

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

MATTAMY HOMES WATERIDGE VILLAGE – BLOCK 22

CITY OF OTTAWA

PROJECT NO.: 17-948

AUGUST 2017 – REV 1 © DSEL

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR WATERIDGE VILLAGE – BLOCK 22

MATTAMY HOMES

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
1.1	Existing Conditions	.2
1.2	Required Permits / Approvals	.3
1.3	Pre-consultation	.3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	. 4
2.1	Existing Studies, Guidelines, and Reports	.4
3.0	WATER SUPPLY SERVICING	. 5
3.1	Existing Water Supply Services	.5
3.2	Water Supply Servicing Design	. 5
3.3	Watermain Modeling	.7
3.4	Water Supply Conclusion	. 8
4.0	WASTEWATER SERVICING	.9
4.0 4.1	WASTEWATER SERVICING	. 9 . 9
4.0 4.1 4.2	WASTEWATER SERVICING Existing Wastewater Services Wastewater Design	. 9 . 9 . 9
4.0 4.1 4.2 4.3	WASTEWATER SERVICING. Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions	. 9 . 9 . 9 11
 4.0 4.1 4.2 4.3 5.0 	WASTEWATER SERVICING. Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions STORMWATER MANAGEMENT	. 9 . 9 . 9 11 12
 4.0 4.1 4.2 4.3 5.0 5.1 	WASTEWATER SERVICING. Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions STORMWATER MANAGEMENT Existing Stormwater Services	9 9 11 12
 4.0 4.1 4.2 4.3 5.0 5.1 5.2 	WASTEWATER SERVICING. Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target	. 9 . 9 11 12 12
 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3 	WASTEWATER SERVICING. Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target Proposed Stormwater Management System	9 9 11 12 12 12
 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 	WASTEWATER SERVICING. Existing Wastewater Services . Wastewater Design . Wastewater Servicing Conclusions . STORMWATER MANAGEMENT . Existing Stormwater Services . Post-development Stormwater Management Target . Proposed Stormwater Management System . Low Impact Development (LID) Practices .	9 9 11 12 12 12 12
 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 5.5 	WASTEWATER SERVICING. Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions STORMWATER MANAGEMENT Existing Stormwater Services Post-development Stormwater Management Target Proposed Stormwater Management System Low Impact Development (LID) Practices Stormwater Servicing Conclusions	9 9 11 12 12 12 13 13

FIGURES

Figure 1

Site Location

TABLES

Table 1 Summary of Water Demand per *MSS* Table 2 Water Supply Design Criteria Table 3 Water Demand and Boundary Conditions Proposed Conditions Table 4 Resulting Pressures Proposed Conditions Table 4 Wastewater Flow per MSS – Total Site Area Table 5 Wastewater Flow per MSS – To Michael Stoqua Street Sewer Table 6 Wastewater Design Criteria Table 7 Summary of Estimated Peak Wastewater Flow

APPENDICES

Appendix A Pre-consultation Notes

Appendix B Water Supply

Appendix C Wastewater Collection

Appendix D Stormwater Management

Drawings / Figures Site Plan

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR WATERIDGE VILLAGE – BLOCK 22 MATTAMY HOMES AUGUST 2017 – REV 1

CITY OF OTTAWA PROJECT NO.: 17-948

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare a Functional Servicing and Stormwater Management report in support of the Site Plan Application for Block 22 of the former CFB Rockcliffe lands, which are currently under re-development by the Canada Lands Company.

The subject property is located within the City of Ottawa urban boundary, in the Rideau-Rockcliffe area. As illustrated in *Figure 1*, the subject property is encompassed by Hemlock Road, Michael Stoqua Street and Moses Tennisco Street, all of which are currently under construction. Comprised of a single parcel, it measures approximately *0.46 ha* and is zoned Residential Fifth Density Zone (R5Y[2312]).

Figure 1: Site Location

The proposed development by Mattamy Homes involves the construction of 11 Rear Lane Townhomes and 48 Stacked Townhomes. The development also includes surface parking for the Stacked Townhomes within the site. A copy of the site plan and site statistics is included in **Drawings/Figures**.

The objective of this report is to provide sufficient detail with respect to the availability of site services, to support the application for site plan control.

1.1 Existing Conditions

The existing lands are vacant, while the construction of the surrounding road network and underground services are currently underway at the time of this publication. Historically, the lands were part of the Canadian Forces Base Rockcliffe (CFB Rockcliffe).

A preliminary geotechnical investigation was completed by Paterson Group Inc. in August 2017. Per the geotechnical report, the subject site consists of a layer of existing fill from the previous land use underlain by stiff to very stiff brown silty clay. Practical refusal was encountered between 3.3 to 3.9m below existing grade.

The Canada Lands Company will be delivering the site to a pre-grade condition in accordance with Mattamy Homes requirements.

Hemlock Road

- > 300mm diameter PVC watermain
- > 750mm diameter storm sewer
- > 250mm diameter sanitary sewer

Michael Stoqua Street

- > 200 mm diameter watermain
- > 375mm diameter storm sewer
- > 250mm diameter sanitary sewer

Moses Tennisco Street

- > 200 mm diameter watermain
- ➢ 525 mm diameter storm sewer
- > 250mm diameter sanitary sewer

The infrastructure described above is based on design drawings, not as-built drawings. The design drawings are as per the Wateridge Village at Rockcliffe Phase 1B drawing set prepared by IBI Group dated February 16, 2017.

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

1.3 Pre-consultation

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (City Standards)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02 City of Ottawa, May 27, 2014. (ISDTB-2014-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update (OBC)
- Water Supply for Public Fire Protection Fire Underwriters Survey, 1999. (FUS)
- Low Impact Development Stormwater Management Planning and Design Guide Credit Valley Conservation & Toronto and Region Conservation, 2010. (LID Guide)
- Former CFB Rockcliffe Master Servicing Study IBI Group, August 2015 (MSS)
- Low Impact Development (LID) Demonstration Project Aquafor Beech Ltd., August 2015 (LID Demonstration Project)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa MONT pressure zone, as shown by the Pressure Zone map in *Appendix B*. Based on the design drawings for the Wateridge Phase 1B subdivision, a local 200 mm diameter watermain is currently being constructed within the Michael Stoqua Street and Moses Tennisco Street right-of-ways to service the subject site.

The water servicing for the subject site was accounted for in the design of the water distribution system outlined in the **MSS**. Block 22 described in the MSS is part of a larger parcel known as **Block 40**. The total units allocated in these blocks per the **MSS** is **83 units**. Block 22 has since been split into 2 equal blocks, therefore, there are approximately **42 units** allocated with a population of **2.3 person/unit** in each block. The water demand per the **MSS** was determined assuming a consumption rate of **198 L/person/day**, the total water demand per the **MSS** is summarized in **Table 1** below.

Design Parameter	Total Demand (L/min)	
Average Day	13.3	
Max Day	65.4	
Max Day + Fire Flow	13,000 + 65.4	

Table 1Summary of Water Demand per MSS

Fire flow for the site has been assumed at **13,000 L/min** and all nodes surrounding the site have the ability to provide the required fire flow at greater than 140 kPa (20 PSI).

3.2 Water Supply Servicing Design

It is proposed to provide a connection to the 200mm watermain within Michael Stoqua Street and a connection to the 200mm watermain within Moses Tennisco Street. The site is adequately serviced by surrounding fire hydrants on Hemlock Road, Michael Stoqua Street and Moses Tennisco Street.

Due to the width of the right-of-way and the proximity of the Rear Lane Townhomes, it is proposed to provide a watermain 1.5m away from the proposed sanitary sewer. The water and sanitary sewers are designed in accordance with *Procedures to Govern Seperation of Sewers and Watermains (Procedure F-6-1)* prepared by the Ministry of the Environment.

Table 2 summarizes the *Water Supply Guidelines* employed in the preparation of the water demand estimate for the proposed development.

Design Parameter	Value
Townhouse	2.7 P/unit
Residential Average Daily Demand	350 L/d/P
Residential Maximum Daily Demand	3.6 x avg. day *
Residential Maximum Hourly	5.4 x max. day *
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
During normal operating conditions desired	350kPa and 480kPa
operating pressure is within	
During normal operating conditions pressure must	275kPa
not drop below	
During normal operating conditions pressure must	552kPa
not exceed	
During fire flow operating pressure must not drop	140kPa
below	
*Daily average based on Appendix 4-A from Water Supply Guidelines	

Table 2 Water Supply Design Criteria

** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons. -Table updated to reflect ISD-2010-2

Table 3 summarizes the anticipated water supply demand and proposed boundary conditions. Boundary conditions for the subject site were extracted from the MSS for the nodes closest to the proposed connection points on Michael Stoqua Street and Moses Tennisco Street.

Table 3
Water Demand and Boundary Conditions
Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² Connection 1 (m H ₂ O / kPa)		Boundary Condition ² Connection 2 (m H ₂ O / kPa)	
Average Daily Demand	38.9	52.6	516.0	54.0	529.4
Max Day	140.0	53.2	521.6	54.5	534.4
Max Day + Fire Flow	11,000 + 140.0	37.4	366.9	43.0	421.4
 Water demand calculation per <i>Water Supply Guidelines</i>. See <i>Appendix B</i> for detailed calculations. Boundary conditions per the <i>MSS</i> Connection 1 is to Michael Stoqua (Node 27 from MSS), Connection 2 is to Moses Tennisco (Node 24 from MSS) 					

The **MSS** only described the Average Daily Demand, Max Day Demand and Max Day + Fire Flow scenarios. There is a proposed water demand increased as the MSS estimated water demand assuming the 2013 Water Master Plan, whereas the water demand shown in Table 3 is calculated in accordance with the Water Supply Guideline.

The increase in water demand is to be reviewed by IBI to ensure that no negative impacts arise from the additional demand.

Fire flow requirements are to be determined in accordance with Local Guidelines (FUS), City of Ottawa Water Supply Guidelines, and the Ontario Building Code.

Using the *FUS* method, a conservative estimation of fire flow has been established. Based on information received from *Mattamy Homes*, the following assumptions were assumed for both Stacked Townhomes and standard Townhomes:

Type of construction – Non-Combustible Construction

Occupancy type – Non-Combustible

Sprinkler Protection – Non-Sprinklered

The above assumptions result in an estimated fire flow of approximately **11,000 L/min**; actual building materials selected will affect the estimated flow; see **Appendix B** for detailed FUS calculations.

3.3 Watermain Modeling

EPANet was utilized to determine pipe sizing and the availability of pressures throughout the system during Average Day demand, Max Day, and Max Day plus Fire Flow scenarios. The static model determines pressures based on the available head obtained from the boundary conditions from the **MSS**, as indicated in **Table 3**.

