Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Geotechnical Investigation

Proposed Hi-Rise Residential Complex 151 Chapel Street Ottawa, Ontario

Prepared For

Trinity Development Group

April 11, 2019

Report: PG2933-3

Table of Contents

Page

1.0	INTRODUCTION 1
2.0	PROPOSED DEVELOPMENT 1
3.0	METHOD OF INVESTIGATION3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing
4.0	OBSERVATIONS4.1Surface Conditions.54.2Subsurface Profile54.3Groundwater84.4Hydraulic Conductivity9
5.0	DISCUSSION5.1Geotechnical Assessment5.2Site Grading and Preparation5.3Foundation Design5.4Design for Earthquakes5.5Basement Wall5.6Basement Slab5.7Pavement Design18
6.0	DESIGN AND CONSTRUCTION PRECAUTIONS6.1Foundation Drainage, Waterproofing and Backfill206.2Protection of Footings Against Frost Action226.3Temporary Shoring226.4Pipe Bedding and Backfill236.5Groundwater Control246.6Winter Construction246.7Corrosion Potential and Sulphates25
7.0	RECOMMENDATIONS 26
8.0	STATEMENT OF LIMITATIONS

Appendices

Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Analytical Results

Appendix 2 Figure 1 - Key Plan Figures 2 and 3 - Seismic Shear Wave Velocity Profiles Drawing PG2933-2 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Trinity Development Group to conduct a geotechnical investigation for the proposed hi-rise residential complex to be located at 151 Chapel Street in the City of Ottawa (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the current investigation were to:

- Determine the subsoil and groundwater conditions at this site by means of boreholes.
- Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

It is understood that the proposed development will consist of two 25 storey structures with 2 and 4 levels of underground parking which will have a footprint that occupies the majority of the subject site. The project will be divided into two phases with the first phase being constructed on the south portion. Based on the latest conceptual drawing provided by Trinity Development, the finished floor slab of P2 (Phase 1) and P4 (Phase 2) levels of the underground parking garage will be at a geodetic elevations of 56 and 53 m, respectively.

The former two to three storey institutional building, which included one deep basement level, was previously demolished. The subject site is approximately at grade along the perimeter with neighbouring properties and adjacent roadways which all slope downwards to Beausoleil Drive. There is a significant depressed area in the central portion of the site due to the previous demolition.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

Several field programs were completed for the geotechnical investigation which were carried out on March 21, 22 and 25, 2013, February 26, 2015, October 13 to 16, 19 to 23, 26 and 27, 2015. During that time, a total of 28 boreholes were advanced to a maximum depth of 20.7 m below existing ground surface. The previous boreholes completed during the preliminary geotechnical investigation have also been included in this geotechnical report. The borehole locations were distributed in a manner to provide general coverage of the subject site. The locations of the boreholes are shown on Drawing PG2933-2 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a truck-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were recovered using a 50 mm diameter split-spoon sampler or from the auger flights. The split-spoon and auger samples were classified on site, placed in sealed plastic bags, and transported to our laboratory for further review. The depths at which the split-spoon and auger samples were recovered from the boreholes are shown as SS and AU, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was completed in cohesive soils using a field vane apparatus.

Coring the bedrock using diamond drilling was carried out at BH 4-15, BH 5-15, BH 8-15, BH 10-15, BH 14-15, BH 16-15, BH 17-15, BH 21A-15 and BH 1-13 to confirm bedrock depths, determine the nature of the bedrock and to assess its quality. A recovery value and a Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are shown on the Soil Profile and Test Data sheets in Appendix 1. The recovery value is the ratio, in percentage, of the length of the bedrock sample recovered over the length of the drilled section. The RQD value is the ratio, in percentage, of the total length of intact rock pieces longer than 100 mm in one drilled section over the length of the drilled section. These values are indicative of the quality of the bedrock.

The overburden thickness was evaluated during the course of the previous investigation by dynamic cone penetration test (DCPT) at BH 2. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip. The steel drill rod is struck by a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets presented in Appendix 1.

Groundwater

A 51 mm in diameter PVC groundwater monitoring well was installed in BH 1-15, BH 20-15, BH 21A-15, BH 22-15, BH 24-15, BH 1-13, BH 2-13, BH 3-13 and BH 1 to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

Monitoring Well Installation

Typical monitoring well construction details are described below:

- **3** m of slotted 51 mm diameter PVC screen at base the base of the boreholes
- □ 51 mm diameter PVC riser pipe from the top of the screen to the ground surface.
- □ No.3 silica sand backfill within annular space around screen.
- **300** mm thick bentonite hole plug directly above PVC slotted screen.
- Clean backfill from top of bentonite plug to the ground surface.

Refer to the Soil Profile and Test Data sheets in Appendix 1 for specific well construction details.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The borehole locations were determined by Paterson personnel taking into consideration the presence of underground and aboveground services. The location and ground surface elevation at each borehole location was surveyed by Paterson personnel. The boreholes were surveyed with respect to a temporary benchmark (TBM), consisting of the top spindle of the fire hydrant located on the east side of Chapel Street along the west boundary of the subject site. A geodetic elevation of 65.12 m was provided to the TBM on the drawing prepared by Annis, O'Sullivan, Vollebekk Limited. The location of the TBM, boreholes, and the ground surface elevation at each borehole location are presented on Drawing PG2933-2 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil and rock core samples were recovered from the subject site and visually examined in our laboratory to review the field logs. The results are presented on the Soil Profile and Test Data sheets in Appendix 1.

Three bedrock samples were submitted for unconfined compressive strength testing.

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was analyzed to determine its concentration of sulphate and chloride along with its resistivity and pH. The laboratory test results are shown in Appendix 1 and the results are discussed in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site was formerly occupied by a two to three storey institutional building with one basement level along with associated at grade asphalt parking areas. The subject site is approximately at grade with neighboring properties and adjacent roadways with the exception of the north-central portion of the site which is approximately 3 m lower in elevation.

The site is bordered to the south by Rideau Street, to the west by Chapel Street and to the north by Beausoleil Drive and to the east by a two storey motel building which is located in close proximity to the east property limit.

4.2 Subsurface Profile

Generally, the subsoil profile encountered at the borehole locations consists of an asphaltic concrete surface followed by sand fill material mixed with gravel, cobbles and various construction debris overlying a native sand and/or a stiff to very stiff silty clay layer. A compact to very dense glacial till overlying bedrock was encountered below the silty clay deposit.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profiles encountered at each borehole location.

Fill

Fill of varying thicknesses was encountered at each of the borehole locations throughout the subject site. The overlying fill layer extended to depths varying between 0.2 and 4.6 m below the existing ground surface at BH12-15 and BH21A-15, respectively. The fill generally consists of granular crushed stone with sand, gravel, crushed concrete, brick, steel, asphalt, trace glass, ash, coal and/or slag overlying brown silty sand and/or silty clay. Practical refusal to augering was encountered within the overlying fill material at a depth of 3.1 and 3.7 at BH 21-15 and BH 4-13, respectively on inferred concrete.

Silty Sand

A 0.4 to 3.2 m thick layer of loose to compact silty sand was encountered underlying the fill material at BH 1-15 to BH 6-15, BH 9-15 to BH 12-15, BH 15-15, BH 16-15, BH 24-15, BH 2-13, BH 3-13 and BH 3 overlying the very stiff to stiff silty clay.

Silty Clay/Clayey Silty

A very stiff to stiff silty clay was encountered below the fill at all borehole locations with the exception of BH 21-15 and BH 4-13 which terminated within the fill material on inferred concrete. The upper portion of the silty clay has been weathered to a brown very stiff to stiff crust which in turn is overlying a grey silty clay.

The very stiff to stiff grey silty clay exists below the weathered crust at all borehole locations and extends to depths varying from 6.9 to 14.5 m below existing ground surface. A relatively thin layer of clayey silty was encountered below the grey silty clay at BH 5-15 to BH 9-15, BH 11-15 to BH 13-15, BH 15-15, BH 17-15, BH 18-15, BH 21A-15 and BH 23-15.

In situ shear vane tests carried out in the grey silty clay yielded undrained shear strength values ranging from 55 to 140 kPa. These values are indicative of a stiff to very stiff consistency. The bulk unit weight of the clay is estimated to be 17.5 kN/m³.

Glacial Till

A glacial till deposit extending to a maximum depth of 18.9 m below existing ground surface was encountered below the silty clay at all deep borehole locations. The glacial till consists of a fine silty sand to silty clay soil matrix mixed with gravel, cobbles and trace boulders.

Based on the SPT results, which yielded 11 to 69 blows/300 mm increment of penetration, the state of compactness of the glacial till is estimated to be compact to very dense. The bulk unit weight of the till is estimated to be 21 kN/m³.

It should be noted that a thin layer of loose sandy silty to a very dense silty sand trace gravel was encountered overlying the glacial till at BH 14-15. Running sand was encountered within the very dense silty sand at a depth of 13.7 and 16.4 m below existing ground surface at BH 14-15. Furthermore, a 0.5 m thick layer of running sand was also encountered at BH 21A-15 at a depth of 11.9 to 12.4 m.

Bedrock

Based on the available geological mapping, practical auger refusal on inferred bedrock depths and bedrock samples recovered during our geotechnical investigations, the bedrock was encountered at geodetic elevations ranging between 47.3 to 49.7 m across the subject site.

The bedrock was cored at BH4-15, BH5-15, BH8-15, BH10-15, BH14-15, BH16-15, BH17-15, BH21A-15 and BH1-13 to confirm bedrock depths, determine the nature of the bedrock and to assess its quality. Based on the results of coring, the bedrock consists of a weathered interbedded grey limestone and shale. Values for TCR, SCR and RQD were calculated for the rock core and the quality of the bedrock was assessed based on these results. Based on the observations, the upper 2 m of the bedrock is poor (RQD 25 to 50%) to excellent (RQD 90 to 100%) quality.

Unconfined compressive strength (UCS) testing was carried out on three (3) bedrock samples recovered from the boreholes.

Table 1 - Bedrock Unconfined Compressive Strength									
Sample NumerBedrock TypeBH8-15 - RC2Limestone and ShaleBH14-15 - RC2Limestone and Shale	Depth (m)	Elevation (m)	Compressive Strength (MPa)						
BH8-15 - RC2	Limestone and Shale	18.82	46.90	126.3					
BH14-15 - RC2	Limestone and Shale	17.05	47.34	53.2					
BH16-15 - RC1	Limestone and Shale	15.80	48.25	134.2					

Based on available geological mapping, the subject site is located in an area where the bedrock consists of limestone and shale of the Lindsay Formation, which is encountered at depths varying between 10 and 20 m.

4.3 Groundwater

Groundwater levels (GWL) were measured in the monitoring wells installed during the geotechnical field investigations are presented in Table 2 below. It should be noted that the groundwater level readings observed in BH 1-15 and BH 22-15 are most likely influenced by perched groundwater conditions within the overlying silty sand and fill material.

The groundwater level can also be estimated based on moisture levels and colour of the recovered soil samples. Based on these observations it is expected that the long term groundwater level within the silty clay deposit is at an approximate Geodetic elevation of 55 to 58 m. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction. However, for design purposes, the long term groundwater level should be considered at elevation 57.0 m.

Table 2 - G	roundwater	Level Readin	gs		
Borehole	Ground	Depth of	Groundwa	ater Levels	
Number	Elevation (m)	Screen (m)	Depth (m)	Elevation (m)	Recording Date
BH 1-15	63.50	6.0 to 9.1	5.40	58.10	March 25, 2015
BH 20-15	60.40	4.5 to 7.6	7.48	52.92	November 4, 2015
BH 21A-15	63.59	7.6 to 10.7	10.52	53.07	November 4, 2015
BH 22-15	61.41	4.5 to 7.6	1.11	60.30	November 4, 2015
BH 24-15	63.75	7.6 to 10.70	10.58	53.17	November 4, 2015
BH 1-13	67.73	15.6 to 18.4	15.76	51.97	April 2, 2013
BH 2-13	65.52	6.2 to 9.3	9.20	56.32	April 2, 2013
BH 3-13	63.52	6.1 to 9.2	9.32	54.20	April 2, 2013
BH 1	67.97	6.3 to 9.4	2.64	65.33	April 2, 2013
the to	p spindle of the	e fire hydrant lo	cated on the eas	t side of Chapel	k (TBM), consisting of Street along the west rovided to the TBM on

boundary of the subject site. A geodetic elevation of 65.12 m was provided to the TBM on the drawing prepared by Annis, O'Sullivan, Vollebekk Limited.

4.4 Hydraulic Conductivity

On April 2, 2013 falling head hydraulic conductivity tests (falling head test) were carried out on BH 1-13, BH 2 -13, BH 3-13 and BH 1. A falling head test consists of increasing the level of the water column within the well and measuring the gradual drawdown of the water column with respect to time. The data collected from this test can be used to determine the horizontal hydraulic conductivity (K_o) of the screened stratigraphic unit. With the data collected from the falling head test a Hvorslev Analysis was carried out. This method uses a semi-log plot of the dimensionless head on a log scale versus time. From this plot a time, t*, is determined. This time is when the dimensionless head is equal to 0.37. These plots are attached to this report. Using a predetermined shape factor, calculated from the well dimensions, a hydraulic conductivity can be determined.

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Equation 1: Hvorslev Shape Factor

Where: F: Hvorslev Shape Factor (m)

L: Saturated length of screen or open hole (m)

D: Diameter of well (m)

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

Equation 2: Horizontal Hydraulic Conductivity

Where: K: Horizontal Hydraulic Conductivity (m/minute)

- r_c: Radius of well (m²)
- F: Hvorslev shape factor (m)
- t*: time when $\frac{\Delta H^*}{\Delta H_o}$ is equal to 0.37 (minutes)
- ΔH*: Drawdown at time, t* (m)
- ΔH_o : Maximum drawdown (m)

Falling head hydraulic conductivity tests (falling head test) performed at BH 2-13, BH 3-13 and BH 1 within the underlying silty clay layer. The estimated hydraulic conductivity values ranged between 1 x 10^{-9} to 4 x 10^{-9} m/sec for the silty clay. This is universally recognized as a suitable hydraulic conductivity for a cohesive silty clay soil strata with a stiff to firm relative density. Falling head test was also performed at BH 1-13 which is installed within the underlying compact to very dense glacial till deposit. The estimated hydraulic conductivity value is 1 x 10^{-4} m/sec.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. If 2 to 4 levels of underground parking is considered for the subject development, the following foundation option has been selected by the project team for the subject development:

- Combination of secant wall and conventional soldier pile and lagging shoring system
- □ End bearing piles founded in the bedrock surface or caisson foundations socketed in the bedrock
- Conventional foundation drainage
- Class C seismic site classification

5.2 Site Preparation

Stripping Depth

Since the site excavation will occupy the entire site and will extend to a depth of approximately 12 to 14 m below the existing grade, all topsoil and fill materials will be removed from within the perimeter of the proposed building and other settlement sensitive structures.

Protective Granular Pad

It is our understanding that if the excavation will extend to a depth of approximately 12 to 14 m where the excavation bottom will be on a stiff grey silty clay or glacial till deposit. The excavation bottom will require protection from disturbance due to worker traffic and equipment. It is suggested that a 500 to 600 mm thick granular pad should be placed on the undisturbed clay and glacial till surface once exposed and should consist of an OPSS Granular B Type II material. The purpose of the granular pad is to provide a suitable surface for the piling crane.

Vibration Considerations

Construction operations are also the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipment could be the source of vibrations: hoe ram, compactor, crane, truck traffic, etc. Vibrations caused by construction operations could be the cause of the source of detrimental vibrations on the adjoining buildings and structures. Therefore, it is recommended that all vibrations be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). It should be noted that these guidelines are for today's construction standards. Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, it is recommended that a pre-construction survey be completed to reduce the risks of claims during or following the construction of the proposed building.

