

Stormwater Management & Servicing Report Conroy Business Park 2500 St Laurent Blvd

Client: Conroy Business Park Inc

Project Number: OTT-00238830-A0

Prepared By: Marc Lafleur, M.Eng., P.Eng Reviewed By: Alam Ansari, M.Sc., P. Eng.

exp Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Date Submitted: September 19, 2017 Rev February 22, 2018 Rev April 26, 2018

Stormwater Management & Servicing Report Conroy Business Park 2500 St Laurent Blvd

Type of Document: Stormwater Management & Servicing Report

Client: Conroy Business Park

Project Number: OTT-00238830-A0

Prepared By: exp Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada T: 613 688-1899 F: 613 225-7337 www.exp.com

Marc Lafleur, M.Eng., P.Eng. Project Engineer Infrastructure Services

Date Submitted: September 19, 2017 Rev February 22, 2018 Rev April 26, 2018

Alam Ansari, M.Sc., P. Eng. Senior Project Manager Infrastructure Services

Legal Notification

This report was prepared by **exp** Services Inc. for the account of Mr. Simon Nehme c/o Ramada Ottawa on the Rideau. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Table of Contents

1	Intro	ductio	n	.1
2	Refe	rences		.1
3	Sani	tary Se	wer Design	.1
4	Wate	ermain	Design	.2
5			Management	
	5.1		Design Criteria	
	5.2	Pre-De	velopment Conditions	. 3
		5.2.1	Peak Runoff Rate (Pre-Dev)	. 3
	5.3	Allowa	ble Release Rate	. 4
	5.4	Post-D	evelopment Conditions	. 4
		5.4.1	Storage Requirements and Allocation	. 4
		5.4.2	Flow Control Device Sizing	. 5
		5.4.3	Summary of Proposed SWM System	
		5.4.4	Quality Control	. 5
6	Eros	ion and	d Sediment Control	.6
7	Cone	clusion	S	.7

List of Appendices

Appendix A – SWM System Design Sheets Appendix B – Water

1 Introduction

EXP Services Inc. was retained by Mr. Simon Nehme c/o Ramada Ottawa on the Rideau to prepare site servicing and stormwater management report for the proposed Conroy Business Park in support of site plan control application for the proposed office buildings located at 2500 St. Laurent Boulevard, Ottawa, Ontario. The phased development will be comprised of three office condominium blocks. The buildings will be two-storey, wood frame type construction and will not have basements. The subject site is approximately 1.16 hectares in area. This report outlines the servicing and stormwater management strategy for the subject site.

2 References

Various documents were referred to in preparing the current report including:

- City of Ottawa Sewer Design Guidelines Revision 2, October 2012 (SDG002)
- City of Ottawa Water Distribution Guidelines Revision 1, July 2010 (WDG001)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003 (MOE SMPDM)

3 Sanitary Sewer Design

The proposed development will be serviced by a connection to the existing 375mm diameter PVC sanitary sewer on St Laurent Blvd. The anticipated peak sanitary flow from the proposed development has been calculated as per the City of Ottawa Sewer Design Guidelines (SDG02, 2012). The anticipated peak sanitary flow is calculated as follows:

Design Flows

Design Flow for Commercial Use:	50,000 L/day/ha (0.5787 L/s/ha)
Peaking Factor:	1.5
Site Area:	1.16 hectares
Extraneous Flow:	0.28 L/s/ha
Peak Design Flow:	= (0.5787L/s/ha)(1.16ha)(1.5)+(1.16ha)(0.28L/s/ha)
	=1.33 L/s

The proposed on-site sanitary sewers will be installed at a minimum grade of 0.60%. At this slope, a 150mm diameter sanitary sewer has a capacity of 11.8 L/s and a full flow velocity of 0.67 m/s and will therefore have sufficient capacity to service the site. The City of Ottawa Sewer Design Guidelines recommend a flow velocity within 0.6m/s to 3m/s. Refer to Site Servicing and Grading Plan (dwg 238830-SSGP1) for details of the sanitary sewers servicing the development.

4 Watermain Design

The proposed development will be serviced by a new 200mm diameter water service which will be connected to the existing 305mm diameter ductile iron municipal watermain on St Laurent Blvd to meet the domestic water requirements for the site. A Fire hydrant will be installed on the site to provide fire protection for the proposed development. Refer to Site Servicing and Grading Plan (dwg 238830-SSGP1) for the location of the proposed fire hydrant.

Fire Water Demand

The fire flow demand calculations were prepared based on the Fire Underwriters Survey (refer to Appendix B). The new buildings will be non-sprinklered and wood construction. The fire flow demand for the proposed development was calculated to be 197 L/s. There are two existing fire hydrants adjacent to the site on St Laurent Blvd and Conroy Rd. However, not all main entrances of the proposed development are within 90m unobstructed from the existing fire hydrant. Therefore, A new fire hydrant will be installed on the site and will provide fire protection for the proposed development.

The domestic water demands for the proposed site were calculated as per the City of Ottawa Water Distribution Guidelines.

Commercial Water Demand

Average daily demand: =50000 l/ha/day =1.16 hax 28,000 L/ha/day x (1/86,400 s/day) = 0.4 L/s

Maximum daily demand: =1.5 x avg. day =1.5 x 0.4 L/s

=0.6 L/s

Maximum hourly daily demand: =1.8 x max.day =1.8 x 0.6 L/s =1.1 L/s

The following boundary conditions were provided by the City of Ottawa (refer to Appendix B):

Peak Hour HGL = 122.6m

Maximum HGL = 131.4m

Max Day (0.6 L/s) + FireFlow (197L/s) = 124.5m

The water distribution guidelines require that the system pressure under maximum day plus fire flow conditions shall not be less than 20 psi. Based on the HGL of 124.5m for the max day + fire flow scenario and ground elevation of 85.50 adjacent to the proposed fire hydrant the residual pressure will be approximately 21.8 psi which exceeds the minimum pressure requirement. Therefore, a fire flow of 197 l/s can be provided by the City water supply system at the proposed fire hydrant under maximum day

conditions. Based on the minimum HGL of 122.6m for the peak hour domestic demand scenario the residual at the second floor of the buildings was determined to be greater than 40psi. Refer to Appendix B for calculations.

5 Stormwater Management

5.1 Storm Design Criteria

The storm sewer system was designed in conformance with the City of Ottawa Sewer Design Guidelines (SDG02, 2012). The stormwater servicing design criteria for the proposed development are the following:

- The proposed on-site storm sewer network / minor system, is designed using Rational Method and • Manning's Equation to convey runoff under free flow conditions for the 5-year return period.
- Flows to the storm sewer in excess of the 5-year storm release rate, up to and including the 100-٠ year event shall be detained on site.
- Maximum allowable ponding depth is 300 mm.
- Flows from storms events greater than the 100-year return period will be directed overland towards St Laurent Blvd.
- Estimated storage volumes based on the Modified Rational Method
- 100 year minor system flows to the sewer on St Laurent Blvd must be controlled to 5 year predevelopment levels using a runoff coefficient of 0.5 and a calculated time of concentration (minimum 10minutes).
- Minimum freeboard of 0.3m between the 100 year overland flow elevation and finished floor.

5.2 **Pre-Development Conditions**

The site is generally flat with a gentle slope from west to east towards Conroy Road. The stormwater runoff currently sheet drains overland towards St Laurent Blvd.

5.2.1 Peak Runoff Rate (Pre-Dev)

Q

The 5 and 100-year peak runoff rates for the existing condition were calculated using the Rational Method formula as follows: = 2.78 C* I * A

Where:

Q C	=	Peak Runoff, L/sec Estimated average runoff coefficient
Ĩ	=	Average rainfall intensity for a given storm return period in mm/hr
	=	998.071/ (T _C +6.053) ^{0.814} (5yr) and 1735.688 / (T _C + 6.014) ^{0.820 (} 100yr)
Тс	=	Time of concentration= 20.6 mins (Calculated using the FAA equation)
А	=	Drainage area in hectares

Therefore:

5	=	998.071/ (20.6 + 6.053) ^{0.814}	= 68.93 mm/Q _{5PRE}
2.78 ((0.5) (6	68.93 mm/hr) (1.16 ha)	= 111.15 L/sec

=

I ₁₀₀ =	1735.688 / (20.6 + 142.89) ^{0.820}	= 189.7 mm/hr
Q100PRE =	2.78 (0.5) (189.7 mm/hr) (1.16 ha)	= 189.7L/sec

The 5-year and 100-year pre-development flows were estimated at 111.15 L/sec and 189.7 L/sec respectively. Refer to Appendix A for SWM design sheets.

5.3 Allowable Release Rate

Minor system flows form the site to the 1500mm diameter concrete storm sewer on St Laurent Blvd will be restricted to 111.15 L/s for up to the 100 year event. The allowable release rate criterion was established during the pre-application consultation with the City of Ottawa. The allowable release rate is based on the 5-yr storm event using a runoff coefficient of 0.5 and a calculated time of concentration. Flows to the storm sewer in excess of the 5-year allowable release rate, up to and including the 100-year storm event, shall be detained on site. Refer to Appendix A for SWM design sheets.