The model utilizes the Hazen-Williams equation to determine pressure drops, while the pipe properties, including friction factors, have been selected in accordance with Table 4.4 of the *Water Supply Guidelines*.

A summary of the resulting pressures at all nodes are summarized in *Table 4* below.

Node ID	Average Day (kPa)	Max Day (kPa)	Max Day + Fire Flow (kPa)
1	542.4	543.4	393.6
2	538.8	520.7	375.6
3	544.3	541.5	396.4
4	548.7	549.0	418.8

Table 4Resulting Pressures Proposed Conditions

The minimum and maximum pressures shown in **Table 4** fall within the allowable pressures described in **Table 2**. Pressures during Average Day and Max Day are at the high end of the allowable pressure. A pressure test should be conducted at the time of construction to determine if pressure reducing valves are required.

The model predicted that water will flow in all areas of the system and no 'dead' zones were found.

3.4 Water Supply Conclusion

The boundary conditions at the site were determined from the **MSS**. As demonstrated by **Table 4**, the municipal system is capable of delivering water within the **Water Supply Guidelines** pressure range. Sufficient flow is available within Michael Stoqua Street and Moses Tennisco Street to provide fire protection for the site.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The sanitary flow from the subject property has been considered in the wastewater design for the Wateridge Subdivision, as outlined in the **MSS**. Block 22 was contemplated to drain a portion of the flow to the 250mm sanitary sewer within Michael Stoqua Street with the other portion of flow directed to the sanitary sewer within Moses Tennisco Street.

The total wastewater flow from the **MSS** is summarized in **Table 5** below.

Estimated Peak Wet Weather Flow

-	
Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.39
Estimated Peak Drv Weather Flow	1.57

Table 5 Wastewater Flow per MSS – Total Site Area

As discussed above, only a portion of the site was allocated to drain to the Michael Stoqua Street sanitary sewer, summarized below.

1.70

Table 6 Wastewater Flow per MSS – To Michael Stoqua Street Sewer

Design Parameter	Total Flow (L/s)	
Estimated Average Dry Weather Flow	0.21	
Estimated Peak Dry Weather Flow	0.84	
Estimated Peak Wet Weather Flow	0.91	

Based on the sanitary design sheet prepared by IBI Group (dated January 25, 2017) there is **48.11 L/s** of available capacity within the Michael Stoqua Street sanitary sewer. Please refer to **Appendix C** for reduced copies of the IBI sanitary design sheet and drainage area map.

4.2 Wastewater Design

It is proposed that the development will connect to the 250mm diameter sewer within the Michael Stoqua Street right-of-way.

Table 7 summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

Table 7			
Wastewater	Design	Criteria	

Design Parameter	Value		
Townhouse	2.7 P/unit		
Average Daily Demand - Residential	350 L/d/per		
Peaking Factor	Harmon's Peaking Factor. 4.0		
Infiltration and Inflow Allowance	0.28L/s/ha		
Sanitary sewers are to be sized employing the	$-\frac{1}{2} 4 p^{\frac{2}{3}} c^{\frac{1}{2}}$		
Manning's Equation	$Q = -AR^{3}S^{2}$		
Minimum Sewer Size	200mm diameter		
Minimum Manning's 'n'	0.013		
Minimum Depth of Cover	2.5m from crown of sewer to grade		
Minimum Full Flowing Velocity	0.6m/s		
Maximum Full Flowing Velocity	3.0m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012.			

Table 8 demonstrates the anticipated peak flow from the proposed development. See *Appendix C* for associated calculations.

Table 8Summary of Estimated Peak Wastewater Flow

Design Parameter	Total Flow (L/s)	
Estimated Average Dry Weather Flow	0.65	
Estimated Peak Dry Weather Flow	2.59	
Estimated Peak Wet Weather Flow	2.72	

The estimated sanitary flow, based on the site plan provide in *Drawings/Figures*, anticipates a peak wet weather flow of **2.72** *L/s*.

The anticipated peak wastewater flow generated from the proposed development to the Michael Stoqua Street sewer has been estimated to be **2.72** *L/s*; this results in a **1.80** *L/s* increase from the **MSS**. Based on the capacity analysis completed for the downstream section of sanitary sewer the sewer has the ability to convey the increase in wastewater flow.

A sanitary calculation sheet was prepared that shows the on-site and off-site capacity of the local sanitary sewers, see *Appendix C* for the calculation sheet.

The total increase in flow is to be reviewed by IBI to ensure that there are no negative impacts from the additional wastewater flow.

4.3 Wastewater Servicing Conclusions

The sanitary flow from the subject property has been considered in the wastewater design for the Wateridge Subdivision, outlined in the **MSS**.

The proposed development results in an estimated increase in wastewater flow contribution of **1.80 L/s** to the sanitary sewer within the Michael Stoqua Street right-of-way. Based on a capacity analysis of the sanitary sewer there is capacity to convey the increase in sanitary flow.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Minor and major flow from the subject site was accounted for in the Wateridge Subdivision, outlined in the **MSS**. It is proposed that minor system flow from the Block will be conveyed directly to the Eastern SWM Facility. Major flow is proposed to be directed to a dry pond to the south of Mikinak Road for quantity control and will eventually discharge through the minor system to the Easter SWM Facility.

The **MSS** contemplated minor and major system drainage from Block 22 to be split to Michael Stoqua Street and Moses Tennisco Street. According to storm design sheets and drainage area maps prepared by IBI, there is **53.62** L/s of available capacity within the Michael Stoqua Street storm sewer. Refer to **Appendix D** for reduced copy of the storm design sheet and drainage area figures prepared by IBI for the Wateridge Subdivision.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed, and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA).

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa, where the proposed development is required to:

- > Follow quantity and quality controls outlined in the **MSS**
- Incorporate Low Impact Development measures in accordance with the MSS and LID Demonstration Project

5.3 Proposed Stormwater Management System

It is proposed that the stormwater from the development will be directed to the 375mm storm sewer within Michael Stoqua Street.

As discussed in **Section 5.1**, the quantity controls for Block 22 will be provided by the dry pond south of the subject site and through the Eastern SWM Facility outlined in the **MSS**.

The subject site was also accounted for in the design of the permanent pool of the Eastern SWM Facility which provides 80% TSS removal for the subdivision.

A storm design sheet was prepared to support the capacity of the internal and external storm sewers, refer to *Appendix D* for the calculation sheet and *SWM-1* for the drainage area figure. The overall Runoff Coefficient from the site is equal to what was allocated in the *MSS* and therefore, no additional quantity or quality controls are required.

As shown in the design sheet, the storm sewer within Michael Stoqua Street has sufficient capacity to convey the 5-year flow from the subject site.

5.4 Low Impact Development (LID) Practices

LID measures are proposed in accordance with the **MSS** and **LID Demonstration Project.** It is proposed to direct all roof flow to side yard and bioswales, eventually draining to area drains. Area drains will collect and discharge clean roof flow to infiltration tanks and oversized perforated pipe systems. Refer to **Appendix D** for a summary of the underground storage tanks and refer to drawing **SSP-1** for the location of proposed LID practices.

All LID measures are designed to infiltrate an equivalent of the 4mm event over the site area and each LID measure must treat the minimum of the 15mm event. A total infiltration requirement of 4mm or **18.4m³** and a total treatment volume of the 15mm event, or **32.4m³** is required per the **LID Demonstration Project**. The current underground storage and perforated pipe system provides **46.5m³** of volume to be infiltrated, exceeding the above noted requirements.

Details of the LID practices are shown on **DS-1**.

5.5 Stormwater Servicing Conclusions

Minor and major system flow from Block 22 was accounted for in the subdivision design. Quantity and quality controls are provided through a dry stormwater pond to the south and the Eastern SWM Facility to the north.

Sufficient capacity is available in the adjacent storm sewers to convey the 5-year storm event from the subject site.

LID practices in the form of underground storage tanks and oversized perforated pipes are proposed to infiltrate roof runoff from the site, in accordance with the *LID Demonstration Project*

The proposed stormwater design conforms to all relevant *City Standards* and Policies.

6.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained to prepare a Functional Servicing and Stormwater Management for the proposed development for Block 22 of the former CFB Rockcliffe lands, which are currently under re-development. The preceding report outlines the following:

- Based on boundary conditions from the MSS and a water distribution model completed for the site, sufficient pressure exists to support the development
- Based on estimated fire flow per the *FUS*, there is sufficient pressure within the local system to provide the required fire flow
- The proposed development is anticipated to have a peak wet weather flow of 2.72 L/s; the adjacent sanitary sewer has capacity to convey the increase in flow
- The quantity and quality controls are provided for the site through a dry pond to the south of the site and the Eastern SWM Facility outlined in the MSS
- LID practices include underground storage tanks and oversized perforated pipes to infiltrate roof runoff and meet criteria outlined in the *LID Demonstration Project.*

Prepared by,

David Schaeffer Engineering Ltd.

Reviewed by, David Schaeffer Engineering Ltd.

Per: Steven L. Merrick, P.Eng

Per: Adam D. Fobert, P. Eng.

© DSEL

z:\projects\17-918_mattamy_rockcliffe\b_design\b3_reports\b3-2_servicing (dsel)\948 - block 22\fsr_2017-08-08_948_slm.docx

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

17-948

4.1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1 3
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
\boxtimes	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	N/A
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\boxtimes	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	N/A
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
\boxtimes	Availability of public infrastructure to service proposed development	Section 1.1

	realized and the second of the proposed development	5000001111
\boxtimes	Identification of system constraints	Section 3.1
\boxtimes	Identify boundary conditions	Section 3.1, 3.2
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.3

\boxtimes	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
\boxtimes	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.2, 3.3
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
\boxtimes	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
4.3	Development Servicing Report: Wastewater	
\boxtimes	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 4.2
	Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
\boxtimes	Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 4.1
\boxtimes	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Section 4.2
\boxtimes	Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Section 4.2, Appendix C
\boxtimes	Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 4.2
	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A

	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
4.4	Development Servicing Report: Stormwater Checklist	
\boxtimes	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
\boxtimes	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
\boxtimes	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
\boxtimes	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
\boxtimes	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
\boxtimes	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
\boxtimes	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
\boxtimes	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
\boxtimes	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3
	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities	N/A
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100- year return period storm event	N/A
	Identification of potential impacts to receiving watercourses	N/A
	Identification of municipal drains and related approval requirements.	N/A

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	N/A
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	N/A
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
4.5	Approval and Permit Requirements: Checklist	
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement ct. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	Section 1.2
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A
4.6	Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	Section 7.0
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	

APPENDIX B

Water Supply

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор	
Single Family	3.4		0	
Semi-detached	2.7		0	
Townhouse (per MSS)	2.3	42	97 < Unit Count and Population from MSS	
Apartment			0	
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	