5.3 Foundation Design

Shallow Auxiliary Footings

Auxiliary footings (for the canopy and garage ramps), founded on an undisturbed, stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**. A geotechnical resistance factor of 0.5 was applied to the reported bearing resistance value at ULS. Although, a grade raise is not anticipated, a permissible grade raise restriction of 1 m is recommended for the subject site.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed in the dry prior to the placement of concrete for footings.

The bearing resistance value given for footings at SLS will be subjected to potential post-construction total and differential settlements of 25 and 15 mm, respectively.

End Bearing Piled Foundation

It is expected that the parking garage and buildings will be constructed over concrete filled steel pipe piles driven to refusal on the bedrock surface.

For deep foundations, concrete-filled steel pipe piles are generally utilized in the Ottawa area. Applicable pile resistance at SLS values and factored pile resistance at ULS values are given in Table 2. A resistance factor of 0.4 has been incorporated into the factored ULS values. Note that these are all geotechnical axial resistance values.

The geotechnical pile resistance values were estimated using the Hiley dynamic formula, to be confirmed during pile installation with a program of dynamic monitoring. For this project, the dynamic monitoring of 3 to 4 piles would be recommended. This is considered to be the minimum monitoring program, as the piles under shear walls may be required to be driven using the maximum recommended driving energy to achieve the greatest factored resistance at ULS values. Re-striking of all piles at least once will also be required after at least 48 hours have elapsed since initial driving.

Table 2 - Pil	e Foundation	Design Data				
Pile Outside	Pile Wall	Geotechr Resis	nical Axial tance	Final Set	Transferred Hammer	
Diameter (mm)	Thickness (mm)	SLS (kN)	Factored at ULS (kN)	(blows/ 25 mm)	Energy (kJ)	
245	9	975	1460	10	35	
245	11	1100	1650	10	42	
245	13	1200	1760	10	45	

Caisson Foundation

For the underground parking garage underlying the tower structures, a caisson foundation could be utilized. It is expected that the caissons will be socketed into the bedrock. The bedrock surface should be free of deleterious materials, loose soils and approved by the geotechnical consultant.

The caissons can be constructed by advancing casing through the overburden soils to the bedrock surface (by vibrator or augering in advance of the casing), seating the casing in the bedrock and then continuing drilling to create a rock socket. It is recommended that one caisson be constructed for each column. Considering the expected difficulty in cleaning and verifying the cleanliness of the bases of the caissons, it is recommended that the capacity of the rock socketed caissons be based solely on side wall resistance or socket shear.

Based on the borehole information, the upper 1 m of the bedrock should be ignored for purposes of socket shear. Below that level, the following values can be used. A socket shear resistance at SLS value of **1,000 kPa** can be used for the sides of clean shale bedrock sockets. A factored socket shear resistance at ULS value of **1,500 kPa** can be used for clean shale bedrock sockets. The latter value incorporates a geotechnical resistance value of 0.4.

It is recommended that the ratio of the length to diameter of the useable socket be at least 3 for the above-noted socket shear resistance values to be applicable. It is recommended that the specified concrete strength for the caissons be at least 35 MPa, in order that the socket shear values are not limited by the concrete strength.

The deformation modulus, E_r , of the sound intact rock material can be taken to be about 400 times the unconfined compressive strength, or approximately 14,400 MPa. However, considering the bedding planes and other discontinuities, the deformation modulus, E_m , of the rock mass is expected to be closer to about 100 times the unconfined compressive strength, or approximately 3,600 MPa. These values are empirical and are not based on specific testing.

5.4 Design for Earthquakes

Shear wave velocity testing was completed for the subject site to accurately determine the applicable seismic site classification for the proposed building from Table 4.1.8.4.A of the Ontario Building Code 2012. The shear wave velocity testing was completed by Paterson personnel. Two seismic shear wave velocity profiles from the testing are presented in Appendix 2.

Field Program

The shear wave testing location is presented in Drawing PG2933-2 - Test Hole Location Plan in Appendix 2. Paterson field personnel placed 24 horizontal geophones in a straight line in roughly a north-south orientation. The 4.5 Hz. horizontal geophones were mounted to the surface by means of two 75 mm ground spikes attached to the geophone land case. The geophones were spaced at 3 m intervals and connected by a geophone spread cable to a Geode 24 Channel seismograph.

The seismograph was also connected to a computer laptop and a hammer trigger switch attached to a 12 pound dead blow hammer. The hammer trigger switch sends a start signal to the seismograph. The hammer is used to strike an I-Beam seated into the ground surface, which creates a polarized shear wave. The hammer shots are repeated between five to ten times at each shot location to improve signal to noise ratio. The shot locations are also completed in forward and reverse directions (i.e.- striking both sides of the I-Beam seated parallel to the geophone array). The shot locations are located at the centre of the geophone array, 3 and 5 away from the first and last geophone as well as 20 and 30 m from the first geophone.

The methods of testing completed by Paterson are guided by the standard testing procedures used by the expert seismologists at Carleton University and Geological Survey of Canada (GSC).

Data Processing and Interpretation

Interpretation for the shear wave velocity results were completed by Paterson personnel. Shear wave velocity measurement was made using reflection/refraction methods. The interpretation is performed by recovering arrival times from direct and refracted waves. The interpretation is repeated at each shot location to provide an average shear wave velocity, Vs_{30} , of the upper 30 m profile, immediately below the building's foundation. The layer intercept times, velocities from different layers and critical distances are interpreted from the shear wave records to compute the bedrock depth at each location. The bedrock velocity was interpreted using the main refractor wave velocity, which is considered a conservative estimate of the bedrock velocity due to the increasing quality of the bedrock with depth. It should be noted that as bedrock quality increases, the bedrock shear wave velocity also increases.

Based on our analysis, the bedrock seismic shear wave velocity was calculated to be 2,170 m/s. The overburden seismic shear wave velocity was estimated to be approximately 198 m/s based on intercept times from our survey.

The Vs_{30} was calculated using the standard equation for average shear wave velocity calculation from the Ontario Building Code (OBC) 2012, as presented below.

$$\begin{split} V_{s30} &= \frac{Depth_{OfInterest}(m)}{\left(\frac{(Depth_{Layer1}(m)}{Vs_{Layer1}(m/s)} + \frac{Depth_{Layer2}(m)}{Vs_{Layer2}(m/s)}\right)} \\ V_{s30} &= \frac{30m}{\left(\frac{12m}{198m/s} + \frac{18m}{2,170m/s}\right)} \\ V_{s30} &= 435m/s \end{split}$$

Based on the results of the seismic testing, the average shear wave velocity, Vs_{30} , for the proposed building bearing on caissons at an approximate geodetic elevation of 61.00 m is 435 m/s. Therefore, a **Site Class C** is applicable for the proposed building, as per Table 4.1.8.4.A of the OBC 2012. The soils underlying the subject site are not susceptible to liquefaction.

5.5 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the basement walls of the subject structure. However, in our opinion, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a drained unit weight of 20 kN/m³. The applicable effective unit weight of the material is 13 kN/m³, where applicable.

The earth pressures acting on earth retaining structures are dependent on the characteristics of the structure, particularly with respect to whether it is a "yielding" or an "unyielding" structure. A basement wall, which is restrained laterally by the floors of the structure, is generally considered to be an unyielding structure.

Unyielding walls, such as the basement walls of the proposed structure, are considered to be subjected to "at-rest" earth pressures, as they will not deflect enough to allow for the development of "active" earth pressures. It is recommended that the at-rest earth pressure case be used for basement walls.

The total earth pressure (P_{AE}) includes the static earth pressure component (P_o) and the seismic component (ΔP_{AE}).

Static Earth Pressures

The static horizontal earth pressure (P_o) can be calculated using a triangular earth pressure distribution equal to $K_o \gamma$ H where:

- K_{o} = at-rest earth pressure coefficient of the applicable retained soil, 0.5
- γ = unit weight of the fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)

Seismic Earth Pressures

The seismic earth pressure (ΔP_{AE}) can be calculated using the earth pressure distribution equal to 0.375a_c $\gamma H^2/g$ where:

 $a_c = (1.45 - a_{max}/g)a_{max}$ $\gamma =$ unit weight of fill of the applicable retained soil (kN/m³) H = height of the wall (m)

 $g = gravity, 9.81 \text{ m/s}^2$

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32g according to OBC 2012. Note that the vertical seismic coefficient is assumed to be zero.

The total earth pressure (P_{AE}) is considered to act at a height, h, (m) from the base of the wall. Where:

 $h = \{Po(H/3) + \Delta P_{AE}(0.6H)\} / P_{AE}$

The earth pressures calculated are unfactored. For the ULS case, the earth pressure loads should be factored as live loads, as per OBC 2012.

5.6 Basement Slab

It is expected that the basement area will be mostly parking and a rigid concrete pavement structure is anticipated. It is recommended that the upper 300 mm of sub-slab fill consists of an OPSS Granular A crushed stone material. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

In consideration of the groundwater conditions encountered at the time of the construction, a subfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone under the lower basement floor. Furthermore, if managing the groundwater infiltration at the lower floor level is required (lessening the volume of groundwater infiltration), consideration should be given to pouring a 100 mm thick concrete slab over the native soil to create a more impermeable barrier.

5.7 Pavement Design

The proposed parking level slabs will be considered a rigid pavement structure. The following rigid pavement structure is recommended to support car parking only.

Table 3 - Recommended	Rigid Pavement Structure - Car Only Parking Areas
Thickness (mm)	Material Description
125	Concrete slab
300	BASE - OPSS Granular A
SUBGRADE - OPSS Granu	lar B Type II or glacial till

If flexible asphalt pavement is required for surface parking and access ramps for the subject site, the recommended pavement structures shown in Tables 4 and 5 would be applicable.

Table 4 - Recommended	Pavement Structure - Car Only Parking Areas
Thickness mm	Material Description
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
300	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either fill, in si or fill	tu soil or OPSS Granular B Type I or II material placed over in situ soil

Table 5 - Recommende	d Pavement Structure - Access Lanes and Loading Ramp
Thickness mm	Material Description
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
450	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either fill, in or fill	situ soil or OPSS Granular B Type I or II material placed over in situ soil

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with Ontario Provincial Standard Specification (OPSS) Granular B Type I or Type II material.

The pavement granulars (base and subbase) should be placed in maximum 300 mm thick layers and compacted to a minimum of 100% of the materials' SPMDDs using suitable compaction equipment. Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

6.0 Design and Construction Precautions

6.1 Foundation Drainage, Waterproofing and Backfill

Foundation Drainage

It is understood that the building foundation walls will be placed in close proximity to all the boundaries. It is expected that insufficient room will be available for exterior backfill along these walls and, therefore, the foundation wall will be blind poured against a drainage system placed against the shoring face.

It is recommended that the composite drainage system (such as Miradrain G100N or equivalent) extend down to the footing level. It is recommended that 150 mm diameter sleeves at 3 m centres be cast in the footing or at the foundation wall/footing interface to allow the infiltration of water to flow to an interior perimeter drainage pipe. The perimeter drainage pipe should direct water to sump pit(s) within the lower basement area.

Where space is available, it is recommended that a perimeter foundation drainage system be provided for the proposed structure. If provided the system should consist of a 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should be connected to sump pit(s) within the lower basement area.

Underfloor Drainage

Underfloor drainage will be required to control water infiltration due to groundwater infiltration at the proposed founding elevation. For design purposes, we recommend that 150 mm in diameter perforated pipes be placed at 8 m centres or one line within each bay. The spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

Waterproofing Requirements

Since the long term groundwater level within the silty clay deposit is expected at a depth of 5.7 to 8.7 m adjacent to Beausoleil Drive and a depth of 10.2 to 13.2 m below the existing grade adjacent to Rideau Street, waterproofing will be required from the bottom of the excavation to at a minimum of 0.5 m above the high water level (geodetic elevation 57 m) within the silty clay deposit. It's our understanding that a permanent secant wall may be used at the eastern portion of the site to manage the water tightness where adjacent buildings are more vulnerable to settlement and reduce the effects of long term groundwater lowering. The remaining areas along the soldier pile and lagging shoring system will require a sheet membrane fastened to the shoring system prior to placing the composite drainage layer.

In areas of the lower level below elevation 56.0 m, consideration should also be given to pouring a 100 mm thick concrete mud slab over the subgrade as a means of reducing horizontal groundwater infiltration from the base of the excavation.

Foundation Backfill

Where space is available for conventional wall construction, backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be used for this purpose.

Adverse Effects from Dewatering on Adjacent Structures

Assuming that the foundation drainage and waterproofing design is carried out as noted above, only minor water infiltration is expected over the long term from the base of the foundation. Based on the review of the general founding conditions existing structures surrounding the subject site and based on the proposed foundation waterproofing program being suggested above, no adverse effects from temporary and long term dewatering are expected for the subject site.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a minimum of 0.6 m of soil cover, in conjunction with foundation insulation, should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

6.3 Temporary Shoring

Temporary shoring will be required for the subject site due to the proximity of the excavation along the property boundaries. The design and approval of the shoring system will be the responsibility of the shoring contractor and the shoring designer hired by the shoring contractor. It is the responsibility of the shoring contractor to ensure that the temporary shoring is in compliance with safety requirements, designed to avoid any damage to adjacent structures and include dewatering control measures. In the event that subsurface conditions differ from the approved design during the actual installation, it is the responsibility of the shoring contractor to commission the required experts to re-assess the design and implement the required changes. Furthermore, the design of the temporary shoring system should take into consideration, a full hydrostatic condition which can occur during significant precipitation events.

Shoring in the vicinity of the neighbouring building to the east is required to prevent water infiltration in both the short and long term. Therefore, it is recommended to use an interlocking sheet piling for this portion of the excavation. The sheet piling system should be provided along the east boundary of the excavation and extend for 10 m at right angles along the south and north boundaries on each side. Earth pressures acting on the shoring system may be calculated for a temporary wall using the parameters given below.

The remainder of the excavation may consist of socketed soldier pile and lagging, or interlocking steel sheet piling. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be added to the earth pressures described below. These systems can be anchored or braced, if required. Earth pressures acting on the shoring system may be calculated using the parameters provided in Table 6.

Table 6 - Soil Parameters for Calculating Ea	arth Pressures Acting on Shoring System
Parameter	Value
Active Earth Pressure Coefficient (K _a)	0.3
Passive Earth Pressure Coefficient (K _p)	3.3
At-Rest Earth Pressure Coefficient (K _o)	0.5
Unit Weight (γ), kN/m ³	17.2
Submerged Unit Weight(γ '), kN/m ³	13

The total unit weight should be used above the waterproofing level while the submerged or effective unit weight should be used below the waterproofing level. The hydrostatic groundwater pressure should be added to the earth pressure distribution below the waterproofing level. Conventional braced excavation pressure envelopes can also be used by the shoring designer, as applicable.

Generally, it is anticipated that the shoring systems will be driven to refusal and provided with tie-back rock anchors to ensure their stability.

The design of the tie-back rock anchors can be based on an allowable grout to rock bond stress of 700 kPa at this site. It is recommended that the upper 2 m of the bedrock be disregarded. A minimum grout strength of 30 MPa is recommended. A minimum factor of safety of 1.5 should be used.

6.4 Pipe Bedding and Backfill

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A material. The material should be placed in a maximum lift thickness of 300 mm and compacted to a minimum of 95% of the SPMDD. The bedding material should extend at least to the spring line of the pipe.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

6.5 Groundwater Control

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Due to the relatively impervious nature of the silty clay materials at the anticipated founding level of the 3 to 4 levels of underground parking, it is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps within the silty clay. However, it is expected that the groundwater inflow will be controllable using open sumps and pumps.

