

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

SITE SERVICING STUDY AND STORMWATER MANAGEMENT REPORT

FOR

HUNTINGTON PROPERTIES 44 IBER ROAD

CITY OF OTTAWA

PROJECT NO.: 16-900

JULY 2017 – REV 2 © DSEL

SITE SERVICING STUDY AND STORMWATER MANAGEMENT REPORT FOR 44 IBER ROAD

HUNTINGTON PROPERTIES

TABLE OF CONTENTS

1.0	INTRODUCTION 1	
1.1	Existing Conditions	>
1.2	Required Permits / Approvals2	>
1.3	Pre-consultation2	>
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	5
2.1	Existing Studies, Guidelines, and Reports	3
3.0	WATER SUPPLY SERVICING4	ŀ
3.1	Existing Water Supply Services4	ŀ
3.2	Water Supply Servicing Design4	ŀ
3.3	Water Supply Conclusion6	5
4.0	WASTEWATER SERVICING7	,
4.1	Existing Wastewater Services7	,
4.2	Wastewater Design7	,
4.3	Wastewater Servicing Conclusions8	3
5.0	STORMWATER MANAGEMENT)
5.1	Existing Stormwater Services)
5.2	Post-development Stormwater Management Target9)
5.3	Proposed Stormwater Management System10)
5.4	Stormwater Servicing Conclusions11	
6.0	UTILITIES11	I
7.0	EROSION AND SEDIMENT CONTROL12	<u>)</u>
8.0	CONCLUSION AND RECOMMENDATIONS	3

FIGURES

Figure 1 Site Location

TABLES

- Table 1Water Supply Design Criteria
- Table 2Water Demand and Boundary Conditions Proposed
 - Conditions
- Table 3Model Simulation Output Summary
- Table 4Wastewater Design Criteria
- Table 5
 Summary of Estimated Peak Wastewater Flow
- Table 6
 Allowable Release Rates
- Table 7
 Stormwater Flow Rate Summary

APPENDICES

- Appendix A Pre-consultation Notes
- Appendix B Water Supply
- Appendix C Wastewater Collection
- Appendix D Stormwater Management
- Drawings / Figures Proposed Site Plan

SITE SERVICING STUDY AND STORMWATER MANAGEMENT REPORT FOR 44 IBER ROAD HUNTINGTON PROPERTIES JULY 2017 – REV 2

CITY OF OTTAWA PROJECT NO.: 16-900

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by Huntington Properties to prepare a Functional Servicing and Stormwater Management report in support of their application for a Site Plan Control (SPC) at 44 lber Road.

The subject property is located within the City of Ottawa urban boundary, in the Stittsville ward. As illustrated in *Figure 1*, the subject property is located south east of the intersection of Iber Road and Hazeldean Road. Comprised of a single parcel, the subject property measures approximately *1.35 ha* and is zoned Light Industrial (IL).

Figure 1: Site Location

The proposed SPC would allow for the development of a 1-storey 1222 m² industrial building located behind the existing building with associated asphalt parking lots. No change in floor area is proposed to the existing building. A copy of the architectural Site plan is included in **Drawings/Figures**.

The objective of this report is to provide sufficient detail to demonstrate that the proposed development is supported by existing municipal services.

1.1 Existing Conditions

The existing site includes an industrial building with asphalt parking lots and few vegetated areas. The elevations range between 104.3m and 104.9m with a grade change of approximate 0.6m from the Northeast to the Southwest corner of the property.

An existing 300mm diameter sanitary sewer tributary to the Stittsville Trunk Collector and a 300mm diameter watermain is available within Iber Road. The subject site currently directs stormwater runoff towards the existing stormwater storage area at the rear at of the property.

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

As a result of the site's industrial zoning designation, OWRA s.53 approval is required from the Ministry of the Environment and Climate Change (MOECC). The MOECC has been contacted to the development to determine the approval requirements. Correspondence with the MOECC is included in *Appendix A*.

1.3 Pre-consultation

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (City Standards)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOECC Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update (OBC)
- Water Supply for Public Fire Protection Fire Underwriters Survey, 1999. (FUS)
- Geotechnical Investigation, PG4089-1
 Paterson Group, April 2017.
 (Geotechnical Report)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 3W pressure zone. A local 300 mm diameter watermain exists within the Iber Road right-of-way, as shown by the Pressure Zone map in *Appendix B*.

3.2 Water Supply Servicing Design

It is proposed that the development will connect to the existing municipal infrastructure via a 150mm diameter water service. Servicing details for the proposed connection are shown by drawing **SSP-1**.

Table 1 summarizes the *Water Supply Guidelines* employed in the preparation of the preliminary water demand estimate.

Design Parameter	Value
Light Industrial Daily Demand	35,000 L/gross ha/d
Industrial Maximum Daily Demand	1.5 x avg. day
Industrial Maximum Hour Demand	6.5 x avg. day
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
During normal operating conditions desired	350kPa and 480kPa
operating pressure is within	
During normal operating conditions pressure must	275kPa
not drop below	
During normal operating conditions pressure must	552kPa
not exceed	
During fire flow operating pressure must not drop	140kPa
below	
*Daily average based on Appendix 4-A from Water Supply Guidelines ** Residential Max. Daily and Max. Hourly peaking factors per MOECC Gu -Table updated to reflect ISD-2010-2	uidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.

Table 1 Water Supply Design Criteria

Table 2 summarizes the anticipated water supply demand and boundary conditions for the proposed development based on the *Water Supply Guidelines*.

Table 2
Water Demand and Boundary Conditions
Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² (m H ₂ O / kPa)	
Average Daily Demand	7.5	58.2 / 570.9	
Max Day + Fire Flow	11.3 + 7,000= 7,011.3	54.0 / 529.7	
Peak Hour	48.8	52.8 / 518.0	
 Water demand calculation p 	per Water Supply Guidelines. See Ap	pendix B for detailed calculations.	
	ed by the City of Ottawa for the demand	s indicated in the correspondence;	
assumed ground elevation 103m. See Appendix B.			

Fire flow requirements are to be determined in accordance with Local Guidelines (*FUS*), City of Ottawa *Water Supply Guidelines*, and the Ontario Building Code.

Using the *FUS* method a conservative estimation of fire flow had been established. The following parameters were established by correspondence with S.J. Lawrence Architect Inc:

- Type of construction Non-combustible Construction
- Occupancy type –Non-combustible
- Sprinkler Protection Non-Sprinkler System

The above assumptions result in an estimated fire flow of approximately **7,000 L/min**, actual building materials selected will affect the estimated flow.

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand as indicated in the boundary request correspondence included in *Appendix B*.

The City provided both the anticipated minimum and maximum water pressures, as well as the estimated water pressure during fire flow demand for the demands as indicated by the correspondence in *Appendix B*. Initial boundary conditions obtained indicate residual pressures during average day demands exceed the required pressure range as specified in *Table 1* and the *Water Supply Guidelines*.

3.2.1 EPANet Water Modelling

EPANet was utilized to determine pipe sizing and the availability of pressures throughout the system during average day demand, max day plus fire flow, and peak hour demands. The static model determines pressures based on the available head obtained from the boundary conditions provided by the City of Ottawa. The model utilizes the Hazen-Williams equation to determine pressure drop, while the pipe properties, including friction factors, have been selected in accordance with Table 4.4 of the *Water Supply Guidelines*. The model was prepared to assess the available pressure to the proposed building as well as the pressures the watermain provided the fire hydrant during fire flow conditions.

Table 3 summarizes the output reports and model schematics for each scenario.

Location	Average Day (kPa)	Max Day + Fire Flow (kPa)	Peak Hour (kPa)
EX.BLDG	571.2†	530.0	518.3
FHYD	578.4 †	164.8	525.4
PROP.BLDG	574.5†	160.9	521.5
N1	578.7 t	165.1	525.7
† indicates pressures exceeded	required pressure values as	outlined in <i>Table 1</i>	

Table 3Model Simulation Output Summary

The model indicates that pressures during average day exceed the requirements of the *Water Supply Guidelines*; pressure reducing valves may be required.

3.3 Water Supply Conclusion

Anticipated water demand under proposed conditions was submitted to the City of Ottawa for establishing boundary conditions.

Based on the EPANET model, pressures during average day exceed the requirements of the *Water Supply Guidelines*. Based on the analysis, pressure reducing valves may be required.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site lies within the Stittsville Trunk catchment area, as shown by the City sewer mapping included in *Appendix C*. An existing 300 mm diameter sanitary sewer within Iber Road is available to service the proposed development.

4.2 Wastewater Design

It is proposed that the development will connect to the existing SANMH within the subject site via a 250mm diameter sanitary sewer, as shown by **SSP-1**.

Table 4 summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

Design Parameter	Value
Infiltration and Inflow Allowance	0.28L/s/ha
Industrial - Light	35,000 L/gross ha/d
Industrial Peaking Factor	7.0 per City of Ottawa Sewer Design Guidelines Appendix 4B
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
Minimum Sewer Size	250mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity	3.0m/s

Table 4Wastewater Design Criteria

Table 5 demonstrates the anticipated peak flow from the proposed development. See *Appendix C* for associated calculations.