5.4 Post-Development Conditions

Stormwater will be controlled and released at a rate less than the allowable release rate for storms up to and including the 100-year storm event. An overland flow route is provided for storms greater than the 100-year event. Flow control devices will be installed in roof drains and various catchbasins/manholes in order to control stormwater prior to its release from the site. The site under post development conditions has been divided into 13 drainage areas, refer to Stormwater Management drawing 238830-SWM-1.

5.4.1 Storage Requirements and Allocation

Post development runoff in excess of the pre-development 5-year release rate will be detained on-site for storms up to and including the 100-year storm. The required SWM storage volumes will be achieved using the surface storage in the parking-lots and underground structures. Surface ponding volumes over catch basins and catch basin manholes were determined by applying the pyramid volume equation of one-third of the depth multiplied by the surface area of the pond. Ponding depths for the subject site shall be equal to or less than 150 mm for the 5-year storm and 300 mm for the 100-year storm event. Major overland flows from storms greater than the 100-year event will be directed to St Laurent Blvd via the overland flow route leading to the main entrances of the site.

The volume of storage required was calculated for both the 5-year and 100-year storm events using the Rational Method. The estimated (100-year) on-site required and available storage volumes were determined to be 317.3m³ and 465.8m³, respectively. The estimated (5-year) on-site required and available storage volumes were determined to be 121.6m³ and 125.6m³, respectively. Since more storage is available than will be required in both the 5-year and 100-year events, the ponding level will be less than 150mm and 300mm for the 5-year and 100-year events respectively. Detailed stormwater management calculations are shown in Appendix A, including storage requirements and storage quantities provided. Ponding levels and drainage areas for the site are shown on the post-development storm drainage plan.

5.4.2 Flow Control Device Sizing

A simple plug-type insert is suitable if the orifice diameter is 75 mm or greater. For lower release rates a more sophisticated orifice design is employed, such as Hydrovex, to reduce the possibility of clogging often associated with a small orifice. The Hydrovex models are custom-manufactured based on specific head and release rate information. Hydrovex model types were selected based on the manufacturer's selection charts (included in Appendix A). There are no plug type orifices proposed for the site due to the lower release rate required for each drainage area. Inlet control devices and their locations are shown on the Site Servicing and Grading plan 238830-SSGP-1.

Runoff attenuation for the roofs of the proposed buildings will be provided by WATTS RD-200-A-ADJ small areas roof drains with adjustable flow control. Refer to the Stormwater Management Plan SWM1 for roof drain locations and Appendix C for design details including the controlled release rate for each drain, maximum storage depths and volumes. The maximum depth or rooftop storage under the 100-year event is of 150mm. The available rooftop storage volume is greater than the required storage volume for the 100-year storm event.

5.4.3 Summary of Proposed SWM System

A summary of the release rates for the controlled and uncontrolled drainage areas and corresponding storage details is provided in Table 5.1 below. Refer to Appendix A for detailed Stormwater Management spreadsheet calculations and sewer design sheet. The Post development 100 year release rate from the Site is of 106.2L/s, which is less than the allowable limit of 111.15L/s.

Sub Area	Sub Area	Composite C'	5 Year Controlled Release	5 year Storage Required	5 Year Storage Provided	100 Year Controlled Release	100 year Storage Required	100 Year Storage Provided
I.D.	(ha)		(L/s)	(m ³)	(m ³)	(L/s)	(m ³)	(m ³)
POST 1	0.071	0.900	5.5	8.4	8.8	5.5	22.7	42.7
POST 2	0.075	0.900	7.0	7.8	8.2	7.0	22.0	47.9
POST 3	0.074	0.900	4.5	10.2	10.3	4.5	26.3	47.6
POST 4	0.075	0.900	5.5	9.2	9.6	5.5	24.6	42.3
POST 5	0.055	0.900	4.0	6.8	6.8	4.0	18.1	31.8
POST 6	0.056	0.900	4.0	7.0	8.8	4.0	18.6	35.6
POST 7	0.058	0.900	4.0	7.4	8.2	4.0	19.6	35.4
POST 8	0.064	0.900	5.0	7.5	7.7	5.0	20.4	31.2
POST 9	0.040	0.900	5.0	3.0	3.0	5.0	10.0	16.3
POST 10	0.087	0.900	3.2	15.5	15.5	3.8	34.8	34.8
POST 11	0.110	0.900	3.9	15.5	15.5	4.7	44.3	44.3
POST 12	0.136	0.900	5.4	23.2	23.2	5.4	55.8	55.8
POST 13	0.256	0.400	23.8	0.0	0.0	47.8	0.0	0.0
TOTAL	1.16	Total Release	80.8	121.6	125.6	106.2	317.3	465.8
Total Allowable Release L/s			111.15					

Table 5-1: Summary of Proposed On-Site SWM System

5.4.4 Quality Control

The stormwater runoff from the site is directed to the storm sewers on St Laurent Blvd that drains to the East Community Trunk Storm which outlets to the McEwan Creek Stormwater Management Facility. Quality control for the proposed site will be provided by the existing downstream Stormwater Management Facility. No additional water quality control is required on site. Refer to correspondence from the RVCA in Appendix A.

6 Erosion and Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- Extent of exposed soils shall be limited at any given time;
- Exposed areas shall be re-vegetated as soon as possible;
- Minimize the area to be cleared and disruption of adjacent areas;
- Filter cloth shall be installed between frame and cover of all catch basins, catch basin manholes, and storm manholes as identified on the site grading and erosion control plan;
- Visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations;
- In some cases, barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed;
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract;
- During construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer; and,
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) 805.

7 Conclusions

This report addresses the adequacy of the existing municipal services to service the proposed development at 2500 St Laurent Blvd, Ottawa, Ontario. Based on the analysis provided in this report, the conclusions are as follows:

- A 200mm diameter water service connected to the 300mm municipal water main on St Laurent Blvd will adequately service the proposed development.
- A fire hydrant will be installed to provide fire protection for the proposed development.
- An existing Fire Hydrant on St Laurent Blvd and Conroy Rd will provide fire protection for the proposed development.
- A 150mm diameter sanitary service connected to the 375mm diameter municipal sanitary sewer on St Laurent Blvd will adequately service the proposed development.
- SWM for the proposed development will be achieved by restricting all storms up to the 100-year post development flow to the pre development 5-year release rate of 111.15L/s.
- Required on-site SWM storage volumes will be achieved using the surface storage in the parking-lots and underground pipes/structures.
- Quality control will be provided by the existing McEwen Creek Stormwater Management Facility which received flows from the 1500mm stormsewer on St Laurent Blvd. No additional water quality measures are proposed.
- Temporary erosion and sediment control measures for the subject site have been identified.
- Overland flow routes have been provided for the subject site.
- During all construction activities, erosion and sedimentation shall be controlled.

Appendix A – SWM System Design Sheets

Prepared By: M.Lafleur Date: September 2017 Rev April 2018

Table A1 Stormwater Management Summary Table

Sub Area	Sub Area	Composite C'	5 Year Controlled Release	5 year Storage Required	5 Year Storage Provided	100 Year Controlled Release	100 year Storage Required	100 Year Storage Provided
I.D.	(ha)		(L/s)	(m ³)	(m ³)	(L/s)	(m ³)	(m ³)
POST 1	0.071	0.900	5.5	8.4	8.8	5.5	22.7	42.7
POST 2	0.075	0.900	7.0	7.8	8.2	7.0	22.0	47.9
POST 3	0.074	0.900	4.5	10.2	10.3	4.5	26.3	47.6
POST 4	0.075	0.900	5.5	9.2	9.6	5.5	24.6	42.3
POST 5	0.055	0.900	4.0	6.8	6.8	4.0	18.1	31.8
POST 6	0.056	0.900	4.0	7.0	8.8	4.0	18.6	35.6
POST 7	0.058	0.900	4.0	7.4	8.2	4.0	19.6	35.4
POST 8	0.064	0.900	5.0	7.5	7.7	5.0	20.4	31.2
POST 9	0.040	0.900	5.0	3.0	3.0	5.0	10.0	16.3
POST 10	0.087	0.900	3.2	15.5	15.5	3.8	34.8	34.8
POST 11	0.110	0.900	3.9	15.5	15.5	4.7	44.3	44.3
POST 12	0.136	0.900	5.4	23.2	23.2	5.4	56.5	56.5
POST 13	0.256	0.400	23.8	0.0	0.0	47.8	0.0	0.0
TOTAL	1.16	Total Release	80.8	121.6	125.6	106.2	318.0	466.4
Total Allowable Release L/s			111.15					

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST1 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event		
Area	Surface	На	"C"	Cavg	"C" x 1.25	C _{100 avg}	
Total	Asphalt	0.071	0.90	0.90	1.00	1.00	
0.07	Roof	0.000	0.90		1.00		
	Grass	0.000	0.25		0.31		

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.07 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	14.8	5.5	9.3	8.4
	20	70.25	12.5	5.5	7.0	8.4
	25	60.90	10.8	5.5	5.3	8.0
5 YEAR	30	53.93	9.6	5.5	4.1	7.3
	35	48.52	8.6	5.5	3.1	6.5
	40	44.18	7.8	5.5	2.3	5.6

