patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Geotechnical Investigation

Proposed Residential Development 2710 Draper Avenue Ottawa, Ontario

Prepared For

Greatwise Developments

March 28, 2018

Report: PG1630-3 Revision 2

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344

www.patersongroup.ca

Table of Contents

1.0	Intro	oduction		. 1									
2.0	Prop	oosed Development		. 1									
3.0	Meth	nod of Investigation											
	3.1	Field Investigation		. 2									
	3.2	Field Survey.		. 3									
	3.3	Laboratory Testing.											
	3.4	Analytical Testing.											
4.0	Obse	ervations											
	4.1	Surface Conditions		. 4									
	4.2	Subsurface Profile.		. 4									
	4.3	Groundwater											
5.0	Disc	ussion											
	5.1	Geotechnical Assessment.		. 6									
	5.2	Site Grading and Preparation											
	5.3	Foundation Design.		. 7									
	5.4	Design for Earthquakes.											
	5.5	Slab on Grade Construction											
	5.6	Pavement Design		. 8									
6.0	Desi	gn and Construction Precautions											
	6.1	Foundation Drainage and Backfill.		11									
	6.2	Protection of Footings Against Frost Protection		11									
	6.3	Excavation Side Slopes.											
	6.4	Pipe Bedding and Backfill.		12									
	6.5	Groundwater Control.		13									
	6.6	Winter Construction.		14									
	6.7	Corrosion Potential and Sulphate		14									
	6.8	Underground Storage Chamber		15									
	6.9	Landscaping Considerations.											
	6.10	Global Stability Analysis		16									

7.0	Recommendations	18
8.0	Statement of Limitations	19

Appendices

Appendix 1	Soil Profile and Test Data Sheets Symbols and Terms Analytical Testing Results
Appendix 2	Figure 1 and 2 - Global Stability Sections Figure 3 - Key Plan Drawing PG1630-1 - Test Hole Location Plan
Appendix 3	Grading Plan Review - 2710 Draper Avenue-Phase 3

1.0 Introduction

Paterson Group (Paterson) was commissioned by Greatwise Development to conduct a geotechnical investigation of the subject phases of the proposed residential development (Qualicum Woods Crossing) located at the southeast corner of Morrison Drive and Draper Avenue, in the City of Ottawa (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objective of the current investigation was to:

- Determine the subsoil and groundwater conditions at this site by means of existing boreholes.
- Provide geotechnical recommendations pertaining to design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating the presence or potential presence of contamination on the subject property was not part of the scope of work of this present investigation. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

It is our understanding that the subject phases of the proposed residential development consist of several three-storey townhouse blocks of slab on grade construction. A proposed neighbourhood park, parking areas, access lanes and landscaped areas are also anticipated for this development.

3.0 Method of Investigation

3.1 Field Investigation

The field program for the investigation was carried out between April 10 and 18, 2008. At that time, a total of seventeen (17) boreholes were advanced to a maximum depth of 16.4 m. The borehole locations were distributed in a manner to provide general coverage of the proposed residential development. The locations were determined in the field by Paterson personnel taking into consideration site features and underground services. The locations of the boreholes are shown in Drawing PG1630-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were put down using truck and track-mounted auger drill rigs operated by two person crews. All fieldwork was conducted under the full-time supervision of our personnel under the direction of a senior engineer from our geotechnical department. The drilling procedure consisted of augering to the required depths at the selected locations and sampling the overburden.

Sampling and In Situ Testing

Soil samples from the boreholes were recovered from the auger flights or using a 50 mm diameter split-spoon sampler. All soil samples were initially classified on site. The auger and split spoon samples were placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the auger and split spoon samples were recovered from the test holes are shown as AU and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing, using a vane apparatus, was carried out in cohesive soils. The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets presented in Appendix 1 of this report.

The overburden thickness was evaluated during the course of the investigation by dynamic cone penetration testing (DCPT) at BHs 2, 5, 9, 11 and 14 to 17. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at its tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

Groundwater

Flexible standpipes were installed in all boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The ground surface elevation at the borehole locations was referenced to a temporary benchmark (TBM), consisting of the top of spindle of the fire hydrant located on Morrison Drive approximately 80 m north of Baseline Road. A geodetic elevation of 75.25 was provided for the TBM, based on plans provided by Roderick Lahey Architect. The TBM, borehole locations and ground surface elevation at the borehole locations are presented in Drawing PG1630-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

All soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was analyzed to determine the concentrations of sulphate and chloride, as well as, the resistivity and the pH of the samples. The analytical test results are presented in Appendix 1 and discussed in Subsection 6.7 of this report.

4.0 Observations

4.1 Surface Conditions

Currently, the subject site is occupied by six (6) multi-storey buildings along with associated access lanes, parking and landscaped areas. Buildings E and F have been constructed as part of earlier phases of the proposed development. There are four (4) existing two (2) storey residential buildings in the north and central portions of the site, which will be removed as part of the current phases of the proposed development. The subject site is approximately at grade with surrounding roadways.

4.2 Subsurface Profile

The subsurface soil profile at the borehole locations consist of topsoil or pavement structure at ground surface followed by a silty clay layer. Clayey silt was encountered underlying the silty clay layer at several borehole locations. The silty clay and/or clayey silt are underlain by a deep silty sand deposit. Specific details of the soil profile at each test hole location can be seen on the Soil Profile & Test Data sheets in Appendix 1.

4.3 Groundwater

Groundwater levels (GWL) were measured in the borehole piezometers on April 25, 2008. The GWL readings are presented in Table 1. As groundwater levels are subject to seasonal fluctuations, it should be noted that the groundwater may be encountered at higher levels at the time of construction.

patersongroup Ottawa Kingston North Bay

Geotechnical Investigation Proposed Residential Development 2710 Draper Avenue Ottawa, Ontario

Table 1 - Su	ummary of Groundw	ater Levels		
Borehole	Ground Surface	Measured Gr	Decending Defe	
Number	Elevation (m)	Depth	Groundwater Elevation (m)	Recording Date
BH 1	74.98	3.60	71.38	April 25, 2008
BH 2	76.50	9.41	67.09	April 25, 2008
BH 3	74.15	6.21	67.94	April 25, 2008
BH 4	76.35	4.23	72.12	April 25, 2008
BH 5	76.20	5.94	70.26	April 25, 2008
BH 6	76.33	7.41	68.92	April 25, 2008
BH 7	76.37	7.10	69.27	April 25, 2008
BH 8	74.00	6.43	67.57	April 25, 2008
BH 9	73.93	6.21	67.72	April 25, 2008
BH 10	72.80	4.43	68.37	April 25, 2008
BH 11	73.87	4.48	69.39	April 25, 2008
BH 12	73.40	4.00	69.40	April 25, 2008
BH 13	72.88	5.60	67.28	April 25, 2008
BH 14	73.00	6.41	66.59	April 25, 2008
BH 15	73.26	5.12	68.14	April 25, 2008
BH 16	74.18	7.33	66.85	April 25, 2008
BH 17	74.24	6.39	67.85	April 25, 2008

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is adequate for the proposed residential development. The proposed buildings are expected to be founded on conventional footings placed over an undisturbed, stiff silty clay bearing surface.

The above and other considerations are discussed in the following paragraphs.

5.2 Site Grading and Preparation

Stripping Depth

Asphalt, topsoil, and any deleterious fill, such as those containing organic materials, should be stripped from under any buildings and other settlement sensitive structures.

Existing foundation walls and other construction debris should be entirely removed from within the proposed building perimeter. Under paved areas, existing construction remnants such as foundation walls should be excavated to a minimum of 1 m below final grade.

Fill Placement

Fill used for grading purposes beneath the proposed buildings, unless otherwise specified, should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be tested and approved prior to delivery to the site. It should be placed in lifts no greater than 300 mm in thickness and compacted using suitable compaction equipment for the specified lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and be compacted at minimum by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls.

5.3 Foundation Design

Shallow Foundation

Strip footings, up to 3 m wide, and pad footings, up to 6 m wide, founded on an undisturbed, stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**. Footings placed on an undisturbed, compact silty sand bearing surface can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at SLS of **150 kPa**.

The bearing resistance values at SLS will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

The bearing resistance values are provided on the assumption that the footings will be placed on bearing surfaces consisting of native undisturbed soil. The bearing surfaces should be free of fill, topsoil, surface water and deleterious materials, such as loose, frozen or disturbed soil prior to placing concrete.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support. Adequate lateral support is provided to a stiff silty clay or compact silty sand bearing medium when a plane extending down and out from the bottom edge of the footing, at a minimum of 1.5H:1V.