Рор	Avg. Daily		Max Day		Peak Hour	
	m³/d	L/min	m³/d	L/min	m³/d	L/min
97	19.2	13.3	94.1	65.4	142.1	98.7
	Рор 97	Pop Avg. I m³/d 97 19.2	Pop Avg. Daily m³/d L/min 97 19.2 13.3	Pop Avg. Daily Max m³/d L/min m³/d 97 19.2 13.3 94.1	Pop Avg. Daily Max Day m³/d L/min m³/d L/min 97 19.2 13.3 94.1 65.4	Pop Avg. Daily Max Day Peak m³/d L/min m³/d L/min m³/d 97 19.2 13.3 94.1 65.4 142.1

Institutional / Commercial / Industrial Demand

			Avg. I	Daily	Max	Day	Peak	Hour
Property Type	Unit	Rate Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m²/d	0.00	0.0	0.0	0.0	0.0	0.0
Office	75	L/9.3m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
		Total I/CI Demand	0.0	0.0	0.0	0.0	0.0	0.0
		Total Demand	19.2	13.3	94.1	65.4	142.1	98.7

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7	59	160
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Рор	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	160	56.0	38.9	201.6	140.0	302.4	210.0

Institutional / Commercial / Industrial Demand

	aothai Domane							
			Avg. I	Daily	Max	Day	Peak	Hour
Property Type	Unit	Rate Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m²/d	0.00	0.0	0.0	0.0	0.0	0.0
Office	75	L/9.3m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
		Total I/CI Deman	d 0.0	0.0	0.0	0.0	0.0	0.0
		Total Deman	d 56.0	38.9	201.6	140.0	302.4	210.0

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F = 220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1
 A 1250.4 m² Total floor area based on FUS Part II section 1

Fire Flow 7779.4 L/min

8000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Fire Flow	6800.0 L/min
Limited Combustible	-15%

3. Reduction for Sprinkler Protection

Reduction	0 L/min
Non-Sprinklered	0%

4. Increase for Separation Distance

	Increase	3740.0 L/min	-
	% Increase	55%	value not to exceed 75% per FUS Part II, Section 4
w	0m-3m	25%	_
Е	20.1m-30m	10%	
S	10.1m-20m	15%	
Ν	30.1m-45m	5%	

Total Fire Flow

Fire Flow 10540.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 11000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Mattamy Homes.

-Calculations based on Fire Underwriters Survey - Part II

Z:\Projects\17-918_Mattamy_Rockcliffe\B_Design\B1_Analysis\B1-5_Water\948 - Block 22\wtr-2017-08-08_948_town_Block 2_slm.xlsx

AVERAGE DAY – BLOCK 22

	2017-08-10_918_HJP_Block22_AVG.rp	t
Page 1	2017-08-	10 12:35:00 PM
******	***************************************	******
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***************************************	*****

AVERAGE DAY-BLOCK 22

Link - Node Table: -----Start End Node Link Length Diameter ID Node m mm _____ 39.1 50 3 3 2 23.2 50 23.2 50 4 MichaelStoquaStreet1 5 1 3 4 21.6 50 MosesTeniscoStreet 21.6 50 6 3 7 4 Node Results: -----Demand Head Pressure Quality Node ID LPM m m _____ 2.43142.4855.480.0031.60142.3254.920.002.43142.0955.290.002.43143.2355.930.00 3 2 1 4
 MichaelStoquaStreet
 66.82
 141.70
 0.00
 0.00 Reservoir

 MosesTeniscoStreet
 -105.71
 144.10
 0.00
 0.00 Reservoir
 Link Results: _____ Link Flow VelocityUnit Headloss Status ID LPM m/s m/km _____ 31.600.274.06Open-66.820.5716.97Open-69.250.5916.62Open-103.280.8834.85Open-105.710.9040.18Open 3 4 5 6 7

MAX DAY – BLOCK 22

	2017-08-10_918_HJP_Block22_MAX.rpt	
Page 1	2017-08-3	10 12:32:07 PM
*****	***************************************	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*****	***************************************	*****

MAX DAY-BLOCK 22

Link - Node Table: -----End Node Start Link Length Diameter ID Node m mm _____ 39.1 50 3 3 2 23.2 50 23.2 50 4 MichaelStoquaStreet1 5 1 3 4 21.6 50 MosesTeniscoStreet 21.6 50 6 3 7 4 Node Results: -----Demand Head Pressure Quality Node ID LPM m m _____ 8.75142.2055.200.00113.76140.4853.080.008.75142.1955.390.008.75143.2655.960.00 3 2 1 4
 MichaelStoquaStreet
 -6.64
 142.20
 0.00
 0.00 Reservoir

 MosesTeniscoStreet
 -133.36
 144.60
 0.00
 0.00 Reservoir
 Link Results: _____ Link Flow VelocityUnit Headloss Status ID LPM m/s m/km _____ 113.760.9743.87Open6.640.060.23Open-2.100.020.03Open 3 4 5 -124.61 1.06 49.34 Open -133.36 1.13 61.99 Open 6 7

MAX DAY + FIRE FLOW – BLOCK 22

	2017-08-10_918_HJP_Block22_FF.rpt	
Page 1	2017-08-1	0 12:19:26 PM
***********	******************	*********
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***************************************	*****

MAX DAY PLUS FF-BLOCK 22

Link - Node Table: -----End Node Start Link Length Diameter ID Node m mm _____ 39.1 50 3 3 2 23.2 50 23.2 50 4 MichaelStoquaStreet1 5 1 3 4 21.6 50 MosesTeniscoStreet 21.6 50 6 3 7 4 Node Results: -----Demand Head Pressure Quality Node ID LPM m m _____ 8.75127.4140.410.00113.76125.6938.290.008.75126.9240.120.008.75129.9942.690.00 3 2 1 4
 MichaelStoquaStreet
 69.55
 126.50
 0.00
 0.00 Reservoir

 MosesTeniscoStreet
 -209.55
 133.10
 0.00
 0.00 Reservoir
 Link Results: _____ Link Flow VelocityUnit Headloss Status ID LPM m/s m/km _____ 113.760.9743.87Open-69.550.5918.28Open-78.300.6620.87Open 3 4 5 -200.80 1.70 119.39 Open -209.55 1.78 144.12 Open 6 7

APPENDIX C

Wastewater Collection

#17063

D07

p/p/u

p/p/u

p/p/u

p/p/Ha

INIST

COM

IND

50.000 L/Ha/day

50,000 L/Ha/day

35.000 L/Ha/dav

17000 L/Ha/dav

TH/SD 2.7

1.8

60

APT

Other

IBI GROUP

ibigroup.com

400-333 Preston Street

Ottawa Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

RESIDENTIAL ICI AREAS INFILTRATION ALLOWANCE FIXE LOCATION AREA (Ha) AREA (Ha) AREA UNIT TYPES POPULATION PEAK PEAK PEAK AREA FLOW FROM MH INSTITUTIONAL INDUSTRIAL ТО МН Phase 1B XTERNA FACTOR FLOW COMMERCIAL FLOW STREET AREA ID SF SD тн APT IND CUM IND CUM (L/s) IND CUM IND CUM IND CUM (Ha) (Ha) (L/s) (L/s) hase 1 201A MH201A MH202A 0.31 0.0 4.00 0.00 0.00 0.00 0.00 0.00 0.31 0.31 0.09 0.00 Hemlock Road 0.0 Future Street No. 6 EX202A BULK202AN MH202A 2.08 358.5 358.5 4.00 5.81 0.00 0.00 0.00 0.00 2.08 2.08 0.58 0.00 Hemlock Road 202A MH202A MH203A 0.21 0.0 358.5 4.00 5.81 0.00 0.00 0.00 0.00 0.21 2.60 0.73 0.00 0.00 Future Street No. 5 EX203A BUI K203AN MH203A 1 40 160.5 160.5 4 00 2 60 0.00 0.00 0.00 0.00 1 40 1 40 0.39 0.00 203A, EXPARK2 MH204A 0.44 0.00 0.00 0.64 0.64 0.00 Hemlock Road MH203A 0.20 0.0 0.0 4.00 0.00 0.00 0.18 FX204A rue Moses Tennisco Street BUI K204AN MH204A 153.5 153.5 4.00 0.00 0.00 1.39 1.39 0.39 0.00 1.39 2 4 9 0.00 0.00 Hemlock Road 204A MH204A MH205A 0.00 0.00 0.00 0.21 1.60 0.00 0.21 153.5 4.00 2.49 0.45 0.0 0.00 0.00 0.00 rue Michael Stoqua Street EX205A BUILK205AN MH205A 1.38 241.5 241.5 4.00 3.91 0.00 0.00 0.00 1.38 1.38 0.39 0.00 Hemlock Road 205A MH205A MH206A 0.25 395.0 0.00 0.00 0.25 0.90 0.00 4.00 6.40 0.00 3.23 0.0 EX206A-B BULK206AN MH206A 0.00 0.00 rue Bareille-Snow Street <u>9.61</u> <u>1755.0</u> 1755.0 3.63 25.80 0.00 0.00 0.00 9.61 9.61 2.69 MH206A MH207A 206A 0.00 0.00 0.00 0.00 Hemlock Road 0.20 0.0 2150.0 3.56 31.02 0.00 0.20 13.04 3.65 Block 20 PARK1 MH207AN MH207A 0.32 0.0 0.0 4.00 0.00 0.00 0.00 0.00 0.00 0.32 0.32 0.09 0.00 PARK1, 207A MH207A BULK176AE 0.12 2150.0 31.02 0.00 0.00 0.00 0.00 0.12 13.48 3.77 0.00 Hemlock Road 0.0 3.56 Phase 1A Hemlock Road BULK176AE MH176A 0.0 2150.0 3.56 31.02 0.00 0.00 0.00 0.00 0.00 13.48 3.77 0.00 hase 1 0.00 0.90 0.90 chemin Wanaki Road 200A, COM1 MH200A MH214A 0.25 0.0 0.0 4.00 0.00 0.00 0.78 1.15 1.15 0.32 0.00 214A, COM2 MH214A BULK153AN 0.16 0.0 0.0 4.00 0.00 0.00 0.65 1.55 0.00 1.35 0.81 1.96 0.55 0.00 chemin Wanaki Road Phase 1B 143B BULK143AE MH143A 0.31 104.0 104.0 4.00 1.69 0.00 0.00 0.00 0.00 0.31 0.31 0.09 0.00 chemin Wanaki Road 143A MH143A MH144A 0.27 0.0 104.0 4.00 1.69 0.00 0.00 0.00 0.00 0.27 0.58 0.16 0.00 chemin Wanaki Road chemin Wanaki Road 144A 144R MH144A MH145A 0.72 0.0 104.0 4.00 1.69 0.00 0.00 0.00 0.00 0.72 1.30 0.36 0.00 chemin Wanaki Road 145A, 145B, 145C MH145A MH146A 2.77 835.6 939.6 3.82 14.53 0.00 0.00 0.00 0.00 2.77 4.07 1.14 0.00 chemin Wanaki Road MH146A MH147A 0.14 14.53 0.00 0.00 0.00 0.14 4.21 0.00 146A 0.0 939.6 3.82 0.00 1.18 chemin Wanaki Road PARK2 MH147A 0.55 0.00 0.00 0.00 BLK147AE 0.00 0.00 0.55 0.0 0.0 4.00 0.00 0.55 0.15 chemin Wanaki Road 147C BLK147AW MH147A 0.10 33.6 33.6 4.00 0.54 0.00 0.00 0.00 0.00 0.10 0.10 0.03 0.00 chemin Wanaki Road 1474 MH147A MH170A 0.03 0.0 973.2 3.81 15.01 0.00 0.00 0.00 0.00 0.03 4 89 1 37 0.00 MH107A MH147C 5.05 chemin Wanaki Road 147B 0.16 0.0 973.2 3.81 15.01 0.00 0.00 0.00 0.00 0.16 1.41 0.00 MH147C BLK148AW 0.0 973.2 3.81 15.01 0.00 0.00 5.05 1.41 0.00 chemin Wanaki Road 0.00 0.00 0.00 Phase 1R 154A 2.62 0.00 Block 9 MH158A MH217A 0.19 0.0 973.2 3.81 15.01 3.83 0.00 5.60 0.19 12.94 3.62 215Aa-b 216Aa-b 117.8 117.8 4.00 1.91 0.00 0.79 0.79 MH215A MH216A 0.79 0.00 0.00 0.00 0.22 0.00 croissant Squadron Crescent 4 212.3 4.00 MH216A MH217A 94.5 3.44 0.00 0.00 0.00 0.00 0.67 1.46 0.41 0.00 proissant Squadron Crescent 0.67 6 2.62 3.83 217A MH217A MH218A 1185.5 18.01 0.00 0.02 14.42 0.00 0.02 3 75 5.60 4.04 croissant Squadron Crescent 0.0 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.44 4.04 0.00 THORN1 EX SANMH MH218B 1574.0 1574.0 3.66 0.00 0.00 5.55 0.00 0.00 5.55 5.55 1.55 0.00 23.36 MH218B MH219A 2759.5 3.47 38.82 3.83 0.00 5.60 0.07 20.06 5.62 218B 0.07 2.62 0.00 croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 20.21 5.66 0.00 croissant Squadron Crescent MH220A MH221A 319.0 3078.5 3.43 3.83 croissant Squadron Crescent 220A 220B 1 46 42 81 2.62 0.00 5.60 1 46 21.67 6.07 0.00 0.0 3078.5 3.43 42.81 MH221A MH222A 2.62 3.83 0.02 21.69 6.07 221A 222A 0.02 0.00 5.60 0.00 croissant Squadron Crescent MH222A MH169A 0.22 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.22 21.91 6.13 0.00 croissant Squadron Crescent esion Parameters: signed No. Revision . Mannings coefficient (n) = 0.013 City submission No. 1 1 ICI Areas Residential . Demand (per capita): 350 L/day 300 L/day City submission No. 2 2. SE 3.4 . Infiltration allowance: 0.28 L/s/Ha Checked: IIIM City submission No. 3