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.07 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	28.2	5.5	22.7	20.4
	20	119.95	23.7	5.5	18.2	21.8
100 YEAF	25	103.85	20.5	5.5	15.0	22.5
	30	91.87	18.1	5.5	12.6	22.7
	35	82.58	16.3	5.5	10.8	22.7
	40	75.15	14.8	5.5	9.3	22.4
	45	69.05	13.6	5.5	8.1	21.9

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST2 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event	
Area	Surface	На	"C"	Cavg	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.075	0.90	0.90	1.00	1.00
0.08	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.08 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	15.7	7.0	8.7	7.8
	20	70.25	13.2	7.0	6.2	7.4
	25	60.90	11.4	7.0	4.4	6.6
5 YEAR	30	53.93	10.1	7.0	3.1	5.6
	35	48.52	9.1	7.0	2.1	4.4
	40	44.18	8.3	7.0	1.3	3.1

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.08 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	29.8	7.0	22.8	20.5
	20	119.95	25.0	7.0	18.0	21.6
100 YEAF	25	103.85	21.7	7.0	14.7	22.0
	30	91.87	19.2	7.0	12.2	21.9
	35	82.58	17.2	7.0	10.2	21.5
	40	75.15	15.7	7.0	8.7	20.8
	45	69.05	14.4	7.0	7.4	20.0

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST3 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event	
Area	Surface	На	"C"	Cavg	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.074	0.90	0.90	1.00	1.00
0.07	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.07 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	15.5	4.5	11.0	9.9
	20	70.25	13.0	4.5	8.5	10.2
	25	60.90	11.3	4.5	6.8	10.2
5 YEAR	30	53.93	10.0	4.5	5.5	9.9
	35	48.52	9.0	4.5	4.5	9.4
	40	44.18	8.2	4.5	3.7	8.8

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.07 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	29.4	4.5	24.9	22.4
	20	119.95	24.7	4.5	20.2	24.2
100 YEAF	25	103.85	21.4	4.5	16.9	25.3
	30	91.87	18.9	4.5	14.4	25.9
	35	82.58	17.0	4.5	12.5	26.2
	40	75.15	15.5	4.5	11.0	26.3
	45	69.05	14.2	4.5	9.7	26.2

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST4 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

				ar Event	100 Year Event	
Area	Surface	На	"C"	C _{avg}	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.075	0.90	0.90	1.00	1.00
0.08	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.08 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	15.7	5.5	10.2	9.2
	20	70.25	13.2	5.5	7.7	9.2
	25	60.90	11.4	5.5	5.9	8.9
5 YEAR	30	53.93	10.1	5.5	4.6	8.3
	35	48.52	9.1	5.5	3.6	7.6
	40	44.18	8.3	5.5	2.8	6.7

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.08 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	29.8	5.5	24.3	21.9
	20	119.95	25.0	5.5	19.5	23.4
100 YEAF	25	103.85	21.7	5.5	16.2	24.2
	30	91.87	19.2	5.5	13.7	24.6
	35	82.58	17.2	5.5	11.7	24.6
	40	75.15	15.7	5.5	10.2	24.4
	45	69.05	14.4	5.5	8.9	24.0

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST5 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Year Event		100 Year Event	
Area	Surface	На	"C"	Cavg	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.055	0.90	0.90	1.00	1.00
0.06	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.06 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	11.5	4.0	7.5	6.7
	20	70.25	9.7	4.0	5.7	6.8
	25	60.90	8.4	4.0	4.4	6.6
5 YEAR	30	53.93	7.4	4.0	3.4	6.2
	35	48.52	6.7	4.0	2.7	5.6
	40	44.18	6.1	4.0	2.1	5.0

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.06 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	21.8	4.0	17.8	16.1
	20	119.95	18.3	4.0	14.3	17.2
100 YEAF	25	103.85	15.9	4.0	11.9	17.8
	30	91.87	14.0	4.0	10.0	18.1
	35	82.58	12.6	4.0	8.6	18.1
	40	75.15	11.5	4.0	7.5	18.0
	45	69.05	10.6	4.0	6.6	17.7

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST6 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event	
Area	Surface	На	"C"	Cavg	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.056	0.90	0.90	1.00	1.00
0.06	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.06 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	11.7	4.0	7.7	6.9
	20	70.25	9.8	4.0	5.8	7.0
	25	60.90	8.5	4.0	4.5	6.8
5 YEAR	30	53.93	7.6	4.0	3.6	6.4
	35	48.52	6.8	4.0	2.8	5.9
	40	44.18	6.2	4.0	2.2	5.3

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.06 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	22.2	4.0	18.2	16.4
	20	119.95	18.7	4.0	14.7	17.6
100 YEAF	25	103.85	16.2	4.0	12.2	18.3
	30	91.87	14.3	4.0	10.3	18.5
	35	82.58	12.9	4.0	8.9	18.6
	40	75.15	11.7	4.0	7.7	18.5
	45	69.05	10.7	4.0	6.7	18.2

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST7 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event	
Area	Surface	На	"C"	Cavg	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.058	0.90	0.90	1.00	1.00
0.06	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.06 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	12.1	4.0	8.1	7.3
	20	70.25	10.2	4.0	6.2	7.4
	25	60.90	8.8	4.0	4.8	7.3
5 YEAR	30	53.93	7.8	4.0	3.8	6.9
	35	48.52	7.0	4.0	3.0	6.4
	40	44.18	6.4	4.0	2.4	5.8

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.06 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	23.0	4.0	19.0	17.1
	20	119.95	19.3	4.0	15.3	18.4
100 YEAF	25	103.85	16.7	4.0	12.7	19.1
	30	91.87	14.8	4.0	10.8	19.5
	35	82.58	13.3	4.0	9.3	19.6
	40	75.15	12.1	4.0	8.1	19.5
	45	69.05	11.1	4.0	7.1	19.3

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST8 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event	
Area	Surface	На	"C"	C _{avg}	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.064	0.90	0.90	1.00	1.00
0.06	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.06 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	13.4	5.0	8.4	7.5
	20	70.25	11.2	5.0	6.2	7.5
	25	60.90	9.8	5.0	4.8	7.1
5 YEAR	30	53.93	8.6	5.0	3.6	6.5
	35	48.52	7.8	5.0	2.8	5.8
	40	44.18	7.1	5.0	2.1	5.0

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.06 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	25.4	5.0	20.4	18.4
	20	119.95	21.3	5.0	16.3	19.6
100 YEAF	25	103.85	18.5	5.0	13.5	20.2
	30	91.87	16.3	5.0	11.3	20.4
	35	82.58	14.7	5.0	9.7	20.4
	40	75.15	13.4	5.0	8.4	20.1
	45	69.05	12.3	5.0	7.3	19.7

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST9 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year Event	
Area	Surface	На	"C"	C _{avg}	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.040	0.90	0.90	1.00	1.00
0.04	Roof	0.000	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.04 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	8.4	5.0	3.4	3.0
	20	70.25	7.0	5.0	2.0	2.4
	25	60.90	6.1	5.0	1.1	1.6
5 YEAR	30	53.93	5.4	5.0	0.4	0.7
	35	48.52	4.9	5.0	-0.1	-0.3
	40	44.18	4.4	5.0	-0.6	-1.4

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.04 = Area(ha) 1.00 = *C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	15.9	5.0	10.9	9.8
	20	119.95	13.3	5.0	8.3	10.0
100 YEAF	25	103.85	11.5	5.0	6.5	9.8
	30	91.87	10.2	5.0	5.2	9.4
	35	82.58	9.2	5.0	4.2	8.8
	40	75.15	8.4	5.0	3.4	8.1
	45	69.05	7.7	5.0	2.7	7.2

Equations:

Flow Equations $Q = 2.78 \times C \times I \times A$ Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

POST DEVELOPMENT DRAINAGE AREA POST10 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Ye	ar Event	100 Year I	Event		
Area	Surface	Ha	"C"	Cavg	"C" x 1.25	C _{100 avg}		
Total	Asphalt	0.000	0.90	0.90	1.00	1.00		
0.09	Roof	0.087	0.90		1.00			
	Grass	0.000	0.25		0.31			
*Areas are approximate based on draft site plan								

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.09 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	18.2	3.2	15.0	13.5
	20	70.25	15.3	3.2	12.1	14.5
	25	60.90	13.3	3.2	10.1	15.1
5 YEAR	30	53.93	11.7	3.2	8.5	15.4
	35	48.52	10.6	3.2	7.4	15.5
	40	44.18	9.6	3.2	6.4	15.4

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.09 = Area(ha)

