

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE – PHASE 1

CITY OF OTTAWA

PROJECT NO.: 17-997 CITY APPLICATION NO.: D07-12-XX-XXXX

> DECEMBER 2018 – REV. 1 © DSEL

SITE SERVICING AND STORMWATER MANAGEMENT REPORT FOR 2525 CARLING AVENUE – PHASE 1

RIOCAN HOLDINGS INC.

DECEMBER 2018- REV. 1

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	2
1.2	Required Permits / Approvals	3
1.3	Pre-consultation	3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	4
3.0	WATER SUPPLY SERVICING	6
3.1	Existing Water Supply Services	6
3.2	Water Supply Servicing Design	6
3.3	Water Supply Conclusion	8
4.0	WASTEWATER SERVICING	9
4.1	Existing Wastewater Services	9
4.2	Wastewater Design	9
4.3	Wastewater Servicing Conclusions	11
5.0	STORMWATER MANAGEMENT	
5.1	Existing Stormwater Services	12
5.2	Post-development Stormwater Management Target – Phase I	
5.3	Proposed Stormwater Management System	13
5.4	Stormwater Servicing Conclusions	14
6.0	UTILITIES	15
7.0	EROSION AND SEDIMENT CONTROL	16
8.0	CONCLUSION AND RECOMMENDATIONS	17

FIGURES

Figure 1

Site Location

TABLES

 Table 1 Summary of Existing Water Demand

Table 2 Water Supply Design Criteria

Table 3 Summary of Estimated Water Demand

Table 4 Anticipated Fire Flow Demand

Table 5 Summary of Existing Wastewater Flows

Table 6 Wastewater Design Criteria

Table 7 Summary of Estimated Peak Wastewater Flow – Building A

Table 8 Summary of Estimated Peak Wastewater Flow – Building B

 Table 9 Stormwater Flow Rate Summary

APPENDICES

- Appendix A Pre-consultation Notes
- Appendix B Water Supply
- Appendix C Wastewater Collection
- Appendix D Stormwater Management

Drawings / Figures Proposed Site Plan

SITE SERVICING AND STORMWATER MANAGEMENT REPORT FOR 2525 CARLING AVENUE – PHASE 1

RIOCAN HOLDINGS INC.

DECEMBER 2018 – REV. 1

CITY OF OTTAWA PROJECT NO.: 17-997

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by RioCan Holdings Inc. to prepare a Site Servicing and Stormwater Management report in support of the application for Site Plan Control (SPC) for the redevelopment of the Lincoln Fields Shopping Centre, located at 2525 Carling Avenue.

The subject property is located within the City of Ottawa urban boundary, in the Bay Ward. As illustrated in *Figure 1*, below, the subject property is bounded by Carling Avenue to the south; Richmond Road to the north; Croydon Avenue to the west and the Sir John A. Macdonald Parkway to the west. The subject property measures approximately *6.55 ha*. The proposed SPC application is for Phase 1 of the development which encompasses *4.69 Ha* of the south portion of the property.

Figure 1: Site Location

The proposed SPC application would allow for the development of a new 2 storey retail store central to the site and a new 2 storey office/retail building fronting Carling Avenue.

The objective of this report is to provide sufficient detail to demonstrate the proposed development is supported by existing services.

1.1 Existing Conditions

The existing site includes a commercial mall, external restaurant buildings and associated surface parking. The elevations range between 75.25 m at the south-west corner of the site to 71.00 m internal to the site.

Sewer and watermain mapping, along with as-built information collected from the City of Ottawa indicate the following existing infrastructure within the adjacent right-of-ways:

Carling Avenue:

- > 1067 mm diameter concrete pressure pipe CL C301;
- > 152 mm diameter watermain;
- 600 mm diameter watermain;
- > 900 mm storm sewer; and
- > 300 mm sanitary sewer.

Croydon Avenue:

- > 150 mm diameter watermain;
- > 225 mm diameter sanitary sewer; and
- > 300 mm diameter storm sewer.

Richmond Road:

- > 300 mm diameter watermain;
- > 300 mm diameter sanitary sewer; and
- > 600 mm diameter storm sewer.

Sir John A Macdonald Parkway:

- ▶ 450 mm diameter sanitary sewer, within an easement of 1330 Richmond Road;
- > 600 mm diameter storm sewer, within an easement of 1330 Richmond Road; and
- > 1524 mm diameter concrete pressure pipe.

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

The proposed stormwater management system will continue to service one lot or parcel of land, therefore, the system qualifies for an exemption from an Environmental Compliance Application under Section 53 of the Ontario Water Resources Act.

1.3 **Pre-consultation**

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-04
 City of Ottawa, June 27, 2018.
 (ISTB-2018-04)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)

- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update. (OBC)
- City of Ottawa Infrastructure Master Plan City of Ottawa November 2013 (City of Ottawa IMP)
- Stormwater Management Guidelines for the Pinecrest Creek/Westboro Area JF Sabourin & Associates Inc. June 2012 (Pinecrest Creek SWM)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 1W pressure zone, as shown by the Pressure Zone map, located in *Appendix B*. The site is currently serviced by the existing 152 mm diameter watermain within the Carling Avenue right-of-way, as well as, the 305 mm diameter watermain within the Richmond Road right-of-way.

The existing development is currently serviced by a looped 254 mm diameter watermain, with one connection to the 305 mm diameter watermain within the Richmond Road right-of-way and one connection to the 152 mm diameter watermain within the Carling Avenue right-of-way. The existing shopping complex on site is serviced through a 102 mm diameter connection to the 152 mm diameter watermain within the Carling Avenue right-of-way. Refer to **Table 1**, below, for estimated existing water demand.

Design Parameter	Existing Demand ¹ (L/min)	
Average Daily Demand	44.8	
Max Day	67.1	
Peak Hour	120.8	
 Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations. 		

Table 1Summary of Existing Water Demand

Refer to drawing *EX-1*, accompanying this report, for the existing site servicing layout.

3.2 Water Supply Servicing Design

It is proposed that a portion of the existing 250 mm diameter looped watermain network be reused and connect to a new proposed 250 mm diameter internal watermain. The new connection will replace the existing looped connection to the 152 mm diameter watermain within Carling Avenue. Refer to drawing **SSP-1**, accompanying this report, for the proposed watermain layout.

Table 2, below, summarizes the *Water Supply Guidelines* employed in the preparation of the preliminary water demand estimate.

Design Parameter	Value			
Office	75 L/9.3m²/d			
Restaurant	125 L/seat/d			
Commercial Retail	2.5 L/m²/d			
Commercial Maximum Daily Demand	1.5 x avg. day			
Commercial Maximum Hour Demand	1.8 x max. day			
Minimum Watermain Size	150 mm diameter			
Minimum Depth of Cover	2.4 m from top of watermain to finished grade			
During normal operating conditions desired	350 kPa and 480 kPa			
operating pressure is within				
During normal operating conditions pressure must	275 kPa			
not drop below				
During normal operating conditions pressure must	552 kPa			
not exceed				
During fire flow operating pressure must not drop	140 kPa			
below				
*Daily Average based on Appendix 4-A from Water Supply Guidelines ** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.				

Table 2 Water Supply Design Criteria

-Table updated to reflect ISD-2010-2 and ISTB-2018-02.

Table 3, below, summarizes the anticipated water demand for the proposed development, which was calculated using the Water Supply Guidelines. Refer to Appendix B for associated calculations.

Design Parameter	Proposed Demand ¹ (L/min)	
Average Daily Demand	13.3	
Max Day + Fire Flow	20.0 + 5,000	
Peak Hour 36.0		
 Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations. 		

Table 3 Summary of Estimated Water Demand

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand as indicated in Table 3. No response was received at the time of publication. Correspondence with the City has been included in **Appendix A**.

The required fire flow (RFF) was estimated in accordance with ISTB-2018-02; the resulting flows for each building were sent to the City of Ottawa for boundary conditions. The following parameters, below, were provided by the Architect, see **Appendix A** for collaborating correspondence:

- Type of construction Non-Combustible Construction; ≻
- \geq Occupancy type – Limited Combustibility; and

Sprinkler Protection – Supervised Sprinkler System.

Table 4, below, summarizes the fire flow for each building, per the above assumptions and the available fire flow based on existing hydrants within 150 m per *Table 18.5.4.3* of the *ISTB-2018-02*.

Building Type	Anticipated Fire Demand (L/min)	Available Fire Flow per Table 18.5.4.3 of ISTB-2018-02 (L/min)		
Building A	5,000	11,356		
Building B	3,000	17,034		

Table 4Anticipated Fire Flow Demand

In advance of boundary conditions from the City of Ottawa, an estimate of pressure during the average day was established based on the *City of Ottawa IMP*. The proposed development is located within the 1W pressure zone and a nominal pressure of 115 m, per *Table 5.3* of the *City of Ottawa IMP*, was assumed for calculations. Based on the existing ground elevation at the proposed connection on Carling Avenue, an average day pressure of *407 kPa* is estimated. The estimated pressure falls within the desired pressure summarized in *Table 2*. Pressure during fire flow scenarios to be confirmed once boundary conditions are received from the City of Ottawa.

3.3 Water Supply Conclusion

It is proposed to service the development through a looped internal watermain network using the existing connection to the 305 mm diameter watermain within Richmond Road and replacing the existing connection to the 152 mm diameter watermain with a new connection at the same connection point.

Estimated water demand under proposed conditions was submitted to the City of Ottawa for establishing boundary conditions. Boundary conditions have not yet been received at the time of this submission.

It is proposed that the development will be serviced by existing fire hydrants located on both Richmond Road and Carling Avenue. Based on *Table 18.5.4.3* of ISTB-2018-02, the fire flow demands of the proposed buildings can be supplied through the existing hydrants. Pressure during fire flow scenarios to be confirmed once boundary conditions are received from the City of Ottawa.

It is estimated that the available pressure at the site will be approximately **407** *kPa*, which is within the desired pressure range, as specified by the *Water Supply Guidelines*. The design of the water distribution system conforms to all relevant City Guidelines and Policies.

17-997

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site lies within the Pinecrest Collector Sewer catchment area, as shown by the City sewer mapping included in *Appendix C*. The existing site consists of a commercial mall, currently contributing wastewater to the existing 450 mm diameter sanitary sewer crossing the Sir John A. Macdonald Parkway.

Table 5, below, summarizes the existing wastewater flow being discharged from the site.