Permissible Grade Raise

A permissible grade raise restriction of 1 m is recommended for the proposed development, if the proposed buildings are founded by conventional shallow footings over a silty clay deposit.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class D** for the foundations considered at this site. The soils underlying the proposed shallow foundations are not susceptible to liquefaction. Reference should be made to the latest revision of the 2012 Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Slab on Grade Construction

With the removal of all topsoil and deleterious fill, such as those containing organic materials, and any existing foundations or construction debris, within the footprint of the proposed buildings, the native soil surface will be considered an acceptable subgrade on which to commence backfilling for floor slab construction.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-floor fill consists of Granular A crushed stone. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

5.6 Pavement Design

Car only parking and heavy traffic areas are anticipated at this site. The proposed pavement structures are shown in Tables 2 and 3.

Table 2 - Recommended Pavement Structure - Car Only Parking Areas									
Thickness (mm)	Material Description								
50	Wear Course - HL-3 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
300	SUBBASE - OPSS Granular B Type II								
SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill									

Thickness (mm)	Material Description
40	Wear Course - HL-3 Asphaltic Concrete
50	Binder Course - HL-8 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
450	SUBBASE - OPSS Granular B Type II

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable compaction equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing its load carrying capacity.

In areas, where the subgrade soil consists predominantly of silty clay. Consideration should be given to installing subdrains at each catch basin. These drains should be at least 3 m long and should extend in four orthogonal directions or longitudinally when placed along a curb. The clear stone surrounding the drainage lines or the pipe itself, should be wrapped with a suitable filter cloth. The sub-drain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

Road Cut Servicing

Where road cuts are proposed on Morrison Drive and Draper Avenue, the pavement granular base and subbase should be reinstated in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD.

Where the proposed pavement structure meets the existing asphalt surface, the following recommendations should be followed:

- □ A 300 mm wide section of the existing asphalt roadway should be saw cut from the existing pavement edge to provide a sound surface to abut the proposed pavement structure.
- □ It is recommended to mill a 300 mm wide and 40 mm deep section of the existing asphalt at the saw cut edge.
- □ The proposed pavement structure subbase materials should be tapered no greater than 3H:1V to meet the existing subbase materials.
- □ Clean existing granular road subbase materials can be reused upon assessment by the geotechnical consultant at the time of excavation (construction) as to its suitability.

patersongroup Ottawa Kingston North Bay

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

A perimeter foundation drainage system is recommended to be provided for the proposed structures. The system should consist of a 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for placement as backfill against the foundation walls unless used in conjunction with a composite drainage system, such as Delta Drain 6000 or Miradrain G100N. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be placed for this purpose.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings, of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for other exterior unheated footings.

6.3 Excavation Side Slopes

Temporary Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations). The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly a Type 2 or 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material may require to be increased to a minimum of 300 mm. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD.

Generally, it should be possible to re-use the moist, not wet, silty clay and silty sand above the cover material if the excavation and filling operations are carried out in dry weather conditions. The wet silty clay should be given a sufficient drying period to decrease its moisture content to an acceptable level to make compaction possible prior to being re-used. Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. The seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches. Periodic inspection of the clay seal placement work should be completed by Paterson personnel during servicing installation work.

6.5 Groundwater Control

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium. Infiltration levels are anticipated to be low through the excavation face. The groundwater infiltration will be controllable with open sumps and pumps.

A temporary Ministry of the Environment and Climate Change (MOECC) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MOECC.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MOECC review of the PTTW application.

Based on our observations and design plans, an EASR permit is recommended for the subject site.

6.6 Winter Construction

The subsurface conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur. Precautions should be taken if winter construction is considered for this project.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters, tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at the founding level.

The trench excavations should be constructed in a manner that will avoid the introduction of frozen materials into the trenches. As well, pavement construction is difficult during winter. The subgrade consists of frost susceptible soils which will experience total and differential frost heaving as the work takes place. In addition, the introduction of frost, snow or ice into the pavement materials, which is difficult to avoid, could adversely affect the performance of the pavement structure. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing presented in Table 4 show that the sulphate contents are less than 0.1%. These results are indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the samples indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a moderate corrosive environment above the groundwater table and a slightly aggressive corrosive environment below the groundwater table.

Table 4 - Co	Table 4 - Corrosion Potential										
Parameter	Laboratory Result	Threshold	Commentary								
Chloride	92 µg/g	Chloride content less than 400 mg/g	Negligible concern								
рН	6.78	pH value less than 5.0	Neutral Soil								
Resistivity	26.6 ohm.m	Resistivity greater than 1,500 ohm.cm	Moderate Corrosion Potential								
Sulphate	50 µg/g	Sulphate value greater than 1 mg/g	Negligible Concern								

6.8 Underground Storage Chamber

Based on our review of the site servicing plan for the subject site provided by David Schaeffer Engineering Ltd., Project No. 17-927, Drawing No. SSP-1, Revision 2 dated November 17, 2017, the proposed underground storage chamber system has been designed with the base of the system at a geodetic elevation of 71.15m. Based on this elevation, the seasonally high groundwater table depth elevation is a minimum 1m below the bottom of the proposed system as per MOE requirements.

6.9 Landscaping Considerations

Tree Planting Restrictions

The proposed residential dwellings are located in a high sensitivity area with respect to tree plantings over a silty clay deposit. It is recommended that trees placed within 5 m of the foundation wall consist of low water demanding trees with shallow roots systems that extend less than 1.5 m below ground surface. Trees placed greater than 5 m from the foundation wall may consist of typical street trees, which are typically moderate water demand species with roots extending to a maximum 2 m depth.

It is well documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils could result in long-term differential settlements of the structures. Tree varieties with most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and are not recommended for the landscape design.

Swimming Pools

The in-situ soils are considered to be acceptable for swimming pools. Above ground swimming pools must be placed a minimum of 5 m away from the residence and neighbouring foundations. Otherwise, pool construction is considered routine, and should be constructed in accordance with the manufacturer's requirements.

Aboveground Hot Tubs

Additional grading around the hot tub should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications.

Installation of Decks or Additions

Additional grading around proposed deck or addition should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

6.10 Global Stability Analysis

The analysis for the global stability of the proposed wall adjacent to Block 8 was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable.

As part of our slope stability assessment, the selected cross section was analysed based on the proposed conditions of the retaining wall adjacent to Block 8 as per the latest grading plans for the subject development.

One (1) cross section was analysed as the worst case scenario along the proposed retaining wall to be located east of the subject property. The location of the cross section analysed is presented on Drawing PG1630-1 - Test Hole Location Plan in Appendix 2.

Static Loading Analysis

The results for the proposed conditions at section A are shown in Figure 1 attached to Appendix 2. The minimum slope stability factor of safety was calculated to be 4.6 which is greater than the minimum recommended factor of safety of 1.5 for static conditions. Based on the results, the proposed conditions are considered stable under static loading.

Seismic Loading Analysis

An analysis considering seismic loading was also completed for the Section A. A horizontal seismic acceleration, K_h , of 0.16G was considered for the analysed section. A factor of safety of 1.1 is considered to be satisfactory for stability analysis including seismic loading.

The results of the analysis including seismic loading is shown in Figure 2 in Appendix 2. The overall slope stability factor of safety for the subject sections when considering seismic loading was found to be greater than 1.1. Based on the results, the slope is considered stable under seismic loading.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, we request immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine its suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Greatwise Developments or their agents is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng.

David J. Gilbert, P.Eng.

Report Distribution:

- Greatwise Developments (3 copies)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

SOIL PROFILE AND TEST DATA patersongroup Consulting Engineers **Geotechnical Investigation Proposed Residential Development - Morrison Drive** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located centre of west property line, along Morrison DATUM FILE NO.

HOLE NO.

REMARKS

Drive. Assumed geodetic elevation = 75.25m, as per plan provided by Roderick Lahey Architects Inc.