1.00 = *C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Controlled Runoff (L/s)	Net Runoff To Be Stored (L/s)	Storage Reg'd m ³
	()	(()	
	15	142.89	34.6	3.8	30.8	27.7
	20	119.95	29.0	3.8	25.2	30.3
100 YEAR	25	103.85	25.1	3.8	21.3	32.0
	30	91.87	22.2	3.8	18.4	33.2
	35	82.58	20.0	3.8	16.2	34.0
	40	75.15	18.2	3.8	14.4	34.5
	45	69.05	16.7	3.8	12.9	34.8
	50	63.95	15.5	3.8	11.7	35.0
	55	59.62	14.4	3.8	10.6	35.0
	60	55.89	13.5	3.8	9.7	35.0
	65	52.65	12.7	3.8	8.9	34.8

Equations:

Flow Equation

Q = 2.78 x C x I x A Where:

C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Prepared By: M.Lafleur Date: July 2017 Rev Feb 2018

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

Prepared By: M.Lafleur Date: July 2017

POST DEVELOPMENT DRAINAGE AREA POST11 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

			5 Year Event		100 Year Event				
Area	Surface	Ha	"C"	Cavg	"C" x 1.25	C _{100 avg}			
Total	Asphalt	0.000	0.90	0.90	1.00	1.00			
0.11	Roof	0.110	0.90		1.00				
	Grass	0.000	0.25		0.31				
*Areas are approximate based on draft site plan									

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.11 = Area(ha)

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	23.0	3.9	19.1	17.2
	20	70.25	19.3	3.9	15.4	18.5
	25	60.90	16.8	3.9	12.9	19.3
5 YEAR	30	53.93	14.8	3.9	10.9	19.7
	35	48.52	13.4	3.9	9.5	19.9
	40	44.18	12.2	3.9	8.3	19.8

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.11 1.00 = Area(ha) = *C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Controlled Runoff (L/s)	Net Runoff To Be Stored (L/s)	Storage Reg'd m ³
	()	(()	
	15	142.89	43.7	4.7	39.0	35.1
	20	119.95	36.7	4.7	32.0	38.4
100 YEAR	25	103.85	31.8	4.7	27.1	40.6
	30	91.87	28.1	4.7	23.4	42.1
	35	82.58	25.3	4.7	20.6	43.2
	40	75.15	23.0	4.7	18.3	43.9
	45	69.05	21.1	4.7	16.4	44.3
	50	63.95	19.6	4.7	14.9	44.6
	55	59.62	18.2	4.7	13.5	44.7
	60	55.89	17.1	4.7	12.4	44.6
	65	52.65	16.1	4.7	11.4	44.5

Equations:

Flow Equation

Q = 2.78 x C x I x A Where:

C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

POST DEVELOPMENT DRAINAGE AREA POST12 STORAGE REQUIREMENTS

Post Dev run-off Coefficient "C"

		5 Year Event		100 Year Event		
Area	Surface	Ha	"C"	Cavg	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.000	0.90	0.90	1.00	1.00
0.14	Roof	0.136	0.90		1.00	
	Grass	0.000	0.25		0.31	

*Areas are approximate based on draft site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

= Area(ha) 0.14

0.90 = C

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	83.56	28.4	5.4	23.0	20.7
	20	70.25	23.9	5.4	18.5	22.2
	25	60.90	20.7	5.4	15.3	22.9
5 YEAR	30	53.93	18.4	5.4	12.9	23.2
	35	48.52	16.5	5.4	11.1	23.2
	40	44.18	15.0	5.4	9.6	23.0

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.14 = Area(ha)

= *C 1.00

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³
	15	142.89	54.0	5.4	48.6	43.7
	20	119.95	45.4	5.4	39.9	47.9
100 YEAR	25	103.85	39.3	5.4	33.8	50.7
	30	91.87	34.7	5.4	29.3	52.7
	35	82.58	31.2	5.4	25.8	54.1
	40	75.15	28.4	5.4	23.0	55.1
	45	69.05	26.1	5.4	20.7	55.8
	50	63.95	24.2	5.4	18.7	56.2
	55	59.62	22.5	5.4	17.1	56.4
	60	55.89	21.1	5.4	15.7	56.5
	65	52.65	19.9	5.4	14.5	56.4
	70	49.79	18.8	5.4	13.4	56.2
	75	47.26	17.9	5.4	12.4	55.9

Equations:

Flow Equation Q = 2.78 x C x I x A

Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Prepared By: M.Lafleur Date: July 2017 Revised: April 2018

Runoff Coefficient Equation

PARKING LOT SURFACE STORAGE PROVIDED

Prepared By: M.Lafleur Date: Septmebr 2017

5 Year Surface Ponding Volumes

o real odnace i onaling volumes							
Ponding	Surface Area	Ponding	Volume				
Location	(m²)	Depth (m)	(m ³)				
CB101	192	0.15	9.6				
CB102	205	0.15	10.3				
CB103	165	0.15	8.2				
CB104	175	0.15	8.8				
CB105	135	0.15	6.8				
CB106	176	0.15	8.8				
CB107	163	0.15	8.2				
CB108	154	0.15	7.7				
CB109	59	0.15	3				
Total Area	1424	Total Volume	71.4				

100 Year Surface Ponding Volumes

Ponding	Surface Area	Ponding	Volume
Location	(m ²)	Depth (m)	(m³)
CB101	423	0.30	42.3
CB102	476	0.30	47.6
CB103	479	0.30	47.9
CB104	427	0.30	42.7
CB105	318	0.30	31.8
CB106	356	0.30	35.6
CB107	354	0.3	35.4
CB108	312	0.30	31.2
CB109	163	0.30	16.3
Total Area	3308	Total Volume	330.8

Prepared By: M.Lafleur Date: September 2017

POST DEVELOPMENT DRAINAGE AREA POST5 UNCONTROLLED FLOW

Post Dev run-off Coefficient "C"

			5 Year Event		100 Year E	vent
Area	Surface	На	"C"	C _{avg}	"C"+25%	*C _{avg}
Total	Asphalt	0.060	0.90	0.40	1.00	0.47
0.256	Roof	0.000	0.90		1.00	
	Grass	0.196	0.25		0.31	

Post Dev Free Flow

5 Year Event								
Pre Dev.	С	Intensity	Area					
5 Year	0.40	83.56	0.26					
2.78CIA=	2.78CIA= 23.79							
23.8	L/S							

**Use a 15 minute time of concentration for 5 year

Equations:

Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

 $C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$

*Runoff coefficients increased by 25% up to a maximum value of 1.00 for the 100-Year event

100 Year Event

Pre Dev.	С	Intensity	Area
100 Year	0.47	142.89	0.26
2.78CIA= 4	••••	1.2.00	0.20
47.8 l	_/S		

**Use a 15 minute time of concentration for 100 year

Table A2 SEWER DESIGN SHEET-5 YEAR UNCONTROLLED FLOW

1.00/	ATION								PROPOSED SEWER								
		Area	R=			TIME	RAINFALL	PEAK	TYPE	PIPE	PIPE			FULL FLOW	TIME OF	EXCESS	
FROM	то	(ha)		INDIV	ACCUM	OF	INTENSITY	FLOW	OF	SIZE	SLOPE		CAPACITY	VELOCITY	FLOW	CAPACITY	Q/Qfull
				2.78 AR	2.78 AR	CONC.	I	Q (I/s)	PIPE	(mm)	(%)	(m)	(I/s)	(m/s)	(min.)	(I/s)	
BLDG	STMMH101	0.09	0.90	0.22	0.22	10.00	104.19	22.68	PVC	200.0	1.00	10.0	32.83	1.04	0.16	10.15	0.69
CB101	STMMH101	0.07	0.90	0.18	0.18	10.00	104.19	18.25	PVC	200.0	1.00	2.0	32.83	1.04	0.03	14.58	0.56
CB102	MAIN	0.07	0.90	0.19	0.19	10.00	104.19	19.29	PVC	200.0	1.00	2.0	32.83	1.04	0.03	13.54	0.59
CB103	MAIN	0.08	0.90	0.19	0.19	10.00	104.19	19.55	PVC	200.0	1.00	2.0	32.83	1.04	0.03	13.28	0.60
STMMH101	STMMH102				0.77	10.16	103.36	79.13	PVC	450.0	0.50	57.0	201.80	1.27	0.75	122.67	0.39
CB104	STMMH104	0.07	0.90	0.18	0.18	10.00	104.19	18.25	PVC	200.0	1.00	2.0	32.83	1.04	0.03	14.58	0.56
STMMH102	STMMH203				0.94	10.91	99.62	93.72	PVC	450.0	0.50	35.0	201.80	1.27	0.46	108.08	0.46
BLDG	STMMH205	0.11	0.90	0.28	0.28	10.00	104.19	28.68	PVC	200.0	1.00	11.0	32.83	1.04	0.18	4.16	0.87
CB108	STMMH205	0.06	0.90	0.16	0.16	10.00	104.19	16.68	PVC	200.0	1.00	2.0	32.83	1.04	0.03	16.15	0.51
CB107	MAIN	0.06	0.90	0.15	0.15	10.00	104.19	15.12	PVC	200.0	1.00	2.0	32.83	1.04	0.03	17.71	0.46
CB106	MAIN	0.06	0.90	0.15	0.15	10.00	104.19	15.38	PVC	200.0	1.00	2.0	32.83	1.04	0.03	17.45	0.47
STMMH205	STMMH203				0.73	10.18	103.27	75.19	PVC	375.0	0.50	39.0	124.10	1.12	0.58	48.91	0.61
CB105	STMMG203	0.06	0.00	0.14	0.14	10.00	104.19	14.34	PVC	200.0	1.00	2.0	32.83	1.04	0.03	18.49	0.44
CB105	STIVIIVIG203	0.00	0.90	0.14	0.14	10.00	104.19	14.34	PVC	200.0	1.00	2.0	32.03	1.04	0.03	10.49	0.44
BLDG	MAIN	0.14	0.90	0.34	0.34	10.00	104.19	35.45	PVC	200.0	2.00	10.0	46.43	1.48	0.11	10.98	0.76
CB109	MAIN	0.04	0.90	0.10	0.10	10.00	104.19	10.43	PVC	200.0	1.00	2.0	32.83	1.04	0.03	22.40	0.32
STMMH203	STMMH206				2.25	11.02	99.09	222.63	PVC	525.0	0.50	30.0	304.41	1.40	0.36	81.78	0.73
				1	0					0.0							
STMMH206	MAIN				2.25	11.38	97.44	218.92	PVC	525.0	0.50	10.0	304.41	1.40	0.12	85.48	0.72
TO	TAL	0.9										220.0					
			1				<u> </u>				1						