A temporary Ontario Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW Category 3) will be required for this project since more than 400,000 L/day is expected to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be carried out in a manner to avoid the introduction of frozen materials, snow or ice into the trenches.

Precaution must be taken where excavations are carried in proximity of existing structures which may be adversely affected due to the freezing conditions. In particular, it should be recognized that where a shoring system is used, the soil behind the shoring system will be subjected to freezing conditions and could result in heaving of the structure(s) placed within or above frozen soil. Provisions should be made in the contract document to protect the walls of the excavations from freezing, if applicable.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. The base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be completed during freezing conditions.

6.7 Corrosion Potential and Sulphate

The analytical testing results are presented in Table 7 along with industry standards for the applicable threshold values. These results are indicative that Type 10 Portland cement (Type GU, or normal cement) would be appropriate for this site.

Table 7 - Corrosio	on Potential		
Parameter	Laboratory Results	Threadeald	0
	BH 2-13 4.6 to 4.9 m	Threshold	Commentary
Chloride	82 µg/g	Chloride content less than 400 mg/g	Negligible concern
рН	8.12	pH value less than 5.0	Neutral Soil
Resistivity	28.7 ohm.m	Resistivity greater than 1,500 ohm.cm	Moderate Corrosion Potential
Sulphate	302 µg/g	Sulphate value greater than 1 mg/g	Negligible Concern

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- □ Inspection of the piling installation.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Observation of all subgrades prior to backfilling.
- Density tests to determine the level of compaction achieved.

A report confirming that the above items have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review our recommendations when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and all borehole logs are furnished as a matter of general information only and borehole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A geotechnical investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, we request that we be notified immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Trinity Development Group and their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

David J. Gilbert, P.Eng.

Carlos P. Da Silva, P.Eng., ing., QP_{ESA}

Report Distribution

- Trinity Development Group (3 copies)
- D Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL RESULTS

patersongr 154 Colonnade Road South, Ottawa, O	Pr	SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario									
TBM - Top spindle of fire the west boundary of the REMARKS provided by Annis, O'Sul	east s	ide of Ch	apel Stre	eet, along ber plan	FILE NO. PG2757						
BORINGS BY CME 55 Power Auger	,				ATE /	August 14	1, 2012		HOLE N	^{ю.} BH 1	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			lows/0.3m ia. Cone	Well
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			ontent %	Monitoring Well Construction
GROUND SURFACE Asphaltic concrete0.1 FILL: Crushed stone 0.3		au Au	1	Ж		0-	-67.97	20	40	60 80	
FILL: Brown sand, trace gravel 1.0		ss	2	58	10	1-	-66.97				
		ss	3	100	5	2-	-65.97				
		ss	4	100	4		-64.97				₩
/ery stiff to stiff, brown SILTY CLAY		ss	5	100	3	3-	-64.97			· · · · · · · · · · · · · · · · · · ·	
grey by 3.3m depth		ss	6	83	1	4-	-63.97				
		ss	7	100	2	5-	-62.97			· · · · · · · · · · · · · · · · · · ·	
		ss	8	100	Ρ	6-	-61.97			•••••••••••••••••••••••••••••••••••••••	
		ss	9	100	Ρ	0	01.97			· · · · · · · · · · · · · · · · · · ·	
						7-	-60.97				
		ss	10	100	Ρ	8-	-59.97				
		x ss	11	100	Р	9-	-58.97				
trace sand by 9.8m depth					I	10-	-57.97				
11.2	28	ss	12	100	Ρ	11-	-56.97				104
End of Borehole											

20 40 60 80 Shear Strength (kPa) Undisturbed △ Remoulded

▲ Undisturbed

100

(GWL @ 2.64m-April 2, 2013)

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. BH 2-15 BORINGS BY CME 55 Power Auger DATE February 26, 2015 SAMPLE Pen. Resist. Blows/0.3m Piezometer Construction PLOT DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) STRATA RECOVERY VALUE r RQD NUMBER TYPE o/c \bigcirc Water Content % N OF **GROUND SURFACE** 20 40 60 80 0+63.58Asphaltic concrete 0.10 **FILL:** Crushed stone 0.41 FILL: Brown silty sand, trace gravel 1 + 62.58SS 1 33 1.52 SS 2 42 2 + 61.58SS 3 58 Compact, brown SILTY SAND, 3+60.58 trace gravel SS 4 50 12 4+59.58 SS 5 33 15 4.70 SS 6 58 2 5+58.58 7 SS 92 3 Stiff, brown to grey SILTY CLAY 6+57.58 SS 8 100 2 ₽ 7+56.58 SS 9 100 1 <u>7.6</u>2 End of Borehole (GWL @ 7.0m depth based on field observations) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersong	M	ır	Con	sulting	1	SOII	L PRO	FILE AI	ND TE	EST DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	P	eotechnic roposed I ttawa, Or	Multi-Sto		ng - 151	Chapel Street	
DATUM TBM - Top spindle of fire the west boundary of the REMARKS provided by Annis, O'Su	e subiec	t site.	Geoc	detic el	east	side of Ch	napel Stre	eet, along ber plan	FILE N	o. PG2933	
BORINGS BY CME 55 Power Auger	in van, i	eneb			ATE	February	26. 2015	5	HOLE	^{NO.} BH 3-15	
	E		SAN	IPLE					esist. E	Blows/0.3m	
SOIL DESCRIPTION	A PLOT		ĸ	RY	Що	DEPTH (m)	ELEV. (m)	• 5	60 mm D	ia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD			0 V	Vater Co	ontent %	Piezo
GROUND SURFACE Asphaltic concrete 0.0			-	R	z ·		63.66	20	40	60 80	
FILE: Crushed stone with sand _ 0.											•
FILL: Brown silty sand with gravel		ss	1	42	24	1.	-62.66				
	13	ss	2	33	11	2	-61.66				
£.		ss	3	42	12	2	01.00				
Compact, brown SILTY SAND						3-	60.66				-
3.9	96	ss	4	42	16						•
		ss	5	83		4-	-59.66				•
		ss	6	50	2	5-	-58.66				
Stiff, brown to grey SILTY CLAY		ss	7	100	3						
		ss	8	100	0	6-	-57.66				
		И П		100	2	7-	-56.66				
7	<u>52</u>	ss	9	50	2		50.00				₽
End of Borehole (GWL @ 7.2m depth based on field											
observations)											
										gth (kPa)	00
								▲ Undist	turbed	△ Remoulded	

patersongr		In	Con	sulting		SOIL	- PRO		ND TES	ST DATA	<u> </u>
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pr	otechnic oposed M tawa, Or	/lulti-Sto		ıg - 151 C	hapel Stree	t
TBM - Top spindle of fire h the west boundary of the s REMARKS provided by Annis, O'Sulliv	nydran subjec	t loca t site.	ted or Geoc	n the ea letic ele	ast s	ide of Ch	apel Stre	eet, along ber plan	FILE NO.	PG2933	}
CME 55 Power Auger	Unebe			October 1			HOLE NO	BH 4-15			
	_		SVI	IPLE			5, 2015	Pop B	eiet Bla	ows/0.3m	
SOIL DESCRIPTION	РГОТ					DEPTH (m)	ELEV. (m)	-	0 mm Dia		Piazomatar
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	~ /		0 N	later Con	tent %	- uo ze
ROUND SURFACE	STI	£	NUN	RECO	N O H			20	40 6		
LL: Brown silty sand with crushed 28		× × AU	1			0-	-65.48	0			
one, trace cobbles											
oose, brown SILTY SAND, trace		ss	2	62	6	1-	-64.48	0			
avel		ss	3	62	5)		
<u>2.03</u>			Ū		C	2-	-63.48			0	
								4			
						3-	-62.48		ο		
						4-	-61.48			/	7
									o		
						5-	-60.48			_	
tiff, brown to grey SILTY CLAY											
						6-	-59.48		····		
						_	/_			\mathbb{T}	
						7-	-58.48				
							10		0		
						8-	-57.48				
							50.40				
		ss	4	100	W	9-	-56.48		0		
			-		••	10	FF 40		<u> </u>	•••••••••••••••••••••••••••••••••••••••	\mathbb{N}
						10-	-55.48				
very stiff by 10.7m depth						44	EA 40	Q		1	
<u>11.43</u>		-				-	-54.48				
LACIAL TILL: Compact to very						10	52 40		· · · · · · · · · · · · · · · · · · ·	······	
ense, grey silty sand with gravel, obbles and boulders		ss	5	29	20	12-	-53.48	0			
		_ 33	5	23	20	10	-52.48	<u> </u>	· · · · · · · · · · · · · · · · · · ·	······	
						13-	52.40	20 Shea	40 6 ar Strengt		100
								Silea ▲ Undist		Remoulded	

DATUM TBM - Top spindle of fire hydrant located on the eat the west boundary of the subject site. Geodetic ele provided by Annis, O'Sullivan, Vollebekk Ltd.						SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario						
											ATE	re October 13, 2015
SOIL DESCRIPTION	РГОТ	SAMPLE				DEPTH	ELEV.	Pen. Resist. Blows/0.3m				
	STRATA PI	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)	Pen. Resist. Blows/0.3m □ ● 50 mm Dia. Cone □atomustication ○ Water Content % □atomustication				
GROUND SURFACE	STI	RECC NUL		N OF		-52.48	20 40 60 80					
GLACIAL TILL: Compact to very dense, grey silty sand with gravel, cobbles and boulders		X SS	6	100	50+		52.40					
				100		14-	-51.48					
		Vaa	_	100			-50.48					
		⊻ss	7	100	50+		-49.48	0				
		X ss	8	100	50+	17-	-48.48	0				
	B	RC	4	100	60		-00					
BEDROCK: Interbedded limestone and shale			1	100	63	18-	-47.48					
19.35		RC	2	100	85	19-	-46.48					
End of Borehole (GWL @ 9.5m depth based on field observations)												
(GWL @ 14.50m-Nov. 4, 2015)												
								20 Shea ▲ Undist	40 60 ar Strength urbed △ R		00	

patersongr		In	Con	sulting	,	SOIL	PRO	FILE AN	ND T	EST D	ΑΤΑ	
154 Colonnade Road South, Ottawa, On		-		ineers	Pr	eotechnic oposed M tawa, Or	lulti-Sto	igation rey Buildir	ng - 15	1 Chape	Street	1
DATUM TBM - Top spindle of fire h the west boundary of the s REMARKS provided by Annis, O'Sulliv	subjec	t site.	Geod	detic el	ast s	ide of Ch	apel Stre	eet, along ber plan	FILE	PC	62933	
BORINGS BY CME 55 Power Auger	,				ATE (October 2	2, 2015		HOLE	BH	5-15	
	F		SAN	IPLE			,	Pen. R	esist.	Blows/0	.3m	
SOIL DESCRIPTION	A PLOT			T T	۲ ۲	DEPTH (m)	ELEV. (m)			Dia. Con		meter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater C	Content	%	Piezometer
GROUND SURFACE		8	-	R	zř	0-	-65.31	20	40	60	80 	×
FILL: Brown silty sand, some crushed stone, trace asphalt		S AU	1					0				
1.32		ss	2	67	10	1-	-64.31	0		·····		
Compact, brown SILTY SAND		ss	3	50	19	2-	-63.31	0				
<u>2.44</u>		- ∛ ss	4	100	3	3-	-62.31					
		A 22	4	100	3	4-	-61.31					
						5-	-60.31	A				
Stiff to very stiff, brown to grey SILTY CLAY						6-	-59.31	4	0			
						7-	-58.31					
						8-	-57.31					
						9-	-56.31		C)		
						10-	-55.31					
Grey CLAYEY SILT, trace sand		ss	5	100	4	11-	-54.31	¢)			
GLACIAL TILL: Dense, grey to brown silty sand with gravel, cobbles,		- ∛ ss	6	42	50	12-	-53.31	0				
boulders						13-	-52.31	20 Shea	40 ar Stre	⁶⁰ ngth (kP		00

patersongr		ır	Con	sulting	g	SOII	_ PRO	FILE AN	ND T	EST	DATA	
154 Colonnade Road South, Ottawa, Or		_		ineers	Pi	eotechnic roposed M ttawa, Or	Multi-Sto	tigation rey Buildir	ng - 1{	51 Chaj	pel Street	t
DATUMTBM - Top spindle of fire the west boundary of the provided by Annis, O'Sulli	subjec	t site.	Geod	detic e	east s levat	side of Ch ion = 65.1	apel Stre 2m, as p	eet, along ber plan	FILE		PG2933	
BORINGS BY CME 55 Power Auger	ivan, v	oneov			ATE	October 2	22. 2015		HOL	^{E NO.} B	BH 5-15	
	Ę		SAN	/IPLE				Pen. R	esist.	Blows	s/0.3m	
SOIL DESCRIPTION	PLOT			×	M .	DEPTH (m)	ELEV. (m)	• 5	0 mm	Dia. Co	one	neter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			• V	Vater	Conten	it %	Piezometer
GROUND SURFACE	ES	H	NN	REC	N O		-52.31	20	40	60	80] هر
						- 13-	-52.31					
		ss	7	54	43	14-	-51.31	0				×.
GLACIAL TILL: Dense, grey to		Δ										
brown silty sand with gravel, cobbles, boulders						15-	-50.31					
		∑ss	8	83	50+			0				
						16-	-49.31					
		= RC	1	100		17	-48.31					
							-40.31					
<u>18.00</u>	D					18-	-47.31					
		_RC	2	100	100						· · · · · · · · · · · · · · · · · · ·	
BEDROCK: Interbedded limestone and shale		RC	3	98	98	19-	-46.31					
19.86	$6^{\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}}$											
End of Borehole												
(GWL @ 9.5m depth based on field observations)												
(GWL @ 14.05m-Nov. 4, 2015)												
										60 ength (l	kPa)	00
								▲ Undist	urbed	∆ Rer	moulded	

_

patersongr		In	Con	sulting		SOIL	PRO	FILE AI	ND TE	ST D	ΑΤΑ	
154 Colonnade Road South, Ottawa, Or		-		ineers	Pr	eotechnic oposed M tawa, Or	/lulti-Sto	igation rey Buildir	ng - 151	Chapel	Street	
DATUMTBM - Top spindle of fire the west boundary of the provided by Annis, O'Sull	hydrar subjec	nt loca t site.	ted o Geoc	n the e detic el	ast s evati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along er plan	FILE NO		2933	
BORINGS BY CME 55 Power Auger	ivan, v	onebe				October 2			HOLE N	^{o.} BH	6-15	
	F		SAN	/IPLE				Pen. R	esist. B	lows/0.	3m	
SOIL DESCRIPTION	A PLOT				변이	DEPTH (m)	ELEV. (m)		0 mm Di			Piezometer
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of ROD				/ater Co			Piezo
GROUND SURFACE		×		Ř	4	0-	-65.24	20	40	60 8	30	T
FILL; Brown silty sand with gravel,		× SS	1 2	46	50+							
trace cobbles		A 22	2	40	50+	1-	-64.24					
2.00 Compact, brown SILTY SAND		ss	3	58	36	2-	-63.24					
						3-	-62.24	А.				
						4-	-61.24					
						5-	-60.24	<u>А</u>		· · · · · · · · · · · · · · · · · · ·		
Stiff, brown to grey SILTY CLAY						6-	-59.24					
						7-	-58.24					
						8-	-57.24	4				
										\ \		
						9-	-56.24					×
10.0	6					10-	-55.24					
Grey CLAYEY SILT, trace sand		ss	4	100	2	11-	-54.24					
GLACIAL TILL: Dense to very	3					12-	-53.24					
dense, grey silty sand with gravel, cobbles and boulders		ss	5	67	37	13-	-52.24					
							52.24	20 Shea ▲ Undist	ar Streng		-	0