Table 5Summary of Estimated Peak Wastewater Flow

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.13
Estimated Peak Dry Weather Flow	0.88
Estimated Peak Wet Weather Flow	1.25

The estimated sanitary flow based on the concept plan provide in *Drawings/Figures* anticipates a peak wet weather flow of *1.25 L/s*.

A sanitary analysis was conducted for the local municipal sanitary sewers located across the frontage of the subject property in order to assess the available capacity. The catchment area serviced by the lber Road sanitary sewer was identified and evaluated by reviewing existing development and zoning within the area. The analysis was conducted from the site to the upstream extents of the drainage area located near the intersection of lber Road and Abbott Street, as shown by the sanitary drainage plan in **Appendix C**.

City of Ottawa Sewer Design Guidelines (2004) Figure 4.3 'Peak Flow Design Parameters' were employed to generate a conservative estimate of the existing wastewater flow conditions within the sewer.

Based on the sanitary analysis, the controlling section of the local sewer system is located from the site to the intersection of Iber Road and Harry Douglas Drive (section 1-2) with an available residual capacity of 15.1 L/s; detailed calculations are included in *Appendix C*.

The analysis above indicates that sufficient capacity is available in the local sewers to accommodate the proposed development.

4.3 Wastewater Servicing Conclusions

The site is tributary to the Stittsville Trunk Collector sewer; based on the sanitary analysis sufficient capacity is available to accommodate the anticipated **1.25 L/s** peak wet weather flow from the proposed development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the rear subject property is currently directed to depressed storage area which attenuates flow before discharging to a swale located along the rear of the site. The swale is tributary to the Hazeldean Creek which outlets to the Carp River Municipal Drain approximately 1.9 km downstream.

Currently, runoff from the front portion of the site flows uncontrolled overland to the road side swale along lber Road.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed, and is therefore subject to review by the Mississippi Valley Conservation Authority (MVCA). Consultation with the MVCA is located in *Appendix A*.

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa, where the proposed development is required to:

- Meet an allowable release rate based on a Rational Method Coefficient of 0.70, employing the City of Ottawa IDF parameters for a 5-year storm with a calculated time of concentration for the front yard up to 20 metres from the Iber road right-ofway.
- Meet an allowable release rate based on a Rational Method Coefficient of 0.20, employing the City of Ottawa IDF parameters for a 5-year storm with a calculated time of concentration for the rear lot and discharge into the existing rear yard swale.
- Attenuate all storms up to and including the City of Ottawa 100-year design event are to be attenuated on site.
- Include quality controls to a normal level of treatment for the proposed development; correspondence with the MVCA is included in *Appendix A*.

Table 6 summarizes the allowable release rates for the sit based on the information above.

Tabla 6

	Allowable Release	Rates
	5-Year Release Rate	100-Year Release Rate
	(L/s)	(L/s)
Front Yard	21.0	44.8
Rear Yard	44.6	95.1
Total	65.6	139.9

5.3 Proposed Stormwater Management System

Based on consultation with the City of Ottawa staff, runoff from the front yard up to 20 metres from the Iber Road right-of-way will outlet to the existing ditch along Iber Road and runoff from the rear yard will outlet to the existing rear yard swale.

A swale with a 150mm culvert with a 75mm ICD along the front yard is proposed to restrict runoff into the existing ditch along Iber Road. Details are included on the **SSP-1**.

To compensate for the increase in impervious area, additional storage via the rear stormwater storage area is proposed. The stormwater storage area will contain a catchbasin with two ICDs, a 164mm ICD and a 210mm ICD, to attenuate the 5-year and 100-year flow before discharging to the existing rear yard ditch, respectively. Details are included on the **SSP-1**.

Table 7

	St	ormwater F	low Rate S	Summary		
	Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
		(L/s)	(m ³)	(L/s)	(m³)	(m ³)
Front Yard	Unattenuated Areas (U1)	17.9	0.0	38.4	0.0	0.0
	Attenuated Areas (A1)	5.7	18.0	7.7	47.0	13.7
Rear Yard	Unattenuated Areas (U2)	7.3	0.0	15.6	0.0	0.0
	Attenuated Areas (B1)	34.1	128.4	76.2	266.9	307.2
	Total	65.0	146.4	137.9	313.9	320.9

Table 7 summarizes post-development flow rates for the front yard and rear yard.

It was estimated that approximately **47.0** m^3 of storage will be required in the front yard and **266.9** m^3 will be required in the rear yard to attenuate flow to the established 5-year and 100-year release rates of **65.6** *L*/s and **139.9** *L*/s, respectively; storage calculations are contained within **Appendix D**.

5.4 Stormwater Quality Control

To reduce TSS, stormwater runoff from parking lots is proposed to be directed to landscaped areas and vegetated depressed storage areas before discharging to the existing rear yard and road side swales. Swales and landscape areas are an effective way to intercept and slow stormwater runoff allowing for infiltration uptake and sedimentation of stormwater before entering the storm system.

Stormwater from roof areas in front yard is considered to be clean as it will not interact with parking areas before discharging to the existing ditch along lber Road.

5.5 Stormwater Servicing Conclusions

Post development stormwater runoff will be required to be restricted to the allowable target release rate for storm events up to and including the 100-year storm in accordance with City of Ottawa *City Standards*. The post-development allowable 5-year and 100-year release rates were calculated as 65.6 L/s and 139.9 L/s based on consultation with the City of Ottawa. It is estimated that approximately 47.0 m^3 of storage will be required in the front yard and 266.9 m^3 will be required in the rear yard to meet these release rates.

Based on consultation with the MVCA, quality controls are required to a normal level of treatment for the proposed development. In an effort to meet quality objectives, stormwater will be directed to landscaped areas and vegetated depressed storage areas.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval

6.0 UTILITIES

Gas, Hydro services currently exist within the Iber Road right-of-way. Utility servicing will be coordinated with the individual utility companies prior to site development.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or an approved equivalent filter fabric installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- Plan construction at proper time to avoid flooding.

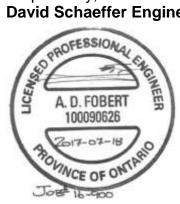
Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- > Verification that water is not flowing under silt barriers.
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained to prepare a Functional Servicing and Stormwater Management report in support of the application for a Site Plan Control (SPC) at 44 lber Road. The preceding report outlines the following:


- Based on boundary conditions provided by the City, pressures during average day demands exceed the required pressure range as indicated by the *Water Supply Guidelines*, it is therefore recommended that a pressure check be conducted at the completion of construction to determine if pressure controls are required;
- The FUS method for estimating fire flow indicated 7,000 L/min is required for the proposed development,
- The development is anticipated to have a peak wet weather flow of 1.25 L/s; Based on the sanitary analysis conducted the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Based on consultation with the City of Ottawa staff, the proposed development will be required to attenuate post development flows to an equivalent 5-year release rate of 65.6 L/s and an equivalent 5-year release rate of 139.9 L/s for all storms up to and including the 100-year storm event;
- ▶ It is contemplated that stormwater objectives may be met through storm water retention via surface storage, it is anticipated that **47.0** m^3 of storage will be required in the front yard and **266.9** m^3 will be required in the rear yard to attenuate flow to the established release rates above;
- Based on consultation with the MVCA, quality controls are required to a normal level of treatment for the proposed development.

Prepared by, David Schaeffer Engineering Ltd.

Wooling

Per: Alison J. Gosling, EIT

Prepared by, David Schaeffer Engineering Ltd.

Per: Adam D. Fobert, P.Eng

© DSEL z:\projects\16-900_huntington_44-iber\b_design\b3_reports\b3-2_servicing (dsel)\2017-07_spa_sub2\fsr-2017-07-18_900_ajg.dotx.docx

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

16-900

4.1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
	Development statistics, land use, density, adherence to zoning and official plan,	
\boxtimes	and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
\boxtimes	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
\boxtimes	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	GP-1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\boxtimes	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
\boxtimes	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	SSP-1
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1
	I de autilitation de la contenue de activitation	a a

\boxtimes	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
\triangleleft	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.2, 3.3
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
3	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
1.3	Development Servicing Report: Wastewater	
I.3 ⊠	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 4.2
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	Section 4.2 N/A
3	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for	
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development.	N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	N/A N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be	N/A N/A Section 4.1
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C')	N/A N/A Section 4.1 Section 4.2

Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development. Forcemain capacity in terms of operational redundancy, surge pressure and	
Forcemain capacity in terms of operational redundancy, surge pressure and	N/A
maximum flow velocity.	N/A
 Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. 	N/A
Special considerations such as contamination, corrosive environment etc.	N/A
4 Development Servicing Report: Stormwater Checklist	
Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
Set-back from private sewage disposal systems.	N/A
Watercourse and hazard lands setbacks.	N/A
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
Calculate pre and post development peak flow rates including a description of	Section 5.1, 5.3
existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions. Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
catchments in comparison to existing conditions. Any proposed diversion of drainage catchment areas from one outlet to	N/A N/A
 catchments in comparison to existing conditions. Any proposed diversion of drainage catchment areas from one outlet to another. Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100- 	
 catchments in comparison to existing conditions. Any proposed diversion of drainage catchment areas from one outlet to another. Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. If quantity control is not proposed, demonstration that downstream system has 	N/A