Design Parameter	Existing Sanitary Flow ¹ (L/s)
Average Dry Weather Flow Rate	2.57
Peak Dry Weather Flow Rate	3.85
Peak Wet Weather Flow Rate	5.53

Table 5Summary of Existing Wastewater Flows

4.2 Wastewater Design

The proposed development will be serviced through two sanitary connections, one directed to the existing 225 mm diameter sanitary sewer within the Carling Avenue right-of-way and the one directed to the existing sanitary service conveying flow to the 450 mm diameter sanitary sewer within the Sir John A. Macdonald Parkway right-of-way.

Table 6, below, summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

Design Parameter	Value		
Office Floor Space	75 L/9.3m²/d		
Restaurant Space	125 L/seat/d		
Commercial Floor Space	5 L/m²/d		
Commercial Peaking Factor	1.5 x Average ICI Flow		
Residential Daily Demand	280 L/person/day		
Peaking Factor	Harmon's Peaking Factor. Max 3.8		
Infiltration and Inflow Allowance	0.33 L/s/ha		
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$		
Minimum Sanitary Sewer Lateral	135 mm diameter		
Minimum Manning's 'n'	0.013		
Minimum Depth of Cover	2.5 m from crown of sewer to grade		
Minimum Full Flowing Velocity	0.6 m/s		
Maximum Full Flowing Velocity	3.0 m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012 and City of Ottawa ISTB-2018-01.			

Table 6Wastewater Design Criteria

Table 7, below, demonstrates the estimated peak flow discharging to the existing 450 mm diameter sanitary sewer within the Sir John A. Macdonald Parkway right-of-way. See *Appendix C* for associated calculations.

Design Parameter	Anticipated Sanitary Flow ¹ (L/s)
Average Dry Weather Flow Rate	1.11
Peak Dry Weather Flow Rate	1.67
Peak Wet Weather Flow Rate	2.94
1) Based on criteria shown in Table 3	

Table 7Summary of Estimated Peak Wastewater Flow – Building A

The peak flow to the existing sanitary sewer within Sir John A. Macdonald Parkway is equal to **2.94** *L*/**s**, which is a **2.59** *L*/**s** decrease compared to the existing condition. Due to the decrease to the existing sanitary flow, it is anticipated that the sanitary sewer within Sir John A. Macdonald Parkway has sufficient capacity to convey the flow from Building A of the proposed development.

Table 8, below, demonstrates the estimated peak flow discharging to the existing 225 mm diameter sanitary sewer within the Carling Avenue right-of-way. See *Appendix C* for associated calculations.

Table 8Summary of Estimated Peak Wastewater Flow – Building B

Design Parameter	Anticipated Sanitary Flow ¹ (L/s)
Average Dry Weather Flow Rate	0.76
Peak Dry Weather Flow Rate	1.13
Peak Wet Weather Flow Rate	1.29
2) Based on criteria shown in Table 3	

An external sanitary analysis was completed for the existing sanitary sewer within Carling Avenue up to the Pincrest Collector Sewer. The available capacity of the most restrictive length of pipe of the existing sewer is **56.8** *L*/**s**, sufficient to convey the proposed increase of **1.29** *L*/**s**. Refer to *Appendix C* for existing sanitary analysis of Carling Avenue.

4.3 Wastewater Servicing Conclusions

The site is tributary to the Pinecrest Collector sewer. It is proposed to discharge wastewater from the site through two connections, one to the existing 450 mm diameter sanitary sewer within the Sir John A. Macdonald Parkway right-of-way and another to the existing 225 mm diameter sewer within the Carling Avenue right-of-way.

A sanitary analysis was completed for the Carling Avenue sanitary sewer to ensure adequate capacity in both outlets exists to service the subject property. The proposed development results in a decrease in sanitary flow from current conditions to the Sir John A. Macdonald Parkway sanitary sewer, thus it is concluded that this sewer has adequate capacity to service the proposed development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system and is located within the Ottawa River West sub-watershed. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Pinecrest Creek watershed and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA).

The existing shopping complex is serviced through a network on internal sewers with the majority of flow discharging to the existing 600 mm diameter sewer crossing the Sir John A. Macdonald Parkway. The storm sewer crosses the Parkway discharging to a 2400mm storm sewer and the Ottawa River Parkway Pipe (ORP) described in the *Pinecrest Creek SWM.*

A portion of the subject property discharges to storm sewers within Richmond Road and Croydon Avenue and are proposed to be retained in the proposed condition. Refer to *EX-1* for existing internal sewer layout.

5.2 Post-development Stormwater Management Target – Phase I

Stormwater management quantity and quality control requirements for the proposed development are extracted from the *Pinecrest Creek SWM* included in *Appendix D*:

- > The more stringent of the following criteria will govern:
 - i) 100-year storm event discharge is not to exceed 33.5 L/s/ha; based on a controlled site area of 4.355 Ha, allowable release rate is equal to 145.9 L/s
 - ii) requirements of City's Sewer Design Guideline. Based on a 2-year storm event, 0.5 RC and 19.5 minute TC, a 2-year flow rate of 320 L/s was calculated.
- Total suspended solids (TSS) removal of 80%
- Retain the first **10mm** of runoff to be infiltrated. Based on a controlled site area of **4.355** Ha, required retention is equal to $435.5m^3$.

Based on the above criteria, the allowable release rate for the site must be attenuated to **145.9** L/s.

5.3 Proposed Stormwater Management System

To meet the stormwater objectives the proposed development will utilize a combination of rooftop, surface and subsurface storage.

The private stormwater sewer system has been sized to convey an uncontrolled 5-year storm runoff rate and been sized to support stormwater runoff from the future phases (shown as **U2** on drawing **SWM-1**). Detailed layout and sizing are illustrated by **SSP-1** and the storm sewer calculation sheet included in **Appendix D**.

It is proposed that existing drainage areas that will not be modified by the proposed Phase 1 works will be accommodated in the storm sewer design, however, will not require flow attenuation in accordance with **Section 5.2**. This includes existing drainage to Richmond Road Storm Sewer (*EX-2* on *SWM-1*); existing drainage from the north-west corner of the site to directed to the proposed storm sewer (*EX-3* on *SWM-1*); existing drainage to Croydon Avenue storm sewer (*EX-1* on *SWM-1*) and drainage from the south of the site to the proposed storm sewer (*EX-1* on *SWM-1*).

The remaining **4.355** *Ha* of drainage area is proposed to be controlled by inlet control devices (ICD) located at various catch basins and manholes. *Table 9* below summarizes inlet control details, flow rates and storages for each control area.

Stormwater Flow Rate Summary							
Drainage Area ID	Drainage Area (Ha)	Inlet Control Device	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
			(L/s)	(m ³)	(L/s)	(m ³)	(m ³)
Unattenuated Areas (U1)	0.028		2.0	0.0	4.4	0.0	0.0
Roof Controls (BLDG-A)	0.407		24.2	56.7	32.0	129.4	322.2
Attenutated Areas (A118+A119)	0.602	75	19.1	113.8	19.4	268.4	336.4
Attenutated Areas (A120+BLDG-B)	0.482	TEMPEST LMF 90	4.5	174.2	10.9	241.4	284.1
Attenutated Areas (A100+A101)	0.514	TEMPEST LMF 65	2.3	161.4	6.1	291.3	305.9
Attenutated Areas (A109)	0.618	TEMPEST LMF 80	2.9	192.9	9.2	338.3	343.1
Attenutated Areas (A122)	1.221	75	17.0	307.6	17.8	683.5	690.5
Attenutated Areas (A103-A)	0.032	TEMPEST LMF 55	3.4	3.0	3.5	8.6	9.7
Attenutated Areas (A103-B)	0.043	TEMPEST LMF 75	6.3	2.9	6.5	9.5	10.6
Attenutated Areas (A103-C)	0.131	TEMPEST LMF 95	10.6	15.1	11.0	40.4	41.3
Attenutated Areas (A106)	0.275	95	15.7	0.1	24.5	5.8	8.4
Total	4.355		108.1	1027.8	145.2	2016.7	2352.2

Table 9 Stormwater Flow Rate Summarv

It is calculated that **2016.7** m^3 of storage will be required on site to attenuate flow to the established release rate of **145.2** L/s; Detailed storage calculations are included in **Appendix D**.

It is proposed to lower the bottom of the tank below the invert of the ICD to meet the required **435.5m**³ of retention on-site. A total of **443m**³ of storage is proposed below the invert of the inlet control devices, resulting in excess of **10mm** stormwater retention across the site. Refer to the manufacturer details in **Appendix D** and drawing **SSP-1** for details.

Quality control to achieve an 80% TSS removal is proposed to be provided by an Oil-Grit Separator (OGS) located at the outlet to the existing storm sewer on Sir John A. Macdonald, refer to **Appendix D** for a copy of the OGS sizing report.

5.4 Stormwater Servicing Conclusions

Post development stormwater runoff will be required to be restricted to the allowable target release rate for storm events up to and including the 100-year storm in accordance with the **Pincrest Creek SWM**. It is calculated that **2016.7** m^3 of storage will be required on site to attenuate flow to a release rate of **145.2** L/s.

Underground storage tanks are proposed to be lowered below the invert of the ICD to allow for the first **10mm** or a total of **435.5m³** to be retained on-site.

An Oil-Grit Separator is proposed to achieve a quality control target of 80% TSS removal.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 UTILITIES

Gas and Hydro services currently exist within the Caring Avenue and Merivale Road rightof-ways. Utility servicing will be coordinated with the individual utility companies prior to site development.

Special considerations will need to be taken with development within the Hydro corridor. The proposed development will be coordinated and approved by the utility company having jurisdiction.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. During construction the extent of erosion losses is exaggerated due to the removal of vegetation and the top layer of soil becoming agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or an approved equivalent installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- Install filter cloth between catch basins and frames;
- Plan construction at proper time to avoid flooding; and
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by RioCan Holdings Inc. to prepare a Site Servicing and Stormwater Management Report in support of the Site Plan Control (SPC) application for the Phase I development at 2525 Carling Avenue. The preceding report outlines the following:

- Boundary conditions have not been received at the time of publication, however, a review of pressure zone information in the *City of Ottawa IMP* allowed for an average day pressure estimate of *407 kPa*;
 - The FUS method for estimating fire flow indicated 5,000 L/min is required for the Phase I development. Based on Table 18.5.4.3 of ISTB-2018-02, the fire flow demands of the proposed buildings can be supplied through the existing hydrants. Pressure during fire flow scenarios to be confirmed once boundary conditions are received from the City of Ottawa;
- Existing sanitary sewers within Sir John A. Macdonald Parkway and Carling Avenue have sufficient capacity to convey peak wastewater flow of 2.94 L/s and 1.29 L/s from Building A and B, respectively;
- Allowable release rate, quality control requirements and required 10mm runoff retention per Pincrest Creek SWM;
- Stormwater objectives will be met through retention via rooftop, surface and subsurface storage. It is calculated that **2016.7** m³ of storage will be required on site to attenuate flow to the established release rate.

