальта полнает полнает манениемых в передокальта полнает полна	о в поская можествот раском поската да во само по вое мощи поската поската поската поската поската поската поск На поската поската переконала ману метата, апом теха и раско раскаданата. К. 1. на протосне разликавало наяко заколото, да окачино октеалотока деят са ве пенката да то	THE CONTRACT PROVIDED AND THE CONTRACT PROVI	то сетемые эконичество консистнопологития. с ин жамент стансти семитеран, ттере ако типологово по нежи толг и до цонт одгу и кена 10 бе А увстива и песете симод, керета и мака колти песете.	Commercial-Sanitary STRUCTURE TABLE RIM ELEV INVERT IN INVERT OUT	99.58 NE97.184 90.44 NE97.126 99.43 NE97.126	98.43 SE95.580	99.50 NE94.283 NW93.061	NE94,580 E95,356 stran A66	97,10 591,457 NW81,427 97,18 SE91,457 NW81,427 07,30 591,457 NW81,426	97,66 592.324 N92.294	97.49 [72:40]	MH212A 96.24 Nime4.179 NE94.119 0FSD 701.010 MH213A 98.23 ST94.29H NIM94.261 0FSD 701.010 MH214A 99.25 NW94.512 0FSD 701.010		Commits 15 PERPANKE Commission Stremmers Commission Stremmers Commission Stremmers Accommission Stremmers Commission Stremmers Commissi	Amm 1.2 SUPERAVE dom 1.2 SUPERAVE dom 1.2 SUPERAVE dom 1.2 SUPERAVE dom 1.2 SUPERAVE 1.20m 06AULLAF V TYPE II 400m 06AULLAF V TYPE II 400m 06AULLAF V TYPE II
DRAVING NOTES 10.5PHERAL 10.5PHERAL	от по из часть почимов. 10.000 месято по	17 гос водани и податели податели и податели 18 летек то областви и податели и накого на податели и податели и податели и податели и податели и податели и 19 летек то податели и	Restance of the second	11.11 ML MUNICHE ALEAN LUNS SMY MA PRE-MYNLIMME MU PAE SWEEG'I LUMINN ALUS IMENIS JAS DETEMMEED YTTE BRUINER 11.11 AL LONGS LUNE SMEAUER SO DERMUSS TO COM PAR TO DE S. AND CONSTRUCTED TO CITY STADDARDS. 14.10511 - LONGS LUNE HERPARENT TTE- MINI LUNESSTURS AR MUTUL	ו זיק ברטואסוני ויויק אין איזאפין יווינו שוו באוהויד וויא ברואשים אוווי ווי 25, זמו שעראים. אלפי לפאמואני אווויז וואסורינו זיק גוון מוניי 14 אנו גוונו גוון אראי גוון גוון גוון גוון גוון גוון גוון גוו	Marchest, Carlo Sandar, Carlo R. Carlos Tanano, and Carlos Car	and entergissions the Exclusion's register from the register of the register o	14 SONFPACTOR TO HALL BCIESS MATERIAL OF STIEF AN INCESSARY TO GRADE STIET IOMEET THE AND AND AND AND AND AND AND AND AND AND	ровить на техни предележателя по таковидии точко по техни по техни по нали по нали в постат по техни по техни 1.1 я.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	12 UTULT PLOTS TO BEING ALLED PROPENDING AND BANG EXORSTBUCTION 1.44 CLAVE UNES TO BE INSTALLED INVERSE DIN THE DOMINING OR AL PPROVING AND DRECTED BY 1.54 CLAVE UNES ALLED INVESSION CLAVE AND ALLED UNDER VALUE AND ALLED AND AND AND AND AND AND AND AND AND AN	erets and characteristic Shinki uke. Ketanka Jadi Corkelvartekat ak her Ketametaran'ning Fronk Laurus Harvea, Havimenk Di Staditta AP V	2.4.4.2.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	и мад жанит пентирендика. Пода пода пода пода пода пода пода пода п	siederstandense Froder for forstanden for eines Endendet. Lavar samtares regene min Heis Than Simone Regionales Themaal, Issuarton as Perioritor Dir Marchart Hangerotto, Joha Samtarosta Universitation	In a cumportant of the point symmetry of the instrument of the cum house where the point of the	TABLE NAME RIM ELEY. INVERT IN INVERT OUT DESORPTION MHILOO 98.61 REGISARY NUME.723 12009 (2PS) 701.010	98.95 W96.357 NW95.674 98.35 W96.237	96.24 NE96.108 SN96.003 NE6.718 SN96.003 96.17 E06.329 SN96.254 96.271 v96.371	SE93.680 \$93.892	97.34 \$93.931 N93.911 97.94 \$93.696 N83.886	97.57 \$94.101 N94.091 97.43 894.512 N94.137 595.112 \$95.112	MH205B 97.47 TB44.538 E94.526 1800x 0F30.102 MH205B 8.829 SNB5.824 NB5.674 7200x 0P30.101 MH205 9.876 R94.537 R94.627 170.010 0P30.101	MH212 99.30 SE65.827 SM96.824 SM96.824 NE95.142 1200e 0P32 701.010 MH213 99.277 SM96.824 NE95.142 1200e 0P32 701.010	99.19 SE96.286 NA96.171 99.30 S97.624 NW96.978 99.20 NW96.879 NE96.819	99.12 NW95.556 SE95.236 99.12 NH95.626 SE95.236 NE95.704 SE95.676	97.36 NP05.596 C000000 0000000 000000000000000000000	MH500 99.21	2016
- ăe	: MOTE 3, Pr			000 001 100	2010 2014	1815 1916 1910 1910 1910 1910 1910	HIND CONTRACTOR OF CONTRACTOR OF CONTRACTORO						000 100 100 100 100 100 100 100 100 100	2446 2446							Unterence (m) 0.49 0.27	0.57 0.25 0.73 0.57 0.57	0.52 0.57	0.00 0.00 0.00 0.00 0.00	0.55 0.56 0.56	280 1月11日 1月111 1月111 1月111 1月111 1月111 1月111 1月111 1月111 1月111 1月111 1月111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月11111 1月11111 111111	DEVELOPMENT REVIEWED BY DEVELOPMENT REVIEW SERVICES ERANCH 0.01 0.01 0.00	0,000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TYPE 100 VF HEAD FLOW	C 01,35 1,225 1,350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		310 Precessors 1515 30.0 (14) 310 Precessors 1515 30.0 (14) 660 CONC 660 CONC 660 (14)	60 CONC 60 CONC 60 CONC 2.264 150.0 in 50 bor no 2.364 150.0 in	PVC PVC	PVC DR-35 14/10 PVC DR-35 1.335 PVC DR-35	250 PVC 08-35 1.710 53.6 HF 250 PVC 08-35 1.735 11.0 LM	CONC	85.0		PVC 28-35 1.676	230 PAC 08:35 1.575 10.0 LH 250 PAC 08:35 1.575 10.0 LH 250 PAC 08:35 1.575 20.0 LH 250 PAC 08:35 1.575 20.0 LH 250 PAC 08:35 1.575 10.0 LH		430 PVC.0P-35 430 CONC 2.413 R5.0 H	375 PAC DR-35 100 1AT 250 PAC DR-35 £.075 10.0 LMT 250 PAC DR-35 £.075 10.0 LMT	PVC DR-36 1.405 PVC DR-36 1.405 PVC DR-36 1.400			PVC 08-35 1.207	CROSSING SCHEDULE	Obsent Obsent 95,98 95,61	005577A 005577A 001/1/M	96.01 96.02	878 878 848 848	443 200 W/W 640 300 200 200 40 10 10 10 10 10 10 10 10 10 10 10 10 10	47 2000 KI/M 540 STM 540 STM 62.35 MT20052 54.30 540 STM 62.35 MT20052 54.30 540 STM 62.30 MT20052 54.30 540 STM 62.30 MT20052 54.30 540 STM 62.30 MT20052 54.30 540 STM 63.30 MT20052 54.30 540 STM 64.30 MT20052 54.30 540 STM 65.30 MT20052 54.30	M/W/W	41 cc 10 k
L CUTCH BASIN DATA TABLE CUTCH BASIN DATA TABLE REALT TOP OF ILENTER ID OF ILE	40.74 122 122 100	120 96.00 19.25 95.29 97.50 110 99.15 97.50 97.5	305	97.50 97.80 2.81 97.50 07.51	2308 37.45 35.42 230C 36.05 96.75 96.75 96.75	10.00 10 10.00 10 10.00 10 10.00 10 10.00 10 10 10.00 10 10 10.000	H 230G 97.52 95.97 95.84 84.71N 84.71N 85.01N 85.01N 85.01N 85.05 95.64	96.40 97.37 96.40 97.37 96.32 96.57	96.0.0 96.15 321 99.22 99.05	222 86.95 97.20 96.45 223 86.45 96.03 94.05	97.0039 99.15 212 99.15 97.52	2115 19-20 19-30 19-15 19-20	210A 97/40 96.57 96.50 96.85	A 194.00 D6 209A 194.20 194.20 97.47(5)	36.58 2068 96.40 2065 96.40	2000 97.34 2000 97.34 27.32 213 97.30	204 07.67 204 07.67 97.75	242A 92.25 96.30 242A 92.25 96.30 94.85 96.33 2420 92.24 96.33	97.02 56.43 97.02 56.43 201 97.02 56.43	CROSSING	M/W 800	22 M/W 000 26 M/W 000 29 MT2 000	00 511 10 000 01 11 10 000 02 11 10 000	10 M/W 000 00 M/W 000 00 M/X 000 000 TV	55 W/M 80 55 W/M 80 55 W/M 80	200654N1 9130 200557M 96.09 2.01 200554N 9132 200557M 96.99 2.72 200554N 91321 20057M 96.41 3.15 200554N 95.91 20057M 96.41 3.15 200554N 95.91 20057M 96.41 3.15	16 NV5 005	
HEALL HEALT TOPOL MAGALT HEALT TOPOL MAGALT TOT NA TOT NA TOT NA TOT NA TOT NA TOTOL		NU NU GB1 NU SU GB1 NU SU GU NU SU SU	1015 1015 1015 1015 1015 1015 1015 1015	R/M MM CBMH232 R/M N/M CBMH232 R/M N/M CBMH234 R/M N/M CBMH	1111 1111 1111 1111 1111 1111 1111 11	1735 New 173	10000 1000 (10030H 10000 1000 1000 (10030H 10010 1000 1000 (10030H 10010 1000 1000 (10030H		MAL MAL MAL		611 212 CC3213A 101 212 10 CC3213A 101 212 10 212 10 CC3213A	(B2)		841 843 00000 841 843 0000 841 855 000000 00 853 055	84.21 0.022 84.52 0.022 84.51 0.025 84.51 0.026 84.51	1000 1000 1000 1000 1000 1000 1000 100	2 (12) (2) (2) (2) (2) (2) (2) (2) (2) (2) ((1.1) (1.1)(000000 00000 00000 00000 00000 00000 000000	8128 8128 8129 8131 8131 8131 8131 8131	9722 85.22 10000000 9120 85.40 100000 8720 85.40 1 9721 85.50 2 9731 85.50 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r s 5.		1 2 2 2	19 19 19 19 19 19 19 19 19 19 19 19 19 1	1 2 2 2	(\$ 8 <i>3</i> 8
A 000000 0000 0000 0000000000000000000	000001 155/ VICEOL 000 0001001 155/ VICEOL 000 0001001 156/ VICEOL 000 0001001 100000 000000 100000 000000 100000 000000 100000 000000	Control of the control brind the control brind the control of the control of the control brind the control of the control	0.0121 J.25 / WHOLA, RHQ 0.01204 MIRRO2X / R	01210200 000000000000000000000000000000	C 010000 000 000 000 0100000 000 000 0100000 000 000 0100000 000000 000000 0100000 000000 0100000 000000 0100000 000000 0100000 000000 0100000 000000 0100000 000000 0100000 000000 01000000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 010000 0100000 0100000 0100000000	Com 1/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0	9-1027 202-102001-0000 9-1027 2020-10200 9-1020020 2020-000 6-000000 2020-000 6-000000 2020-000	Control 14 C	C 010500 2001 2001 2001 2001 2001 2001 20	0.112130 0.1121	Original Staticity Section Staticity Section Static Static Staticity Section Static Static Static Staticity Section Static Stati	Comparison of the relation of the comparison of	H 01001114 20000 2000 2000 01000120 2000 2000 2000	H 0+00.00 20050 A2004 TEL 040205 0	0.000511,10,200,11,200 0.00051 2000,11,200 0.00051 2000,100 0.001032 2000,100 0.01032 2000,100 0.01032 2000,000 0.01032 2000,000 0.01030 0.01030 0.01030 0.01030 0.01000,0000,000 0.01000,000 0.01000,000 0.01000,000 0.01000,000 0.0000,0000,000 0.0000,0000,00	0.000 100 100 100 100 100 100 100 100 10	0.110.71 2000-0.0100 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000	2017.13 2017.2012.2012.2010.2010.0011 2018.2010.2012.2012.2012.2012.2012.2012.	0-20057 4F EAU YERTAL IEED 0-200528 4F EAU YERTAL IEED 0-20059 4F EAD YERTAL IEED 0-20059 4F EAD YERTAL IEED 0-20050 4F EAD YERTAL IEED	0-02/320 - 02/22/22 - 02/22/22 - 02/22/22 - 02/22/22 - 02/22/22 - 02/22/22 - 0	 J. 0.00003 2000 XXX0= TILE 0.001509 2000 - 22.5 TILE 0.00023 2000 - 22.5 TILE 0.00023 2000 - 14.5 TILE 							

_

APPENDIX B

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

Economy (E) 25%

The reconstruction of the Signature Ridge Pumping Station is significantly more than the costs to upgrade the existing station.

Caring and Healthy Community (CHC) 25%

In terms of the impact on the Community, there are no significant differences between the two alternatives.

Natural Environment (NE) 14%

There are no significant differences between the two options with respect to impacts to the natural environment. Both alternatives require the construction of an emergency overflow to the Carp River. Impacts to surface water quality as a result of potential station overflows during an emergency situation are not expected to occur. Should an overflow occur for either alternative, the impacts would be mitigated by a SWM pond. Increases in CO_2 emissions as a result of the use of diesel generators during power failures or maintenance procedures will be negligible and are similar in both alternatives.

4.2.6.3 Selection of Preferred Signature Ridge Pumping Station Alternative

Based on the above evaluation, the Signature Ridge Pumping Station Alternative I, station upgrade, is selected as the preferred alternative. This alternative maximizes the use of existing infrastructure and offers the most flexibility in phasing of the works with the least amount of capital expenditure or impacts.

4.2.6.4 Summary

The preferred alternatives selected for the wastewater outlet, the internal servicing system, the temporary forcemain, the trunk sewer alignment, and the Signature Ridge Pumping Station have been used to develop a comprehensive wastewater servicing plan for the KWCP. This servicing plan is discussed in future detail in the following section of this report.

4.3 Preferred Sanitary Sewer Servicing Plan

Section 4.2 has detailed the selection of preferred alternatives for the major infrastructure required to provide sanitary sewer service to the KWCP. These preferred alternatives have been used to develop a Master Sanitary Servicing Plan for the area. This plan is illustrated on **Drawing S-1** (appended to this report). The major features of this plan are:

(i.) An upgraded Signature Ridge Pumping Station (SRPS) to service all the KWCP lands north of the Queensway, the existing urban area north of the Queensway currently proposed to drain to the SRPS, and the Broughton/Richardson Interstitial lands. A spreadsheet detailing the exact areas and flows tributary to the SRPS is included in **Figure 4.2-1**.

The 400 l/sec peak flow capacity identified in **Figure 4.2-1** for the upgraded SRPS, is consistent with the findings of the R.V. Anderson Report titled "Signature Ridge Pumping Station Upgrades Feasibility Study".

Ē	5	Apt 101	111	Cathorners and	
RAGE1 CF			DEPORE	nie 4	

STREET ROM TO MH	Campeau Drive Track Server 1 2 <u>Area 1 (PBP)</u> Campeau Drive Track Server 1 <u>1 2 Area 1 (PBP)</u> Area 1 2 RE Endormatic Area 1 RE Endormatic	1 3 Area S Residential 1 3 Area S Re Endomment 14 3 Area S Referencement	3 4 Area 10 Residential 4A 4 Area 10 Residential 4 5 14 Mixed Use	Queenswa 3 Area 13 Continually Ratall Area 11/12 Mixed Use 5 5A Area 15 Continuity Ratall	VS VS	Signature Hafer Signature Hafer Total To SRPS Total To SRPS	Publisher Dive Trink Server 6 7 Area 10 (1997) 6 7 Area 10 (1997) 6 7 Area 10 (1997) 7 8 Area 191 More Uloc	bdsting Sewer) *	Cup River Trank a 10 hondra to Add Cup River Trank 8 10 hondra to Add Marte Grove Rival Trank Sover 9 10 hondra Trans Backhold	Rest. 1264.1 Severations for the severation of t	12 10 Area 17 Ex. Commercial Area 12 Edit. Engloyment Area 2015 Action Reidential Area 2025 Communic Back	Marile Grove fead Trenk Soviet 19 NAA Area 2020 Eadlerful Area 202	+++	10A ACCUSACY VORY	++	Tet agelas Pitone Manne - 500 Uranped Annause Viewe manne - 0.38 bit coeffin	100 test test in the start part of the start	FCCL/IBI	
AREA (Ha)	38.11 27.49 14.05 16.03		+++	dl 615 11.80 11.80	+++			1 605 1 20,15 ent 20,15 11,97 21,89 21,89 11,07 11,				11.13 21.13 15.00		670.	165				
APPLIC AREA (Ha)		29.19	27.86	5.02	90.20	9 154.02	1 5 15.60 2 15.60	5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	13.60 4 13.60 2 13.34 2 19.32		8 2 5 5 6 6 1 5	0 27.10 3 8.98 30 15.00		670.04 313.70	Щ				
UNIT/Ha TOTAL		13	5 50	200	0 19		20		50 34 15 30		-	10 30 98 50 00 30		01	72				
		1001	529 1588 88 263	251 75	1714 5141	3136	780 790 790	180				813 24 449 11 450 11	1162 34	8484	11620				
POPULATION POPULATION			1504 1588 1588 1588	752 752 0 4267	41 5141	6493	140 2340	2340	2340 1330 1330 7139 8469	5644 5644	$\{1\}^{\prime}$	2439 8460 1347 19627	3485 3485	19451	34860				
ACTOR FLOW	22.5		3,66	3.88	17.6	1	3.33	3.53	3.03	3.20		3.03	3,39		T			12	
s) (Ha)	38.11 27.19 14.05 10.93		23.45 48.47 48.47 48.47		57.19 67.35 67.35 4,	124.54 170.77	27. 28. 33.47. 31.41. 141.	20 14 11 11 11 11 102 23 20				211.9	47.30	292.82 356	52				
AREA AREA (Ha) (Ha)		8.45 8.45 16.65 16.65 5.48 22.13		6.79 13.14 3.88 25.54 29.42		77	57.03 57.03 8.34 8.35 54.35 120.21 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.10 21.03 2			33.50 33.50 14.13 1.4.44			20.24 20.24 0.75 0.75	356.34	527.11		,	95	
AREA (Ha)		22.13 22.13	111				1 120.221	02.82 01.82 01.85 01.85 01 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.85 0 01.05 0 01.05 0 01.05 0 01.05 0 01.05 0 00.05 00.00000000	1 11	1111	10.89 10.89	111	111						
RATE INL	35000 35000 50000 50000	50000 50000	35900	35600 35600 35600	50100		50000 50000 50000 50000	14400 35000 31000 11000 11000		5(000	51000	00055	00005	Ħ					
ACC		7.34 14.45 4.76 0.00		4.12	4.24		49.51 0.00 47.61 18.32 3.15	5.04 5.04 8.87 7.17 1.125 1.1255 0,00 0,000		29.08	9.45	31.0	0.65	$\left \right $					
UM TOTAL		7.34 14.45 19.21 0.00			4.26	T	49.51 49.51 97.12 - 18.32 1 3.15	8.19 8.87 8.87 16.14 16.14 16.14 16.25 34.44 34.44	<u> </u>		9.45 9.45 20.15	7.38	0.65	Fi					
2	27. 27. 61.42 10. 61.42 29.		39.41 27. 3.86 6.	ŀ	424 95	119.51	9112 54 9112 54 115.44 156 115.44 156 6	113 114 114 114 114 114 114 114 114 114		20.00 3 1.17		11111111111111111111111111111111111111		241.51					
2	38.11 38.11 27.29 65.40 14.05 79.45 10.93 90.38 29.19 29.19		111	3.88 18.15 5.54 29.42	95.08 95.08		834 65.37 8.34 65.37 8.34 65.37 8.34 65.37 9.6.70 1.56.91 1.56.92 1.56.92 1.56.92	20.15 26.20 14.59 14.59 11.97 26.56 20.66 47.22 20.66 17.22 0.00 192.01 0.00 1195.01	23.34 23.34 79.32 102.66	99.01 99.01 33.50 132.51 14.13 146.64 3.44 150.08		111	38.72 58.96 0.75 0.75						
100	11111	22.13		1//612	95.08	324.79	1 1 1 1 2 6 .22 1 5 6.92 1 1 5 6.92	9 26,20 6 76,11 1 76,11 1 102,31		11	2 2 2 12.31		96 58.96 75 0.75	670.04					
FLOIT .	11111	6.20 6.20 1 02.04				90.94 35	FILL FILL	00.0L PET 11E.12 23.62 22.601	28.74	41.02	59.45	15,86	0.21	224.95	- 18	923	2		
5H 112	86.73 2						192.85	45.22 67.56 113.08 105.93	132.56	146.26	214.49	368.36		759.29 12	Burthere No. 15	Burdhon No. T. Burdhon No. F. Rankton No. 4	alifor par. 3.		
	183.79			519.43		580.51	455.83	224.35 286.61 579.95	405.11	554.82	519.43	669.89	320.17	1273.71	April #1,2 24%	April 11, 2003 April 21, 2003 Bare 07, 2015			
mus (m)	1,27 525.0					1.27 30.4	0'516 60'1	1.00 515.0 0.98 400.0 1.05 550.0	0'5LL 6ET	1.50 775.0	1.14 950.0	1.101	1.1.1	1.43 30.0	1				
% (uuu)	32	450 675	675	750		154	675	1 232	B.	810	0 7340		250	1020	No. 6	2 # 4 2 # 4			
(%)	0.40 69.44%			0.20 54.42%		0.25 31.10%	0.27 57.69%	0.25 69.89% 0.26 60.54% 0.15 47.25%	0.40 67.	0.40 73.64%	0.20 58.	111		0.20 40.39%	14, 1403	Mer. 11, 2015			
	205	2.11					300	33	67,2696 JB		58.71%						i	Ē	
	0.4316						G.423	0.301	0.229	0.264	CH-0 GL			2.16 D.Mai				FIG. 4.2-	
	0.739	0,790 0,790	0.840	0,030		6970	\$ B10	0.730	0110	0.700	\$,600	0 670	BLCO						

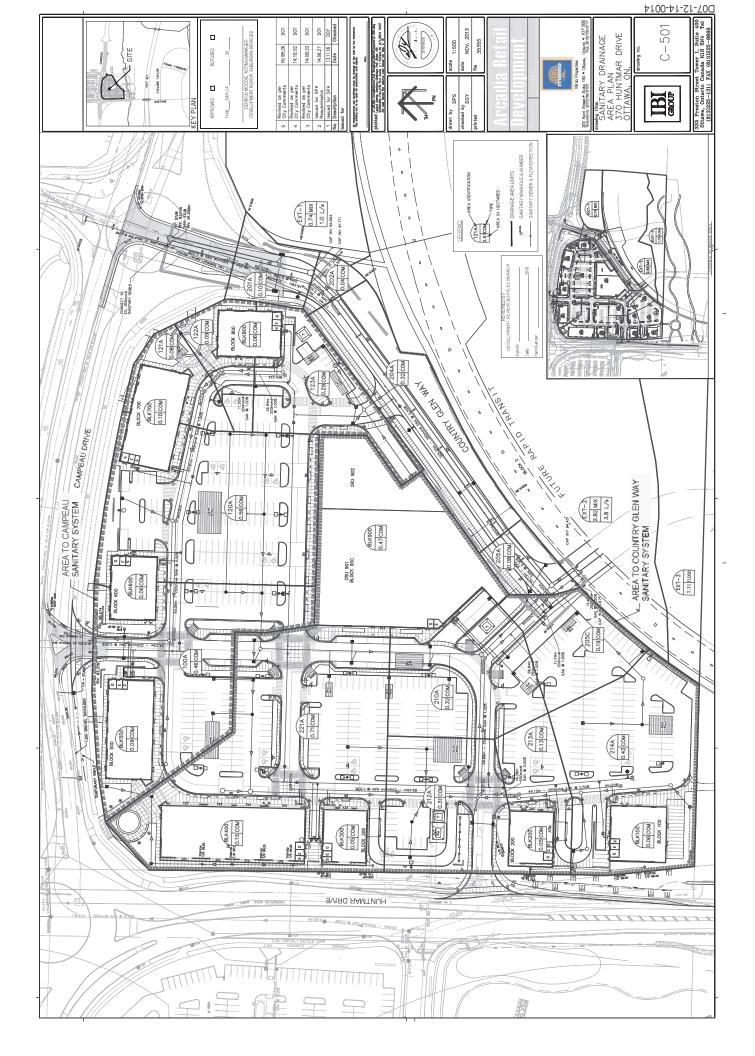
DANITMAY SECTER DESION BHILT PROJECT : Named Yoor Samuer Bay Shofy PROJECT : CATY OF STAWA

e reter series

FULL TULE CHALL PAPLIC CUTUEND PAPLIC CUTUEND PAPLIC CUTUEND PAPLIC PAPLIC <th>einentiai Emeloymentiretail/Bi</th> <th>EMPLOYMENT</th> <th>TRETAIL/BUSIL</th> <th>EMPLOYMENT/RETAIL/BUSINESS PARK/CPEN SPACES</th> <th>N SPACES</th> <th></th> <th>INFIL</th> <th>INFILTRATION</th> <th>É C</th> <th>-</th> <th>-</th> <th>PROPOSED SEWER</th> <th>ĺ</th> <th>1</th>	einentiai Emeloymentiretail/Bi	EMPLOYMENT	TRETAIL/BUSIL	EMPLOYMENT/RETAIL/BUSINESS PARK/CPEN SPACES	N SPACES		INFIL	INFILTRATION	É C	-	-	PROPOSED SEWER	ĺ	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PEAK APPLIC	ACCUM 10T	INT FLOW	đ		H	AREA (Ha		WOLL HOM	W CAPACITY	-	VELOCITY LOTH	K	ORADE AV
Filth Sector Filth Constrained Constraine	INTERN ANDA	APEA APEA APEA	ALL XATE	(1/s)	(IVS) TI	() IN	INDRY CUMUN	CUMIN	(tel (tel)	2	- Na	(m)	(1-1)	12 (%)
1 2 Ansis (Egg) Ansis (Egg) Ansi (Egg) Ansis (Egg) Ansi (Egg) Ansis (Ł	ł		Ľ									
Image: Non-Section Section Sectin Sectin Section Section Section Section Section Section Sectio	0000	000	2005	0.00	0.00		0:00	0.00			-			
1 Ans. 13 Bin Binglement, 2000 1000	0.00	000	24000		00.0	U		8			-			1
1 Active 102 Employment Active 2014 91.9 55.9 1664 1 3 3 Active 102 Employment Mirit 29.19 55.9 1664 1 3 Active 102 Employment Mirit 29.19 55.9 1664 1 4 3 Active 102 Employment 0.00 2016 156 1 4 5 Active 102 Employment 0.00 2016 156 1 4 5 Active 2016 Employment 0.01 2016 156	0.00	000	200K		0.00		J.						J.	
2 3 Aver. 18 Endedgement Aver. 24 24.1 39.19 953 166 166 1 3 Aver. 48 Endedgement Aver. 48 Endedgement Aver. 47 20.0 21 22 21<	0.00	40.0			000	0 DO		00:00 00:00	0.00	0.00		1.27 500.0	225	0.40 100.00%
i 3 Across Statistication (1 30.10 1.11 </td <td>24 58</td> <td></td> <td>0/0</td> <td></td> <td>-</td> <td>000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>j</td> <td></td> <td></td>	24 58		0/0		-	000						j		
14 3 Avera 018 interpretent 401	85 76	100			000	0.001		29.19	8.178 3	32.75	286.61	0,937 700,0	600	0.20
14 3 Avers 10: Bits Entriportion 0.0 9 9 9 9 1064 15 4 3 Avers 10: Bits Entriportion 0.0 13 9 93 136 16 1 3 Avers 10: Bits Entriportion 4.11 1.15 9 93 136 16 1 3 Avers 10: Bits Entriportion 4.11 1.15 9 93 1315 16 1 1 Avers 10: Bits Entriportion 4.11 1.15 9 93 1315 Avers 10: Bits Entriportion 4.11 1.15 9 9 303 1315 Avers 01: Bits Entriportion 1.13 0.0 0.0 0					0.00	000				0.00				
3 4 Area TRE Emplorement 0 00 1164 1661 4A 3 Amer TRE Emplorement 77.36 19 259 159 150 4A 5 Amer DRadowski 77.34 17.36 19 259 159 150 1 15 Amer J Creationski 77.34 174 159 259 3131 1 Amer J Conscionski 74.41 174 16 16 20 3131 1 Amer J Conscionski 54.41 11.45 10 10 10 10 253 State O Employment 11.45 10 <td< td=""><td></td><td>200</td><td>A101</td><td>000</td><td>000</td><td>0.001</td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td>1</td><td>0.25</td></td<>		200	A101	000	000	0.001					ļ		1	0.25
3 4 Amerity Redected 77.86 27.35 1.97 27.35 1.98 1.064 1 3 4 3 Amerity Redected 7.43 1.156 99 59 139 1.086 1 1 Amerity Redected 6.43 1.156 99 59 301 1.086 1 Amerity Redected 6.43 1.156 90 59 50 3115 Amerity Redected 7.43 1.066 7.43 1.156 90 50 3115 Amerity Redected 7.43 1.06 7.43 1.06 9 50 3115 Amerity Redected 7.43 1.06 7.43 1.06 9 9 90 9		ļ	l			1000	ŀ	Ŀ	L			Ĺ	Į.	0.70
4/h 4	24.58	ļ	240	0.0	200	in the second se		l	L	l		Ł	ł.	200
4 5 Next 31 Pixed view 4/3 11/5 50 88 305 315 1	23.55						1		5 [09/]	- 11-20	Miles No.		5	000
I 13 Avers 312 Bindivention 44 Act I 13 Avers 312 Bindivention 641 Image: Second			131.13 15001	1.44	144	144					ļ	1	1	0.20
No. Advant Scand Capitolic Mont Advant Scand Capitolic Mont Mont <td>6.05</td> <td>606</td> <td>3020</td> <td></td> <td>215</td> <td></td> <td>6.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	6.05	606	3020		215		6.05							
A Description 2011 A						1	4		30.00					
1 13 Actual Of Simulation (11) 14.5<	20.15		20101 MID		LI9	6.12		20 26.20		45.52			and the second	1
* 10 Aver 10 methogener Aver 10 methodsent 11.97 <	14.59	14.19	HORSE		12.9		14.59 14.	55						
Across Dispetition. 35.7 40.7 10.7 </td <td>11.97</td> <td>36.56</td> <td>33200</td> <td>1.27</td> <td>16.14</td> <td></td> <td></td> <td>26.56</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>	11.97	36.56	33200	1.27	16.14			26.56			_			
State American 38.83 (3.5) American 38.83 (3.5) American 38.83 (3.5) American 0 <td>20.66</td> <td>14.24</td> <td>13561</td> <td></td> <td>22.66</td> <td></td> <td>1</td> <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20.66	14.24	13561		22.66		1	22						
15 54. correst paragrams. 13.33. 0.80 0 0 Questions 5 Area 107 Commity Eteksis 6.33 4.06 731 732 3 Area 107 Commity Eteksis 6.33 4.07 732 732 732 6 Area 107 Commity Eteksis 1.34 4.07 731 732 7 Area 107 Commity Eteksis 1.34 4.07 731 732 7 Area 107 Commity Eteksis 1.34 4.07 741 733 7 Area 107 Euclimity Eteksis 1.033 4.07 741 741 7 Area 100 Euclimity Eteksis 1.0433 4.03 741 741 7 Area 100 Euclimity Eteksis 1.0433 4.03 741 741 741 7 Area 100 Euclimity Eteksis 1.0433 4.03 741 741 741 741 7 Area 100 Ven-Badientid 4.03 9.0230 19 1141 1141 7 Area 100 Ven-Bad	28.90		76.11 33300		+6.35		1					G.MJ F74/0	375	0:30
Anno Annu 10 (cumumly 0x44) 4.51.3 (cum	I TAT DO D	L				Stat	102.31	102.31	5645 11	113.08 20.	203.90 I	1.24 230.0		0.47
Quenersy 3 Area 1103 Mark 0.20 0.21 731 732 i 3 Area 1103 Mark 1.03 5.03 7.03 7.93 7.93 i 3. Area 1103 Mark 3.83 5.03 7.03 7.93 i 3. Area 1103 Mark 1.0438 7.03 7.03 7.03 i Area 100 Mark 1.0438 7.04 Press 7.04 Pres 7.04 Press 7		108.66	120051		58.79			35						
% Actual UIA Mater Uia 1.38 301 <	11 01	F	115.45 35000		63 42	1410		18.15 120.46	81.71	137.96 202	203.50	1.24 420.0	450	0.47
5 5A Area 15 3.58 Area 16 3.58 Area 16 3.56 3.51 3.56	10111	10.21	L		K4 77		Γ				_			
Accessed 2554 2554 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2514 2614 2514 2514 2514 2514 2514 2514 2514 2514 2514 2614 2514 2514 2614	8) F	1	100026 01020	10 10 10	14 10	1410	95.54 149	149.88 211.05		230.81 5/3	519.43	1.14 300.0	750	0.20
The second sec	14"14 BC'CC		I					L	6471	63.73				
Averation State Averation Statements 9.020 9.020 19 Print 514 514 Averation Statements State Averation Statements 4.030 9.020 19 Print 514 514 Averation State State Averation Statements 4.030 4.030 9.04 514							0110							
Automotical 5A. Aver 100 Non-Statidantid. 438 48 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	3.23 67.353 6.00	100	T		141	101	1 00 00	04.00 05.00	On the P	10.8				
REPES 2A REPES 26.14 144.03 14.03 20.136 20.14		4.88	4.88	4.4	67.6	17.6	1	1		KK DO				
8114 12403 8136 8136 8136 8136 8136 8136 8136 813	_ ł					-		н.	100	L	1 01 01	4 44 44 44 44 44	-	
	127.33 151.12					85.971	and an and	200.14 I	-1	1				54 FM
			~									Revision No. I:		April 11, 2005
Hote	Server from nade 5 to BRPS is utitizing and is to by replacted	g and is to by t	replaced.									Revision No. 2:		April 20, 2000
10.08 Views 10 0												NATURA .		10.2
((++(P^0.5))).												Harden No.4		1002
Population dealty per unit = 3.00		j¥.												COMPACT OF
P. F. For Empoyment/Retuil/Business Park = 1.50						14								
Mixed Uses Assumes: 15% Community Retail, 42.5% Buzates Park and 42.5% Buzates Park and 42.5% Buzates Park														