\times	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3			
	100 year flood levels and major flow routing to protect proposed development				
	rom flooding for establishing minimum building elevations (MBE) and overall N/A				
	grading.				
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A			
\times	Description of approach to erosion and sediment control during construction for	Section 6.0			
	the protection of receiving watercourse or drainage corridors.	Section 6.0			
	Identification of floodplains – proponent to obtain relevant floodplain				
	information from the appropriate Conservation Authority. The proponent may				
	be required to delineate floodplain elevations to the satisfaction of the	N/A			
	Conservation Authority if such information is not available or if information				
	does not match current conditions.				
_	Identification of fill constraints related to floodplain and geotechnical	NI / A			
	investigation.	N/A			
1.5	Approval and Permit Requirements: Checklist				
	Conservation Authority as the designated approval agency for modification of				
	floodplain, potential impact on fish habitat, proposed works in or adjacent to a				
	watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement				
\leq	Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2			
	Rivers Improvement ct. Where there are Conservation Authority regulations in				
	place, approval under the Lakes and Rivers Improvement Act is not required,				
	except in cases of dams as defined in the Act.				
-	Application for Certificate of Approval (CofA) under the Ontario Water	N/A			
	Resources Act.	N/A			
	Changes to Municipal Drains.	N/A			
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A			
	Government Services Canada, Ministry of Transportation etc.)				
6					
_	Conclusion Checklist				
\leq	Clearly stated conclusions and recommendations	Section 8.0			
_	Comments received from review agencies including the City of Ottawa and				
	information on how the comments were addressed. Final sign-off from the				
	responsible reviewing agency.				
	All draft and final reports shall be signed and stamped by a professional				
	Engineer registered in Ontario				

Alison Gosling

From:	Matt Craig <mcraig@mvc.on.ca></mcraig@mvc.on.ca>
Sent:	Tuesday, April 4, 2017 3:52 PM
То:	Alison Gosling
Subject:	RE: 44 Iber Road - MVCA
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Alison

The Fernbank CDP identifies the watercourse as Hazeldean Creek. MVCA recommends a normal level of water quality treatment be provided.

Regards

Matt Craig | Manager of Planning and Regulations | Mississippi Valley Conservation Authority www.mvc.on.ca |t. 613 253 0006 ext. 226 | f. 613 253 0122 |mcraig@mvc.on.ca

This e-mail originates from the Mississippi Valley Conservation Authority e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

From: Alison Gosling [mailto:AGosling@dsel.ca]
Sent: Tuesday, April 4, 2017 2:41 PM
To: Matt Craig
Cc: Myra Van Die; Robert Freel
Subject: 44 Iber Road - MVCA

Good afternoon Matt,

We wanted to touch base with you regarding a development we are working on located at 44 lber Road, Ottawa.

The stormwater collected from the site travels approximately 1.9 km to a direct outlet into the Carp River Municipal Drain.

The development proposes to construct an additional industrial building with associated aboveground parking. The development will maintain existing stormwater flow patterns.

Can you provide a comment regarding quality controls that maybe required for the site.

Please feel free to call if you have any questions or you would like to discuss.

Thanks in advance,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.542

 fax:
 (613) 836-7183

 email:
 agosling@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Alison Gosling

From:	Diamond, Emily (MOECC) <emily.diamond@ontario.ca></emily.diamond@ontario.ca>
Sent:	Thursday, April 20, 2017 9:57 AM
To:	Alison Gosling
Cc:	Robert Freel
Subject:	RE: 44 Iber Road - ECA Requirement
Follow Up Flag:	Follow up
Flag Status:	Completed

Hi Alison,

From the information provided, an Environmental Compliance Approval for stormwater management would be required for the proposed project due to the industrial zoning and proposed building use. The project would not meet the approval exemption set out under Ontario Regulation 525/98.

Regards,

Emily Diamond

Environmental Officer Ministry of the Environment and Climate Change

Ottawa District Office 2430 Don Reid Drive Ottawa, Ontario, K1H 1E1 Tel: 613-521-3450 ext 238 Fax: 613-521-5437 e-mail: <u>emily.diamond@ontario.ca</u>

From: Alison Gosling [mailto:AGosling@dsel.ca]
Sent: April-04-17 2:43 PM
To: Diamond, Emily (MOECC)
Cc: Robert Freel
Subject: 44 Iber Road - ECA Requirement

Good afternoon Emily,

We just wanted to touch base with you regarding a proposed development we are working on located at 44 lber Road.

Currently comprised a single parcel of land, the existing 1.4ha site currently consists an industrial building and is zoned Industrial Zone. The development proposes to construct an additional 1678 m² industrial building.

It appears that the existing stormwater management system currently directs flow towards the ditch along lber Road and toward the existing stormwater pond located on-site. The stormwater management will attenuate to the release rate based on City of Ottawa requirements.

We understand that due to the site's industrial zoning designation, an MOE Environmental Compliance Approval is required under OWRA S.53. Can you confirm our assumptions above or advise with regards to ECA requirements for the proposed development.

Please feel free to contact us if you would like to discuss.

Thanks in advance,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.542

 fax:
 (613) 836-7183

 email:
 agosling@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

APPENDIX B

Water Supply

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

		Рор	Avg. [Daily	Max Day		Peak Hour	
			m³/d	L/min	m³/d	L/min	m³/d	L/min
	Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0
Institutional / Commercial / I	ndustrial Demand							
			Avg. [Daily	Max	Day	Peak	Hour
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d		0.00	0.0	0.0	0.0	0.0	0.0
Office	75 L/9.3m ² /d		0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000 L/gross ha/d	0.186	6.52	4.5	9.8	6.8	42.4	29.5
Industrial - Heavy	55,000 L/gross ha/d		0.00	0.0	0.0	0.0	0.0	0.0
	Total I/C	Demand	6.5	4.5	9.8	6.8	42.4	29.5
	Tota	I Demand	6.5	4.5	9.8	6.8	42.4	29.5

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Рор	Avg. Daily		Avg. Daily Max Day		Day	Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min	
Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0	

Institutional / Commercial / Industrial Demand

			Avg. Daily		Max Day		Peak Hour	
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d		0.00	0.0	0.0	0.0	0.0	0.0
Office	75 L/9.3m ² /d		0.00	0.0	0.0	0.0	0.0	0.0
Ex. Industrial - Light	35,000 L/gross ha/d	0.186	6.52	4.5	9.8	6.8	42.4	29.5
Industrial - Light	35,000 L/gross ha/d	0.122	4.28	3.0	6.4	4.5	27.8	19.3
Industrial - Heavy	55,000 L/gross ha/d		0.00	0.0	0.0	0.0	0.0	0.0
	Total I/C	Demand	10.8	7.5	16.2	11.3	70.2	48.8
	Tota	Demand	10.8	7.5	16.2	11.3	70.2	48.8

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F = 220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Non-Combustible Construction

С	0.8	Type of	f Construction Coefficient per FUS Part II, Section 1
Α	1,681.0	m ²	Total floor area based on FUS Part II section 1

Fire Flow7216.0 L/min

7000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Non-Combustible -25%	2070

3. Reduction for Sprinkler Protection

Non-Sprinklered	0%
Reduction	0 L/min

4. Increase for Separation Distance

	% Increase	30%	value not to exceed 75% per FUS Part II, Section 4
	% Increase	30%	value not to exceed 75% per FUS Part II, Section 4
vv	>45m % Increase	0% 30%	value not to exceed 75% per FUS Part II, Section 4
_	30.1m-45m	5%	
S	20.1m-30m	10%	
Ν	10.1m-20m	15%	

Total Fire Flow

 Fire Flow
 6825.0 L/min
 fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section

 7000.0 L/min
 rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by S.J. Lawrence Architect Inc. -Calculations based on Fire Underwriters Survey - Part II