PG1630

BH 1

BORINGS BY CME 55 Power Auger				D	ATE /	April 10, 2	800			БПІ	
SOIL DESCRIPTION	PLOT		SAM			DEPTH (m)	ELEV. (m)		Resist. Bl 50 mm Di	ows/0.3m a. Cone	leter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,		Water Co		Piezometer Construction
GROUND SURFACE				Я	4	0-	-74.98	20	40	60 80	
Asphaltic concrete0.05	XX	a AU	1				74.00				8 R
FILL: Brown silty sand and gravel _0.46 Very stiff, brown SILTY CLAY , some sand		ss	2	100	11	1-	-73.98				
2.29		ss	3	100	10	2-	-72.98				
	X	ss	4	100	5						
		ss	5	100	4	3-	-71.98		· · · · · · · · · · · · · · · · · · ·		
Firm, brown CLAYEY SILT, some		ss	6	100	5	4-	-70.98				
sand		ss	7	100	2	5-	-69.98				
6.10		_				6-	-68.98		· · · · · · · · · · · · · · · · · · ·		
		∑ss	8	75	34	7-	-67.98				
Dense to compact, brown SILTY SAND		∑ss ∑ss	о 9	83	34 25		-66.98				
- loose and grey by 8.5m depth		Δσσ	Ū								
9.75		ss	10	100	8	9-	-65.98		· · · · · · · · · · · · · · · · · · ·		
End of Borehole											
(GWL @ 3.60m-Apr. 25/08)								20	40	60 80 11	00
								She ▲ Undis	ar Streng	Jth (kPa) Remoulded	

patersongro		-	Eng	sulting ineers	G	eotechnical In	vestigation dential Develo	ND TEST DATA		
DATUM TBM - Top spindle of fire hy Drive. Assumed geodetic e REMARKS Lahey Architects Inc.	/drant	locate	d cent	tre of w 1, as pe	est p	roperty line, alc	ong Morrison	FILE NO. PG1630)	
BORINGS BY CME 55 Power Auger				D	April 10, 2008		HOLE NO. BH 2			
			SAN	IPLE			Pen B	esist. Blows/0.3m		
SOIL DESCRIPTION	A PLOT				Що	DEPTH EL (m) (n	EV.	i0 mm Dia. Cone	Piezometer	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD		• V	Vater Content %	Piezo	
GROUND SURFACE			N	RE	z ^o	0+76.	50 20	40 60 80		
TOPSOIL0.05		🕿 AU	1			0 70.				
		ss	2	100	6	1-75.	50			
		ss	3	100	5	2-74.	50			
Very stiff to stiff, brown SILTY CLAY							4		189 4	
		ss	4	100	4	3-73.	50			
		X ss	5	100	1	4+72.5	50			
					•					
		∦ ss	6	100	2	5-71.	50			
6.10		ss	7	100	2	6+70.5	50			
Stiff, grey CLAYEY SILT										
		ss	8	83	1	7+69.	50			
7.62		ss	9	67	13	8+68.5	50			
Compact, brown SILTY SAND			10	67	-	0 00.				
		N SS	10		13	9-67.	50			
9.75 Dynamic Cone Penetration Test	5	ss	11	83	25	10 00 1	-0			
commenced @ 9.75m depth						10+66.		· · · · · · · · · · · · · · · · · · ·		
						11+65.	50			
									· · · · · · ·	
						12-64.	50			
Inferred SILTY SAND						13-63.	50			
14.00						14+62.	50			
14.68 End of Borehole	<u>1,1 † †</u>	+							•	
Practical refusal to DCPT @ 14.68m depth										
(GWL @ 9.41m-Apr. 25/08)										
							20	40 60 80	 100	
							Shea	ar Strength (kPa) turbed △ Remoulded		

Datum TBM - Top spindle of fire hydrant located centre of west property line, along Morrison SOIL PROFILE AND TEST DATA Batum Soil PROFILE AND TEST DATA Geotechnical Investigation Proposed Residential Development - Morrison Drive Otatum TBM - Top spindle of fire hydrant located centre of west property line, along Morrison

PG1630 Drive. Assumed geodetic elevation = 75.25m, as per plan provided by Roderick REMARKS Lahey Architects Inc. HOLE NO. BH 3 BORINGS BY CME 55 Power Auger **DATE** April 10, 2008 SAMPLE Pen. Resist. Blows/0.3m Piezometer Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE of ROD NUMBER TYPE 0/0 Water Content % 0 40 60 80 **GROUND SURFACE** 20 0 74.15 \bigotimes TOPSOIL 0.08 FILL: Crushed stone 0.25 ALL 1

								5	20 Shear Shear	Streng	60 a gth (kP ∆ Remou	a)	00
End of Borehole (GWL @ 6.21m-Apr. 25/08)													
	9.75	ss	13	58	59	9-0	65.15						
		A 33	12	67 100	34 50+	8+0	66.15						
- grey and very dense by 6.0m de	pth	∑ss ∑ss	10 11	100	50+		67.15						
Loose, brown SILTY SAND	_ <u>5.94</u>	ss	9	78	66		68.15						
		X ss X ss	7 8	100 100	8 5	5-0	69.15						
		ss	6	100	6	4-	70.15						
Very stiff to stiff, brown SILTY CLAY , trace sand		ss	5	100	5	3-	71.15			· · · · · · · · · · · · · · · · · · ·			
Von otiff to stiff brown CILTY		X ss	4	100	7	2+	72.15						
FILL: Crushed stone	0.25	SS SS SS	1 2 3	58 100	12 11	1-	73.15				· · · · · · · · · · · · · · · · · · ·		

patersongr 154 Colonnade Road South, Ottawa, C	P	eotechnic	cal Inves Resident	ND TEST DATA								
DATUMTBM - Top spindle of fire h Drive. Assumed geodetic Lahey Architects Inc.	nydrant elevati	locate on = 7	d cen 5.25m	tre of v 1, as pe	vest p er pla	property lin n provided	e, along l I by Rode	Morrison erick	FILE NO. PG1630			
BORINGS BY CME 55 Power Auger				D	ATE	April 10, 2	2008		HOLE NO. BH 4			
<u> </u>	Ę		SAMPLE					Pen. Re	Pen. Resist. Blows/0.3m			
SOIL DESCRIPTION	PLOT			к	ы	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia. Cone	neter		
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or ROD				Ater Content %	Piezometer		
GROUND SURFACE TOPSOIL 0.0)5 / / /	7		<u></u>	~	- 0-	76.35	20	40 60 80			
					-	1	-75.35					
		SS	1	100	7	1-	75.35					
		ss	2	100	11	2-	-74.35					
Grey-brown SILTY CLAY , trace sand		ss	3	100	3	3-	-73.35					
Saliu		ss	4	100	2		10.00					
		ss	5	100	2	4-	-72.35					
		ss	6	100	1	5-	-71.35					
		ss	7	100	1							
<u>6.1</u>	0	ss	8	83	1	6-	-70.35					
Grey-brown CLAYEY SILT, some sand		1 ss	9	100	2	7-	69.35					
7.6	<u>2</u>	ss (10	8	11							
Very loose to compact, brown				-		8-	-68.35					
SILTY SAND			11	50	24	9-	67.35		· · · · · · · · · · · · · · · · · · ·			
9.7 End of Borehole	<u>′5 </u>	ss	12	50	20							
(GWL @ 4.23m-Apr. 25/08)												
(and @												
								20 Shea	40 60 80 ar Strength (kPa)	100		
								▲ Undist				

patersongro	JU	Ip	Con Eng	sultin ineers	-	SOI			ND TES	ST DATA		
154 Colonnade Road South, Ottawa, O	ntario	- K2E 7	J5		P		Resident		pment - I	Morrison Dri	ve	
DATUMTBM - Top spindle of fire hy Drive. Assumed geodetic e Lahey Architects Inc.					vestp	property lin	e, along		FILE NO.	PG1630		
BORINGS BY CME 55 Power Auger				D	ΔΤΕ	April 11, 2	2008		HOLE NO	D. BH 5		
	E		SAN	- IPLE	<u></u>			Pen. R	esist. Bl	ows/0.3m	, <u> </u>	
SOIL DESCRIPTION	PLOT			×	м.,	DEPTH (m)	ELEV. (m)	• 5	0 mm Di	a. Cone	Piezometer Construction	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD			• V	Vater Co	ntent %	iezoi onstr	
GROUND SURFACE	LS I	P	NN	REC	N O L		70.00	20	40	60 80	шО	
						- 0-	-76.20					
		ss	1	100	9	1-	-75.20					
		ss	2	100	6	2-	-74.20					
Very stiff to stiff, brown SILTY						3	-73.20	4		••••••••••••••••••••••••••••••••••••••		
CLAY, some sand		ss	3	100	3		75.20					
						4 -	-72.20			A		
		ss	4	100	1	5-	71.20					
		ss	5	100	1	6-	-70.20					
6.86	s	ss	6	100	1		10.20			/		
		ss	7	100	1	7-	-69.20					
Stiff, grey CLAYEY SILT		ss	8	100	2	8-	68.20					
		ss	9	100	2	9-	-67.20					
9.75	5	ss	10	100	4				· · · · · · · · · · · · · · · · · · ·			
Dynamic Cone Penetration Test commenced @ 9.75m depth						10-	-66.20					
						11-	65.20			· · · · · · · · · · · · · · · · · · ·		
						12-	-64.20					
Inferred SILTY SAND												
						13-	-63.20					
						14-	-62.20					
(G)MI = (0.5 0.4 m Arr $25/00)$						15-	-61.20					
(GWL @ 5.94m-Apr. 25/08) <u>15.9</u> ()	ļ										
End of Borehole											Ī	
Practical refusal to DCPT @ 15.90m depth												
								20	40	60 80 1	 00	
									ar Streng			