Dwa. Reference:

38298-501

File Reference:

38298.5.7.1

Date:

7/8/2016

Peak Factor

1.5

1.5

MOE Char

. Residential Peaking Factor:

Harmon Formula = $1+(14/(4+P^{0.5}))$

where P = population in thousands

SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

FIXED	TOTAL			PROPOS	SED SEWER	DESIGN				
FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY				
(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)		
0.00	0.09	50.02	87.06	250	0.65	0.987	49.93	99.83%		
0.00	0.03	30.02	07.00	230	0.00	0.307	49.90	33.0378		
0.00	6.39	31.02	21.00	250	0.25	0.612	24.63	79.40%		
0.00	6.54	75.98	86.00	250	1.50	1.500	69.44	91.40%		
0.00	2 00	83.23	21.00	250	1.80	1.643	80.24	96 40%		
0.00	2.33	03.23	21.00	230	1.00	1.043	00.24	30.4078		
0.00	0.18	82.07	86.00	250	1.75	1.620	81.89	99.78%		
0.00	2.88	83.23	21.00	250	1.80	1.643	80.36	96.54%		
0.00	2.94	67.96	90.00	250	1.20	1.341	65.02	95.68%		
0.00	4.00	67.00	01.00	250	4.00	4.044	C2 CC	02.07%		
0.00	4.30	67.96	21.00	230	1.20	1.341	03.00	93.07%		
0.00	7.30	31.02	112.00	250	0.25	0.612	23.71	76.45%		
0.00	28.49	87.74	21.00	250	2.00	1.731	59.24	67.52%		
0.00	34.67	55.26	89.33	300	0.30	0.757	20.59	37.26%		
0.00	0.00	00.04	11.00	050	0.40	0.774	00.45	00.77%		
0.00	0.09	39.24	14.00	250	0.40	0.774	39.15	99.77%		
0.00	34.79	65.38	33.16	300	0.42	0.896	30.59	46.79%		
0.00	34.79	65.38	21.97	300	0.42	0.896	30.59	46.79%		
0.00	1.10	73.41	98.28	250	1.40	1.449	72.30	98.50%		
0.00	1.89	51.91	44.22	250	0.70	1.024	50.01	96.35%		
0.00	1.77	43.87	21.50	250	0.50	0.866	42.10	95.96%		
0.00	1.85	87.74	47.73	250	2.00	1.731	85.89	97.89%		
0.00	2.05	87.74	40.57	250	2.00	2 121	85.69 01.70	97.00%		
0.00	15.07	107.45	55.01	230	3.00	2.121	51.75	03.4270		
0.00	15.71	43.54	37.48	250	1.00	1.224	27.83	63.92%		
0.00	0.15	39.24	17.66	250	0.40	0.774	39.08	99.61%		
0.00	0.57	42.97	17.00	250	0.50	0.966	42.20	09 70%		
0.00	0.57	43.07	17.55	230	0.50	0.000	43.30	90.70%		
0.00	16.38	31.02	10.23	250	0.25	0.612	14.64	47.19%		
0.00	16.42	31.02	39.00	250	0.25	0.612	14.59	47.05%		
0.00	16.42	31.02	11.77	250	0.25	0.612	14.59	47.05%		
0.00	24.23	53.37	171.95	250	0.74	1.053	29.13	54.59%		
0.00	2 13	50.02	80.00	250	0.65	0.987	17.80	95 7/%		
0.00	3.85	50.02	71.19	250	0.65	0.987	46.17	92.30%		
0.00	27.65	36.70	10.52	250	0.35	0.724	9.05	24.66%		
0.00	27.66	36.70	12.49	250	0.35	0.724	9.05	24.65%		
0.00	24.92	74.13	46.02	300	0.54	1.016	49.21	66.39%		
0.00	50.04	59.68	37.08	300	0.35	0.818	9.64	16 16%		
0.00	50.08	59.68	72.49	300	0.35	0.818	9.60	16.09%		
0.00	54.48	59.68	43.77	300	0.35	0.818	5.21	8.72%		
0.00	54.48	59.68	8.66	300	0.35	0.818	5.20	8.71%		
0.00	54.54	59.68	89.42	300	0.35	0.818	5.14	8.61%		
	£				ł	Date	· · · · · · · · · · · · · · · · · · ·			
						7/8/2016				
						11/4/2016				
						1/25/2017				
):						Sheet No:				
16						1 of 2				

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S SN4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