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. **PG2933** REMARKS HOLE NO. BH 6-15 BORINGS BY CME 55 Power Auger DATE October 23, 2015 SAMPLE Pen. Resist. Blows/0.3m PLOT Piezometer Construction DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) STRATA RECOVERY VALUE r RQD NUMBER TYPE o/0 Ο Water Content % N VJ **GROUND SURFACE** 20 40 60 80 13+52.24 GLACIAL TILL: Dense to very SS 6 14 + 51.2454 54 dense, grey silty sand with gravel, cobbles and boulders 15+50.247 🛛 SS 100 50 +15.75 End of Borehole Practical refusal to augering at 15.75m depth (GWL @ 9.3m depth based on field observations) (Piezometer blocked at 4.07m depth - Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersong 154 Colonnade Road South, Ottawa, Ont		-		sulting	Pr	eotechnical Inves	tigation	ND TEST DATA
DATUM TBM - Top spindle of fire h the west boundary of the s REMARKS provided by Annis, O'Sulliv	ubiec	t site.	Geo	detic ele	ast s evati	ide of Chapel Str on = 65.12m, as	eet, along oer plan	FILE NO. PG2933
REMARKS provided by Annis, O'Sulliv BORINGS BY CME 55 Power Auger	/an, v	onebe	JKK L		TE (October 26, 2015		HOLE NO. BH 7-15
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH ELEV.	Pen. Re	esist. Blows/0.3m 0 mm Dia. Cone
SUL DESCRIPTION	STRATA P	TYPE	NUMBER	% RECOVERY	VALUE r rod	(m) (m)		0 mm Dia. Cone
GROUND SURFACE	STF	ТХ	NUN	RECC	N OF V		20	40 60 80
sphaltic concrete0.10 ILL: Crushed stone 0.36		au	1			0+64.24		
ILL: Brown silty sand, some gravel		ss	2	67	11	1-63.24		
nd organics		ss	3	83	3	2+62.24		
<u>2.21</u>		ss	А	100	0	2_02.24		
		822	4	100	2	3-61.24		
						4-60.24		T
tiff, brown to grey SILTY CLAY						5+59.24		
						6-58.24		
						7-57.24		
						8+56.24		
<u>9.14</u>						9+55.24		
						10-54.24		
ery stiff, grey CLAYEY SILT to ILTY CLAY, trace sand		ss	5	100	2	11-53.24		
11.73								
LACIAL TILL: Dense to very ense, brown silty sand with gravel,		ss	6	75	42	12-52.24		
obbles and boulders						13-51.24	20	40 60 80 100
							Shea ▲ Undist	ar Strength (kPa) urbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. BH 7-15 DATE October 26, 2015 BORINGS BY CME 55 Power Auger SAMPLE Pen. Resist. Blows/0.3m Piezometer Construction STRATA PLOT DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY VALUE r RQD NUMBER TYPE o/0 Ο Water Content % N V OF **GROUND SURFACE** 20 40 60 80 13 + 51.24⊠ SS 7 50 50+ 14 + 50.24GLACIAL TILL: Dense to very dense, brown silty sand with gravel, cobbles and boulders 15+49.24 SS 8 50 +100 16+48.24 16.64 End of Borehole Practical refusal to augering at 16.64m depth (GWL @ 8.5m depth based on field observations) (BH dry - Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr	ΟΙ	JN	Con	sulting		SOIL	- PRO	FILE AI	ND TE	EST D	ΑΤΑ	
154 Colonnade Road South, Ottawa, Or		-		neers	Pr	eotechnic oposed N tawa, Or	/lulti-Sto	tigation rey Buildir	ng - 151	Chape	l Street	
TBM - Top spindle of fire the west boundary of the REMARKS provided by Annis, O'Sulli	subied	t site.	Geod	letic ele	ast s evatio	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along ber plan	FILE N	PG	62933	
BORINGS BY CME 55 Power Auger	,				TE (October 2	27, 2015		HOLE	^{NO.} BH	8-15	
SOIL DESCRIPTION	PLOT		SAM	IPLE		DEPTH	ELEV.			Blows/0 Dia. Con		ter
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)			ontent		Piezometer
GROUND SURFACE	LS	H	NN	REC	N O H			20	40	60	80	<u>а</u> (
ILL: Brown silty sand with crushed _{0.38}	3	AU	1			0-	-65.72	0				
ILL: Brown silty sand, trace coal nd organics		ss	2	71	5	1-	-64.72	0				
2.39		ss	3	75	3	2-	-63.72	O				
<u>Z.3</u>		ss	4	100	3	3-	-62.72			0		
						4-	-61.72					
						5-	-60.72			0		
tiff, brown to grey SILTY CLAY						6-	-59.72					
						7-	-58.72					
						8-	-57.72		0			
						9-	-56.72					
						10-	-55.72					Ţ
		ss	5	100	3	11-	-54.72			>		
rey CLAYEY SILT , some sand	3	ss	6	100	3	12-	-53.72	C)			
. ,			Ŭ		J	13-	-52.72	20	40			00
								Shea		gth (kP △ Remo	-	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Proposed Multi-Storey Building - 18 Ottawa, Ontario DATUM TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. FILE BORINGS BY CME 55 Power Auger DATE October 27, 2015 SOIL DESCRIPTION Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Pen. Resist. Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description	D TEST DATA				g 📃	sulting	Con	Jn		patersongr
the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan Provided by Annis, O'Sullivan, Vollebekk Ltd. BORINGS BY CME 55 Power Auger SOIL DESCRIPTION GROUND SURFACE Grey CLAYEY SILT, some sand 13.41 GIACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders T.50 RC 1 52 RC 1 52 RC 2 100 90 RC 2 100 90 RC 2 100 90 RC 10.2m depth based on field observations) RC 10.2m depth based on field GRUL @ 10.2m depth based on field observations)	- 151 Chapel Street		Aulti-Stor	roposed N	P	ineers		-		
HOLI BORINGS BY CME 55 Power Auger DATE October 27, 2015 SOIL DESCRIPTION SAMPLE DEPTH (m) Pen. Resist. GROUND SURFACE GROUND SURFACE SS 7 83 50+ 14- 51.72 0 40 GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders 13.41 FS 8 50 50+ 15- 50.72 0 0 Water of the state of the s	FILE NO. PG2933	et, along er plan	apel Stre 2m, as p	side of Cha ion = 65.1	east s levat	detic e	Geod	t site.	ubjec	the west boundary of the s
SAMPLE DEPTH (m) Pen. Resist. • 50 mm GROUND SURFACE Grey CLAYEY SILT, some sand (regrey clayery Silt), some sand (regrey silty sand with gravel, cobbles and boulders 13.41 SS 7 83 50+ 14-51.72 0 0 Water of (regrey clayery silt) GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders RC 1 52 16-49.72 16-49.72 0 0 Water of (regrey silt) 16-49.72 0 0 Water of (regrey silt) 0 Water of (regrey silt) 0 <	BH 8-15		27, 2015	October 2	ATE		-		,	
GROUND SURFACE Mathematical Structure Mathmathmatical Structure Mathem	sist. Blows/0.3m	Pen. Re					SAN		Ę	
Grey CLAYEY SILT, some sand13.4113-52.72GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and bouldersSS783 $50+$ $14-51.72$ 0 RC1 52 $50+$ $15-50.72$ 0 0 $16-49.72$ 0 BEDROCK: Interbedded limestone and shaleRC1 52 100 90 $18-47.72$ BEDROCK: Interbedded limestone and shale 19.03 RC2 100 90 $18-47.72$ GWL @ 10.2m depth based on field observations) $10.2m$ depth based on field 100 10 $19-46.72$	sist. Blows/0.3m mm Dia. Cone	• 50		(m)	Що	RY	R			SOIL DESCRIPTION
Grey CLAYEY SILT, some sand 13.41 13-52.72 GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders SS 7 83 50+ 14-51.72 0 RC 1 52 15-50.72 0 0 0 0 0 BEDROCK: Interbedded limestone and shale 17.50 RC 1 52 100 90 18-47.72 0 GWL @ 10.2m depth based on field observations) 19-46.72 19-46.72 19-46.72 19-46.72 19-46.72	iter Content %	• w			VALU DE RO	COVE	NUMBE	ТҮРЕ	STRAT	
GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and bouldersSS783 $50+$ $14-51.72$ \odot GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders \approx SS8 50 $50+$ $15-50.72$ $16-49.72$ \odot BEDROCK: Interbedded limestone and shaleRC1 52 $17-48.72$ $18-47.72$ BEDROCK: Interbedded limestone and shale 19.03 RC2 100 90 $18-47.72$ GWL @ 10.2m depth based on field observations) $10.2m$ depth based on field		20	-52.72	- 13-	z	RE	4			
GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders $=$ SS850 $50+$ $15-50.72$ $16-49.72$ Image: SS and boulders RC 1 52 $17-48.72$ Image: SS and boulders RC 2 100 90 $18-47.72$ Image: SS and shale 19.03 $19-46.72$ $19-46.72$								- -		13.41
GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders SS 8 50 50+ 16-49.72 Image: SS and boulders Image: SS		0	-51.72	14-	50+	83	7	ss		
GLACIAL TILL: Very dense, dark grey silty sand with gravel, cobbles and boulders SS 8 50 50+ 16-49.72 16-49.72 17-48.72 BEDROCK: Interbedded limestone and shale 19.03 End of Borehole (GWL @ 10.2m depth based on field observations)										
GLACIAL TILL: very delise, data grey silty sand with gravel, cobbles and boulders 16-49.72 17-48.72 BEDROCK: Interbedded limestone and shale 19.03 End of Borehole (GWL @ 10.2m depth based on field observations)			-50.72	15-						
And boulders And boulders Interbedded limestone and shale Interbedded limestone Interbedded limestone Interb		Ō			50+	50	8	≍ SS		GLACIAL TILL: Very dense, dark
BEDROCK: Interbedded limestone and shale Image: Second Se			-49.72	16-						and boulders
BEDROCK: Interbedded limestone and shale End of Borehole (GWL @ 10.2m depth based on field observations)										
BEDROCK: Interbedded limestone and shale RC 2 100 90 18-47.72 End of Borehole (GWL @ 10.2m depth based on field observations)			-48.72	17-		52	1			
RC 2 100 90 19.03 End of Borehole (GWL @ 10.2m depth based on field observations)						52	I			17.50
and shale 19.03 End of Borehole (GWL @ 10.2m depth based on field observations)			-47.72	18-						BEDROCK: Interbedded limestone
End of Borehole (GWL @ 10.2m depth based on field observations)					90	100	2	RC		
(GWL @ 10.2m depth based on field observations)			-46.72	19-				-		
observations)										
(GWL @ 5.71m-Nov. 4, 2015)										
										(GWL @ 5.71m-Nov. 4, 2015)
20 40 Shear Street	40 60 80 100 Strength (kPa)									

patersong	rn	hir	Con	sulting		SOIL	- PRO	FILE AI		EST DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	Pr	eotechnic roposed N ttawa, Or	/lulti-Sto		ng - 15 [.]	1 Chapel Stree	et
DATUM TBM - Top spindle of fire the west boundary of the	e subi	iect site.	Geod	detic el	ast s	ide of Ch	apel Stre	eet, along ber plan	FILE	NO. PG2933	3
REMARKS provided by Annis, O'Su BORINGS BY CME 55 Power Auger	llivari	, vonebe			ATE	October 2	26. 2015		HOLE	^{NO.} BH 9-15	
	E	-	SAN	/PLE				Pen. R	esist.	Blows/0.3m	
SOIL DESCRIPTION	PT.OT			ĸ	E a	DEPTH (m)	ELEV. (m)	• 5	0 mm l	Dia. Cone	neter uctio
	атата	TYPE	NUMBER	% RECOVERY	VALUE r RQD			• V	Vater C	content %	Piezometer Construction
GROUND SURFACE	້. ບໍ	o [N	REC	N OL OL	- 0-	-67.16	20	40	60 80	щО
	05 🔀 25 🗍		1				07.10	0			
		ss	2	46	16	1-	-66.16	0			
Compact, brown SILTY SAND	· . · .										
2.	21	X SS	3	58	30	2-	-65.16	0			
		ss	4	100	2					0	
						3-	-64.16	<u>А</u>	· · · · · · · · · · · · · · · · · · ·		
						1	60.16				
						4-	-63.16				
						5-	-62.16				
						6-	-61.16				
Stiff, brown to grey SILTY CLAY											
						7-	-60.16				
							50.10				
						8-	-59.16				
						9-	-58.16		· · · · · · · · · · · · · · · · · · ·		
									0		
						10-	-57.16		· · · · · · · · · · · · · · · · · · ·		
											₽
		ss	5	100	2	11-	-56.16				
		ss	6	100	2	12-	-55.16				
					۷	13-	-54.16		0		
								20 Shea	40 ar Strei	60 80 ngth (kPa)	100
								▲ Undist		△ Remoulded	

patersongr		In	Con	sulting	,	SOIL	_ PRO	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	ieotechnic Proposed M Ottawa, Or	Multi-Sto	igation ey Building - 151 Chapel Street
DATUMTBM - Top spindle of fire h the west boundary of the s provided by Annis, O'Sulliv	ubiec	t site.	Geoc	letic el	evat evat	side of Ch tion = 65.1	apel Stre 2m, as p	er plan FILE NO. PG2933
BORINGS BY CME 55 Power Auger	an, i	0			ATE	October 2	26, 2015	HOLE NO. BH 9-15
¥	Ę		SAN	IPLE				Pen. Resist. Blows/0.3m
SOIL DESCRIPTION	A PLOT		Я	RY	Що	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone • 0 • Water Content %
	STRATA	Ξ₫ХТ	NUMBER	% RECOVERY	N VALUE			○ Water Content %
GROUND SURFACE			I	R	z ^o		-54.16	20 40 60 80
Stiff, grey SILTY CLAY		ss	7	100	2	14-	-53.16	<u>O</u>
Grey CLAYEY SILT , some sand		ss	8	100	4		-52.16	C
GLACIAL TILL: Dark grey silty sand with gravel, cobbles and boulders		⊠ SS	9	100	50+	. 17-	-51.16 -50.16 -49.16	0
End of Borehole		X SS	10	100	50+		-49.16	0
Practical refusal to augering at 18.72m depth (GWL @ 10.5m depth based on field observations)								
(BH dry - Nov. 4, 2015)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr 154 Colonnade Road South, Ottawa, Or		-		isulting ineers	Pr	eotechnic	al Invest Iulti-Sto	FILE AN igation rey Buildir					
DATUMTBM - Top spindle of fire the west boundary of the provided by Annis, O'Sull	hydra subjec ivan, \	nt loca ct site. /ollebe	ited o Geog ekk L	n the e detic el td.	ast s	ide of Cha	apel Stre	eet, along er plan	FILE		PG2	933	
BORINGS BY CME 55 Power Auger	,					October 1			HOLE	E NO.	BH1	0-15	
			~ ~ ~				0, 2015		•••		(0.0		
SOIL DESCRIPTION	PLOT			/IPLE ਮ	61	DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. 0 mm			m	neter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE SE ROD			• v	Vater (Conte	ent %		Piezometer
GROUND SURFACE	0		N	RE	zö	0-	-67.73	20	40	60	80		~~~
Asphaltic concrete0.0 FILL: Crushed stone 0.2		N AU	1				07.75	0					
_oose, brown SILTY SAND		ss	2	75	6	1-	-66.73		c)))))))))))))))))))			
1.9	8	ss	3	100	4	2-	-65.73		· · · · · · · · · · · · · · · · · · ·	0			
		ss	4	100	1	3-	-64.73		0				
						4-	-63.73		· · · · · · · · · · · · · · · · · · ·				
						5-	-62.73						
Stiff, brown to grey SILTY CLAY						6-	-61.73		· · · · · · · · · · · · · · · · · · ·				
						7-	-60.73				·····		
						8-	-59.73		· · · · · · · · · · · · · · · · · · ·				
						9-	-58.73		· · · · · · · · · · · · · · · · · · ·			/	
						10-	-57.73			N			
						11-	-56.73						
						12-	-55.73		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
						13-	-54.73	20 Shea	40 ar Stre	60 enath	80 (kPa)		D

patersongr		In	Con	sulting		SOII	_ PRO	FILE AN	ND TES	ST DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	P	eotechnic oposed M ttawa, Or	Multi-Sto	tigation rey Buildir	ng - 151 C	hapel Street	:
DATUM TBM - Top spindle of fire the west boundary of the provided by Annis, O'Sulli	subied	ct site.	Geod	detic ele	ast s evati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along ber plan	FILE NO.	PG2933	
BORINGS BY CME 55 Power Auger	van, v	VUIEDE			TF	October 1	16 2015		HOLE NO	BH10-15	
	ы		SAN					Pen B	esist. Blo	ws/0.3m	
SOIL DESCRIPTION	A PLOT		_		Ĕ۵	DEPTH (m)	ELEV. (m)		0 mm Dia		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	VALUE r RQD			0 V	/ater Con	tent %	onst
GROUND SURFACE	Ω Ω		Ń	REC	и о И	13-	-54.73	20	40 6	0 80	
							04.70				
Stiff to very stiff, grey SILTY CLAY						14-	-53.73				0
15.24	1					15-	-52.73				
		ss	5	29	26			0			
						16-	-51.73				
GLACIAL TILL: Compact to very											
dense, grey silty sand with gravel, cobbles and boulders		ss	6	62	93	17-	-50.73	0	· · · · · · · · · · · · · · · · · · ·		
										•••••••••••••••••••••••••••••••••••••••	
						18-	49.73				-
10.01	_	∱∑ ss	7	83	50+			O			
<u>18.9</u>	D	<u>.</u>				19-	48.73				
BEDROCK: Interbedded limestone		RC	1	100	76						•
and shale						20-	47.73				-
End of Borehole											
(GWL @ 9.5m depth based on field											
observations)											
(GWL @ 6.47m-Nov. 4, 2015)											
								20 Shea ▲ Undist	40 60 ar Strengt urbed △		00