LANTTARY SEARCH CHAIGH SHAET PROJECT : Kanen Wurd Savie Mily Runy Locatton : City of Ottama

Padilit Of 1 ProutSuft, 2010-10-40 INCTE: Ayr 2005 DEBYCR: Au


FIG. 4.2-2

CCC/IBI

	AVALABLE CAPACITY (S)	1992	CFIE	DA.54	99.28	25.12	\$3.57	94.12	20.31	TS 16	-	98.92 29.64	69.69	40.57 99.64	M	36.27	\$558	07,70	95,166 24,71	64.29	69-94	57.62	18.20	01-10	(A.8)			
	AVA CAR	15.01	18.82	14.46	11.73	33.50	15.82	32.77	15.78	21.14 21.14		15.72	74.94	11.32 15.63	43.25	EL P	83.62	\$97.04	16 97 16 34	2019	64.16	69.75	6FE2	62.65	21'05			
	VELOCITY (actual) (m/s)												0.522		106.0	1325	0.551		0.632		0 620	ESTO	T	0.659	0.630	20	14	50
WER DESIGN	VILOCITY (Ind) (m/s)	1.0910	1.055	1.051	0.871	1.055	Eda	0.746	0.571	0.746		0.871	1580	178.0	0.666	SBRU	NC.1	96315	3.224 1.226	994.0	0.073	0.578	0.745	0.976	0.606	050 01/15/2513 6/24/2014 8/22/2014	10/2/20	Stingert Phase
PROPOSED SEMER DESIG	31-00-1	1.00	1001	1.00	1.00	3.PG	1.60	9.9	140	0.50	T	1.00	1.15	1.00	0.50	0.50	1.00	5	818	0130	0.50	0.55	0:30	0.00	1 M			
	Wid In	DSE	DOZ	200	150	500	154	007	150	50 17		110	720	150	052	250	550	130	250	210	300	DOE	202	R 7	g			
	L (reginu	6.50	26.94	11.00	6.50	19.12	4.50	£2.5 8	6,6	14.25 23.55		6.50	82.MC	68 3 673	41.32	16.38	28.62	22.60	23.84	14,61	33.79	11.74	10.27	31.49	20.50			10000
	CAPACITY	6751	£1.14	26.05	15.49	34.22	15,89	20.14	15.89	94.19		15.49	8	15.89 15.89	18'6*	43.67	12.04	11.23	62.0M	24.15	71.33	H.F.	34.13	74.33	59.92			and and a
TOTAL	MON MON	10.0	0.40	0,51	0.11	0.72	0.07	144	01.0	2.06		4.15 8.06	1.14	0.00	19.61	0.36	2.26	0.54	3.07	3.62	154	7.59	1.07	22	8.70			
NICE	(4/10	0. 02	010	A12	50%0	47.0	40.6	55.0	0.03	050		0.0	0.25	0.92 0.91	GLIS	0.18	670	67.0	01.0	6/)3	1912	1.1	다.u	1.66	1.95	ments	timet.	Date:
INFILTRATION ALLOWANCE	CUM	90.0	μu	0.44	0.10	0.67	00.0	120	100	1,79		0.00	180	5002 2002	951	0.65	1.48	440	267	181	5.74	6.12	42.0	¥.9	96-9	Revision Based for SPA Assisted as per City Comments Hevisted as per City Comments	at par City too	
INFILLING	IND CHI	900	620	4070	0.10	D.DE	90.0	016	0.09	1 m		8155 8009	17.0	0.0%	0.42	EEO	031	0.47	61°0 15°0	2.62	0.37	0.04	0.74	99	0.00	Asvised Revised	Herviced	-
	ROW NOW	0.00	020	979	4.03	0.54	0,05	1.08	90.0	1.55	T	6.13 0.0N	6-10	0.05 0.04	0.46	4.57	1.63	17.0	2.32	1ur	5.56	5.87	0.10	6.75	619			
	IND CUA	0.00	0.00	0.00	00/0	0.04	0.04	000	80	600		0.00	0.40	00'0 00'0	900	900	900	200	070	0.00	0.00	0:30	200	900	c.00			1
	IND																								0.00			Pla Reference:
ICI PREAS	COMMERCIAL COMMERCIAL	90.0	0.85	0.44	0.10	Cast.	6.06	101	62.0	1.19		0.03	160	0-06 0-05	6h	59/0	1.46	44	2.67	0.00	474 3.76	8.6	0.0	3,40	CALE	98 = -: -: -: -: -: -: -: -: -: -: -: -: -:	Ť	The second
3	H	90°D	0.29	-	cT'0	10.04	90'0	0.56	0.04	10.0	+	0.15	0.71	0.06 0.05	đ.42	0.13	0.31	976	919			0.04		3	0.00			
	IND CUM	C.D0	000	0.0	0.00	E	000	0.00	9070	000		6.00	000	0.00	0.00	0.00	000	0.00	80	000	0,00	000	000	000	\mathbb{H}			2
-	K/SI IN	0010	001	8	906	d the	0.01	8	8	00.0		0.00 0.01	000	000	00'0	000	000	8	0.0C	8	0.00	-	8	000	40:0	RM VO		0.00071
-	FACTOR FL	400	9	-	400 31	4 () 4	4.00	4.00 0.06	4.09 0.00	400	+	400 0.	4.00	4.00 0.1	4.00 0.4	4B	YQ 00:	4.00 6.00	4/16 0.14 4.00 0.14	4.00 9.00	4.00 0.1	-	000 000	22 22 22 22 22 22 22 22 22 22 22 22 22		Dezignatit Checked:		Metelences
T	5	4	5	+	90			4 44	. 00	0.0	+	0.0	0.0	0.0	0.0	0.0	00	*	4 4	4	D.0 4		0.0	0.0	0.0			Dwg. Her
Constraint of the second	- Che	50	00	00	0.0	9.0	0.0	Û. Û	6.0	0.0 0.0		90	0.0	0.0	0.0	90	60	00	0.0	44	0.0	0:0	¢,	0.0	070	ethic Ac		
RESUDANTIAL	(a)		T				İ		tt		T	T				T	tt			T			T			0.013 1/907 1/2407		
-	Lav																						IT	T			4(3'0=4-1)	200400 INC
a another	HL C																									4	mula - 1+(14)	weather hereing a stranger
	45			-																						Nobes: 1. Manungu coaficiter: (n) = 2. Demund (per capita) 3. Intilbation allowance:	Harmon for	
	ä	1	4					4		u 5						×									Ţ			2
	오랫	MEW	_	M-0214	MWW	ABRE D	NEWN	MAN NO	NU14	MHIROC		MAADY .	MHERRA	NAMA	MH224M MH214M	ALL PARTY	ADIELM	NIL	MH205C	MINDE		PIC2HW	4H2H4	MH2000	FEOTIJAN	5	17	
	FROM MAN	etkanov.	MM23A	Merizan	RINTROAM	A11223A	BLKGOON	MULTON	BUK500M	MINIDOC		BLK400A	MH222A	BLK XODA	BAH/224A	ROCHIA	MH212A	EL K G200	MH210A	\$1/18	MH205A	TOUCHW	Stub	A COLUMN	EXCAF	ICI Aleas	Mep/RH/1 000'05	Arep/out/1
LOCATION	ARCA ID	016800	1258	1224	002270	1214	64.K600	1204	AL (500	1,004		BLX400	1874	NIKU00 BUKU00	2144	YEIT	212A	RI K'SOD	210A	110	205A 204A	7074	EKT:4	2014			200°05 WD2	
	-		-	-																P						2.		
	STREET																			Potenced South adved	10	E	ktemal East Min			memer sidenti	18 p/p/4	3
						Ш				Ш	Ш									Extran	Surger 1 Street 1	L Hanz	Extern	Street 1		38 7 3	LAN I	5

4:00006-400d@comm957 Galculaturat67. [| Seven & GradingAlh tremarien Det 20140C6, 354.55, sonty pommer, 2014-10402

0320014 11/05 /#

APPENDIX C

IBI Group GROUP X15 SN4

		*** Freeboord & from upsurgary 34H H5L to =F
MADID MADID <th< th=""><th>OCWERNMIN</th><th></th></th<>	OCWERNMIN	
UP000 Made U00 Made U00 Made	16] 11433 11420 59 FEAK 30T PARK 100 PEAK 10 PEAK 10 PEB 05945 CAPACITY LENGTH PARE 115 1143 14 PEA 14 14 14 14 14 14 14 14 14 14 14 14 14	surchardiged ustrumment million film Freeboord are million obteart million of the
(P101) Math Period Cali Math Road T 173 T 554 T 554 T 554 Math	122.14 178.56 15.64	14.73 96.96 95.14
Matrix Matrix<	112 14 179.56 15.64	
Ø113 Made Code Code <th< td=""><td>31.12 179.94 31.18</td><td>no 96.79 56.79</td></th<>	31.12 179.94 31.18	no 96.79 56.79
Mental Mental Mental Mental Mental Math	122.14 128.56 15.64	
RLCOG NAIII CLO	101 IN 138-00 138-00 15-52	No 96.67 \$6.67
MOITE MOITE <th< td=""><td>100.19 122.34 178.56 28.07</td><td>16.63 90.45 1.82</td></th<>	100.19 122.34 178.56 28.07	16.63 90.45 1.82
(E173) MHUL Cut U23 CM U23 CM U23 CM U24 U24 <td>99.86 117.06 171.10 69.97</td> <td>59.62 54.63 dt</td>	99.86 117.06 171.10 69.97	59.62 54.63 dt
Buttory Math Corr Corr Mode Corr Mode T33.4 T44.4 T44	104.15 177.14 17/15/6 28.48	
Metricy Metricy Metricy Metricy Metricy Metric Me	114.10 222.14 J78.56 15.44	146.451 146.70 Z.25
(T1110h (EMH113h) Qap Date Unit Unit Date Date Unit Unit Date Date Unit Math Date	44.42 114.63 161.66 LD631	no 96.45 \$6.45
CELLING COMMILIAN Debt 0.20 32.00 0.44 0.24 0.20 32.04 0.24 32.04 0.24 0.24 0.20	LX4.13 122.14 13X.66 2.046 7.048 71.34 22.02 0.00 0.098 50.49	
Qamma Matter Mater <td>104.15 121.10 121.54 10.43 10.10 10.01 10.11 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01</td> <td></td>	104.15 121.10 121.54 10.43 10.10 10.01 10.11 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01	
MONTIN MONTIN<	101.65 319.15 174.16 30.82 15.38	
NLVO MVIII 0.05 0.31 NLVO NLVO <t< td=""><td>\$1.05 E2.171 E3.111 A.001</td><td>no <u>96.54</u> 96.54</td></t<>	\$1.05 E2.171 E3.111 A.001	no <u>96.54</u> 96.54
CIGBADAA CICEDADE CAS CAS CAS CAS EAG ADA ACIU ACUI ACUI ACUI 12214 17856 7.89 7.89 7.89	104.19 11111 1111 1111 1111 1111 1111 1111	56.32 <u>99.15</u> 2.63
	10415 122.14 178 16 17 182 67 48 8.00 250 1.224	
1555 0AM 0AM 013 10.11 0.01 10.12 10.45 11.12 10	304.61 271.47 137.59 135.66 64.204 D.14 250 1.00 1.224 64.69	
MALITONS 0000 1.400 1.400 0.54 13.46 90.55 105.08 194.57 163.12 183.12	90.55 106.08 144.37 165.12 248.09 32.73 600 0.150 84.87	no 96.32 90.32
VC AMMADE ENAMMENT (0.00 1.20 17.46 0.51 73.86 65.14 150.75 156.76 156.78 156.78	85.14 213.25 130.52 136.76 10.6.09 15.00 500 500 0.429 35.09 35.00 500	
0.00 0.00 0.01 0.72 1.60 TWE		ho 96.25 96.052

Untosse Annalde Commers 7 Geouleticates 15 Beavers & Großinghun sutminis von Oct 2014/DCS_30054_eloneees_2014-10-2

TURNECHT 11 G5 AM

		Freeboord" An																			3.47	3.47			
a louise		a e																			0566	0546			
tank attrikange obs stammer dit Malakat ta, ss		HGL*														95,70		_			96.03	86.03		60.03	
Heid, Br dokent of Jopa Epikan Look an teatranged * Pedaga Marian (1, out) on grid and an annear and * Pedaga Marian (1, out) on grid and and and and an		surchanged upstream pipe obvert														AC 21.70								E0.34 tan	
	Г		\$0.54% 75.17%	89.49M	7486-85	£8.44%	34.01%	X62.9	N36.64	27.38%	RAJON OF AN		area in	29,255%	87,39%	31.89%	\$0.06%	2.87%	37.53%	74,93%	36.97%	83.1355	100,00%	19-17%	31.67%
tal An Group		AVAL CAP (SVI)	221.422	222.02	5 (B EEF	3 17-615	84.37 3	+	BA.46	54.22 \$	1915	H	+	33.97 5	54.22	143.45 3	318.92	-	475,00 \$	211.79 T	16 16-02	51.61 81	901.87 10	28.50 19	100
PROJECT Anadio Commandial Distantiana: Carry Cherritawa Carbert: Minica Deviatamment Group		VELOCITY [m/s]	0.850	0.650	0.850	0.8.0	0.350	-	1.733	1.224	1 224	H	Н	1.731	1.224	0.966 1	2.542 3	1.512 2	H	0.982	1.234 3	L224 5	1.005 9	0.506	121.5
Projecte an Icatione ot Cuiènte mi		N N	0.15 0.15	0.15	0.15	0.15	51.0	+	2.00	1.00	8	+	Η	2.00	1.00	0.15	2:30	1/00	+	970	1.00	1 10	0.10	0.25	40.1
- g	SEWER DATA	T			1	Ħ	t			Ħ	Ħ		T	+	T	tt	Ħ				Ħ			Π	+
	120	M.			T	1	1	-	T		T		T	1	+	T	1				\parallel		+		t
		DIA PIN	00 1	009	DOž	909	6CM	150	220	250	250	L.		SE 92	150	95	450	450	ą	665	350	140	10%C	450	3
		(m)	11.50 M.20	15.60	SALKE	15.40	24.46	8.04	5,93	67.01	7.65	(1 = 0		8.00	6.57	91.110	17.455	17.05	14.12	13.34	5.00	9:00	12.00	11.30	14 80
		CAPACITY U	248.0 5 248.05	248,09	EQL BIT.	248,009	248.09	62.04	+	6.04	62.04	-	H	62.04	64.04	18.91	420.63	297.43	-	296.47	62.04	62.04	300.87	148.72 3	107.45
	H	PESIEN CI	13.46 61.61	16.07	114 29	28.68	169-72	15.64	+	7.82	69'QE		H	44.07	7.82	306.36	1.11	2.62	+	74,58	29.10	10.43	0-00	12021	1 2012
		KO RXED I		T						T					Ħ		T						\parallel		
		100yr PEAK K			t			T		Ħ	t				Ħ		t	t	+				+		1
	1.3	LOYC FLAN 10 FLOW (L/M) FL		T	tt	T	T	T	-					T	Ħ	Ħ	Ħ								1
	Ιł	Str PCAK 10 R.OW B.M. FLE	23.45 61.61	26.07	114.29	28.68	163.72	15.64	19.2E	7.82	50.43 59.70	18 36		44.07	7.A2	306.36	11-11	7.43	2.93	74.62	01.61	10.43	0.00	120.21	14.03
		[100] \$1	174,946 2	171.56 2	176.10 1	171.56 2	164.79	178.56	-	178.55	179.36 1		4	178.55 2	178.86	261.25 34	178,55 4	LTANG .	+	176.36 7	175.56 1	174.54 1	173-56	171.47 11	1 28.961
	1221	I (10)	120.27	122.14 1	116.30 11	122.1# 13	112.76 11	122.10 17	+	122.14 17	122.14 10 121.47 10		H	1 47121	122.34	110.35 24	112.34 13	12.16 10	+	110.45 17	122.54 12	123.34 10	112-14 17	11 2E-CIE	122.14 17
	RATE	1 [5]	101.19	104.19	1 06.65	104.19 1	1 62.39	104.19 1		104.19 1	1 61.901	+		104.19 1	104.15 1	94.19	10419 1	104.14 I	+	1(2):92 1	104.19	104.19 1	1 61.401	100.10 2	104.64
	Lł	FOTAL F	10.31	1USE I	11-65	10.31	11,12	10-11		10.14	10.11		-	10.15	10.12	III	10.41	10.16		HAL .	10.01	10.01	10.10	12.11	10.12
		TJME M PIPE	0.82	TE40	0.67	0.31	0.47	0.11	0.05	0.14	0.11	0.0		0.11	0.12	1.62	9.11	n.ts	-	0.57	6.07	0.47	0.20	1.40	4.12
		(and)	10.00 10.01	DQ QI	10.58	10.00	11.65	10-01	10.11	10.01	10.00	H	$\left \right $	10.11	Wrot	12.12	10.02	10.00	-	10,24	10.00	0.01	10.00	10.61	10.00
		2.78AC	67.0 6.60	0.15	1.15	0.26	1.70	51.0	-	80.0	0.10	0.48		0.25	0.08	125	0.40	0.0A	-	0.13	0.84	4.30	000	1.20	114
		Z.76AC	0.23	8 X 5	0.00	6.28	0.76	0.15	EE 0	0.04	0.10	0.18		0.25	e.fu	000	0.40	5	-	0.20	X.	970	0.00	000	6.19
	Π	28	0.09 21.0	0.0	2.4	0.11	110	90.0	51.0	60.0	9/00	0.67		0.10	ų		0.16	0.01	0.62	0.66	0.15	0.64	0.0		50
	1.21	85				-	-				-														+
	H	0.00	+++	+	+	+	+	+	-	-	++	-	-	++	+	+	+	$\left \right $	+	-	-		+	$\ $	+
	H	2 HW	CBMH/253	CIMANUM	(EDHHO)	COMPANY	OCTIV	0((9330)9	NH430	MAR	CB230E	MARY		C8230H	MAR	- Missie	CEMIH221	662230	1M16221	heid23	MAIN	MARY	HEALT	MIRTIN	CDM/H/22
		FHOM	CBMH235A CBH CBMH233 CBH	(BAVH2324 CIII	CBMH232 CBMH232	CBMH231A CB	CIMH231 M	OC6130A DC		CB2%0C	CB2300 CT		H	CB230H	CE23A	MH230	CB121A CB1	CB1216 CH	+	CHMHERE N	Bit K4CD	huddon N	MH500 M	MH225 M	C0377 1204
400-433 Presson Street Ottawa, Ontario KLS SNA	NOCATION	ARCAID	233A CBM	232A (BAV	23.7B CBA	23JA 08M	233R CIIA	130A OC	1	230C CB	2300 CB			230H CB	126		tzia CB	2218 CB	T	221D CH	BLK4D0 BIL	QLK SD0 BL	W		2230 CP
	3	Y	~~~	N	N	*	2	*	2	2	Nº 14			H 14			*	*	4	8	118	ā			2
ERGUT ERG		STRICT																							

utadasperoutecommis 7 Dair utationes 1.1 Saves & Gradingkon eventsion dol 2014/0005_3005_Minimenes_2014-10-2

IDV2014 11:02 AM

ىلىغۇر بىرىمىيە بىرىم بىر 1946-يىمى بىرىمىيە	Ann Freedor and is for use to see the large to the second s	Main, MGL ¹ FF ¹ Freehound ¹¹⁷	E		24 35:54			TX-E 09'66 EI-16	EL 42 62		70,75 To	96.45 29.55 2.MS	\$5.75 EF	14 95.74		95.56 \$6.10 Z.54		35.56		0 95.30			
dowert of piges ti diffuse for yield	a milit from up	Ted uptimite			ME 56				22.23		1016		96,55 96,39	95.74				95.26		25.50			
	Float	surcharged	-	1.1	8				ę	1.1.	2		8 6	ą				5		2			Ē
N SHEE		AVAIL CAP (5yr)	++	41.2V%	17.69%	#95.58 #77.98	\$3.19%	TLINK	(9°21%	N49795		83,19%	60.13%	21.87%	34.10k	31.44%	ALL'88	26.75X	77.72%	24.17%	M&C.88 X25.62	76.60%	
DESIG		L		100.03	98.EM	54.22	51.61	46.40	34.22	95'92T	31.79	T9'E5	82.0M 82.5M	76.72	170.48	65.99	38.65	242.23	86.38	296.92	958.07	67.04 77.31	
ORM SEWER DESIGN (PROFECT: Artadia Communical LOCATION: CITY OF OT AVIA CLENT: Minite Development Genue		VE.DOTY fm/d		1.211	CANO	1.559	M471	1.224	T.620	2.738	0.866	1.224	1131	1.202	3.765	N05-T	0.256	1175	1 7 91	1175	2.562	1,483	
STORM SEWER DESIGN SHEET PROFECT: Altacia Communical Locandor: CITY of OTT XWA CUENT: MMILe Bevelopment Graup	14	SLOPE		05.0	0.15	1,00	140	1.00	52'T	4.00	0.50	1.00	0.10	050	460	00-E	0.30	51.0	2.00	0.15	1 W	1.69	
•	CELINER DATA	PIPE SIZE (memi		051	60	250	260	02	8	P2 12	250	350	1 75 125	600	000	XX.	20	515	250	975	450	9.5	
		IENGTH D	\vdash	* * · · · · · · · · · · · · · · · · · ·	11.60 6	B.6L 2	12.57 7	9.50 2	38.45	2.40 Z	24,56	12 DBr5	17.60 11 17.60 11	51.94 EV	XE 90'51	19.94	14.30 25	18.B6 97	++	+		10 CE	
		CAMACIET LEN		10.31	148.05 21	62.04 B. 151.96 L1	62.04 1/2	+	\$2.07 3B			52.04 \$.	129.34 27	+	++	++	++	++	74 2.57	48 13.48	59.21 55.65 59.21 55.65	20 0.44 M 2.70	
	ŀ	PLOW IL/M CAN		111 S\$9453	204.22	7.82 62	10.43 62	15.64 62.04	15.85 22	1.74 1.24.75		30.45 B2.	47.30 129	.12 350.85	34 201.76	10.121 52.01	13 43 87	305.448	52 87.74	51 QDK.dž	52 420.63 210.32	PC-58 52	
		100% PEAK ICD FUED 053 FLOW DV4 FROW (A/9) PUCN			202	~ 2	9	21	2	5 E	11.	P	43	2)4,12	11.21	29:60 E	5,21	97.549	19.52 19.52	F68.51	6775 12755	22.21 25.01	
				$\left\ \right\ $			+		+			+		-		+				+		-	
		557 PEAK JOY PEAK		59.65	204-22	2,51 15.55	ID.43	15.64	25.85	12.17	61.21	10.43	45,40 45,40	212 12	31.23	41414	5.21	663.26	39.95	668.51	(77) (77)	14 31 14 30	
	IGN FLOW		17026	176.66	160.62	28-241 95-861	178.56	178.56	10 221	178.56 178,56	178.10	378 SK	174.44 170.16	IAAA	17856	174,566	17616	SEOST	178.56	147.84	178.56	178.56	
	RANONAL DEGGN	(110) (mm/hr)	100	120.65	109.99	122.42	122.14	172.14	111.09	12.14	68 UT	132.14	118.43 116.43	111.00	122.14	132.14	132.14	102.93	122.14	101.22	122.14	177.14	
	2	145h Emmiline)	10419	103.10	93.82	104.19	104.19	304.19	109.30	104.19 104.19	103.33	101,39	10F77	94.12	104,19	104.69	104.19	57.58	67.00T	B6.01	104,19 103,92	104.19	
		TOTAL	10 M	10.47	WAT-	10.12	10.13	10.07	the -	10.01	100	10.04	10.97	1143	HTH .	10.01	-	14.15	10.02	14.94	10.17	10.01	
		adid Mi	1	0.27	644	0.12	0.17	0.01	0,40	9.04	0.47	10.0	0.26	380	100	120	ž	(4)	0,02	0.20	0.3%	0.NR 0.02	
		Intel Intel	1000	10.21	1231	10.00	10.00	IO (0)	10.17	10:00	10,DS	10.04	10,97	11.13	00.01	10.00	auron	AND A	10.00	WIL .	10.00	10:00	
		CUM 2.79AC	-	80	2.18	92 C	B.10	0.15	14	10.12		0.00	0.47	2.11	1.00	135		212	69		0.60	010	
	-	0 2.7BAC		0.0	000	80 0 S	4 0.10	STU 5	000	4 0.10	0.02	di na	8	0.00	P.B.	6 115	0.05	600	6E.O	0.00	4 0.55	7 0.18 4 0.10	
	[a]	280	10	41-0	+	103 103	0.04	0.05	+	4.04	+	9.6	++	╫	â.12	0.46	C.02	+	0.09	+	0.26	0.07	1
	AREA (Ha)	32		Ħ	tt	ttt	tt		t		\parallel	tt		t	Ħ	t		Ħ		Ħ			Ì
		¢= 0.20			I					tun.													
		PL HW	CB404034	MH220	1214212	CHRATTR	NHIS	MPIN	MILLE	APR16	NOT	A.74.54	CICHW	WHENT	INTE	NAMA .	NULL N	MN1058	MAIN	No. 191	CBM#H206	MARN	
		FRCMA BAH	Cash4	EXCHWR)	MH220	CICROT2A CICROT2B	CB215	BAKTOO	STORM:	£4/20216 CB216	MH216	BLK2DO	MH213	1000	CB210A	BI K900	C02100	ALC: NO.	CCB2060	MM2058	CBMH206	CB2069	
Nal Group 400-333 Preston Street Ottawa, Onterio K1S SN4	LOCATION	AREA ID		SEC.		213a 213e	115	BIK100		7164 2164		BUCCEO	• *	*	VOIZ	BAKGAD	2108		MAE	ja:	2060 2058	20647	
EROUP CROUP		STREET															DÉPRESSED I OROMIG						

101-102 201-1025_35043_360m34=563_201-10-2 mother (Minimum

10/2/2014 11:05 Adv

		Freeboard***																												
d A burdenne S		÷. 6							_																					
i net aechange ede ceminerce I Miti HGL 10 55		.15 E			95.46			19755					95.39	9K 21	67.55			\$7.23	55.23		610/14									
d pope d pope la Les Juds en pri Them excertisers		upsbrann obuert			05.4¢			55.43					50°56	12 50	8.18			£2.28	85.2J		55.U									
14,01, یا دادها در ادود گواده از حد معدامان ولم ۲۰۰۰ تم یکوها آنمار داد پایان می یونده میی معیامتها ۲۰۰۰ (جوایهمای ۲۵ مهر ممینهای ۱۸۸ بحل او ۶۶		surcharged			ą			2					6	5	2			5	8	٤	9									
	Π	T	64.98%	M0.79W	34.29%	YE GOV	210.33	X01.0X	LAN DRA	\$5.25%	23,11%	13.99%	43. KM	36.37	34.71%	41.02%	4.275K	40.34%	40.23%	41.93%	T					T			1	The second
(A ment Group		AVAIL CAP Syr	40.31	\$2.54	661 36	OV BY	54.67	62.73	62.04	6272	38.65	49,00	32.56	+	709.09	25.45	376	10.02		971.75	T	T		Ī	-					
LOCATION: OTY OF OTTAWN CLIENT: Mires Ownispreen Group		VELOCITY	1-224	r.?.h	1 205	+	Ē	L to	W.C. I	1231	0.R65	1.224	928.0	+	30E-1	1.224	1E7.L	0.850	-	1278	1	Ī		T	-	11/15/2013	27/2014	S/22/2014 10/2/2014		Sheet No:
CATION: CT		SLOPE V	1.00	2/2	6.13	+	2.00	2.2	6	200	D.Sd	1:00	0.40	0.0	Η	1.00	2.00	51.0	+	01.0	T	T		İ	1	đ	A.	22		8
-	JEUKEDATA	I	t			T			T	H	1	T	T	t	H	1			1	-		t			1					
	ng.	PIPE SIZE (mm)				t			t	H	+	t	+	+				+	+	-		H			1	t		+		1000
		DIA PIPE	957	250	1450	00	250	3150	en	250	25D	250	4DE	055	1350	\$	Ŕ	908	1500	1500	+		1		-					
		(m) Construction		\mathbb{H}	10.46	+	134	79.00 5	1014	H	35.30 2	32.56 2	19:34 B	45.85	-	-	\$.43	34.54 B	-	20.30			-							
		-	⊢	\mathbb{H}		+	H	+	+	+	++	+	-	-	Н	-	H	++	-	4	+	-	_	-	-					
	Н	GN CAPACITY	L	H	51 1,428.87	+	01 62.74	18:325.1 21:	49.04	H	1 43.87	42.64	63.20	192327		-	£ 87.74	01 243.09	-	27 2.552.96	-	H	_		-	SFA	Comments	Comments Comments		:59810
	1.4	CIS) ROW ILIS	27.12	94'4E	1,367.51	19.0	28.01	T72175	40	12.91	12'5	15.05	30.24	1247.62	37.DZZ-L	26.5	83.9¢	148-01	26,595,1	2,554.27	_		_		-	Issued for SFA	Revised per City Commons	Reused per Uty Comments Revised per Uty Comments		
		100yr PEAK ICD FIXED FLOW IC/SI							-		-		-	-				-		_			_		-		Red	Revi		
									1																		1			Contraction of the local division of the loc
		TON PLAK RUOW IL/9]	***																											
		Sur PEAK	CI 1.7	34.76	1,167.51	12.02	28.07	1274.82	WU	12.54	5.21	11.03	30.24	1.147.42	1,220.78	30.52	83.58	148.01	38'F652'T	1,354.27										File Fighera pre-
	DESIGN FLOW	I (1000)	178.55	178.56	146.67	176 55	177.45	144.42	178.44	177.30	178.56	228.96	17253	06'BET	16'SE1	16212	162.13	178.56	14,90	60'151					1	-	5	-		
	RATIONAL DESI	F (10)	122.34	122.34	100.42	41.001	121.36	98.89	1197 14	121.26	172.34	FE'227	114.07	96.13	83,409	110.96	110.96	122.14	92.41	89.77		T		T	T				T	
		1 5 (mm/hr)	⊢	104.19	85.74	104.16	103.55	An.of	01.001	103.45	617901	67'901	100.74	N.M	T5'61	94.70	04.70	104.19	78,93	76,68				t						
		TOTAL	t	THE .	14/73	+	10.14	15.74	N UI	H	10.68	10 KA	11.05	16.27	36.53	12.20	12.03	10.29	■£'/E	±7.66	T	T		T	-				31255-500	
		TIME IN PIPE	0.16	3.01	9.39	142	20.0	1.01	144	31.16	0.66	0.44	0.27	010	D.20	0.20	9.08	9.20	2,8,0	-	T			T		2		ž.		
	1	INUET (min)	t	Info	16.34	W	1015	14.73	40.00	10.14	10.00	10.00	10.68	1000	16.32	12.00	12.00	00.01	10.53	#1.74	T	T			-	Date of the other of the other of the other othe		Checked:	Owg. Reference:	
	11				14.76	-	0.27	50.35	440		0.05	0.13	-0.10	15.35		0.35		T/45	12		TRUE					8		đ	18	
		Z.ZZAC 1.78AC			000	4.0	0.15	0.00	1000	++	905	61.0	0,00	1000	0.00	0.40	16:0	142	-		99"									
		C= C= 0.75 0.90	-	0.06			0.07			0.0	404	404					4.24				0.80 3.62	ð	UNCA A.O?	AREA 3.35	-	ant in -				
		3 R		•	t	4	6											61.13			3.25 0.	ARIA CHE	TOTAL A	EXTERMAL AREA 3.55		Motes: 3. Memorys coefficient (n) =				
		3 20	t			-										2002				M	3.15					Avier J. Man			_	_
		2 ¥	CIC82058	111	MH204	PL/MTM44	MAIN	CODHere .	rac number	MH240	NH240	MH240	MH203	MUSIC	MH201	NICESOLA		FORMA	CAP	DEMMAR				1						
		MH	OCB205A	C(Cartys	News	or not not	DCB20MA	MH204	CONTRACT.	0463409	CB2400	CB2400	M94240	AUCTOR	(NCMM	Driceant	DCICBZOLB	(TP	MMADA	FACAP								Ē	5 YEAR 10 YEAR	LOO TEAR
diterio Chiava, Onlario K15 544	LOCATION	DIEGID	2064	9507		usut	204A			TADA	2406	24.00				MIA		EAT-1	N.	+ Martag							41L(c)	pur hour (rmm/		
_					+						DING						~										Q - Pask Fing at these par Second (L/c)	area Odal sity in millimeter	<pre>[i = 998.071 / (TC+5.053)+3-854] [i = 1170.384 / [TC+6.014)*0,016]</pre>	II = 1735.688 / TC-6.0141/0.4201
En current al current		STREET			arm.1		Street 1				ONIDADI OSSERIO			Great 1	Greet 2	Greet 1	Straat 1	sternal 6 asi	street 1	street 1						Delinidons: Q - 2 7009, whe et	ak Fing an	A - Acon in Hoctorus (Ma) i' e Rainfoll Intensity in m	1120 865	1935.639 2

J.35355-MredeComMST Celefebris/57,* Seven & Gradngkih aubrusion Oct 2016/CCS_3035-storreenen_2014+*0-2