Huntington 44 Iber Road Boundary Conditions Unit Conversion

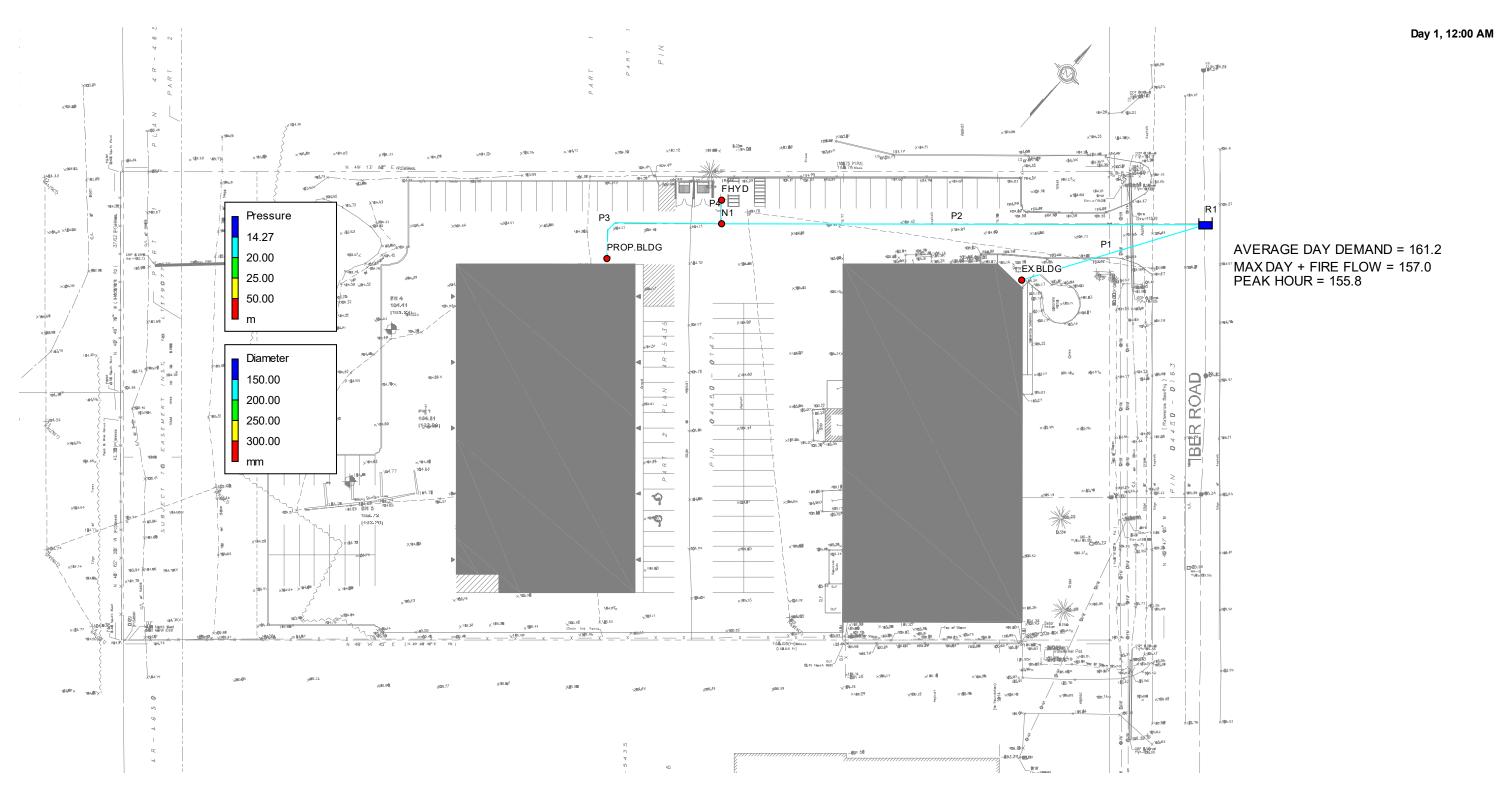
Boundary Conditions Unit Conversion

	Height (m) Eleva	ation (m	m H₂O	PSI	kPa		L/s	L/min
Avg. DD	161.2	103	58.2	82.8	570.9	Fire Flow @ 140kPa	116.67	7000
Fire Flow	157.0	103	54.0	76.8	529.7			
Peak Hou	r 155.8	103	52.8	75.1	518.0			

Minor Loss Coefficients

Fitting	Loss Coefficient
Globe valve, fully open	10
Angle valve, fully open	5
Swing check valve, fully open	2.5
Gate valve, fully open	0.2
Short-radius elbow	0.9
Medium-radius elbow	0.8
Long-radius elbow	0.6
45 degree elbow	0.4
Closed return bend	2.2
Standard tee - flow through run	0.6
Standard tee - flow through branch	1.8
Square Entrance	0.5
Exit	1

*Minor loss coefficients based on EPANET 2 USERS MANUAL, dated September 2000

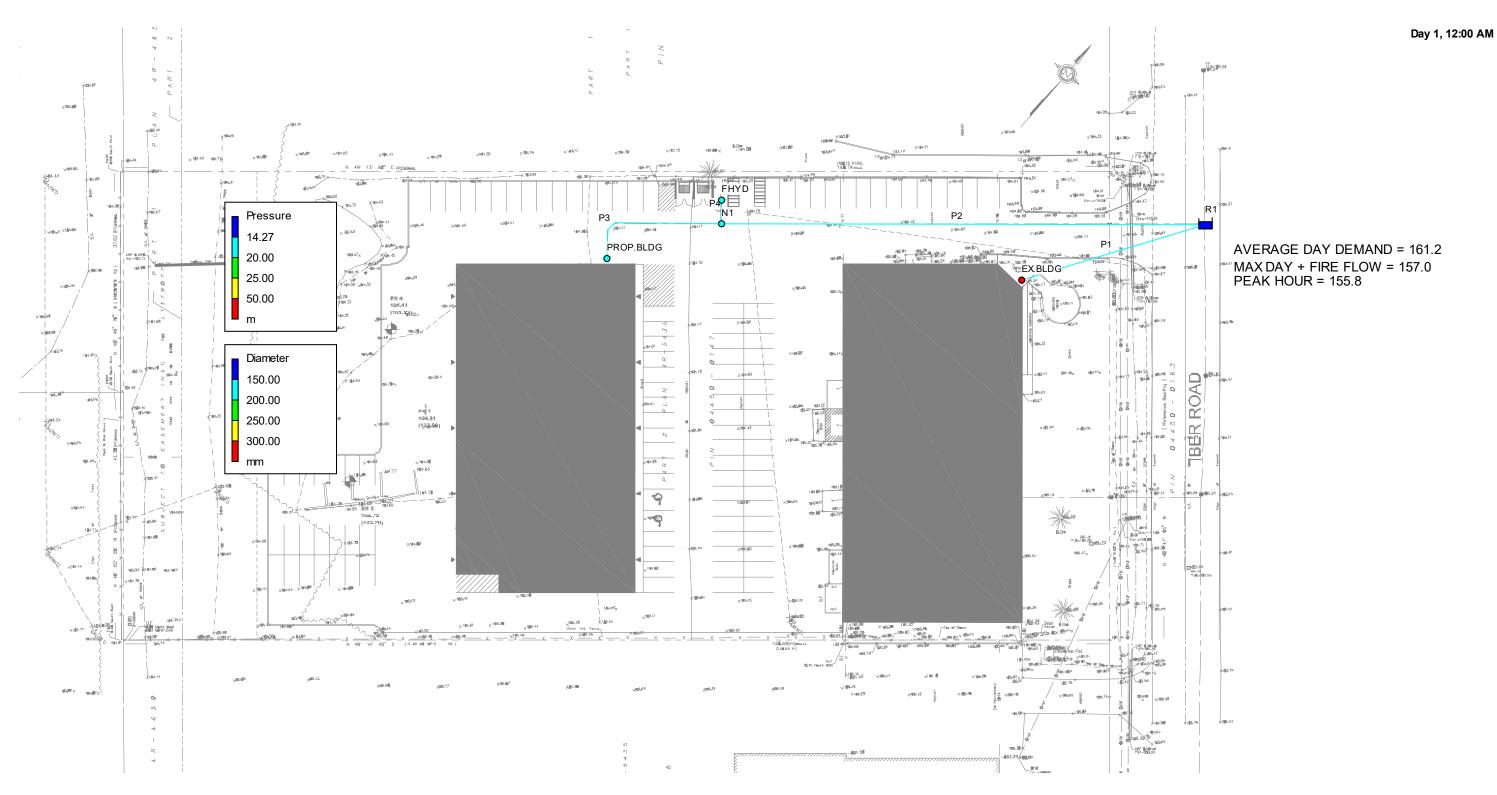

Node Pressures

Кра	Pressure (kPa)	Pressure (m H20)
Max	552	56.3
Rec Max	480	49.0
Rec Min	350	35.7
Min	275	28.1

Location	Average Day (kPa)	Max Day + Fire Flow (kPa)	Peak Hour (kPa)
EX.BLDG	571.2	530.0	518.3
FHYD	578.4	164.8	525.4
PROP.BLDG	574.5	160.9	521.5
N1	578.7	165.1	525.7

Pipe Diameter vs. "C" Factor

Pipe Diameter (m)	C-Factor	
150	100	
200 to 250	110	
300 to 600	120	
Over 600	130	