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. **PG2933** REMARKS HOLE NO. BH11-15 BORINGS BY CME 55 Power Auger DATE October 15, 2015

BORINGS BY CME 55 Power Aug		1		Ľ		October 1	15, 2015	DI11-13
SOIL DESCRIPTION	PLOT		SAN		1	DEPTH (m)	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA 1	ТҮРЕ	NUMBER	°⊗ RECOVERY	N VALUE or RQD	(11)	(m)	Pen. Resist. Blows/0.3m ↓ ● 50 mm Dia. Cone ↓ ○ Water Content % ↓
GROUND SURFACE		÷~		щ		0-	67.29	20 40 60 80
Asphaltic concrete	0.13	AU	1					
Compact, brown SILTY SAND	1.42	ss	2	29	21	1-	-66.29	
		ss	3	100	2	2-	-65.29	
		ss	4	100	1	3-	-64.29	
						4-	-63.29	
						5-	-62.29	
						6-	-61.29	
Stiff, brown to grey SILTY CLAY						7-	-60.29	
						8-	-59.29	
						9-	-58.29	
						10-	-57.29	
						11-	-56.29	
						12-	-55.29	
						13-	-54.29	20 40 60 80 100 Shear Strength (kPa)

patersongr	OI	JD	Con	sulting					ND TES	T DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	Pr	eotechnic oposed I tawa, Or	Multi-Sto		ng - 151 C	hapel Street	
DATUMTBM - Top spindle of fire hthe west boundary of the sREMARKSprovided by Annis, O'Sulliv	nydrar subjec van. V	nt loca t site. /ollebe	ited o Geoc ekk Lt	n the e detic e td.	ast s	ide of Ch	apel Stre	eet, along ber plan	FILE NO.	PG2933	
BORINGS BY CME 55 Power Auger	,					October 1			HOLE NO.	BH11-15	
	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blo		L.
SOIL DESCRIPTION		E	ER	ERY	VALUE r RQD	(m)	(m)	• 5	0 mm Dia	. Cone	Piezometer
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VA of F			0 V 20	40 60		Piez Biez
	W.	+				13-	-54.29			, 	
Stiff, grey CLAYEY SILT 14.63						14-	-53.29		<u>×</u>		
		ss	5	58	36		-52.29				
GLACIAL TILL: Dense to very dense, grey silty sand with gravel, cobbles and boulders		× SS	6	100	50+		-51.29 -50.29				
		≍ SS	7	100	50+		-49.29				
18.97 End of Borehole		-									-
Practical refusal to augering at 18.97m depth											
(GWL @ 9.5m depth based on field observations)											
(BH dry - Nov. 4, 2015)											
								20 Shea ▲ Undist	40 60 ar Strengt		⊣ 00

patersongr		In	Con	sulting		SOIL	- PRO		ND TES	T DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	Pr	eotechnic oposed N tawa, Or	Aulti-Stor		ng - 151 Cł	napel Street	t
DATUM TBM - Top spindle of fire h the west boundary of the s provided by Annis, O'Sulliv	ubiec	t site.	Geoc	detic el	ast s	ide of Ch	apel Stre	et, along er plan	FILE NO.	PG2933	
BORINGS BY CME 55 Power Auger	ran, v	011000			TE (October 1	6 2015		HOLE NO.	BH12-15	
			SAN	IPLE				Don B	esist. Blov	we/0.3m	
SOIL DESCRIPTION	A PLOT				Щ.	DEPTH (m)	ELEV. (m)		0 mm Dia.		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	/ater Cont	ent %	Piezo Const
GROUND SURFACE		×	-	8	z	0-	-66.04	20	40 60	80	×× ××
FILL: Brown silty sand, some grave0.15	\prod	S AU	1								
Compact, brown SILTY SAND		ss	2	83	15	1-	-65.04				
								A			
						2-	-64.04			/	\mathbb{R}
						3-	-63.04				
								4		*	
						4-	-62.04				
						5	-61.04	4			
Stiff, brown to grey SILTY CLAY						5-	-01.04				
						6-	-60.04				
										^	
						7-	-59.04		/		
									/		
						8-	-58.04				
			~		147	9-	-57.04]
		ss	3	100	W					$\left \right\rangle$	
						10-	-56.04				
10.52		-									
						11-	-55.04			1	20
]
Grey CLAYEY SILT with sand						12-	-54.04				
		∛ss	А	100	0	12-	54.04				
12.95		1 22	4	100	2						
		-				13-	-53.04	20 Shea	40 60 ar Strength		 00
								▲ Undist		Remoulded	

rni	In	Con	sulting	3	SOII	L PRO	FILE AN	ND TE	ST DATA		
	-		ineers	P	roposed I	Multi-Sto		ng - 151	Chapel Street	t	
e subiec	t site.	Geod	detic el	east s levat	side of Ch ion = 65.1	apel Stre 2m, as p	eet, along ber plan	FILE NC			
in van, i	011000			ATE	October 1	16, 2015		HOLE N	^{o.} BH12-15		
Ę		SAN	IPLE				Pen. R	esist. B	lows/0.3m		
					(m)	ELEV. (m)	• 5	0 mm Di	a. Cone	meter uctio	
[RAT]	LYPE	JMBEI	COVEI	VALU ? RQI			0 V	Vater Co	ntent %	Piezometer Construction	
		IN	REC	z ^ö		-53 04	20	40	60 80	шО	
	ss	5	0	5		00.01			· · · · · · · · · · · · · · · · · · ·		
					14-	-52.04			······		
	× ss	6	67	50+							
					15-	-51.04				-	
	≍ ss	7	60	50+	16-	-50.04				-	
					17-	49 04			· · · · · · · · · · · · · · · · · · ·	-	
										-	
86 ^^^^/	⊠ SS	8		50+					· · · · · · · · · · · · · · · · · · ·		
							20	40	60 80 1	00	
							Shea	ar Streng	jth (kPa)		
	Dottario H e hydrau e subjec illivan, \ LOTI ELEVILS	Dottario K2E 7J e hydrant loca e subject site. Illivan, Vollebe	Dotario K2E 7J5 e hydrant located o e subject site. Geografilivan, Vollebekk Li to Ta ELEVALS SS SS SS SS 6 SAN SS 5 SS 6 SAN SS 5 SS 7	Datario K2E 7J5 e hydrant located on the e e subject site. Geodetic e illivan, Vollebekk Ltd.	Endersity Pinor Proprietor Pinor	Summer Geotechnic Proposed I Ottawa, On Ottawa, On e hydrant located on the east side of Che e subject site. Geodetic elevation = 65.1 DATE October Image: Sample site of the second site of the subject site. Geodetic elevation = 65.1 Image: Sample site of the second site of the subject site. Geodetic elevation = 65.1 Image: Sample site of the second site of the subject site. Geodetic elevation = 65.1 Image: Sample site of the second site of the sec	OutpendimensionGeotechnical Invest Proposed Multi-Sto Ottawa, OntarioSolution (Colspan=1000)e hydrant located on the east side of Chapel Stree e subject site. Geodetic elevation = 65.12m, as publican, Vollebekk Ltd.DATE October 16, 2015The SAMPLE The Solution of the east side of Chapel Stree Depth (Colspan=1000)DATE October 16, 2015The Sample The Solution of the east side of Chapel Stree Depth (Colspan=1000)DATE October 16, 2015The Sample The Solution of the east side of Chapel Stree Depth (Colspan=1000)DATE October 16, 2015The Sample The Solution of the east side of Chapel Stree Depth (Colspan=1000)Solution of the east side of Chapel Stree Depth (Colspan=1000)DATE October 16, 2015The Sample Depth (Colspan=1000)DEPTH ELEV. (m)SS 5 0 513-53.0414-52.04Adv colspan="2">14-52.04Adv colspan="2">16-50.04Adv colspan=1000000000000000000000000000000000000	Same Best State Best State Same 2000 cmisumers Geotechnical Investigation Proposed Multi-Storey Buildin Ottawa, Ontario 20 proposed Multi-Storey Buildin Depth Elev. 21 proposed Multi-Storey Buildin Depth Elev. 22 proposed Multi-Storey Buildin Depth Elev. 22 proposed Multi-Storey Buildin Depth Elev. 23 proposed Multi-Storey Buildin Depth Elev. 24 proposed Multi-Storey Buildin Depth Elev. 25 proposed Multi-Storey Buildin Depth Elev. 26 proposed Multi-Storey Buildin Depth Elev. 27 proposed Multi-Storey Buil	Ditatio K2E 7J5 Geotechnical Investigation Proposed Multi-Storey Building - 151 rottawa, Ontario a hydrant located on the east side of Chapel Street, along a subject site. Geodetic elevation = 65.12m, as per plan Illivan, Vollebekk Ltd. PER Resist. Bi Post Cotober 16, 2015 Date October 16, 2015 Per Resist. Bi 0 Vollebekk Ltd. Vollebekk Ltd. <th colspa<="" td=""><td>Datario K2E 7J5 Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario a hydrant located on the east side of Chapel Street, along a subject site. Geodetic elevation = 65.12m, as per plan lilivan, Vollebekk Ltd. FILE NO. BH12-15 DATE October 16, 2015 Det October 16, 2015 Pen. Resist. Blows/0.3m • 50 mm Dia. Cone O Water Content % 20 40 60 80 X SS 6 6 67 50+ 14 + 52.04 X SS 7 60 50+ 16 - 50.04 X SS 7 60 50+ 17 - 49.04 X SS 8 50+</td></th>	<td>Datario K2E 7J5 Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario a hydrant located on the east side of Chapel Street, along a subject site. Geodetic elevation = 65.12m, as per plan lilivan, Vollebekk Ltd. FILE NO. BH12-15 DATE October 16, 2015 Det October 16, 2015 Pen. Resist. Blows/0.3m • 50 mm Dia. Cone O Water Content % 20 40 60 80 X SS 6 6 67 50+ 14 + 52.04 X SS 7 60 50+ 16 - 50.04 X SS 7 60 50+ 17 - 49.04 X SS 8 50+</td>	Datario K2E 7J5 Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario a hydrant located on the east side of Chapel Street, along a subject site. Geodetic elevation = 65.12m, as per plan lilivan, Vollebekk Ltd. FILE NO. BH12-15 DATE October 16, 2015 Det October 16, 2015 Pen. Resist. Blows/0.3m • 50 mm Dia. Cone O Water Content % 20 40 60 80 X SS 6 6 67 50+ 14 + 52.04 X SS 7 60 50+ 16 - 50.04 X SS 7 60 50+ 17 - 49.04 X SS 8 50+

_

nat	ersong	n	IIr	Con	sulting		SOIL	_ PRO	FILE AN	ND 1	rest	DATA	
-	ade Road South, Ottawa, O		_		ineers	Pr	eotechnic roposed M ttawa, Or	Multi-Sto	igation rey Buildir	ng - 1	51 Cha	apel Stree	et
DATUM REMARKS	TBM - Top spindle of fire the west boundary of the provided by Annis, O'Su	e subie	ct site.	Geod	letic ele	ast s	ide of Ch	apel Stre	eet, along er plan	FILE	NO.	PG2933	8
	CME 55 Power Auger	invan,	VOICO			TE	October 1	15 2015		HOL	e no.	BH13-1	5
		н		SAM	IPLE				Pen. R	esist	Blow	s/0.3m	
SC	DIL DESCRIPTION	014		Щ о	DEPTH (m)	ELEV. (m)			Dia. C		Piezometer		
		STRATA	ТҮРЕ	NUMBER		N VALUE or ROD			• •	/ater	Conte	nt %	Piezol
	SURFACE				RE	z ^o	- 0-	-64.20	20	40	60	80	
FILL: Brow stone, conc	n silty sand with crushed0. crete, brick and asphalt	25 🗙	AU	1				0.1.20					
							1-	-63.20					
							2-	-62.20				1	
							3-	-61.20					
							4-	-60.20					
Stiff, brown	n to grey SILTY CLAY						4	00.20					
							5-	-59.20					
							6-	-58.20					
							7-	-57.20		· · · · · · · · · · · · · · · · · · ·			
							8-	-56.20					
										· · · · · · · · · · · · · · · · · · ·			
							9-	-55.20	A				
	10.	06					10-	-54.20					
Grey CLAY	'EY SILT, trace sand						11-	-53.20		· · · · · · · · · · · · · · · · · · ·			
	11. e, grey SILTY SAND with	73					12-	-52.20					
gravel			SS	2	100	50+		E1 00					
							13-	-51.20	20 Choo	40	60		⊣ 100
									Shea		ength ∆ Re	(kPa) emoulded	

Soll PROFILE AND TEST DATA Soll Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario K2E 7J5

,,,,,,,,,					01	tawa, Or	ntario			
DATUM TBM - Top spindle of fire h the west boundary of the s	subjec	ct site.	. Geo	detic e	east s elevati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along er plan	FILE NO. PG2933	
REMARKS provided by Annis, O'Sulliv BORINGS BY CME 55 Power Auger	van, v	/olied	ekk L		DATE	October 1	15, 2015		HOLE NO. BH13-15	
SOIL DESCRIPTION	LOT		SAN	MPLE		DEPTH	ELEV.		esist. Blows/0.3m 0 mm Dia. Cone	tion
	STRATA P	ТҮРЕ	NUMBER	°° COVERY	VALUE r RQD	(m)	(m)		Vater Content %	Piezometer Construction
	S N		Z	U E E	z °				40 60 90	