Prepared by, David Schaeffer Engineering Ltd.

Reviewed by, **David Schaeffer Engineering Ltd.**

Per: Brandon Chow

Per: Steven L. Merrick, P. Eng.

© DSEL

z:\projects\17-997_riocan_lincoln-fields\b_design\b3_reports\b3-2_servicing (dsel)\2018-12_fsr-sub1\ssr-2018-12-17_997_kef.docx

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

17-997

	General Content	
	Executive Summary (for larger reports only).	N/A
\times	Date and revision number of the report.	Report Cover Sheet
\times	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures, EX-1
\times	Plan showing the site and location of all existing services.	Figure 1, EX-1
	Development statistics, land use, density, adherence to zoning and official plan,	
\boxtimes	and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0, Section 5.0
\times	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3, Appendix A
\boxtimes	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\times	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1, EX-1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
X	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	GP-1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\times	Reference to geotechnical studies and recommendations concerning servicing.	Section 2.1
$\overline{\mathbf{X}}$	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	Drawings/Figures
_	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A

	Confirm consistency with Master Servicing Study, if available	N/A
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1
\boxtimes	Identification of system constraints	Section 3.1
	Identify boundary conditions	Not available at time of report
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.2, 3.2.1, 3.3

_		
]	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2, Appendix B
]	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
]	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
]	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
_	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.2, 3.2.1, 3.3
_	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Section 3.2, SSP-1
_	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2, Appendix B
	Description of a manufacture to a barrier to the state of	
3	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference. Development Servicing Report: Wastewater	Section 3.2.1, Appendix B
	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should	
3	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 3.2.1, Appendix B
3	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	
3	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for	Section 4.2
3	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 4.2 N/A
3	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	Section 4.2 N/A N/A
- - -	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C')	Section 4.2 N/A N/A Section 4.1, EX-1
	streets, parcels, and building locations for reference. Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the	Section 4.2 N/A N/A Section 4.1, EX-1 Section 4.2, Appendix C

	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
.4	Development Servicing Report: Stormwater Checklist	
3	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
]	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
]	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
]	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
]	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
]	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
]	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
]	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
]	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
]	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3, Appendix I
,	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
	Proposed minor and major systems including locations and sizes of stormwater	Section 5.3
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-	Section 5.3 N/A
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. If quantity control is not proposed, demonstration that downstream system has	

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development	
	from flooding for establishing minimum building elevations (MBE) and overall	N/A
	grading.	
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	Section 5.4
\times	Description of approach to erosion and sediment control during construction for	Section 7.0
	the protection of receiving watercourse or drainage corridors.	Section 7.0
	Identification of floodplains – proponent to obtain relevant floodplain	
	information from the appropriate Conservation Authority. The proponent may	
	be required to delineate floodplain elevations to the satisfaction of the	N/A
	Conservation Authority if such information is not available or if information	
	does not match current conditions.	
_	Identification of fill constraints related to floodplain and geotechnical	
	investigation.	N/A
1.5	Approval and Permit Requirements: Checklist	
	Conservation Authority as the designated approval agency for modification of	
	floodplain, potential impact on fish habitat, proposed works in or adjacent to a	
	watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement	
	Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2
	Rivers Improvement ct. Where there are Conservation Authority regulations in	
	place, approval under the Lakes and Rivers Improvement Act is not required,	
	except in cases of dams as defined in the Act.	
_	Application for Certificate of Approval (CofA) under the Ontario Water	
	Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A
	Government Services Canada, Ministry of Transportation etc.)	N/A
.6	Conclusion Checklist	
\leq	Clearly stated conclusions and recommendations	Section 8.0
	Comments received from review agencies including the City of Ottawa and	
	information on how the comments were addressed. Final sign-off from the	
	responsible reviewing agency.	
_	All draft and final reports shall be signed and stamped by a professional	
	Engineer registered in Ontario	

Genavieve Melatti

From:	Genavieve Melatti
Sent:	Friday, December 14, 2018 3:08 PM
То:	'gabrielle.schaeffer@ottawa.ca'
Cc:	Steve Merrick; Brandon Chow
Subject:	2525 Carling Avenue - Boundary Conditions Request
Attachments:	wtr-2018-12-14_997_ggg.pdf; 1803 Lincoln Field Dec 14.pdf

Good afternoon Gabrielle,

Would we be able to request boundary conditions for the proposed development at 2525 Carling Avenue:

- 1. Location of Service / Street Number: 2525 Carling Avenue
- 2. Type of development and the fire flow required for the proposed development:
 - The proposed development is commercial, consisting of two building; one two-storey retail food store with 2620m² of floor area and a two storey retail/office building with 1517.6m² of floor area .
 - We are proposing to connect to the existing 150mm diameter service already accessing the subject site at the location shown in the figure below.
 - The maximum fire flow demand for the proposed development is 5,000L/min for the retail food store located at the north-north end of the property and 3,000L/min for the proposed commercial/retail/office building at the south-eastern end of the site. The calculations and parameters used in these calculations are in the attached FUS calculation sheet.
 - We are looking for the boundary conditions at the proposed connection point shown below.

С	
3	•

	L/min	L/s
Avg. Daily	13.3	0.22
Max Day	20.0	0.33
Peak Hour	36.0	0.60

It you have any questions please feel free to contact me.

Thank you,

Genavieve Melatti Project Coordinator/ Junior Designer

DSEL david schaeffer engineering Itd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 569 **email**: gmelatti<u>@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Genavieve Melatti

From:Robert Verch <rverch@rlaarchitecture.ca>Sent:Friday, December 14, 2018 2:48 PMTo:Genavieve MelattiCc:Steve Merrick; Brandon ChowSubject:1803 RioCan Lincoln Fields - FUS Calculations

See below.

From: Genavieve Melatti <GMelatti@dsel.ca>
Sent: December-14-18 1:24 PM
To: Robert Verch <rverch@rlaarchitecture.ca>
Cc: Steve Merrick <SMerrick@dsel.ca>; Brandon Chow <BChow@dsel.ca>
Subject: RioCAN Lincoln Fields - FUS Calculations

Good afternoon Rob,

I was wondering if you would be able to provide some information for us today that is required in order to complete the FUS calculations for this project.

- Would you be able to please confirm the sprinkler systems for the buildings? Yes
- We are assuming that both storeys of the metro will be retail space (2620m² total) and that "Building 2" will be 746.6 m² of commercial space and 771.0 m² of office space. Would you be able to confirm this? Second floor of the Metro is a mezzanine, it is there offices. Yes to the areas and use of the Rexall / Office building.
- I have included the ISO Guide in which sections 1, 2 and 3 on pages 3 to 10 provides definitions to clarify as well as the section from the City's technical bulletin. Note that ISO refers only to fire-resistive for fire ratings not less than 1-hour. Would you be able to provide the ISO class for each building. Class 3 (non-combustible)

A. Determine the type of construction.

• Coefficient C in the FUS method is equivalent to coefficient F in the ISO method:

FUS type of construction	ISO class of construction	Coefficient C		
Fire-resistive construction	Class 6 (fire resistive)	0.6		
	Class 5 (modified fire resistive)	0.6		
Non-combustible construction	Class 4 (masonry non-combustible)	0.8		
	Class 3 (non-combustible)	0.8		
Ordinary construction	Class 2 (joisted masonry)	1.0		
Wood frame construction	Class 1 (frame)	1.5		

Correspondence between FUS and ISO construction coefficients

However, the FUS definition of fire-resistive construction is more restrictive than those of ISO construction classes 5 and 6 (modified fire resistive and fire resistive). FUS requires structural members and floors in buildings of fire-resistive construction to have a fire-resistance rating of 3 hours or longer.

- With the exception of fire-resistive construction that is defined differently by FUS and ISO, practitioners can refer to the definitions of the ISO construction classes (and the supporting definitions of the types of materials and assemblies that make up the ISO construction classes) found in the current ISO guide [4] (see Annex i) to help select coefficient *C*.
- To identify the most appropriate type of construction for buildings of mixed construction, the rules included in the current ISO guide [4] can be followed (see Annex i). For a building to be assigned a given classification, the rules require % (67%) or more of the total wall area and % (67%) or more of the total floor and roof area of the building to be constructed according to the given construction class or a higher class.
- New residential developments (less than 4 storeys) are predominantly of wood frame construction (C = 1.5) or ordinary construction (C = 1.0) if exterior walls are of brick or masonry. Residential buildings with exterior walls of brick or masonry veneer and those with less than % (67%) of their exterior walls made of brick or masonry are considered wood frame construction (C = 1.5).

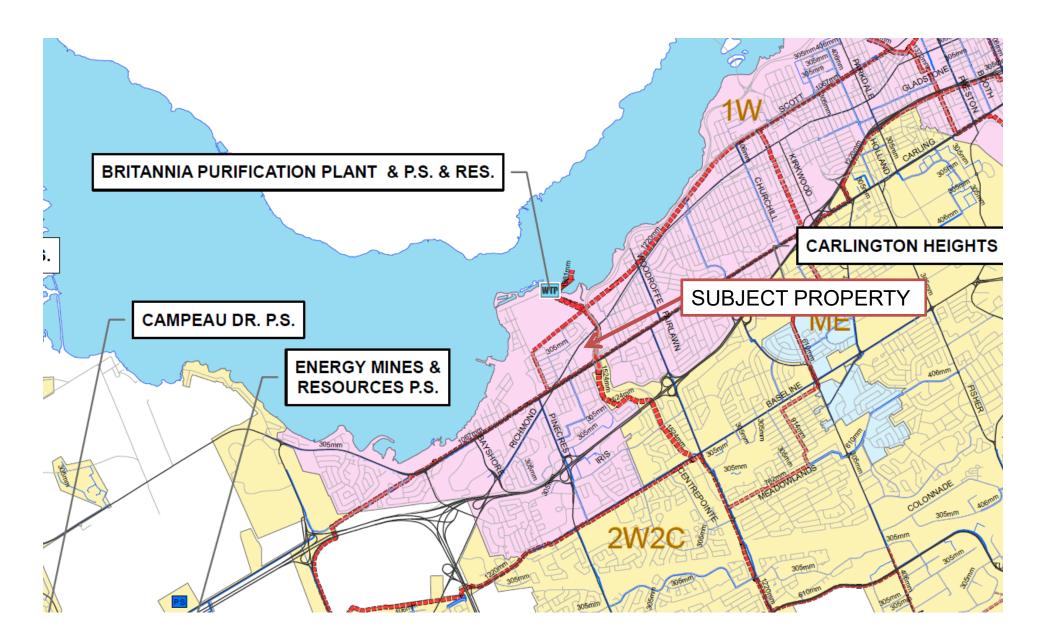
If you have any questions at all please feel free to contact me.