Prepared By:	M.Lafleur
Date:July 20	17

PRE-DEVELOPMENT FLOWS

Prepared By: M.Lafleur

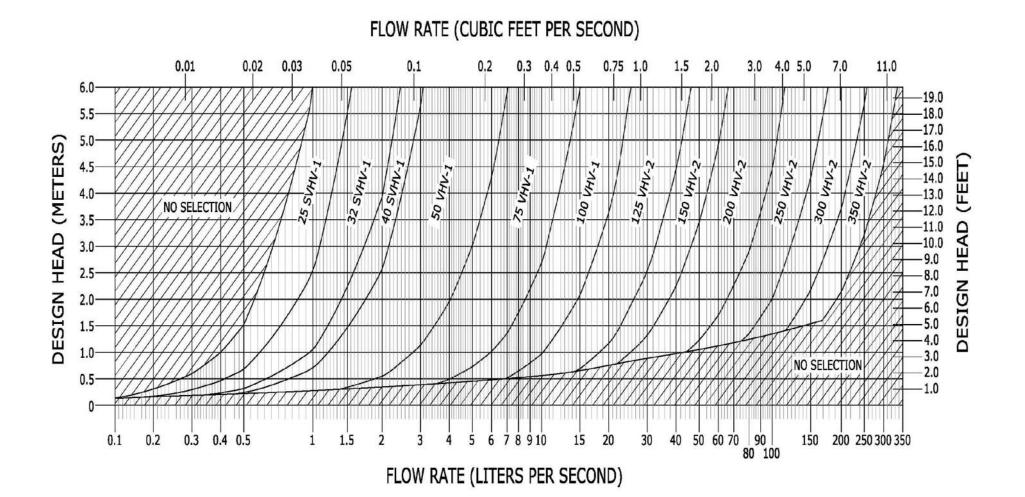
TIME-OF-CONCENTRATION (Pre-Dev.)

AREA	Cpre	Length (m)	avg Length	Elev 1 (m)	Elev 2 (m)	Slope (%)	avg slope (%)	Calculated Tc (min)	
1.16ha	0.50	120	112	85.43	84.25	0.98%	1.01%	20.6	
1.1011a	0.50	104	112	85.39	84.31	1.04%	1.0170	20.0	

Notes:

 Time-of-Concentration - FAA Equation: t (min) = 3.258 [(1.1 - C) L⁰0.5 / S¹.33] Where, L = Longest Watercourse Length, (m); S =Slope in %; C = Runoff Coef.

PEAK RUNOFF RATE


A.r.o.o.				Storm = 5	yr	Storm = 100 yr					
Area Description	Area (ha)	Tc (min)	l (mm/hr)	C_{avg}	Q (L/sec)	l (mm/hr)	C_{avg}	Q (L/sec)			
PRE	1.1600	20.6	68.93	0.50	111.15	117.68	0.50	189.7			

Notes

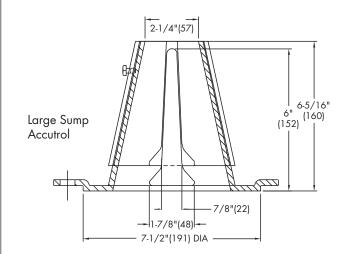
 5-Year Storm Intensity (mm/hr), I = 998.071/(Tc+6.053)^{0.814} (City of Ottawa) 100-year Storm Intensity, I =1735.688 / (Tc + 6.199)^{0.810} (City of Ottawa)

JOHN MEUNIER

FIGURE 3

VHV/SVHV Vortex Flow Regulator

WATTS	Adjustable Accutrol Weir Tag:	Adjustable Flow Control for Roof Drains
-------	----------------------------------	--


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) x 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Wair Opening	1"	2"	3"	4"	5"	6"					
Weir Opening Exposed	Flow Rate (gallons per minute)										
Fully Exposed	5	10	15	20	25	30					
3/4	5	10	13.75	17.5	21.25	25					
1/2	5	10	12.5	15	17.5	20					
1/4	5	10	11.25	12.5	13.75	15					
Closed	5	5	5	5	5	5					

Job Name

Job Location

Engineer

Adjustable Upper Cone Fixed Weir

Contractor _

Contractor's P.O. No.

Representative ____

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca **Latin America:** Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

A Watts Water Technologies Company

ROOF DRAIN - Stormwater Management Summary

	RAIN - Stori	IIwate	i wai	lagen	nent Sur	nmary	1																		-		1			
Building	ainage Type per				e Area	5-year Event						100-year Event Storage (Modified Rational Method)					ired lified	Maximium Storage Provided at Spill Elevation												
Drainage Area	Туре	per Area	5- year		m ²	ha	Runoff Rate (L/sec)	5yr Ponding Depth (mm)	Ponding Depth at Drain (mm)	Provided (m3)	Roof Drain Capacity Per Drain (L/sec)	From Roof Drains (L/sec)	Depth of Overlflow Above Drain (mm)	Flow From Overflow (L/sec)	(L/sec)	Rate (L/sec)	Pondin g Depth (mm)	Depth at Drain (mm)	Provided (m3)	Capacity Per Drain (L/sec)	Total Flow From Roof Drains (L/sec)	Depth of Overlflow Above Drain (mm)	Flow From Overflow (L/sec)	Total Flow Roof Drain + Overflow Drain (L/sec)	$ \begin{array}{c} 1 \\ 7 \\ 5-year \\ (m^3) \end{array} $	year (m ³)		Below Lowpoint	(mm)	Max Prisim Volume (m ³)
	RD-200-A-ADJ RD-200-A-ADJ		0.90		870 1100	0.0870	22.7 28.7	100 100	100	19 24	0.79 0.79	<u>3.2</u> <u>3.9</u>			3.2 3.9	43.2 54.6	150 150	150 150	44 55	0.95 0.95	3.8			3.8 4.7	15.56 19.77		870.0 1,100.0	-150 -150	150 150	43.5 55.0
Time of Co	sed on the Follo onc (mins) = uency (years) =	wing:		1	1,970	0.1970		Roof Drain RD-200-A-	Types ADJ 1/4 Wei	ir Opening	1.58	7.10		1.2	7.10	97.8 Roof [Drain Ca	pacity Wa	atts RD-20	1.89	8.52 /4 Weir Op	pening		8.52	35.32	79.65	1970			98.5
Storm Inter Roof Drain Head (mm) weir openin Flow Rate Flow Rate	nsity (mm/hr) = ns have follwing ng (uspgm)		Rates:	2 1 5 0			0.709765		125 1/4 13.75 0.8674902	150 1/4 15 0.9463529				Roof Drain Capaciyt (L/sec)		4	0	60	80	y 100	= 0.0045x +	0.3155	160							
	ow, Q at deptil, d			Ç	Q = 0.0045	u + 0.31.											н	lead Over	Drain (mm)											