	STR	TY	MUN	RECO	N VI				water	Content	%	.≝o
GROUND SURFACE	ν ν		N	RE	z ^o	12-	51.20	20	40	60	80	
Very dense, grey SILTY SAND with gravel		⊠ ss	3	80	50+		50.20					
<u>GLACIAL TILL:</u> Very dense, grey silty sand with gravel, cobbles and boulders <u>15.65</u> End of Borehole		× SS	4	83	50+	15-	49.20					
Practical refusal to augering at 15.65m depth												
(GWL @ 7.6m depth based on field observations)												
(BH dry - Nov. 4, 2015)												
								20	40	60		00
									listurbed	r ength (k ∆ Rem	ra) noulded	

patersong	rni	In	Con	sulting		SOIL	_ PRO	FILE AN	ND TE	ST D	ΑΤΑ	
154 Colonnade Road South, Ottawa,		-		ineers	Pr	eotechnic oposed M tawa, Or	Multi-Sto	tigation rey Buildir	ng - 151	Chapel	Street	
TBM - Top spindle of fin the west boundary of th REMARKS provided by Annis, O'S	e hydrai e subjec	nt loca	ted or Geoc	n the ea letic ele	ast s evati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along ber plan	FILE NO		2933	
REMARKS provided by Annis, O'S BORINGS BY CME 55 Power Auger		Vollebe				October 1			HOLEN	^{IO.} BH [.]	14-15	
			SAM	IPLE				Pen, B	esist. B	lows/0.	3m	
SOIL DESCRIPTION	LOT				ы .	DEPTH (m)	ELEV. (m)		0 mm D		e	Piezometer
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			• v	Vater Co	ontent 9	%	iezor
GROUND SURFACE	LS IS	н	NN	REC	N 0 N		04.00	20	40	60 E	80	<u>а</u>
FILL: Brown silty sand wtih gravel, 0 cobbles, crushed stone, brick,	.25	AU	1			0-	-64.39	0				8
asphalt, coal						1-	-63.39			0		
							00.00					
						2-	62.39	A				
												8
						3-	61.39					8
												8
						4-	60.39					8
									0		10	8
Stiff, brown to grey SILTY CLAY						5-	-59.39		·····			8
							50.00					8
						6-	-58.39		Q			8
						7-	-57.39		·			
						/	07.00					
						8-	-56.39		0			
						9-	-55.39					
		ss	2	100	2					0		
10	.19					10-	54.39					
/ery loose, grey SANDY SILT,												
some clay		ss	3	29	3	11-	-53.39	C)			
11	.79											
/ery dense, grey SILTY SAND with			4	70	70	12-	-52.39					
gravel		ss	4	70	79	10	-51.39	0				
						13-	01.39	20 Shea	40 ar Stren		30 100 a))
								▲ Undist			-	

patersongroup

SOIL PROFILE AND TEST DATA

Geotechnical Investigation

40

Shear Strength (kPa)

20

▲ Undisturbed

60

80

△ Remoulded

100

Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. BH14-15 BORINGS BY CME 55 Power Auger DATE October 14, 2015 Pen. Resist. Blows/0.3m SAMPLE PLOT Piezometer Construction DEPTH ELEV. 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY STRATA VALUE r RQD NUMBER TYPE o/0 \bigcirc Water Content % N OF **GROUND SURFACE** 20 40 60 80 13 + 51.39SS 5 100 50 + \bigcirc Very dense, grey SILTY SAND with 14 + 50.39gravel - some running sand encountered from 13.7 to 16.4m depth 15+49.39 SS 6 56 50 +Ō. 16+48.39 16.36 7 SS 100 50 +17+47.39 BEDROCK: Interbedded limestone and shale RC 1 97 33 18+46.39 18.19 End of Borehole (GWL @ 8.5m depth based on field observations) (GWL @ 12.49m-Nov. 4, 2015)