Thank you,

Genavieve Melatti Project Coordinator/ Junior Designer

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9


phone: (613) 836-0856 ext. 569 **email**: gmelatti@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

APPENDIX B

Water Supply

Pressure Zone Map

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 **Existing Site Conditions**

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор	
Single Family	3.4	-	0	
Semi-detached	2.7	-	0	
Townhouse	2.7	-	0	
Apartment			0	
Bachelor	1.4	-	0	
1 Bedroom	1.4	-	0	
2 Bedroom	2.1	-	0	
3 Bedroom	3.1	-	0	
Average	1.8	-	0	

	Рор	Avg. Daily		Max Day		Peak Hour	
		m ³ /d L/min		m³/d	L/min	m³/d	L/min
Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0

Institutional / Commercial / Industrial Demand

			Avg. Daily		Max Day		Peak Hour	
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d		0.00	0.0	0.0	0.0	0.0	0.0
Office	75 L/9.3m ² /d	-	0.00	0.0	0.0	0.0	0.0	0.0
Restaurant*	125 L/seat/d	71	8.94	6.2	13.4	9.3	24.1	16.8
Shopping Centres	2.5 L/m ² /d	22,204	55.51	38.5	83.3	57.8	149.9	104.1
Industrial - Heavy	55,000 L/gross ha/d	-	0.00	0.0	0.0	0.0	0.0	0.0
	Total I/C	Demand	64.4	44.8	96.7	67.1	174.0	120.8
	Tota	al Demand	64.4	44.8	96.7	67.1	174.0	120.8

* Estimated number of seats at 1seat per 9.3m²

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 **Proposed Site Conditions**

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

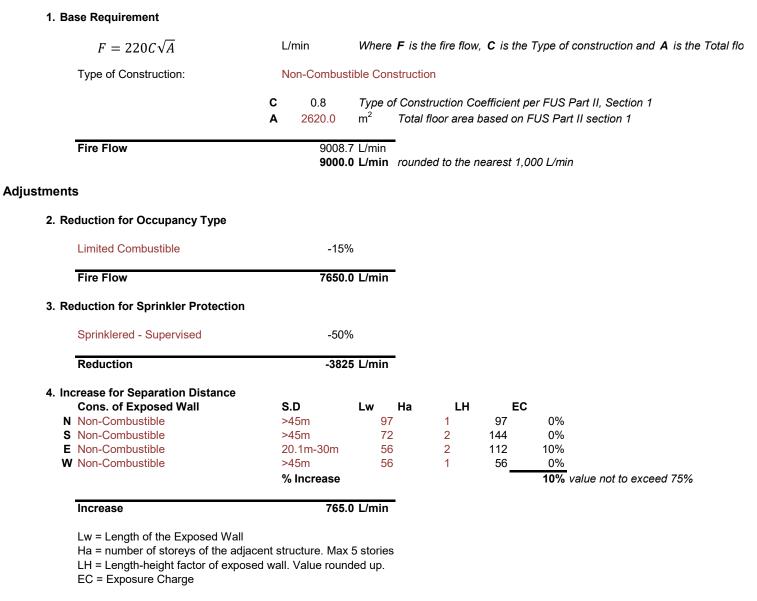
Type of Housing	Per / Unit	Units	Рор
Single Family	3.4	-	0
Semi-detached	2.7	-	0
Townhouse	2.7	-	0
Apartment			0
Bachelor	1.4	-	0
1 Bedroom	1.4	-	0
2 Bedroom	2.1	-	0
3 Bedroom	3.1	-	0
Average	1.8	-	0

	Рор	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0

Institutional / Commercial / Industrial Demand

			Avg. [Daily	Max	Day	Peak	Hour
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d	3,367	8.42	5.8	12.6	8.8	22.7	15.8
Office	75 L/9.3m ² /d	771	6.22	4.3	9.3	6.5	16.8	11.7
Restaurant*	125 L/seat/d	37	4.57	3.2	6.8	4.8	12.3	8.6
Shopping Centres	2.5 L/m ² /d		0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000 L/gross ha/d	-	0.00	0.0	0.0	0.0	0.0	0.0
	Total I/C	Demand	19.2	13.3	28.8	20.0	51.8	36.0
	Tota	al Demand	19.2	13.3	28.8	20.0	51.8	36.0

* Estimated number of seats at 1 seat per 9.3m²



RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 FUS Calculations - Building A

Fire Flow Estimation per Fire Underwriters Survey

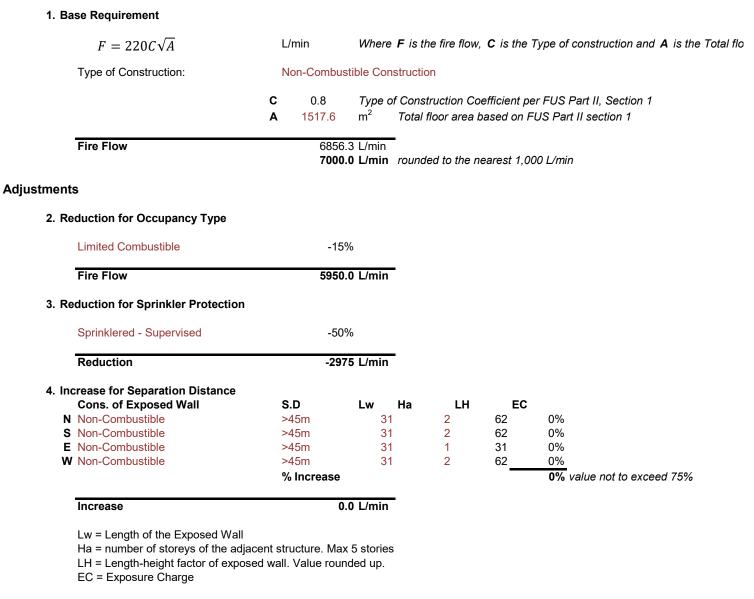
Water Supply For Public Fire Protection - 1999

Fire Flow Required

Total Fire Flow

Fire Flow	4590.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes:


-Type of construction, Occupancy Type and Sprinkler Protection information provided by Roderick Lahey Architect Inc. -Calculations based on Fire Underwriters Survey - Part II

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 FUS Calculations - Building B

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

Total Fire Flow

Fire Flow	2975.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per
	3000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Roderick Lahey Architect Inc. -Calculations based on Fire Underwriters Survey - Part II through pressure control at the PSs. The key characteristics of each pump station in the system are provided in *Table 5.3*.

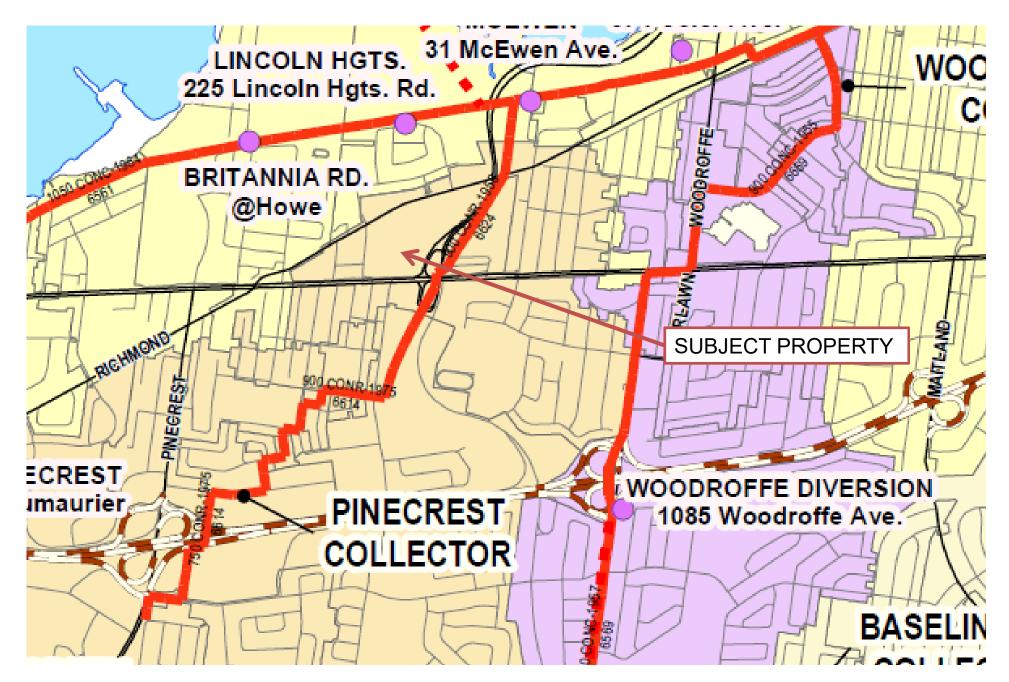
Pump Station	Pressure	Zone Type	Nominal	Total	Firm
	Zone		Discharge HGL (m)	Capacity (MLD) ¹	Capacity (MLD) ²
Carlington 2W	2W	Open	131	68.0	34.0
Barrhaven Reservoir	BARR	Open	155	7.5	0.0
Ottawa South	3C	Closed	151	39.7	26.2
Billings Bridge	2C	Open	134	177.5	127.0
Britannia 2W	2W	Open	134	302.0	208.0
Glen Cairn	3W	Open	160	87.5	49.5
Forest Ridge	2E	Open	134	91.5	47.0
Lemieux	1W	Open	115	456.0	308.0
Fleet	1W	Open	115	279.0	189.0
Britannia 1W	1W	Open	115	328.0	213.0
Carlington ME	ME	Closed	154	13.5	5.5
Campeau	3W	Open	160	100.0	58.0
Hurdman	1E	Open	115	286.0	204.0
Barrhaven	BARR	Open	155	104.5	57.0
Orléans	2E	Open	134	93.4	64.5
Leitrim	4C	Closed	165	33.3	19.0
Montreal	MONT	Closed	148	39.4	21.9
Brittany	MONT	Closed	148	8.1	2.6
Morgan's Grant	MG	Closed	145	17.7	12.3

Table 5.3: Existing Water Pump Station Characteristics

Source: Pressure Zone Operation Manuals **HGL =** Hydraulic Grade Line (a number that reflects both the elevation of the pump station, and the station discharge pressure) **MLD =** Million Litres per Day **BARR =** Barrhaven **MONT =** Montreal **ME =** Meadowlands MG = Morgan's Grant

1. The nominal capacity of the station with all pumps in operation.

2. Total capacity of the station less the capacity of the largest pump. Typically, pump stations are designed to provide a firm capacity that is at least equal to the expected water system demand at the planning horizon.