Building Drainage Area Post 10 Roof Storage Required										
5	yr $C_{AVG} =$	0.90	(dimmensio	onless)						
10	$0 \text{yr } C_{AVG} =$	1.00								
Tim	e Interval =	5	(mins)							
	nage Area =		(hectares)							
_								_		
		lease Rate =	3.155	(L/sec)		Rel	ease Rate =	3.7854	(L/sec)	
		rn Period =	5	(years)			n Period =	100	(years)	
	IDF Paran	neters, A =		, B =	0.814		neters, A =	1735.688	, B =	
$(I = A/(T_c+C))$, $C = 6.053$ $(I = A/(T_c+C))$, $C = 6.014$										
	Rainfall		Release	Storage		Rainfall		Release	Storage	
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^{3})	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^3)
1	203.5	44.3	3.15	41.1	2.47	351.4	85.0	3.785	81.2	4.87
6	131.6	28.6	3.15	25.5	9.17	226.0	54.7	3.785	50.9	18.32
11	99.2	21.6	3.15	18.4	12.17	169.9	41.1	3.785	37.3	24.62
16	80.5	17.5	3.15	14.4	13.79	137.5	33.3	3.785	29.5	28.30
21	68.1	14.8	3.15	11.7	14.71	116.3	28.1	3.785	24.3	30.67
26	59.3	12.9	3.15	9.8	15.23	101.2	24.5	3.785	20.7	32.27
31	52.7	11.5	3.15	8.3	15.49	89.8	21.7	3.785	17.9	33.37
36	47.6	10.4	3.15	7.2	15.56	81.0	19.6	3.785	15.8	34.12
41	43.4	9.5	3.15	6.3	15.49	73.8	17.9	3.785	14.1	34.62
46	40.0	8.7	3.15	5.6	15.32	68.0	16.4	3.785	12.7	34.92
51	37.1	8.1	3.15	4.9	15.07	63.0	15.2	3.785	11.5	35.07
56	34.7	7.5	3.15	4.4	14.75	58.8	14.2	3.785	10.4	35.09
61	32.5	7.1	3.15	3.9	14.38	55.2	13.4	3.785	9.6	35.02
66	30.7	6.7	3.15	3.5	13.96	52.0	12.6	3.785	8.8	34.86
71	29.1	6.3	3.15	3.2	13.51	49.3	11.9	3.785	8.1	34.63
76	27.6	6.0	3.15	2.9	13.02	46.8	11.3	3.785	7.5	34.33
81	26.3	5.7	3.15	2.6	12.51	44.6	10.8	3.785	7.0	33.99
86	25.1	5.5	3.15	2.3	11.96	42.6	10.3	3.785	6.5	33.60
91	24.1	5.2	3.15	2.1	11.40	40.8	9.9	3.785	6.1	33.16
96 101	23.1 22.2	5.0 4.8	3.15 3.15	1.9 1.7	10.82	39.1 37.6	9.5 9.1	3.785 3.785	5.7	32.69
101	22.2	4.8	3.15	1.7	10.22 9.60	37.6	9.1	3.785	5.3	32.19 31.65
106	21.4	4.7	3.15		9.60	36.2 35.0		3.785	5.0	31.65
111	20.7	4.3	3.15	1.3 1.2	8.32	33.8	8.5 8.2	3.785	4.7 4.4	30.51
110	19.3	4.4	3.15	1.2	7.67	33.8	7.9	3.785	4.4	29.90
Max =	17.5	т.∠	5.15	1.1	15.56	52.1	1.7	5.705	т.1	<u>35.09</u>

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc+C)^B
3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5			-	-	Post 11	Roof Sto	orage Rec	uired		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(dimmensio	onless)						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Draina	age Area =	0.11000	(hectares)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Rel	lease Rate =	3.943	(L/sec)		Re	lease Rate =	4.7318	(L/sec)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Retur	n Period =	5	(years)		Retu	rn Period =	100	(years)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IDF Paran	neters, A =	998.071	, B =	0.814	IDF Paran	neters, A =	1735.688	, B =	0.820
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(=	A/(T _c +C)	, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Dainfall		Dalaasa	Stanson		Dainfall		Dalaaaa	Stance	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D		D. 1. El		-	Storage		D 1- E1		-	Storage
1 203.5 56.0 3.94 52.1 3.12 351.4 107.5 4.732 102.7 6. 6 131.6 36.2 3.94 32.3 11.62 226.0 69.1 4.732 64.4 23 11 99.2 27.3 3.94 23.4 15.42 169.9 52.0 4.732 47.2 31 16 80.5 22.1 3.94 18.2 17.47 137.5 42.1 4.732 37.3 35 21 68.1 18.8 3.94 12.4 19.33 101.2 30.9 4.732 26.2 40 31 52.7 14.5 3.94 10.6 19.66 89.8 27.5 4.732 20.0 43 41 43.4 11.9 3.94 8.0 19.70 73.8 22.6 4.732 17.8 43 46 40.0 11.0 3.94 5.0 18.35 55.2 16.9 4.732 13.3 44 56 34.7 9.5 3.94 5.6 18.80 <		-				-	-				-
6131.636.23.9432.311.62226.069.14.73264.4231199.227.33.9423.415.42169.952.04.73247.2311680.522.13.9418.217.47137.542.14.73237.3352168.118.83.9412.419.33101.230.94.73226.2403152.714.53.9410.619.6689.827.54.73222.7423647.613.13.949.219.7781.024.84.73220.0434143.411.93.948.019.7073.822.64.73217.8434640.011.03.947.119.5068.020.84.73216.1445634.79.53.945.618.8058.818.04.73213.3446132.59.03.945.018.3555.216.94.73211.2447129.18.03.943.716.6746.814.34.73210.3447129.18.03.943.716.6746.814.34.73210.3447129.18.03.943.716.6746.814.34.7328.3429124.16.63.943.716.6746.81	- · · · ·		· · · /								
1199.227.33.9423.415.42169.952.04.73247.2311680.522.13.9418.217.47137.542.14.73237.3352168.118.83.9414.818.66116.335.64.73230.8382659.316.33.9412.419.33101.230.94.73226.2403152.714.53.9410.619.6689.827.54.73222.7423647.613.13.949.219.7781.024.84.73217.8434640.011.03.947.119.5068.020.84.73214.5445137.110.23.946.319.1963.019.34.73214.5445634.79.53.945.618.8058.818.04.73213.3446132.59.03.945.618.8058.216.94.73212.2446630.78.43.944.517.8452.015.94.73210.3447129.18.03.943.716.6746.814.34.7328.3429124.16.63.943.716.6746.814.34.7328.3429124.16.63.943.716.6746.814											6.16 23.18
1680.522.13.9418.217.47137.542.14.73237.3352168.118.83.9414.818.66116.335.64.73230.8382659.316.33.9412.419.33101.230.94.73226.2403152.714.53.9410.619.6689.827.54.73222.7423647.613.13.949.219.7781.024.84.73220.0434640.011.03.947.119.5068.020.84.73211.8434640.011.03.945.618.8058.818.04.73213.3445137.110.23.945.618.8058.818.04.73213.3446132.59.03.945.618.8058.818.04.73211.2446630.78.43.944.517.8452.015.94.73211.2447129.18.03.943.716.6746.814.34.7328.342.17129.18.03.943.716.6746.814.34.7328.342.17129.18.03.943.716.6746.814.34.7328.342.17129.18.03.943.716.6746.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>31.17</td></td<>											31.17
21 68.1 18.8 3.94 14.8 18.66 116.3 35.6 4.732 30.8 38 26 59.3 16.3 3.94 12.4 19.33 101.2 30.9 4.732 26.2 40 31 52.7 14.5 3.94 10.6 19.66 89.8 27.5 4.732 22.7 42 36 47.6 13.1 3.94 9.2 19.77 81.0 24.8 4.732 20.0 43 41 43.4 11.9 3.94 8.0 19.70 73.8 22.6 4.732 17.8 43 46 40.0 11.0 3.94 6.3 19.19 63.0 19.3 4.732 16.1 44 51 37.1 10.2 3.94 6.3 19.19 63.0 19.3 4.732 11.5 44 56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 11.3 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.5 17.84 52.0 15.9 4.732 10.3 44 71 29.1 8.0 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 76 27.6 7.6 3.94 3.3 16.03 44.6 13.6 4.732 8.9											35.84
26 59.3 16.3 3.94 12.4 19.33 101.2 30.9 4.732 26.2 40 31 52.7 14.5 3.94 10.6 19.66 89.8 27.5 4.732 22.7 42 36 47.6 13.1 3.94 9.2 19.77 81.0 24.8 4.732 20.0 43 41 43.4 11.9 3.94 8.0 19.70 73.8 22.6 4.732 17.8 43 46 40.0 11.0 3.94 7.1 19.50 68.0 20.8 4.732 16.1 44 51 37.1 10.2 3.94 6.3 19.19 63.0 19.3 4.732 14.5 44 56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 13.3 44 61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 11.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 8.3 42 <											38.85
3152.714.53.9410.619.6689.827.54.73222.7423647.613.13.949.219.7781.024.84.73220.0434143.411.93.948.019.7073.822.64.73217.8434640.011.03.947.119.5068.020.84.73216.1445137.110.23.946.319.1963.019.34.73214.5445634.79.53.945.618.8058.818.04.73213.3446132.59.03.945.018.3555.216.94.73212.2446630.78.43.944.517.8452.015.94.73211.2447129.18.03.944.117.2749.315.14.73210.3447627.67.63.943.716.6746.814.34.7328.9438625.16.93.943.015.3642.613.04.7328.3429124.16.63.942.714.6640.812.54.7327.7429623.16.43.942.213.1937.611.54.7326.34011120.75.73.941.711.6435.010.74											40.89
36 47.6 13.1 3.94 9.2 19.77 81.0 24.8 4.732 20.0 43 41 43.4 11.9 3.94 8.0 19.70 73.8 22.6 4.732 17.8 43 46 40.0 11.0 3.94 7.1 19.50 68.0 20.8 4.732 16.1 44 51 37.1 10.2 3.94 6.3 19.19 63.0 19.3 4.732 14.5 44 56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 13.3 44 61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 11.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 </td <td></td> <td>42.29</td>											42.29
41 43.4 11.9 3.94 8.0 19.70 73.8 22.6 4.732 17.8 43 46 40.0 11.0 3.94 7.1 19.50 68.0 20.8 4.732 16.1 44 51 37.1 10.2 3.94 6.3 19.19 63.0 19.3 4.732 14.5 44 56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 13.3 44 61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 12.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 6.8 41 <td></td> <td>43.26</td>											43.26
46 40.0 11.0 3.94 7.1 19.50 68.0 20.8 4.732 16.1 44 51 37.1 10.2 3.94 6.3 19.19 63.0 19.3 4.732 14.5 44 56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 13.3 44 61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 12.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40											43.90
51 37.1 10.2 3.94 6.3 19.19 63.0 19.3 4.732 14.5 44 56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 13.3 44 61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 12.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 <											44.30
56 34.7 9.5 3.94 5.6 18.80 58.8 18.0 4.732 13.3 44 61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 12.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.0 12.42 36.2 11.1 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.3 40 <											44.50
61 32.5 9.0 3.94 5.0 18.35 55.2 16.9 4.732 12.2 44 66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.0 39 116 20.0 5.5 3.94 1.6 10.84 33.8 10.3 4.732 5.6 38 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44.55</td></t<>											44.55
66 30.7 8.4 3.94 4.5 17.84 52.0 15.9 4.732 11.2 44 71 29.1 8.0 3.94 4.1 17.27 49.3 15.1 4.732 10.3 44 76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 5.6 38 121 19.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 $Max =$ 19.77 44											44.47
76 27.6 7.6 3.94 3.7 16.67 46.8 14.3 4.732 9.6 43 81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 5.6 38 121 19.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 $Max =$ 19.77 44											44.29
81 26.3 7.2 3.94 3.3 16.03 44.6 13.6 4.732 8.9 43 86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.0 39 116 20.0 5.5 3.94 1.6 10.84 33.8 10.3 4.732 5.6 38 121 19.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 $Max =$ 19.77 44	71	29.1	8.0	3.94	4.1					10.3	44.01
86 25.1 6.9 3.94 3.0 15.36 42.6 13.0 4.732 8.3 42 91 24.1 6.6 3.94 2.7 14.66 40.8 12.5 4.732 7.7 42 96 23.1 6.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.0 39 116 20.0 5.5 3.94 1.6 10.84 33.8 10.3 4.732 5.6 38 121 19.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 Max = 19.77 44	76	27.6	7.6	3.94	3.7	16.67	46.8	14.3	4.732	9.6	43.66
9124.16.6 3.94 2.714.66 40.8 12.5 4.732 7.7 42 9623.16.4 3.94 2.4 13.94 39.1 12.0 4.732 7.2 41 10122.26.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 10621.45.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 11120.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.0 39 11620.0 5.5 3.94 1.6 10.84 33.8 10.3 4.732 5.6 38 12119.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 Max =19.77 44	81	26.3	7.2	3.94	3.3	16.03	44.6	13.6	4.732	8.9	43.24
9623.16.43.942.413.9439.112.04.7327.24110122.26.13.942.213.1937.611.54.7326.84110621.45.93.942.012.4236.211.14.7326.34011120.75.73.941.711.6435.010.74.7326.03911620.05.53.941.610.8433.810.34.7325.63812119.35.33.941.410.0232.710.04.7325.338Max =19.7744	86	25.1	6.9	3.94	3.0	15.36	42.6	13.0	4.732	8.3	42.76
101 22.2 6.1 3.94 2.2 13.19 37.6 11.5 4.732 6.8 41 106 21.4 5.9 3.94 2.0 12.42 36.2 11.1 4.732 6.3 40 111 20.7 5.7 3.94 1.7 11.64 35.0 10.7 4.732 6.0 39 116 20.0 5.5 3.94 1.6 10.84 33.8 10.3 4.732 5.6 38 121 19.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 Max = 19.7744	91	24.1	6.6	3.94	2.7	14.66	40.8	12.5	4.732	7.7	42.23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											41.65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											41.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											40.37
121 19.3 5.3 3.94 1.4 10.02 32.7 10.0 4.732 5.3 38 Max = 19.77 44 otes 44											39.68
Max = 19.77 44. otes											38.96
otes		19.3	5.3	3.94	1.4		32.7	10.0	4.732	5.3	38.21
) Peak flow is equal to the product of 2.78 x C x I x A											
) Rainfall Intensity, $I = A/(Tc+C)^B$) Rainfall	Intensity, I =	$= A/(Tc+C)^{B}$								
) Release Rate = Min (Release Rate, Peak Flow)					v)						
) Storage Rate = Peak Flow - Release Rate											
) Storage = Duration x Storage Rate) Maximium Storage = Max Storage Over Duration											