patersong		-		sulting neers	Pr	eotechnic	al Invest Iulti-Sto	FILE AN tigation rey Buildir					
DATUMTBM - Top spindle of fire the west boundary of theREMARKSprovided by Annis, O'Su	e hydrai e subjec Ilivan. \	nt loca ct site. /ollebe	ited or Geod ekk Lto	n the ea etic ele d.	ast s evati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along ber plan	FILE	NO.	PG	2933	
BORINGS BY CME 55 Power Auger	, ··,					October 1			HOL	e no.	BH1	5-15	
			~~~~				3, 2013		••		10.0		
SOIL DESCRIPTION	PLOT		SAM			DEPTH (m)	ELEV. (m)	Pen. Re ● 5			ws/0.3 Cone		neter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• <b>v</b>	/ater	Cont	ent %	6	Piezomețer
GROUND SURFACE	Ω		N	RE	zÓ		00.40	20	40	60	8	0	·(
<b>TOPSOIL</b> 0.	18	⊠ AU	1			0-	-66.13	0			• • • • • •		
FILL: Brown silty sand, trace organics and brick		ss	2	25	7	1-	-65.13	0					
<u>2</u> .	<u>33 × × × × × × × × × × × × × × × × × × </u>	ss	3	42	8	2-	-64.13	0					
Compact to very loose, brown SILTY SAND, trace organics 3.4	40	∦ss ∦ss	4 5	62	12	3-	-63.13	0					
0		1 55	5	67	2	4-	-62.13						
						5-	-61.13	4					
						6-	-60.13					12	
Stiff to very stiff, brown to grey SILTY CLAY, trace sand						7-	-59.13						
						8-	-58.13						
						9-	-57.13	4					
						10-	-56.13						
11.	43					11-	-55.13		0			-10	
arey <b>CLAYEY SILT</b> , some sand		x ss	6	100	w	12-	-54.13		0				
,			U		vv	13-	-53.13	20	40	60			
								Shea ▲ Undist		-	<b>ו (kPa</b> Remou	•	

# SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. **PG2933** REMARKS HOLE NO. BH15-15 BORINGS BY CME 55 Power Auger DATE October 19, 2015 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT Piezometer Construction DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY VALUE r ROD NUMBER TYPE o/0 $\bigcirc$ Water Content % N OF 80 **GROUND SURFACE** 20 40 60 13+53.13 13.11 Loose, grey SANDY SILT, trace gravel SS 7 9 14 + 52.1314.17 100 15 + 51.13🛛 SS 8 100 50 +O. GLACIAL TILL: Very dense, grey silty sand with gravel, cobbles, 16 + 50.13boulders k ss 9 50 +Ó. 17+49.13 17.53 End of Borehole (GWL @ 10.0m depth based on field observations) (Piezometer damaged - Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersong			Cou	sulting	]	301		FILE AI			AIA	
54 Colonnade Road South, Ottawa, C		-		ineers	Pi	eotechnic oposed N ttawa, Or	Multi-Sto	igation rey Buildir	ng - 151	Chape	Street	i
ATUM TBM - Top spindle of fire the west boundary of the EMARKS provided by Annis, O'Su	e hydrai e subjec	nt loca	ated o Geoc	n the e detic e	east s levati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along er plan	FILE NO		62933	
ORINGS BY CME 55 Power Auger	inivari, v	Oliebo				October 1			HOLEN	^{o.} BH	16-15	
	н		SAN					Pen R	esist. B	lows/0	3m	Γ
SOIL DESCRIPTION	A PLOT				벌ㅇ	DEPTH (m)	ELEV. (m)		i0 mm D			Piezometer
ROUND SURFACE	STRAT	STRATA TYPE NUMBER % RECOVERY N VALUE						0 V 20	Vater Co		% 80	Piezo
IROUND SURFACE		X AU	1	щ		- 0-	64.05	20	40		<b></b>	
LL: Brown silty sand, trace gravel,		×≊ 17		10	•	1-	-63.05					
oncrete, glass		∦ ss ∦ ss	2	42	6		00.00					
<u>2</u> .	16		3	56	50+	2-	62.05					
ompact to loose, brown <b>SILTY</b> AND		ss	4	75	14	3-	-61.05					
<u><u>3</u>.</u>	56	ss	5	54	11							
						4-	-60.05					
						5-	-59.05	<b>A</b>		<b>A</b>		
						6-	-58.05					
								<b>A</b>		<b>A</b>		
tiff to very stiff, brown to grey ILTY CLAY, trace sand						7-	-57.05					
						8-	-56.05					
						9-	-55.05					₩ V V
							00.00				1	
						10-	-54.05					
11.	23	ss	6	100	2	11-	-53.05			· · · · · · · · · · · · · · · · · · ·		
LACIAL TILL: Dense to very ense, grey silty sand with gravel,						10-	-52.05					
bbles, boulders		ss	7	83	5	12	52.00					
						13-	-51.05	20 Shea	40 ar Streng			回 00

# SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. BH16-15 BORINGS BY CME 55 Power Auger DATE October 14, 2015 SAMPLE Pen. Resist. Blows/0.3m PLOT Piezometer Construction DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY STRATA VALUE r RQD NUMBER TYPE o/0 $\bigcirc$ Water Content % N OF **GROUND SURFACE** 20 40 60 80 13+51.05 GLACIAL TILL: Dense to very SS 8 14 + 50.0571 49 dense, grey silty sand with gravel, cobbles, boulders 15 + 49.0515.29 SS 9 50 +100 RC 1 100 65 16+48.05 **BEDROCK:** Interbedded limestone and shale RC 2 78 78 17+47.05 17.27 End of Borehole (GWL @ 9.0m depth based on field observations) (GWL @ 12.39m-Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		In	Con	sulting		SOII	_ PRO	FILE AN	ND T	EST D	ΑΤΑ	
154 Colonnade Road South, Ottawa, On		-		ineers	P	eotechnic roposed I ttawa, Or	Multi-Sto	igation rey Buildir	ng - 15	1 Chape	I Street	
TBM - Top spindle of fire h the west boundary of the s REMARKS provided by Annis, O'Sulliv	subiec	t site.	Geod	detic el	ast s evati	ide of Ch on = 65.1	apel Stre 2m, as p	eet, along er plan	FILE		62933	
BORINGS BY CME 55 Power Auger	,				ATE	October 1	19, 2015		HOLE	^{NO.} BH	17-15	
	ЦО		SAN	IPLE		DEPTH	ELEV.	Pen. Re	esist.	Blows/0	.3m	2
SOIL DESCRIPTION	A PLOT		æ	RY	۲ ۲	(m)	(m)	• 5	0 mm	Dia. Con	e	mete
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			• •	Vater C	Content	%	Piezometer Construction
GROUND SURFACE	ß	-	N	RE	N 0 U	- 0-	-60.46	20	40	60	80	
<b>ILL:</b> Crushed concrete with sand and gravel, some clay 0.46		AU	1				00.40	O				
<b>ILL:</b> Grey silty clay with sand, ome gravel, concrete, brick		ss	2	67	7	1-	-59.46			0		
1.60		ss	3	100	2	2-	-58.46			0		
						3-	-57.46					
						1-	-56.46					
tiff, brown to grey SILTY CLAY							50.40		0			
						5-	-55.46					
						6-	-54.46					
7.47						7-	-53.46					
Grey CLAYEY SILT/SILTY CLAY		-				8-	-52.46		0			
0.30		-										
		∛ss	4		50+	9-	-51.46	0				
GLACIAL TILL: Very dense, grey ilty sand with gravel, cobbles,		-				10-	-50.46					
oulders		-										
		RC	1	9		11-	49.46					
12.09		_				12-	-48.46					
<b>BEDROCK:</b> Interbedded limestone and shale		RC	2	83	23		17 10					
			_			13-	-47.46	20 Shea ▲ Undist		60 ngth (kP △ Remo	a)	4000 00

# SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. **PG2933** REMARKS HOLE NO. BH17-15 BORINGS BY CME 55 Power Auger DATE October 19, 2015 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT Piezometer Construction DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Ο Water Content % **GROUND SURFACE** 20 40 60 80 13 + 47.46(He) **BEDROCK:** Interbedded limestone and shale 13.62 End of Borehole (GWL @ 4.8m depth based on field observations) (GWL @ 8.62m-Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		In	Con	sulting	3	SOIL			ND TE	ST DAT	۱
154 Colonnade Road South, Ottawa, Or		-		ineers	Pr	eotechnic oposed M tawa, Or	Multi-Stor		ng - 151	Chapel Stre	et
DATUMTBM - Top spindle of fire the west boundary of the provided by Annis, O'Sull	subiec	t site.	Geod	detic e	east s levati	ide of Ch on = 65.1	apel Stre 2m, as p	et, along er plan	FILE NC	PG293	3
REMARKS provided by Annis, O'Sull BORINGS BY CME 55 Power Auger	ivaii, v	UIIEDE			ATE	October 1	10 2015		HOLE N	^{o.} BH18-1	5
			CAN		AIE		19, 2013	Dem D		lows/0.3m	
SOIL DESCRIPTION	PLOT		_		E a	DEPTH (m)	ELEV. (m)		0 mm Di		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE SE ROD			• V	Vater Co	ntent %	Piezor
GROUND SURFACE		~	2	RE	zö	- 0-	-60.05	20	40	60 80	
		S AU	1							· · · · · · · · · · · · · · · · · · ·	
FILL: Brown silty sand with gravel, concrete, brick, metal, asphalt		× × × AU	2			1-	-59.05				
1.6			2								
<u>1.0</u>		ss	3	100	2	2-	-58.05				
							50.05				
						2	-57.05				
						3-	-57.05				
							50.05				
Stiff, brown to grey <b>SILTY CLAY,</b> some sand						4-	-56.05				
Some Sand										······································	
						5-	-55.05				
						6-	-54.05				
<u>7.1</u>	6	-				7-	-53.05				
Grey CLAYEY SILT/SILTY CLAY		7 1			_						
<u>8.1</u>	3	ss	4	100	3	8-	-52.05			·····	
GLACIAL TILL: Very dense, grey											
silty sand with gravel, cobbles and boulders			-		50	9-	-51.05				
- some running sand encountered		∦ss	5	67	50+						
from 9.1 to 9.5m depth						10-	50.05				
10.7	7	<u>≖</u> SS	6	50	50+						
End fo Borehole Practical refusal to augering at 10.77m depth					001						
(GWL @ 4.6m depth based on field											
observations) (Piezometer damaged - Nov. 4, 2015)											
								20 Shea ▲ Undist	ar Streng	<b>60 80</b> <b>gth (kPa)</b> ∆ Remoulded	100

# SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario

TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. BH19-15 BORINGS BY CME 55 Power Auger DATE October 22, 2015

SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT Piezometer Construction DEPTH ELEV. 50 mm Dia. Cone SOIL DESCRIPTION • (m) (m) RECOVERY VALUE r RQD NUMBER TYPE o/0  $\bigcirc$ Water Content % N OF **GROUND SURFACE** 80 20 40 60 0+60.40Concrete 0.20 1 AU 0.38 FILL: Crushed stone with sand 1+59.40SS 2 100 3 SS 3 100 2 2+58.40SS 4 100 W 3+57.40 5 SS 100 2 Stiff, brown to grey SILTY CLAY 4+56.40 SS 6 100 3 SS 7 100 3 5+55.40 SS 8 100 4 6+54.409 SS 100 3 7+53.40 SS 10 100 3 7.47 End of Borehole (GWL @ 5.0m depth based on field observations) (GWL @ 2.81m-Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) Undisturbed △ Remoulded

#### SOIL PROFILE AND TEST DATA patersongroup Geotechnical Investigation Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. **PG2933** REMARKS HOLE NO. BH20-15 BORINGS BY CME 55 Power Auger DATE October 20, 2015 PLOT SAMPLE Pen. Resist. Blows/0.3m Well DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone

SOIL DESCRIPTION	I G			ĸ		(m)	(m)	• 50 mm Dia. Cone
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	°% RECOVERY	N VALUE or RQD			• 50 mm Dia. Cone • 50 mm Dia. Cone • Builtonico • Water Content % 20 40 60 80
<b>FILL:</b> Brown silty sand with gravel, concrete, brick metal, cobbles 0.56		AU	1			0-	-60.40	
		ss	2	100	2	1-	-59.40	
		ss	3	100	2	2-	-58.40	
		ss	4	100	w			
		ss	5	100	w	3-	-57.40	
Stiff to firm, brown to grey <b>SILTY CLAY,</b> trace sand		ss	6	100	w	4-	-56.40	
		ss	7	100	w	5-	-55.40	
		ss	8	100	2			
		ss	9	100	2	6-	-54.40	
		ss	10	50	2	7-	-53.40	
7.62 End of Borehoe	<u>2</u> 4122	<u> </u>						
(GWL @ 5.8m depth based on field observations) (GWL @ 7.48m-Nov. 4, 2015)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

## SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along DATUM FILE NO. the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. **PG2933**

REMARKS

BORINGS BY CME 55 Power Auger		D	ATE (	October 2	21, 2015			B	H21-15		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows Dia. Co	
		ы	ER	ERY	50 ECUE	(m)	(m)				
	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	N VALUE or RQD			0 V		Content	t %
GROUND SURFACE		~		8	2	0-	-63.34	20	40	60 	80
		AU	1								• • • • • • • • • • • • • • • • • • • •
FILL: Brown silty sand with gravel,		ss	2	42	16	1-	-62.34		·····		
some cobbles, concrete, asphalt, brick, metal and ash		ss	3	25	6	2-	-61.34				
		ss	4	33	17						
End of Borehole 3.07		- SS	5	50	50+	3-	-60.34				
Practical refusal to augering on inferred concrete at 3.07m depth											
(BH dry based on field observations)											
									. :   : '		

40 60 80

△ Remoulded

Shear Strength (kPa)

100

20

▲ Undisturbed

HOLE NO.

Piezometer Construction

patersongr	'n	ır	Con	sulting		SOIL	. PRO	FILE AN	ND TEST DATA	•			
154 Colonnade Road South, Ottawa, O		-		ineers	Pr	eotechnic oposed N tawa, On	lulti-Sto		ng - 151 Chapel Stree	et			
DATUM TBM - Top spindle of fire the west boundary of the provided by Annis, O'Sul	subied	ct site.	Geod	detic ele	ast s	ide of Cha	apel Stre	et, along er plan	FILE NO. PG2933	3			
BORINGS BY CME 55 Power Auger	iivan, v				TE (	October 2	1 2015		HOLE NO. BH21A-	15			
BORINGS BY CIVIL 331 OWER Auger			CAN				1,2015	Don D	aciat Blawa/0.2m	1_			
SOIL DESCRIPTION	PLOT	SAMPLE				DEPTH (m)	ELEV. (m)	-	<ul><li>Pen. Resist. Blows/0.3m</li><li>50 mm Dia. Cone</li></ul>				
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD	(11)	(11)	O W 20	Vater Content % 40 60 80	Monitoring Well Construction			
Asphaltic concrete 0.1	0	× • • •	1			0-	-63.59	0					
FILL: Crushed stone 0.5		⊗ AU											
		ss	2	62	3	1-	-62.59		0				
FILL: Grey-brown silty clay, some sand and gravel, trace concrete					4								
		ss	3	62	4	2-	-61.59		<u>U</u>				
2.8	-	ss	4	71	4				0				
<u>2.c</u>		4) 37				3-	-60.59						
FILL: Brown silty sand, some clay,		ss	5	50	6			0					
coal, tar		ss	6	58	5	4-	-59.59		0				
4.6	0				U								
		ss	7	100	2	5-	-58.59	0					
						6-	-57.59		······································				
								4	<b>○</b>				
						7-	-56.59		· · · · · · · · · · · · · · · · · · ·				
Stiff, brown to grey <b>SILTY CLAY,</b> some sand													
		ss	8	100	4	8-	-55.59		0				
		14					00.00		·····				
						0	-54.59						
						9	-54.59		0				
							50 50		· · · · · · · · · · · · · · · · · · ·				
10.2		1				10+	-53.59						
Grey CLAYEY SILT with sand, trace					0								
gravel		ss	9	100	2	11+	-52.59		<b>J</b>				
11.5	8 <u>///</u>												
GLACIAL TILL: Very dense, grey		∱ ∕⊠ ss	10	100	50+	12-	-51.59						
silty sand with gravel, cobbles, poulders, trace clay					507			O		•			
		1				12	-50 59			_			

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

riangle Remoulded

100

13+50.59

# SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. BH21A-15 BORINGS BY CME 55 Power Auger DATE October 21, 2015 SAMPLE Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) STRATA RECOVERY N VALUE or RQD NUMBER TYPE o/0 $\bigcirc$ Water Content % **GROUND SURFACE** 20 40 60 80 13 + 50.59GLACIAL TILL: Very dense, grey silty sand with gravel, cobbles, 14 + 49.59boulders, trace clay RC 1 83 - some running sand encountered from 11.9 to 12.4m depth RC 2 100 15 + 48.5915.80 16+47.59 76 RC 3 100 **BEDROCK:** Interbedded limestone and shale RC 4 100 92 17+46.59 17.37 End of Borehole (GWL @ 8.0m depth based on field observations) (GWL @ 10.52m-Nov. 4, 2015) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

						SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, C		-		ineers	P	eotechnic oposed N ttawa, Or	Multi-Sto	igation rey Buildir	ng - 151	Chapel	Street			
<b>DATUM</b> TBM - Top spindle of fire the west boundary of the <b>REMARKS</b> provided by Annis, O'Su	e subiec	t site.	Geoc	detic ele	ast s	ide of Ch	apel Stre	eet, along ber plan	FILE N		2933			
BORINGS BY CME 55 Power Auger	invari, v	onebe			TE	October 1	16 2015		HOLE	NO. BH	23-15			
	Ę		SAN	IPLE				Pen. R	3m					