5.2.1.3 Water Storage Facilities

Water storage facilities are strategically located throughout the distribution system to augment supply during high water demand periods and fire flow conditions, and to increase the reliability of water supply during system outages. During average water demand conditions, pumps are operated to allow frequent turnover of water within each facility to keep the water fresh. The key characteristics of each of the storage facilities are provided in *Table 5.4*.

APPENDIX C

Wastewater Collection

Sanitary Trunk Sewer and Collection Area Map

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 Existing Site Conditions

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2012

Site Area			5.080 ha	
Extraneous Flow Allowanc		tion / Inflow	1.68 L/s	
Domestic Contributions Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse Apartment	2.3		0	
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	
		Total Pop	0	
	Average Dor	mestic Flow	0.00 L/s	

Peak Domestic Flow 0.00 L/s

3.80

No. of Units Avg Wastewater

Institutional / Commercial / Industrial Contributions Property Type Unit Rate

				(L/s)
Commercial floor space*	5	L/m²/d	22,204	2.57
Office	75	L/9.3m ² /d		0.00
Restaurant***	125	L/seat/d		0.00
Ex. Industrial - Light**	35,000	L/gross ha/d		0.00
Industrial - Light**	35,000	L/gross ha/d		0.00
Industrial - Heavy**	55,000	L/gross ha/d		0.00

Peaking Factor

Average I/C/I Flow	2.57
Peak Institutional / Commercial Flow	3.85
Peak Industrial Flow**	0.00
Peak I/C/I Flow	3.85

* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

*** Estimated number of seats at 1seat per 9.3m²

Total Estimated Average Dry Weather Flow Rate	2.57 L/s
Total Estimated Peak Dry Weather Flow Rate	3.85 L/s
Total Estimated Peak Wet Weather Flow Rate	5.53 L/s

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 Proposed Site Conditions - Building A

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area			4.530 ha	
Extraneous Flow Allowance		4: / 6	4.07.1./-	
	Infiltra	tion / Inflow	1.27 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	
		Total Pon	0	

Total Pop	0	
Average Domestic Flow	0.00 L/	S
Peaking Factor	3.80	

Peak Domestic Flow 0.00 L/s

Institutional / Commercial / Industrial Contributions Property Type Unit Rate

Property Type	Unit	Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space*	5	L/m²/d	3,367	0.39
Office	75	L/9.3m ² /d	771	0.67
Restaurant***	125	L/seat/d	37	0.05
Ex. Industrial - Light**	35,000	L/gross ha/d		0.00
Industrial - Light**	35,000	L/gross ha/d		0.00
Industrial - Heavy**	55,000	L/gross ha/d		0.00
		Ave	rage I/C/I Flow	1.11
	Peak In	stitutional / Co	mmercial Flow	1.67

Peak Industrial Flow** 0.00 Peak I/C/I Flow 1.67

* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	1.11 L/s
Total Estimated Peak Dry Weather Flow Rate	1.67 L/s
Total Estimated Peak Wet Weather Flow Rate	2.94 L/s

RIOCAN HOLDINGS INC. 2525 CARLING AVENUE - PHASE 1 Proposed Site Conditions - Building B

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area			0.550 ha
Extraneous Flow Allowanc		tion / Inflow	0.15 L/s
Domestic Contributions Unit Type	Unit Rate	Units	Рор
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Townhouse	2.7		0
Stacked Townhouse	2.3		0
Apartment			
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0
		Total Pon	0

Total Pop	0
Average Domestic Flow	0.00 L/s
Peaking Factor	3.80

Peak Domestic Flow 0.00 L/s

Institutional / Commercial / Industrial Contributions Property Type Unit Rate

Property Type	Unit Ra	te	No. of Units	Avg Wastewater (L/s)
Commercial floor space*	5 L/	′m²/d	747	0.09
Office	75 L/	′9.3m²/d	771	0.67
Restaurant***	125 L/	/seat/d		0.00
Ex. Industrial - Light**	35,000 L/	ˈgross ha/d		0.00
Industrial - Light**	35,000 L/	ˈgross ha/d		0.00
Industrial - Heavy**	55,000 L/	ˈgross ha/d		0.00
		Ave	rage I/C/I Flow	0.76

Peak Institutional / Commercial Flow	1.13
Peak Industrial Flow**	0.00
Peak I/C/I Flow	1.13

* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.76 L/s
Total Estimated Peak Dry Weather Flow Rate	1.13 L/s
Total Estimated Peak Wet Weather Flow Rate	1.29 L/s

EXTERNALSANITARY SEWER CALCULATION SHEET

CLIENT: LOCATION:	RIOCAN HOLDINGS INC. 2525 Carling Avenue	DESIGN PARAMETERS Avg. Daily Flow Res. 280 L/p/d	Peak Fact Res. Per Harmons: Min = 2.0, Max =3.8	Infiltration / Inflow	0.33 L/s/ha
FILE REF:	18- 9 97	Avg. Daily Flow Comm 28,000 L/ha/d	Peak Fact. Comm. lf (Q _I /Q _{TOTAL} >20%) 1.5 Peak Fact. Comm.	1 Min. Pipe Velocity	0.60 m/s full flowing
DATE:	17-Dec-18	Avg. Daily Flow Instit. 28,000 L/ha/d	Peak Fact. Instit. If (Q _I /Q _{TOTAL} >20%) 1.5 Peak Fact. Instit.	1 Max. Pipe Velocity	3.00 m/s full flowing
		Avg. Daily Flow Indust. 35,000 L/ha/d	Peak Fact. Indust. per MOE graph	Mannings N	0.013
			Correction Factor K 0.8		

	Location					Reside	ential Are	a and Po	oulation				Com	nercial	Institu	itional	Indus	strial			Infiltration	า					Pipe	Data			
Area ID	Up	Down	Area		Numbe	er of Units	5	Pop.	Cum	ulative	Peak.	Q _{res}	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+ + *}	Total	Accu.	Infiltration	Total	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Q _{cap}	Q / Q full
					by	/ type			Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow			-					
			(ha)	Singles	s Semi's	5 Town's	s Apt's*	*	(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(-)
	EX.SAN MH1	EX.SAN MH2	0.000					0.0	0.000	0.0	3.80	0.00		0.00		0.00		0.00		0.000	0.000	0.000	0.00	225	1.80	18.7	0.040	0.056	1.52	60.2	0.00
	EX.SAN MH2	EX.SAN MH3	11.640	85	64	74	18	694.0	11.6	694.0	3.32	7.46	0.27	0.27		0.00		0.00	0.1	11.910	11.910	3.930	11.52	225	1.60	130.3	0.040	0.056	1.43	56.8	0.20
	EX.SAN MH3	EX.SAN MH4	0.000					0.0	11.640	694.0	3.32	7.46		0.27		0.00		0.00	0.8	0.000	11.910	3.930	12.16	225	7.60	63.4	0.040	0.056	3.11	123.8	0.10
]						

SANITARY SEWER CALCULATION SHEET

CLIENT: LOCATION:	RIOCAN HOLDINGS INC. 2525 Carling Avenue	DESIGN PARAMETERS Avg. Daily Flow Res. 280 L/p/d	Peak Fact Res. Per Harmons: Min = 2.0, Max =3.8	Infiltration / Inflow	0.33 L/s/ha
FILE REF:	18-997	Avg. Daily Flow Comm 28,000 L/ha/d	Peak Fact. Comm. If (Q _l /Q _{TOTAL} >20%) 1.5 Comm.	1 Min. Pipe Velocity	0.60 m/s full flowing
DATE:	14-Dec-18	Avg. Daily Flow Instit. 28,000 L/ha/d	Peak Fact. Instit. If (Q _l /Q _{TOTAL} >20%) 1.5 Peak Fact. Instit.	1 Max. Pipe Velocity	3.00 m/s full flowing
		Avg. Daily Flow Indust. 35,000 L/ha/d	Peak Fact. Indust. per MOE graph Correction Factor K 0.8	Mannings N	0.013

	Location					Reside	ntial Area	and Pop	ulation				Comr	nercial	Instit	utional	Indu	strial			Infiltration	ı					Pipe	Data			
Area ID	Up	Down	Area		Number	r of Units		Pop.	Cumu	ulative	Peak.	Q _{res}	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+I+I*}	Total	Accu.	Infiltration	Total	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Q _{cap}	Q / Q full
					by	type			Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow				-				
			(ha)	Singles	Semi's	Town's	Apt's**		(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(-)
	RECON STUB	MH101A	0.000					0.0	0.0	0.0	3.80	0.00		0.00		0.00		0.00	0.0	0.000	0.000	0.000	0.00	200	1.00	38.6	0.031	0.050	1.04	32.8	0.00
BLDGA	MH101A	MH102A	0.000					0.0	0.000	0.0	3.80	0.00	0.26	0.26		0.00		0.00	0.1	0.262	0.262	0.086	0.21	250	0.50	112.2	0.049	0.063	0.86	42.0	0.01
	MH102A	MH103A	0.000					0.0	0.000	0.0	3.80	0.00		0.26		0.00		0.00	0.8	0.000	0.262	0.086	0.86	250	0.50	28.4	0.049	0.063	0.86	42.0	0.02
BLDGB	BLDGB	MH201A	0.000					0.0	0.000	0.0	3.80	0.00	0.08	0.08		0.00		0.00	0.8	0.080	0.080	0.026	0.80	200	1.00	25.4	0.031	0.050	1.04	32.8	0.02
	MH201A	EX.SAN MH	0.000					0.0	0.000	0.0	3.80	0.00		0.08		0.00		0.00	0.8	0.000	0.080	0.026	0.80	250	0.50	15.6	0.049	0.063	0.86	42.0	0.02
								1																	1		1				
																									1						
								1												1					1		1		1		