10022014 11:05 AM

IBI 333 Preston St OTTAWA, ÖNTARIÖ K1S 5N4 ONSITE SWM 100yr design PROJECT: Arcadia commercial CITY OF OTTAWA DEVELOPEF Minto

PAGE: 1 OF 1 JOB #: 35355 DATE: Oct 1, 2014 DESIGN: DY Rev#3

Outlet EX MH 303 100yr design

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 I/s/Ha

Time of concentration = 10 minutes

Area (ha) = 4.280 C Average = 0.90

Intensity - 5 year event storm

10 min Tc	i5yr = 998.0	71/(T+6.053)^0.814=	104.2	mm/hr
Unrestricted Flo	wrate (Q5)			
10 min Tc		= 2.78*A*Cw*i =	1115.76	i 1/s
Restricted Flow				
10 min Tc	Q= 85 l/s/H	a	363.80) //s
	ear event storm		170.0	Transco was
10 min Tc	1100yr = 173	35.688/(T+6.014)^0.82=	178.6	mm/mr
I to an adalanta di Elia	(0100)			
Unrestricted Flo		- 5 70886(0.06) -	4040.44	L Bla
10 min Tc		= 2,78*A*Cw*i =	1912.11	- ¥5
Restricted Flow	rate (Qrest 100yr)			
10 min Tc	Q= 240 1/s/h	ła	1027.20	1 1/s
Uncontrolled ru	noff (Q100)			
Location		Area	C	AxC
Area 216 A		0.03	0.2	
Area 216B		0.04	0.5	0.036
Depressed Load	ing BLK900-230G	0.02	0.5	0.018
Depressed Load	ing BLK900-240C	0.02	0.9	0.018
Total		0.11	0.71	0.078
10 min To	Que= 2.78 /	Aci	38,72	! I/s

Allowable Release

 $Q_{\text{rest 100yr}} - Q_{\text{und}} = Q_{\text{allows}}$

988.48 l/s

STORM WATER MANAGEMENT - Post-Development Controlled (5 year post-development with 100yr inlets)

ROOF BLOCK	100						
6	00 sm						
100 -YR FLOW							
Op (Vs)							-
Area(ha)=	0.0600						
Cw =	1.00	STORMWATER MANAGEMEN	T Qm =		2.00	Vs	
Tc Variable	i	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(I/s)	(I/s)	(m3)		
63	53.9	9.0	2.00	7.0	26.42		
65	52.6	8.8	2.00	6.8	26.45		
67	51,5	8.6	2.00	6.6	26.47		
69	50.3	8.4	2.00	6.4	26.48	<===	Required volume
71	49,3	8.2	2.00	6,2	26.48		for roof storage
73	40.2	8.0	2.00	6.0	26.48		
75	47.3	7.9	2.00	5.9	26.47		
77	46.3	7.7	2.00	5.7	26.45		
79	45.4	7.6	2.00	5.6	26.43		
81	44.6	7.4	2.00	5.4	26.41		
83	43.7	7.3	2.00	5.3	26.38		
85	43.0	7,2	2.00	5,2	26.34		

Raq. Storage volume Average depth 26.48

m3 0.044 m

ROOF BLOCK	200						
4	00 sm						
100 -YR FLOW							
Qp (l/s)							mm#/ /
Area(ha)=	0.0400						
Cw =	1.00	STORMWATER MANAGEMENT	Qm =		1.00	/s	
To Variable	E	Ор 2.78 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(1/s)	(l/s)	(m3)		
90	41.1	4.6	1.00	3,6	19.29		
92	40.4	4.5	1.00	3,5	19.29		
94	39.8	4.4	1,00	3.4	19.29		
96	39.1	4.3	1.00	3.3	19.30	<===	Required volume
98	38.5	4.3	1.00	3.3	19.29		for roof storage
100	37.9	4.2	1,00	3.2	19.29		
102	37.3	4.2	1.00	3.2	19.28		
104	36.8	4.1	1.00	3.1	19.27		
106	36.2	4.0	1.00	3.0	19.26		
108	35.7	4.0	1.00	3.0	19.25		
110	35.2	3.9	1.00	2.9	19.24		
112	34.7	3.9	1.00	2.9	19.22		

Req. Storage volume Average depth

19.30 m3 0.048 m

ROOF BLOCK	300						
4	00 sm						
00 - YR FLOW							
Op (l/s)					_	-	=
Area(ha)=	0.0400						
Cw =	1,00	STORMWATER MANAGEMENT	Qm =		1.00	l/s	
Tc Variable	Ĕ	Qp 2.78 x Area x c x i	Qm,	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(I/s)	(1/\$)	(m3)		
90	41.1	4.6	1.00	3.6	19.29		
92	40.4	4.5	1,00	3.5	19.29		
94	39.8	4.4	1.00	3.4	19.29		
96	39.1	4.3	1.00	3.3	19.30	<===	Required volum
98	38.5	4.3	1.00	3,3	19.29		for roof slorage
100	37.9	4.2	1.00	3.2	19.29		
102	37.3	4.2	1.00	3.2	19.28		
104	36.8	4,1	1,00	3.1	19.27		
106	36.2	4.0	1.00	3.0	19.26		
108	35.7	4.0	1.00	3.0	19.25		
110	35.2	3.9	1.00	2.9	19.24		
112	34.7	3.9	1.00	2.9	19.22		

Req. Storage volume Average depth

19.30 m3 0.048 m

ROOF BLOCK	400						
15	00 sm						
100 -YR FLOW							
Qp (l/s)							-
Area(ha)=	0.1500						1
Cw =	1.00	STORMWATER MANAGEMEI	NT Qm =		4.00	l/s	
To Variable	E	Op 2.78 x Area x c x i	Qm	Op-Qm	Volume		
(min)	(mm/hour)	(V/s)	(1/\$)	(1/s)	(m3)		
82	44.2	18.4	4,00	14.4	70.90		
84	43.3	18.1	4.00	14.1	70,94		
86	42.6	17.8	4.00	13.8	70,96		
88	41.8	17.4	4,00	13.4	70.97	<===	R
90	41.1	17.1	4.00	13,1	70,97		fo
92	40.4	16.9	4.00	12.9	70,96		
94	39.8	16.6	4.00	12.6	70.95		
96	39.1	16.3	4.00	12.3	70.92		
98	36.5	16.1	4.00	12.1	70.88		
100	37.9	15.8	4.00	11.8	70.83		
102	37.3	15.6	4.00	11.6	70.78		
104	36.8	15.3	4.00	11.3	70.72		

ired volume of storage

Req. Storage volume Average depth

70.97 m3 0.047 m

46	00 sm						
00 - YR FLOW							
Qp (l/s)							met C
Area(ha)=	0.4600						
Cw =	1.00	STORMWATER MANAGEMENT (2m =		10,00	l/s	
Tc Variable	Ť	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/s)	(l/s)	(Vs)	(ന3)		
104	36.9	47.0	10.00	37.0	231.01		3
106	36.2	46.3	10.00	36.3	231.06		
108	35.7	45.7	10.00	35.7	231.10		
110	35.2	45.0	10.00	35.0	231.11	<===	Required volum
112	34.7	44.4	10.00	34.4	231.10		for roof slorage
114	34.2	43.8	10.00	33.8	231.07		
116	33.8	43.2	10.00	33.2	231.03		
118	33.3	42.6	10.00	32.6	230.96		
120	32.9	42.1	10.00	32.1	230,87		
122	32.5	41.5	10.00	31.5	230.77		
124	32.1	41.0	10.00	31.0	230.65		
126	31.7	40.5	10.00	30.5	230.52		

Req. Storage volume Average depth

231.11 m3 0.050 m

29	00 sm						
00 - YR FLOW				Flow restri	icled to	8	5 Vs
Qp (Vs)						_	-
Area(ha)=	0.2900						
Cw =	1.00	STORMWATER MANAGEMENT	2m =		42,50	l/s	
Tc Variable	1	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/s)	(Vs)	(m3)		
13	155.1	125.0	42.50	82.5	64,39		
14	148.7	119.9	42.50	77.4	65.02		
15	142.9	\$15.2	42.50	72.7	65.43		
16	137.5	110.9	42.50	68.4	65.66		
17	132.6	106.9	42.50	64.4	65.71	<===	Required v
18	128.1	103.3	42.50	60.8	65.62		for storage
19	123.9	99.9	42.50	57.4	65.39		
20	120.0	96.7	42.50	54.2	65.04		
21	116.3	93.8	42.50	51.3	64.59		
22	112.9	91.0	42.50	48.5	64.03		
23	109.7	88,4	42.50	45.9	63.38		

l volume ge on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Slorage
	(m)	(m3)
CB221A	1.00	0.36
CB221B	1.30	0.47
CB221C	1.50	0.54
		0.00
	Total:	1.37

IN-LINE STORAGE (Structure)

CBMH's		
1.2m dia=1.13 m3/m	Height	Storage
1.8m dia=2.54m3/m	(m)	(m3)
CBMH221(1.2m)	2.20	2.49
MH221 (1.8m)	2.20	5.59
	Total:	2.49

OFF-LINE STORAGE (Structure)

1.8m dia=2.54m3/m	Height	Storage
	(m)	(m3)
MH500	2.20	5.59
	Total:	5.59

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 85I/s @ 2.35m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Lenglin (m)		Storage (m3)
000011 00010001	17.05	2	-
CB221A - CBMH221	the second second second second second second second second second second second second second second second se		
CB221B - CB221C	12.00	0.45	1,91
CB221C-CBMH221	18.50	0.45	2.94
CBMH221 - MH221	33,38	0.60	9.44
		Total:	17.00

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
221C	8.28	0.05	0.14
		Total:	0,14

OFF-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
MH500 - MH221	12.00	1.05	10.39	
16X6 Triton M-6 storage cell			33,00	
	-0	Total:	43.39	

Overflow from area 110	4.25
Total Storage required	69.97
Total Storage provided	69.97
Overflow to Area 230A	0,00

16

68	00 sm						
-YR FLOW				Flow restri	icted to	150) Vs
Qp (l/s)							
Area(ha)=	0.6800						1
Cw =	1.00	STORMWATER MANAGEMENT (2m =		75.00	l/s	
Tc Variable	a	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(l/s)	(Vs)	(m3)	li i	
17	132.6	250.7	75.00	175.7	179.24	1	
19	123.9	234.2	75.00	159.2	181.44	ii	
20	120.0	226.8	75.00	151.8	182.11	Ú.	
21	116.3	219.8	75.00	144.6	182.51		
22	112.9	213.4	75.00	138.4	182.68	<===	Required volume
23	109.7	207.3	75.00	132.3	182.63		for storage on-site
24	106.7	201.7	75.00	126.7	182.39		
25	103.8	196.3	75.00	121.3	181.97		
26	101.2	191.3	75.00	116.3	181.38		
27	98.7	186.5	75.00	111.5	180.64		
29	94.0	177.7	75.00	102.7	178,74		

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m Height Storage (m) (m3) Total: 0.90

IN-LINE STORAGE (Structure)

1.5m dia=1.77m3/m	Height	Storage
	(m)	(m3)
CBMH233 (1.5m)	1.42	2.5134
CBMH232 (1.5m)	1.49	2.6373
CBMH231 (1.5m)	1.53	2.7081
	Total:	7,86

OFF-LINE STORAGE (Structure)

MH's		
1.8m dla=2.55m3/m	Height	Storage
	(m)	(m3)
CBMH231A	1.81	4.62
C8MH232A	1.70	4.34
CBMH233A	1,64	4.18
	Total:	13.13

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 150l/s @ 2.26m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage (m3)	
	(m)	(m)		
CB233-CBMH233	15.60	0,60	4.41	
CBMH233-CBMH232	34.20	0,60	9.67	
CB232-CBMH323	15.60	0,60	4,41	
CBMH232 - CBMH231	34.20	0,60	9.67	
CB231-CBMH231	15.60	0.60	4,41	
V	_	Total:	32.57	

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage	
	(SM)	(m)	(m3)	
231	295.46	0.20	19.70	
232	337.60	0.20	22.51	
233	333.20	0.20	22.21	
		Tolal:	64.42	

OFF-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Slorage	
	(m)	(m)	(m3)	
MH501 - MH230	69.40	0.60	19.34	
10X18 Trilon M-6 storage cell			67.00	
		Total:	86.34	

Overflow from area 100, 123	20.74
Total Storage required	203.42
Total Storage provided	204.32
Overflow to area 230A	0.00

19	00 sm						
00 -YR FLOW				Flow restr	icled to	7	0 1/s
Qp (l/s)							
Area(ha)=	0.1900						
Cw =	1.00	STORMWATER MANAGEME	ENT Qm =		35.00	l/s	
Tc Variable	3	Qp 2.78 x Area x c x i	Qm	Op-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
9	188.3	99.4	35.00	64.4	34,80		
11	169.9	69.7	35.00	54.7	36.13		
12	162.1	85.6	35.00	50,6	36.46		
13	155.1	81.9	35.00	46,9	36,60	<===	Required
14	148.7	78.6	35.00	43.6	36.59		for storag
15	142.9	75.5	35.00	40.5	36,43		
16	137.5	72.7	35.00	37.7	36.15		
17	132.6	70.1	35.00	35.1	35.76		
19	128.1	67.7	35.00	32.7	35.27		
19	123.9	65.4	35.00	30.4	34.69		
21	116.3	61.4	35.00	28.4	33.30		

Required volume

or storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB230A	1.45	0.52
CB230B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB230A - CB230B	10.00	0,25	0.49	
		Tolal:	0,49	

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Slorage
	(SM)	(m)	(m3)
223C	366.50	0.25	30.54
		Total:	30.54

Overflow from area 221 & 231	0.00
Total Storage required	36,60
Total Storage provided	32.11
Overflow to area 230D	4.49

ICD use Tempest HF 70I/s @ 1.71m head, or approved equal

3	00 sm						
00 -YR FLOW		<u>////</u>		Flow restr	icted to	1	0 I/s
Qp (l/s)							
Area(ha)=	0.0300						
Cw =	1.00	STORMWATER MANAGEMENT C)m =		5.00	/s	
To Variable	(T)	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(m/n)	(mm/hour)	(I/s)	(1/s)	(l/s)	(m3)		
11	169.9	14.2	5.00	9,2	6.05		
13	155.1	12.9	5.00	7.9	6,19		
14	148.7	12.4	5.00	7.4	6.22		
15	142.9	11.9	5.00	6.9	6.23	<===	Requir
16	137.5	11.5	5.00	6.5	6.21		for slo
17	132.6	41.1	5.00	6.1	6.18		
18	128.1	10.7	5.00	5.7	6.14		
19	123.9	10.3	5.00	5.3	6,08		
20	120.0	10.0	5.00	5.0	6,00		
21	116.3	9,7	5.00	4.7	5.92		
23	109.7	9.1	5.00	4.1	5,72		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB230C	1.45	0.52
		0.00
	Total:	0,52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
	41.50	0.07	0.97
	· · · · · · · · · · · · · · · · · · ·	Total:	0.97

OFF-LINE STORAGE (Cell)

Cell storage	Durath	Local all the	Oleren
	Length	width	Slorage
	(m)	l(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00

Total Storage required	6.23
Total Storage provided	6.49
Overflow to area 230D	0.00

ICD use Tempest LMF 101/s @ 1.4m head, or approved equal

13	00 sm						
00 -YR FLOW				Flow restri	icted to	67	7 Vs
Qp (l/s)							
Area(ha)=	0.1300						1
Cw =	1.00	STORMWATER MANAGEMENT (2m =		33,50	l/s	
Tc Variable	ĩ	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		-14
(miin)	(mm/hour)	(l/s)	(1/3)	(l/s)	(m3)		
5	242.7	87.7	33.50	54.2	16.26		
6	226.0	81.7	33.50	48,2	17.34		
7	211.7	76.5	33.50	43.0	18.06		
8	199.2	72.0	33.50	38,5	18,48		
9	168.3	68.0	33,50	34.5	18,65	<===	Required volume
10	178.6	64.5	33.50	31.0	18.62		for storage on-sit
11	169.9	61.4	33,50	27,9	16,42		
12	162.1	58.6	.33,50	25,1	18.07		
13	155,1	56,1	33,50	22,6	17,59		
14	148.7	53.7	33.50	20.2	17.01		
16	137.5	49.7	33,50	16.2	15,56		

IN-LINE STORAGE (Structure)

0.6m X 0.6m CĐ		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230D	1.45	0.52
CB230E	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Slorage
	(m)	(m3)
		0.00
	Tolal:	0.00

CBMH height for storage equals top of grate to invert less 0.84m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Structure to Structure	Dia	Storage	
	(m)	(m)	(m3)
CB230D-CB230E	10.00	0.25	0.49
		0,30	0.00
		Total:	0.49

PARKING LOT STORAGE 100yr Maximum available

AREA#	AREA	Depth	Storage
	(SM)	(m)	(m3)
230D	391.79	0.15	19.59
			0,00
			0.00
			0.00
			0.00
		Total:	19.69

Overflow from 230A, 230C	4.49
Total Storage required	23.14
Total Storage provided	21.16
Overflow to area 230G	1.98

ICD use Tempest HF 67I/s @ 1.68m head, or approved equal

PARKING LOT	Area 230F						
7	00 sm						
100 -YR FLOW				Flow restricted to		38 Ns	
Op (l/s)							-
Area(ha)=	0.0700						
Cw=	1.00	STORMWATER MANAGEMENT (2m =		19.00	/s	
Tc Variable	16	Qp 2.76 x Area x c x l	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(//s)	(l/s)	(m3)		
6	226.0	44.0	19.00	25,0	8.99		
7	211.7	41.2	19.00	22.2	9.32		
6	199.2	38.8	19.00	19.8	9,49		
9	188.3	36.6	19.00	17.6	9.52	<===	Requi
10	178.6	34.7	19.00	15.7	9.45		for sto
11	169.9	33.1	19.00	14.1	9,28		
12	162.1	31.6	19.00	12.6	9.04		
13	155,1	30.2	19.00	11.2	8.72		
14	148.7	28.9	19.00	9,9	8,35		
15	142.9	27.8	19,00	8,8	7.93		
17	132.6	25.8	19.00	6.8	6.95		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB203F	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 38%s @ 1.53m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage	1		
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
18A	89.22	0.21	6.25
		0.00	0.00
		Total:	6.25

OFF-LINE STORAGE (Cell)

Cell storage	11 anally	width	Slorage
	Length	WIQIN	SIONAGE
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5,00
		Total:	5.00

Overflow from Area 223	0.00
Total Storage required	9.52
Total Storage provided	11.77
Overflow to Area 230G	0.00

17-	00 sm						
00 -YR FLOW				Flow restri	icted to	53	3 Vs
Qp (l/s)						_	-
Area(ha)=	0.1700						12
Cw =	1.00	STORMWATER MANAGEMENT	ûm =		26.50	/s	
Tc Variable	1	Qp 2.76 x Area x c x i	Qm	Op-Qm	Volume		
(min)	(mm/hour)	(I/s)	(l/s)	(I/s)	(m3)		
13	155.1	73.3	26.50	46.0	36.51		
t4	148.7	70.3	26.50	43.8	36.78		
15	142.9	67.5	26.50	41.0	36,93		
16	137.5	65.0	26.50	38.5	36.97	<===	Required volume
17	132.0	62.7	26.50	36.2	36.90		for storage on-sit
18	128.1	60.5	26.50	34.0	36.75		
19	123.9	58.5	26.50	32.0	36.53		
20	120.0	56.7	26.50	30.2	36.23		
21	116.3	55.0	26.50	28.5	35.86		
22	112.9	53.3	26.50	26.8	35.44		
24	106.7	50.4	26.50	23.9	34.44		

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230G	1.45	0.52
CB230H	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
P	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.84m to account for flat top and iron frame/grate

ICD use Tempest HF 53I/s @ 1.71m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Longth	Dia	Storage
	(m)	(m)	(m3)
CB230G-CB230H	10.00	0.25	0.49
		Total:	0.49

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
230G	258.40	0.19	15.50
		Total:	15.50

OFF-LINE STORAGE (Cell) Cell storage

L

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	12.00	6.00	26.00
	-11	Total:	26.00

overflow from 230D, 230F	1.98
Total Storage required	38.95
Total Storage provided	43.07
1/2 Overflow to Area 206D	0,00
1/2 Overflow to Area 205	0,00

3	00 sm						
00 -YR FLOW				Flow restri	icled to	1	1 l/s
Qp (Vs)							_
Area(ha)=	0.0300						
Cw =	1.00	STORMWATER MANAGE	MENT Qm =		5.50	√s	
Tc Variable	4	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/8)	(Vs)	(¥\$)	(m3)		
9	188.3	15.7	5.50	10.2	5.51		
11	169.9	14.2	5,50	0.7	5.72		
12	162.1	13,5	5,50	0.0	5.78		
13	155.1	12.9	5.50	7.4	5.80	<===	Required
14	148.7	12.4	5.50	6.9	5.80		for storage
15	142.9	11.9	5.50	6.4	5.78		
16	137.5	11.5	5.50	6.0	5.73		
17	132.6	11.1	5.50	5.6	5.67		
10	128.1	10.7	5.50	5.2	5.60		
19	123.9	10.3	5.50	4,8	5.51		
21	116.3	9.7	5.50	4.2	5.29		

i volume

ge on-sile

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
CB2301	1.45	0.52
		0.00
4	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 11/s @ 1.44m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Slorage	
	(m)	(m)	(m3)	
		0.20	0.00	
		Total:	0.00	

(m) (m3) 0.14 3.09
0.14 3.09

OFF-LINE STORAGE (Cell)

	A	
Length	width	Slorage
(m)	(m)	(m3)
6.00	3.00	5,00
	Total:	5.00
5.80		
8.62		
0.00		
	(m) 6.00 5.80 8.62	(m) (m) 8,00 3.00 Totel: 5,80 8,62

ARKING LOT	Area # 222						
12	00 sm						
00 -YR FLOW				Flow restr	icled to	1	5 I/s
Qp (l/s)						_	1
Area(ha)=	0.1200						
Cw =	1.00	STORMWATER MANAGEMEN	TQm =		7.50	Vs	
Tc Variable	19.7	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume	ĺ	
(min)	(mm/hour)	(I/s)	(Vs)	(l/s)	(m3)		
35	82.6	27.5	7.50	20.0	42.10		
37	79.4	26.5	7,50	19.0	42.17		
38	77.9	26.0	7.50	18.5	42.18		
39	76.5	25.5	7.50	18,0	42.18	<===	Requir
40	75.1	25.1	7.50	17.6	42.16		for stor
41	73.8	24.6	7.50	17.1	42.14		
42	72.6	24.2	7.50	16.7	42.11		
43	71.4	23.8	7.50	16.3	42.06		
44	70.2	23.4	7.50	15.9	42,01		
45	69.1	23.0	7.50	15.5	41.95		
47	66.9	22.3	7,50	14.8	41.79		

Required volume

for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Slorage
	(m)	(m3)
CB222	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure Length		Dia	Storage	
	(m)	(m)	(m3)	
CB222	14.80	0.25	0.73	
		Total:	0.73	

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
CBMH222	1.50	1.70
	Tolal:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 151/s @ 2.44m head, or approved equal

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA (SM)	Depth (m)	Storage (m3)
222	340.74	0.19	21.58
222A	129.60	0.15	6,48
		Total;	28.06

Total Storage required	42.18
Total Storage provided	31.00
Overflow to area 223	11.17

27	00 sm						
100 -YR FLOW				Flow restri	cled to	3.	2 l/s
Op (l/s)							
Ares(ha)=	0.2700						
Cw =	1.00	STORMWATER MANAGEMENT O	m =		16,00	l/s	
To Variable	Î	Qp 2.76 x Area x c x l	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(I/s)	(1/5)	(m3)		
35	82.6	62,0	16.00	46.0	96,57		
36	81.0	60.8	16,00	44,8	96.71		
37	79.4	59.6	16,00	43.6	96.81		
38	77.9	58.5	16.00	42.5	96.89		
39	76.5	57.4	16.00	41,4	96.95	<===	Required v
40	75.1	56,4	16.00	40,4	96,97		for storage
41	73.8	55,4	16,00	39,4	96.97		
42	72.6	54.5	16,00	38,5	96.94		
43	71,4	53.6	16.00	37.6	96.90		
44	70.2	52,7	16.00	36.7	96.83		
46	68.0	51.0	16.00	35.0	96.63		

volume je on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Slorage
	(m)	(m3)
CB223	1.45	0.52
		0.00
	Total	0,52

IN-LINE STORAGE (Structure)

1.2mOia CBMH's	10	
1.13 m3/m	Height	Storage
	(m)	(m3)
CBMH223	1.50	1.70
	Total:	1.70

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage Structure to Sinucture	Slorage		
Of a contract of the state of t	Length (m)	(m)	(m3)
CB223 - CBMH223	34.20	0.45	5.44
		0.30	0,00
		Total:	5.44

PARKING LOT STORAGE	E 100yr Maximum	available	
AREA #	AREA	Depth	Slorage
	(SM)	(m)	(m3)
223	706.92	0.25	58,91
		Total:	58.91

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Slorage
	(m)	(m)	(m3)
Triton M-6 storage cell	11.00	12.00	50,00
	0.000	Total:	50.00
Overflow from area 212, 222	18.27		
Total Storage required	115.22		
Total Storage provided	116.57		
Overflow to area 230F	0,00		

ICD use Tempest HF 321/s @ 2.67mhead, or approved equal

PARKING LOT	Area # 212						
6	00 sm						
100 -YR FLOW			Flow res		stricted to		4 1/5
Qp (l/s)					-		_
Area(ha)=	0.0600						1
Cw =	1.00	STORMWATER MANAGEMENT (= m(12,00 Vs		
To Variable	Ť	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume	-	
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
8	199.2	33.2	12.00	21,2	10,19		
10	178.6	29.8	12.00	17.8	10.67		
11	169.9	28.3	12.00	16,3	10.78		
12	162.1	27.0	12,00	15,0	10.83	<===	F
13	155.1	25.9	12.00	13.9	10.62		fe
14	148.7	24.8	12.00	12.8	10,76		
15	142.9	23.6	12.00	11.8	10.65		
16	137.5	22.9	12.00	10,9	10.51		
17	132.6	22.1	12.00	10,1	10.32		
18	128.1	21.4	12.00	9.4	10.11		
20	120,0	20.0	12,00	8,0	9.61		

quired volume storage on-site

IN-LINE STORAGE (Structure) 0.6m X 0.6m CB 0.36 m3/m Height

CICB212B CICB212B

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

(m)

Total:

1.45

Storage (m3)

0.52 0.56

1.08

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m))(m)	(m3)	
CICB212A-CICB212B	10.28	0.25	0.50	
		Total:	0.50	

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
	92.12	0.07	2.15
		Total:	2.15

Total Storage required	10.83
Total .Storage provided	3.73
Overflow to area 223	7.10

ICD use Tempest LMF 24I/s @ 1.63m head, or approved equal

4	00 sm						
O-YR FLOW			Flow restricted to		1	0 I/s	
Qp (l/s)					_		
Area(ha)=	0.0400						1
Cw =	1.00	STORMWATER MANAGEMENT O	im =	5.00 l/s			
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(Vs)	(1/\$)	(m3)		
16	137.5	15.3	5.00	10.3	9.88		
18	128.1	14.2	5.00	9.2	9,98		
19	123.9	13.8	5.00	8.8	10.00		
20	120.0	13.3	5.00	8,3	10.01	<===	Requir
21	116.3	12.9	5.00	7.9	9.99		for stor
22	112.9	12.6	5.00	7.6	9.97		
23	109.7	12.2	5.00	7.2	9.93		
24	105.7	11.9	5.00	6.9	9.88		
25	103.8	11.5	5,00	6,5	9.62		
26	101.2	11.3	5.00	6,3	9.75		
28	96.3	10.7	5.00	5.7	9.59		

Required volume

for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB213	1.45	0.52
		0.00
	Tolat:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
ECB-CB215	24.00	0.25	1.18	
		Total:	1.18	

IN-LINE STORAGE (Structure)

	Storage	Height	1.13 m3/m
_	(m3)	(m)	*010
0.00			
		Total:	h

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING L	OT STORAGE	100yr Maximum	available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
	64.44	0.25	5.37
		Total:	5.37

Total Storage required	10.01
Total Storage provided	7.07
Overflow to 206A	2.94

ICD use Tempest LMF 10l/s @ 1.57m head, or approved equal

12.

7	00 sm						
100 -YR FLOW	CALL COLOR			Flow resid	icted to	1	0 l/s
Qp (l/s)					_		-
Area(ha)=	0.0700						
Cw =	1.00	STORMWATER MANAGEMENT	f Qm =		5.00	l/s	
To Variable	i	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(!/s)	(I/s)	(m3)		
30	91.9	17.9	5.00	12.9	23.18		
32	87.9	17.1	5.00	12,1	23.24		
33	86.0	16.7	5.00	11.7	23.25		
34	84.3	16.4	5.00	11.4	23,25	<===	Require
35	82.6	16.1	5.00	11.1	23 25		for stora
36	81.0	15.8	5.00	10.0	23.23		
37	79.4	15.5	5.00	10.5	23.21		
38	77.9	15.2	5.00	10.2	23.18		
39	76.5	14.9	5.00	9.9	23.14		
40	75.1	14.6	5.00	9.6	23.10		
42	72.6	14.1	5.00	9.1	22.99		

Required volume

for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB2068	1.45	0.52
		0.00
	Total:	0,52

IN-LINE STORAGE (Pipe)

Pipe storage	1	Inv.	Olean an
Structure to Structure	Lengih	Dia	Slorage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

20

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE	100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
206 Đ	344.76	0.25	28,73
		0.13	0.00
		Total:	28.73

Total Storage required	23.25
Total Storage provided	29.25
Overflow to area 206A	0.00

ICD use Tempest LMF 10I/s @ 1.57m head, or approved equal

38	00 sm						
00 -YR FLOW				Flow restr	icted to	8	5 I/s
Qp (l/s)						_	
Area(ha)=	0.3600						
Cw =	1.00	STORMWATER MANAGEMENT C	im =		42,50	I/s	
Tc Variable	-	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/3)	(Vs)	(1/s)	(m3)		
17	132.6	140.1	42.50	97.6	99,56		
19	123.9	130.9	42.50	88.4	100.72		
20	120.0	126.7	42.50	84.2	101.05		
21	116.3	122.9	42.50	80.4	101,25		
22	112.9	119.2	42.50	76.7	101.31	<===	Required
23	109.7	115.9	42.50	73.4	101.25		for storag
24	106.7	112.7	42.50	70,2	101.08		
25	103.0	109.7	42.50	67.2	100,81		
26	101.2	106.9	42.50	64.4	100.44		
27	98.7	104.2	42.50	61.7	99.99		
29	94.0	99.3	42.50	56.8	98.86		

volume ge on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB206	1.58	0.57
		0.00
	Total:	0.57

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Slorage
	(m)	(m3)
CBMH206	1.50	1.70
	Total:	1.70

Totat: CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 851/s @ 2.41m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB206-CBMH206	25.60	0.45	4.07
		Total:	4.07

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
206A	772.10	0.25	64.34
206	79.40	0.10	2.65
		Total:	66.99

OFF-LINE STORAGE (Cell)

		7
Length	width	Storage
(m)	(m)	(m3)
10.00	9.00	31.00
200	Total:	31.00
2.94		
104.24		
104.32		
0.00		
	(m) 10.00 2.94 104.24 104.32	(m) (m) 10.00 8.00 Total: 2.94 104.24 104.32

12	00 sm						
00 -YR FLOW				Flow restri	icled to	7	7 ∦ \$
Qp (l/s)					_		10
Area(ha)=	0.1200						
Cw =	1.00	STORMWATER MANAGEME	NT Qm =	38,50 Vs			
To Variable	Ē	Qp 2.78 х Агеахсх I	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/8)	(l/s)	(m3)		
5	242.7	B1_0	38.50	42.5	12.74		
5.5	234.0	78.1	38,50	39.6	13.06		
6.5	218.6	72.9	38,50	34.4	13.42		
7.5	205.2	68.5	38.50	30.0	13.48	<===	Require
8.5	193.6	64.6	38,50	26.1	13.30		for stora
9.5	103.3	61.1	38.50	22.6	12.90		
10.5	174.1	58.1	38.50	19.6	12.34		
11.5	165.9	55.4	38.50	16.9	11.63		
12.5	158.5	52.9	38.50	14.4	10,79		
13.5	151.6	50.7	38.50	12.2	9.84		
15.5	140.2	46.8	38,50	8.3	7.68		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB210A	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Tolal:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		Total:	0.00

PARKING LOT STORAGE 100yr Maximum evailable

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
8B	44.62	0.20	2.97
		Total:	2.97

OFF-LINE STORAGE (Cell)

L

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	5.00	6.00	10.00
(ve)	0	Total:	10,00

Overflow from area 206A	0.00
Total Storage required	13,48
Total Storage provided	13.50
Overflow to 206D	0.00

ICD use Tempest HF 77I/s @ 1.55m head, or approved equal

4	00 sm						
00 -YR FLOW				Flow restr	icled to	1	4 ∦s
Qp (l/s)							-
Area(ha)=	0.0400						
Cw =	1.00	STORMWATER MANAGEMENT O	lm =	7,00 l/s			
Tc Variable	Ĩ	Qp 2.76 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/s)	(Vs)	(m3)		
11	169,9	18.9	7.00	11.9	7.85		
12	162.1	18.0	7.00	11.0	7,94		
13	155.1	17.2	7.00	10.2	7.99		
14	148.7	16.5	7.00	9.5	8.01	<===	Required
15	142.9	15.9	7.00	8,9	8.00		for storage
16	137,5	15.3	7.00	8,3	7,96		
17	132.6	14.7	7.00	7.7	7.90		
18	128.1	14.2	7.00	7.2	7,82		
19	123.9	13.8	7,00	6,8	7.72		
20	120.0	13.3	7.00	6.3	7.61		
21	116.3	12.9	7,00	5.9	7.47		

l volume je on-sile

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m	Height	Slorage
	(m)	(m3)
CB206C	1.45	0.52
		0,00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Totel	0.00

CBMH height for storage equals top of grate to invert less 0,64m to account for flat top and iron frame/grate

ICD use Tempest LMF 14I/s @ 1.47m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
		0.20	0.00	
		Total:	0.00	

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)		(m3)
206C	75.00	0,15	3.75
		Total:	3.75