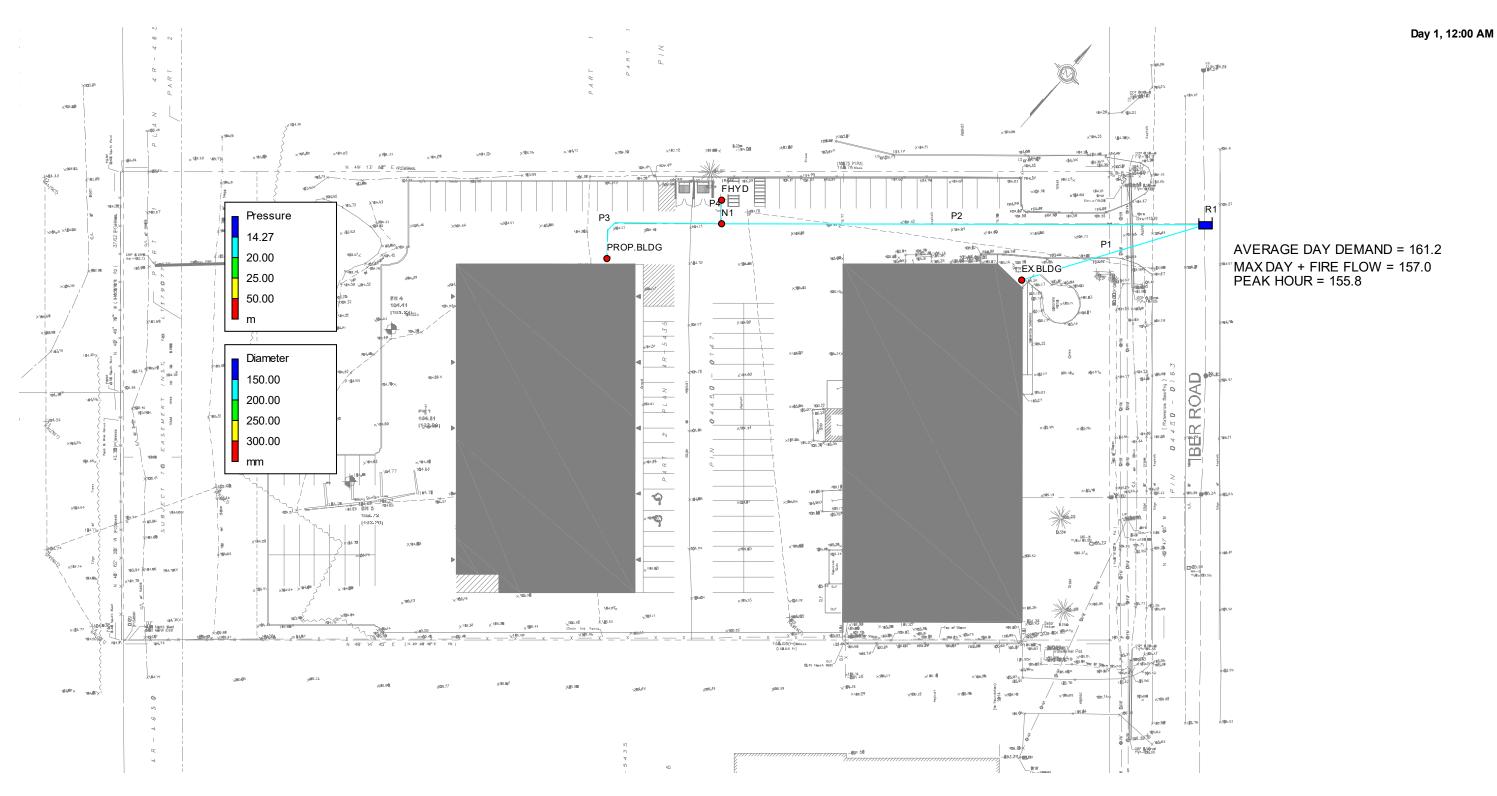

44 IBER ROAD - AVERAGE DAY DEMAND

2017-07-04_AVG-RPT

********	***************************************	********
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*****	*******	******

Input File: 2017-07-04_900.net	Input	File:	2017-07-04_	_900.net
--------------------------------	-------	-------	-------------	----------

Link - Node Table:						
Link	Start	End		Length	Diameter	
ID	Node	Node		m	mm	
 P1	EX.BLDG	 R1		30.7	150	
P2	R1	N1		82.3		
Р3	PROP.BLDG	N1		55.6	150	
P4	N1	FHYD		3.7	150	
Node Results:						
Node	Demand	Head	Pressure	Quality		
ID	LPM	m	m	· ,		
PROP.BLDG		161.20		0.00		
N1		161.20				
EX.BLDG FHYD	4.50	161.20 161.20		0.00 0.00		
R1	-7.50		0.00		Reservoir	
KT.	-7.50	101.20	0.00	0.00	Kesel VOII	
Link Results:						
Link	Flow	VelocitvU	nit Headlos	ss Stat	tus	
ID	LPM	-	m/km			
P1			0.00	•		
P2	3.00		0.00	•		
P3	-3.00		0.00	0pen		
P4	0.00	0.00	0.00	0pen		


44 IBER ROAD - MAX DAY + FIRE FLOW DEMAND

2017-07-04_MAX-RPT

*******	***************************************	********
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***************************************	********

Input	File:	2017-07-04_	_900.net

Link - Node Table:					
Link	Start	End		Length	Diameter
ID	Node	Node		m	mm
P1	EX.BLDG	 R1		30.7	150
P2	R1	N1		82.3	
Р3	PROP.BLDG	N1		55.6	150
P4	N1	FHYD		3.7	150
Node Results:					
Node	Demand	Head	Pressure	Quality	
ID	LPM	m	m	. ,	
PROP.BLDG		119.04		0.00	
N1	7000.00			0.00	
EX.BLDG		157.00		0.00	
FHYD	0.00			0.00	December
R1	-7011.30	157.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headlos	ss Sta	tus
ID	LPM		m/km		
P1			0.00		
P2			461.22	•	
P3			0.00		
P4	0.00	0.00	0.00	0pen	

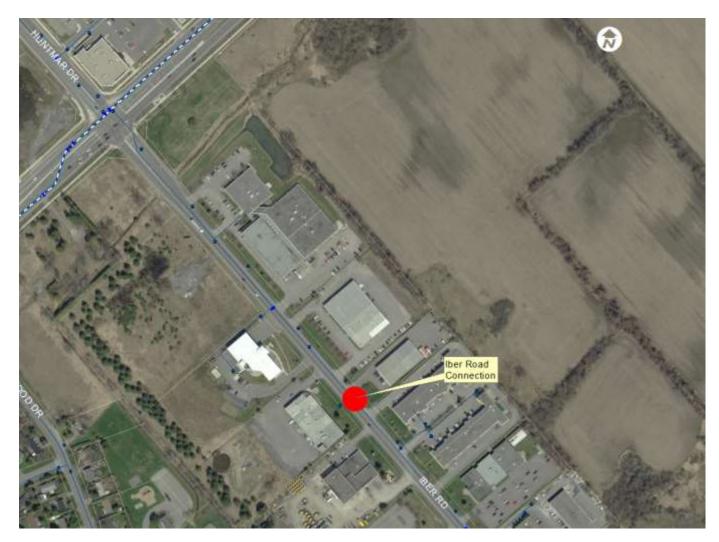
44 IBER ROAD - PEAK HOUR DEMAND

2017-07-04_PEAK-RPT

********	***************************************	********
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*********	*******	*********

Input	File:	2017-07-04	900.net

Link - Node Table:					
Link	Start	End		Length	Diameter
ID	Node	Node		m	mm
P1	EX.BLDG	R1		30.7	150
P2	R1	N1		82.3	
P3	PROP.BLDG	N1		55.6	150
P4	N1	FHYD		3.7	150
Node Results:					
Node	Demand	Head	Pressure	Quality	
ID	LPM	m	m	. ,	
PROP.BLDG		155.80		0.00	
N1		155.80			
EX.BLDG		155.80		0.00	
FHYD		155.80			
R1	-48.80	155.80	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headlos	ss Sta	tus
ID	LPM		m/km		
P1	-29.50	0.03	0.02	0pen	
P2	19.30	0.02	0.01	0pen	
P3	-19.30	0.02	0.01	0pen	
P4	0.00	0.00	0.00	0pen	


44 Iber Road Boundary Conditions

Information Provided:

Date provided: April 2017

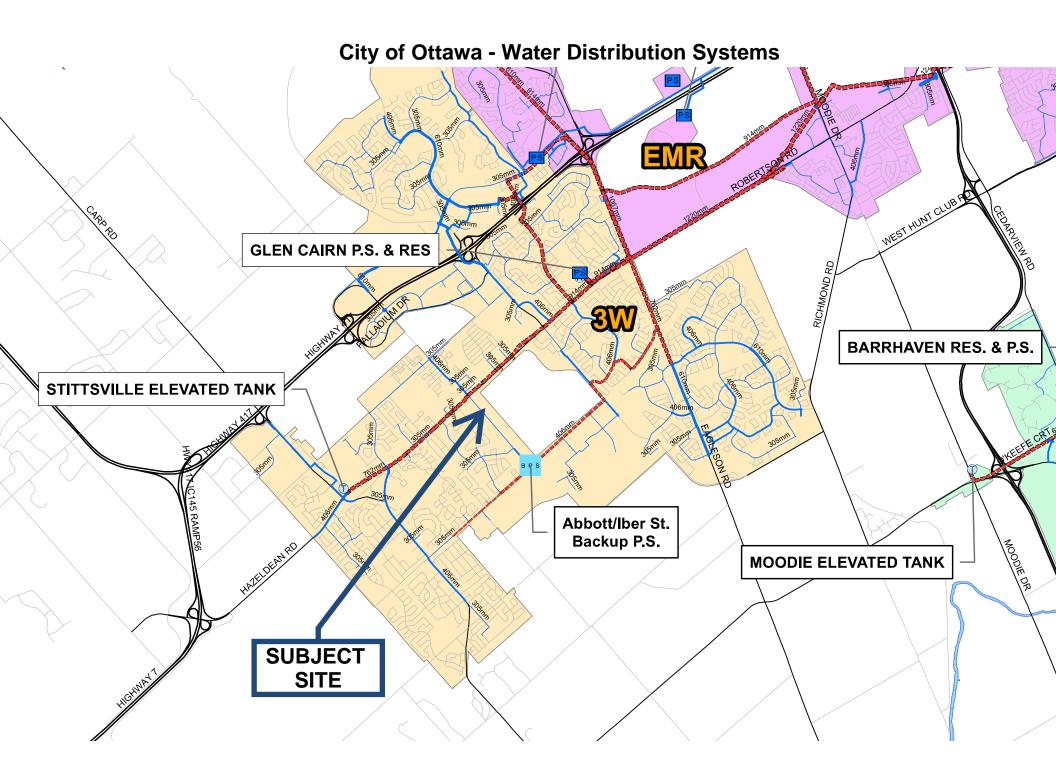
	Demand			
Scenario	L/min	L/s		
Average Daily Demand	8.4	0.14		
Maximum Daily Demand	13.2	0.22		
Peak Hour	55.8	0.93		
Fire Flow Demand	7000	116.67		

Location:

Results:

Connection 1 - Iber Road

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.2	82.7
Peak Hour	155.8	75.0
Max Day plus Fire (7,000 l/min)	157.0	76.8


¹ Ground Elevation = 103 m

Notes:

- 1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

APPENDIX C

Wastewater Collection

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area	1.351 ha			
Extraneous Flow Allowanc	0.38 L/s			
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	

Total Pop	0
Average Domestic Flow	0.00 L/s
Peaking Factor	4.00

Peak Domestic Flow 0.00 L/s

Institutional / Commercial / Industrial Contributions **Property Type** Unit Rate

				(L/s)	
Commercial floor space*	5	L/m²/d			0.00
Hospitals	900	L/bed/d			0.00
School	70	L/student/d			0.00
Ex. Industrial - Light**	35,000	L/gross ha/d	0.186		0.08
Industrial - Light**	35,000	L/gross ha/d	0.122		0.05
Industrial - Heavy**	55,000	L/gross ha/d			0.00
		Averaç	ge I/C/I Flow		0.13

I/C/I Peaking Factor	7
Peak Institutional / Commercial Flow	0.00
Peak Industrial Flow**	0.88
Peak I/C/I Flow	0.88

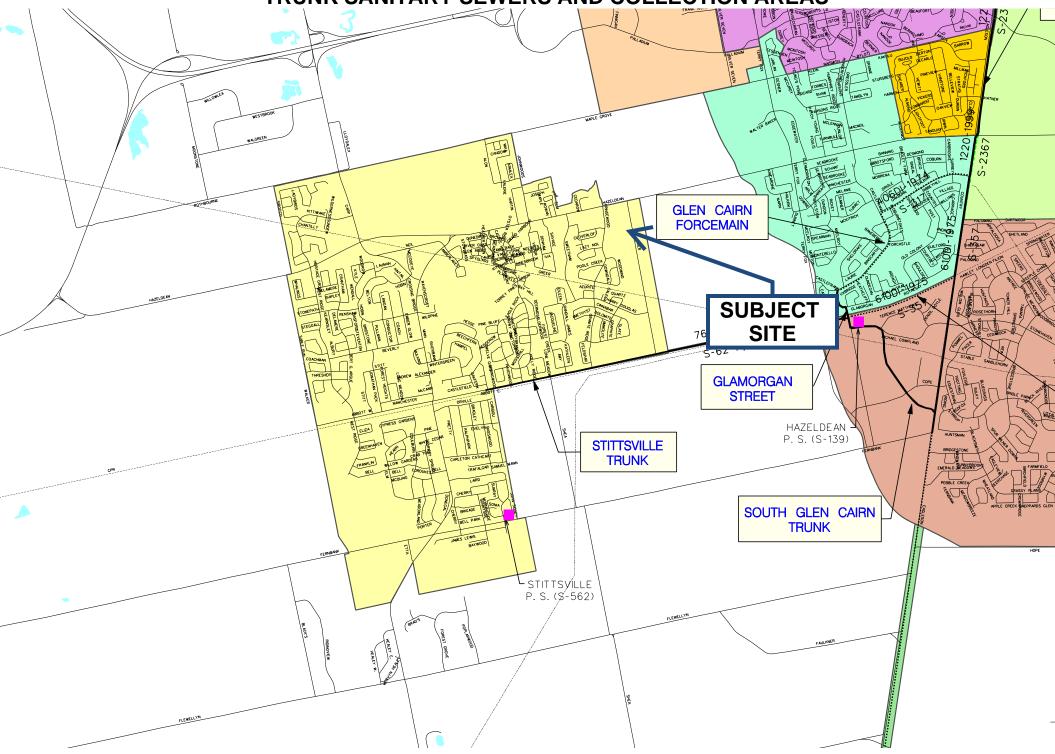
* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.13 L/s
Total Estimated Peak Dry Weather Flow Rate	0.88 L/s
Total Estimated Peak Wet Weather Flow Rate	1.25 L/s

No. of Units Avg Wastewater

SANITARY SEWER CALCULATION SHEET


CLIENT:	HUNTINGTON PROPERTIES	DESIGN PARAMETERS			
LOCATION:	44 IBER ROAD	Avg. Daily Flow Res. 350 L/p/d Peak Fact Res. Per Harmons: Min = 2.0, Max =4	D Infiltration / Inflow	0.28 L/s/ha	
FILE REF:	16-900	Avg. Daily Flow Comn 50,000 L/ha/d Peak Fact. Comm. 1.5	Min. Pipe Velocity	0.60 m/s full flowing	
DATE:	4-Jul-17	Avg. Daily Flow Instit. 50,000 L/ha/d Peak Fact. Instit. 1.5	Max. Pipe Velocity	3.00 m/s full flowing	
		Avg. Daily Flow Indus: 35,000 L/ha/d Peak Fact. Indust. per MOE graph	Mannings N	0.013	

L	_ocation					Reside	ntial Area	and Popu	lation				Comr	nercial	Institu	utional	Indu	strial			Infiltration	1					Pipe	Data			
Area ID	Up	Down	Area		Numbe	r of Units		Pop.	Cumul	lative	Peak.	Qres	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+I+I}	Total	Accu.	Infiltration	Total	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Q _{cap}	Q / Q full
					by	type			Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow								
			(ha)	Singles	Semi's	Town's	Apt's		(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(-)
SITE	1	2	0.000)				0.0	0.000	0.0	4.00	0.00		0.00		0.00	24.40	24.40	19.8	24.400	24.400	6.832	26.60	300	0.19		0.071	0.075	0.59	41.7	0.64
STITTSVILLE TRUNK	2	3	0.850) 6	ò			20.0	0.850	20.0	4.00	0.32		0.00		0.00	9.90	34.30	27.8	10.750	35.150	9.842	37.96	375	0.14		0.110	0.094	0.59	65.6	0.58

TRUNK SANITARY SEWERS AND COLLECTION AREAS

APPENDIX D

Stormwater Management

Front Yard

Rear Yard

Total

Huntington 44 Iber Road Stormwater Summary

Front Yard	Q	5-year 21.0	L/s		Q	100-year 44.8	L/s
Rear Yard	Q	5-year 44.6	L/s		Q	100-year 95.1	L/s
Total	Q	5-year 65.6	L/s		Q	100-year 139.9	L/s
Control Area		5-Year Release Rate (L/s)	5-Year Required Storage (m ³)	100-Year Release Rate (L/s)	100-Year Required Storage (m ³)	100-Year Available Storage (m ³)	

18.0

128.4

146.4

46.1

91.8

137.9

47.0

266.9

313.9

13.7

307.2

320.9

23.6

41.4

65.0

Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2012

Existing Drainage Charateristics From Internal Site

Area	1.351 ha	
С	0.56 Rational Method runoff coefficient	
L	145.56 m	
Up Elev	105.09 m	
Dn Elev	103.64 m	
Slope	1.0 %	
Тс	21.3 min	

1) Time of Concentration per Federal Aviation Administration

t —	$1.8(1.1-C)L^{0.5}$
ι_c –	S ^{0.333}

tc, in minutes

C, rational method coefficient, (-)