patersongro	DL	D	Con	sultin	_				ND TES	ST DATA	
154 Colonnade Road South, Ottawa, Or			-	meers	P	ieotechnic roposed l ottawa, Or	Resident		pment - N	Iorrison Driv	ve
DATUMTBM - Top spindle of fire hy Drive. Assumed geodetic e Lahey Architects Inc.	drant Ievati	locate on = 7	d cent 5.25m	tre of v n, as pe	vest	property lin	e, along l	Morrison erick	FILE NO.	PG1630	
BORINGS BY CME 55 Power Auger				D	ATE	April 11, 2	8008		HOLE NO	^{).} BH 6	
	Ę		SAN	IPLE				Pen. Re	esist. Ble	ows/0.3m	. c
SOIL DESCRIPTION	PLOT		- 4	ĸ	M -	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia	a. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD	1		• v	/ater Cor	ntent %	iezoi
GROUND SURFACE	LS I	H	ŊŊ	REC	N OH OH		70.00	20		60 80	۵Ğ
TOPSOIL0.10		× AU	1			- 0-	-76.33				
		ss	2	17		1-	75.33		· · · · · · · · · · · · · · · · · · ·		•
		ss	3	12	5	2-	-74.33		· · · · · · · · · · · · · · · · · · ·		
Hard to stiff, brown SILTY CLAY,									· · · · · · · · · · · · · · · · · · ·	20	94
some sand		ss	4	100	5	3-	-73.33		· · · · · · · · · · · · · · · · · · ·		
		ss	5	100	2	4-	72.33				
		x ss	6	100	3	5-	-71.33				•
		n I ss	7	75	2		71.00				- - - -
<u>6.10</u>		x ss	8	67	24	6-	-70.33				
		∆ ss ∏ss	9	67	24	7-	-69.33		· · · · · · · · · · · · · · · · · · ·		
Compact, brown SILTY SAND		∆ SS ∏ss							· · · · · · · · · · · · · · · · · · ·		Ţ
		N 22	10	75	23	8-	-68.33		· · · · · · · · · · · · · · · · · · ·		
		Vaa				9-	67.33		·····		
9.75		X ss	11		24						
(GWL @ 7.41m-Apr. 25/08)											
								20 Shea	40 e ar Streng		1 00
								▲ Undist	-	Remoulded	

patersongr 154 Colonnade Road South, Ottawa, G		-		isultin jineers	P	eotechnic	cal Inves Resident	stigation	ID TEST D	
DATUMTBM - Top spindle of fireDrive.Assumed geodeticREMARKSLahey Architects Inc.	hydrant elevati	locate on = 7	d cen 5.25m	tre of v n, as pe	vest p er pla	property lin n provided	le, along l I by Rode	Morrison erick	FILE NO. PO	31630
BORINGS BY CME 55 Power Auger				D	ATE	April 11, 2	2008		HOLE NO. BI	H 7
0	E		SAN	IPLE				Pen. R	esist. Blows/0	.3m ,
SOIL DESCRIPTION	PLOT			ĸ	61	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia. Con	neter a
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0 V 20	Ater Content	Bie Biezometer 2000
	13	.				- 0-	76.37			
		ss	1	100	6	1-	-75.37			
		ss	2	100	5	2-	-74.37			
Very stiff to stiff, brown SILTY		ss	3	100	6	2	-73.37			
CLÁY, some sand		ss	4	100	4	3-	-73.37			
		ss	5	83	2	4 -	-72.37			
5.0	33					5-	71.37	Δ		
Stiff, brown CLAYEY SILT , some		ss	6	83	3	6-	-70.37			
sand 6.7	70	ss	7	83	3					
		ss	8	75	19	7-	-69.37			
Compact, brown SILTY SAND		ss	9	67	22	8-	68.37		· · · · · · · · · · · · · · · · · · ·	
9.	75	∦ss	10	50	27	9-	-67.37			
End of Borehole										
(GWL @ 7.10m-Apr. 25/08)										
								20	40 60	80 100
									r Strength (kP	a)

patersongr 154 Colonnade Road South, Ottawa, C	P	eotechnie	cal Inves Resident	tigation		ST DATA					
DATUMTBM - Top spindle of fire h Drive. Assumed geodetic Lahey Architects Inc.	nydrant elevat	t locate ion = 7	d cen 5.25m	tre of v n, as pe	vest p er pla	property lin n providec	ie, along l I by Rode	Morrison erick	FILE NO	PG163	0
BORINGS BY CME 55 Power Auger				D	ATE	April 11, 2	2008		HOLE N	^{o.} BH 8	
<u> </u>	E		SAN	IPLE		·		Pen. R	esist. B	lows/0.3m	
SOIL DESCRIPTION	PLOT			ĸ	M .	DEPTH (m)	ELEV. (m)	• 5	0 mm Di	ia. Cone	Piezomețer
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	VALUE r ROD			• v	Vater Co	ntent %	iezor
GROUND SURFACE	E.	H	ION I	REC	N N N N			20	40	60 80	
	0	_ ✓≅ AU	1			- 0-	-74.00				
		ss	2	83	3	1.	73.00				
Very stiff to stiff, brown SILTY		ss	3	58	1		70.00			· · · · · · · · · · · · · · · · · · ·	
CLÁY, some sand		x ss	4	100	1	2	-72.00				
		x ss	5	100	4	3-	71.00		· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	189
3.6	6[/// 					4-	-70.00				
			6	50	16		/ 0.00			· · · · · · · · · · · · · · · · · · ·	
			7	67	21	5-	69.00				
		SS	8	50	45	6-	-68.00				
Compact to dense, brown SILTY SAND		∑∦ ss	9	58	41						
		•				7-	-67.00				
		ss	10	67	25	8-	66.00		· · · · · · · · · · · · · · · · · · ·		
							05.00			· · · · · · · · · · · · · · · · · · ·	
9.7	,5	ss	11	58	30	9-	-65.00			· · · · · · · · · · · · · · · · · · ·	
End of Borehole											
(GWL @ 6.43m-Apr. 25/08)											
								20 Shea		60 80 gth (kPa)	100
								▲ Undist		A Remoulded	

patersongro		-		sultin	P	eotechnic	cal Inves Resident	tigation		ST DATA Morrison Dri	ve
DATUMTBM - Top spindle of fire hydrogenerationDrive.Assumed geodetic elREMARKSLahey Architects Inc.	drant evati	locate on = 7	d cent 5.25m	tre of v 1, as pe	vestp	roperty lin	e, along l	Morrison erick	FILE NO.	PG1630	
BORINGS BY CME 55 Power Auger				D	ATE	April 14, 2	2008		HOLE NO	^{).} BH 9	
	Ē		SAN	IPLE				Pen. R	esist. Bl	ows/0.3m	- <u>-</u>
SOIL DESCRIPTION	A PLOT		æ	RY	Ĕ٥	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia	a. Cone	mete
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE or RQD			• v	Vater Cor	ntent %	Piezometer Construction
GROUND SURFACE	S		Z	RE	z ö		-73.93	20	40 6	<u>50 80</u>	
TOPSOIL0.10	X	🖾 AU	1] 0-	73.93				
		ss	2	100	4	1-	72.93		· · · · · · · · · · · · · · · ·		
		ss	3	100	3	2-	-71.93				
Very stiff to stiff, brown SILTY CLAY	X	ss	4	100	4						
		x x ss	5	100	2	3-	70.93	Δ		1	79
		X ss	6	100	-	4-	-69.93		· · · · · · · · · · · · · · · · · · ·		
5.26		∦ ∦ss	7	100	3	5-	-68.93				
<u>5.2</u> 0		ss	8	67	10						
		ss	9	75	24	6-	-67.93				
Compact, grey-brown SILTY SAND		N OO		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	27	7-	66.93				
		X ss	10	100	29	0.	-65.93		· · · · · · · · · · · · · · · · · · ·		
		Δυ			20	0	00.93				
		Vaa		100	00	9-	64.93		······································		
9.75 Dynamic Cone Penetration Test		X ss	11	100	30	10-	63.93				
commenced @ 9.75m depth							00.00				
Inferred SILTY SAND						11-	62.93				
12.14		-				12-	-61.93				
End of Borehole											Ī
Practical refusal to DCPT @ 12.14m depth											
(GWL @ 6.21m-Apr. 25/08)											
								20 Shea ▲ Undist	ar Streng		- 00