Sanitary Drainage Area

APPENDIX D

Stormwater Management

Client: City of Ottawa

FINAL DRAFT - SWM Guidelines for the Pinecrest Creek/Westboro Area

Table 3.1: SWM Guidelines for the Pinecrest Creek / Westboro Study Area

					-
	Development Type	Runoff Volume Reduction	Water Quality	Water Quantity	ntity
			TSS Removal	Flood Flow Management	Erosion Control
Com	Commercial/Institutional and Industrial Developments - <u>discharging directly to Ottawa River Parkway (ORP) pipe</u>	ing directly to Ottawa River Parkway (ORP) pipe *			
ß	a) sites with soil infiltration rates 2 1 mm/hour	Minimum on-site retention of the 10 mm design storm.	On-site removal of 80% of TSS.	The more stringent of the following criteria will govern: i) 1:100 vaar discharge from site not to exceed 33.5 L/S/hal: or ii) Requirements of City's Sewer Design Guideline (Section 8.3.7.3, revised Sept. 2008).	Not applicable
	b) site's soil infiltration rates < 1 mm/hour	If the entire property is underlain by native soils with infiltration rates less than 1 mm/hr, no infiltrating SWM measures may be been A minimum depth of 300 mm of americad soul shall be provided below all front yard landcaped areas. A green roof and/or rain harvesting measures could be implemented to provide further runoff volume reduction.	On-site removal of 80% of TSS.	The more stringent of the following criteria will govern:) 1:100 very clicitaping form site not to exceed 33.5 Us/ha); or i) Requirements of Clty's sewer Design Guideline (section 8.3.7.3, revised Sept. 2008).	Not applicable
Reside	Residential Development Requiring Site Plan Control Approval - <u>discharging upstream of Ottawa River Parkway (ORP) pipe inlet</u>	iischarging upstream of Ottawa River Parkway (ORP) pi	ipe inlet		
ف	a) sites with soil infiltration rates 2 1 mm/hour	Minimum on-site retention of the 10 mm design storm.	Inherent TSS removal due to on-site retention of the 10 mm and detention of the 25 mm design storms.	The more stringent of the following criteria will govern: i) 1:100 year discharge from site not to exceed 33.5 L/S/ha): or ii) Requirements of City's Sewer Design Guideline (Section 8.3.7.3, revised Sept. 2008).	Control (detain) the runoff from the 25 mm design storm such that the peak outflow from the site does not exceed 5.8 $U_S/h_{a.}$.
	b) site's soil infiltration rates < 1 mm/hour	If the entire property is underlain by native soils with infiltration rates less than 1 mm/hr, no infiltrating SWM measures may be equed. A minimum depth of 300 mm of ameride soil shall be provided below all front yard landscaped areas. A genome of and/or rain harvesting measures could be implemented to and/or rain harvesting measures could be implemented to provide further runoff volume reduction.	Inherent TSS removal due to on-site retention in landscaped areas and detention of the 25 mm design storm.	The more stringent of the following criteria will govern:!) 1:100 year discharge more site not to exceed 33.5 Us/ha); or i) Requirements of City's Sewer Design Guideline (Section 8.3.7.3, revised Sept. 2008).	Control (detain) the runoff from the 35 mm design storm such that the peak outflow from the site does not exceed 5.8 (Js/ha.
Resid	Residential Development Requiring Site Plan Control Approval - <u>discharging d</u>	discharging directly to Ottawa River Parkway (ORP) pipe			
7	a) sites with soil infiltration rates 2 1 mm/hour	Minimum on-site retention of the 10 mm design storm.	Inherent TSS removal due to on-site retention of the 10 mm design storm.	The more stringent of the following criteria will govern:)) 1:100 year discharge from site not to exceed 33.5 <i>U</i> ₅ /ha); or ii) Requirements of City's Sewer Design Guideline (Section 8.3.7.3, revised Sept. 2008).	Not applicable
	b) site's soil infiltration rates < 1 mm/hour	If the entire property is underlain by native soils with infiltration rates less than 1 mm/hr, no infiltrating SWM measures may be used. A minimum depth of 300 mm of amerided soil shall be provided below all front yard landscaped areas. A green roof and/or rain harvesting measures could be implemented to provide further runoff volume reduction.	Inherent TSS removal from on-site retention in landscaped areas.	The more stringent of the following criteria will govern:) 1:100 variationary and strict on to exceed 33.5 <i>LX</i> /ha); or il) Requirements of City's Sever Design Guideline (Section 8.3.7.3, revised Sept. 2008).	Not applicable
*Infiltrati	Initial initia	ere the land use or activity could generate higher concent	itrations of hvdrocarbons trace met	els or toxicants than are found in tvoical stormwater	runoff (e.g. vehicle refueling handling

"Inititation measures should not be used on sites or source areas where the land use or activity could generate higher concentrations of hydrocarbons, trace metals or toxicants than are found in typical stomwater runof (e.g., vehicle refulling, handling areas for hazardous materials, etc.). This would include retail gasoline outlet sites due to the potential for spils. In addition, these measures should be sited so that they will not receive und from high traffic areas where large amounts of de-icing salts are used. The design of these systems shall be in accordance with the guidance in the Stomwater Management Planning and Design Manual (MOE, 2003) and the Low impact Development Stomwater Management Planning and Design Give (SVC & TRCA, 2010).

Detailed Stormceptor Sizing Report – 2525 Carling Ave. (Split 2)

	Project Information	A & Location							
Project Name	2525 Carling Ave.	Project Number	-						
City	Ottawa	State/ Province	Ontario						
Country	Canada	Date	12/16/2018						
Designer Information	۱	EOR Information (optional)							
Name	Brandon O'Leary	Name	Brandon Chow						
Company	Forterra	Company	David Schaeffer Engineering Ltd.						
Phone # 905-630-0359		Phone #							
Email	brandon.oleary@forterrabp.com	Email							

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	2525 Carling Ave. (Split 2)
Recommended Stormceptor Model	EFO12
TSS Removal (%) Provided	83
Particle Size Distribution (PSD)	Fine Distribution
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

EFO Sizing Summary										
EFO Model	% TSS Removal Provided	% Runoff Volume Captured Provided	Standard EFO Hydrocarbon Storage Capacity							
EFO4	51	51	265 L (70 gal)							
EFO6	65	73	610 L (160 gal)							
EFO8	72	84	1070 L (280 gal)							
EFO10	79	91	1670 L (440 gal)							
EFO12	83	94	2475 L (655 gal)							
Parallel Units / MAX	Custom	Custom	Custom							

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

OVERVIEW

Stormceptor ® EF is a continuation and evolution of the most globally recognized oil-grit separator (OGS) stormwater treatment technology - **Stormceptor ®**. Also known as a hydrodynamic separator, the enhanced flow Stormceptor EF is a high performing oil-grit separator that effectively removes a wide variety of pollutants from stormwater and snowmelt runoff at higher flow rates as compared to the original Stormceptor. Stormceptor EF captures and retains sediment (TSS), free oils, gross pollutants and other pollutants that attach to particles, such as nutrients and metals. Stormceptor EF's patent-pending treatment and scour prevention technology and internal bypass ensures sediment is retained during all rainfall events.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the maiority of rainfall events and average annual runoff volume, as observed in the historical

Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station									
State/Province	Ontario	Total Number of Rainfall Events	4093						
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1						
Station ID #	6000	Average Annual Rainfall (mm)	567.0						
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	1990.7						
Elevation (ft)	370	Total Infiltration (mm)	1449.7						
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	17537.7						

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

ONLINE APPLICATION

Stormceptor EF's internal bypass and patent-pending scour prevention technology has demonstrated very effective retention of pollutants in third-party testing and verification following the Canadian ETV's **Procedure for Laboratory Testing of Oil-Grit Separators.** Sediment scour prevention demonstrated an effluent concentration of less than 10 mg/L for sediment particles ranging from 1 to 1,000 microns, even during peak influent flow rates associated with infrequent high intensity storm events. While Stormceptor EF will capture oil, only the Stormceptor EFO configuration has been third-party tested and verified to retain greater than 99% of captured oil. Based on these verified performance attributes, the most efficient and widely accepted application of Stormceptor EF is an online configuration, which allows all upstream conveyance flows to enter and exit the unit. The online application eliminates the need for costly additional bypass structures, piping and installation expense.

FLOW ENTRANCE OPTIONS

<u>Single Inlet Pipe</u> – A common design which includes one inlet pipe and one outlet pipe. A 90-degree (maximum) bend is also accepted with this configuration.

Inlet Grate – Allows surface runoff to enter the unit from grade. The inlet grate option can also be used in conjunction with one inlet pipe or multiple inlet pipes. A removable flow deflector is added in the Stormceptor EF4/EFO4.

Maximum Pipe Diameter								
Model	Inlet (in/mm)	Outlet (in/mm)						
EF4 / EFO4	24 / 610	24 / 610						
EF6 / EFO6	36 / 915	36 / 915						
EF8 / EFO8	48 / 1220	48 / 1220						
EF10 / EF010	72 / 1828	72 / 1828						
EF12 / EF012	72 / 1828	72 / 1828						

<u>Multiple Inlet Pipe</u> – Allows for multiple inlet pipes of various diameters to enter the unit.