OFF-LINE STORAGE (Cell)

Cell storage	Length y	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	6,00	3.00	5,00
	0 11	Total:	5.00

Total Storage required	8.01
Total Surface Storage provided	9.27
Overflow to area 206D	0.00

5	00 sm						
100 -YR FLOW				Flow restri	icted to	60) Vs
Op (I/s)			111		_	_	
Area(ha)=	0.0500						
Cw =	0.94	STORMWATER MANAGEMENT (2m =		30.00	l/s	
Tc Variable	14	Op 2.78 x Area x c x l	Qm	Qp-Qm	Volume		57.4
(mln)	(mm/hour)	(l/s)	(Us)	(I/s)	(m3)		
0.5	373.4	48.8	30,00	18,0	0.56		
1	351.4	45.9	30.00	15.9	0.95		
1,5	332.1	43.4	30,00	13.4	1.21		
2	315.0	41.2	30,00	11.2	1.34		
2,5	299.8	39.2	30.00	9.2	1.37	<===	Required volume
3	266.0	37.4	30.00	7.4	1.33		for storage on-sil
3.5	273.7	35.8	30.00	5.6	1.21		
4	262.4	34,3	30.00	4.3	1.03		
4.5	252.1	32.9	30.00	2.9	0.79		
5	242.7	31.7	30.00	1.7	0,51		
5.5	234.0	30.6	30.00	0.6	0.19		

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB206D	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Die	Storage	
	(m)	(m)	(m3)	
		0.30	0.00	
		Total:	0.00	

IN-LINE STORAGE (Structure)

1.13 m3/m	Height (m)	Storage		
		(m3)		
		0.00		
	Total:	0.00		

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA	Depth	Storage
(SM)	(m)	(m3)
24.81	0.14	1.16
	Total:	1.16
	(SM) 24.81	(SM) (m)

Overflow from 206C 210A 230G	0.00
Total Storage required	0.00
Total Storage provided	1.68
Overflow to future area	0.00

ICD use Tempest HF 60I/s @ 1.46m head, or approved equal

16	00 sm						
00 -YR FLOW				Flow restri	icted to	6	0 Vs
Op (l/s)							240)
Area(ha)=	0,1600						
Cw =	0.94	STORMWATER MANAGEMENT C	m =		30.00	l/s	
To Variable	ä	Qp 2,76 x Area x c x i	Qm	Qp-Qm	Volume	*	
(min)	(mm/hour)	(1/s)	(l/s)	(Vis)	(m3)		
6	199.2	83.3	30.00	53.3	25.58		
9	168.3	70,7	30.00	48.7	26.30		
10	178.6	74.7	30.00	44.7	26.79		
11	169.9	71.0	30,00	41.0	27.09		
12	162.1	67.8	30.00	37.8	27.21	<===	Required v
13	155.1	64.9	30.00	34.9	27,10		for storage
14	148.7	62.2	30.00	32.2	27.03		-
15	142.9	59.7	30.00	29.7	26,77		
16	137.5	57.5	30,00	27.5	26,41		
17	132.6	55.5	30.00	25.5	25.96		
18	128.1	53.6	30.00	23.6	25.44		

volume on-site

IN-LINE STORAGE (Structure) 0.6m X 0.6m CB 0.36 m3/m Height

CICB205A CICB205B

IN-LINE STORAGE (Structure)	
1.2mDia CBMH's	

1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

Height (m) 1.45 1.55

Total:

Storage (m3)

0.52 0.56 1.08

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB205A-CICB205B	14.00	0.25	0.69
			0,00
		Total:	0.69

PARKING LOT STORAGE 100yr Maximum available AREA # AREA Depth AREA / AREA

AREA #	AREA	Depth	Slorage
	(SM)	(m)	(m3)
205	69.82	D.11	2.56
		Total:	2,56

Overflow from 204, 206D, 1/2 230G	18.13
Total Storage required	45.34
Total Storage provided	4.33
Overflow to Area Future	41.01

ICD use Tempest HF 60l/s @ 1.68m head, or approved equal

5	00 sm						
0 -YR FLOW				Flow restri	icted to	10) l/s
Qp (l/s)							-
Area(ha)=	0.0500						
Cw =	1,00	STORMWATER MANAGEMENT	0 m =		5.00	/s	
Tc Variable	ĩ	Qp 2.78 x Area x c x)	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(l/s)	(I/s)	(m3)		
20	120.0	16.7	5,00	11.7	14,01		
21	116.3	16.2	5.00	11.2	14.07		
22	112.9	15.7	5.00	10.7	14.11		
23	109.7	15.2	5.00	10.2	14.14		
24	106.7	14.8	5.00	9.8	14.15	<===	Required volume
25	103.8	14.4	5.00	9.4	14.15		for storage on-she
26	101.2	14.1	5.00	9.1	14.14		
27	98.7	13.7	5.00	8,7	14.12		
28	96.3	13.4	5.00	8.4	14.08		
29	94.0	13.1	5,00	8.1	14.04		
30	91.9	12.8	5.00	7.8	13.99		

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB240A	1.45	0.52
CICB240B	1.55	0,56
		0.00
	Total:	1,08

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Slorage
	(m)	(m3)
		0.00
		0.00
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

(CD use Tempest LMF 10l/s @ 1.65m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB240A-CICB240B	10.00	0.25	0.49
			0.00
			0.00
			0.00
			0.00
		Tolal:	0,49

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
240A	79.61	0.10	2.65
		Total:	2.65

OFF-LINE STORAGE (Cell)

	Length	width	Slorage
	(m)	(m)	(m3)
Triton M-6 storage cell	11.00	3.00	10.00
		Total:	10.00

Total Storage required	14.15
Total Storage provided	14.22
1/2 Overflow to Area 204	0.00
1/2 Overflow to Area 201	0,00

Street 1 Area #	# 204						
13	00 sm						
100 -YR FLOW				Flow restri	cled to	5	5 l/s
Op (l/s)						_	
Area(ha)=	0.1300						1
Cw =	0.94	STORMWATER MANAGEMENT C	im =		27,501	l/s	
Tc Variable	Ē	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
8	199.2	67.7	27.50	40,2	19.28		
9	168.3	64.0	27.50	36,5	19,68		
10	178.6	60.7	27.50	33,2	19,90		
11	169,9	57.7	27.50	30,2	19.95		Required v
12	162.1	55.1	27.50	27.6	19,86		for storage
13	155.1	52.7	27.50	25,2	19.65		
14	148.7	50.5	27.50	23,0	19.34		
15	142.9	48.5	27.50	21,0	18.94		
16	137.5	46.7	27.50	19,2	18.46		
17	132.6	45.1	27.50	17.6	17.91		
18	128.1	43.5	27,50	16.0	17.29		

volume

e on-sile

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CICB204A	1.45	0.52
CICB204B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure Length		Dia	Storage
	(m)	(m)	(m3)
CICB204A-CICB204B	15.00	0.25	0.74
		Total:	0.74

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Slorage
	(SM)	(m)	(m3)
		0.13	0.00
		0.13	0.00
		Total:	0.00

Overflow from area 1/2 240A	0.00
Total Storage required	19.95
Total Storage provided	1.82
Overflow to Area 205	10.13

ICD use Tempest HF 55l/s @ 1.51m head, or approved equal

5	00 sm						
100 -YR FLOW	w.au			Flow restri	icted to	10	0 l/s
Qp (1/s)						_	100
Area(ha)=	0.0500						
Cw =	1.00	STORMWATER MANAGEMENT O	im =		5.00	/s	
Tc Variable	- A	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(1/s)	(J/s)	(m3)		
16	137.5	19.1	5,00	14.1	13.55		
18	126.1	17.8	5.00	12.8	13.83		
20	120.0	16.7	5.00	11.7	14.01		
22	112.9	15.7	5.00	10,7	14.11		
24	106.7	14.8	5.00	9.8	14.15	<***	Required
26	101.2	14.1	5.00	9.1	14.14		for slorag
28	96.3	13.4	5.00	8.4	14.08		
30	91.9	12.8	5.00	7.8	13,99		
32	87.9	12.2	5.00	7.2	13.85		
34	84.3	11.7	5.00	6.7	13.69		
35	82.6	11.5	5.00	6.5	13.60		

ed volume age on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB240D	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Storage	
	(m)	(m3)	
	- 1.4	0.00	
	Total:	0.00	

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage				
Sinucture to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
		0.25	0.00	
		0.30	0.00	
		Total:	0.00	

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
2400	204.50	0.14	9.54
		Total:	9,54

OFF-LINE STORAGE (Cell)

Cell storage	Tran a		Character
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00

Total Storage required	14,15
Total Storage provided	15.07
Overflow to Area 201	0.00

ICD use Tempest LMF 10Vs @ 1.46m head, or approved equal

29	00 sm						
100 -YR FLOW				Flow restr	cted to	6	0 //s
Op (l/s)							-
Area(ha)=	0.2900						
Cw =	0.94	STORMWATER MANAGEME	NT Qm =		30,00	/s	
To Variable	Ĕ	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(Vs)	(U/s)	(m3)		
19	123.9	93.9	30.00	63.9	72.81		
20	120.0	90.9	30,00	60.9	73.08		
21	116.3	66,1	30,00	58.1	73.25		
22	112.9	85.5	30.00	55,5	73.32	<===	Required
23	109.7	63,1	30.00	53,1	73.31		for storag
24	105.7	80.6	30.00	50.8	73.21		
25	103.8	78.7	30.00	48.7	73.05		
26	101.2	76,7	30,00	46.7	72.82		
27	98.7	74.6	30.00	44.8	72.52		
28	96.3	73.0	30.00	43.0	72.17		
29	94.0	71.2	30,00	41.2	71.77		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB					
0,36 m3/m	Height	Storage			
	(m)	(m3)			
CICB201A**	1.45	0.52			
CICB2018**	1.65	0.59			
	Total:	2.23			

**double CB's, volume x 2.

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Storage
T. TO MARTIN	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB201A - CICB201B	15,00	0,25	0.74
		Total:	0.74

PARKING LOT STORAGE 100yr Maximum available

AREA #	AREA	Deplh	Storage
	(SM)	(m)	(m3)
201	649.30	0.29	62,77
			0.00
		Total:	62.77

Overflow from Area 240D, 122	0.00
Total Storage required	73.32
Total Storage provided	65.73
overflow to future area	7.69

ICD use Tempest HF 601/s @ 1.71m head, or approved equal

Total Flow from Roofs=	, 18.00	#\$
Total Roof Area =	0.750	Ha
Average roof flow =	24.00	I/s/Ha
Volume Stored on Roofs	367.15	cm
Total Roof Storage rate	489.54	cm/Ha
Total flow from parking lot =	1006.00	l/s
Total parking Lot area =	3.420	Ha
Average parking lot flow =	294,15	l/s/Ha
Volume Stored on Parking lot	815.08	cm
Total Parking lot Storage rate	238.33	cm/Ha
Total uncontrolled flow from site	38.72	/s
Total uncontrolled area	0.110	Ha
Total flow	1062.72	l/s
Total area	4.280	Ha
Average flow	248.30	l/s/Ha
Volume Stored	1182.23	cm
Total Storage rate	276.22	cm/Ha

IBI 333 Preston St OTTAWA, ONTARIO K1S 5N4

ONSITE SWM 100yr design PROJECT: Arcadia commercial CITY OF OTTAWA **DEVELOPER** Minto

PAGE: 1 OF 1 JOB #: 35355 DATE. Oct 1, 2014 DESIGN: DY Rev#3

Outlet # 2 EX MH 301 100yr design

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 I/s/Ha Time of concentration = 10 minutes Area (ha) = C Average = 0.800 0.90 Intensity - 5 year event storm 10 min Tc i5yr = 998,071/(T+6.053)^0.814= 104.2 mm/hr Unrestricted Flowrate (Q5) 10 min Tc Qpre-devo = 2.78*A*Cw*i = 208.55 I/s Restricted Flowrate (Q5) 10 min Tc Q= 240 l/s/Ha 192.00 l/s Intensity - 100 year event storm i100yr = 1735.688/(T+6.014)^0.82= 10 min Tc 178.6 mm/hr **Unrestricted Flowrate (Q100)** 10 min Tc Qpost-devo = 2.78*A*Cw*i = 357.40 Vs Restricted Flowrate (Q5) Q= 240 I/s/Ha 10 min Tc 192.00 Vs Uncontrolled runoff (Q100) Location Area C AxC 0.004 UNC 1A 0.02 0.2 UNC 1B 0.02 0.2 0.004 UNC 1C 0.02 0.2 0.004 UNC 1D 0.2 0.004 0.02 0 Total 0.08 0,20 0.016 Quno= 2.78 Aci 10 min To 7.94 l/s

Allowable Release

 $Q_{rest 100yr} - Q_{unc} = Q_{allow}$

184.06 l/s

STORM WATER MANAGEMENT - Post-Development Controlled (5 year post-development with 100yr inlets)

90	0 sm						
00 -YR FLOW							
Qp (l/s)							
Area(ha)=	0.0900	nn					
Cw =	1.00	STORMWATER MANAGEME	NT Qm =		2.00	1/\$	
Tc		Qp	Qm	Qp-Qm	Volume		
Variable	i	2.78 x Area x c x i					
(min)	(mm/hour)	(Vs)	(Vs)	(l/s)	(m3)		
100	37.9	9.5	2.00	7.5	44.90		
102	37.3	9.3	2.00	7.3	44.92		
104	36.8	9.2	2.00	7.2	44.93		
106	36.2	9,1	2.00	7.1	44.93	<===	Required volum
108	35.7	8.9	2.00	6.9	44,93		for roof storage
110	35.2	6.8	2.00	6.8	44.93		
112	34.7	8,7	2.00	6.7	44.92		
114	34.2	8.6	2,00	6.6	44.91		
116	33.8	8.5	2.00	6.5	44.90		
118	33.3	8.3	2.00	6.3	44.88		
120	32.9	8.2	2.00	6.2	44.86		
122 Req. Storage volum Average depth ROOF AREA 60	0.050	8,1 m3 m	2.00	6.1	44.83		
122 Req. Storage volum Average depth ROOF AREA 60	e 44.93 0.050	m3	2.00	6.1	44.83		
122 Req. Storage volum Average depth ROOF AREA 60 60	e 44.93 0.050	m3	2.00	6.1	44.83		
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW	e 44.93 0.050	m3	2.00	6.1	44.83		
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW Qp (//s)	e 44.93 0.050 00 00 sm	m3	2.00	6.1	44.83		7
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW Qp (//s) Area(ha)=	e 44.93 0.050 00 0 sm	m3 m		6.1		16	1
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (I/s) Area(ha)= Cw =	e 44.93 0.050 00 00 sm	m3 m STORMWATER MANAGEME	:NT Qm =		2.00	I/s]
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc	e 44.93 0.050 00 00 sm 0.0600 1.00	m3 m STORMWATER MANAGEME		G.1		1/s]
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW Qp (//s) Area(ha)= Cw = Tc Variable	e 44.93 0.050 00 sm 0.0600 1.00 1.00	m3 m STORMWATER MANAGEME Op 2.78 × Area x c x i	:NT Qm = Qm	Qp-Qm	2.00 Volume	l/s	
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (//s) Area(ha)= Cw = Tc Variable (min)	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00	m3 m STORMWATER MANAGEME Qp 2.78 × Area × c × i (Vs)	:NT Qm = Qm (Ưs)	Qp-Qm (l/s)	2.00 Volume (m3)	<u>l/s</u>]
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW Qp (//s) Area(ha)= Cw = Tc Variable (min) 66	e 44.93 0.050 00 m 0.0600 1.00 i (mm/hour) 52.0	m3 m STORMWATER MANAGEME Qp 2.76 × Area × c × 1 (Vs) 8.7	:NT Qm = Qm (I/s) 2.00	Qp-Qm (I/S) 6.7	2.00 Volume (m3) 26.46	l/s]
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW Qp (J/s) Area(ha)= Cw = Tc Variable (min) 66 68	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00 1.00 52.0 50.9	m3 m STORMWATER MANAGEME Op 2.76 × Area x c x i (Vs) 8.7 6.5	:NT Qm = Qm (Vs) 2.00 2.00	Qp-Qm (I/S) 6.7 6.5	2.00 Volume (m3) 26.46 26.47	l/s]
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Op (I/s) Area(ha)= Cw = Tc Variable (min) 66 68 70	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00 1.00 1.00 1.00 1.	m3 m STORMWATER MANAGEME Op 2.76 × Area × c × i (Vs) 8.7 6.5 8.3	:NT Qm = Qm (I/s) 2.00 2.00 2.00	Qp-Qm (l/s) 6.7 6.5 6.3	2.00 Volume (m3) 26.46 26.47 26.48		
122 Req. Storage volum Average depth ROOF AREA 6(000 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72	e 44.93 0.050 00 sm 0 sm 0.0600 1.00 i (mm/hour) 52.0 50.9 49.8 48.7	m3 m STORMWATER MANAGEME Qp 2.76 × Area × c × i (Vs) 8.7 6.5 8.3 6.1	NT Qm = Qm (I/s) 2.00 2.00 2.00 2.00	Qp-Qm (I/s) 6.7 6.5 6.3 6.1	2.00 Volume (m3) 26.46 26.47 26.48 26.48	l/s	
122 Req. Storage volum Average depth ROOF AREA 6(60 00-YR FLOW Qp (//s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72 74	e 44.93 0.050 00 sm 0 sm 0.0600 1.00 1.00 1.00 1.00 49.8 48.7 47.7	m3 m STORMWATER MANAGEME Op 2.78 × Area × c × i (Vs) 8.7 6.5 8.7 6.5 8.3 6.1 8.3 6.1 8.0	NT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00	Qp-Qm (l/s) 6.5 6.3 6.1 6.0	2.00 Volume (m3) 26.46 26.47 26.48 26.48 26.48 26.48		Required volumi
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (//s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72 74 76	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00 52.0 50.9 49.8 48.7 47.7 40.8	m3 m STORMWATER MANAGEME Qp 2.78 × Area × c × i (Vs) 8.7 6.5 8.3 6.1 8.0 7.8	INT Qm = Qm (Vs) 2.00 2.00 2.00 2.00 2.00 2.00 2.00	Qp-Qm (l/s) 6.7 6.5 6.3 6.1 6.0 5.8	2.00 Volume (m3) 26.46 26.47 26.48 26.48 26.48 26.48 26.48		
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (//s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72 74 76 78	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00 1.00 49.8 48.7 47.7 46.8 45.9	m3 m STORMWATER MANAGEME Qp 2.76 x Area x c x1 (Vs) 8.7 6.5 8.3 6.1 8.0 7.8 7.7	INT Qm = Qm (Vs) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/s) 6.7 6.5 6.3 6.1 6.0 5.8 5.7	2.00 Volume (m3) 26.46 26.47 26.48 26.48 26.48 26.48 26.46 26.45		
122 Req. Storage volum Average depth ROOF AREA 60 60 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72 74 76 78 80	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00 52.0 50.9 49.8 48.7 47.7 46.8 45.9 45.9	m3 m STORMWATER MANAGEME Qp 2.78 × Area x c x 1 (Vs) 8.7 6.5 8.7 6.5 8.3 6.1 8.0 7.8 7.7 7.5	INT Qm = Qm (Vs) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/S) 6.7 6.5 6.3 6.1 6.0 5.8 5.7 5.5	2.00 Volume (m3) 26.46 26.47 26.48 26.48 26.48 26.48 26.48 26.45 26.45 26.42		for roof storage
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (J/s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72 74 76 78 80 82	e 44.93 0.050 00 0 sm 0.0600 1.00 i (mm/hour) 52.0 50.9 49.8 48.7 47.7 40.8 45.9 45.0 44.2	m3 m STORMWATER MANAGEME Op 2.76 × Area × c × 1 (Vs) 8.7 6.5 8.3 6.1 8.0 7.6 7.7 7.5 7.4	INT Qm = Qm (I/s) 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 0	Qp-Qm (I/s) 6.7 6.5 6.3 6.1 6.0 5.8 5.7 5.5 5.5 5.4	2.00 Volume (m3) 26.46 26.47 26.48 26.48 26.48 26.48 26.48 26.45 26.45 26.45 26.45 26.42 26.39		
122 Req. Storage volum Average depth ROOF AREA 60 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 66 68 70 72 74 76 78 80	e 44.93 0.050 00 sm 0.0600 1.00 1.00 1.00 52.0 50.9 49.8 48.7 47.7 46.8 45.9 45.9	m3 m STORMWATER MANAGEME Qp 2.78 × Area x c x 1 (Vs) 8.7 6.5 8.7 6.5 8.3 6.1 8.0 7.8 7.7 7.5	INT Qm = Qm (Vs) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/S) 6.7 6.5 6.3 6.1 6.0 5.8 5.7 5.5	2.00 Volume (m3) 26.46 26.47 26.48 26.48 26.48 26.48 26.48 26.45 26.45 26.42		for roof storage

Average depth

0.044 m

ROOF AREA 7	00				5/		
100	00 sm						
100 -YR FLOW							
Qp (l/s)							
Area(ha)=	0.1000						
Cw =	1,00	STORMWATER MANAG	GEMENT Qm =		2.00	/s	
Tc Variable	ĩ	Qр 2.78 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(I/s)	(l/s)	(m3)		
115	34.0	9.5	2.00	7.5	51.43		
117	33.6	9.3	2.00	7.3	51.44		
119	33.1	9.2	2.00	7,2	51.44		
121	32.7	9.1	2.00	7.1	51.44	<===	F
123	32.3	9.0	2.00	7.0	51.44		fe
125	31.9	8.9	2,00	6.9	51.43		
127	31.5	8.7	2.00	6.7	51,42		
129	31.1	9.6	2.00	6.6	51.41		
131	30.7	8.5	2.00	6.5	51.39		
133	30.4	8.4	2.00	6.4	51,37		
135	30.0	8,3	2.00	6.3	51.35		
137	29.7	8.2	2.00	6.2	51.32		

equired volume r roof storage

Req. Storage volume Average depth

51.44 0.051 m3 m

ROOF ARE	A 800	
	600 sm	
100 -YR FLOW		
Qp (l/s)		

Area(ha)=	0.0600						
Cw =	1.00	STORMWATER MANAGEME	ENT Qm =		2.00	ls	
To Variable	Ĭ	Ор 2.78 x Агеа x с x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(l/s)	(l/s)	(m3)		
66	52.0	0.7	2.00	6.7	26.46		
68	50.9	8.5	2.00	6.5	26.47		
70	49.8	8.3	2.00	6.3	26.48		
72	48.7	8.1	2.00	6.1	26.48	<===	Required volume
74	47.7	8.0	2.00	6.0	26.48		for roof storage
76	46.8	7.8	2,00	5.8	26.46		
78	45.9	7.7	2.00	5.7	26.45		
80	45.0	7,5	2.00	5,5	26.42		
82	44.2	7.4	2.00	5.4	26.39		
84	43.3	7.2	2.00	5.2	26.36		
86	42.6	7.1	2.00	5.1	26.32		
88	41.8	7.0	2.00	5.0	26.28		

Req. Storage volume Average depth

26.48 m3 0.044 m

11	00 sm						
0 -YR FLOW				Flow restri-	cted to	1	5 I/s
Qp (l/s)							
Area(ha)=	0.1100						
Gw =	1,00	STORMWATER MANAGEME	NT Qm =		7.50	/s	
Tc Variable	ĩ	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)		
31	89,8	27.5	7.50	20.0	37.14		
32	87.9	26.9	7,50	19.4	37.20		
33	66.0	26.3	7.50	18.8	37.24		
34	84.3	25.8	7.50	18.3	37.27		
35	82.6	25.3	7.50	17.8	37.28	<====	Required volume
36	81,0	24.8	7.50	17.3	37.28		for storage on-site
37	79.4	24.3	7.50	16.8	37.26		
38	77.9	23.8	7.50	16.3	37.24		
39	76.5	23.4	7.50	15.9	37.20		
40	75.1	23.0	7.50	15.5	37.15		
41	73.8	22.6	7.50	15.1	37.09		

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB120	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage	e			
Structure to	Length	Dia	Storage	
	(m)	(m)	(m3)	
		0.25	0.00	
		0.30	0.00	
		Total:	0.00	

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING I Maximum available

AREA	Depth	Storage
(SM)	(m)	(m3)
407,88	0.25	33.99
	0.00	0.00
		0.00
-h.	Total:	33.99
	(SM)	(SM) (m) 407,88 0.25 0.00

Total Storage required	37.28
Total Storage provided	34.51
Overflow to area 231	2.77

ICD use Tempest LMF 15l/s @ 1.47m head, or approved equal

6	00 sm						
100 -YR FLOW				Flow restri	cted to	3	0 l/s
Qp (l/s)							
Area(ha)=	0.0600						
Cw =	1.00	STORMWATER MANAGEME	ENT Qm =		15.00	1/8	
Tc Variable	1	Qp 2.78 x Area x c x í	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(I/s)	(l/s)	(m3)		
6	226.0	37,7	15.00	22.7	8.17		
7	211.7	35.3	15.00	20.3	8,53		
8	199.2	33.2	15.00	18.2	8.75		
9	168.3	31.4	15.00	16.4	8.86		
10	178.6	29.8	15.00	14.8	8.87	<====	Required volume
11	169.9	28.3	15.00	13.3	8.60	1	for storage on-sit
12	162.1	27.0	15.00	12.0	8.67	j –	
13	155.1	25.9	15.00	10.9	8.48		
14	148.7	24.8	15.00	9.8	8.24		
15	142.9	23.8	15,00	8.8	7:95		
16	137.5	22,9	15.00	7.9	7.63		

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB100A	1.45	0.52
CICB100B	1.65	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

1	Pipe storage			
1	Structure to	Lenglh	Dia	Storage
1		(m)	(m)	(m3)
CICB10	DA-CICB100B	10.00	0.25	0.49
			Total:	0.49

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING I Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
100	78.00	0.10	2,60
		Total:	2.60

Total Storage required	8.87
Total Storage provided	4.17
Overflow to area 231	4.70

ICD use Tempest LMF 30l/s @ 1.51m head, or approved equal

12	00 sm						
100 -YR FLOW				Flow restric	ted to	4	0 Vs
Qp (l/s)							inter l
Area(ha)=	0.1200						
Cw =	1,00	STORMWATER MANAGEME	ENT Qm =		20,00	l/s	
Tc Variable	ĩ	Ор 2.76 x Area x с x 1	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(U/S)	(I/s)	(m3)		
11	169.9	56.7	20.00	36.7	24.21		
13	155,1	51.7	20.00	31,7	24.76		
14	148.7	49.6	20.00	29.6	24.68		
15	142.9	47.7	20.00	27,7	24.90	<===	Requi
16	137.5	45.9	20.00	25.9	24.85		for sto
17	132.6	44.2	20.00	24,2	24.73		
18	128.1	42.7	20.00	22.7	24.55		
19	123,9	41.3	20.00	21,3	24.31		
20	120.0	40.0	20.00	20.0	24.02		
21	116,3	38.8	20.00	18.8	23.68		
23	109.7	36.6	20.00	16,6	22.89		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB= 0.36m3/m

.45ecb=	Height	Storage
	(m)	(m3)
CB110B	1.21	0.44
CB110A	1.46	0.53
6 x ECB/TCB	1.00	0.96
		0.00
	Total:	1.92

IN-LINE STORAGE (Pipe)

Pipe storage)		[]
Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
CBMH110A-MH110	14.50	0.60	4.10
CB110A - CBMH110	23.00	0.30	1.63
ECB-CB110A	95.00	0.30	6.72
CB110B - CBMH110	20.00	0.30	1.41
		Total:	13.85

IN-LINE STORAGE (Structure)

1.2mDia MH's=1.13m3/m		
1.5mDia MH's=1.77m3/m	Height	Slorage
	(m)	(m3)
CBMH110A	1.56	2.76
MH110	1.67	2.11
	Total:	4.87

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

(CD use Tempest HF 40I/s @ 1.7m head, or approved equal

PARKING I Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
			-
		1	
		Total	0.00

Total Storage required	24.90
Total Storage provided	20.65
Overflow to area 221	4.25

6(00 sm						
100 -YR FLOW	0 -YR FLOW			Flow restricted to 1			5 Vs
Qp (l/s)				_			
Area(ha)=	0.0600						
Cw =	1,00	STORMWATER MANAGEME	EMENT Qm = 7.50 Vs			Vs	
Tc Variable	ĩ	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(I/s)	(Vs)	(m3)		
17	132.6	22.1	7.50	14.6	14.91		
18	128.1	21.4	7.50	13.9	14.97		
19	123.9	20.7	7.50	13,2	15.00		
20	120.0	20.0	7.50	12.5	15.01	<====	Required vo
21	116.3	19.4	7.50	11.9	14.99		for storage (
22	112.9	18.8	7,50	11.3	14.95		
23	109.7	18.3	7.50	10.8	14.90		
24	106.7	17.8	7.50	10.3	14.82		
25	103.8	17.3	7.50	9.8	14.73		
26	101.2	16.9	7,50	9.4	14.63		
28	96.3	16.1	7.50	8.6	14,38		

volume on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Reight	Storage
	(m)	(m3)
CB123	1.45	0.52
	Total:	0,52

IN-LINE STORAGE	(Pipe)
Pipe storage	

Pipe storage			
Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
ļ		1	0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
123	36.40	0.10	1.21
	1	Total:	1.21

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

Total Storage required	15.01
Total Storage provided	1.74
Overflow to area 231	13.27

ICD use Tempest LMF 15l/s @ 1.22m head, or approved equal

6	00 sm	i i i i i i i i i i i i i i i i i i i					
100 -YR FLOW				Flow restric	cted to	1	0 1/s
Qp (l/s)							
Area(ha)=	0.0600						
Cw =	1.00	STORMWATER MANAGEME	ENT Qm =		5,00	Vs	
Tc Variable	1	Qp 2.78 x Area x с x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
25	103.8	17.3	5.00	12.3	18.46		
26	101,2	16.9	5.00	11.9	18.53		
27	98.7	16.5	5,00	11.5	18.56		
28	96,3	16.1	5.00	11.1	18.58		
29	94.0	15.7	5.00	10.7	18.59	<====	R
30	91,9	15.3	5.00	10.3	18.58		fo
31	89.8	15.0	5.00	10.0	18.57		
32	87.9	14.7	5.00	9.7	18.55		
33	86.0	14.4	5.00	9.4	18,51		
34	84.3	14.1	5.00	9.1	18.47		
35	82.6	13.8	5.00	8,8	18.43		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m Height Storage (m) (m3) CB122 1.45 0.52 0.00 Total: 0.52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
1-1-9, 11, 91, 111	(m)	(m3)
	10.77	0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 10I/s @ 1.26m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage	j i			
Structure to	Length	Día	Storage	
	(m)	(m)	(m3)	
			0.00	
			0.00	
		Total:	0.00	

PARKING L Maximum available

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
		Total:	0.00

OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
6-M nothT	5.00	10.00	19.00
		Total:	19.00

Total Storage required	18.59
Total Storage provided	19.52
Overflow to area 201	0.00

Outlet # 2 (MH301) SUMMARY	8.00 l/s	_
Total Flow from Roofs=	2/7/9/2/10/10/10/00	
Total Roof Area =	0.310 Ha	
Average roof flow =	25.81 I/s/Ha	
Volume Stored on Roofs	149.34 cm	
Total Roof Storage rate	481.73 cm/Ha	
Total flow from parking lot =	110.00 1/s	
Total parking Lot area =	0.410 Ha	
Average parking lot flow =	268.29 l/s/Ha	
Volume Stored on Parking lot	80.59 cm	
Total Parking lot Storage rate	196.56 cm/Ha	
Total uncontrolled flow from site	7.94 1/s	
Total uncontrolled area	0.080 Ha	
Total flow	125.94 l/s	
Total area	0.80 Ha	
Average flow	157.43 l/s/Ha	
Volume Stored	229.93 cm	
Total Storage rate	287.41 cm/Ha	

Outlet # 1 & 2 SUMMARY

Total Flow from Roofs=	26.00	I/s
Total Roof Area =	1.06	Ha
Average roof flow =	24.53	l/s/Ha
Volume Stored on Roofs	516.49	cm
Total Roof Storage rate	487.25	cm/Ha
Total flow from parking lot ≂	1116.00	l/s
Total parking Lot area =	3.83	На
Average parking lot flow =	291.38	l/s/Ha
Volume Stored on Parking lot	895.67	cm
Total Parking lot Storage rate	233.86	cm/Ha
Total uncontrolled flow from site	46.66	l/s
Total uncontrolled area	0.190	На
Total flow	1188.66	l/s
Total area	5.080	Ha
Average flow	233.99	I/s/Ha
Volume Stored	1412.16	cm
Total Storage rate	277.98	cm/Ha

IBI 333 Preston St OTTAWA, ONTARIO K1S 5N4

ONSITE SWM 100yr design PROJECT: Arcadia commercial CITY OF OTTAWA **DEVELOPER Minto**

PAGE: 1 OF 1 JOB #: 35355 DATE: Oct 1, 2014 DESIGN: DY Rev#3

Outlet EX MH 303 5yr design

MAXIMUM ALLOWABLE FLOW - Flow Restricted to 240 I/s/Ha Time of concentration = 10 minutes Area (ha) = C Average = 4.280 0.90 Intensity - 5 year event storm [i5yr = 998.071/(T+6.053)^0.814= 104.2 mm/hr 10 min Tc Unrestricted Flowrate (Q5) 10 min Tc | Qpre-devo = 2.78*A*Cw*i = 10 min Tc 1115.76 l/s Restricted Flowrate (Q5) 10 min Tc Q= 85 Vs/Ha 363.60 Vs Intensity - 100 year event storm 1100yr = 1735.688/(T+6.014)^0.82= 178.6 mm/hr 10 min Tc Unrestricted Flowrate (Q100) 1912.11 Vs 10 min Tc Qpost-devo = 2.78*A*Cw*i = Restricted Flowrate (Qrest 100yr) 1027.20 Vs 10 min Tc Q= 240 I/s/Ha Uncontrolled runoff (Q5) Area Location AxC 0.2 0.006 Area 216 A 0.03 0.036 0.04 0.9 Area 216B Depressed Loading BLK900-230G 0.9 0.018 Depressed Loading BLK900-240C 0.018 0.9 0.02 0.078 Total 0,11 0.71 Que= 2.78 Acl 22.59 Vs 10 min To