L, length in ft

S, average watershed slope in %

Estimated Peak Flow

	2-year	5-year	100-year	
i	50.0	67.4	115.1	mm/hr
Q	104.6	141.2	301.2	L/s

Stormwater - Proposed Development

City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate - Front Yard

Area	0.160 ha	

- С 0.70 Rational Method runoff coefficient
- t_c 21.3 min

	5-year	100-year	
i	67.4 mm/hr	i 115.1 mm/	hr
Q	21.0 L/s	Q 44.8 L/s	

Estimated Post Development Peak Flow from Unattenuated Areas

Area ID U1 Total Area C

0.084 ha 0.79 Rational Method runoff coefficient

_		5-year					100-year	100-year			
	t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} *	Q _{release}	Q _{stored}	V _{stored}
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
Γ	11.6	96.6	17.9	17.9	0.0	0.0	165.5	38.4	38.4	0.0	0.0

Note: C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Area ID **A1** Available Sub-surface Storage Maintenance Structures

Stage Attenuated Areas Storage Summary

		Su	Irface Stora	ge	Surfa	ice and Sub	surface Stor	rage
	Stage	Ponding	h₀	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
ICD INV	104.57	0	0.00			0.0	0.0	0.00
0.10 Ponding	104.67	86	0.10	0.10	3.1	3.1	3.8	0.23
0.20 Ponding	104.77	128	0.20	0.10	10.7	13.7	5.3	0.71
0.30 Ponding	104.87	153	0.30	0.10	14.0	27.8	6.5	1.18
0.40 Ponding	104.97	178	0.40	0.10	16.5	44.3	7.5	1.63
0.50 Ponding	105.07	211	0.50	0.10	19.4	63.7	8.4	2.09

* V=Incremental storage volume

**Vacc=Total surface and sub-surface

75

† Q_{release} = Release rate calculated from orifice equation

Orifice Location

Total Area

С

Dia 0.189 ha

CSP

0.55 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

Γ	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	30.2	5.7	24.5	14.7	178.6	64.8	7.7	57.1	34.3
15	83.6	24.2	5.7	18.5	16.7	142.9	51.8	7.7	44.2	39.7
20	70.3	20.4	5.7	14.7	17.6	120.0	43.5	7.7	35.8	43.0
25	60.9	17.7	5.7	12.0	18.0	103.8	37.7	7.7	30.0	45.0
30	53.9	15.6	5.7	9.9	17.9	91.9	33.3	7.7	25.6	46.2
35	48.5	14.1	5.7	8.4	17.6	82.6	30.0	7.7	22.3	46.8
40	44.2	12.8	5.7	7.1	17.1	75.1	27.3	7.7	19.6	47.0
45	40.6	11.8	5.7	6.1	16.4	69.1	25.0	7.7	17.4	46.9
50	37.7	10.9	5.7	5.2	15.7	64.0	23.2	7.7	15.5	46.6
55	35.1	10.2	5.7	4.5	14.8	59.6	21.6	7.7	14.0	46.0
60	32.9	9.6	5.7	3.9	13.9	55.9	20.3	7.7	12.6	45.4
65	31.0	9.0	5.7	3.3	12.9	52.6	19.1	7.7	11.4	44.5
70	29.4	8.5	5.7	2.8	11.9	49.8	18.1	7.7	10.4	43.6
75	27.9	8.1	5.7	2.4	10.8	47.3	17.1	7.7	9.5	42.6
80	26.6	7.7	5.7	2.0	9.6	45.0	16.3	7.7	8.6	41.5
85	25.4	7.4	5.7	1.7	8.5	43.0	15.6	7.7	7.9	40.3
90	24.3	7.0	5.7	1.3	7.3	41.1	14.9	7.7	7.2	39.1
95	23.3	6.8	5.7	1.1	6.1	39.4	14.3	7.7	6.6	37.8
100	22.4	6.5	5.7	0.8	4.8	37.9	13.7	7.7	6.1	36.4
105	21.6	6.3	5.7	0.6	3.5	36.5	13.2	7.7	5.6	35.0
110	20.8	6.0	5.7	0.3	2.3	35.2	12.8	7.7	5.1	33.6
		5-ve	ar Q _{attenuated}	5.70 L	/s		100-ve	ar Q _{attenuated}	7.67 L	/s

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation

18.0 m³ 104.80 m

100-year Q_{attenuated} 100-year Max. Storage Required Est. 100-year Storage Elevation

7.67 L/s 47.0 m³

104.98 m

Summary of Release Rates and Storage Volumes

Control Area	5-Year Release Rate (L/s)	5-Year Required Storage (m ³)	100-Year Release Rate (L/s)	100-Year Required Storage (m ³)	100-Year Available Storage (m ³)
Unattenuated Areas	17.9	0.0	38.4	0.0	0.0
Attenutated Areas	5.7	18.0	7.7	47.0	13.7
Total	23.6	18.0	46.1	47.0	13.7

										Ditch Data											
Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	I	Ø	depth	Side Slope	Bot. Width	Mannings	Slope	Length	A _{flow}	Wet. Per.	R	Velocity	Qcap	Time Flow	Q / Q full
		(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(X:1)	(m)	n	(%)	(m)	(m²)	(m)	(m)	(m/s)	(L/s)	(min)	(-)
		0.189	0.55	0.10	0.10	10.0	104.2	30.2	500	10	0.5	0.03	0.20	56.7	2.750	10.550	0.26	0.61	1,672.8	1.6	0.02
						11.6															

	Imp.	Perv.	Total
Area	0.095	0.094	0.189
С	0.9	0.2	0.55

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate - Rear Yard

1 100 ha Area

> 5-year i

ea	1.130	i ia
С	0.20	Rational Method runoff coefficient
t _c	21.3	min

100-year 67.4 mm/hr i 115.1 mm/hr 44.6 L/s Q 95.1 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Area ID Total Area **U2** 0.126 ha

Q

С 0.20 Rational Method runoff coefficient

_		5-year					100-year				
	t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
l	10.0	104.2	7.3	7.3	0.0	0.0	178.6	15.6	15.6	0.0	0.0

Note: C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Area ID **B**1 Available Sub-surface Storage Maintenance Structures

0

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary

			Surface	Storage			Surface a	nd Subsurfa	ce Storage	
	Stage	Ponding	h₅	h100	delta d	۷*	V _{acc} **	Q _{5-year} †	Q _{100-year} †	Q _{total} †
	(m)	(m²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(L/s)	(L/s)
5-year Orifice INV	103.70	0.4	0.00	0.00			0.0	0.0	0.0	0.0
5-year Orfice OBV	103.85	245.77	0.15	0.00	0.15	12.8	12.8	22.1	0.0	22.1
0.25m Ponding	103.95	655.28	0.25	0.00	0.10	43.4	56.2	28.5	0.0	28.5
0.35m Ponding	104.06	694.79	0.36	0.00	0.11	74.2	130.5	34.2	0.0	34.2
100-year Orifice INV	104.07	698.42	0.37	0.00	0.01	7.0	137.4	34.7	0.0	34.7
Top of Storage Area	104.30	778.32	0.60	0.23	0.23	169.7	307.2	44.2	44.9	89.1

V=Incremental storage volume **V_{acc}=Total surface and sub-surface

† Q_{release} = Release rate calculated from orifice equation

Drifice Location	CSP(5-YR)	Dia	164	CSP(100-YR)	Dia	210
		INV	103.70		INV	104.07
Total Area	0.952 ha					

С 0.74 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	203.7	34.1	169.6	101.8	178.6	436.3	76.2	360.1	216.1
15	83.6	163.3	34.1	129.3	116.3	142.9	349.2	76.2	273.0	245.7
20	70.3	137.3	34.1	103.2	123.9	120.0	293.1	76.2	216.9	260.3
25	60.9	119.0	34.1	85.0	127.4	103.8	253.8	76.2	177.6	266.3
30	53.9	105.4	34.1	71.3	128.4	91.9	224.5	76.2	148.3	266.9
35	48.5	94.8	34.1	60.8	127.6	82.6	201.8	76.2	125.6	263.7
40	44.2	86.4	34.1	52.3	125.5	75.1	183.6	76.2	107.4	257.8
45	40.6	79.4	34.1	45.3	122.4	69.1	168.7	76.2	92.5	249.8
50	37.7	73.6	34.1	39.5	118.6	64.0	156.3	76.2	80.1	240.2
55	35.1	68.7	34.1	34.6	114.1	59.6	145.7	76.2	69.5	229.3
60	32.9	64.4	34.1	30.3	109.1	55.9	136.6	76.2	60.4	217.4
65	31.0	60.7	34.1	26.6	103.7	52.6	128.6	76.2	52.4	204.5
70	29.4	57.4	34.1	23.3	98.0	49.8	121.7	76.2	45.5	191.0
75	27.9	54.5	34.1	20.4	91.9	47.3	115.5	76.2	39.3	176.7
80	26.6	51.9	34.1	17.8	85.6	45.0	109.9	76.2	33.7	161.9
85	25.4	49.6	34.1	15.5	79.1	43.0	105.0	76.2	28.8	146.7
90	24.3	47.5	34.1	13.4	72.3	41.1	100.5	76.2	24.3	131.0
95	23.3	45.6	34.1	11.5	65.4	39.4	96.4	76.2	20.2	114.9
100	22.4	43.8	34.1	9.7	58.3	37.9	92.6	76.2	16.4	98.5
105	21.6	42.2	34.1	8.1	51.0	36.5	89.2	76.2	13.0	81.8
110	20.8	40.7	34.1	6.6	43.7	35.2	86.0	76.2	9.8	64.8