RESIDENTIAL					ICI AREAS		INFILTRATION ALLOWANCE		FIXED	TOTAL			PROPOSED SEWER DESIGN																	
	LOCATION			AREA		UNIT	TYPES		AREA	POPU	LATION	PEAK	PEAK		ARE	A (Ha)		PEAK	ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	LABLE
STREET		FROM	то	Phase 1B	SE.	en	т⊔	ADT	EXTERNAL		CUM	FACTOR	FLOW	INSTITUTIONAL	COMM	ERCIAL	INDUSTRIAL	FLOW		CUM	(1/c)	(1/c)	(1./c)	(1/c)	(m)	(mm)	(9/)	(full)	CAP	ACITY
STREET	AREAID	MH	MH	(Ha)	31	30	111	AFT	(Ha)	IND	COM		(L/s)	IND CUM	IND	CUM	IND CUM	(L/s)	IND	COM	(13)	(L/S)	(L/S)	(113)	(11)	(1111)	(78)	(m/s)	L/s	(%)
Phase 1A																														
croissant Squadron Crescent		MH169A	MH165A							0.0	3078.5	3.43	42.81	2.62		3.83	0.00	5.60	0.00	21.91	6.13	0.00	54.54	63.80	27.00	300	0.40	0.874	9.26	14.51%
Dhana 4D					-				-																					
rue Mesos Tennisco Street	2124	MH212A	MH213A	1 20	ł					252.0	252.0	4.00	4.08	0.00		0.00	0.00	0.00	1 20	1 20	0.34	0.00	1 12	50.02	63.80	250	0.65	0.987	45.60	91 16%
rue Moses Tennisco Street	2120	MH213A	BUILK165AN	0.35						52.5	304.5	4.00	4.00	0.00		0.00	0.00	0.00	0.35	1.55	0.43	0.00	5.37	39.24	50.79	250	0.00	0.307	33.87	86.32%
	210/1		202/1/00/	0.00						02.0	00110			0.00		0.00	0.00	0.00	0.00		0.10	0.00	0.07	00.21	00.10	200	0.10	0	00.01	00.0270
Phase 1A																														1
rue Moses Tennisco Street		BULK165AN	I MH165A							0.0	304.5	4.00	4.93	0.00		0.00	0.00	0.00	0.00	1.55	0.43	0.00	5.37	39.24	22.50	250	0.40	0.774	33.87	86.32%
Phase 1B																														
rue Michael Stoqua Street	210A	MH210A	MH211A	0.40	-					52.5	52.5	4.00	0.85	0.00		0.00	0.00	0.00	0.40	0.40	0.11	0.00	0.96	50.02	64.80	250	0.65	0.987	49.05	98.08%
rue Michael Stoqua Street	211A	MH211A	MH166B	0.35						52.5	105.0	4.00	1.70	0.00		0.00	0.00	0.00	0.35	0.75	0.21	0.00	1.91	50.02	52.19	250	0.65	0.987	48.11	96.18%
Phase 1A				-																							ł	-		
rue Michael Stoqua Street		MH166B	MH166A							0.0	105.0	4.00	1.70	0.00		0.00	0.00	0.00	0.00	0.75	0.21	0.00	1.91	39.24	21.10	250	0.40	0.774	37.33	95.13%
																														1
Phase 1B																														
rue Bareille-Snow Street	208A	MH208A	MH209A	1.01						207.4	207.4	4.00	3.36	0.00		0.00	0.00	0.00	1.01	1.01	0.28	0.00	3.64	50.02	64.85	250	0.65	0.987	46.37	92.72%
rue Bareille-Snow Street	209A	MH209A	MH167B	0.35					-	52.6	260.0	4.00	4.21	0.00		0.00	0.00	0.00	0.35	1.36	0.38	0.00	4.59	50.02	52.87	250	0.65	0.987	45.42	90.82%
Phase 14																														
rue Bareille-Snow Street		MH167B	MH167A							0.0	260.0	4 00	4 21	0.00		0.00	0.00	0.00	0.00	1.36	0.38	0.00	4 59	63 80	20.43	300	0.40	0.874	59 21	92 80%
		ini ito B								0.0	200.0			0.00		0.00	0.00	0.00	0.00		0.00	0.00		00.00	20.70	000	0.70	0.07 1	00.21	02.0070
Phase 1B																														1
Codd's Road	230A	BLK231AN	MH231A						0.87	85.7	85.7	4.00	1.39	0.00		0.00	0.00	0.00	0.87	0.87	0.24	0.00	1.63	75.98	3.00	250	1.50	1.500	74.35	97.85%
Codd's Road	231A, EXPARK1	MH231A	BULK176AN						<u>0.76</u>	43.3	129.0	4.00	2.09	0.00		0.00	0.00	0.00	0.76	1.63	0.46	0.00	2.55	87.74	50.22	250	2.00	1.731	85.19	97.10%
Dhasa (A																														
Codd's Road		BUILK176AN	MH176A		ł					0.0	120.0	4.00	2.09	0.00		0.00	0.00	0.00	0.00	1.63	0.46	0.00	2.55	55.49	23.23	250	0.80	1 095	52 0/	95 / 1%
000007/0000		DOLIVITO	101111000							0.0	120.0	4.00	2.00	0.00		0.00	0.00	0.00	0.00	1.00	0.40	0.00	2.00	00.40	20.20	200	0.00	1.000	02.04	00.4170
					I					I					ļ	ļ											ļ			
								+	-										l											
├ ────			+		ł		1	+	+	ł			1		<u> </u>	<u> </u>			ł						<u>} </u> }		<u> </u>	<u> </u>		
			1		1			1		1	1								1						1 1		1	1		
				N								D				N				L										
Design Parameters:				Notes:	ocofficient (n)		0.012				Designed:		VV Y		NO.				City cut	evision							Date		
Residential	1	ICI Areas		 Wannings Demand (cuencient (i	n) =	350	0.013 veb/1 (200) I /dav						1.				City sub	mission No. 1							11/4/2016		
SF 34 p/p/u		10171083	Peak Factor	3 Infiltration	allowance.		0.28	3 L/s/Ha	500	, L/uay		Checked:		JIM		3				City sub	mission No. 3							1/25/2017		
TH/SD 2.7 p/p/u	INST 50.000) L/Ha/day	1.5	4. Residentia	al Peaking F	actor:	0.20	20110				encondu.				0.				Only Sub										
APT 1.8 p/p/u	COM 50,000) L/Ha/day	1.5		Harmon Fo	rmula = 1+((14/(4+P^0.	5))																						
Other 60 p/p/Ha	IND 35,000) L/Ha/day	MOE Chart		where P = p	population in	n thousands	5				Dwg. Refe	rence:	38298-501					_											
	17000) L/Ha/day														Fi	le Reference:				D	ate:						Sheet No:		
																	38298.5.7.1 7/8/2016					2 of 2								

SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

Mattamy Homes Wateridge Block 22 Wastewater Flow per MSS

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2012

Site Area	0.460 ha							
Extraneous Flow Allowances								
	innitra	tion / Innow	0.13 L/S					
Domestic Contributions								
Unit Type	Unit Rate	Units	Рор					
Single Family	3.4		0					
Semi-detached and duplex	2.7		0					
Townhouse	2.3	42	97					
Apartment								
Bachelor	1.4		0					
1 Bedroom	1.4		0					
2 Bedroom	2.1		0					
3 Bedroom	3.1		0					
Average	1.8		0					

Total Pop	97
Average Domestic Flow	0.39 L/s
Peaking Factor	4.00
Peak Domestic Flow	1.57 L/s

Total Estimated Average Dry Weather Flow Rate	0.39 L/s
Total Estimated Peak Dry Weather Flow Rate	1.57 L/s
Total Estimated Peak Wet Weather Flow Rate	1.70 L/s

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2012

Site Area 0.230 ha							
Extraneous Flow Allowances							
	Infiltra	tion / Inflow	0.06 L/s				
Domestic Contributions							
Unit Type	Unit Rate	Units	Рор				
Single Family	3.4		0				
Semi-detached and duplex	2.7		0				
Townhouse	2.7	19	52				
Stacked Townhouse	2.3		0				
Apartment							
Bachelor	1.4		0				
1 Bedroom	1.4		0				
2 Bedroom	2.1		0				
3 Bedroom	3.1		0				
Average	1.8		0				

Total Pop	52
Average Domestic Flow	0.21 L/s
Peaking Factor	4.00
Peak Domestic Flow	0.84 L/s

Total Estimated Average Dry Weather Flow Rate	0.21 L/s
Total Estimated Peak Dry Weather Flow Rate	0.84 L/s
Total Estimated Peak Wet Weather Flow Rate	0.91 L/s

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2012

Site Area			0.460 ha	
Extraneous Flow Allowance	es Infiltra	tion / Inflow	0.13 L/s	
Domestic Contributions		l lución	Der	
Single Femily		Units	Рор	
Single Family	3.4 2.7		0	
	2.7	50	0	
Iownhouse	2.7	59	160	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	

Total Pop	160
Average Domestic Flow	0.65 L/s
Peaking Factor	4.00
Peak Domestic Flow	2.59 L/s

Total Estimated Average Dry Weather Flow Rate	0.65 L/s
Total Estimated Peak Dry Weather Flow Rate	2.59 L/s
Total Estimated Peak Wet Weather Flow Rate	2.72 L/s

SANITARY SEWER CALCULATION SHEET

PROJECT:	Mattamy - Wateridge	DESIGN PARAMETERS	6				
LOCATION:	Block 22	Avg. Daily Flow Res.	350 L/p/d	Peak Fact Res. Per Harmons: Mir	n = 2.0, Max =4.0	Infiltration / Inflow	0.28 L/s/ha
FILE REF:	17-948	Avg. Daily Flow Comm.	50,000 L/ha/d	Peak Fact. Comm.	1.5	Min. Pipe Velocity	0.60 m/s full flowing
DATE:	8-Aug-17	Avg. Daily Flow Instit.	50,000 L/ha/d	Peak Fact. Instit.	1.5	Max. Pipe Velocity	3.00 m/s full flowing
		Avg. Daily Flow Indust.	35,000 L/ha/d	Peak Fact. Indust. per MOE graph	ı	Mannings N	0.013

	Location				Residentia	al Area and	Population			Comr	nercial	Instit	utional	Indu	strial			Infiltration						Pipe	Data			
Area ID	Up	Down	Area	Proposed	Pop.	Cumu	lative	Peak.	Qres	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+I+I}	Total	Accu.	Infiltration	Total	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Q _{cap}	Q / Q full
				Units		Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow								
			(ha)			(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(-)
On site																												
SAN-5	5	3	0.276	6 48	130.0	0.276	130.0	4.00	2.11		0.00		0.00		0.00	0.0	0.276	0.276	0.077	2.18	250	1.00	37.6	0.049	0.063	1.21	59.5	0.04
																										ļ		
SAN-4	4	3	0.089	9 6	17.0	0.089	17.0	4.00	0.28		0.00		0.00		0.00	0.0	0.089	0.089	0.025	0.30	250	1.20	28.7	0.049	0.063	1.33	65.1	0.00
SAN-3	3	2	0.095	5 5	14.0	0.460	161.0	4.00	2.61		0.00		0.00		0.00	0.0	0.460	0.460	0.129	2.74	250	1.20	36.2	0.049	0.063	1.33	65.1	0.04
	2	1				0.46	161	4.00	2.61		0.00		0.00		0.00	0.0	0.000	0.460	0.129	2.74	250	1.00	10.8	0.049	0.063	1.21	59.5	0.05
Off site - per IBI sa	anitary sewer de	sign for For	mer CFB I	Rockcliffe (J	anuary 25	, 2017)																						
	SAN210A	SAN211A	0.17	7		0.63	161	4.00	2.61		0.00		0.00		0.00	0.0	0.630	0.630	0.176	2.79	250	0.65	48.7	0.049	0.063	0.98	47.9	0.06
	Ex. 211A	Ex. 166B	0.35	5	52.5	0.98	214	4.00	3.46		0.00		0.00		0.00	0.0	0.350	0.980	0.274	3.73	250	0.65	52.2	0.049	0.063	0.98	47.9	0.08
																										ļ		