Allowable Release

Q_{rest 100yr} - Q_{unc} = Q_{allow}

1004.61 Vs

STORM WATER MANAGEMENT - Post-Development Controlled (5 year posl-development with 100yr inlets)

ROOF BLOCK	1000230						
6	00 sm						
00 -YR FLOW							
Qp (l/s)							entig" (
Area(ha)=	0.0600						
Cw =	0.90	STORMWATER MANAGEMENT O	2m =		2.00	/s	
To Variable		Ор 2.79 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(/s)	(I/s)	(Vs)	(m3)		
34	49.5	7.4	2.00	5.4	11.08		
36	47.6	7.1	2.00	5.1	11.11		
38	45.8	6.9	2,00	4.9	11.12		
40	44.2	6,6	2.00	4.6	11.12	<===	Required volum
42	42.7	6.4	2.00	4.4	11.11		for roof storage
44	41.3	6.2	2.00	4.2	11.08		
46	40.0	6.0	2.00	4.0	11.05		
48	38.8	5.8	2.00	3.8	11.01		
50	37.7	5.7	2.00	3.7	10.96		
52	36.6	5.5	2.00	3.5	10.90		
54	35.6	- 5.3	2,00	3.3	10.83		
56	34.7	5.2	2.00	3.2	10.76		

Req. Storage volume

11.12 m3 Average depth

lepih	0.019	m	
			_

ROOF BLOCK	200						
4	00 sm						
100 -YR FLOW							
Op (1/s)							TT I
Area(ha)=	0.0400						
Cw =	0.90	STORMWATER MANAGEMENT	2m =		1.00	Vs	
Tc Variable	1 P	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(1/5)	(m3)		
47	39.4	3.9	1.00	2,9	8.29		
49	38.2	3.8	1.00	2.8	9.30		
51	37.1	3.7	1.00	2.7	8.31		
53	36.1	3.6	1.00	2.6	8.31	<===	Required volume
55	35.1	3,5	1.00	2,5	8,30		for roof storage
57	34.2	3.4	1.00	2,4	8.29		
59	33.4	3.3	1.00	2.3	8.28		
61	32.5	3.3	1.00	2.3	8.26		
63	31.8	3.2	1.00	2.2	8.24		
65	31.0	3,1	1.00	2.1	8.22		
67	30.4	3.0	1.00	2.0	8.19		
69	29.7	3.0	1,00	2.0	8.16		

÷1

Req. Storage volume Average depth

6.31 m3 0.021 m

ROOF BLOCK	300						
4	00 sm						
00 -YR FLOW							
Op (Vs)							testa ".
Area(ha)=	0.0400	111					
Cw =	0.90	STORMWATER MANAGEME	NTQm ≓		1.00	l/s	
Tc Variable		Op 2.78 x Area x c x i	Qm	Op-Qm	Volume		
(min)	(mm/hour)	(I/S)	(1/5)	(l/s)	(m3)		
47	39.4	3.9	1.00	2.9	8.29	0	
49	38.2	3.8	1.00	2.8	8.30	0	
51	37.1	3.7	1.00	2.7	8.31		
53	36.1	3.6	1.00	2.6	8.31	<===	Required vo
55	35.1	3.5	1.00	2.5	8.30		for roof stor
57	34.2	3.4	1.00	2.4	8.29		
59	33.4	3.3	1.00	2.3	8.28		
61	32.5	3.3	1.00	2.3	8.26		
63	31.8	3.2	1.00	2.2	8.24		
65	31.0	3.1	1.00	21	8.22		
67	30.4	3.0	1.00	2.0	8.19		
69	29.7	3.0	1.00	2.0	8,16		

olume

rage

Req. Storage volume Average depth

0.021 m

Ł	8.31	m3

ROOF BLOCK							
15	00 sm						
00 -YR FLOW							
Qp (l/s)							
Area(ha)=	0,1500						ו
Cw =	0.90	STORMWATER MANAGEMENT C	im =		4.00	/s	
Tc Variable	i.	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/3)	(l/s)	(m3)		
43	42.0	15,8	4,00	11.8	30.32		
45	40.6	15.2	4.00	11.2	30.37		
47	39.4	14.8	4.00	10.8	30.39		
49	38.2	14.3	4.00	10.3	30.40	<===	Req
51	37.1	13,9	4.00	9.9	30.38		for r
53	35.1	13,5	4.00	9.5	30.35		
55	35.1	13.2	4.00	9.2	30.30		
57	34.2	12,8	4.00	8,8	30.23		
59	33.4	12.5	4,00	8,5	30,15		
61	32.5	12.2	4.00	8,2	30.06		
63	31.8	11.9	4.00	7,9	29.96		
65	31.0	11.7	4.00	7.7	29,84		

uired volume oof storage

Req. Storage volume Average depth

30.40 m3 0.020 m

ROOF BLOCK 900

NOOI DECON							
46	00 sm						
100-YR FLOW							
Op (l/s)							
Area(ha)=	0.4600						
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		10.00	l/s	
Tc		Qp	Qm	Qp-Qm	Volume		
Variable	-	2.78 x Area x c x i					
(min)	(mm/hour)	(l/s)	(I/s)	(Vs)	(m3)		
54	35.6	41.0	10.00	31.0	100.35		
56	34.7	39.9	10.00	29.9	100.44		
58	33.8	36.9	10.00	28.9	100.49		
60	32.9	37.9	10.00	27.9	100,49	<====	Required volume
62	32.2	37.0	10.00	27.0	100.46		for roof slorage
64	31.4	36,1	10.00	26.1	100.39		
66	30.7	35.3	10.00	25.3	100.29		
68	30.0	34.5	10.00	24.5	100.15		
70	29.4	33.0	10.00	23.8	99,98		
72	28,8	33.1	10.00	23.1	99.78		
74	28.2	32.4	10.00	22.4	99.56		
76	27.6	31.8	10.00	21.8	99.31		

Req. Storage volume Average depth

100.49 m3 0.022 m

29	00 sm						
0 -YR FLOW				Flow restr	icted to	8	5 l/s
Op (l/s)						_	
Area(ha)=	0.2900						
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		42,50	Vs	
Tc Variable	E.	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
5	141.2	102.4	42.50	59.9	17.98		
6	131.6	95.5	42.50	53.0	19,07		
7	123.3	89.5	42.50	47.0	19,73		
8	116,1	84.2	42.50	41.7	20.04		
9	109.8	79.7	42,50	37.2	20.07	<===	Requi
10	104.2	75.6	42,50	33.1	19.86		for sto
11	99.2	72.0	42.50	29.5	19.45		
12	94.7	68.7	42.50	26.2	18.87		
13	90.6	65.8	42.50	23.3	10,14		
14	86.9	63.1	42.50	20.6	17,28		
15	83.6	60.6	42.50	18.1	16.31	1	

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB221A	1,00	0.36
CB221B	1.30	0.47
CB221C	1.50	0.54
		0.00
	Total:	1.37

IN-LINE STORAGE (Structure)

CBMH*s		
1.2m dia=1.13 m3/m	Height	Storage
1.8m dia=2.54m3/m	(m)	(m3)
CBMH221(1.2m)	2.20	2.49
MH221 (1.8m)	2.20	5.59
	Total:	2.49

OFF-LINE STORAGE (Structure)

MH's 1.8m dia=2.54m3/m	Height	Storage
	(m)	(m3)
MH500	2.20	5.59
	Total:	5.59

CBMH height for storage equals top of grale to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 65l/s @ 2.35m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(ന)	(m)	(m3)
CB221A - CBMH221	17.05	0.45	2.71
CB2218 - CB221C	12,00	0.45	1,91
CB221C-CBMH221	18.50	0.45	2.94
CBMH221 - MH221	33.38	0.60	9.44
		Total:	17.00

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage	
	(SM) (m) ((m3)	
221C	0.00	0.00	0.00	
		Total:	0.00	

OFF-LINE STORAGE (Pipe)

Structure to Structure	Lenglh	Dia	Storage	
	(m)	(m)	(m3)	
MH500 - MH221	12.00	1.05	10,39	
16X6 Triton M-6 storage cell			33.00	
		Total:	43.39	

Overflow from area 110	4,25
Total Storage required	24.32
Total Storage provided	69,83
Overflow to Area 230A	0.00

68	00 sm						
100 -YR FLOW				Flow restri	icled to	15	0 l/s
Qp (l/s)							
Area(ha)=	0.6800						
Cw =	0.90	STORMWATER MANAGEMENT C	1m =		75.00	l/s	
Tc Variable		Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(mín)	(mm/hour)	(l/s)	(Vs)	(l/s)	(m3)		
7	123.3	209.0	75.00	134.8	56,61		
9	109.8	186.0	75,00	111.8	60.37		
10	104.2	177.3	75.00	102.3	61.36		
11	99.2	169.8	75.00	93.9	61.80		
12	94.7	161.1	75,00	86,1	62.00	<022	Requ
13	90.6	154.2	75.00	79.2	61.77		for st
14	86.9	147.9	75.00	72.9	61.24		
15	83.6	142.2	75,00	67.2	60.44		
16	80.5	136.9	75.00	61,9	59.42		
17	77.6	132.0	75.00	57.0	58.18		
19	72.5	123.4	75.00	48.4	55,17		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

IN-LINE STORAGE (Structure)

1.5m dia=1.77m3/m	Height	Storage
	(m)	(m3)
CBMH233 (1.5m)	1.42	2.5134
CBMH232 (1.5m)	1.49	2.6373
CBMH231 (1.5m)	1.53	2.7081
0	Total:	7,86

OFF-LINE STORAGE (Structure)

MH's	TWV	
1.8m dia=2.55m3/m	Height	Storage
	(m)	(m3)
CBMH231A	1.81	4.62
CBMH232A	1.70	4.34
CBMH233A	1.64	4.18
	Total:	13.13

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 1501/s @ 2.25m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage	
	(III)	(m)	(m3)	
CB233-CBMH233	15.60	0.60	4.41	
CBMH233-CBMH232	34.20	0.60	9.67	
CB232-CBMH323	15.60	0.60	4.41	
CBMH232 - CBMH231	34.20	0.60	9.67	
CB231-CBMH231	15.60	0.60	4.41	
	_	Total:	32.57	

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage (m3)	
	(SM)	(m)		
231	0.00	0.00	0.00	
232	0.00	0.00	0.00	
233	0.00	0.00	0.00	
		Total:	0.00	

OFF-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
MH501 - MH230	68.40	0.60	19.34	
10X18 Triton M-6 storage cell			67.00	
HOLESCOLING HAVE DECOMPTING		Total:	86.34	

Overflow from area 100, 123	20,74
Total Storage required	62.74
Total Storage provided	139.90
Overflow to area 230A	0.00

PARKING LOT Area # 230B

1 ANNIO LOT	A104 # 200						
19	00 sm						
100-YR FLOW				Flow restri	cted to	7	0 I/s
Qp (l/s)					_		-
Area(ha)=	0.1900						
Cw =	0.90	STORMWATER MAN	AGEMENT Qm =		35.00	l/s	
Tc Variable	1	Qp 2.78 x Area x c x l	Qm	Op-Qm	Valume		
(min)	(mm/hour)	(l/s)	{I/s}	(l/s)	(m3)		
2	182.7	86,8	35.00	51.8	6.22		
4	152.5	72.5	35,00	37.5	9,00		
5	141.2	67,1	35,00	32.1	9.63		
6	131.6	62.6	35.00	27.5	9,92	<===	Required
7	123.3	58.6	35.00	23,6	9,92		for storage
8	116.1	55.2	35.00	20.2	9.69		
9	109.8	52.2	35.00	17,2	9.20		
10	104.2	49.5	35,00	14,5	8,72		
11	99.2	47.2	35,00	12.2	8.02		
12	94.7	45.0	35.00	10.0	7.21		
14	86.9	41.3	35.00	6.3	5.31		

1

0.52 0.56

1.08

Required volume for storage on-site

 IN-LINE STORAGE (Structure)

 0.6m X 0.6m CB

 0.36 m3/m

 Height

 (m)

 CB230A

 1.45

CB230B

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB230A - CB230B	10.00	0.25	0.49	
		Total:	0,49	

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage	
	(m)	(m3)	
	Total;	0.00	

1.55

Total

Storage (m3)

CBMH height for storage equals top of grate to invert less 0.64m to account for fiat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
223C	207,80	0.13	9.00
		Tolai:	9.00

Overflow from area 221 & 231	0.00
Total Storage required	9,92
Total Storage provided	10,58
Overflow to area 230D	0,00

ICD use Tempest HF 70I/s @ 1.71m head, or approved equal

3	00 sm						
100 -YR FLOW	S. S. S. S.			Flow resid	icled to	11	D I/s
Qp (l/s)							
Area(ha)≈	0.0300					_	
Cw =	0.90	STORMWATER MANAGEMENT O	m =		5.00	/s	
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/s)	(l/s)	(m3)		
3	166.1	12.5	5.00	7.5	1.34		
5	141.2	10.6	5.00	5.6	1.68		
6	131.6	9.9	5.00	4.9	1.76		
7	123.3	9.3	5.00	4.3	1.79	<===	Required v
8	116.1	8.7	5.00	3.7	1,78		for storage
9	109.8	82	5.00	3.2	1.75		
10	104.2	7.8	5.00	2.8	1.69		
11	99.2	7.4	5.00	2.4	1.61		
12	94.7	7-1	5.00	2.1	1.52		
13	90.6	6.8	5.00	1.8	1.41		
15	83.6	6.3	5.00	1.3	1.14		

-

l volume

ge on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
6.350 (001077)	(m)	(m3)
CB230C	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Storage
	(m)	(m3)
1	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe) Pipe

be storage			
ructure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)

Cell storage				
	Length width		Slorage	
	(m)	(m)	(m3)	
Triton M-6 storage cell	6.00	3.00	5.00	
		Total:	5.00	

Total Storage required	1.79
Total Storage provided	5.52
Overflow to area 230D	0.00

ICD use Tempest LMF 10I/s @ 1.4m head, or approved equal

13	00 sm						
00 -YR FLOW				Flow restri	cted to	6	7 l/s
Qp (l/s)							<i>a</i>
Area(ha)=	0.1300						
Cw =	0.90	STORMWATER MANAGEMENT ()m =		33.50	l/s	
Tc Variable	ĩ	Qp 2.75 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/s)	(Vs)	(Vs)	(m3)		
0	230.5	75.0	33,50	41.5	0.00		
1	203.5	66.2	33.50	32.7	1.96		
2	182.7	59.4	33,50	25,9	3,11		
3	166.1	54.0	33,50	20,5	3,69		
4	152.5	49.6	33,50	16,1	3.87	<====	Required volume
5	141.2	45.9	33.50	12.4	3.73		for slorage on-site
6	131.6	42.8	33,50	9,3	3,35		
7	123.3	40.1	33.60	6.6	2.77		
6	116.1	37.8	33,50	4.3	2,05		
9	109.8	35.7	33,50	2.2	1.19		
11	99.2	32.3	33,50	-1.2	-0.82		

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230D	1.45	0.52
C8230E	1.55	0.56
	Tolal:	1.08

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Deser
1.15 modu	(m)	Storage
		(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage	N.	1	· · · · · · · · · · · · · · · · · · ·	
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB230D-CB230E	10.00	0.25	0,49	
		0.30	0,00	
		Total:	0.49	

-

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
230D	103.00	0.07	2.40
			0.00
			0.00
			D.00
			0.00
		Total:	2.40

Overflow from 230A, 230C	0.00
Total Storage required	3.87
Total Storage provided	3,97
Overflow to area 230G	0.00

ICD use Tempest HF 67l/s @ 1.68m head, or approved equal

7	00 sm						
0 -YR FLOW					icled to	3	8 //s
Qp (l/s)						_	
Area(ha)=	0.0700						
Cw =	0.90	STORMWATER MANAGEMENT	2m =		19.00	l/s	
Tc Variable	E.	Op 2.78 x Area x c x (Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(Vs)	(l/s)	(⊮s)	(m3)		
1	203.5	35.6	19.00	16,6	1.00		
2	182.7	32.0	19.00	13.0	1.56		
3	166.1	29.1	19.00	10.1	1.82		
4	152.5	26.7	19,00	7.7	1.85	<===	Requi
5	141.2	24.7	19.00	5,7	1,72		for sto
6	131.6	23.0	19.00	4.0	1.46		
7	123.3	21.6	19.00	2.6	1.09		
8	116.1	20.3	19.00	1.3	0.64		
9	109.8	19.2	19.00	0.2	0.12		
10	104.2	18.2	19.00	-0.8	-0.45		
12	94.7	16.6	19.00	-2.4	-1.74		

red volume rage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
970770 AV. VI.C.	(m)	(m3)
CB203F	1.45	0.52
		0.00
	Total:	0,52

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage	
	(m)	(m3)	
	Total	0.00	

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 38I/s @ 1.53m head, or approved equal

IN-LINE STORAGE (Pipe) Pi

Pipe storage		101	0.
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0,00
		Total:	0.00

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
18A	0.00	0.00	0.00
		0.00	0.00

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00

Overflow from Area 223	0.00
Total Storage required	1.85
Total Storage provided	5.52
Overflow to Area 230G	0.00

17	00 sm						
00 -YR FLOW				Flow restr	icled lo	5	3 Vs
Qp (l/s)						_	
Area(ha)=	0.1700	10 A 11					
Cw =	0,90	STORMWATER MANAGEMENT O)FTI =		26.50	1/s	
Tc Variable	ji.	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
5	141.2	60.0	26.50	33.5	10.06		
6	131.6	56.0	26,50	29.5	10,61		
7	123.3	52.4	26.50	25.9	10,90		
8	116.1	49.4	26.50	22.9	10.99	< 222	Required vol
9	109.8	46.7	26,50	20.2	10,91		for slorage o
10	104.2	44.3	26.50	17.8	10,69		
11	99.2	42.2	26.50	15.7	10.36		
12	94.7	40.3	26.50	13.8	9.92		
13	90.6	38.5	26.50	12.0	9.40		
14	86.9	37.0	26.50	10.5	8.60		
16	80.5	34.2	26.50	7.7	7.41		

olume on-sile

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB	1.	
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230G	1.45	0.52
CB230H	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat lop and iron frame/grate

ICD use Tempest HF 53I/s @ 1.71m head, or approved equal

Pipe storage		-	_	
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB230G-CB230H	10.00	0.25	0.49	
		Tolal	0.49	

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
230G	0.00	0.00	0.00
		Tolal:	0.00

OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	12.00	5.00	26.00
		Total:	26.00

overflow from 230D, 230F	0.00
Total Storage required	10.99
Total Storage provided	27.57
1/2 Overflow to Area 206D	0.00
1/2 Overflow to Area 205	0.00

3	00 sm						
100 -YR FLOW	and the second			Flow restr	icled to	1	1 Vs
Qp (l/s)							
Area(ha)=	0.0300						
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		5.50	l/s	
Tc Variable		Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		- 2%
(min)	(mm/hour)	(Vs)	(l/s)	(Vs)	(m3)		
3	166.1	12.5	5.50	7.0	1.25		
5	141.2	10.6	5.50	5.1	1.53		
6	131.6	9.9	5:50	4.4	1.58		
7	123.3	9.3	5.50	3.8	1.58	<===	Required
8	116.1	8.7	5.50	3.2	1.54		for slorag
9	109.6	8.2	5.50	2.7	1.48		
10	104.2	7.8	5.50	2.3	1.39		
11	99.2	7.4	5.50	1.9	1.28		
12	94.7	7.1	5.50	1.6	1.16		
13	90.6	6.8	5.50	1.3	1.02		
15	63.6	6,3	5,50	0.8	0.69		

d volume ige o⊓-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB230	1.45	0.52
		0.00
	Total:	0,62

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		Charact
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0,64m to account for flat top and iron frame/grate

ICD use Tempest LMF 11/s @ 1.44m head, or approved equal

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

PARKING LOT STORAGE 5yr

AREA #	AREA	Deplh	Storage
		(m)	(m3)
2301	0.00	0,00	0.00
		Total;	0.00

OFF-LINE STORAGE (Cell)

Cell storage			
	Length	width	Storage
	(m)	l(m)	(m3)
Trilon M-6 storage cell	6.00	3.00	5.00
		Total:	5,00
Fotal Storage required	1.58		
Total Storage provided	5.52		
Overflow to Area 230G	0.00		

Total Storage provided Overflow to Area 230G

PARKING LOT Area # 222

PARKING LOT	Alea # 222						
12	00 sm						
100 -YR FLOW				Flow restr	icted to	1	5 l/s
Qp (Vs)							
Area(ha)=	0.1200						
Cw =	D.90	STORMWATER MANAGEM	MENT Qm =		7,50	l/s	
To Variable		Qp 2.78 x Area x c x l	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(I/s)	(I/s)	(m3)		
17	77.6	23.3	7.50	15.8	16.12		
19	72.5	21.8	7.50	14.3	16.27		
20	70.3	21.1	7.50	13,6	16,31		
21	68.1	20.5	7,50	13.0	16.32	<===	Required
22	66.1	19.9	7.50	12.4	16.31		for slora
23	64.3	19.3	7,50	11.8	16.29		
24	62.5	18.8	7.50	11.3	16.24		
25	60.9	18.3	.7.50	10,8	16.18		
26	59.3	17.0	7,50	10.3	16.10	1	
27	57.9	17.4	7,50	9,9	16,00		
29	55.2	16.6	7.50	9.1	15.78		

Required volume

for slorage on-site

IN-LINE STORAGE (Structure) 0.6m X 0.6m CB 0.36 m3/m Height

CB222

IN-LINE STORAG	E (Structure)	
1.2mDia CBMH's		
1.13 m3/m	Height	Storage

1.13103/00	rieign	Siniade
	(m)	(m3)
CBMH222	1.50	1,70
	Totat:	1.70

(m)

Totak:

1.45

Storage (m3)

0.52

0.52

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Siructure to Structure	Length	Dia	Slorage
	(m)	(m)	(m3)
CB222	14.80	0.25	0.73
		Total:	0.73

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
222	248.90	0.16	13.27
222A	32.50	0.07	0.76
		Total:	14.03

Total Storage required	16.32
Total Storage provided	16.98
Overflow to area 223	0.00

ICD use Tempest LMF 15Vs @ 2.44m head, or approved equal

27	00 sm						
100 -YR FLOW				Flow restr	icled to	3	2 Vs
Qp (I/s)							_
Area(ha)=	0.2700						
Cw =	0,90	STORMWATER MANAGEMEN	T Qm =		16.00	l/s	
Tc Variable	i i i	Ор 2.78 х Агеакс х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(1/5)	(m3)		
18	75.0	50.6	16.00	34,6	37.42		
19	72.5	49.0	16.00	33.0	37.61		
20	70.3	47.5	16.00	31.5	37.75		
21	66.1	46.0	16.00	30.0	37.83		
22	66.1	44.7	16.00	28.7	37.86	<====	Required
23	54.3	43.4	16.00 -	27.4	37.85		for storage
24	62.5	42,2	16.00	26.2	37.80		
25	60.9	41.1	16.00	25.1	37.71		
26	59.3	40.1	16.00	24.1	37.58		
27	57.9	39.1	16.00	23.1	37.42		
29	55.2	37.3	16.00	21.3	37.02		

i volume ge on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB223	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
CBMH223	1.50	1.70
	Total:	1,70

CBMH height for storage equals top of grate to invert less 0.64m to account for fial top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CB223 - CBMH223	34.20	D.45	5.44
		0.30	0.00
		Tolal:	5.44

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Slorage
	(SM)	(m)	(m3)
223	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell) 0

Cell storage			
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	11.00	12.00	50.00
		Total:	50.00
Overflow from area 212, 222	0.00		
Total Storage required	37.86		
Total Storage provided	57.66		
Overflow to area 230F	0.00		

ICD use Tempest HF 32I/s @ 2.67mhead, or approved equal

6	00 sm						
00 -YR FLOW				Flow restr	icted to	24	4 l/s
Op (I/s)							-16
Area(ha)=	0.0600						
Cw =	0,90	STORMWATER MANAGEMENT (2m =		12,00	/s	
To Variable	Ē	Op 2.76 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/s)	(l/s)	(l/s)	(m3)		
2	182.7	27.4	12.00	15,4	1,85		
4	152,5	22.9	12.00	10.9	2,61		
5	141.2	21.2	12.00	9.2	2,76		
6	131.6	19.8	12.00	7.8	2.79	<===	Required volume
7	123.3	18.5	12.00	6,5	2.73		for storage on-sit
8	116.1	17.4	12.00	5.4	2,61		
9	109.8	16.5	12.00	4.5	2,42		
10	104.2	15.6	12.00	3.6	2.16		
11	99.2	14.9	12.00	2.9	1.91		
12	94.7	14.2	12.00	2,2	1.60		
14	86.9	13,1	12.00	1.1	0.88		

ge on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB212B	1,45	0.52
CICB212B	1,55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CICB212A-CICB212B	10.28	0.25	0.50	
		Total:	0.50	

IN-LINE STORAGE (Structure)

1,13 m3/m	Storage	
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
	92.12	0.07	2.15
	, I,	Total:	2.15

Total Storage required	2.79
Total .Storage provided	3.73
Overflow to area 223	0.00

ICD use Tempest LMF 24//s @ 1,63m head, or approved equal

4	OD sm						
00 -YR FLOW				Flow restri	icted to	10	0 l/s
Qp (l/s)							
Area(ha)=	0.0400						
Cw =	0.90	STORMWATER MANAGEMENT C	m =		5.00	ls	
To Variable	- F	Qp 2.75 x Area x c x	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(1/s)	(m3)		
6	131.6	13.2	5,00	8.2	2.94		
8	116.1	11.6	5.00	6.6	3,18		
9	109.8	11.0	5.00	6.0	3.23		
10	104.2	10.4	5.00	5.4	3.26	<====	Required v
11	99.2	9.9	5.00	4.9	3,25		for storage
12	94.7	9,5	5.00	4.5	3.22		
13	90.6	9 .1	5.00	4.1	3.17		
14	86,9	8.7	5.00	3.7	3,11		
15	83.6	8.4	5.00	3.4	3.03		
16	80.5	8.1	5.00	3.1	2.93		
18	75.0	7.5	5.00	2.5	2.70		

volume

go on-site 🔍

4

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB213	1.45	0.52
		0.00
1	Total:	0,52

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
ECB-CB215	24.00	0.25	1.18
		Total:	1.18

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr	_
-------------------------	---

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
	31,10	0.18	1.87
		Tolal:	1.87

Total Storage required	3.26
Total Storage provided	3.57
Overflow to 206A	0.00

ICD use Tempest LMF 10l/s @ 1.57m head, or approved equal

PARKING LOT Area # 206B

70	00 sm						
-YR FLOW				Flow restri	icted to	11) /s
Op (l/s)						_	
Area(ha)=	0.0700						1
Cw =	0.90	0.90 STORMWATER MANAGEMENT Qm = 5.00 l/s					
Tc Variable	Ĩ	Op 2.76 x Area x c x i	Qm	Op-Qm	Volume		
(min)	(mm/hour)	(I/s)	(i/s)	(Vs)	(m3)		
15	83.6	14.6	5.00	9.6	B.67		
17	77.6	13,6	5.00	8.8	8,76		
16	75.0	13,1	5.00	8.1	8.78		
19	72.5	12.7	5.00	7.7	8.78	<===	Required volume
20	70.3	12,3	5.00	7.3	8.76		for storage on-si
21	68.1	11,9	5,00	6.9	8.73		-
22	56.1	11,6	5.00	6.6	8.69		
23	64.3	11.3	5.00	6.3	8.64		
24	62.5	11.0	5.00	6.0	8,57		
25	60.9	10.7	5.00	5.7	8.50		
27	57.9	10.1	5.00	5.1	8.32		

£

٦

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB206B	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Tolal:	0,00

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Tolal:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT S	STORAGE	5yr
---------------	---------	-----

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
2068	154.40	0.17	8.75
			0.00
		Total:	8.75

Total Storage required	8.78
Total Storage provided	9.27
Overflow to area 206A	0.00

ICD use Tempest LMF 101/s @ 1.57m head, or approved equal

38	00 sm						
00 -YR FLOW				Flow restr	icled to	θ	5 //s
Qp (l/s)						_	(mm)
Area(ha)=	0.3800						
Cw=	0.90	STORMWATER MANAGEMENT ()m =		42.50	l/s	
Tc Variable	a	Qp 2.76 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(Vs)	(1/s)	(m3)		
7	123.3	117.2	42.50	74.7	31,39		
9	109.8	104.4	42.50	61.9	33.42		
10	104.2	99.1	42.50	56.6	33.94		
11	99.2	94.3	42.50	51.8	34,19		
12	94.7	90.0	42.50	47.5	34.22	<===	Required v
13	90.6	86.2	42.50	43.7	34.06		for slorage
14	86.9	82.7	42.50	40.2	33.73		
15	83.6	79.4	42.50	36.9	33.25		
16	80.5	76.5	42.50	34.0	32.64		
17	77.6	73.8	42.50	31.3	31.91		
19	72.5	69.0	42.50	26.5	30,18		

volume je on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB 0.36 m3/m	Height	Storage
	(m)	(m3)
CB206	1.59	0.57
		0.00
	Total:	0.57

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
CBMH206	1.50	1.70
	Total:	1.70

Total: CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 85I/s @ 2.41m head, or approved equal

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Storage	
	(m)	(m)	(m3)	
CB206-CBMH206	25,60	0.45	4.07	
		Total:	4.07	

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Slorage
	(SM)	(m)	(m3)
206A	0.00	0.00	0.00
206	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)

C

.