Marc Alain Lafleur

From: Sent: To: Subject:

Follow Up Flag: Flag Status: Alam Ansari Monday, July 17, 2017 9:42 AM Marc Alain Lafleur FW: 2500 St. Laurent

Follow up Flagged

Alam Ansari, M.Sc., P. Eng. Senior Project Manager Infrastructure Services t: 613.688.1899 x3254 | c: 613-864-6833 | e: <u>alam.ansari@exp.com</u> 100-2650 Queensview Drive Ottawa, ON K2B 8H6 <u>exp.com | legal disclaimer</u>

keep it green, read from the screen

From: Jamie Batchelor [mailto:jamie.batchelor@rvca.ca]
Sent: Monday, May 08, 2017 1:31 PM
To: Alam Ansari <alam.ansari@exp.com>
Subject: RE: 2500 St. Laurent

Good Afternoon Alam,

This site is within the catchment area for the McEwan Creek Stormwater Management Facility. Storm run off from this site would be directed to the storm sewers on St. Laurent Street and ultimately through to the East Community Trunk Storm which outlets to the McEwan Creek Stormwater Management Facility. This downstream facility provides the required water quality controls, therefore no additional onsite water quality controls would be required.

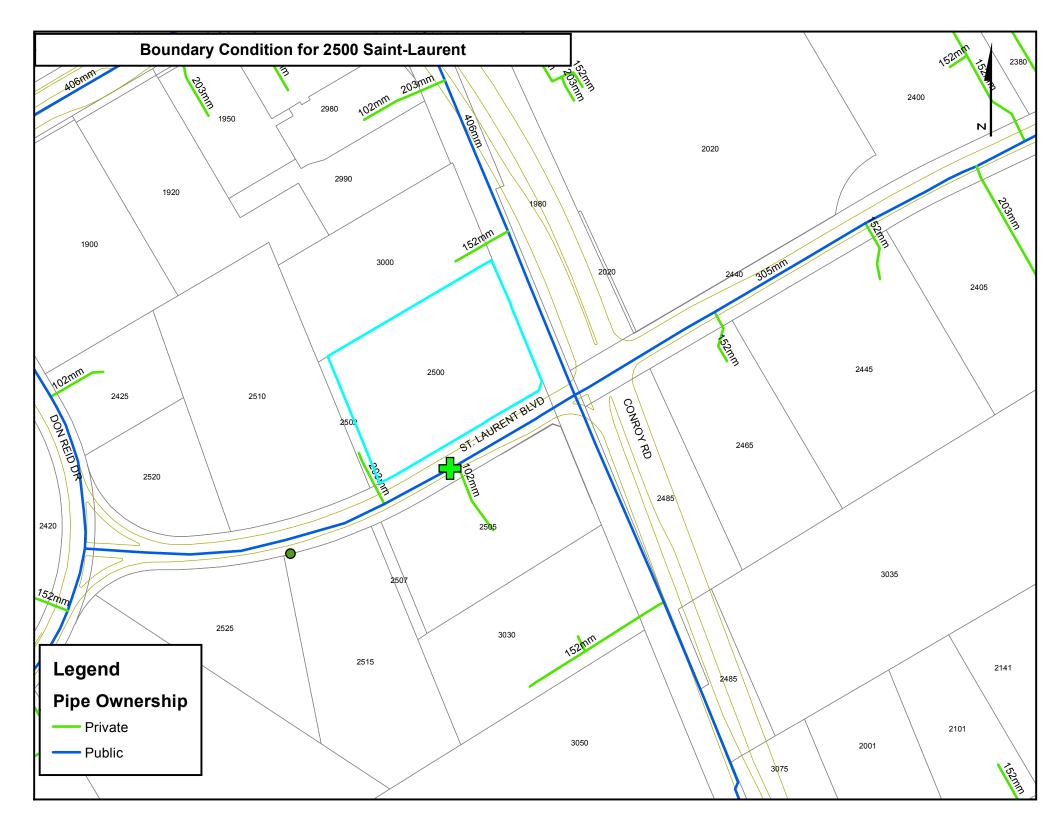
From: Alam Ansari [mailto:alam.ansari@exp.com] Sent: Tuesday, May 02, 2017 3:58 PM To: Jamie Batchelor <jamie.batchelor@rvca.ca Subject: 2500 St. Laurent

Hi Jamie:

We are working on the site servicing and SWM design for the proposed offices development at the above mentioned site and would like to know whether there is any water quality requirement for connection of the storm service connection to the City sewer main.