APPENDIX D

Stormwater Management

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

	LOCATION					ARI	EA (Ha)									R	ATIONAL D	ESIGN FLC	w						SEWER	DATA		-	
STREET	AREA ID	FROM	то	C= C= C:	= C:	= C=	C= C=	C=	C=	C=	IND	CUM	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK 10yr PEAK	100yr PEAK FIXED	DESIGN	CAPACITY	LENGTH	PIPE SI	<u>ZE (mm)</u>	SLOPE	VELOCITY	AVAIL C	CAP (5yr)
				0.20 0.30 0.4	5 0.5	50 0.56	0.60 0.65	5 0.70	0.73	0.80	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s) FLOW (L/s)	FLOW (L/s) FLOW (L/s	FLOW (L/s)	(L/s)	(m)	DIA V	/ н	(%)	(m/s)	(L/s)	(%)
Dhoos 4D								_																					+
Homlock Road	\$201A-B EX201	MH201	MH202					0.31		0.56	1.95	1.95	10.00	1 17	11 17	104 10	122.14	179.56	102.62		102.62	210.22	00.18	450		0.50	1 291	17 70	9 /10/
Tieffilock Road	3201A-D, EA201	10111201	10111202					0.31		0.50	1.05	1.05	10.00	1.17	11.17	104.15	122.14	170.00	192.02		192.02	210.32	30.10	430		0.50	1.201	17.70	0.4176
Future Street No. 6	EX202A	BULK202N	MH202							0.90	2.00	2.00	12.23	0.27	12.50	93.72	109.82	160.45	187.60		187.60	286.47	16.00	600		0.20	0.982	98.87	34.51%
Hemlock Road	S202A, EX202B-C	MH202	MH203					0.10		0.55	1.42	5.27	12.50	0.53	13.03	92.61	108.50	158.52	487.86		487.86	784.52	86.00	600		1.50	2.688	296.66	37.81%
Future Street No. 5	S203B, EX203	BULK203N	203					0.09		0.73	1.80	1.80	10.88	0.12	11.00	99.76	116.92	170.90	179.44		179.44	351.93	16.00	450		1.40	2.144	172.49	49.01%
Handa als Da a d		MUROOD	MURCH	0.44				0.40			0.00	7.75	40.00	0.40	40.50	00.40	400.04	454.07	700.00		700.00	0.47.00	00.00			4.75	0.000	4.40.40	47.000/
Hemlock Road	5203A, EXP203	MH203	MH204	0.44				0.16	_		0.68	1.15	13.03	0.49	13.53	90.49	106.01	154.87	700.89		700.89	847.38	86.00	600		1.75	2.903	146.49	17.29%
rue Moses Tennisco Street	S204B EX204A	BLILK204N	MH204					0.08		0.72	1 76	1 76	10.89	0.11	11.00	99.72	116.87	170.81	175.20		175.20	399.05	16.00	450		1.80	2 431	223.85	56 10%
	02010, 272017	BOLICO						0.00		0.72			10.00	0.11		00112					110120	000.00	10100	100			2.101	220.00	00.1070
Hemlock Road	S204A, EX204B	MH204	MH205					0.14		0.47	1.32	10.82	13.53	0.54	14.07	88.63	103.82	151.66	958.99		958.99	1,272.26	90.00	750		1.20	2.790	313.27	24.62%
rue Michael Stoqua Street	S205A, EX205A	BULK205N	MH205					0.08		0.81	1.96	1.96	11.15	0.15	11.30	98.49	115.42	168.69	192.75		192.75	297.43	16.01	450		1.00	1.812	104.68	35.20%
								0.47		0.00	4 70			4.00	45.00	00.70	101 55		4.057.00		1 057 00	4 0 4 0 0 5	110.01	1000			4 550	504.00	
Hemlock Road	5205B-C, EX205B	IVIH205	IVIH206					0.17		0.63	1.73	14.51	14.07	1.20	15.26	86.70	101.55	148.32	1,257.92		1,257.92	1,818.95	112.01	1200		0.20	1.558	561.03	30.84%
Temp Ditch	FUTURE PHASE	DI 10	BLILK206N	7.68							6.41	6.41	59.66	0.16	59.82	33.08	38.61	56 13	211.89		211.89	297 43	17.03	450		1.00	1 812	85 54	28 76%
	TOTORE TH//OE	DITO	DOLITZOON	7.00							0.41	0.41	00.00	0.10	00.02	00.00	00.01	00.10	211.00		211.00	201.40	17.00	400		1.00	1.012	00.04	20.1070
rue Bareille-Snow Street	S206A, EX206A	BULK206N	MH206					0.06		1.02	2.39	2.39	10.85	0.15	11.00	99.91	117.09	171.14	238.30		238.30	448.66	17.50	525		1.00	2.008	210.35	46.89%
Hemlock Road	S206B, EX206B	MH206	MH207					0.03		0.46	1.08	17.98	15.26	0.78	16.04	82.71	96.86	141.44	1,486.80		1,486.80	2,227.75	89.33	1200		0.30	1.908	740.96	33.26%
Block 20	P207	CBMH207N	N MH207	0.32							0.27	0.27	10.00	0.27	10.27	104.19	122.14	178.56	27.81		27.81	63.80	14.00	300		0.40	0.874	36.00	56.42%
Llambalk Daad	S207	MH207						0.22			0.42	10.67	16.04	0.27	16.40	00.22	04.05	127.22	1 400 75		1 400 75	2 166 66	22.62	1250		0.15	1.460	656 90	20.469/
Hemiock Road	3207	IVIFI207	BULKITOE					0.22			0.43	10.07	10.04	0.37	10.42	00.33	94.05	137.32	1,499.75		1,499.75	2,150.55	32.02	1330		0.15	1.400	000.00	30.40%
Phase 1A								-																					+
Ex. Hemlock Road	S176C	BULK176E	MH176					0.02			0.04	18.71	16.42	0.27	16.69	79.24	92.78	135.45	1,482.57		1,482.57	2,156.55	24.06	1350		0.15	1.460	673.98	31.25%
			1																										
Phase 1B																													
Codd's Road	S230, LOT230A-B	230	231					0.16		<u>0.70</u>	1.87	1.87	10.00	0.63	10.63	104.19	122.14	178.56	194.65		194.65	364.28	84.30	450		1.50	2.219	169.63	46.57%
Codd's Road	S231, LOT231	231	BULK176N					0.12		0.30	0.90	2.77	10.63	0.36	11.00	100.96	118.34	172.97	279.55		279.55	549.49	53.76	525		1.50	2.459	269.94	49.12%
Phone 14									-																				
Ex Codd's Road		BUILK176N	I MH176								0.00	2.95	11 77	0.20	12.06	95.69	112 12	163.84	281.96		281.96	330.63	18 21	525		1 50	0.010	57.67	16.98%
Ex. Codd's Road		DOLIVITON	1 1/1/1/0								0.00	2.95	11.77	0.29	12.00	93.09	112.12	103.04	201.90		201.90	339.03	10.21	525		1.50	0.919	57.07	10.30 %
Phase 1B																													1
chemin Wanaki Road	S200, LOT200	MH200	MH214					0.20		0.91	2.41	2.41	10.00	0.78	10.78	104.19	122.14	178.56	251.42		251.42	351.93	99.75	450		1.40	2.144	100.51	28.56%
chemin Wanaki Road	S214, LOT214	MH214	BULK152N					0.19		0.84	2.24	4.65	10.78	0.42	11.20	100.27	117.52	171.77	466.34		466.34	535.93	46.51	600		0.70	1.836	69.59	12.99%
Phase 1B								_																					
chemin Wanaki Road	EX143	BULK143E	E MH143					_		0.33	0.73	0.73	10.00	0.29	10.29	104.19	122.14	178.56	76.47		76.47	129.34	20.00	375		0.50	1.134	52.87	40.88%
chemin Wanaki Road	S144 EX144	MH143	MH145	0.55				0.19			0.00	1.54	10.29	0.37	10.00	102.07	120.34	175.92	155 54		155.50	258.68	20.20	375		2.00	2.209	103.33	20.87%
chemin Wanaki Road	S145 EX145	MH145	MH146	0.55				0.15		2 74	6.39	7.93	10.00	0.30	11.24	99.35	116.13	172.70	787 69		787.69	1 324 21	48.01	750		1.30	2.209	536.53	40.52%
	0110, 27110							0.10		2.7.1	0.00	1.00	10.01	0.20		00.00			101100		101100	1,021121	10101	100			2.001	000.00	10:0270
chemin Wanaki Road		MH146	MH147								0.00	7.93	11.24	0.25	11.49	98.06	114.92	167.95	777.46		777.46	2,296.77	38.53	1050		0.65	2.570	1519.32	66.15%
														Į –	Į.	Į –	Γ						Γ						
chemin Wanaki Road	S147C	BULK147E	MH147	0.40							0.33	0.33	10.00	0.28	10.28	104.19	122.14	178.56	34.76		34.76	71.33	16.51	300		0.50	0.978	36.58	51.27%
1 1 11 11 11 11 11 11 11	E \(BUILT 1 1 1						_			0.65	0.07	10.55		40.00	a	446.55	405.15		<u> </u>			40				0.077	00 T ·	
chemin vvanaki Road	EX147	BULK 147V	v MH147	0.16	_		+ +				0.09	0.09	12.00	0.32	12.32	94.70	110.96	162.13	8.42	┼───┤────	8.42	/1.33	18.72	300		0.50	0.978	62.91	88.19%
chemin Wanaki Poad		MH147	MH170	+ $+$ $+$			+ +				0.00	8 25	12 22	0.00	12 /1	02.25	100.39	150.91	779.62	<u>├ </u>	770.62	2 206 77	13.06	1050		0.65	2.570	1517 16	66.06%
chemin Wanaki Road	S147A	MH170	BOX CUI VEPT			_	+ +	0.14	1 1		0.00	8.62	12.41	0.09	12.41	92.98	108.94	159.17	801.83	+ + + + + + + + + + + + + + + + + + + +	801.83	2,296.77	15.00	1050		0.65	2.570	1494.94	65.09%
chonin Hundrin Houd			SOLVEN					54														_,_001				0.00			
Phase 1B		1	1											1	1	1	1	1			1	1	1				1		1
rue Moses Tennisco Street	S212, LOT212A-B	MH212	MH213					0.15		1.03	2.58	2.58	10.00	0.66	10.66	104.19	122.14	178.56	269.09		269.09	361.72	63.80	525		0.65	1.619	92.63	25.61%
rue Moses Tennisco Street	S213, LOT213	MH213	BULK165N					0.21		0.23	0.92	3.50	10.66	0.82	11.47	100.85	118.20	172.77	353.25		353.25	519.40	55.71	750		0.20	1.139	166.15	31.99%
								_																					
I emp Ditch	BLUCK 24	1 וט	MH165N	1.60	_		+ +				1.33	1.33	26.41	0.25	26.66	58.73	68.69	100.13	/8.3/	┼───┤────	78.37	129.34	17.03	375		0.50	1.134	50.96	39.40%
Phase 1A			+	+ $+$ $+$			+ $+$												+ +	<u>├ </u>				<u>├</u> ──					+
Ex. Street No. 3		BUI K165N	MH165			_					0.00	3.50	11 47	0.24	11 71	97 01	113 68	166 14	339.81		339.81	519 40	16 10	750		0.20	1 139	179.59	34 58%
2. 0.000000		2021(1001)									0.00	0.00		J.4-1		001					000.01	0.0.40	.0.10			0.20			0
Definitions:		•	•	Notes:			• •					1	Designed:	•	WY	•		No.			Revision	•		•			Date		
Q = 2.78CiA, where:				1. Mannings coeffic	ient (n) =	= 0.01	3						J					1.		City	submission N	0. 1					7/8/2016		
Q = Peak Flow in Litres per Se	econd (L/s)			-														2.		City	submission N	0.2					11/4/2016		
A = Area in Hectares (Ha)												C	Checked:		JIM			3.		City	submission N	0.3					1/25/2017		
i = Rainfall intensity in millime	eters per hour (mm/hr)																												
$[1 = 998.071 / (TC+6.053)^{0}$	J.814J	5 YEAR										Ļ			20000 505														
$[1 = 11/4.164 / (10+6.014)^{-1}$	0.010j 0.0201											ľ	owy. Kete	rence:	30298-500				File Reference:			Data					Shoct Mc.		
[I = 1733.000 / (IC+0.014)/	0.020]	TOU TEAR															File Reference: Date: S 3898 5 7 1 7/8/2016 S				1 of 2								
1				1															00200.0.1.1								1012		