patersongro		-		sulting	G P	SOIL PRO eotechnical Inve roposed Resider	stigation			ve
DATUM TBM - Top spindle of fire hydrogeneration Drive. Assumed geodetic e	drant	locate	d cent	tre of w i, as pe	est p	ttawa, Ontario property line, along n provided by Roc	Morrison erick	FILE NO.	PG1630	
REMARKS Lahey Architects Inc.				_				HOLE NO.	BH10	
BORINGS BY CME 55 Power Auger					AIE	April 14, 2008				
SOIL DESCRIPTION	PLOT			IPLE 거		DEPTH ELEV (m) (m)	-	esist. Blo 0 mm Dia		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD		• V	Vater Cont	tent %	Diezon
GROUND SURFACE	เงิ		M	REC	z ö		20	40 60	80	0
TOPSOIL0.13	X	🕿 AU	1			- 0+72.80				
		ss	2	67	5	1-71.80				
Very stiff to stiff, brown SILTY CLAY		ss	3	100	5	2-70.80				
		ss	4	100	4	0 00 00		· · · · · · · · · · · · · · · · · · ·		
3.81		ss	5	75	6	3+69.80		· · · · · · · · · · · · · · · · · · ·		
0.01		ss	6	67	8	4-68.80			· · · · · · · · · · · · · · · · · · ·	
		ss	7	50	30	5-67.80				
		ss	8	50	15					
		ss	9	50	24	6+66.80				
Compact to dense, brown SILTY SAND						7+65.80		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		∦ss	10	67	22	8+64.80		· · · · · · · · · · · · · · · · · · ·		
		Δ	-			0 04.00		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
9.75		∦ss	11	25	31	9+63.80		· · · · · · · · · · · · · · · · · · ·		
End of Borehole										
(GWL @ 4.43m-Apr. 25/08)										
							20 Shea	40 60 ar Strengt		1 00
							Undist	-	Remoulded	

patersongr	01	ıp	Con Eng	sulting ineers		eotechnic	al Inves					
154 Colonnade Road South, Ottawa, C					0	ttawa, Or	ntario				ion Driv	ve
DATUM TBM - Top spindle of fire h Drive. Assumed geodetic REMARKS Lahey Architects Inc.	elevati	on = 7	a cen 5.25m	ire of w 1, as pe	est p r plar	n provided	e, along i by Rode	viorrison erick	FILE	PC	G1630	
BORINGS BY CME 55 Power Auger				DA	TE	April 15, 2	2008		HOL	E NO. B	H11	
	PLOT		SAN	IPLE		DEPTH				Blows/0		- Le
SOIL DESCRIPTION			ĸ	RY	ËQ.	(m)	(m)	• 5	0 mm	n Dia. Cor	e	omete
	STRATA	ТУРЕ	NUMBER	* RECOVERY	N VALUE or RQD			• v	Vater	Content	%	Piezometer
ROUND SURFACE			2	RE	zÓ	0-	-73.87	20	40	60	80	
25mm Asphaltic concrete over silty 0.1 sand with gravel FILL	5	T∝ AU	1									
		ss	2	67	12	1-	-72.87					
/ery stiff to stiff, brown SILTY		ss	3	100	5	2-	71.87					
CLAY, trace sand		ss	4	100	2							
3.6	6	ss	5	100	3	3-	-70.87					
Brown CLAYEY SILT, some sand		ss	6	100	8	4-	-69.87		·····			
4.5	7	ss .	7	67	11							1
						5-	-68.87					
		SS SS	8	75	22	6-	67.87					
		ss	9	50	25	_						
						7-	-66.87					
Compact, brown SILTY SAND		ss	10	67	28	8-	65.87					
							04.07				• • • • • • • • • • • • • • •	
		ss	11	50	26	9-	-64.87			·····		
						10-	63.87		· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·	
						11-	-62.87					
12.1	9					12-	61.87					
Dynamic Cone Penetration Test ommenced @ 12.19m depth						10	00.07					-
nferred SILTY SAND						13-	-60.87			5		1
						14-	-59.87		· · · · · · · · · · · · · · · · · · ·			
14.7 End of Borehole	3	-										1
Practical refusal to DCPT @ 14.73m												
lepth												
GWL @ 4.48m-Apr. 25/08)												
								20 Shea ▲ Undist		60 ength (kF ∆ Remo	Pa)	1 00

patersongr		-		sulting ineers	G	eotechnic	cal Inves	tigation		EST DA	
154 Colonnade Road South, Ottawa, O DATUM TBM - Top spindle of fire h Drive. Assumed geodetic	ydrant	locate	d cent	tre of w	est p	ttawa, Or property lin	ntario e, along l	Morrison	FILE		
REMARKS Lahey Architects Inc.	elevali		5.2511	i, as pe	i pia	ii piovided	i by noue	TICK	HOLE		
BORINGS BY CME 55 Power Auger				D	ATE	April 15, 2	2008	1		BH1	2
SOIL DESCRIPTION			SAN	IPLE		DEPTH		-		Blows/0.3n Dia. Cone	u ,
	STRATA PLOT	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			Content %	Piezometer
GROUND SURFACE				RE	zö	0-	-73.40	20	40	60 80	
TOPSOIL 0.1		, and a start and a start a s	1				70.40				
Very stiff, brown SILTY CLAY , some		ss	2	83	4	1-	-72.40			· · · · · · · · · · · · · · · · · · ·	
sand		ss	3	92	5	2-	-71.40				
		ss	4	100	4	3-	-70.40		· · · · · · · · · · · · · · · · · · ·		
	<u>5</u>							Δ		· · · · · · · · · · · · · · · · · · ·	102
Very stiff, brown CLAYEY SILT	7	ss	5	100	4	4-	-69.40			· · · · · · · · · · · · · · · · · · ·	
		ss	6	42	23	5-	68.40				
		ss	7	42	29	6	-67.40				
Compact to dense, brown SILTY		ss	8	50	26		07.40				
SAND to SAND						7-	66.40				
		ss	9	33	26	8-	65.40		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
						0-	-64.40		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
9.7	5	ss	10	25	30		04.40		• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
End of Borehole											
(GWL @ 4.00m-Apr. 25/08)											
								20	40	60 80	100
								Shea	ar Stre	ngth (kPa)	
								▲ Undist	urbed)d

paterson	•		-		sultin	P	eotechnic	cal Inves Resident	tigation		ST DATA Norrison Dri	ve
DATUM TBM - Top spin Drive. Assumed REMARKS Lahey Architects	d geodetic e	drant Ievati	locate on = 7	d cen 5.25m	tre of v i, as pe	vestp	property lin	e, along l	Morrison erick	FILE NO.	PG1630	
BORINGS BY CME 55 Powe					П	ΔTF	April 16, 2	2008		HOLE NO	^{).} BH13	
	.,			SAM					Pen R	esist Bl	ows/0.3m	
SOIL DESCRIPTIO	N	PLOT					DEPTH (m)	ELEV. (m)		0 mm Dia		leter
) SURFACE		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Cor	ntent %	Piezometer
ROUND SURFACE	0.12		.		R	<u>д</u> -	- 0-	72.88	20	40 6	i0 80	
	0.13		ar ■ AU	1				-				
			X ss	2	83	7	1-	-71.88				
'ery stiff to stiff, brown SIL 1 CLAY, some sand	ſŶ		ss	3	100	7	2-	70.88				
			ss	4	100	6						
	0.01		ss	5	100	6	3-	-69.88		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	<u>3.81 3.81 </u>		ss	6	50	18	4-	68.88				
			ss	7	33	16	-	07.00				
			X ss		25	22	5-	-67.88				
			Ê	8			6-	66.88		· · · · · · · · · · · · · · · · · · ·		
Compact, brown SILTY SAI	ND to		X ss	9	33	25	_	05.00				
SAND							/-	-65.88				
			ss	10	50	20	8-	64.88		· · · · · · · · · · · · · · · · · · ·		
								<u> </u>				
	<u>9.75</u>		ss	11	33	26	9-	-63.88			· · · · · · · · · · · · · · · · · · ·	
End of Borehole	<u>0.10</u>											_9951 —
GWL @ 5.60m-Apr. 25/08)												
									20	40 6	i i i i i i i i i i i i i i i i i i i	 00
									Shea	ar Streng	th (kPa)	00
									▲ Undist		Remoulded	