Cell storage			
	Lenglh	widin	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	10.00	8.00	31.00
		Total:	31.00
Overflow from area 206B, 215	0.00		
Total Storage required	34.22		
Total Storage provided	37.34		
Overflow to 210A	0.00		

37.34
0.00

12	00 sm						
0 -YR FLOW	contra-wall			Flow restr	icled to	77	7 //s
Qp (1/s)						_	
Area(ha)=	0.1200						
Cw =	0,90	STORMWATER MANAGEMENT (2m =		38.50	Vs	
Tc Variable	(i)	Op 2.76 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
0	230,5	69.2	38,50	30,7	0,00		
0.5	216.1	64.9	38,50	26,4	0.79		
1.5	192.5	57.8	38.50	19,3	1.74		
2.5	173.9	52,2	38.50	13,7	2.08	<===	Regui
3.5	159.0	47.7	38.50	9,2	1.94		for sto
4.5	146.6	44.0	38.50	5.5	1.49		
5.5	136.2	40.9	38,50	2.4	0,79		
6.5	127.3	36.2	38,50	-0.3	-0.11		
7.5	119.6	35.9	38,50	-2.6	-1.17		
8.5	112.9	33,9	38.50	-4.6	-2.35		
10.5	101.6	30.5	38.50	-8.0	-5.03		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB210A	1,45	0.52
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Storage
1.10 (10/11)	(m)	(m3)
	Total	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		Total:	0.00

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
88	0.00	0.00	0.00
		Total:	0,00

OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	5.00	6.00	10.00
		Total	10.00

Overflow from area 206A	0.00
Total Storage required	2.06
Total Storage provided	10.52
Overflow to 206D	0.00

JCD use Tempest HF 77l/s @ 1.55m head, or approved equal

4	00 sm						
100 -YR FLOW				Flow restri	icted to	14	4 //s
Qp (l/s)							=1
Area(ha)=	0.0400	V					
Cw =	0,90	STORMWATER MANAGEMENT Q	m =		7,00	1/s	
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(1/5)	(l/s)	(m3)		
4	152.5	15.3	7.00	8.3	1.98		
5	141.2	14.1	7.00	7.1	2.14		
6	131.6	13.2	7.00	6.2	2.22		
7	123.3	12.3	7.00	5.3	2.24	<===	Required ve
9	116.1	11.6	7.00	4.6	2.22		for storage
9	109.6	11.0	7.00	4.0	2.15		
10	104.2	10.4	7.00	3.4	2.06		
11	99.2	9.9	7.00	2,9	1.93		
12	94.7	9.5	7.00	2.5	1.78		
13	90.6	9.1	7.00	2.1	1.61		
14	86.9	8.7	7.00	1.7	1.43		

volume

e on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB206C	1.45	0.52
		0.00
	Total:	0.52

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 14I/s @ 1.47m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.20	0.00
		Total:	0.00

AREA #	AREA	Depth	Storage
Contraction of the second second second second second second second second second second second second second s	(SM)	(m)	(m3)
206C	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell) 0

	Length	width	Storage
	(m)	(m)	(m3)
Trilon M-6 storage cell	6.00	3.00	5.00
	11	Total:	5.00

Total Storage required	2.24
Total Surface Storage provided	5.52
Overflow to area 206D	0.00

Street 1, Area	00 sm						
00 -YR FLOW	vv 3m			Flow restri	icted to	61) Vs
Op (l/s)				10011030			
Area(ha)=	0.0500						1
Cw =	0.75	STORMWATER MANAGEMENT	0m =		30.00	l/s	
To Variable	i.	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(U/s)	(I/s)	(l/s)	(m3)		
0	230,5	24.0	30,00	-6.0	0.00		
0	230,5	24.0	30.00	-6.0	0.00		
0	230,5	24.0	30.00	-6.0	0.00		
0	230,5	24.0	30.00	-6.0	0.00		
0	230,5	24.0	30,00	-6.0	0.00	<===	Required volume
0.5	216.1	22.5	30.00	-7.5	-0.22		for storage on-sit
1	203,5	21.2	30.00	-8.8	-0.53		
1.5	192,5	20.1	30.00	-9.9	-0.89		
2	162,7	19,0	30.00	-11.0	-1.31		
2.5	173.9	18,1	30.00	-11.9	-1.78		
3	166,1	17.3	30.00	-12.7	-2.28		

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.36 m3/m	Height	Storage
	(m)	(m3)
CB206D	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Length	Dia	Slorage	
	(m)	(m)	(m3)	
		0.00	0.00	
		Total:	0.00	

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat lop and iron frame/grate

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
206D	0.00	0.00	0.00
		Tolal:	0.00

Overflow from 206C 210A 230G	0,00
Total Storage required	0.00
Total Storage provided	0.52
Overflow to future area	0.00

ICD use Tempest HF 60I/s @ 1.46m head, or approved equal

16	00 sm						
00-YR FLOW				Flow restri	icted to	64	0 1/s
Qp (l/s)							-1
Area(ha)=	0.1600						
Cw =	0,75	STORMWATER MANAGEMENT	2m =		30,00	l∕s	
Tc Variable	ĩ	Qp 2.76 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/bour)	(Hs)	(l/s)	(l/s)	(m3)		
1	203.5	67.9	30.00	37,9	2.27		
2	182.7	60.9	30.00	30,9	3.71		
3	166.1	55.4	30.00	25.4	4.57		
4	152.5	50,9	30.00	20.9	5.01		
5	141.2	47.1	30.00	17.1	5.13	<===	Required volume
6	131.6	43.9	30.00	13.9	5.00		for storage on-sil
7	123.3	41,1	30.00	11.1	4.68		
8	116,1	38.7	30,00	8.7	4.19		
9	109.8	36.6	30.00	6.6	3.58		
10	104.2	34.8	30.00	4.8	2.86		
11	99.2	33.1	30.00	3.1	2.04		

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB205A	1.45	0.52
CICB205B	1.65	0,56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage				
Structure to Structure	Lenglh Dia		Slorage	
	(m)	(m)	(m3)	
CICB205A-CICB205B	14.00	0.25	0.69	
			0.00	
		Total:	0.69	

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr AREA Depth Storage (SM) (m) (m3) 69.62 0.11 2.56 AREA # 2.56 205 Total: 2.56

Overflow from 204, 206D, 1/2 230G	1.50
Total Storage required	6,63
Total Storage provided	4,33
Overflow to Area Future	2.31

ICD use Tempest HF 60l/s @ 1.68m head, or approved equal

5	00 sm						
100 -YR FLOW				Flow restri	icled to	1	0 ∜s
Op (l/s)						_	
Area(ha)=	0.0500						
Cw=	0.90	STORMWATER MANAGEMENT C	im =		5.00	l/s	
Tc Variable	ï	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(1/s)	(I/S)	(m3)		
9	109.8	13.7	5,00	8.7	4.72		
10	104.2	13.0	5,00	8,0	4.82		
11	99.2	12.4	5.00	7,4	4.89		
12	94.7	11.0	5,00	6.8	4,93		
13	90.6	11.3	5.00	6,3	4,94	<===	Required vo
14	86.9	10.9	5.00	5.9	4.94		for storage
15	83.6	10.5	5,00	5.5	4.91		
16	80.5	10.1	5,00	5.1	4.86		
17	77.6	9.7	5,00	4,7	4.80		
18	75.0	9.4	5.00	4.4	4.73		
19	72.5	9.1	5.00	4.1	4.64		

volume on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB240A	1.45	0.52
CICB240B	1.55	0.56
		0.00
	Total:	1,08

IN-LINE STORAGE (Structure)

1.2mDia CBMH's	12	
1.13 m3/m	Height	Storage
	(m)	(m3)
	-	0.00
		0.00
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 10l/s @ 1.65m head, or approved equal

IN-LINE STORAGE (Pipe)

Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB240A-CICB240B	10.00	0.25	0.49
			0.00
			0.00
			D.00
			0.00
		Total:	0.49

PARKING LOT STORAGE 5yr

AREA#	AREA	Deplh	Storage
	(SM)	(m)	(m3)
240A	0.00	0.00	0.00
		Total:	0.00

OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	11.00	3.00	10.00
		Total:	10,00

Total Storage required	4.94
Total Storage provided	11.57
1/2 Overflow to Area 204	0.00
1/2 Overflow to Area 201	0.00

Street 1 Area #	7 204						
13	00 sm						
100 -YR FLOW				Flow restri	cted to	5	5 l/s
Qp (Vs)					_	_	
Area(ha)=	0.1300						
Cw =	0.75	STORMWATER MANAGEMENT C	= m(27.50	/s	
Tc Variable	Ĕ	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/s)	(1/s)	(1/s)	(m3)		
1	203.5	55.2	27,50	27.7	1,66		
2	182,7	49.5	27.50	22.0	2.64		
3	166.1	45.0	27,50	17.5	3,15		
4	152.5	41.3	27,50	13.8	3.32	<===	Required v
5	141.2	38.3	27.50	10.8	3.23		for storage
6	131.6	35.7	27,50	8,2	2.94		
7	123.3	33.4	27,50	5,9	2.49		
8	116,1	31.5	27.50	4.0	1,91		
9	109.8	29.8	27,50	2.3	1.22		
10	104.2	28.2	27,50	0,7	0.44		
-11	99.2	26.9	27,50	-0.6	-0.41		

volume e on-sile

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB204A	1.45	0.52
CICB204B	1.55	0.56
	Total:	1.08

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB204A-CICB204B	15.00	0.25	0.74
		Total:	0.74

IN-LINE STORAGE (Structure)

1.2mDia CBMH's 1.13 m3/m	Height	Storage
1,10 110/11	a second and a second sec	
	(m)	(m3)
	1407	
	Water C	0.00
	Total:	0.0

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
		0.00	0.00
		0,00	0.00
		Total:	0.00

Overflow from area 1/2 240A	0,00
Total Storage required	3,32
Total Storage provided	1.82
Overflow to Area 205	1.50

ICD use Tempest HF 55I/s @ 1.51m head, or approved equal

5	00 sm						
00 -YR FLOW	Satt Preds			Flow restr	icled to	10	0 Vs
Qp (l/s)							-
Area(ha)=	0.0500						
Cw =	0.90	STORMWATER MANAGEMENT (2m =		5,00	l/s	
Tc Variable		Qp 2,78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/\$)	(1/s)	(1/5)	(m3)		
6	131.6	16,5	5.00	11,5	4.13		
8	116.1	14.5	5.00	9.5	4.57		
10	104.2	13.0	5.00	8,0	4,82		
12	94.7	11.8	5.00	6.8	4.93		
14	86.9	10.9	5.00	5.9	4.94	<===	Required volume
16	80.5	10.1	5.00	5,1	4.86		for storage on-sile
18	75.0	9.4	5.00	4.4	4.73		
20	70.3	8.8	5.00	3.6	4.55		
22	68.1	8.3	5.00	3.3	4.32		
24	62.5	7.8	5,00	2,8	4.07		
25	60.9	7.6	5.00	2.6	. 3.93		

1

L

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage	
	(m)	(ന3)	
CB240D	1.45	0,52	
	Total:	0.52	

IN-LINE STORAGE (Structure)

1.2mDia CBMH's	-	
1.13 m3/m	Height	Storage
t	(m)	(m3)
		0.00
	Total:	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
		0.25	0.00
		0.30	D.00
		Tolal:	0.00

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
240C	0.00	0.00	0.00
		Total:	0.00

Cell storage			· · · · · · · · · · · · · · · · · · ·
	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	5.00
		Total:	5.00

Total Storage required	4.94
Total Storage provided	5.52
Overflow to Area 201	0.00

ICD use Tempest LMF 101/s @ 1.46m head, or approved equal

	14.50.1010		146,471.6
	(m)	(m)	(m3)
Triton M-6 storage cell	6.00	3.00	
		Total:	
Channes as suited	4 6 4		

Fotal Storage required	4.94
Total Storage provided	5.52
Dverflow to Area 201	0.00

Street 1 Area 2	201						
29	00 sm						
100 -YR FLOW				Flow restri	icled to	6	0 I/s
Op (l/s)					_		
Area(ha)=	0.2900						
Cw =	0.75	STORMWATER MANAGEMEN	NT Qm =		30.00	l/s	
Te Variable	.É	Qp 2.78 x Area x c x (Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(I/s)	(Vs)	(l/s)	(m3)		
7	123,3	74.6	30,00	44,6	18,71		
8	116,1	70.2	30,00	40.2	19,30		
9	109,6	66.4	30,00	36,4	19.65		
10	104,2	63,0	30.00	33,0	19.80	<===	Requi
11	99.2	60.0	30.00	30.0	19,78		for slo
12	94.7	57.3	30.00	27.3	19.63		
13	90.6	54.8	30.00	24.8	19.34		
14	86.9	52.6	30.00	22.6	18,95		
15	83.6	50.5	30.00	20.5	18.47		
16	80.5	48.6	30.00	18.6	17.90		
17	77.6	46.9	30.00	16.9	17.26		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0,36 m3/m	Height	Storage
	(m)	(m3)
CICB201A**	1.45	0.52
CICB2018**	1.65	0.59
	Total:	2.23

**double CB's, volume x 2,:

IN-LINE STORAGE (Structure)

1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

CBMH height for storage equals top of grate to invertiless 0.64m to account for flat top and iron frame/grate

IN-LINE STORAGE (Pipe)

Pipe storage			1
Structure to Structure	Length	Dia	Storage
	(m)	(m)	(m3)
CICB201A - CICB201B	15.00	0.25	0,74
		Total:	0,74

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
201	300.00	0.17	17.00
			0.00
		Total:	17.00

Overflow from Area 240D, 122	0.00
Total Storage required	19.80
Total Storage provided	19.97
overflow to future area	0.00

ICD use Tempest HF 60% @ 1.71m head, or approved equal

Total Flow from Roofs=	18.00 l/s
Total Roof Area =	0.750 Ha
Average roof flow =	24.00 l/s/Ha
Volume Stored on Roofs	158.62 cm
Total Roof Storage rate	211.50 cm/Ha
Total flow from parking lot =	503.00 l/s
Total parking Lot area =	3.420 Ha
Average parking lot flow =	147.08 l/s/Ha
Volume Stored on Parking lot	456.73 cm
Total Parking lot Storage rate	133.55 cm/Ha
Total uncontrolled flow from site	22,59 l/s
Total uncontrolled area	0.110 Ha
Total flow	543.59 Vs
Total area	4.260 Ha
Average flow	127.01 Vs/Ha
Volume Stored	615.36 cm
Total Storage rate	143.78 cm/Ha

IBI 333 Preston St OTTAWA, ONTARIO K1S 5N4 ONSITE SWM 100yr design PROJECT: Arcadia commercial CITY OF OTTAWA DEVELOPER Minto

PAGE: 1 OF 1 JOB #: 35355 DATE: Oct 1, 2014 DESIGN: DY Rev#3

Outlet # 2 EX MH 301 5vr design

-,		. 5	

Time of concentra	tion = 10 minutes			
Area (ha) =	0.800	1		
C Average =	0.90	-		
Intensity - 5 year e 10 min Tc		1/(T+6.053)^0.814=	104.2	mm/hr
Unrestricted Flow				
10 min Tc		2,78*A*Cw*i =	208.5	5 l/s
Restricted Flowrat	te (Q5)			
10 min Tc	Q= 240 I/s/Ha	1	192.0	0 l/s
Intensity - 100 yea 10 min Tc Unrestricted Flow	i100yr = 1735	1100yr = 1735.688/(T+6.014)^0.62= 178.6 mm/hr		
10 min Tc		Qpost-devo = 2.78*A*Cw*i = 357.40 l/s		
Restricted Flowral				
10 min Tc			192.0	0 I/s
Uncontrolled runo	ff (Q5)			
Location		Area	C	AxC
UNC 1A		0.02	0.	
UNC 1B		0.02	0,:	
UNC 1C		0.02	0,:	
UNC 1D		0.02	0.	
				C
Total		0.08	0.2	0.016
		Que = 2.78 ACI 4.63 I/s		

Π.

Allowable Release Q_{rest 100yr} - Q_{unc} = Q_{allow}

187.37 Vs

STORM WATER MANAGEMENT - Post-Development Controlled (5 year post-development with 100yr inlets)

ംര	00 sm						
00 -YR FLOW	oo om						
Qp (l/s)							
Area(ha)≠	0.0900						1
Cw =	0.90	STORMWATER MANAGEM	ENT Om -		2.00	1/e	
	0.90			Qp-Qm	Volume	1/2	1
To Variable		Qp 2.78 x Area x c x i	Qm				
(min)	(mm/hour)	(I/s)	(l/s)	(l/s)	(m3)		
53	36.1	8.1	2.00	6,1	19.48		
55	35.1	7,9	2.00	5.9	19.50		
57	34.2	7.7	2,00	5.7	19.51		
59	33.4	7.5	2.00	5.5	19.51	<===	Required volum
61	32.5	7.3	2.00	5.3	19.50		for roof storage
63	31.8	7.2	2.00	5.2	19.49		
65	31,0	7,0	2.00	5.0	19.46		
67	30.4	6.8	2.00	4.8	19.43		
69	29.7	6.7	2.00	4.7	19.40		
71	29.1	6.5	2.00	4.5	19.36		
73	28.5	6.4	2.00	4.4	19,31		
75	27.9	6.3	2.00	4,3	19,26		
Average depth	e 19.51 0.022	m3 m	2.00	1.0	13,20		
Average depth	e 19.51 0.022	m3	2.00	1.0	13,20		
Average depth	e 19.51 0.022	m3	2.00		13,20		
Average depth	e 19.51 0.022	m3	2.00		13,20		
Average depth	e 19.51 0.022	m3	2.00	1.0	13,20		_
Average depth COOF AREA 600 6 00 -YR FLOW	e 19.51 0.022	m3	2.00	1.0	13,20		٦
Average depth COOF AREA 600 60 -YR FLOW Qp (I/s)	e 19.51 0.022 D 00 sm	m3		1.0	2.00	1/3]
Average depth OOF AREA 600 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc	e 19.51 0.022 0 00 sm 0.0600	m3 m		Qp-Qm		l/s]
Average depth OOF AREA 600 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable	e 19.51 0.022 0 00 sm 0.0600	m3 m STORMWATER MANAGEM Qp 2,78 x Area x c x i	ENT Qm =		2.00	l/s]
Average depth OOF AREA 600 60 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min)	e 19.51 0.022 0 00 sm 0.0600 0.90 i i (mm/hour)	m3 m STORMWATER MANAGEM Qp 2.78 x Area x c x i (l/s)	ENT Qm = Qm	Qp-Qm	2.00 Volume	l/s]
Average depth COOF AREA 600 600 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34	e 19.51 0.022 0 00 sm 0.0600 0.90 i i (mm/hour) 49.5	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (//s) 7.4	ENT Qm = Qm (l/s) 2.00	Qp-Qm (Vs) 5.4	2.00 Volume (m3) 11.08	1/5]
Average depth OOF AREA 600 600 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36	e 19.51 0.022 0 000 sm 0.0600 0.90 i i (mm/hour) 49.5 47.6	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (l/s) 7.4 7.1	ENT Qm = Qm (l/s) 2.00 2.00	Qp-Qm (Vs)	2.00 Volume (m3) 11.08 11.11	l/s]
Average depth COOF AREA 600 6 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38	e 19.51 0.022 0 00 sm 0.0600 0.90 i (mm/hour) 49.5 47.6 45.8	m3 m STORMWATER MANAGEM Qp 2,78 × Area x c x i (l/s) 7,4 7,1 6,9	ENT Qm = Qm (l/s) 2.00 2.00 2.00	Qp-Qm (Vs) 5.4 5.1 4.9	2.00 Volume (m3) 11.08 11.11 11.12	<i>l/s</i>]
Average depth OOF AREA 600 6 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40	e 19.51 0.022 0 00 sm 0.0600 0.90 i i (mm/hour) 49.5 47.6 45.8 44.2	m3 m STORMWATER MANAGEM Qp 2.78 x Area x c x i (//s) 7.4 7.1 6.9 6.6	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00	Qp-Qm (I/s) 5.4 5.1 4.9 4.6	2.00 Volume (m3) 11.08 11.11 11.12 11.12		
Average depth OOF AREA 600 600 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42	e 19.51 0.022 0 00 sm 0.0600 0.90 i i (mm/hour) 49.5 47.6 45.8 44.2 42.7	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (l/s) 7.4 7.1 6.9 6.6 6.6 6.4	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00	Qp-Qm (<i>Vs</i>) 5.4 5.1 4.9 4.6 4.4	2.00 Volume (m3) 11.08 11.11 11.12 11.12 11.12 11.11		Required volum for roof storage
Average depth OOF AREA 600 600-YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42 44	e 19.51 0.022 0 000 sm 0.0600 0.90 i i (mm/hour) 49.5 47.6 45.8 44.2 44.2 42.7 41.3	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (l/s) 7.4 7.1 6.9 6.6 6.6 6.4 6.2	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/S) 5.4 5.1 4.9 4.6 4.4 4.2	2.00 Volume (m3) 11.08 11.11 11.12 11.12 11.12 11.11 11.08		
Average depth COOF AREA 600 6 00 -YR FLOW Qp (l/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42 44 45	e 19.51 0.022 0 000 sm 0.0600 0.90 i i (mm/hour) 49.5 47.6 45.8 44.2 42.7 41.3 40,0	m3 m STORMWATER MANAGEM Qp 2.78 x Area x c x i (l/s) 7.4 7.1 6.9 6.6 6.4 6.2 6.0	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (Vs) 5.4 5.1 4.9 4.6 4.4 4.2 4.0	2.00 Volume (m3) 11.08 11.11 11.12 11.12 11.11 11.08 11.05		
Average depth OOF AREA 600 60 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42 44 45 48	e 19.51 0.022 0 000 sm 0.0600 0.90 1 1 (mm/hour) 49.5 47.6 45.8 44.2 42.7 41.3 40.0 38.8	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (l/s) 7.4 7.1 6.9 6.6 6.4 6.2 6.0 5.8	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/S) 5.4 5.1 4.9 4.6 4.2 4.0 3.8	2.00 Volume (m3) 11.08 11.11 11.12 11.12 11.11 11.08 11.05 11.01		
Average depth COOF AREA 600 6 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42 44 45 48 50	e 19.51 0.022 0 000 sm 0.0600 0.90 1 1 (mm/hour) 49.5 47.6 45.8 44.2 42.7 41.3 40.0 38.8 37.7	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (I/s) 7.4 7.1 6.9 6.6 6.4 6.2 6.0 5.8 5.7	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/s) 5.4 5.1 4.9 4.6 4.4 4.2 4.0 3.6 3.7	2.00 Volume (m3) 11.08 11.11 11.12 11.12 11.12 11.12 11.12 11.08 11.05 11.01 10.96		
Average depth COOF AREA 600 6 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42 44 46 48 50 52	e 19.51 0.022 0 000 sm 0.0600 0.90 i (mm/hour) 49.5 47.6 45.8 44.2 42.7 41.3 40.0 38.8 37.7 36.6	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (l/s) 7.4 7.1 6.9 6.6 6.6 6.4 6.2 6.0 5.8 5.7 5.5	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (Vs) 5.4 5.1 4.9 4.6 4.4 4.2 4.0 3.8 3.7 3.5	2.00 Volume (m3) 11.08 11.11 11.12 11.11 11.08 11.05 11.01 10.96 10.90		Required volume
Coop AREA 600 6 00 -YR FLOW Qp (I/s) Area(ha)= Cw = Tc Variable (min) 34 36 38 40 42 44 46 48 50	e 19.51 0.022 0 000 sm 0.0600 0.90 1 1 (mm/hour) 49.5 47.6 45.8 44.2 42.7 41.3 40.0 38.8 37.7	m3 m STORMWATER MANAGEM Qp 2.78 × Area x c x i (I/s) 7.4 7.1 6.9 6.6 6.4 6.2 6.0 5.8 5.7	ENT Qm = Qm (l/s) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Qp-Qm (I/s) 5.4 5.1 4.9 4.6 4.4 4.2 4.0 3.6 3.7	2.00 Volume (m3) 11.08 11.11 11.12 11.12 11.12 11.12 11.12 11.08 11.05 11.01 10.96		

Req. Storage volume Average depth

11.12 m3

0.019 m

ROOF AREA 70	0					
10	100 sm					
100 -YR FLOW						
Qp (l/s)						
Area(ha)=	0.1000					
Cw =	0.90	STORMWATER MANAG	EMENT Qm =		2.00	I/s
Tc Variable	E.	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume	
(min)	(mm/hour)	(l/s)	(l/s)	(l/s)	(m3)	
57	34.2	8.6	2.00	6.6	22.44	
59	33.4	8.3	2.00	6.3	22,46	
61	32.5	8.1	2.00	6.1	22.48	
63	31.8	7.9	2.00	5.9	22.49	<===
65	31.0	7.8	2.00	5.8	22.49	
67	30.4	7.6	2.00	5.6	22.49	
69	29.7	7.4	2.00	5.4	22.47	
71	29.1	7.3	2.00	5.3	22.46	
73	28.5	7.1	2.00	5.1	22.43	
75	27.9	7.0	2.00	5,0	22.40	
77	27.3	6,8	2.00	4.8	22,36	
79	26.8	6.7	2.00	4.7	22.32	

Required volume for roof storage

Req. Storage volume Average depth

0.022

22,49

m3

ก

ROOF AREA 80	0					
6	i00 sm					
100 -YR FLOW						
Qp (l/s)						
Area(ha)=	0.0600		17			_
Cw =	0.90	STORMWATER MANAGEMI	ENT Qm =		2.00	l/s
Tc Variable	Ĭ.	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume	
(min)	(mm/hour)	(Vs)	(Vs)	(l/s)	(m3)	
34	49.5	7.4	2.00	5,4	11.08	
36	47.6	7.1	2.00	5,1	11.11	
38	45.8	6.9	2.00	4.9	11.12	
40	44.2	6.6	2.00	4.6	11.12	<
42	42.7	6.4	2.00	4.4	11,11	
44	41.3	6.2	2.00	4.2	11.08	
46	40.0	6.0	2.00	4.0	11.05	
48	38.8	5.8	2.00	3.8	11.01	
50	37.7	5.7	2.00	3.7	10.96	
52	36.6	5,5	2.00	3.5	10.90	
54	35.6	5.3	2.00	3,3	10.83	
56	34.7	5.2	2.00	3.2	10.76	

Required volume for roof storage <===

Req. Storage volume Average depth

11.12 m3 0.019 m

11	00 sm						
00 -YR FLOW				Flow restrict	cled lo	1	5 I/s
Qp (l/s)							117
Area(ha)=	0.1100						7
Cw =	0.90	STORMWATER MANAGEME	ENT Qm =		7.50	Vs	
Tc Variable	ĩ	Op 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(Vs)	(m3)		
15	83,6	23.0	7.50	15.5	13.95		
16	80.5	22,1	7.50	14.6	14.06	E	
17	77.6	21.4	7.50	13.9	14.14		
18	75.0	20.6	7.50	13.1	14.16		
19	72.5	20.0	7.50	12.5	14.20	<===	Required volume
20	70.3	19,3	7.50	11.8	14.20		for storage on-site
21	68.1	18.8	7.50	11.3	14.18		
22	66.1	16.2	7.50	10.7	14.13		
23	64.3	17.7	7.50	10.2	14.07		
24	62,5	17.2	7.50	9.7	13,99		
25	60.9	16.8	7.50	9.3	13.89		

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CB120	1.45	0.52
		0.00
	Total;	0.52

IN-LINE STORAGE (Pipe)

PARKING LOT STORAGE 5yr

Pipe storage	3		
Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
		0.25	0.00
		0.30	0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

AREA Depth Storage AREA # (SM)(m) (m3) 120 251.20 0,17 14,23 0.00 0.00 0.00 Total: 14.23

Total Storage required	14.20
Total Storage provided	14.76
Overflow to area 231	0.00

ICD use Tempest LMF 15I/s @ 1.47m head, or approved equal

6	00 sm						
00 -YR FLOW				Flow restric	cted to	3	0 I/s
Qp (l/s)				_			14
Area(ha)=	0.0600						
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		15.00	Vs	
Tc Variable	Ĩ	Ор 2.78 х Агеа х с х і	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(l/s)	(1/s)	(m3)		
0	230.5	34,6	15.00	19.6	0.00		
1	203.5	30.6	15.00	15.6	0.93		
2	182.7	27.4	15.00	12.4	1.49		
3	166.1	24.9	15.00	9,9	1.79		
4	152.5	22.9	15.00	7.9	1.89	<===	Requ
5	141.2	21.2	15.00	6,2	1.86		for st
6	131.6	19.8	15.00	4.8	1.71		
7	123.3	18.5	15.00	3.5	1.47		
8	116,1	17.4	15.00	2.4	1.17		
9	109.8	16,5	15.00	1.5	0.80		
10	104.2	15.6	15.00	0.6	0.38		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Storage
	(m)	(m3)
CICB100A	1.45	0.52
CICB100B	1.55	0.56
	Total	1.08

IN-LINE STORAGE (Pipe)

Pipe storage	e		
Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
CICB100A-CICB100B	10.00	0.25	0.49
A.		Total:	0.49

IN-LINE STORAGE (Structure)

4 13	Utsight	Charana
1.13 m3/m	Height	Storage
	(m)	(m3)
	Tatal	0.00
	I I O(a)	0.00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

PARKING LOT STORAGE 5yr AREA # AREA Depth Storage

	(SM)	(m)	(m3)
100	30,00	0.05	0.50
	-		
		Total:	0.50

Total Storage required	1.89
Total Storage provided	2.07
Overflow to area 231	0.00

ICD use Tempest LMF 30l/s @ 1.51m head, or approved equal

12	:00 sm						
100 -YR FLOW				Flow restric	cted to	4	0 l/s
Qp (l/s)							
Area(ha)=	0.1200						
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		20,00	ls	
Tc Variable		Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(1/s)	(l/s)	(l/s)	(m3)		
3	166.1	49.9	20.00	29.9	5.38		
5	141.2	42.4	20.00	22.4	6.72		
6	131.6	39.5	20.00	19.5	7.02		
7	123,3	37.0	20.00	17.0	7.15	<===	Rec
8	116.1	34.9	20.00	14.9	7.13		for s
9	109.8	33.0	20.00	13.0	7.00		
10	104.2	31,3	20.00	11.3	6.77		
11	99.2	29.8	20.00	9.8	6.46		
12	94.7	28.4	20.00	6.4	6.07		
13	90,6	27.2	20.00	7.2	5.62		
15	83.6	25.1	20.00	5.1	4.58		

0.44

0,53

0.96 0.00 **1.92** Required volume for storage on-site

IN-LINE STORAGE (Structure)

6 x ECB/TCB

0.6m X 0.6m CB= 0.36m3/m .45ecb= Height Storage (m) (m3) CB110B 1.21 CB110A 1.46

Total:

Pipe storage Structure to Length Dia

Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
CBMH110A-MH110	14.50	0.60	4.10
CB11DA - CBMH11D	23,00	0.30	1.63
ECB-CB110A	95.00	0.30	6.72
CB110B - C8MH110	20,00	0.30	1.41
		Total:	13.85

IN-LINE STORAGE (Pipe)

IN-LINE STORAGE (Structure)

1,2mDia MH's=1,13m3/m		
1.5mDia MH's=1,77m3/m	Height	Storage
	(m)	(m3)
CBMH110A	1.56	2.76
MH110	1.87	2.11
	Total:	4.87

1,00

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest HF 40I/s @ 1.7m head, or approved equal

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
			_
_	-		-
		Total;	0.00

Total Storage required	7.15
Total Storage provided	20.65
Overflow to area 221	0.00

6	00 sm						
100 -YR FLOW	and a second second second second second second second second second second second second second second second			Flow restrict	cted to	1	5 Vs
Qp (l/s)							
Area(ha)≃	0.0600						
Cw =	0.90	STORMWATER MANAGEMI	ENT Qm =		7,50	Vs	
Tc Variable	T.	Qp 2.78 x Area x c x i	Qm	Qp-Qm	Volume		
(min)	(mm/hour)	(l/s)	(1/s)	(I/s)	(m3)		
7	123,3	18.5	7.50	11.0	4.62		
8	116.1	17.4	7.50	9.9	4.77		
9	109.0	16,5	7.50	9.0	4.85		
10	104.2	15.6	7.50	8.1	4.88	<===	Ree
11	99.2	14.9	7.50	7.4	4.86		for
12	94.7	14.2	7,50	6.7	4.84		
13	90.6	13.6	7.50	6.1	4.76		
14	86.9	13.1	7,50	5.6	4,66		
15	83.6	12.5	7.50	5.0	4.54		
16	80.5	12.1	7.50	4.6	4.40		
18	75.0	11.3	7.50	3.8	4.05		

Required volume for storage on-site

.

IN-LINE STORAGE (Structure)

0.36 m3/m	Height	Slorage
	(m)	(m3)
CB123	1.45	0.52
	Total:	0.52

IN-LINE STORAGE (Pipe)

Pipe storage			
Structure to	re to Length Dia		Storage
	(m)	(m)	(m3)
			0.00
		Total:	0.00

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
	Total:	0.00

AREA #	AREA Depth		Storage	
	(SM)	(m)	(m3)	
123	36.40	0.10	1.21	
	1	Total:	1.21	

CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

Total Storage required4.88Total Storage provided1.74Overflow to area 2313.15

ICD use Tempest LMF 15I/s @ 1.22m head, or approved equal

PARKING LOT Area #122

6	00 sm						
00 -YR FLOW				Flow restric	cted to	1	0 l/s
Qp (I/s)							
Area(ha)=	0,0600						
Cw =	0.90	STORMWATER MANAGEM	ENT Qm =		5.00	l/s	
Тс		Qp	Qm	Qp-Qm	Volume		
Variable	Ŧ	2.78 x Area x c x i					
(min)	(mm/hour)	(I/s)	(I/s)	(l/s)	(m3)		
12	94.7	14.2	5.00	9.2	6.64		
13	90.6	13,6	5.00	8.6	6.71		
14	86.9	13,1	5.00	8.1	6.76		
15	83.6	12,5	5.00	7,5	6,79		
16	80.5	12.1	5,00	7.1	6.80	<===	Re
17	77.6	11.7	5.00	6.7	6.78		for
18	75.0	11.3	5.00	6.3	6.75		
19	72.5	10.9	5.00	5.9	6.71		
20	70.3	10.5	5.00	5.5	6.66		
21	68.1	10.2	5.00	5.2	6.59		
22	66.1	9.9	5.00	4.9	6.51		

Required volume for storage on-site

IN-LINE STORAGE (Structure)

0.6m X 0.6m CB		
0.96 m3/m	Height	Storage
	(m)	(m3)
CB122	1,45	0.52
		0.00
	Total	0.52

Pipe storage

IN-LINE STORAGE (Pipe)

Structure to	Length	Dia	Storage
	(m)	(m)	(m3)
			0.00
			0.00
		Total:	0.00

-

PARKING LOT STORAGE 5yr

AREA #	AREA	Depth	Storage
	(SM)	(m)	(m3)
		Total	0.00

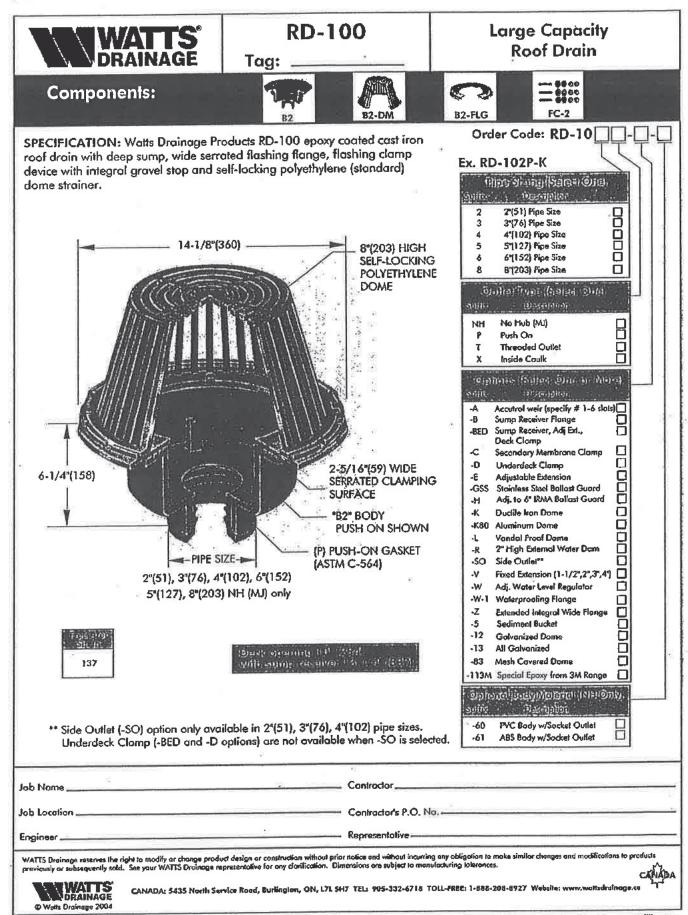
OFF-LINE STORAGE (Cell)

	Length	width	Storage
	(m)	(m)	(m3)
Triton M-6	5.00	10.00	19.00
		Total	19.00

Total Storage required	6.80
Total Storage provided	19.52
Overflow to area 201	0.00

IN-LINE STORAGE (Structure)

1.2mDia CBMH's		
1.13 m3/m	Height	Storage
	(m)	(m3)
		0.00
	Total:	0.00


CBMH height for storage equals top of grate to invert less 0.64m to account for flat top and iron frame/grate

ICD use Tempest LMF 10I/s @ 1.26m head, or approved equal

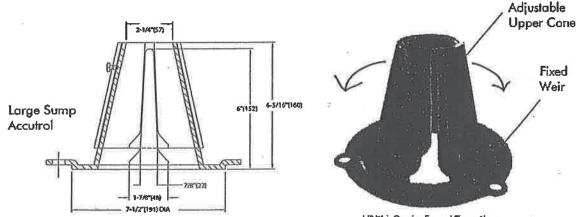
Total Flow from Roofs=	8.00	I/s
Total Roof Area =	0.310	Ha
Average roof flow =	25.81	I/s/Ha
Volume Stored on Roofs	64.24	cm
Total Roof Storage rate	207.22	cm/Ha
Total flow from parking lot =	55.00	l/s
Total parking Lot area =	0.410	Ha
Average parking lot flow =	134.15	l/s/Ha
Volume Stored on Parking lot	58.73	cm
Total Parking lot Storage rate	143.26	cm/Ha
Total uncontrolled flow from site	4.63	l/s
Total uncontrolled area	0.080	Ha
Total flow	67.63	l/s
Total area	0.80	На
Average flow	84.54	l/s/Ha
Volume Stored	122.97	cm
Total Storage rate	153.71	cm/Ha