STORM SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Name of Client/Developer

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

	LOCATION						A	REA (Ha)							RATIONAL DESIGN FLOW												S	SEWER DA	ГА					
STREET	AREA ID	FROM	то	C=	C=	C=	C= C	= C=	C=	C=	C=	C=	IND	CUM	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEAK	100yr PEA	FIXED	DESIGN	CAPACITY	LENGTH	P	PE SIZE (m	ım)	SLOPE	VELOCITY	AVAIL C	AP (5yr)
	7.0.27.12			0.20	0.25	0.40	0.50 0.5	6 0.60	0 0.65	0.70	0.73	0.80	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s	5) FLOW (L/s) FLOW (L/s)FLOW (L/s	FLOW (L/s)	(L/s)	(m)	DIA	W	н	(%)	(m/s)	(L/s)	(%)
Dhase 4D				_	-				_													-	-							<u> </u>	+	├ ───'	 	'
Block 9		MH157	MH217										0.00	12.28	13.26	0.93	14 19	89.63	105.00	153.38	1 100 86				1 100 86	2 337 95	168.50	975		+	1.00	3 034	1237 09	52 91%
Dicolity													0.00	12.20	.0.20	0.00		00.00	100.00	100.00	1,100.00				1,100.00	2,001100	100.00	0.0	1	<u> </u>	1.00	0.001	1201100	02.0170
croissant Squadron Crescent	S215, R215	MH215	MH216				0.1	14			0.38		0.99	0.99	10.00	0.94	10.94	104.19	122.14	178.56	103.06				103.06	317.25	79.94	525			0.50	1.420	214.19	67.51%
croissant Squadron Crescent	S216, R216A-B	MH216	MH217				0.2	20			0.28		0.88	1.87	10.94	0.86	11.80	99.48	116.60	170.41	185.91				185.91	429.70	75.99	600			0.45	1.472	243.79	56.74%
croissant Squadron Crescent		MH217	MH218	_	_								0.00	14.15	14.19	0.10	14.29	86.28	101.05	147.59	1,220.93				1,220.93	1,911.03	12.94	1050			0.45	2.138	690.10	36.11%
and a set Orece days Orece and	0010	MUGAO	MURAR	_	_	-			_	0.47			0.00	11.10	44.00	0.54	44.00	05.00	400.04	4.40,00	4 0 4 4 4 0	-	-	-	4 0 4 4 4 0	4 404 40	40.00	1050		<u> </u>	0.05	4.504	470.00	40.040/
croissant Squadron Crescent	5218	MH218 MH210	MH219	_						0.17			0.33	14.48	14.29	0.51	14.80	85.93	100.64	146.99	1,244.42				1,244.42	1,424.40	49.00	1050			0.25	1.594	355.70	12.64%
croissant Squadron Crescent	S220 OT220	MH220	MH221					—		0.18		1.96	4 71	19.19	15.70	0.50	16.24	81.35	95.02	139.09	1,219.47				1,219.47	1,575.26	43.47	1200	+	<u> </u>	0.15	1.349	14 02	0.89%
ereitedant equadren erecteent	0120, 201220									0.10						0.01		01100	00.20	100.00	1,001121				1,001121	1,010.20		.200	1	<u> </u>	0.10			0.0070
																	FIXED OU	TLET FLOW	FROM SWI	/ FACILITY	= 6660 L/s													
croissant Squadron Crescent		MH221	MH222		_				_	0.00			0.00	19.19	16.24	0.11	16.35	79.75	93.38	136.33	1,530.55			6,660.00	8,190.55	8,565.43	11.97	2400		<u> </u>	0.11	1.834	374.88	4.38%
croissant Squadron Crescent	SZZZA-B	MH222	BULK165S	, 				<u> </u>		0.26			0.51	19.70	16.35	0.86	17.21	79.44	93.01	135.79	1,564.69			6,660.00	8,224.69	8,565.43	94.49	2400			0.11	1.834	340.74	3.98%
Phase 14				-										1														+			+	<u> </u> '	<u> </u>	-
croissant Squadron Crescent		BULK165S	MH165										0.00	19.70	17.21 0.23 17.43 77.04 90.19 13					131.66	1,517.52			6,660.00	8,177.52	8,565.43	24.90	2400		<u> </u>	0.11	1.834	387.92	4.53%
																									- / -	-,								
Temp Ditch	BLOCK 15	DI 4	MH165S		1.96								1.63	1.63	50.88	0.17	51.05	37.18	43.41	63.14	60.73				60.73	182.91	16.50	375			1.00	1.604	122.18	66.80%
				_	_																											Ļ'	L	
Phase 1B	0040 1 07040	MURAR	MUOAA	_	_					0.00		0.00	0.00	0.00	40.00	0.00	40.00	101.10	400.44	470.50	00.05				00.05	4 47 47	04.00	075		<u> </u>	0.05	4.000	50.00	00.000/
rue Michael Stoqua Street	S210, LOT210	MH210	MH211	-						0.20		0.23	0.90	0.90	10.00	0.83	10.83	104.19	122.14	178.56	93.85				93.85	147.47	64.80	3/5			0.65	1.293	53.62	30.36%
Temp Ditch	BLOCK 22	DI 12	MH211N	_	0.46			—					0.38	0.38	19.39	0.33	19 72	71.62	83.82	122.31	27 44				27 44	43.87	17.38	250	+	<u> </u>	0.50	0.866	16.43	37 45%
	BEGGINEE	5112			0.10								0.00	0.00		<u>19.39</u> 0.33 19.72 71.62 83.82 1									2	10.01			1	<u> </u>	0.00	0.000		0111070
Temp Ditch	BLOCK 23	DI 13	MH166N		0.46								0.38	0.38	22.34	0.34	22.68	65.50	76.63	111.77	25.06				25.06	43.87	17.50	250	1		0.50	0.866	18.81	42.88%
																																'		
rue Michael Stoqua Street	S211, LOT211	MH211	BULK166N	1	_					0.17		0.23	0.84	1.74	10.83	10.83 1.09 11.93 99.98 117.18 171.27 174.27							174.27	248.09	55.70	600			0.15	0.850	73.82	29.75%		
Dhana 1A				-	-																					+		<u> </u>	+	└─── ′	┢────			
Pridse TA		RUI KIEEN	MH166		-			_	-			-	0.00	1 74	11.02	0.22	12.24	05.01	111 22	162.67	165.61	-	-	-	165.61	248.00	16 10	600			0.15	0.850	92.49	22.25%
		DOEICIOON	1011100										0.00	1.74	11.35	0.52	12.27	33.01	111.55	102.07	103.01				105.01	240.03	10.10		1	<u> </u>	0.10	0.000	02.40	33.2370
Phase 1B								_																				1	+	<u> </u>				1
rue Bareille-Snow Street	S208, LOT208A-B	MH208	MH209							0.19		<u>0.81</u>	2.17	2.17	10.00	10.00 0.76 10.76 104.19 122.14 178.56 226.22 226.22 226.22 317.25 64.85 525						0.50	1.420	91.03	28.69%									
rue Bareille-Snow Street	S209, LOT209	MH209	BULK167N	1						0.20		0.20	0.83	3.01	10.76 1.01 11.77 100.34 117.60 171.89 301.53							301.53	339.63	55.70	675			0.15	0.919	38.10	11.22%			
T D ¹	BL OOK 04	DI 44	MU407N	_	4.00								1.00	4.00	05.74								40.50	400.00	47.50	000		<u> </u>	1.00	4.000	50.00	54.040/		
Temp Ditch	BLOCK 21	DETT	MH167N	_	1.22			<u> </u>					1.02	1.02	35.74	0.21	35.95	47.82	55.88	81.38	48.58				48.58	100.88	17.52	300			1.00	1.383	52.30	51.84%
Phase 1A												-		1														+	+	<u> </u>	+	'	<u> </u>	
rue Bareille-Snow Street		BULK167N	MH167					_					0.00	3.01	11.77	0.29	12.06	95.69	112.12	163.84	287.55				287.55	339.63	16.10	675		<u> </u>	0.15	0.919	52.08	15.34%
																															_	ļ'	L	
				_	_									-														<u> </u>		<u> </u>		└─── ′	 	<u> </u>
				_	-				_													-	-							<u> </u>	+	├ ───'	 	
				_				—																					+	<u> </u>	+	ł'	<u> </u>	
			1		1	1								1			1			1		1	1	1		1		+	+	<u>† </u>	+			1
																			İ.	1														
																																'		
<u>↓</u>								\rightarrow																				<u> </u>	+		+	└─── ′		───
		-	-	_	_	-			_					-								-	-	-						<u> </u>		└─── ′	i	
		+	-				 	_														+	+								+	├ ────′	<u> </u>	-
				+	-			+-						<u> </u>			1			1				+		1		+	+	<u>+</u>	+	'		<u> </u>
														1	1		1			1						1		1	T		<u> </u>			1
L																												\perp	-	\perp		Ļ'	Ļ	<u> </u>
Definitioner				Marti											De siene d					N					Devision			<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	
Demnitions: $0 = 2.78$ CiA where:				1 Mor	i: Inninge e	oofficion	t (n) - 0 (013							Designed		VV Y			NO.				City	Revision No	<u>\</u> 1				<u> </u>		7/8/2016		
Q = 2.700 Milere: Q = Peak Flow in Litres per Set	cond (L/s)			i. wa	uuuuys c	Joenicien	n (n) = 0.0	/13												2				City	submission Nr). I) 2				<u> </u>		11/4/2016		
A = Area in Hectares (Ha)															Checked:		JIM			3.	-			City	submission No), <u>2</u>), 3				┢───		1/25/2017		
i = Rainfall intensity in millimet	ters per hour (mm/hr)																				1			2.1.9		-				<u> </u>				
[i = 998.071 / (TC+6.053)^0.4	814]	5 YEAR																																
[i = 1174.184 / (TC+6.014)^0	0.816]	10 YEAR													Dwg. Refe	erence:	38298-50	0																
[i = 1735.688 / (TC+6.014)^0	0.820]	100 YEAR																			File Referen	ice:				Date:						Sheet No:		
				1											1						38298.5.7.	.1				7/8/2016				4		1 of 2		

STORM SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Name of Client/Developer

D07

				0.70 la dia	0.70.4.00				Sewer Data									
Up	Down	Area	С			Τ _c	I	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q full	
		(ha)	(-)	AXC	AXC	(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)	
On site																		
104	103	0.053	0.80	0.12	0.12	10.0	104.2	12.3	250	1.20	28.2	0.049	0.063	1.33	65.1	0.4	0.19	
105	103	0.223	0.80	0.50	0.50	10.0	104.2	51.7	250	1.00	34.1	0.049	0.063	1.21	59.5	0.5	0.87	
103	102	0.116	0.80	0.26	0.87	10.5	101.8	88.7	300	1.20	36.2	0.071	0.075	1.50	105.9	0.4	0.84	
102	101	0.000	0.00	0.00	0.87	10.9	99.8	87.0	300	4.00	11.1	0.071	0.075	2.74	193.4	0.1	0.45	
					0.87	10.9												
Off Site - Per IBI sto	orm sewer design shee	et for Form	ner CFB Ro	ckcliffe (Janu	ary 25, 201	7)												
Block 22 Portion of L	J1	0.026	0.80	0.06	0.06													
MH 210	MH 211	0.200	0.70	0.39	1.32	10.9	99.5	131.2	375	0.65	64.8	0.110	0.094	1.28	141.4	0.8	0.93	
		0.230	0.80	0.51	1.83													
MH 211	BULK166N	0.170	0.70	0.33	2.16	11.8	95.6	206.7	600	0.15	55.7	0.283	0.150	0.84	237.8	3 1.1	0.87	

ADVANCED DRAINAGE SYSTEMS, INC.