A copy of the site plan is attached.

Thank you



Alam Ansari, M.Sc., P. Eng. Senior Project Manager Infrastructure Services t: 613.688.1899 x3254 | c: 613-864-6833 | e: <u>alam.ansari@exp.com</u> 100-2650 Queensview Drive Ottawa, ON K2B 8H6

exp.com | legal disclaimer keep it green, read from the screen

Appendix B – Water

Fire Flow Design Sheet

Project No. OTT-00238830

Date:

Building Design Assumptions - Sprinklered, Non-Combustible

1. An estimate of the Fire Flow required for a given fire area may be estimated by: $F = 220 C_{1} A$

F = required fire flow in litres per minute

C = coefficient related to the type of construction

1.5 for wood construction (structure essentially combustible)

1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior)

- 0.8 for noncombustible construction (unprotected metal structural components, masonry or metal walls)
- 0.6 for fire-resistive construction (fully protected frame, floors, roof)

A = total floor area in square metres (including all storeys, but excluding basements at least 50% below grade) A = $\frac{1200 \text{ m}^2}{1200 \text{ m}^2}$

C = 1.5

F = 11431.5 L/min

rounded off to 12,000 L/min (min value of 2000 L/min)

2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard.

Non-combustible -25%	
Limited Combustible -15%	
Combustible 0%	
Free Burning 15%	
Rapid Burning 25%	
Reduction due to low occupancy hazard	-15% x 12,000 = 10,200 L/min

3. The value obtained in 2. may be reduced by as much as 75% for buildings equipped with automatic sprinkler protection.

Non-combustible c/w Automatic Sprir	-75%	
Combustible c/w Automatic Sprinkler	-50%	
No Automatic Sprinkler System		0%
Reduction due to Sprinkler System	<mark>0%</mark> x 10,200 =	10,200 L/min

4. The value obtained in 3. may be increased for structures exposed within 45 metres by the fire area under consideration.

3.1 10.1 20.1	0 to 3 m to 10 m to 20 m to 30 m to 30 m to 45 m	<u>Charge</u> 25% 20% 15% 10% 5%				
Side 1 Side 2 Side 3 Side 4	15 100 100 100 se due to s	0% 0%	north side east side south side west side 15% x	`	ot exceed 75%)	
The fire	flow requi	rement is or or or	3,117	L/min L/sec gpm (us) gpm (uk)		

Marc Alain Lafleur

From: Sent: To: Cc: Subject: Attachments: Oram, Cody <Cody.Oram@ottawa.ca> Tuesday, May 9, 2017 11:22 AM Marc Alain Lafleur Alam Ansari RE: 2500 Saint Laurent Blvd - Request for Water Boundary Conditions 2500 St-Laurent May 2017.pdf

Hi Marc,

The following are boundary conditions, HGL, for hydraulic analysis at 2500 St-Laurent (zone 2C) assumed to be connected to the 350mm on St-Laurent (see attached PDF for location).

Minimum HGL = 122.6m Maximum HGL = 131.4m

MaxDay (0.6 L/s) + FireFlow (197 L/s) = 124.5m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Regards,

Cody Oram, P.Eng. Senior Engineer

Development Review, South Services

Planning, Infrastructure and Economic Development Department | Services de planification, d'infrastructure et de développement économique

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West. Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste **13422**, fax/téléc:613-580-2576, cody.oram@ottawa.ca

×	The bild regression of apple . The first tasking many or Bild with Adobia parts to constitute shado.

From: Marc Alain Lafleur [mailto:MarcAlain.Lafleur@exp.com]
Sent: Friday, May 05, 2017 11:27 AM
To: Oram, Cody <Cody.Oram@ottawa.ca>
Cc: Alam Ansari <alam.ansari@exp.com>
Subject: RE: 2500 Saint Laurent Blvd - Request for Water Boundary Conditions

Hi Cody,

We have reviewed the fire flow calculations and the fire flow required for the site is 197L/s.

Thank you,

Marc Alain Lafleur, M.Eng. | exp

EIT-Design Engineer, Infrastructure **exp** Services Inc. t: +1.613.688.1899 x3298 | e: <u>marcalain.lafleur@exp.com</u> 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada <u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

From: Oram, Cody [mailto:Cody.Oram@ottawa.ca]
Sent: Wednesday, May 03, 2017 8:28 AM
To: Marc Alain Lafleur <<u>MarcAlain.Lafleur@exp.com</u>>
Cc: Alam Ansari <<u>alam.ansari@exp.com</u>>
Subject: RE: 2500 Saint Laurent Blvd - Request for Water Boundary Conditions

Hi Marc,

Can you confirm the fire flow required is 338L/s, that seems high and would require multiple on-site hydrants to achieve that rate.

Thanks, Cody

From: Marc Alain Lafleur [mailto:MarcAlain.Lafleur@exp.com]
Sent: Tuesday, May 02, 2017 2:01 PM
To: Oram, Cody <<u>Cody.Oram@ottawa.ca</u>>
Cc: Alam Ansari <<u>alam.ansari@exp.com</u>>
Subject: 2500 Saint Laurent Blvd - Request for Water Boundary Conditions

Hello Cody,

Can you please provide the water boundary conditions for 2500 St Laurent Blvd? The attached map identifies the anticipated location of the connection to the 300mm diameter watermain on Saint Laurent Blvd. The proposed development consists of two-storey office buildings. The amount of fire flow required is of **338L/s** (as per FUS, 1999) Average daily demand: **0.4L/s** Max Day Demand: **0.6L/S** Max hourly daily demand: **1.1L/s**

Thank you,

Marc Alain Lafleur, M.Eng.

EIT-Design Engineer, Infrastructure **exp** Services Inc. t: +1.613.688.1899 x3298 | e: <u>marcalain.lafleur@exp.com</u> 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada <u>exp.com | legal disclaimer</u>

keep it green, read from the screen

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Prepared By: M.Lafleur Date: February 2018

Max day(0.6L/s) + FireFlow(197L/s) HGL= 124.5 m Max HGL= 131.4 m

Max HGL = 131.4 m Min HGL = 122.6 m

Table B1 Pressure Analysis

			Flow	Pipe Dia		Q	Area		Vel	Slope of HGL	Pipe Length	Frictional Head	Equivalent Pipe Length of		Total Losses	Start Ground	End Ground	Static Head	Pressur	e From	Press	ure To	Pressure
Description	From	То	(L/sec)	(mm)	Dia (m)	(m³/sec)	(m2)	С	(m/s)	(m/m)	(m)	Loss h _f (m)	Fittings (m)	(m)	(m) h _b + h _f	Elev(m)	Elev (m)	(m)	kPa	(psi)	kPa	(psi)	Drop (psi)
Max Day + Fire Flow	Main	Fire Hydrant	197.6	200	0.200	0.1976	0.031	125	6.2898	0.175525	101	17.73	34.0	5.96785	23.69587	85.35	85.50	-0.15	383.9	(55.7)	150.1	(21.8)	33.9
Min HGL	Main	Building #2	1.1	200	0.200	0.0011	0.031	125	0.035	0.000012	125	0.00	46.0	0.00054	0.00201	85.35	85.80	-0.45	365.3	(53.0)	360.9	(52.3)	0.6
	Building #2	2nd floor	1.1	50	0.050	0.0011	0.002	125	0.5602	0.010028	10	0.10	0.0	0.00000	0.10028	85.80	89.50	-3.70	360.9	(52.3)	323.6	(46.9)	5.4

Resistance of Fittings and Valves for 200mm WM From Main to Hydran

Fittings	Loss in Equiv. Length in Pipe Diameters	Equiv. Length (metres)	Quantity (each)	Total Equiv. Length (m)	
Standard 90 ⁰ Elbow	32	6.40	3	19.2	
11.25 Degree Elbow	8	1.60	1	1.6	
22.5 Degree Elbow	12	2.40	2	4.8	
45 Degree Elbow	16	3.20	1	3.2	
Gate Valve Full -Open	13	2.60	2	5.2	
		Total:	9	34	

Resistance of Fittings and Valves for 200mm WM From Main to Building

	Equiv.			
Loss in Equiv.	Length			
Length in Pipe	(metres	Quantity	Total Equiv.	
Diameters)	(each)	Length (m)	
32	6.40	3	19.2	
8	1.60	3	4.8	
12	2.40	3	7.2	
16	3.20	3	9.6	
13	2.60	2	5.2	
	Total:	14	46	
	Length in Pipe Diameters 32 8 12 16	Loss in Equiv. Length (metres Diameters 32 6.40 8 1.60 12 2.40 16 3.20 13 2.60	Loss in Equiv. Length in Pipe DiametersMetres (metres (each)Quantity (each)326.403326.403162.403163.203132.602	Loss in Equiv. Length in Pipe DiametersHength (metres)Quantity (each)Total Equiv. Length (m)326.40319.281.6034.8122.4037.2163.2039.6132.6025.2