SOIL DESCRIPTION	PLOT		<u>х</u> х		M -	DEPTH (m)	ELEV. (m)	• 50 mm Dia. Cone				neter uctio		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE E ROD			• <b>v</b>	Vater Co	ontent	%	Piezometer Construction		
GROUND SURFACE		~	Z	RE	z ^ö	- 0-	-60.41	20	40	60 E	80 			
FILL: Brown silty sand with gravel 0.	36	AU	1											
		ss	2	100	w	1-	-59.41		·····					
						2-	-58.41			Ţ				
Stiff, brown to grey SILTY CLAY						3-	-57.41	4						
						4-	-56.41					¥		
							00.41							
						5-	-55.41	4						
						6-	-54.41							
<u>7</u> .	00	-				7-	-53.41							
Stiff, grey CLAYEY SILT with sand														
						8-	-52.41							
<u>8</u> .	69 /^^^^	-					<b>E4 44</b>							
GLACIAL TILL: Very dense, grey		∛ss	3	100	50+	9-	-51.41							
sand with gravel, cobbles, boulders, some silt		_				10-	-50.41					-		
10	69	≍ SS	4	80	50+		00.41					-		
End of Borehole Practical refusal to augering at		-												
10.69m depth														
(GWL @ 3.7m depth based on field observations)														
(BH dry - Nov. 4, 2015)														
								20 Shor	40 sr Stron			 DO		
								Snea ▲ Undist		gth (kPa △ Remou	•			

#### SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2933 REMARKS HOLE NO. **BH24-15** BORINGS BY CME 55 Power Auger DATE October 16, 2015 SAMPLE Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction DEPTH ELEV. 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY STRATA VALUE r RQD NUMBER TYPE _\c $\cap$ Water Content % N OF **GROUND SURFACE** 80 20 40 60 0+63.75Asphaltic concrete 0.05 AU 1 0.30 FILL: Crushed stone 1 + 62.75FILL: Brown silty sand with slag SS 2 42 7 SS 3 100 11 1.98 2+61.75Compact to loose, brown SILTY SAND SS 4 9 54 3.05 3+60.75 5 SS 92 2 4+59.75 SS 6 100 W SS 7 W 100 5+58.75 8 SS 100 w 6+57.75 Stiff, brown to grey SILTY CLAY 9 SS 100 1 7+56.75 W SS 10 100 ¥ SS 11 88 W 8+55.75 SS 12 100 2 9+54.75- with sand by 9.9m depth SS 13 100 1 10 + 53.75SS 14 100 W Ţ 10.72 End of Borehole (GWL @ 7.8m depth based on field observations) (GWL @ 10.58m-Nov. 4, 2015) 40 60 80 100

20

Undisturbed

Shear Strength (kPa)

△ Remoulded

patersongr		ır	Con	sulting		SOIL	. PRO	FILE AN	ND TEST	DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	Pr		lulti-Sto		ng - 151 Cha	apel Street	t
<b>DATUM</b> TBM - Top spindle of fire the west boundary of the set bou	hydrar	nt loca	n the ea	ast s	tawa, On ide of Cha	apel Stre	FILE NO. PG2933				
REMARKS provided by Annis, O'Sulli	, and		, uo p	or plan							
BORINGS BY CME 55 Power Auger				DA	TE	March 21,	2013			BH 1-13	1
SOIL DESCRIPTION	A PLOT	SAMPLE			<u>ы</u>	DEPTH (m)	ELEV. (m)	Pen. Re • 50	/s/0.3m Cone	Piezometer	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			• <b>v</b>	Vater Conte	nt %	Piezor
GROUND SURFACE	N N		z	RE	zö	0-	-67.73	20	40 60	80	
25mm Asphaltic concrete over 0.30 crushed stone0.69		AU AU SS	1 2 3	75	6		-66.73				
ILL: Brown silty sand with gravel		ss	4	100	4		65.73				
						3-	64.73				
						4-	63.73			*	
						5-	62.73	<u>+</u>			
<pre>/ery stiff to stiff, brown SILTY CLAY</pre>						6-	61.73				
grey by 7.2m depth						7-	60.73				
							59.73				
							-58.73	4			
							-57.73 -56.73			$\mathbf{X}$	
							-56.73				
12.65	5	-					-54.73				
							-53.73				
GLACIAL TILL: Dense, grey silty						15-	52.73				
and with clay, gravel, cobbles and oulders		∦ss	5	50	43	16-	-51.73				
		RC	1			17-	50.73				
40.07		RC	2			18-	49.73				
1 <u>8.8</u> BEDROCK: Grey limestone	$( \frac{ \land \land \land \land}{1 + 1 + 1} $	RC	3	100	100	19-	48.73				
nterbedded with shale20.65	7	RC	4	100	48	20-	47.73				-
 End of Borehole											1

(GWL @ 15.76m-Apr. 2, 2013)

End of Borehole

20 40 60 80 100 Shear Strength (kPa) Undisturbed riangle Remoulded

# SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario

TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along DATUM FILE NO. the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS

**PG2933** 

BORINGS BY CME 55 Power Auger				D	ATE	March 22	, 2013		HOL	e no.	BH 2	2-13	
SOIL DESCRIPTION			SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone					tor
	STRATA PLOT	ТҮРЕ	NUMBER	[%] RECOVERY	N VALUE or RQD	(m)	(m)	• V	Vater	Conte	ent %	, >	Diazomatar
GROUND SURFACE		~		R	zv	0-	-65.52	20	40	60	80	)	
<b>ILL:</b> Brown silty clay with sand, 0.69 ravel and cobbles		AU	1										
ILL: Brown silty sand with clay and .45	$\bigotimes$	ss	2	67	9	1-	-64.52						×
ravel compact, brown <b>SILTY SAND</b> 2.21	╞┝┥┙	ss	3	67	13	2-	-63.52					·····	₿
		ss	4	100	1	0	00 50						
						3-	-62.52	А.					₿
						4-	-61.52						▩
						5-	-60.52	Ţ				Ţ	
tiff, brown SILTY CLAY						5	00.52					₽ <b>₽</b> ₽₽	
						6-	-59.52	4			/		
grey by 6.5m depth						7-	-58.52					······	
										-	$\backslash$		
						8-	-57.52					$\bigtriangledown$	
9.37						9-	-56.52	<u> </u>				<u></u>	
		-				10							
						10-	-55.52						
						11-	-54.52			·:····		······	
						12-	-53.52						
LACIAL TILL: Compact to very		ss	5	100	11	12	55.52						
ense, brown silty sand with gravel, bbbles and boulders						13-	-52.52						
						14-	-51.52						
			0		00	15-	-50.52						
16.21			6 7	0	69 50+	16-	-49.52					· · · · · · · · · · · · · · · · · · ·	
nd of Borehole		× 00	'		50+								
ractical refusal to augering at													
6.21m depth													
GWL @ 9.20m-Apr. 2, 2013)													
								20	40	<u> </u>	80	<u> </u>	00
											(kPa)		50
								▲ Undist			Remoul		

#### SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS

FILE NO. **PG2933** 

BOBINGS BY CME 55 Power Auger DATE March 25 2013 HOLE NO. BH 3-13													
BORINGS BY CME 55 Power Auger				D	ATE	March 25	, 2013				ы	5-15	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone				leter lction	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	()	(,	• <b>v</b>	Vater Content %				Piezometer Construction
GROUND SURFACE	ß	-	z	RE	z ^o		00 50	20	40	60	) 8	0	шO
25mm Asphaltic concrete over 0.28	$\times$	≊ AU ≊ AU	1 2			0-	-63.52						
crushed stone FILL: Brown silty sand, some grave 45		× ss	3	50	6	1-	-62.52			·····			∞ ∞
Loose, brown <b>SILTY SAND</b>	×××	ss	4	100	6	2-	-61.52		· · · · · · · · · · · · · · · · · · ·				
2. <u>97</u>		X SS	5	75	9	3-	-60.52		· · · · · · · · · · · ·			· · · · · · · · · · · · · · ·	
		<u> 7</u> 22	6	83	3	4-	-59.52		· · · · · · · · · · · · · · · · · · ·				
Stiff to very stiff, brown SILTY CLAY						5-	-58.52	4	· · · · · · · · · · · · · · · · · · ·				8
- grey by 5.2m depth						6-	-57.52		· · · · · · · · · · · · · · · · · · ·		$\langle$		
						7-	-56.52		· · · · · · · · · · · · · · · · · · ·				2
						8-	-55.52		· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	10	
						9-	-54.52						
						10	-53.52						
												· · · · · · · · · · · · · · · · · · ·	
							-52.52					· · · · · · · · · · · · · · · · · · ·	
12.57		_				12-	-51.52						
End of Borehole													
Practical refusal to augering on inferred boulder at 12.57m depth													
(GWL @ 9.32m-Apr. 2, 2013)													
										::  			
								20 Shea	40 Ir Stre	60 engtl	) 8 h ( <b>kP</b> a	80 10 a)	U
								▲ Undist			Remou		

natorsonar		ır	Con	sulting		SOIL	PRO	FIL	ΕA	NC	) TES	ST D	ΑΤΑ	
<b>patersongr</b> 154 Colonnade Road South, Ottawa, Oni		-		ineers	Pre	eotechnic oposed M tawa, Or	/lulti-Sto			ing ·	· 151 C	Chape	l Street	:
DATUMTBM - Top spindle of fire h the west boundary of the s provided by Annis, O'Sulliv	ast side of Chapel Street, along FILE NO.													
BORINGS BY CME 55 Power Auger			_			March 22				H	OLE NO	). BH	4-13	
SOIL DESCRIPTION	PLOT		SAN	<b>IPLE</b>		DEPTH	ELEV.	P			st. Ble nm Dia			tion
	STRATA P	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod	(m)	(m)				er Cor			Piezometer Construction
GROUND SURFACE	ST	Ĥ	би	REC	N O L O				20				80	ĒĞ
Asphaltic concrete						0-	-63.49				· · · · · · · · · · · · · · · · · · ·			
FILL: Crushed stone 0.28						1-	-62.49			• • • • • •				-
FILL: Brown to black silty sand with						2-	-61.49						· · · · · · · · · · · · · · · · · · ·	
clay, trace gravel and cobbles						3-	-60.49						· · · · · · · · · · · · · · · · · · ·	-
3.71		S AU	1											
										: :				
									20 She	4 ear S	o e Streng			00
									Undi			Remo		

patersongr 154 Colonnade Road South, Ottawa, O	Pr	SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Multi-Storey Building - 151 Chapel Street Ottawa, Ontario										
TBM - Top spindle of fire the west boundary of the REMARKS provided by Annis, O'Sul	east s	ide of Ch	apel Stre	eet, along ber plan	FILE NO. PG2757							
BORINGS BY CME 55 Power Auger	,				ATE /	August 14	1, 2012		HOLE N	^{ю.} BH 1		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		Resist. Blows/0.3m			
		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			ontent %	Monitoring Well Construction	
GROUND SURFACE Asphaltic concrete0.1 FILL: Crushed stone 0.3		au Au	1	Ж		0-	-67.97	20	40	60 80		
FILL: Brown sand, trace gravel 1.0		ss	2	58	10	1-	-66.97		· · · · · · · · · · · · · · · · · · ·			
		ss	3	100	5	2-	-65.97					
		ss	4	100	4		-64.97				<b>₩</b>	
/ery stiff to stiff, brown <b>SILTY CLAY</b>		ss	5	100	3	3-	-64.97			· · · · · · · · · · · · · · · · · · ·		
grey by 3.3m depth		ss	6	83	1	4-	-63.97					
		ss	7	100	2	5-	-62.97					
		ss	8	100	Ρ	6-	-61.97			•••••••••••••••••••••••••••••••••••••••		
		ss	9	100	Ρ	0	01.97			· · · · · · · · · · · · · · · · · · ·		
						7-	-60.97					
		ss	10	100	Ρ	8-	-59.97					
		x ss	11	100	Р	9-	-58.97					
trace sand by 9.8m depth					I	10-	-57.97					
11.2	28	ss	12	100	Ρ	11-	-56.97				104	
End of Borehole												

20 40 60 80 Shear Strength (kPa) Undisturbed △ Remoulded

▲ Undisturbed

100

(GWL @ 2.64m-April 2, 2013)

#### SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along FILE NO. DATUM the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2757 REMARKS HOLE NO. **BH 2** BORINGS BY CME 55 Power Auger DATE August 14, 2012

SOIL DESCRIPTION	PLOT			IPLE		DEPTH (m)	ELEV. (m)		Resist. 50 mm			otor
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0 20	Water 40	Conto 60	% 80	Diazomatar
ILL: Grey sand and gravel, trace 0.30 ilt and clay		§ AU	1			0-	-65.47					
		ss	2	0	10	1-	-64.47					
ILL: Brown sand with crushed oncrete		ss	3	25	20	2-	-63.47					
75mm thick concrete at 2.4m depth		ss	4	4	5							
<i>č.</i> 9/		ss	5	100	4	3-	-62.47					
		ss	6	100	3	4-	-61.47					
		ss	7	88	Р	5-	-60.47	4			 	
tiff to very stiff, grey SILTY CLAY		ss	8	100	Р		50.47	<b>A</b>			1	109
		ss	9	100	Р	0-	-59.47	Å			K	
						7-	-58.47					
		ss	10	100	Р	8-	-57.47		· · · · · · · · · · · · · · · · · · ·		······ <b>·</b> ]	136 ▲
						9-	-56.47					
ynamic Cone Penetration Test ommenced at 9.30m depth.												
						10-	-55.47	•				
						11-	-54.47					-
						12-	-53.47		•	•		
												•••
13.82						13-	-52.47					-
nd of Borehole												•
Practical cone refusal on inferred oulder at 13.82m depth												

#### SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Proposed Multi-Storey Building - 151 Chapel Street 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the east side of Chapel Street, along DATUM FILE NO. the west boundary of the subject site. Geodetic elevation = 65.12m, as per plan provided by Annis, O'Sullivan, Vollebekk Ltd. PG2757 REMARKS HOLE NO. **BH 3** BORINGS BY CME 55 Power Auger DATE August 14, 2012

SOIL DESCRIPTION	PLOT	SAMPLE				DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
GROUND SURFACE	STRATA F	TYPE	NUMBER	°. RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m
Asphaltic concrete0. FILL: Crushed stone0.	08	X AU	1			0-	-63.61	
FILL: Brown sand, some clay,	45	ss	2	33	10	1-	-62.61	
<u>`</u>		ss	3	17	8	2-	-61.61	
Compact to loose, brown SAND	40	ss	4	100	13			
<u>3</u> .	12	ss	5	83	5	3-	-60.61	
		ss	6	100	Р	4-	-59.61	1 1
		ss	7	92	Р	5-	-58.61	
		ss	8	100	Р		F7 01	
Stiff to very stiff, grey SILTY CLAY		ss	9	100	Р	6-	-57.61	<b>A 120</b>
						7-	-56.61	
		ss	10	100	Р	8-	-55.61	136
							-54.61	
9.	75	ss	11	100	3	9-	-54.01	
End of Borehole								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

## SYMBOLS AND TERMS

#### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

#### SYMBOLS AND TERMS (continued)

#### SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

#### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

#### RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

#### SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

#### SYMBOLS AND TERMS (continued)

#### **GRAIN SIZE DISTRIBUTION**

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)					
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size					
D10	-	Grain size at which 10% of the soil is finer (effective grain size)					
D60	-	Grain size at which 60% of the soil is finer					
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$					
Cu	-	Uniformity coefficient = D60 / D10					
Cc and Cu are used to assess the grading of sands and gravels:							

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

#### **CONSOLIDATION TEST**

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above $p'_c$ )
OC Ratio	)	Overconsolidaton ratio = $p'_c / p'_o$
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

#### PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

#### SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

#### MONITORING WELL AND PIEZOMETER CONSTRUCTION









## Certificate of Analysis

Report Date: 08-Apr-2013 Order Date:5-Apr-2013

#### Client: Paterson Group Consulting Engineers

Client PO: 13996		Project Descriptio	n: PG2933		
	Client ID:	BH2-13 - 4.6 to 4.9m	-	-	-
	Sample Date:	22-Mar-13	-	-	-
	Sample ID:	1314245-01	-	-	-
	MDL/Units	Soil	-	-	-
<b>Physical Characteristics</b>	S				
% Solids	0.1 % by Wt.	62.6	-	-	-
General Inorganics					
рН	0.05 pH Units	8.12	-	-	-
Resistivity	0.10 Ohm.m	28.7	-	-	-
Anions				-	• •
Chloride	5 ug/g dry	82	-	-	-
Sulphate	5 ug/g dry	302	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

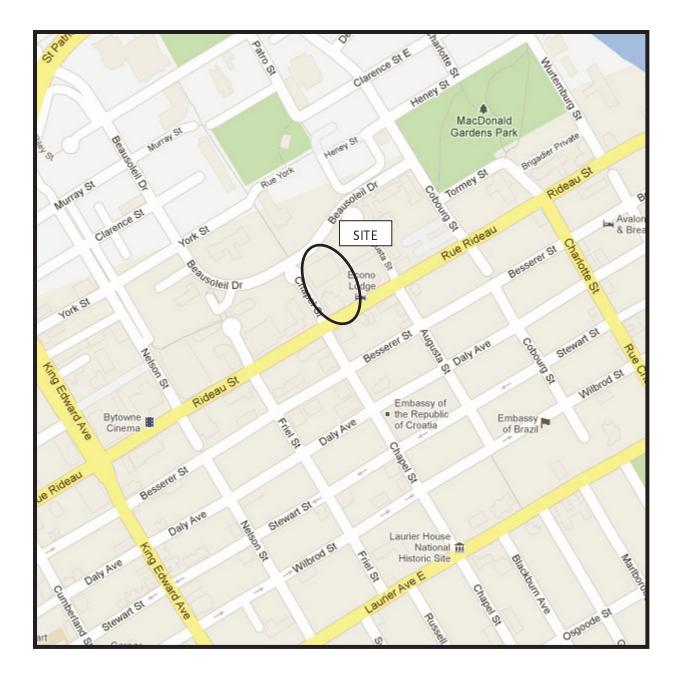
NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

# **APPENDIX 2**

### FIGURE 1 - KEY PLAN


#### FIGURES 2 AND 3 - SEISMIC SHEAR WAVE VELOCITY PROFILES

DRAWING PG2933-2 - TEST HOLE LOCATION PLAN

# patersongroup

# **KEY PLAN**





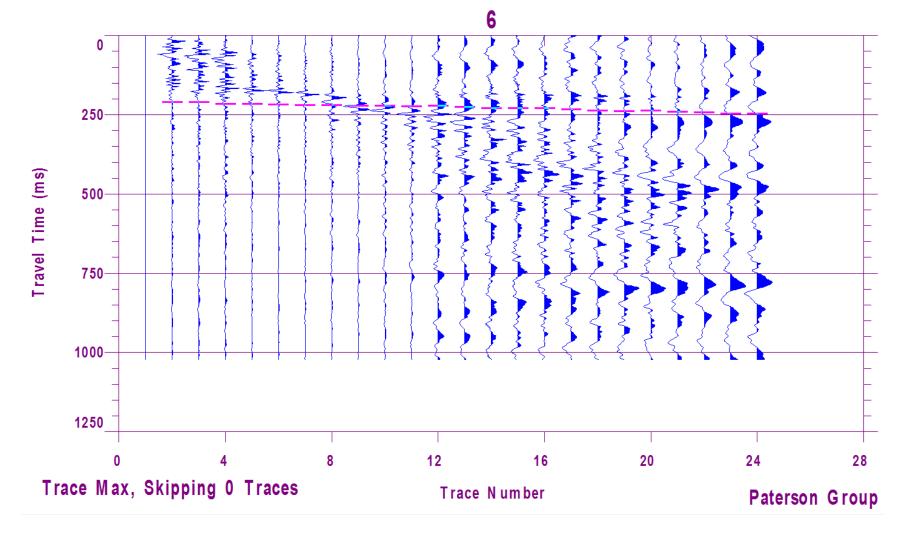



Figure 2 – Shear Wave Velocity Profile at Shot Location -5 m

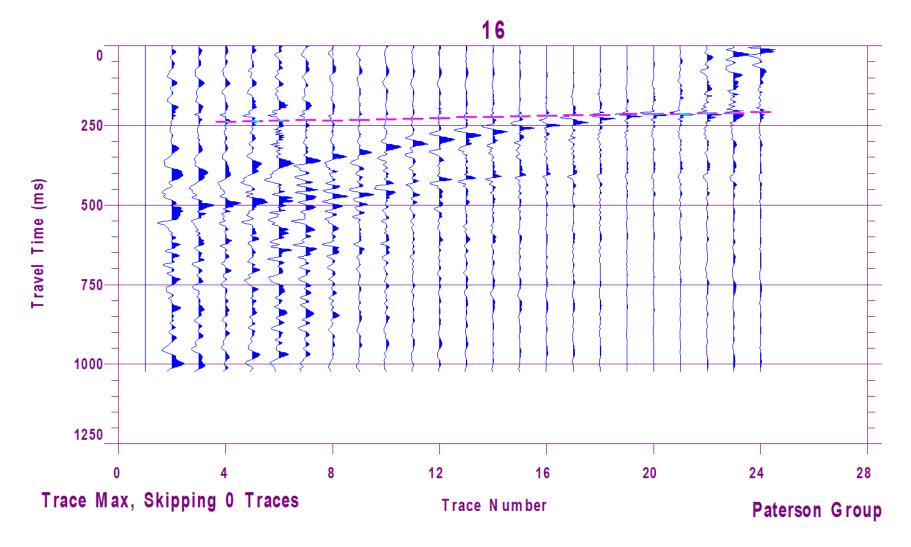
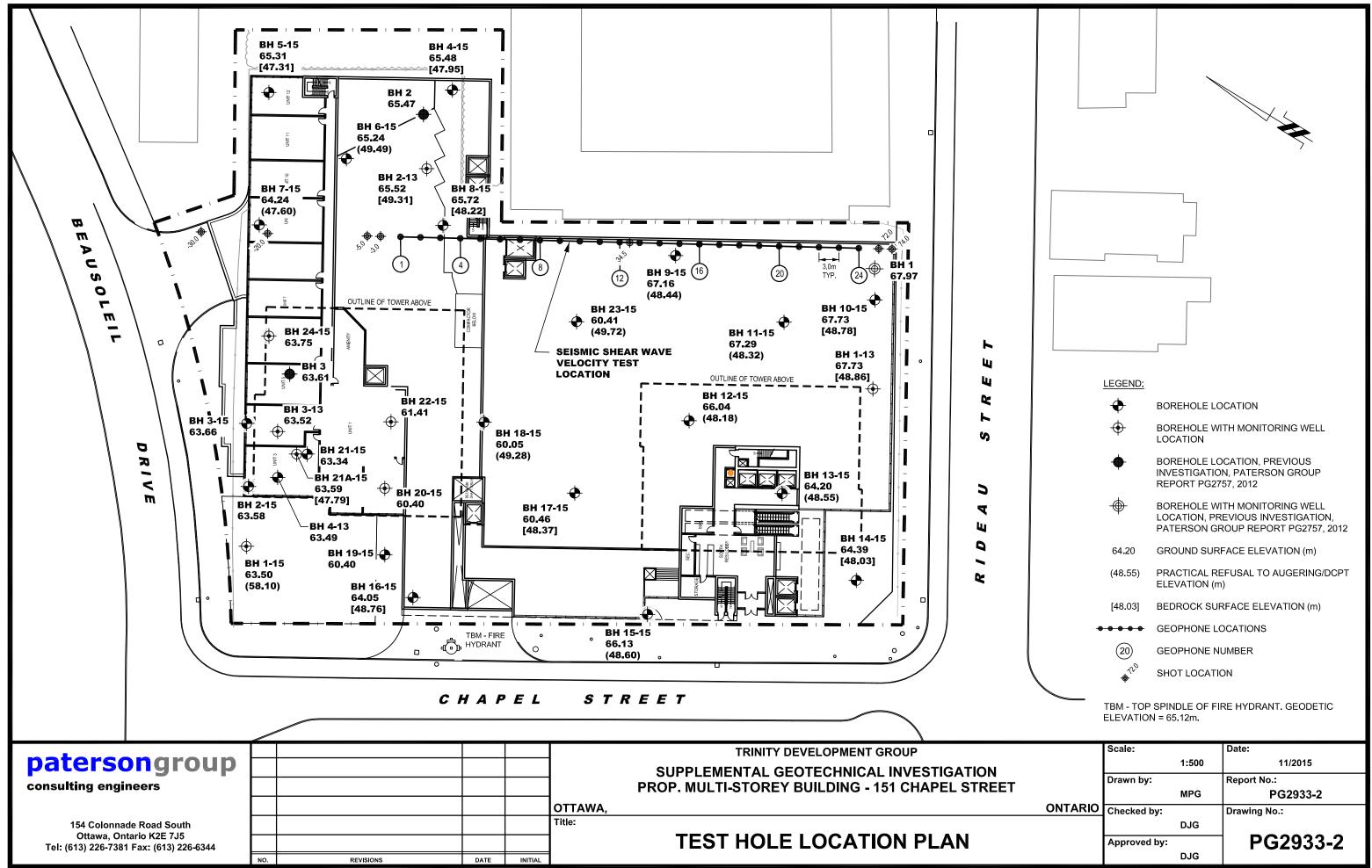




Figure 3 – Shear Wave Velocity Profile at Shot Location 74 m

patersongroup