Wateridge - Block 22

Rockcliffe Village

STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740, SC-310, OR APPROVED EQUAL. 1
- CHAMBERS SHALL BE MANUFACTURED FROM VIRGIN POLYPROPYLENE OR POLYETHYLENE RESINS. 2.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORT PANELS THAT 3. WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL MEET ASTM F2922 (POLYETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR 5 THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE 6 FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 7 ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. THE CHAMBER MANUFACTURER SHALL SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE:
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE SAFETY a. FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE.
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE LOAD b. FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 OR ASTM F2922 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE.
 - STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. c.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 8

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310/SC-740 SYSTEM

- STORMTECH SC-310 & SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1. PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-310 & SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/SC-780 CONSTRUCTION 2. GUIDE"
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3.

STORMTECH RECOMMENDS 3 BACKFILL METHODS:

- STONESHOOTER LOCATED OFF THE CHAMBER BED.
- BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5
- MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm). 7.
- THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN 8 ENGINEER
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9 STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH SC-310 & SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE"
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED: • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. • NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / D REQUIREME
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN EN PAVED INSTALLATIONS MAY H MATERIAL AND PREPARATION
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER MATERIAL OVER THE CHAMBE COMPACT ADDITIONAL LAYERS LIFTS TO A MIN. 95% PROCTO WELL GRADED MATERIAL AND DENSITY FOR PROCESSED MATERIALS. ROLLER GROSS N NOT TO EXCEED 12,000 lbs (5 FORCE NOT TO EXCEED 20,
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION RE
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO SURFACE. 2 3

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, C ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY CO

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COM EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

NOTES:

- 1. SC-740 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS", OR ASTM F2922 "STANDARD SPECIFICATION FOR POLYETHYLENE (PE) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.
- 4. THE "SITE DESIGN ENGINEER" REFERS TO THE ENGINEER RESPONSIBLE FOR THE DESIGN AND LAYOUT OF THE STORMTECH CHAMBERS FOR THIS PROJECT.
- 5. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 6. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 7. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

					T.	THIS DRAV RESPONSI
		4640 TRUEMAN BL	DEPARTMENT IN 1-800-733-7473			WING HAS BEEN PREPARED BASED ON INFORMATION F IBILITY OF THE SITE DESIGN ENGINEER TO ENSURE TH
18" (2.4 450 mm) MIN* MA	- K - MINED n) MIN			Detention Retention Water Quality	70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.COM	ROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN EMGINEE AT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL
1		REV				ER OR OTHER PRC LL APPLICABLE LAV
RUSHED, MPACTOR. IPACTION		JRW CHK				JJECT REPRESENTATIVI NS, REGULATIONS, AND
ACHIEVE A FLAT		DESCRIPT				E. THE SITE DESIGN EI PROJECT REQUIREME
212" (300 mm) OF ERS IS REACHED. IN 6" (150 mm) MAX OR DENSITY FOR D 95% RELATIVE O AGGREGATE VEHICLE WEIGHT 53 kN). DYNAMIC ,000 lbs (89 kN).		ION Wate	Ro	DATE: 08/02	PROJECT #: Tool	VGINEER SHALL REVIEW THIS DRAWING PRIO
NGINEER'S PLANS. IAVE STRINGENT REQUIREMENTS.		eridge - Bl	ckcliffe Vi	2/2017 DRAV	CHE	R TO CONSTRUCTIC
DENSITY		lock 22	illage	WN: SM	CKED:	DN. IT IS THE ULTIMATE

SC-740 ISOLATOR ROW DETAIL

NTS

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW FOR SEDIMENT

A. INSPECTION PORTS (IF PRESENT)

- REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.1.
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.3.
- A.4. LOWER A CAMERA INTO ISOLATOR ROW FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. A.5.
- B. ALL ISOLATOR ROWS
- B.1.
- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.

STEP 2) CLEAN OUT ISOLATOR ROW USING THE JETVAC PROCESS

- A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
- APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN В.
- C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 3)
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

CONTACT STORMTECH FOR MORE INFORMATION.

NOTE: ALL DIMENSIONS ARE NOMINAL

DRAWINGS / FIGURES

\Korsiak & Company\MATTAMY\Ottawa\Wateridge\Site Plan Template\Block 22 site plan-2017Aug1.

	SITE STATISTIC AND DEVELOPMEN SITE AREA PAVED AREA LANDSCAPED AREA TOTAL GROSS FLOOR AREA TYPE A TOWNHOUSE (6 @ 241.8 m ²) TYPE B TOWNHOUSE (5 @ 191.7 m ²) STACKED TOWNS (24 @ 69 m ² ; 24 @ 74 m ²) DENSITY (UPH) ZONE CATEGORY	IT DATA 4,594.19 1,185.74 1,562.36 5,841.3 1,450 958. 3,43 128.3 R5Y[231	m ² m ² m ² 0.8 m ² 0.8 m ² 0.5 m ² 0.2 m ²	KEY MAP N.T.S. Image: constraint of the state of
	DWELLING BLOCKDWELLING TYPEBLOCK 1REAR LANE TOWNSBLOCK 2REAR LANE TOWNSBLOCK 3STACKED TOWNSBLOCK 4STACKED TOWNS	GROUND FLOOF AREA (m2) 415.42 436.41 465.64 465.64 TC	R <u>UNITS</u> 5 6 24 24 24 DTAL 59	CROSSWALK RIVERSTONE CURB DEPRESSED CURB DEPRESSED CURB PAINTED LINES PROJECTION (BALCONY) PROJECTION (STAIRS) NOLOK WASTE STORAGE HYD FIRE HYDRANT HYD BARRIER FREE PARKING
SECTION 164(1) 164(1) 164(1) 164(1) 164(1) 164(1) 164(1) 101 (Table 102 (Table SECTION 163(9) 164(1) 164(1) 164(1) 164(1) 164(1) 164(1)	ZONE PROVISION - TOWNHOUSE MIN. LOT WIDTH (m) MIN. LOT AREA (m2) MAX. BUILDING HEIGHT (m) MIN. FRONT YARD SETBACK (m) MIN. CORNER SIDE YARD SETBACK (m) MIN. REAR YARD SETBACK (m) MIN. INTERIOR YARD SETBACK (m) MIN. LOT ARKING - TYPE A TOWNHOUSE REQUIRED VISITOR PARKING ZONE PROVISION - STACKED TOWNS MIN. LANDSCAPING (% of lot) MIN. LOT WIDTH (m) MIN. LOT AREA (m2) MAX. BUILDING HEIGHT (m) MIN. FRONT YARD SETBACK (m) MIN. FRONT YARD SETBACK (m)	REQUIRED 6 m 150 m2 11 m 3 m 3 m 3 m 6 m 1.2 m # @ 0.75/unit = # # @ 0.75/unit = # # @ 0.75/unit = 1 30% 18 m 450 m2 11 m 5 m 3 m	PROPOSED 4.42 m 81.76 m2 ? 3.07 m 4.3 m 0.65 m 1.5 m # @ 2/unit = # # @ 1/unit = # PROPOSED 29% 39.19 m 1,000 m2 ? 5 m N/A	Image: Constraint of the second system DWELLING ENTRANCE Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Consecond system Image: Constrese of
164(1) 164(1) 01 (Table 102(Table) 02(Table)	MIN. REAR YARD SETBACK (m) MIN. INTERIOR YARD SETBACK (m) N REQUIRED PARKING REQUIRED VISITOR PARKING	7.5 m 3 m 0.5/unit 0.1/unit REQUIRED TBD	4.75 m 3 m 0.42/unit 0 PROPOSED 5 x 5m	GENERAL NOTES 1. DO NOT SCALE DRAWINGS. 2. THIS DRAWING IS THE EXCLUSIVE PROPERTY OF KORSIAK URBAN PLANNING. COPYRIGHT RESERVED. 3. SITE PLAN PREPARED IN ACCORDANCE WITH PLAN 4M-1581AND PLAN 4R-30196, PREPARED BY ANNIS O'SULLIVAN, VOLLEBEKK LTD. 4. TOWNHOUSE DWELLING UNITS ARE DESIGNED TO ACCOMMODATE CURBSIDE GARBAGE PICK-UP. PROJECT TEAM SITE PLAN DESIGN: KEPSIAK Planning ARCHITECT: ARCHITECT: Q 4 A CIVIL ENGINEER: MECHANICAL/ELECTRICAL
(2) (3) (4) (5) (6) (7) (8) 0(3)(b) 5(1)(a) 5(1)(b) 7(1)(a)(i) 7(1)(a)(i) 7(1)(a)(i) 7(1)(a)(i) 7(1)(a)(i) 7(1)(b) 7(1)(b) 7(2) 9(3)(b) 0(1) 0(3)(b)	Permitted projections into req. yards Eaves, eave-troughs, gutters Sills, belt courses, cornices, parapets, pilasters Canopies, awnings Fire escapes, open stairways, stoop Covered or uncovered balcony, porch, deck Bay window Air conditioner condenser, heat pump Min. shared driveway width Min. perpendicular parking space size Min. parallel parking space size Min. driveway width to parking lot Min. aisle width to spaces Min. driveway width to garage Max. walkway width permitted in yard Min. % of parking lot area landscaped Min. landscape buffer width parking lot to lot line Min. waste collection setback to lot line	1 m 0.6 m 1.8 m >0.6m to lot line 2 m 1 m 1 m 3 m 2.6 x 5.2 m 2.6 x 6.7 m 6.7 m 2.6 m 1.8 m 1.5% 1.5 m 3 m	TBD TBD TBD 2 m TBD 2 m TBD TBD TBD N/A 2.6 x 5.2 m N/A 6.7 m 6.7 m 2.6 m 1.8 m TBD 0 m 3 m	Image: Section of the section of th