Outlet # 1 & 2 SUMMARY

Total Flow from Roofs=	26.00 l/s	
Total Roof Area =	1.06 Ha	
Average roof flow =	24.53 Vs/Ha	
Volume Stored on Roofs	222.86 cm	
Total Roof Storage rate	210.25 cm/Ha	
Total flow from parking lot =	558.00 Ns	
Total parking Lot area =	3.83 Ha	
Average parking lot flow =	145.69 l/s/Ha	
Volume Stored on Parking lot	515.47 cm	
Total Parking lot Storage rate	134.59 cm/Ha	
Total uncontrolled flow from site	27.23 l/s	
Total uncontrolled area	0.19 Ha	
Total flow	611.23 l/s	
Total area	5.080 Ha	
Average flow	120.32 I/s/Ha	
Volume Stored	738.33 cm	
Total Storage rate	145.34 cm/Ha	

Tag:

Adjustable Flow Control for Roof Drains


ADJUSTABLE ACCUTROL(for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2° of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: $[5 \text{ gpm}(\text{per inch of head}) \times 2 \text{ inches of head}] + 2-1/2 \text{ gpm}(\text{for the third inch of head}) = 12-1/2 \text{ gpm}.$

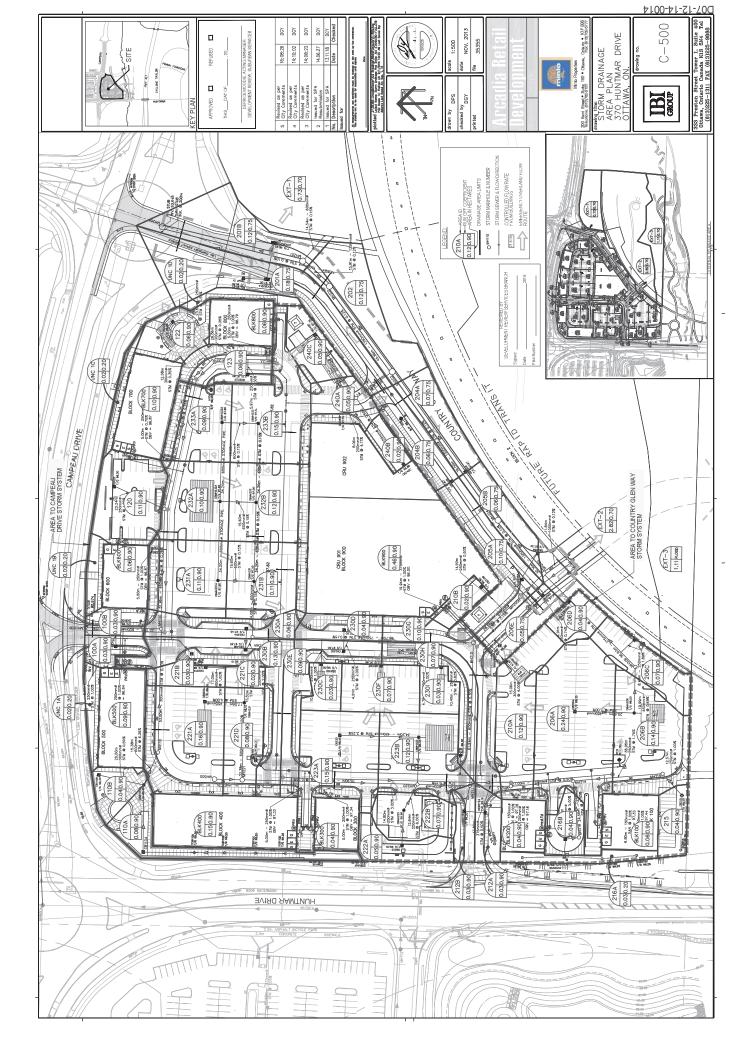
1/2 Weir Opening Exposed Shown Above

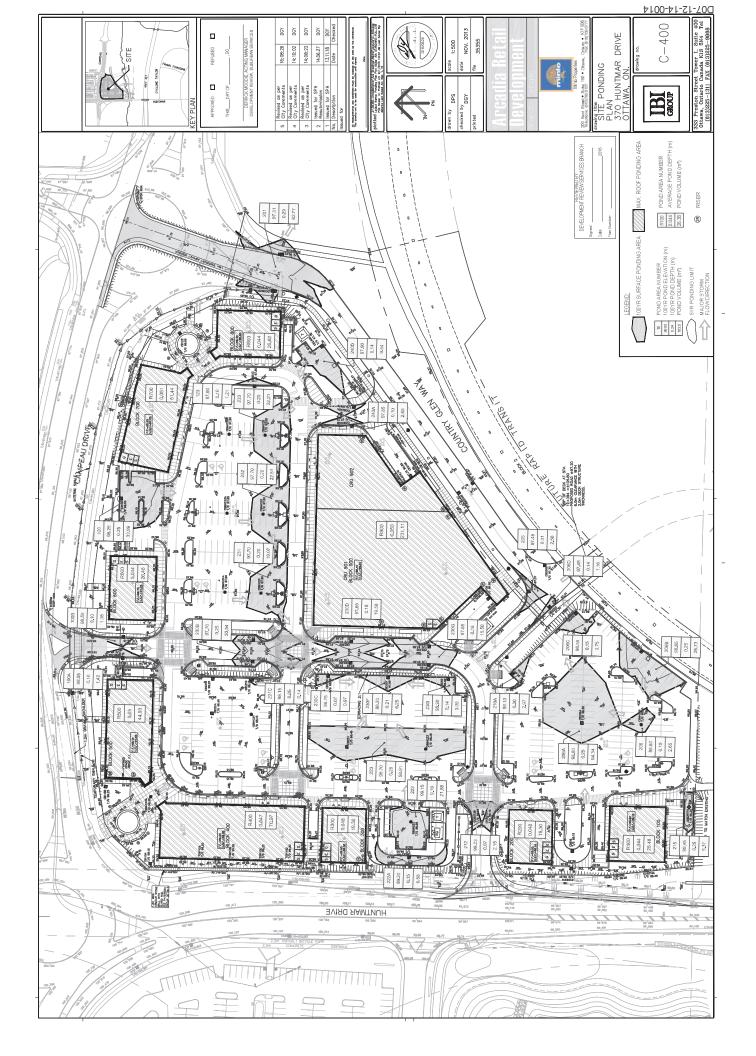
TABLE 1. Adjustable Accutrol Flow Rate Settings

2"	3"	4"	5"	6"
			-	
Flow	Rote (gallons p	er minute)		
10	15	20	25	30
10	13.75	17.5	21.25	25
10	12.5	15	17.5	20
10	11.25	12,5	13.75	15
10	10	10	10	10
	Contractor			
	10 10 10 10 10	10 15 10 13.75 10 12.5 10 11.25 10 10	10 13.75 17.5 10 12.5 15 10 11.25 12.5 10 10 10	10 15 20 25 10 13.75 17.5 21.25 10 12.5 15 17.5 10 12.5 15 17.5 10 12.5 15 17.5

Contractor's P.O. I

Representative


Engineer


WATTS Dreinage reserves the right to modify or change product datign or construction without prior notice and without incurring any obligation to make similar changes and modifications to products previously or subsequently sold. See your WATTS Drainage representative for any clarification. Dimensions are subjed to manufacturing tolerances.

CANADA: 5435 North Service Road, Burlington, ON, L7L SH7 TEL: 905-332-6718 TOLL-FREE: 1-888-208-8927 Website: www

CANADA

APPENDIX D

64

patersongroup

memorandum

consulting engineers

to:	City of Ottawa - Mr. Mark Fraser - mark.fraser@ottawa.ca
re:	Response to City of Ottawa Comments
	Proposed Arcadia Commercial Development - 370 Huntmar Drive, Ottawa, ON
date:	August 12, 2014
file:	PG3045 - MEMO.01
from:	Joe Forsyth

The present memorandum has been prepared to address the geotechnical item noted, in the City of Ottawa comments prepared for the aforementioned site. The relevant comments were part of a series of comments presented in the letter dated July 31, 2014 and issued by Mr. Mark Fraser with City of Ottawa Planning and Growth Management. Paterson's response is summarized below:

Item 1 - Shear Strengths Values

As per the previous 1st Engineering Review comments (2014-03-28) on Soil Profile and Test Data sheet BH1 a ground surface consistency classification of "very stiff" to "stiff" was applied to the full depth of ground. Based on the undisturbed shear strength values provided a ground surface consistency classification of "very stiff" is not appropriate for the soil. A shear strength of between 100-200kPa would have been anticipated for the ground surface to be classified as "very stiff". BH1 does not indicate shear strength values greater than approximately 92 kPa. The borehole log has not been revised as indicated. Please review all borehole logs to confirm the ground surface consistency classifications are appropriate based on the shear strength values provided.

Response

Paterson has revised the borehole logs to indicate proper classifications as per Mark Fraser's comment. See attached updated report PG3045 -1R dated June 26, 2014.

Best Regards,

Paterson Group Inc.

Joe Forsyth, P.Eng. Paterson Group Inc.

Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344 Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 **St. Lawrence Office** 993 Princess Street - Suite 102 Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381 Fax: (613) 542-8399

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc. Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patereongroup.ca

patersongroup

Geotechnical Investigation

Proposed Commercial Development 370 Huntmar Drive Ottawa, Ontario

Prepared For

Minto Properties

June 26, 2014

Report: PG3045-1R

PAGE

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	PROPOSED DEVELOPMENT
3.0	METHOD OF INVESTIGATION 3.1 Field Investigation
4.0	OBSERVATIONS 4.1 Surface Conditions. 4 4.2 Subsurface Profile. 4 4.3 Groundwater. 5
5.0	DISCUSSION5.1Geotechnical Assessment.5.2Site Grading and Preparation.5.3Foundation Design.5.4Design for Earthquakes.5.5Slab-on-Grade Construction.5.6Pavement Structure.10
6.0	DESIGN AND CONSTRUCTION PRECAUTIONS6.1Foundation Drainage and Backfill.6.2Protection of Footings.6.3Excavation Side Slopes.6.4Pipe Bedding and Backfill.6.5Groundwater Control.6.6Winter Construction.6.7Corrosion Potential and Sulphate.
7.0	RECOMMENDATIONS
8.0	STATEMENT OF LIMITATIONS

patersongroup

Ottawa Kingston North Bay

Geotechnical Investigation Proposed Commercial Development 370 Huntmar Drive - Ottawa

APPENDICES

- Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Analytical Testing Results
- Appendix 2 Figure 1 Key Plan Drawing PG3045-1 - Test Hole Location Plan

Ottawa Kingston North Bay

1.0 INTRODUCTION

Paterson Group (Paterson) was commissioned by Minto Properties (Minto) to conduct a geotechnical investigation for the proposed commercial development to be located at 370 Huntmar Drive along Campeau Drive, in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were:

- to determine the subsurface soil and groundwater conditions by means of boreholes,
- to provide geotechnical recommendations pertaining to design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating the presence or potential presence of contamination on the subject property was not part of the scope of work of this present investigation. Therefore, the present report does not address environmental issues.

2.0 PROPOSED DEVELOPMENT

It is understood that the proposed commercial development will consist of a large building (anchor store) and eight (8) smaller box store buildings of slab-on-grade construction. It is further understood that associated access lanes, parking and landscaped areas will occupy the remainder of the site. Kingston North Bay

3.0 METHOD OF INVESTIGATION

3.1 **Field Investigation**

Field Program

The field program for the geotechnical investigation was conducted on October 9 to 11, and 15, 2013. At that time, twenty-one (21) boreholes were completed by Paterson to provide general coverage of the subject site. The locations of the test holes are shown on Drawing PG3045-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations and sampling the overburden. Sampling and testing of the overburden was completed in general accordance with ASTM D5434-12 - Guide for Field Logging of Subsurface Explorations of Soil and Rock.

Sampling and In Situ Testing

Soil samples were recovered from the auger flights and a 50 mm diameter split-spoon sampler. The soil from the auger flights and split-spoon samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the auger flight and split-spoon samples were recovered from the boreholes are depicted as AU and SS, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing were conducted at regular intervals of depth in cohesive soils.

The thickness of the overburden was evaluated by dynamic cone penetration testing (DCPT) at BH 5, BH 10 and BH 19. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible PVC standpipes were installed in all boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were selected by Paterson and located and surveyed in the field by Stantec Geomatics. The ground surface elevations at the test hole locations are understood to be referenced to a geodetic datum. The locations and ground surface elevations of the test holes are presented on Drawing PG3045-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logs. Selected soil samples were weighed and dried to determine moisture contents.

3.4 Analytical Testing

One (1) soil sample from the subject site was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the soil. The analytical test results are presented in Appendix 1 and discussed in Subsection 6.7. Kingston North Bay

4.0 **OBSERVATIONS**

4.1 Surface Conditions

Generally, the ground surface across the subject site slopes downward to the northeast towards the Carp River. The majority of the subject site is undeveloped with the exception of the existing Minto sales centre and associated parking area located within the southwest corner of the site adjacent to Huntmar Drive. The majority of the subject site has been stripped of topsoil and several fill piles were noted throughout the site. However, some minor vegetative growth was noted over the silty clay surface throughout the majority of the subject site. Also, it is understood that the original grade has been lowered by 1 to 1.5 m within the north portion of the subject site.

The south property boundary of the subject site is adjacent to the Feedmill Creek valley corridor. The ground surface within the south portion of the site is tree covered and heavily vegetated. The adjacent section of Feedmill Creek meanders in a west to east direction toward the Carp River within the approximately 15 to 25 m wide valley corridor with a 2 to 2.5 m high valley wall. It was noted that the watercourse is approximately 0.3 to 0.6 m deep, 2 to 3 m wide and is located along the toe of the south valley wall.

4.2 Subsurface Profile

Generally, the subsurface profile encountered at the test hole locations consists of a silty clay deposit underlain by a glacial till layer. The silty clay deposit consists of a stiff to very stiff brown silty clay crust overlying a firm to stiff grey silty clay. Minor roots were noted to extend to depths varying between 100 to 200 mm below the existing silty clay surface. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Based on available geological mapping, the site is located in an area where the bedrock consists of interbedded limestone and shale of the Verulam formation. Also, the bedrock surface is expected at depths ranging from 15 to 25 m.

patersongroup

Ottawa Kingston North Bay

4.3 Groundwater

Groundwater levels were measured in the standpipes on October 21, 2013 for boreholes completed as part of our current investigation. The results of our groundwater readings from existing boreholes are presented in Table 1. It should be noted that surface water can become trapped within the backfilled borehole, which can lead to higher than normal groundwater level readings. The long term groundwater level can also be estimated based on the recovered soil sample's moisture level and consistency. Based on these observations, the long term groundwater table is anticipated to be at a 2.5 to 4 m depth. It should be further noted that the groundwater level could vary at the time of construction.

Ottawa Kingston North Bay

Test Hole	Ground	Wate	er Level	
Number	Surface Elevation (m)	Depth (m)	Elevation (m)	Date
BH 1	98.82	Damaged	98.82	October 21, 2013
BH 2	98.77	4.48	94.29	October 21, 2013
BH 3	99.00	0.82	98.18	October 21, 2013
BH 4	99.35	2.23	97.12	October 21, 2013
BH 5	98.99	2.36	96.63	October 21, 2013
BH 6	98.90	Damaged	98.90	October 21, 2013
BH 7	97.75	Damaged	97.75	October 21, 2013
8H 8	97.47	0.10	97.37	October 21, 2013
BH 9	97.56	Damaged	97.56	October 21, 2013
BH 10	97.57	3.88	93.69	October 21, 2013
BH 11	97.36	3.56	93.80	October 21, 2013
BH 12	97.38	1.40	95.98	October 21, 2013
BH 13	97.19	1.74	95.45	October 21, 2013
BH 14	97.41	Damaged	97.41	October 21, 2013
BH 15	97.25	2.71	94.54	October 21, 2013
BH 16	97,30	Damaged	97.30	October 21, 2013
BH 17	97.05	3.58	93.47	October 21, 2013
BH 18	98.12	Damaged	98.12	October 21, 2013
BH 19	97.43	Damaged	97.43	October 21, 2013
BH 20	97.08	0.77	96.31	October 21, 2013
BH 21	98.55	0.91	97.64	October 21, 2013

patersongroup

Ottawa Kingston North Bay

5.0 DISCUSSION

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is satisfactory for the proposed development. It is expected that the proposed commercial buildings will be founded by conventional shallow footings placed on an undisturbed, stiff silty clay bearing surface.

Due to the presence of the silty clay layer, the proposed development will be subjected to a permissible grade raise restriction. If the grade raise restriction is exceeded, several options are available, such as a preload/surcharge program or the placement of lightweight fill below the proposed buildings.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Existing foundation walls, and other construction debris should be entirely removed from within proposed building perimeters. Under paved areas, existing construction remnants such as foundation walls should be excavated to a minimum of 1 m below final grade.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of the standard proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, the material should be compacted in thin lifts to a minimum density of 95% of the respective SPMDD.

Backfill against foundation walls should consist of free-draining non frost susceptible granular materials. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against the foundation walls, unless used in conjunction with a composite drainage blanket connected to the perimeter foundation drainage system.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 3 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**. A geotechnical resistance factor of 0.5 was applied to the above-noted bearing resistance value at ULS.

Footings designed using the above-noted bearing resistance value at SLS will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to a stiff silty clay above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Permissible Grade Raise Recommendations

A permissible grade raise restriction of **2 m** is recommended for grading within 5 m of the proposed buildings. A permissible grade raise restriction of **3 m** is recommended in the parking areas and access lanes. A post-development groundwater lowering of 0.5 m was considered in our permissible grade raise calculations.

5.4 Design for Earthquakes

Foundation design at the subject site can utilize a seismic site response **Class D** as defined in the Ontario Building Code 2006 (OBC 2006; Table 4.1.8.4.A). The soils underlying the site are not susceptible to liquefaction.

5.5 Slab on Grade Construction

With the removal of the topsoil layer and fill, containing deleterious or organic materials, the native soil will be considered to be an acceptable subgrade surface on which to commence backfilling for slab on grade construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-floor fill consists of OPSS Granular A crushed stone. All backfill materials within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of the SPMDD.

5.6 Pavement Structure

For design purposes, the pavement structures presented in the following tables shall be used for the design of car only parking areas, heavy truck parking areas and access lanes.

It is anticipated that the proposed pavement structures will be placed over either a stiff silty clay or engineered fill subgrade.

Thickness (mm)	Material Description
50	Wear Course - Superpave 12.5 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
400	SUBBASE - OPSS Granular B Type II

Table 3 - Recommended Pavement Structure
Heavy Truck Parking Areas and Access LanesThickness
(mm)Material Description40Wear Course - Superpave 12.5 Asphaltic Concrete50Binder Course - Superpave 19.0 Asphaltic Concrete150BASE - OPSS Granular A Crushed Stone450SUBBASE - OPSS Granular B Type IISUBGRADE - Either in situ soil, fill or OPSS Granular B Type I or II material placed over in situ soil

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing the load bearing capacity.

Due to the impervious nature of the subgrade materials consideration should be given to installing subdrains during the pavement construction. These drains should be installed at each catch basin, be at least 3 m long and should extend in four orthogonal directions or longitudinally when placed along a curb. Along local streets, the drains should be placed along the edges of the pavement. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

patersongroup Ottawa

Kingston North Bay

6.0 DESIGN AND CONSTRUCTION PRECAUTIONS

6.1 Foundation Drainage and Backfill

It is recommended that a perimeter foundation drainage system be provided for the proposed structures. It is understood that the proposed buildings will be of slab-ongrade construction and it should be noted that the perimeter foundation drainage system provides an outlet for perched water below the proposed sidewalks anticipated to be surrounding the buildings. Perched water below the sidewalks can lead to heaved sidewalks due to freeze/thaw cycles. The system should consist of a 100 to 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be used for this purpose. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a composite drainage blanket, such as Miradrain G100N or Delta Drain 6000.

6.2 Protection of Footings Against Frost Action

Perimeter footings, of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for other exterior unheated footings.

6.3 **Excavation Side Slopes**

The side slopes of excavations in the soil and fill overburden materials should be either cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly a Type 2 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A crushed stone. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of the SPMDD.

It should generally be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

It is anticipated that pumping from open sumps will be sufficient to control the groundwater influx through the sides of the excavations.

A temporary MOE permit to take water (PTTW) will be required for this project if more than 50,000 L/day are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MOE.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions.

6.7 Corrosion Potential and Sulphate

The analytical testing results are presented in Table 3 along with industry standards for the applicable threshold values. These results are indicative that Type 10 Portland cement (Type GU, or normal cement) would be appropriate for this site.

Table 3 - Corro	sion Potential		
Parameter	Laboratory Results	Threshold	Commentary
	BH 3		-
Chloride	11 µg/g	Chloride content less than 400 mg/g	Negligible concern
pН	7.98	pH value less than 5.0	Neutral Soil
Resistivity	55.4 ohm.m	Resistivity greater than 1,500 ohm.cm	Moderate Corrosion Potential
Sulphate	43 µg/g	Sulphate value greater than 1 mg/g	Negligible Concern

7.0 RECOMMENDATIONS

It is a requirement for the foundation design data provided herein to be applicable that a materials testing and observation services program including the following aspects be performed by the geotechnical consultant.

- Review grading plan from a geotechnical perspective, once available.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and granular fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

Kingston North Bay

8.0 STATEMENT OF LIMITATIONS

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, we request immediate notification to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Minto Properties or their agents is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Michael Killam, B.Eng.

David J. Gilbert, P.Eng.

Report Distribution:

- Minto Properties (3 copies)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

patersongr 154 Colonnade Road South, Ottawa, G				incers	Pr	eotechnie	cal Inves mercial	tigation	ND TEST DATA	VE
DATUM Ground surface elevations REMARKS	provid	ed by S	Stante	c Geo					FILE NO. PG3045	,
BORINGS BY CME 55 Power Auger				D	ATE	October 9	2013		HOLE NO. BH 1	
	5		SAN	IPLE				Pen. R	esist. Blows/0.3m	Τ
SOIL DESCRIPTION	A PLOT		e	RX BX	Re	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia. Cone	
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE of ROD			0 V	Vater Content %	
GROUND SURFACE		<u>8</u>		2	Z V	0-	-98.82	20	40 60 80	200
		₿ AU	1							
		ss	2	100	4	1-	-97.82			
		Δ						· • · • • • • • • • • • • • •		
Stiff, brown SILTY CLAY						2-	-96.82			
0										
										₿
grey by 3.0m depth						3-	-95.82			
									\mathbb{N}	
						4-	-94.82			
								.		
				1					• • • • • • • • • • • • • • • • • • •	
0						5-	-93.82			Sec.
				~						
		9				0	00.00			
						0-	-92.82			
nd of Borehole6.5	5	3								
Piezometer damaged - Oct. 21,				4						
2013)										
							A .			
			1							No.
					-			20 Shea	40 60 80 10 r Strength (kPa)	10

patersongr	DL	D	Col	nsultin Jineers	g				ND TEST DATA	
154 Colonnade Road South, Ottawa, C				yn eers	- i	Geotechnie Prop. Com Ottawa, Or	mercial	ent - 370 Huntmar Drive		
DATUM Ground surface elevations REMARKS	provid	ed by	Stante	ec Geo	mat	ic Ltd.			FILE NO. PG304	5
BORINGS BY CME 55 Power Auger				D	ATE	October 9	. 2013		HOLE NO. BH 2	al
	PLOT		SAM	APLE		DEPTH	ELEV.		esist. Blows/0.3m	-5
SOIL DESCRIPTION		a	ER	ERY	59	(m)	(m)	• 5	0 mm Dia. Cone	Plezometer Construction
GROUND SURFACE	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE	2 1 1			Vater Content %	Cons
GROUND SURFACE	aa	∰AU	1	P4		- 0-	98.77	20		
Very stiff to stiff, brown SILTY CLAY		ss	2	100	5	1-	97.77			
 rootlets extending to 0.2m depth noted 		1								
noted						2-	-96.77			
						2	30.77			
- grey by 2.5m depth									×	
						3-	-95.77			
- firm by 4.0m depth						4-	-94.77			
						5-	-93.77			
						6-	-92.77			
End of Borehole 6.5		-								
(GWL @ 4.48m-Oct. 21, 2013)						-				
								20 Shea	40 60 80 1 r Strength (kPa)	100
								🔺 Undistu		

154 Colonnade Road South, Ottawa, O DATUM Ground surface elevations	_	ed by S	_	ec Geon	-	<mark>tawa, Or</mark> Ltd.			FILE NO.
REMARKS									PG304
BORINGS BY CME 55 Power Auger				ĎA	TE (October 9	, 2013		HOLE NO. BH 3
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blows/0.3m 0 mm Dia. Cone
	STRATA I	TYPE	NUMBER	* RECOVERY	VALUE F ROD	(m)	(m)		Vater Content %
GROUND SURFACE	STE	8	E N	L SEC	N N			20	40 60 80
		AU	1			0-	-99.00		
					ŝ				
Very stiff to stiff, brown SILTY CLAY			×			1-	-98.00		····
- rootlets extending to 0.15m depth noted									
Toted					į	2-	-97.00	×.	Q
			8						
- grey by 3.0m depth						3-	-96.00		
									o k
						4-	-95.00		
						5-	-94.00		\$ \
						6-	93.00		
6.55									
End of Borehole						- 25		Â	
(GWL @ 0.82m-Oct. 21, 2013)									

patersongr	OU	D	Cor	nsultin	9			FILE AND TEST DATA
154 Colonnade Road South, Ottawa, C				JIII EETS	Pr	eotechnik rop. Com ttawa, Or	mercial I	atigation Development - 370 Huntmar E
DATUM Ground surface elevations	provide	ed by S	Stante	ec Geo	matic	Ltd.		FILE NO. PG304
REMARKS BORINGS BY CME 55 Power Auger				D	ATE (October 1	0: 2013	HOLE NO. BH 4
SOIL DESCRIPTION	TOIT		SAM	APLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m 50 mm Dia. Cone
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE	(m)	(m)	• Water Content %
GROUND SURFACE	5		A	2	× °	0-	-99.35	20 40 60 80
FILL: Brown silty sand with gravel and cobbles0.6		AU	1					
		ss	2	42	13	1-	-98.35	
Hard to very stiff, brown SILTY		ss	3	100	14	2-	-97.35	
CLAT						3-	-96.35	
- stiff and grey by 3.7m depth						4-	-95.35	
						5-	-94.35	
						6-	-93.35	
						7-	92.35	
						8-	91.35	
						9-	90.35	

| REMARKS BORINGS BY_CME 55 Power Auger SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION SUFFACE 10.21 Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 12.8m depth. Description Suff. grey Silcry CLAY 10.21 Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 12.8m depth. Suff. grey Silcry CLAY BH 4
lows/0.3m
ia. Cone |
|---|---|
| DATE October 10, 2013 SOIL DESCRIPTION Soil DESCRIPTION SAMPLE DEPTH
(m) ELEV.
(m) Pen. Resist. Bit
9 50 mm Di GROUND SURFACE Max < | BH 4
lows/0.3m
ia. Cone
ontent % |
| SOIL DESCRIPTION SAMPLE DEPTH (m) ELEV. (m) Pen. Resist. Bi GROUND SURFACE B | ia. Cone |
| GROUND SURFACE Mathematical State Mathematical Stat | ntent % |
| Stiff, grey SILTY CLAY 9-90.35 10-89.35 10-89.35 Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 12.8m depth. 11-88.35 11-88.35 12-87.35 | |
| Stiff, grey SILTY CLAY 10.21 Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 12.8m depth. 11-88.35 12-87.35 | |
| 10.21 10-89.35 Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 12.8m depth. 11-88.35 11-88.35 11-88.35 12-87.35 12-87.35 | |
| Dynamic Cone Penetration Test
commenced at 10.21m depth. Cone
pushed to 12.8m depth.
11-88.35
12-87.35 | |
| commenced at 10.21m depth. Cone
pushed to 12.8m depth.
11-88.35
12-87.35 | |
| 12-87.35 | |
| | |
| | |
| 13-86.35 | |
| 13+86.35 | |
| ta 🔆 🌰 🔅 via a da 2012 | |
| 14-85.35 | |
| | |
| 15-84.35 | |
| | / |
| End of Borehole15.83 | / |
| Practical DCPT refusal at 15.83m
depth | |
| (GWL @ 2.23m-Oct. 21, 2013) | |

patersongr		n	Col	nsultin	g	SO	L PRC	FILE AI	ND TE	ST DA	TA
154 Colonnade Road South, Ottawa, C		_		gineers	 Geotechnical Investigation Prop. Commercial Development - 370 Huntmar D Ottawa, Ontario 						
DATUM Ground surface elevations	provide	d by	Stante	ec Geo	_	A BUILDER TOOM			FILE NO	PG	3045
REMARKS							ä		HOLE N		
BORINGS BY CME 55 Power Auger					ATE	October 1	0, 2013				1
SOIL DESCRIPTION	TOIT			MPLE N	na.	DEPTH (m)	ELEV. (m)		esist. Bi i0 mm Di		m neter Refer
	STRATA	ILLE	NUMBER	* RECOVERY	N VALUE			0 1	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE	s l		A	8	z °		-98.99	20	40	60 80	
		7				U	50.55				
		(ss 7	1	100	12	1.	-97.99				
Very stiff to stiff, brown SILTY CLAY		ss	2	100	4	2-	-96.99		0		
						3-	-95.99				
- grey by 3.5m depth						4-	-94.99				
						5-	-93.99			<u> </u>	
ä						6-	-92.99		K		
						7-	-91.99		0		
						8-	-90.99				
						9-	-89.99	20 Shea ▲ Undistu	40 6 r Strengt πbed Δ	0 80 th (kPa) Remoulde	100 ed

154 Colonnade Road South, Ottawa, On				ineers	Pr	otechnic op. Com tawa, Or	nercial I		ent - 370 Huntmar Dr
DATUM Ground surface elevations p	rovide	əd by	Stante	ic Geor	_				FILE NO. PG3045
REMARKS									HOLE NO.
BORINGS BY CME 55 Power Auger	r			D/	TE (October 1	0, 2013		BH 5
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone
	STRATA	TYPE	NUMBER	* RECOVERY	VALUE F ROD	(11)	(11)	0 V	Vater Content %
GROUND SURFACE	8				N N N			20	40 60 80
Stiff, grey SILTY CLAY 9.60						9-	-89.99	1.0	
Dynamic Cone Penetration Test commenced at 9.60m depth. Cone pushed to 11.3m depth.						10-	-88.99		
						11-	-87.99		
End of Borehole						12-	-86.99		
Practical DCPT refusal at 12.14m depth									
(GWL @ 2.36m-Oct. 21, 2013)						2			
t.									
							t) C	20 Shea ▲ Undist	40 60 80 Ir Strength (kPa)

patersongr		In	Cor	nsultin jineers	g	SO	L PRC	FILE A	ND TEST DAT	Ά
154 Colonnade Road South, Ottawa,	P	Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Drive Ottawa, Ontario								
DATUM Ground surface elevations	s provide	d by	Stante	ec Geo			Intario		FILE NO.	145
REMARKS									HOLENO	140
BORINGS BY CME 55 Power Auger		_	_	D	ATE	October 1	5, 2013		BH 6	
SOIL DESCRIPTION	PLOT		SAN	APLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m 50 mm Dia. Cone		eter ction
	TRATA	STRATA TYPE NUMBER		NUMBER % RECOVERY W VALUE			(,	Water Content %		Piezometer Construction
GROUND SURFACE	0		2	RE	× 0		-98.90	20	40 60 80	
		7					97.90			
Hard to very stiff, brown SILTY CLAY		ss	1	100	16					
						2-	-96.90			10
End of Borehole3.5	50					3-	-95.90			
(Piezometer damaged - Oct. 21, 2013)			4							
						8				
								20 Shear	40 60 80 r Strength (kPa) rbed △ Remoulded	100

patersongro	Con	sulting		SOIL PROFILE AND TEST DATA						
154 Colonnade Road South, Ottawa, O				ineers	Pr	otechnic op. Com tawa, Or	merciai	stigation Developm	ent - 370 Huntma	ar Drive
DATUM Ground surface elevations	provide	ed by S	Stante	c Geon	_	and the later			FILE NO.	3045
REMARKS BORINGS BY CME 55 Power Auger				DA	TE (October 9	2013		HOLE NO. BH	7
		SAMPLE				DEPTH		Pen. R	esist. Blows/0.3	im _
SOIL DESCRIPTION	STRATA PLOT	61	RX RR		Ba	(m)	ELEV. (m)	• 50 mm Dia. Cone		Piezometer
		TYPE	NUMBER	* RECOVERY	N VALUE			• Water Content		
GROUND SURFACE	XX	8 AU	1	A		0-	-97.75	20	40 60 8)
		× AU	2				1	· · · · · · · · · · · · · · · · · · ·		
		**								
ery stiff to stiff, brown SILTY CLAY						1-	-96.75			1徑
rootlets extending to 0.2m depth oted]		
bied							00.75	/		
						2-	- 95 .75			
firm and grey by 2.6m depth										
ann and grey by 2.0m depth						3-	-94.75	.		
3.50						Ŭ	54.75			
nd of Borehole	<u>YXM</u>					{ }				
Piezometer damaged - Oct. 21, 013)										
113)										
		ļ								
			0						40 60 80 r Strength (kPa)	
								Shea	r Strength (kPa) rbed △ Remould	

patersongroup Consulting Engineers 154 Colonnade Road South, Ottawa, Ontario K2E 7J5					Pr	SOIL PROFILE AND TEST DATA Geotechnical Investigation Prop. Commercial Development - 370 Huntmar Di Ottawa, Ontario					
DATUM Ground surface elevations p	provide	ed by	Stante	ec Geo	matic	Ltd.			FILE NO. PG304		
REMARKS							-		HOLE NO. BH 8		
BORINGS BY CME 55 Power Auger	T				ATE	October 1	5, 2013				
SOIL DESCRIPTION	STRATA PLOT	SAMPLE			8 o	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m 50 mm Dia. Cone			
		TYPE	NUMBER	* RECOVERY	N VALUE OF ROD			 Water Content % 			
GROUND SURFACE	ww		-	8	X °	0-	-97.47	20	40 60 80		
Stiff to firm, brown SILTY CLAY						1-	-96.47				
- grey by 2.3m depth						2-	-95.47				
End of Borehole3.50					±:	3-	-94.47				
(GWL @ 0.10m-Oct. 21, 2013)		×							40 60 80 Strength (kPa)		

patersongr 154 Colonnade Road South, Ottawa, G	ineers	Pro	otechnic op. Com tawa, Or	mercial l		ent - 370 Huntmar D			
DATUM Ground surface elevations	s provide	ed by	Stante	c Geon	_				FILE NO. PG304
REMARKS									HOLENO
BORINGS BY CME 55 Power Auger				DA	TE C	October 1	5, 2013		BH 9
SOIL DESCRIPTION	TOIT		SAMPLE		DEPTH			esist. Blows/0.3m 0 mm Dia. Cone	
	STRATA	IYPE	NUMBER	* RECOVERY	K ROD	(m)	(m)	• Water Content %	
GROUND SURFACE	2	5	E.	1 Mail	й н и и	•		20	40 60 80
							-97.56		
Stiff, brown SILTY CLAY							-96.56 -95.56		
- grey by 2.4m depth							-94.56		
End of Borehole 3.5 (Piezometer damaged - Oct. 21, 2013)	50 ##	-						- <u>j</u>	