Maximum Pipe Diameter								
Model	Inlet (in/mm)	Outlet (in/mm)						
EF4 / EFO4	18 / 457	24 / 610						
EF6 / EFO6	30 / 762	36 / 915						
EF8 / EFO8	42 / 1067	48 / 1220						
EF10 / EF010	60 / 1524	72 / 1828						
EF12 / EF012	60 / 1524	72 / 1828						

Stormceptor*

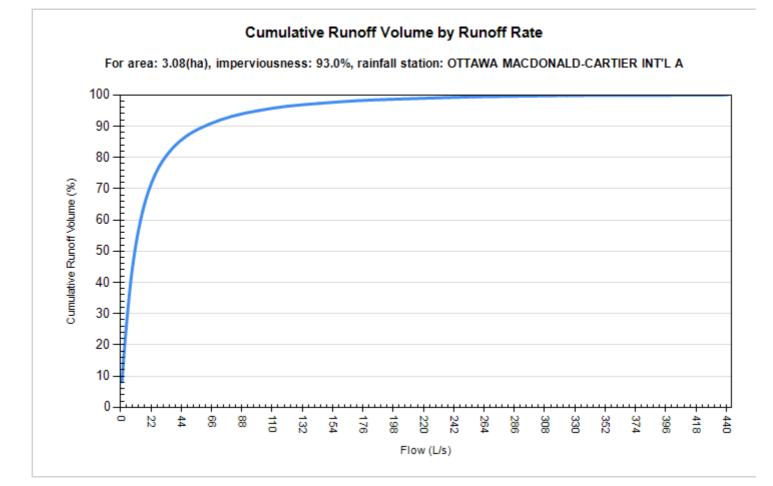
Drainage Area		Up Stre	am Storage				
Total Area (ha)	3.08	Storage (ha-m)	Discha	arge (cms)			
Imperviousness %	93	0.000	0	0.000			
Up Stream Flow Diversion	on	Desi	Design Details				
Max. Flow to Stormceptor (cms)		Stormceptor Inlet Invert Elev (m)					
Water Quality Objective	•	Stormceptor Outlet Inve					
TSS Removal (%)	80.0	Stormceptor Rim El	ev (m)				
Runoff Volume Capture (%)	90.00	Normal Water Level Ele	vation (m)				
Oil Spill Capture Volume (L)		Pipe Diameter (n	nm)				
Peak Conveyed Flow Rate (L/s)		Pipe Material					
Water Quality Flow Rate (L/s)		Multiple Inlets (Y	//N)	No			
		Grate Inlet (Y/N	J)	No			

Particle Size Distribution (PSD)

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

	Fine Distribution								
Particle Diameter (microns)	Distribution %	Specific Gravity							
20.0	20.0	1.30							
60.0	20.0	1.80							
150.0	20.0	2.20							
400.0	20.0	2.65							
2000.0	20.0	2.65							

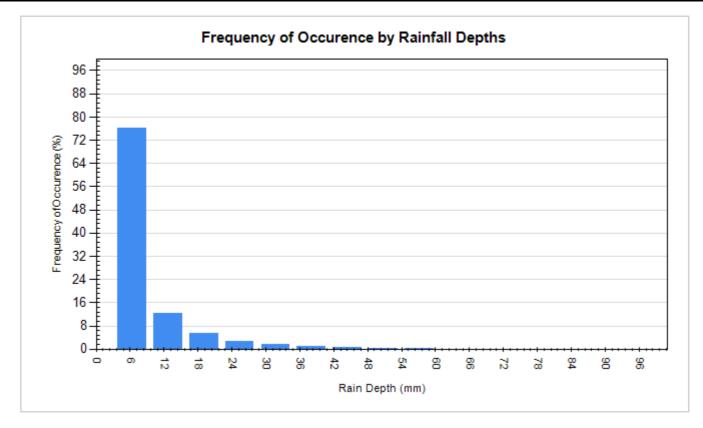
Stormceptor[•]



Site Name		2525 Carling Ave. (Split 2)			
	Site I	Details			
Drainage Area		Infiltration Parameters			
Total Area (ha)	3.08	Horton's equation is used to estimate in	nfiltration		
Imperviousness %	93	Max. Infiltration Rate (mm/hr)	61.98		
Oil Spill Capture Volume (L)		Min. Infiltration Rate (mm/hr)	10.16		
		Decay Rate (1/sec)	0.00055		
		Regeneration Rate (1/sec)	0.01		
Surface Characteristics	5	Evaporation			
Width (m)	351.00	Daily Evaporation Rate (mm/day)	2.54		
Slope %	2	Dry Weather Flow			
Impervious Depression Storage (mm)	0.508	Dry Weather Flow (L/s)	0		
Pervious Depression Storage (mm)	5.08		Ŭ		
Impervious Manning's n	0.015				
Pervious Manning's n	0.25				
Maintenance Frequenc	у	Winter Months			
Maintenance Frequency (months) >	12	Winter Infiltration	0		
	TSS Loading	g Parameters			
TSS Loading Function		Build Up/ Wash-off			
Buildup/Wash-off Parame	ters	TSS Availability Paramete	ers		
Target Event Mean Conc. (EMC) mg/L	125	Availability Constant A	0.057		
Exponential Buildup Power	0.40	Availability Factor B	0.04		
Exponential Washoff Exponent	0.20	Availability Exponent C	1.10		
		Min. Particle Size Affected by Availability (micron)	400		

Stormceptor[•]

	Cumulative Runo	f Volume by Runoff Rate	
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)
1	44522	498290	8.2
4	137511	405294	25.3
9	250280	292669	46.1
16	340882	201916	62.8
25	404197	138567	74.5
36	445888	96967	82.1
49	473208	69578	87.2
64	492025	50777	90.6
81	505815	36979	93.2
100	515905	26904	95.0
121	523071	19728	96.4
144	528397	14405	97.3
169	532409	10393	98.1
196	535394	7410	98.6
225	537645	5157	99.0
256	539442	3362	99.4
289	540784	2019	99.6
324	541660	1144	99.8
361	542122	682	99.9
400	542388	416	99.9
441	542590	214	100.0



FORTERRA

Stormceptor*

		Rainfall Event Analys	is			
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)		
6.35	3113	76.1	5230	24.9		
12.70	501	12.2	4497	21.4		
19.05	225	5.5	3469	16.5		
25.40	105	2.6	2317	11.0		
31.75	62	1.5	1765	8.4		
38.10	35	0.9	1206	5.8		
44.45	28	0.7	5.5			
50.80	12	0.3	2.7			
57.15	7	0.2	378	1.8		
63.50 1		0.0	63	0.3		
69.85	1	0.0	64	0.3		
76.20	1	0.0	76	0.4		
82.55	0	0.0	0	0.0		
88.90	1	0.0	84	0.4		
95.25	0	0.0	0	0.0		
101.60	0	0.0	0	0.0		

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

	0.013	R CAL	CULAT		HEET (RATIO	NAL MI	ETHOD)							Dtt	aw	a
Manning				ARE	A (Ha)			FLOW						SEWER DA	TΔ			
	LOCA	TION			EAR		Time of	Intensity	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE		CAPACITY	VELOCIT	TIME OF	RATIO
			AREA	R	Indiv.	Accum.	Conc.	5 Year										
Location	From Node	To Node	(Ha)	K	2.78 AC	2.78 AC	(min)	(mm/h)	Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (mir	Q/Q full
A109	109	110	0.62	0.90	1.55	1.55	10.00	104.19	161	450	450	CONC	0.75	47.2	246.9	1.55	0.51	0.65
	110	112			0.00	1.55	10.51	101.59	157	450	450	CONC	3.23	25.1	512.4	3.22	0.13	0.31
EX-3	112	113	0.73	0.90	1.84	3.38 3.38	10.64	100.95	341	525	525	CONC	1.80	8.2	577.0	2.67	0.05	0.59
	113	123	0.00	0.90	0.00	3.38	10.69	100.70	341	750	750	CONC	0.20	69.3	497.9	1.13	1.02	0.68
To STM 123		120	0.00	0.00	0.00	3.38	11.71		011	100	100	00110	0.20	00.0	10710		1102	0.00
A122	122	123	1.22	0.90	3.05	3.05	10.00	104.19	318	750	750	CONC	0.30	15.1	609.8	1.38	0.18	0.52
To STM 123	5					3.05	10.18											
BLDG-A*	123	114			0.00	6.44	11.71	95.95	650	900	900	CONC	0.20	58.1	809.6	1.27	0.76	0.80
	114	115			0.00	6.44	12.47	92.73	629	1050	1050	CONC	0.12	29.3	946.0	1.09	0.45	0.66
To STM 115)					6.44	12.92	1										
A118	118	119	0.31	0.90	0.77	0.77	10.00	104.19	80	375	375	PVC	0.34	34.8	102.2	0.93	0.63	0.78
A119	119	107	0.30	0.90	0.74	1.51	10.63	101.00	152	450	450	CONC	0.46	19.3	193.4	1.22	0.26	0.79
To STM107						1.51	10.89											
BLDG B*	100						10.00		13		450	0.0110						
A120	120 121	121 105	0.39	0.90	0.98	0.98	10.00	104.19 100.69	115 112	450 450	450 450	CONC CONC	0.41 0.29	47.5 17.5	182.6 153.5	1.15 0.97	0.69	0.63
To STM105	121	105			0.00	0.98	10.09	100.09	112	430	430	CONC	0.29	17.5	155.5	0.97	0.30	0.73
EX-4	400	101	0.51	0.90	1.29	1.29	10.00	404.40	100	450	450	0010	0.74	00.5	0.40.0	4.54	0.70	0.70
A103 To STM 104	103	104	0.21	0.90	0.52	1.80 1.80	10.00	104.19	188	450	450	CONC	0.71	66.5	240.2	1.51	0.73	0.78
10 01111 104						1.00	10.70											
A100	100	101	0.44	0.90	1.10	1.10	10.00	104.19	114	375	375	PVC	0.81	46.4	157.8	1.43	0.54	0.72
A101	101	104	0.08	0.90	0.19	1.29	10.54	101.42	131	450	450	CONC	0.34	24.9	166.2	1.05	0.40	0.79
To STM104						1.29	10.94										-	
	100						10.00					51/0		15.0		1.00		
From STM1	102	104			0.00	0.00	10.00	104.19	0	300	300	PVC	0.94	15.0	93.8	1.33	0.19	0.00
From STM1						1.29	10.94										1	ł
	104	105			0.00	3.09	10.94	99.49	307	600	600	CONC	0.28	54.4	324.9	1.15	0.79	0.95
From STM1						0.98	10.99											
	105	106			0.00	4.07	11.73	95.88	403	675	675	CONC	0.35	30.8	497.3	1.39	0.37	0.81
From OTM	106	107	0.28	0.90	0.70	4.77	12.10	94.29	463	750	750	CONC	0.27	29.9	578.5	1.3	0.4	0.80
From STM1	07 107	108			0.00	1.51 6.28	10.89 12.48	92.71	627	825	825	CONC	0.30	31.7	786.2	1.5	0.4	0.80
	107	115	-		0.00	6.28	12.40	91.28	618	825	825	CONC	1.06	45.8	1477.9	2.8	0.4	0.30
To STM 115						6.28	13.11									-		
From 108						6.28	13.11											
From 114						6.44	12.92											
	115	117			0.00	12.72	13.11	90.21	1192	1050	1050	CONC	0.44	8.6	1811.4	2.1	0.1	0.66
* Building Fl	ow Equal to	the 100-Y	ear Contro	lled Relea	se Rate													
Definitions:									Designed:			PROJECT						
Q = 2.78 AIR			• • •			Notes:			B.N.C.				lds Shoppi	ng Centre				
Q = Peak Flor			L/s)			1) Ottawa F		ensity Curve				LOCATIO			City of Otto			
A = Areas in I = Rainfall Ir						2) Min. Vel			S.L.M. Dwg. Refe	rence.		2525 Carlin File Ref:	ig Avenue		City of Ottav Date:	wa	Sheet No.	
	nenony (mm	~,							1 W S. INUIU									