patersongro)l	Ip	Con Eng	sulting	G	eotechnic	al Inves				
154 Colonnade Road South, Ottawa, Or					0	ttawa, On	itario	tial Develo	•		n Drive
DATUM TBM - Top spindle of fire hy Drive. Assumed geodetic e REMARKS Lahey Architects Inc.	drant levati	locate on = 7	d cent 5.25m	tre of w 1, as pe	est p r pla	n provided	e, along I by Rode	Morrison erick	FILE NO	PG1	630
BORINGS BY CME 55 Power Auger				D	ATE	April 16, 2	008		HOLEN	^{o.} BH	14
	PLOT		SAN	IPLE		DEPTH	ELEV.	-		lows/0.3	m
SOIL DESCRIPTION			R	RY	Be.	(m)	(m)	• 5	0 mm D	ia. Cone	omete
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			• V	Vater Co	ontent %	<u>م</u>
GROUND SURFACE		Ļ		Ř	2	- 0-	-73.00	20	40	60 80)
		a AU	1								
Very stiff to stiff, brown SILTY		X SS	2	58	4	1-	-72.00				
CLÁY, some sand		ss	3	50	13	2-	-71.00		·	· · · · · · · · · · · · · · · · · · ·	
3.05		ss	4	83	10	2	-70.00		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Stiff, brown CLAYEY SILT		ss	5	83	9	3	-70.00		• • • • • • • • • •	· · · · · · · · · · · · · · · · · ·	
3.96		ss	6	67	18	4 -	-69.00		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		ss	7	62	19	5-	-68.00				
							00.00				
		ss	8	50	20	6-	-67.00			· · · · · · · · · · · · · · · · · · ·	
Compact, brown SILTY SAND		N 22	0	50	20	7-	-66.00			· · · · · · · · · · · · · · · · · · ·	
							00.00				
		ss	9	75	19	8-	-65.00				
						9-	-64.00		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
9.75		ss	10	50	16						
Dynamic Cone Penetration Test commenced @ 9.75m depth						10-	-63.00				· · · · · · · · · · · · · · · · · · ·
						11-	-62.00			· · · · · · · · · · · · · · · · · · ·	
						12-	-61.00				
Inferred SILTY SAND						13-	-60.00				
							50.00				
						14-	-59.00		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
						15-	-58.00				· · · · · · · · · · · · · · · · · · ·
(GW L @ 6.41m-Apr. 25/08) 16.05						10	57.00				
End of Borehole		Ť				10-	-57.00				
Practical refusal to DCPT @ 16.05m depth											
								20 Shea ▲ Undist		60 80 gth (kPa) ∆ Remould)

patersongr 154 Colonnade Road South, Ottawa, C	P	SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Residential Development - Morrison Drive Ottawa, Ontario										
DATUMTBM - Top spindle of fire h Drive. Assumed geodetic Lahey Architects Inc.	iydrant elevat	locate ion = 7	d cen 5.25m	tre of v n, as pe	vest pla	property lin	e, along l I by Rode	Morrison erick			G1630	
BORINGS BY CME 55 Power Auger				D	ATE	April 16, 2	2008		HOL	E NO.	3H15	
	E		SAN	IPLE				Pen. R	esist.	Blows	/0.3m	
SOIL DESCRIPTION	PLOT			Я		_ DEPTH (m)	ELEV. (m)	• 5	0 mn	n Dia. Co	one	neter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of ROD	1		○ V 20	Vater 40	Conten	t% 80	Piezometer Construction
GROUND SURFACE TOPSOIL 0.1	5 // /	∮≊ AU	1	<u>н</u>		- 0-	-73.26	20	40			
			2	50	7	1-	-72.26					
		x ss	3	50	, 12							
Very stiff to stiff, brown SILTY CLAY, some sand						2-	-71.26				·····	
		X SS	4	67	7	3-	70.26				· · · · · · · · · · · · · · · · · · ·	
		X SS	5	67	6	4	60.06			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
<u>4.5</u>		ss	6	42	4	4-	-69.26				• • • • • • • • • • • • • • •	
Stiff, brown CLAYEY SILT 5.0	<u>3 / / /</u>	SS SS	7	83	8	5-	-68.26			· · · · · · · · · · · · · · · · · · ·	•	
		ss	8	42	24	6-	-67.26					
		ss	9	67	22							
Compact, brown SILTY SAND		• •				7-	-66.26					
		ss	10	50	25	8-	65.26				· · · · · · · · · · · · · · · · · · ·	
							-64.26				• • • • • • • • • • • • • • • • • • • •	
9.7	5	ss	11	50	25	9-	-04.20		· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Dynamic Cone Penetration Test commenced @ 9.75m depth						10-	63.26		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
						11-	62.26			•	· · · · · · · · · · · · · · · · · · ·	
		· ·										
Inferred SILTY SAND		· .				12-	-61.26					
		· . · .				13-	60.26					
14.1	2	·.				14.	-59.26					
End of Borehole	<u></u>	<u>.</u>				14	-59.20					
Practical refusal to DCPT @ 14.12m depth												
(GWL @ 5.12m-Apr. 25/08)												
								20 20 20 ▲ Undist		<u>60</u> 60 60 60 €ngth (k		⊣ 00

SOIL PROFILE AND TEST DATA patersongroup Consulting Engineers Geotechnical Investigation **Proposed Residential Development - Morrison Drive** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located centre of west property line, along Morrison DATUM FILE NO.

PG1630

HOLE NO.

REMARKS

Drive. Assumed geodetic elevation = 75.25m, as per plan provided by Roderick Lahev Architects Inc.

BH16 BORINGS BY CME 55 Power Auger DATE April 17, 2008 SAMPLE Pen. Resist. Blows/0.3m Piezometer Construction PLOT DEPTH ELEV. 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY VALUE Pr ROD STRATA NUMBER TYPE Water Content % О N OF <u>4</u>0 60 กิ **GROUND SURFACE** 20 0+74.180.08 AU \bigotimes Asphaltic concrete 1 0.30 FILL: Crushed stone FILL: Sand and gravel 0.91SS 2 17 9 1 + 73.183 SS 42 6 2+72.18 SS 4 75 4 Very stiff to stiff, brown SILTY 3 + 71.18CLÁY, trace sand 5 SS 100 5 4+70.18 SS 6 100 6 7 SS 100 10 5+69.18 5.49 SS 8 50+ 59 6 + 68.18Ŋ SS 9 38 74 X 7 ± 67.18 SS 10 35 50 +þ SS 11 75 32 8+66.18 Compact to very dense, brown SILTY SAND Ŋ SS 12 75 21 9+65.18 10+64.18 11+63.18 <u>12.</u>19 12+62.18 Dynamic Cone Penetration Test commenced @ 12.19m depth 13+61.18 14+60.18 Inferred SILTY SAND 15 + 59.1815.39 End of Borehole Practical refusal to DCPT @ 15.39m depth (GWL @ 7.33m-Apr. 25/08) 40 60 80 100 20 Shear Strength (kPa) Undisturbed △ Remoulded

Patersongroup Consulting Engineers 154 Colonnade Road South, Ottawa, Ontario K2E 7J5						SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Residential Development - Morrison Drive Ottawa, Ontario					
DATUMTBM - Top spindle of fire h Drive. Assumed geodeticREMARKSLahey Architects Inc.	vest p	st property line, along Morrison plan provided by Roderick FILE NO. PG1630)					
BORINGS BY CME 55 Power Auger				п	ATE	April 18, 20	າດຂ		HOLE	^{E NO.} BH17	
			SVI				000	Pon B	eiet	Blows/0.3m	
SOIL DESCRIPTION	PLOT				Шо	DEPTH (m)	ELEV. (m)	-		Dia. Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			• v	later (Content %	Piezo
GROUND SURFACE			Z	RE	z ö	- 0-	76.24	20	40	60 80	
TOPSOIL0.1	15	∝ AU	1				10.24		· · · · · · · · · · · · · · · · · · ·		
		ss	2	58	9	1-	75.24		· · · · · · · · · · · · · · · · · · ·		
						2-	74.24				134
Very stiff to stiff, brown SILTY		ss	3		6	3-	73.24		· · · · · · · · · · · · · · · · · · ·		
CLAY, trace sand		ss	4	100	3	4-	72.24				
						5-	71.24		· · · · · · · · · · · ·		121
- grey by 5.5m depth		ss	5	100	1		70.24				
		x ss	6	100	1		69.24	4			
		A 22	0	100	1	8-	68.24		· · · · · · · · · · · · · · · · · · ·		
9.3		ss	7	100	W	9+	67.24		· · · · · · · · · · · · · · · · · · ·		
Inferred SILTY SAND 9.7		ss	8	25	19				· · · · · · · · · · · · · · · · · · ·		
Dynamic Cone Penetration Test commenced @ 9.75m depth							66.24				
						11-	65.24				
						12-	64.24			•	
Inferred SILTY SAND						13-	63.24				· · · · · · · · · · · · · · · · · · ·
						14-	62.24				· · · · · · · · · · · · · · · · · · ·
						15-	61.24				•••
(GWL @ 6.39m-Apr. 25/08)	<u>36</u>					16-	60.24				
End of Borehole Practical refusal to DCPT @ 16.36m depth											Ī
oopar								20 Shea ▲ Undist		60 80 ength (kPa) △ Remoulded	100