154 Colonnade Road South, Ottawa,		_		nsultin gineers	Pr	eotechnie op. Com ttawa, Oi	mercial l	tigation Developme	nt - 370 Huntmar D
DATUM Ground surface elevation REMARKS	ns provide	ed by \$	Stante	ec Geo					FILE NO. PG304
BORINGS BY CME 55 Power Auger				п	ATE	October 1	1.2013		HOLE NO. BH10
			SAR	MPLE			1, 2010	Pop Ba	sist. Blows/0.3m
SOIL DESCRIPTION	EA PLOT	ы		1	Ba	DEPTH (m)	ELEV. (m)) mm Dia. Cone
GROUND SURFACE	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE of RQD			0 W 20	ater Content % 40 60 80
		AU	1			0-	-97.57		
		8				1-	-96 <i>.</i> 57		
Stiff to firm, brown SILTY CLAY									
						2-	-95.57		
- grey by 2.5m depth						2	-94.57		2
						3-	-94.07		
						4-	-93.57		
						5-	-92.57		
						6-	-91.57		
						7-	-90.57		
						8-	89.57		//////////////////////////////////////
						9-	88.57	*	

patersongro		n	Соп	sulting		SOI	L PRO	FILE A	ND TEST DATA	
154 Colonnade Road South, Ottawa, O				ineers	P	ieotechnic rop. Com Ittawa, Or	mercial I	tigation Developm	ent - 370 Huntmar Dri	ve
DATUM Ground surface elevations p	orovide	ed by	Stante	c Geor					FILE NO. PG3045	
REMARKS BORINGS BY CME 55 Power Auger	3			D	ATE	October 1	1 2012		HOLE NO. BH10	
	E		SAN	IPLE				Pen, B	esist. Blows/0.3m	
SOIL DESCRIPTION	TOL	24			M o	DEPTH (m)	ELEV. (m)		0 mm Dia. Cone	neter
	STRATA	347.1	NUMBER	& RECOVERY	VALUE 2 ROD			0 V	Vater Content %	Piezometer Construction
GROUND SURFACE	0		M	Se la	N VA	- 9-	-88.57	20	40 60 80	
Stiff, brown SILTY CLAY							-87.57			
Dynamic Cone Penetration Test commenced at 10.21m depth. Cone pushed to 11.4m depth.	• 6-811-6	đ				11-	-86.57			
End of Borehole 12.09		_				12-	-85.57			
Practical DCPT refusal at 12.09m depth (GWL @ 3.88m-Oct. 21, 2013)										
								20 Shea ▲ Undistu	40 60 80 10 Ir Strength (kPa) Irbed Δ Remoulded	0

154 Colonnade Road South, Ottawa, C		-		nsulting Jineers	Pr	eotechnic	cal inves mercial l	tigation	ND TEST DATA	/0
DATUM Ground surface elevations	provide	ed by a	Stante	ec Geor	_				FILE NO. PG3045	
REMARKS BORINGS BY CME 55 Power Auger				D	TE	October 1	1 2013		HOLE NO. BH11	
Service Service Service Funger	E.		SAM	APLE				Pen. R	esist. Blows/0.3m	
SOIL DESCRIPTION	A PLOT		64	22	¥٥	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia. Cone	meter
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE of ROD			0 W	Vater Content %	Piezometer
GROUND SURFACE		22		8	× °	0-	-97.36	20	40 60 80	NXN 0
		₿AU	1							
Stiff, brown SILTY CLAY		ss	2	100	2	1-	-96.36		0	
rootlets extending 0.15m depth		Δ		3					· • • • • • • • • • • • • • • • • • • •	
loted										
						2-	-95.36			
grey by 2.5m depth						н				
grey by 2.5m depth										
						3-	-94.36			
					1	4-	-93.36			HIIII I
									///////////////////////////////////////	Subsection.
						5.	-92.36			
firm to stiff by 5.0m depth						J	32.30		1	
5.7										
		79 				6-	-91.36			
ALACIAL TILL: Grey silty clay with and, gravel and cobbles		ss	3	100	3					
nd of Borehole6.7	0	$\Delta $	U		Ŭ					
GWL @ 3.56m-Oct. 21, 2013)										
								20	40 60 80 10	0
								Shear	r Strength (kPa)	

DATUM Ground surface elevations	provide	d by S	Stante	e Geo	_	ttawa, Or Ltd.	Italiy		FILE NO. PG3045	
REMARKS									HOLENO	
BORINGS BY CME 55 Power Auger					ATE	October 1	0, 2013	1	BH12	r
SOIL DESCRIPTION	TOIT		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	1
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE		()	0 V	ater Content %	Disconter
GROUND SURFACE	^{CO}		X	82	z ⁰	0-	-97.38	20	40 60 80	
		(ss	1	100	3		-96.38			
Very stiff to stiff, brown SILTY CLAY		_				2-	-95.38			
- firm and grey by 3.4m depth						3-	-94.38	À.		
						4-	-93.38			
<u></u>					2	5-	-92.38			
GLACIAL TILL: Grey silty clay with sand, gravel and cobbles		ss	2	100	27	6-	-91.38			
End of Borehole	0.0000	3								88
(GWL @ 1.40m-Oct. 21, 2013)										

154 Colonnade Road South, Ottawa, O			J5		P O	ttawa, O	mercial	Developme	ent - 370 Huntma
DATUM Ground surface elevations	provide	ed by \$	Stante	ec Geo	matic	Ltd.	a		FILE NO.
REMARKS BORINGS BY CME 55 Power Auger						Outstand			HOLE NO. BH1
DONINGS BY OWE OF FOWER Auger	-		SAN	APLE	ATE	October 1	0,2013	Don D	esist. Blows/0.3
SOIL DESCRIPTION	PLOT			ï	61 -	DEPTH (m)	ELEV. (m)		0 mm Dia. Cone
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE OF ROD			0 W	ater Content %
GROUND SURFACE	Ei		H	Na Ka	z ö		07.40	20	40 60 80
		§au 7	1				-97.19		
Very stiff to stiff, brown SILTY CLAY - rootlets extending to 0.3m depth noted		ss	2	100	4	1-	-96.19		φ
						2-	-95.19		
- firm to stiff and grey by 3.3m depth						3-	-94.19		
						4-	-93.19	A	
5.18		7	•			5-	-92.19	A	4
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders		ss ss	3	83 83	3	6-	91.19	<u></u> р.	
Ford -(Develop 7.47		ss	5	83	31	7-	90.19		
End of Borehole (GWL @ 1.74m-Oct. 21, 2013)									

Datersongr 54 Colonnade Road South, Ottawa, C				ineers	Pr	otechnic op. Com tawa, Or	mercial l	tigation Developme	ent - 370 Huntmar D
ATUM Ground surface elevations	provide	ed by	Stante	c Geor					FILE NO. PG304
EMARKS									HOLENO
ORINGS BY CME 55 Power Auger				D/	TE (October 1	5, 2013	i	BH14
SOIL DESCRIPTION	PLOT			IPLE স	Μ.,	DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone
	STRATA	TYPE	NUMBER	* RECOVERY	OF ROD			0 1	ater Content %
ROUND SURFACE			-	8	× 0	0-	-97.41	20	40 60 80
							-96.41		
ery stiff to stiff, brown SILTY CLAY							-95.41		
irm and grey by 2.6m depth						3-	-94.41		
nd of Borehole3.5	io	-							
Yiezometer damaged - Oct. 21, 013)							0		

patersongro		_		nsultin gineer:	P	eotechni	cal Inves mercial	stigation	ND TEST DATA
DATUM Ground surface elevations p REMARKS	provid	ed by	Stant	ec Geo					FILE NO. PG304
BORINGS BY CME 55 Power Auger				F	ATE	October 1	15 2013		HOLE NO. BH15
	Ð		SAI	WPLE				Pen, B	esist. Blows/0.3m
SOIL DESCRIPTION	TOIS			ম	M	DEPTH (m)	ELEV. (m)		0 mm Dia. Cone
	STRAFA	TYPE	NUMBER	* FECOVERY	N VALUE OF ROD			0 V	Vater Content %
GROUND SURFACE	5		DN .	REC	M O		-97.25	20	40 60 80
							-97.20		
		ss	1			1-1-	-96.25		
					-				
							-95.25		
Very stiff to stiff, brown SILTY CLAY						2	95.25		
		6						$ \cdot \rangle$	
						3-	-94.25		
- firm to stiff and grey by 3.3m depth									
		- 00 - S					40.07		
						4-	-93.25		
- sand seam at 4.7m depth									1 N H
-sand seam at 4.7m depth						5-	-92.25		
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders							01.05		
		ss	0	100	10	b-	-91,25		
End of Borehole6.70		100	2	100	16				
(GWL @ 2.71m-Oct. 21, 2013)									
									40 60 80 1
								20 Shear	Strength (kPa)

patersongro				isultin Ineers		eotechnie	cal inves	stigation	ND TEST DATA	_
DATUM Ground surface elevations p				ic Geo	0	itawa, Or	itari o		FILE NO.	_
REMARKS									PG304	5
BORINGS BY CME 55 Power Auger				D	ATE	October 1	5, 2013		HOLE NO. BH16	
	PLOT		SAN	IPLE		DEPTH	ELEV.	1	esist. Blows/0.3m	
SOIL DESCRIPTION			g	ERY .	Ba	(m)	(m)	• 5	0 mm Dia. Cone	
	STRATA	247T	NUMBER	* RECOVERY	N VALUE of ROD			0 V	Vater Content %	
GROUND SURFACE	NR			R	2 *	0-	-97.30	20	40 60 80	_
		§aU ∂	1							
Stiff, brown SILTY CLAY - rootlets extending to 0.15m depth noted		ss	2	100	3	1.	-96.30	· · · · · · · · · · · · · · · · · · ·		L
G.						2-	-95.30		<u> </u>	
- increasing sand content below 2.9m depth End of Borehole		L.				3-	-94.30			
(Piezometer damaged - Oct. 21, 2013)										
									40 60 80 Ir Strength (kPa)	1

154 Colonnade Road South, Ottawa, Or DATUM Ground surface elevations p				ec Geo	01	ttawa, Qı	ntario		FILE NO.
REMARKS									HOLENO
BORINGS BY CME 55 Power Auger	1				ATE	October 1	1,2013		BH17
SOIL DESCRIPTION	TOIT V			APLE 강	10 a	DEPTH (m)	ELEV, (m)		esist. Blows/0.3m 0 mm Dia. Cone
GROUND SURFACE	STRATA	TYPE	NOMBER	* RECOVERY	N VALUE				/ater Content %
GROUND SURFACE	XX	8		H4		0-	-97.05	20	
Very stiff to stiff, brown SILTY CLAY - rootlets extending to 0.2m depth		AU	1			1-	-96.05		
noted						2-	-95.05		
- firm and grey by 2.6m depth 3.66						3-	-94.05		
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders		ss	2	100	18	4-	-93.05		
End of Borehole5.18		ss	3	100	10	5-	-92.05		
(GWL @ 3.58m-Oct. 21, 2013)									

154 Colonnade Road South, Ottawa, C				ineers	PI	eotechnic rop. Com ttawa, Or	merciai l	stigation Development - 370 Huntmar	Dri
DATUM Ground surface elevations	provide	ed by S	Stante	c Geor				FLENO.	45
REMARKS								HOLE NO. BH18	
BORINGS BY CME 55 Power Auger					TE	October 1	1,2013		
SOIL DESCRIPTION	PLOT		JAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m 50 mm Dia. Cone	I
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE			• Water Content %	
GROUND SURFACE	N N		×.	8	zö		-98.12	20 40 60 80	
		J					5		
		∐ss ∐	1	100	4	1-	-97.12	0	
Stiff to firm, brown SILTY CLAY						2-	-96.12		
9.43 43 4						3-	-95.12		
			84			4-	-94.12		·····
25						5-	-93.12		
	5					6-	-92.12		
Dynamic Cone Penetration Test commenced at 6.55m depth. Cone pushed to 11.5m depth.						7-	-91.12		
						8-	-90.12		
× 30						9-	-89.12	20 40 60 60 Shear Strength (kPa)	

DATUM Ground surface elevations	provide	əd by	Stante	ec Geo		ttawa, Or Ltd.			FILE NO. PG3045
REMARKS BORINGS BY CME 55 Power Auger				_		0			HOLE NO. BH18
Dominas B1 Office 30 Former Auger	-		SAL	APLE		October 1	1,2013	Bon D	esist. Blows/0.3m
SOIL DESCRIPTION	PLOT			1	64 -	DEPTH (m)	ELEV. (m)		0 mm Dia. Cone
ji L	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE of ROD			0 1	/ater Content %
GROUND SURFACE	5		N.	L Sa	× ö	9.	-89.12	20	40 60 80
							03.12		
						10-	-88.12		
						11-	-87.12		
							01.12		
						12-	-86.12		
		-							
						12-	-85.12	- -	
						10	00.12		
						14-	-84.12		
End of Borehole14.81								<u> </u>	
Practical DCPT refusal at 14.81m depth									
(Piezometer damaged - Oct. 21,									
2013)									
							-		
		- 1							

154 Colonnade Road South, Ottawa, O				isulting Jineers	Pr	eotechnia	cal Inves mercial E	tigation	ND TEST DATA
DATUM Ground surface elevations	provid	ed by \$	Stante	ec Geor	_				FILE NO. PG304
REMARKS									HOLENO. BH19
BORINGS BY CME 55 Power Auger	1	1	_	D	ATE (October 1	5,2013		0119
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone
	STRATA	TYPE	NUMBER	* RECOVERY	A VALUE of RQD			0 V	Vater Content %
GROUND SURFACE	-		10	2	zö	0-	-97.43	20	40 60 80
		秦AU 了 SS	1	100	5		-96.43		
Stiff, brown SILTY CLAY - rootlets extending to 0.2m depth noted		100	2		5				ο.
						2-	-95.43		
-firm to stiff and grey by 3.4m depth						3-	-94.43		e de la companya de l
						4-	-93.43	A	
						5-	-92.43		4
GLACIAL THUS Brown silty clay with		ss	3	100	9	6-	-91.43	λ	
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles and boulders 7.47		∐ ∏ss	4	67	15	7-	-90.43		
End of Borehole (Piezometer damaged - Oct. 21, 2013)									
								20 Shea ▲ Undistu	40 60 80 Ir Strength (kPa) Irbed △ Remoulded

patersongro		isultin; incers	Pr	eotechnic	cal Inves mercial I	tigation	ND TEST DATA		
DATUM Ground surface elevations p	provid	ed by	Stante	c Geo	_		Itario		FILE NO. PG304
REMARKS BORINGS BY CME 55 Power Auger					ATE	October 1	5 0010		HOLE NO. BH20
	E4		SAN	IPLE	AIC 1		5,2013	Pon R	esist. Blows/0.3m
SOIL DESCRIPTION	A PLOT				Mo	DEPTH (m)	ELEV. (m)		0 mm Dia. Cone
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE			0 V	Vater Content %
GROUND SURFACE	777		_	2	zó	0-	-97.08	20	40 60 80
Very stiff to stiff, brown SILTY CLAY		∛ss	1	100	5		-96.08		
- rootlets extending to 0.2m depth noted						2-	-95.08		
- firm to stiff and grey by 3.5m depth						3-	-94.08		
						4-	-93.08	A	
						5-	-92.08	▲	1
End of Borehole 6.55						6-	-91.08		
(GWL @ 0.77m-Oct. 21, 2013)									
								20 Shea	40 60 80 r Strength (kPa)

patersong	rou	ID	Con	suiting					ND TEST DA	ATA
154 Colonnade Road South, Ottawa		_		jineers	P	eotechnik rop. Com ttawa, Or	mercial l	tigation Developm	ent - 370 Huntm	ar Drive
DATUM Ground surface elevation	ns provide	ed by	Stante	с Geon	_				FILE NO.	3045
REMARKS						а • • • •			HOLE NO. BH	
BORINGS BY CME 55 Power Auger			CAL	DA IPLE	TE	October 1	5, 2013	Den D		
SOIL DESCRIPTION	PLOT			Г. Т	14 .	DEPTH (m)	ELEV. (m)		esist. Blows/0.3 i0 mm Dia. Cone	
22	STRATA	IXPE	NUMBER	* RECOVERY	N VALUE OF ROD			0 1	Vater Content %	Piezon
GROUND SURFACE	0		N		2 ⁰	0-	-98.55	20	40 60 8	0
						, a				
						1-	-97.55			24
Hard to very stiff, brown SILTY CLAY		V ss	1	100	9			· · · · · · · · · · · · · · ·	· (• • • • • • • • • • • • • • • • • •	22.
		∆°°			9	2-	-96.55			
								A A A A A A A A A A A A A A A A A A A		189
	3.50					3-	-95.55			
End of Borehole		8								
(GWL @ 0.91m-Oct. 21, 2013)										
								20 Shea ▲ Undistu	40 60 80 r Strength (kPa rbed △ Remouk) 100) jed

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	æ.	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	120	having cracks, and hence a blocky structure.
Varved		composed of regular alternating layers of silt and clay.
Stratified	125	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	.ΞY	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	G	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	>85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

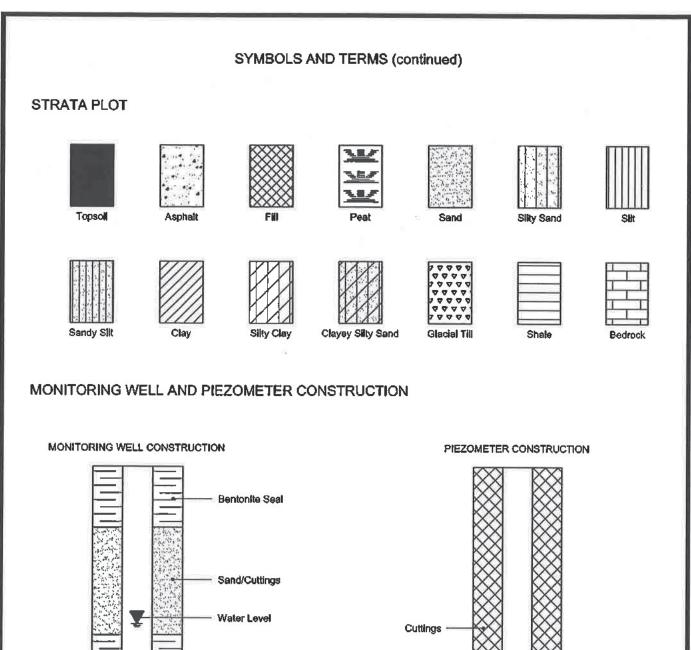
SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard	
		Penetration Test (SPT))	

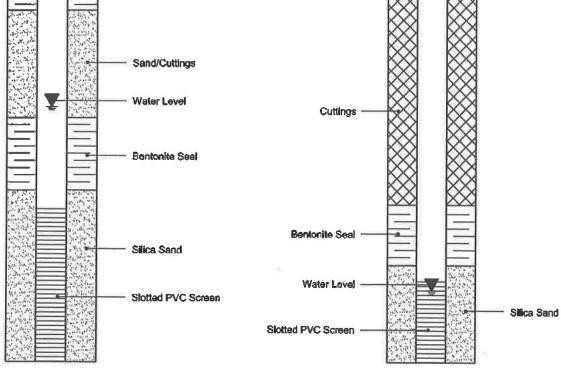
- TW Thin wall tube or Shelby tube
- PS 🧁 Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	545	Natural moisture content or water content of sample, %
LL	۲	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	(#)	Plastic limit, % (water content above which soil behaves plastically)
PI	(*)	Plasticity index, % (difference between LL and PL)
Dxx	141	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	CH :	Grain size at which 10% of the soil is finer (effective grain size)
D60	(m)	Grain size at which 60% of the soil is finer
Cc Cu	(#) (#)	Concavity coefficient = $(D30)^2 / (D10 \times D60)$ Uniformity coefficient = $D60 / D10$


Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)


CONSOLIDATION TEST

p'o		Present effective overburden pressure at sample depth
p'c	3	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	271	Recompression index (in effect at pressures below p'c)
Cc	1963	Compression index (in effect at pressures above p'c)
OC Rat	io	Overconsolidaton ratio = p'_{c} / p'_{o}
Void Ra	ntio	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

Certificate of Analysis

Client: Paterson Group Consulting Engineers

	Project Description:	PG3045			
Client ID;	BH12-SS1	-			
Sample Date:	10-Oct-13	-	180 (B	(*)	
Sample ID:	1342113-01	3 2 11	8		
MDL/Units	Soil		•		
155					
0.1 % by Wt.	68.0			-	
1944				-	
0.05 pH Units	7.61			-	
0.10 Ohm.m	31.5	-	ä	-	
00					
5 ug/g dry	79	-	3	-	
5 ug/g dry	47	-	<u>2</u>	-	
	Client ID: Sample Date: Sample ID: MDL/Units 0.1 % by Wt 0.05 pH Units 0.10 Ohm.m	Project Description: Client ID: BH12-SS1 Sample Date: 10-Oct-13 Sample ID: 1342113-01 MDL/Units Soil 0.1 % by Wt 68.0 0.05 pH Units 7.61 0.10 Ohm.m 31.5	Operation Project Description: PG3045 Client ID: BH12-SS1 - Sample Date: 10-Oct-13 - Sample ID: 1342113-01 - MDL/Units Soil - 0.1 % by Wt 68.0 - 0.05 pH Units 7.61 - 0.10 Ohm.m 31.5 -	Client ID: BH12-SS1 - - Sample Date: 10-Oct-13 - - - Sample ID: 1342113-01 - - - MDL/Units Soil - - - 0.1 % by Wt 68.0 - - - 0.05 pH Units 7.61 - - - 0.10 Ohm.m 31.5 - - - 5 ug/g dry 79 - - -	

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

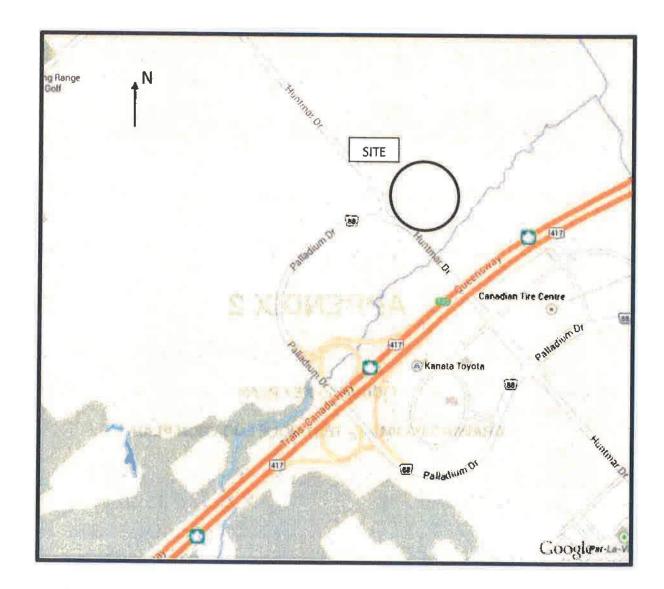
OTTANA 300-2319 St. Leurent Bivd. Ottawe, DN K1G 4JB

MISSISSAUGA 6845 Kitmat Rd. Unit #27 Mississauge, ON L5N 633

NIAGARA FALLS 5415 Morning Glory Cn. Negara Falla, ON L2J 0A3

SARNIA 123 Christins St. N. Sarnia, ON N77 577

Page 3 of 7


Order #11342115

Report Date: 22-Oct-2013 Order Date:16-Oct-2013

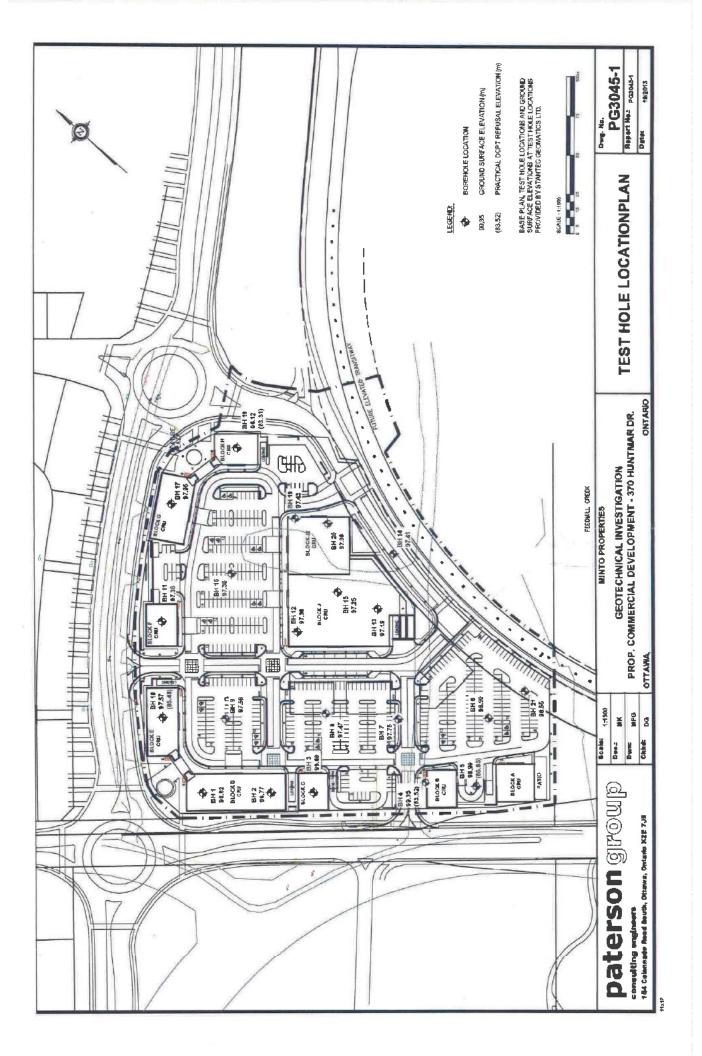

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG3045-1 - TEST HOLE LOCATION PLAN

FIGURE 1 KEY PLAN

Infiltration Calculations Arcadia

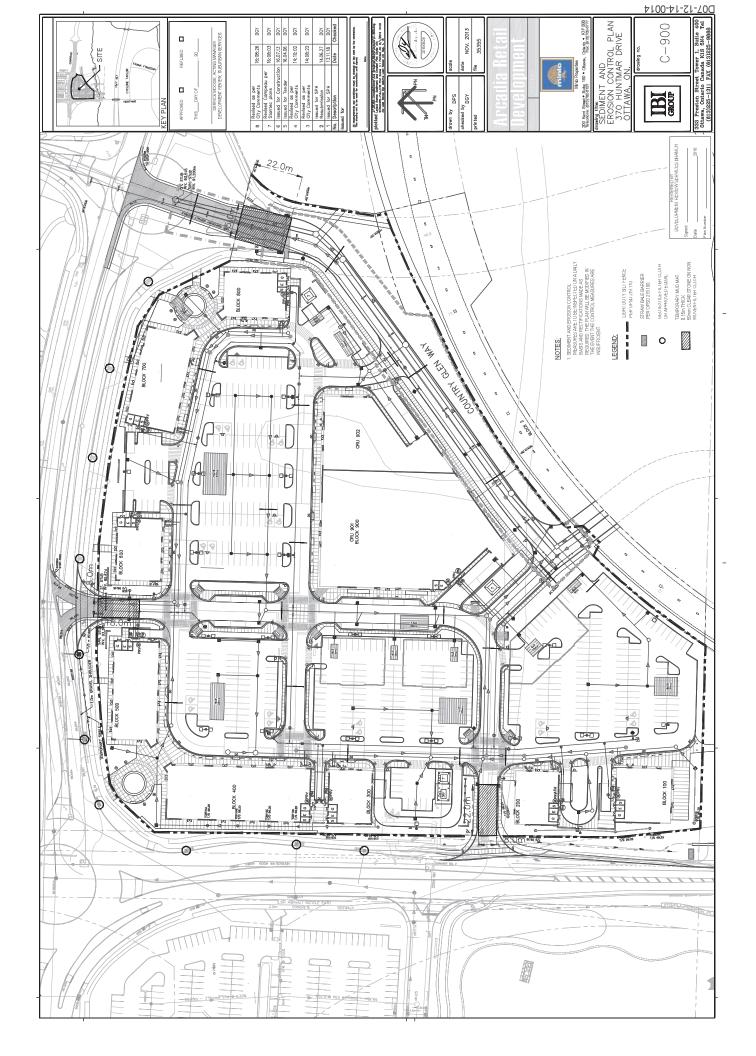
The Kanata West Master Servicing Study indicated infiltration targets for the Kanata West development area. The Arcadia development is situated within the target area of between 50-70mm/year. The KWMSS also indicated that post-development infiltration rates are to be increased by 25% above this rate, to 63-88mm/year. A site specific Geotechnical review of the pre-development infiltration conditions indicates that the subsoil conditions consist of a deep silty clay deposit which is considered to be impermeable. The findings of the memo indicate vertical groundwater movement and deep groundwater recharge is non-existing, and horizontal movement is conveyed on the surface and immediate layer below the surface, discharging to the adjacent Carp River.

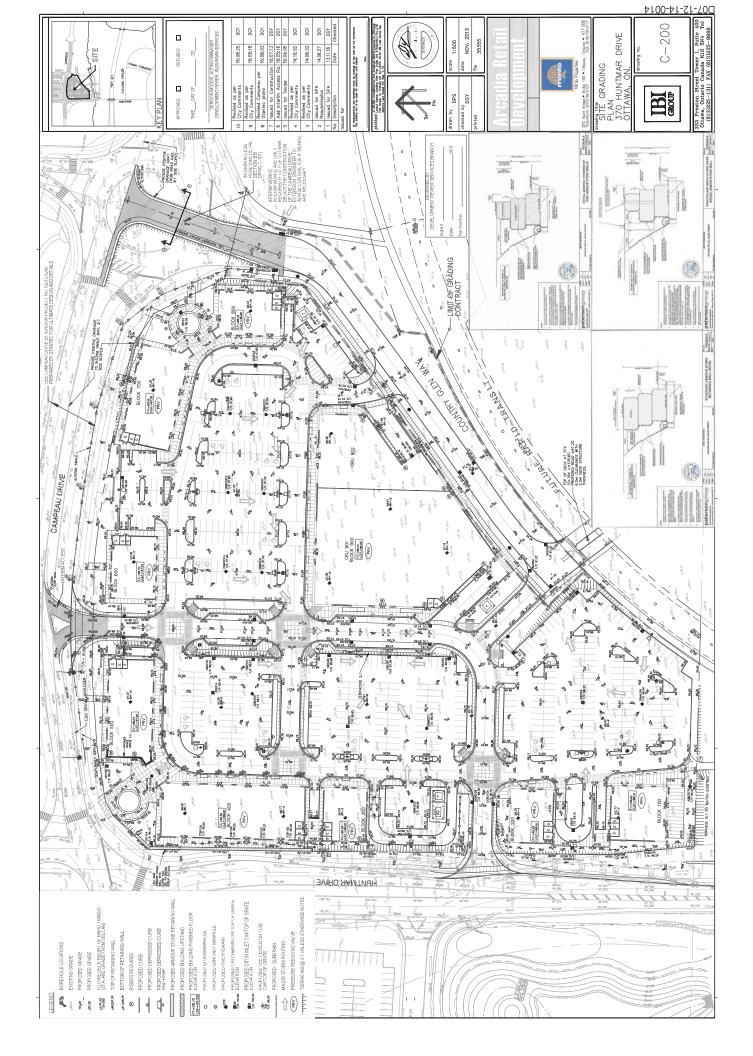
Under post-development conditions, the horizontal movement and discharge to the Carp River will be augmented with base flows from the SWM facility servicing the Arcadia development. The site will be provided with typical storm collection system complete with foundation drains for the residential homes. The foundation drains will provide a regular flow that will be conveyed to the SWM facility and outlet as base flow to the Carp River. Our field measurement of baseflow from a similar residential development (Avalon Community) in clay soils with an end of pipe SWM facility indicates a baseflow rate of approximately 0.1 L/s/ha. The infiltration requirements from the KWMSS will be translated from the post development baseflow from the SWMF to the Carp River. The following table outlines the calculations for the site.

Arcadia Site Location	Area (ha)	Annual Baseflow Volume (m ³ /year)	Required Infiltration (m³/year)	Equivalent Infiltration Provided as Base Flow (mm/year)
Phase 1	9.39	15786	5916	168
Campeau Dr.	2.09	n/a	1317	n/a
Stage 2	11.79	18743	7428	159
Commercial Site	5.10	n/a	3213	n/a
Total	28.37	34529	17874	122

1. Infiltration Summary:

Where:


Provided Annual Base flow is based on drainage area, field measured baseflow rate from Avalon SWM Facility, and 6 months of available flow (May 1st to October 31st), example calculation is provided below:


Annual Baseflow = 11.79ha
$$x \frac{0.1 \frac{L}{s}}{ha} x \frac{1m^3}{1000L} \frac{3600s}{hr} x \frac{24hr}{day} x \frac{184days}{year} = 18743m^3$$

- Required infiltration is based on drainage area and 63mm/year as per the KWMSS (25% increase of target rate of 50mm/year)
- Equivalent Infiltration provided as base flow is based on drainage area and

annual baseflow from SWMF, example calculation is provided below: Equivalent Infiltration = $\frac{18743m^3}{11.79ha}x\frac{1 hectare}{10000m^2}x\frac{1000mm}{1m} = 159mm/year$

On an annual basis, approximately 17874m³ of infiltration is required for the site based on the 28.37ha drainage area and 63mm/year infiltration target. Based on the above calculations, the site will provide approximately 34529m³ of baseflow, which is approximately 122mm/year of equivalent infiltration. The above calculations indicate that the required infiltration targets for the site will be met.