5-year Q _{attenuated}	
5-year Max. Storage Required	
Est. 5-year Storage Elevation	1

34.09 L/s 128.4 m³ 104.06 m

100-year Q_{attenuated} 76.20 L/s 100-year Max. Storage Required Est. 100-year Storage Elevation

266.9 m³ 104.25 m

Summary of Release Rates and Storage Volumes

Control Area	5-Year Release Rate (L/s)	5-Year Required Storage (m ³)	100-Year Release Rate (L/s)	100-Year Required Storage (m ³)	100-Year Available Storage (m ³)
Unattenutated Areas	7.3	0.0	15.6	0.0	0.0
Attenutated Areas	34.1	128.4	76.2	266.9	307.2
Total	41.4	128.4	91.8	266.9	307.2

															Ditch Data						
Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	Ι	Q	depth	Side Slope	Bot. Width I	lannings	Slope	Length	A _{flow}	Wet. Per.	R	Velocity	Qcap	Time Flow	Q / Q full
		(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(X:1)	(m)	n	(%)	(m)	(m²)	(m)	(m)	(m/s)	(L/s)	(min)	(-)
		0.276	0.87	0.24	0.24	10.0	104.2	69.2	250	2	0.25	0.03	0.20	50.7	0.188	1.368	0.14	0.40	74.3	2.1	0.93
						12.1															

	Imp.	Perv.	Total			
Area	0.263	0.013	0.276			
С	0.9	0.2	0.87			

DRAWINGS / FIGURES

ZONING	
EXISTING ZONING	IL [1559] LIGI
	REQUIRED
MIN. FRONT YARD SETBACK	7.5m
MIN. REAR YARD SETBACK	7.5m
MIN. INTERIOR YARD SETBACK	7.5m
MAX. BUILDING HEIGHT	18.0m
MIN. LOT AREA	2,000m2
MAX LOT COVERAGE	65%
MAX. FLOOR SPACE INDEX	2
MIN. WIDTH OF LANDSCAPE AREA	
ABUTTING A STREET	3m
ALL OTHER CASES	NA
MIN. LOT WIDTH	NA
	÷

18 Deakin Street, Suite 205

Ottawa, ON K2E 887

T: (613) 739.7770 F: (613) 739.7703

irchitect.co

S.J.L.

S.J.L.

ECKED BY.

01 GROUND FLOOR PLAN [OPTION 1] A200 SCALE: 1:100

Huntington	
NOTES: 1) ALL WORKTO BE IN COMPLIANCE WITH LOCAL BUILDING CODES, REGULATIONS AND BYLAWS. 2) ADDITIONAL DRAWINGS MAY BE ISSUED FOR CLARIFICATION TO ASSISTFROPER EXECUTION OF WORK, SUCH DRAWINGS WILL HAVE THE SAME MEANING AND INTENT AS IF THEY WERE INCLUDED WITH PLANS IN CONTRACT DOCUMENTS: 3) DO NOT SCALE DRAWINGS. 4) ALL SUB-CONTRACTORS TO TAKE THEIR OWN ON-SITE MEASUREMENTS AND BE RESPONSIBLE FOR THEIR ACCURACY 6) NOTEY SYMMU I LINIFENCE ARCHITECT FOR ANY ERRORS AND/OR COMMISSIONS PRIOR TO START OF WORK. FIRE RESISTANCE RATING LEGEND: 1 HOUR - FIRE RESISTANCE RATING 1 HOUR - FIRE RESISTANCE RATING	
2 HOUR - FIRE RESISTANCE RATING	
STAMP: NCR774 ARRCH.	
HIND	
20	
03 02 01 2017-07-04 ISSUED FOR SITE PLAN CONTROL No. DATE: REVISION:	
18 Deakin Street, Suite 205 0ttowa, ON K2E 887LAWRENCE ARCHITECT INCORPORATEDT: (613) 739.7703 5j@ejJarchitect.com	
THIS DRAWING IS THE SOLE PROPERTY OF SJ. LAWRENCE ARCHITECT INCORPORATED REPRODUCTION IS NOT PERMITTED DRAWN BY: DESIGNED BY:	
B.L. S.J.L. DATE: CHECKED BY: 2016-09-29 S.J.L. SCLE: PLOT DATE: AS NOTED 2017-07-04	
IBER COMMERICAL COMPLEX 44 IBER ROAD, OTTAWA, ON.	00 - 000 -
JOB NUMBER: SL - 828 - 16	APPLICATION NUMBER: XX
sheer: A 2·00	APPLICATI

TOP OF SHOP STRUCTURE 28'-7 1"

TOP OF SHOP STRUCTURE 28'-7 17

		07ES:	PROPERTIES
	1), CC 2), TC HA IN 3), 31, ML	ALL WORKTO BE IN COMPLI DDES, REGULA TIONS AND B. ADDITIONAL DRAHMINGS MA ASSIST FROPER EXECUTION INE THE SAME MEANING AN CLUDED WITH PLANS IN COL DO NOT SCALE DRAHMINGS ALL SUB-CONTRACTORS TO FASUREMENTS AND BE RES	V LAWS. Y BE ISSUED FOR CLARIFICATION N OF WORK, SUCH DRAWNIGS WILL D WITENT AS IF THEY WERE VITACT DOCUMENTS. IN TAKE THEIR OWN ON-SITE PONSIBLE FOR THEIR ACCURACY
	45	MIN FIRE RESISTANCE	RATING
Image: State of the state	1 /	HOUR - FIRE RESISTANCE	RATING
20			
20			
20			
20			
20			
20			
20			
20			
20			
20			
20			
20			
20			
20			
20	STAMP:		
19			(Huas
18	20		
14	18 17		
11	14 13		
07	11 10 09		
03	07 06		
Image: Street Subscription 18 Deaking Street, Subscription Image: Street Street Subscription Street, Subscription Image: Street Stre	03 02	2017-07-04 ISS	UED FOR SITE PLAN CONTROL
SSEL Outswa, ON K2E 887 Cottowa, ON K2E 887 Stowa, ON Stowa, O	No.	DATE:	18 Deakir
LAWRENCE ARCHITECT Tri (613) 739.7770 JOB OR PORATED Tri (613) 739.7770 Incorrent or portated Sile Jarchitect.com Incorrent of Sile PROPERTY of Sile Adviration (Sile Conformation) (Sile Conformati		$\overline{\Box}$	205 Ottawa, ON
INCORPORATED F: (613) 739.7703 JOBJURCHILL 739.7703 JIMPE SUPPORT INCORPORATED F: (613) 739.7703 JIMPE SUPPORT INCORPORATED REPRODUCTION IS NOT PERMITTED INCORPORATED S.JL INTE S.JL 2016-09-29 S.JL SCALE REOTED ANTED 2017-07-04 PROJECT IBER COMMERICAL COMPLEX A4 IBER ROAD, OTTAWA, ON. SL - 828 - 16 JOB NUMBER: SL - 828 - 16			
SJ. LAWRENCE ARCHITECT INCORPORATED REPRODUCTION IS NOT PERMITTED			F: (613)
BL. S.JL. DATE: S.JL. 2016-09-29 S.JL. SCALE: PLOT DATE: AS NOTED 2017-07-04 PROBECT: IBER COMMERICAL COMPLEX A4 IBER ROAD, OTTAWA, ON. JOB NUMBER: SL - 828 - 16 DOMMING TITLE		LAWRENCE ARCH	ITECT INCORPORATED
SCALE AS NOTED PLOT DATE AS NOTED 2017-07-04 PRODECT IBER COMMERICAL COMPLEX 44 IBER ROAD, OTTAWA, ON. JOB NUMBER: SL - 828 - 16	B.L.	/ <i>BY</i> :	<i>S.J.L.</i>
IBER COMMERICAL COMPLEX 44 IBER ROAD, OTTAWA, ON. JOB NUMBER: SL - 828 - 16	SCALE:		PLOT DATE:
44 IBER ROAD, OTTAWA, ON. JOB NUMBER: SL - 828 - 16	PROJEC	IBER CO	
JOB NUMBER: SL - 828 - 16 DRAMMAG TITLE		44 IBE	R ROAD,
Долина ПП.£			, v.n.
ELEVATIONS			SL - 828 - 16
ELE VA HUNS			
	SHEET:	ELEV	ATIONS