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value	
Very Soft	<12	<2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very Stiff	100-200	15-30	
Hard	>200	>30	

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

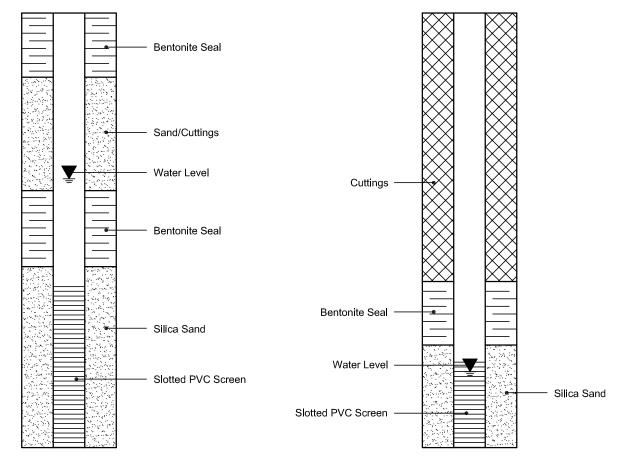
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)			
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size			
D10	-	Grain size at which 10% of the soil is finer (effective grain size)			
D60	-	Grain size at which 60% of the soil is finer			
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$			
Cu	-	Uniformity coefficient = D60 / D10			
Cc and Cu are used to assess the grading of sands and gravels:					

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

MONITORING WELL CONSTRUCTION

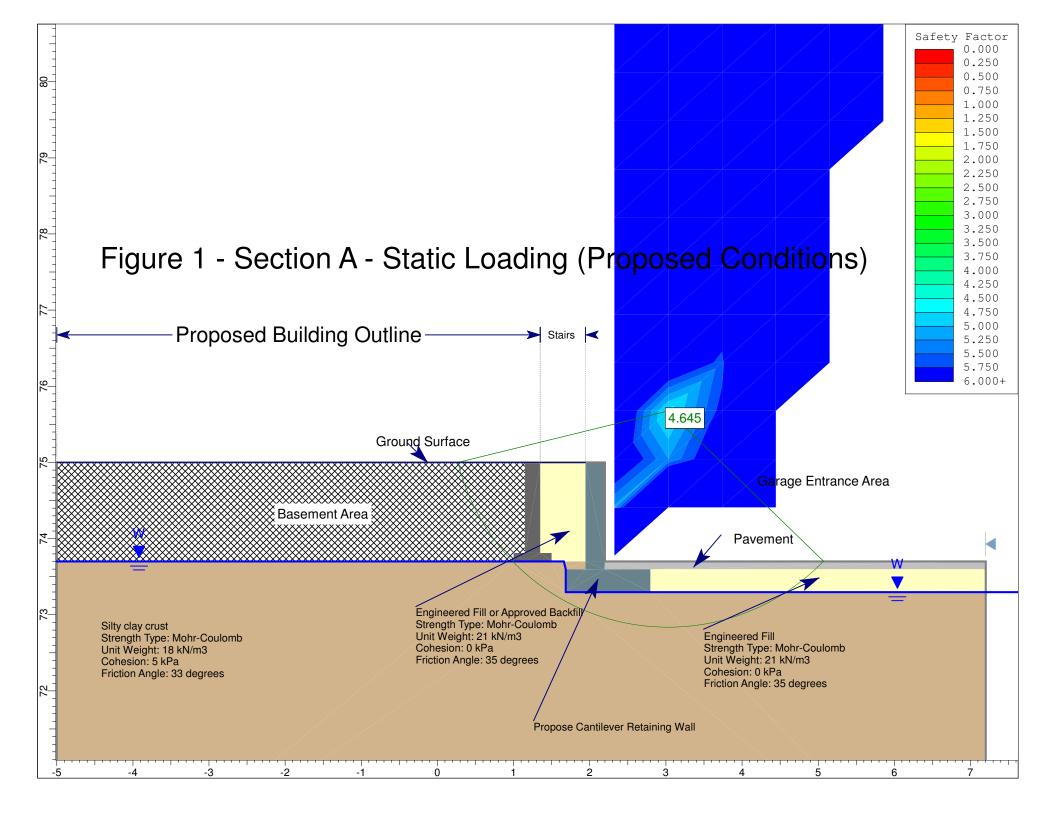
PIEZOMETER CONSTRUCTION

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 23-Apr-2008 Order Date:18-Apr-2008

Client PO: 6263		Project Description: PG 1630						
	Client ID	BH 16 - SS 5	-	-				
	Sample Date:	17-Apr-08	-	-	-			
	Sample ID:	0816171-01	-	-	-			
	MDL/Units	Soil	•	-	-			
Physical Characteristics	-							
% Solids	0.1 % by Wt.	70.8	-	•				
General inorganics	······································							
рH	0.05 pH Units	6.78	-	-				
Resistivity	0.10 Ohm.m	26.6	-	•	-			
Anions			•••••••					
Chloride	5 ug/g dry	92	-		-			
Sulphate	5 ug/g dry	50	-	•	-			


Order # 0816171

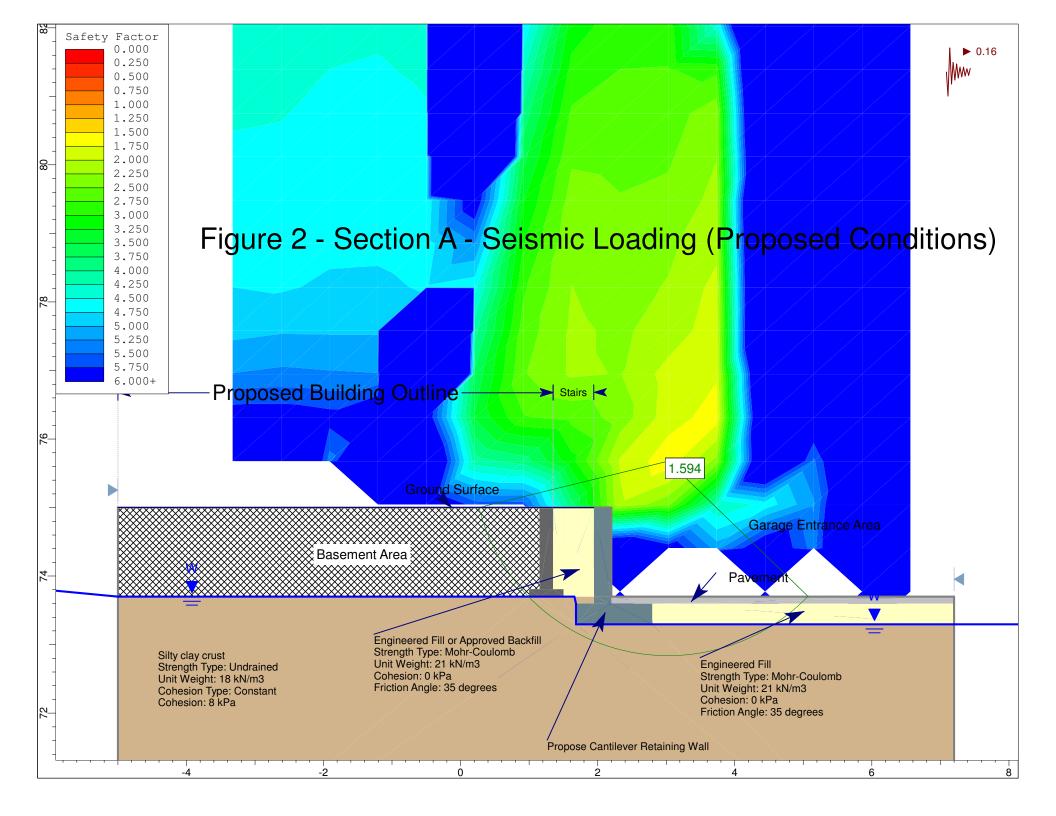
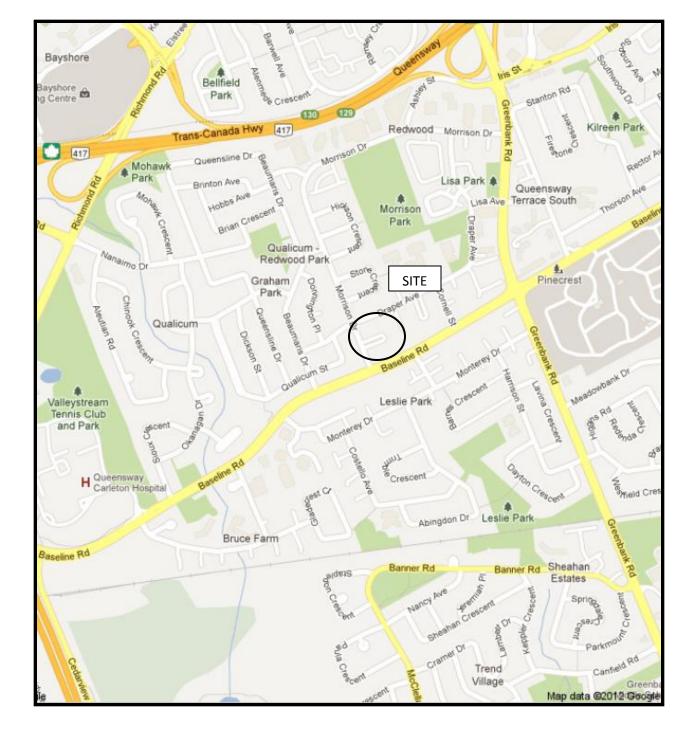
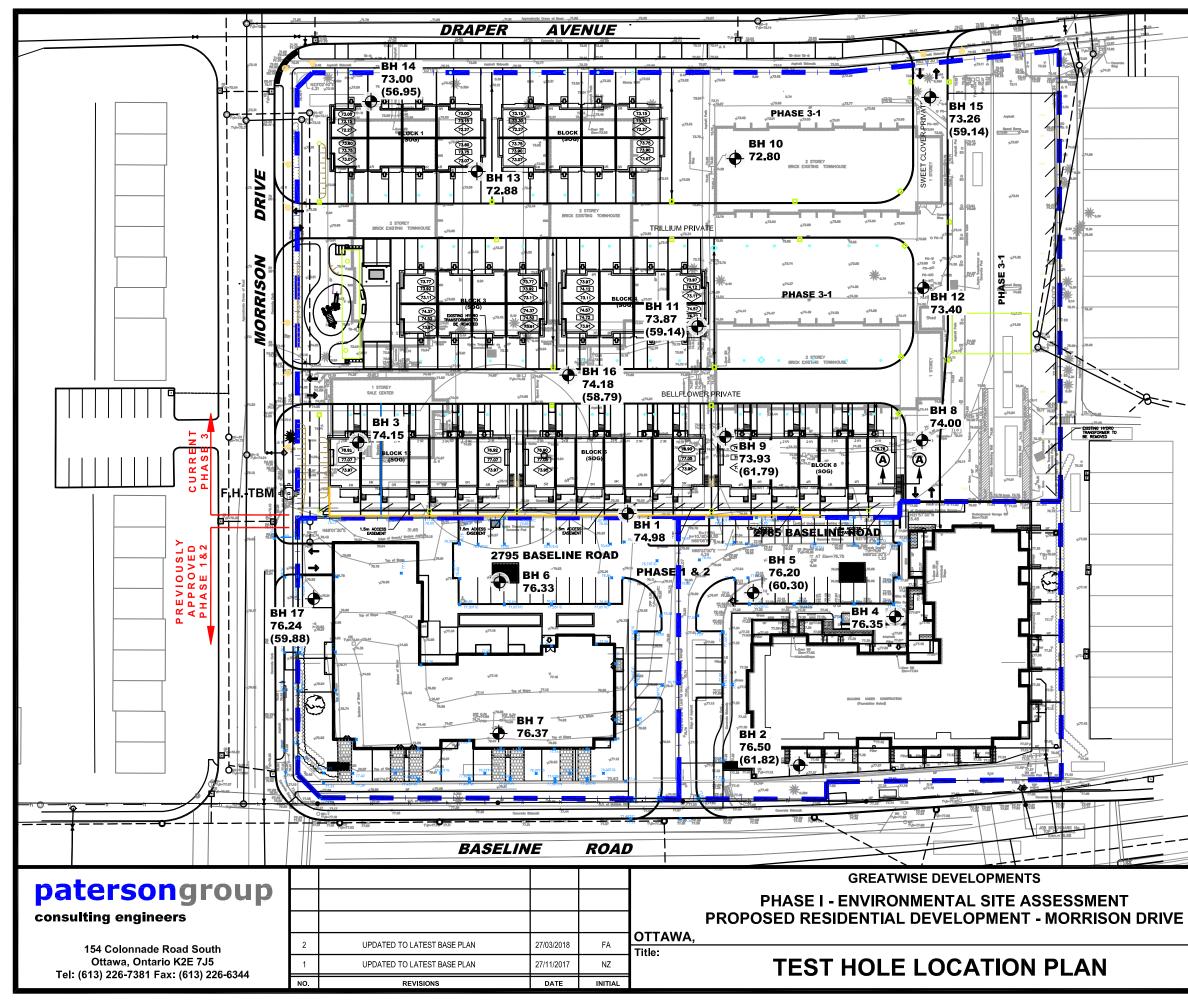

APPENDIX 2

FIGURE 1 AND 2 - GLOBAL STABILITY SECTIONS

FIGURE 3 - KEY PLAN

DRAWING PG1630-1 - TEST HOLE LOCATION PLAN





patersongroup

KEY PLAN

LEGEND:

\bullet	BOREHOLE LOCATION
$\mathbf{\Psi}$	BOREHOLE LOOMIN

76.20 GROUND SURFACE ELEVATION (m)

(60.30) PRACTICAL DCPT REFUSAL ELEV. (m)

A)—(A) GLOBAL STABILITY CROSS-SECTION
<u>۱</u>	, ,,,	

TBM - TOP SPINDLE OF FIRE HYDRANT. ASSUMED GEODETIC ELEVATION = 75.25m, AS PER PLAN PROVIDED BY RODERICK LAHEY ARCHITECTS INC.

BASE PLAN PROVIDED BY RODERICK LAHEY ARCHITECTS INC.

SCALE: 1:750 Scale: Date: 10/2015 1:750 Drawn by: Report No .: MPG PG1630-3 **ONTARIO** Checked by: Dwg. No.: FA **PG1630-1** Approved by: DJG Revision No.: 2

APPENDIX 3

GRADING PLAN REVIEW - 2710 DRAPER AVENUE-PHASE 3

patersongroup

consulting engineers

to:	Lloyd Phillips & Associates Ltd Christine McCuaig - christine@lloydphillips.com
re:	Geotechnical Design Summary Details
	Proposed Residential Development
	2710 Draper Avenue - Ottawa
date:	March 28, 2018
file:	PG1630-MEMO.06 Revision 1
from:	Faisal Abou-Seido

Further to your request and authorization, Paterson Group (Paterson) prepared the current memorandum to provide a grading plan review for the proposed commercial buildings at the aforementioned development. The following memorandum should be read in conjunction with Paterson Report PG1630-3 Revision 2 dated March 28, 2018.

Grading Plan Review

Paterson reviewed the following grading plan prepared by David Schaeffer Engineering Ltd. for the aforementioned development:

Grading Plan - Project No. 17-927 - Drawing No. GP-1 - Revision 4 dated March 23, 2018.

Based on our review of the above noted grading plan, no exceedances were noted above the permissible grade raise. The proposed grades are considered acceptable from a geotechnical perspective. Therefore, no lightweight fill is required at the subject site.

Outdoor Structures

The following is recommended for setbacks regarding outdoor structures:

Swimming Pools

The in-situ soils are considered to be acceptable for swimming pools. Above ground swimming pools must be placed a minimum of 5 m away from the residence and neighbouring foundations. Otherwise, pool construction is considered routine, and should be constructed in accordance with the manufacturer's requirements.

Aboveground Hot Tubs

Additional grading around the hot tub should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications. Ms. Christine McCuaig Page 2 File: PG1630-MEMO.06 Revision 1

Installation of Decks or Additions

Additional grading around proposed deck or addition should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

Tree Planting Restrictions

The proposed residential dwellings are located in a high sensitivity area with respect to tree plantings over a silty clay deposit. It is recommended that trees placed within 5 m of the foundation wall consist of low water demanding trees with shallow roots systems that extend less than 1.5 m below ground surface. Trees placed greater than 5 m from the foundation wall may consist of typical street trees, which are typically moderate water demand species with roots extending to a maximum 2 m depth.

It is well documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils could result in long-term differential settlements of the structures. Tree varieties with most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and are not recommended for the landscape design.

We trust that this information satisfies your immediate requirements.

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng.

David J. Gilbert, P.Eng.

Paterson Group Inc.

Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344 Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 St. Lawrence Office 993 Princess Street - Suite 100 Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381