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

4 355 ha Area Q* 145.9 L/s

*Allowable release rate calculated at 33.5 L/s/ha per SWM Guidelines for Pinecrest Creek / Westboro Study Area

Note:

10mm of rainwater volume to be detained on-site as per Pinecrest Creek SWM Criteria. Req. Vol. 435.5 m³

Estimated Post Development Peak Flow from Unattenuated Areas U1

Area ID Total Area C

0.03 ha 0.25 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10.0	104.2	2.0	2.0	0.0	0.0	178.6	4.4	4.4	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

21

Building ID BLDG-A Roof Area 0.407 ha 0.387 Avail Storage Area С t_c

0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations 10 min, tc at outlet without restriction

Estimated Number of Roof Drains 68 55

Building Length Building Width Number of Drains

m² / Drain

184.1 max 232.25m²/notch as recommended by Zurn for Ottawa

	Roof ⁻	Fop Rating (Curve per Zu	urn Model Z-	105-5		
d	Α	Vacc	V _{avail}	Q _{notch}	Q _{roof}	V _{drawdown}	
(m)	(m²)	(m ³)	(m ³)	(L/s)	(L/s)	(hr)	
0.000	0	0.0	0.0	0.00	0.00	0.00	
0.025	241.7	2.0	2.0	0.38	7.98	0.07	
0.050	966.6	14.1	16.1	0.77	16.17	0.31	
0.075	2174.9	38.3	54.4	1.14	23.94	0.76	
0.100	3866.5	74.5	128.9	1.52	31.92	1.40	
0.125	3866.5	96.7	225.5	1.90	39.90	2.08	
0.150	3866.5	96.7	322.2	2.28	47.88	2.64	

* Assumes one notch opening per drain, assumes maximum slope of 10cm

. [5-year					100-year				
t _c	i	Qactual	Qrelease	Qstored	V _{stored}	i	Qactual	Qrelease	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	106.0	24.2	81.8	49.1	178.6	201.9	32.0	169.9	101.9
15	83.6	85.0	24.2	60.8	54.7	142.9	161.5	32.0	129.6	116.6
20	70.3	71.5	24.2	47.3	56.7	120.0	135.6	32.0	103.6	124.4
25	60.9	62.0	24.2	37.8	56.7	103.8	117.4	32.0	85.4	128.2
30	53.9	54.9	24.2	30.7	55.2	91.9	103.9	32.0	71.9	129.4
35	48.5	49.4	24.2	25.2	52.9	82.6	93.4	32.0	61.4	128.9
40	44.2	45.0	24.2	20.8	49.8	75.1	85.0	32.0	53.0	127.2
45	40.6	41.3	24.2	17.1	46.3	69.1	78.1	32.0	46.1	124.5
50	37.7	38.3	24.2	14.1	42.4	64.0	72.3	32.0	40.3	121.0
55	35.1	35.7	24.2	11.5	38.1	59.6	67.4	32.0	35.4	117.0
60	32.9	33.5	24.2	9.3	33.6	55.9	63.2	32.0	31.2	112.4
65	31.0	31.6	24.2	7.4	28.8	52.6	59.5	32.0	27.6	107.5
70	29.4	29.9	24.2	5.7	23.9	49.8	56.3	32.0	24.3	102.2
75	27.9	28.4	24.2	4.2	18.8	47.3	53.4	32.0	21.5	96.6
80	26.6	27.0	24.2	2.8	13.6	45.0	50.9	32.0	18.9	90.7
85	25.4	25.8	24.2	1.6	8.3	43.0	48.6	32.0	16.6	84.7
90	24.3	24.7	24.2	0.5	2.8	41.1	46.5	32.0	14.5	78.4
95	23.3	23.7	23.7	0.0	0.0	39.4	44.6	32.0	12.6	71.9
100	22.4	22.8	22.8	0.0	0.0	37.9	42.9	32.0	10.9	65.3
105	21.6	22.0	22.0	0.0	0.0	36.5	41.3	32.0	9.3	58.6
110	20.8	21.2	21.2	0.0	0.0	35.2	39.8	32.0	7.8	51.7

24.19 L/s

56.7 m³

0.076 m 0.78 hr

100-year Q _{roof}	31.96 L/s
100-year Max. Storage Required	129.4 m ³
100-year Storage Depth	0.100 m

1.41 hr

00-year Estimated Drawdown Time

5-year Q_{roof} 5-year Max. Storage Required 5-year Storage Depth 5-year Estimated Drawdown Time

Z:\Projects\17-997_RioCAN_Lincoln-Fields\B_Design\B1_Analysis\B1-3_Storm\stm-2018-12-17_17-997_storage_slm-1.xlsx

Building ID	BLDG-B	
Roof Area	0.090	ha
Avail Storage Area	0.086	
С	0.90	Ration

0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations 10 min, tc at outlet without restriction

tc Estimated Number of Roof Drains

Building Length Building Width Number of Drains 31 31 10 m² / Drain

85.5 max 232.25m²/notch as recommended by Zurn for Ottawa

Roof Top Rating Curve per Zurn Model Z-105-5											
d	Α	Vacc	Vavail	Qnotch	Q _{roof}	V _{drawdown}					
(m)	(m²)	(m ³)	(m ³)	(L/s)	(L/s)	(hr)					
0.000	0	0.0	0.0	0.00	0.00	0.00					
0.025	53.4	0.4	0.4	0.38	3.80	0.03					
0.050	213.8	3.1	3.6	0.77	7.70	0.15					
0.075	480.9	8.5	12.0	1.14	11.40	0.35					
0.100	855.0	16.5	28.5	1.52	15.20	0.65					
0.125	855.0	21.4	49.9	1.90	19.00	0.96					
0.150	855.0	21.4	71.3	2.28	22.80	1.23					

Assumes one notch opening per drain, assumes maximum slope of 10cm

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	Vstored	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	23.4	9.9	13.6	8.1	178.6	44.6	13.3	31.4	18.8
15	83.6	18.8	9.9	8.9	8.0	142.9	35.7	13.3	22.4	20.2
20	70.3	15.8	9.9	5.9	7.1	120.0	30.0	13.3	16.7	20.0
25	60.9	13.7	9.9	3.8	5.7	103.8	26.0	13.3	12.7	19.0
30	53.9	12.1	9.9	2.2	4.0	91.9	23.0	13.3	9.7	17.4
35	48.5	10.9	9.9	1.0	2.2	82.6	20.6	13.3	7.4	15.5
40	44.2	9.9	9.9	0.0	0.1	75.1	18.8	13.3	5.5	13.2
45	40.6	9.1	9.1	0.0	0.0	69.1	17.3	13.3	4.0	10.7
50	37.7	8.5	8.5	0.0	0.0	64.0	16.0	13.3	2.7	8.1
55	35.1	7.9	7.9	0.0	0.0	59.6	14.9	13.3	1.6	5.4
60	32.9	7.4	7.4	0.0	0.0	55.9	14.0	13.3	0.7	2.5
65	31.0	7.0	7.0	0.0	0.0	52.6	13.2	13.2	0.0	0.0
70	29.4	6.6	6.6	0.0	0.0	49.8	12.4	12.4	0.0	0.0
75	27.9	6.3	6.3	0.0	0.0	47.3	11.8	11.8	0.0	0.0
80	26.6	6.0	6.0	0.0	0.0	45.0	11.2	11.2	0.0	0.0
85	25.4	5.7	5.7	0.0	0.0	43.0	10.7	10.7	0.0	0.0
90	24.3	5.5	5.5	0.0	0.0	41.1	10.3	10.3	0.0	0.0
95	23.3	5.2	5.2	0.0	0.0	39.4	9.9	9.9	0.0	0.0
100	22.4	5.0	5.0	0.0	0.0	37.9	9.5	9.5	0.0	0.0
105	21.6	4.9	4.9	0.0	0.0	36.5	9.1	9.1	0.0	0.0
110	20.8	4.7	4.7	0.0	0.0	35.2	8.8	8.8	0.0	0.0
			5-year Q _{roof}	9.70	L/s		100)-year Q _{roof}	13.28 I	_/s

5-year Q _{roof}	9.70 L/S
5-year Max. Storage Required	8.1 m ³
5-year Storage Depth	0.063 m
ear Estimated Drawdown Time	0.26 hr

5-year Storage Depth 5-year Estimated Drawdown Time

100-year Max. Storage Required 100-year Storage Depth 00-year Estimated Drawdown Time

20.2 m³ 0.087 m 0.50 hr

* Building B Flow added to Drainage Area A120

Estimated Post Development Peak Flow from Attenuated Areas

Area ID Available Sub Maintenance S	A118, A119 -surface Storage Structures				
	ID	CBMH 118	CBMH 119	CB 118A	CB 119A
S	tructure Dia./Area (mm/mm ²)	1200	1200	360	360
	T/L*	73.85	73.85	73.85	73.85
	INV	71.68	71.48	72.35	72.35
	Depth	2.17	2.37	1.50	1.50
	V _{structure} (m ³)	2.5	2.7	0.2	0.2
Sewers	ID	250mm	375mm		U/G STORG.
	Storage Pipe Dia (mm)	250	375		
	L (m)	39.5	34.8		
	V _{sewer} (m ³)	1.9	3.8		0.0
		*Top of lid o	r max pondir	g elevation	74.15

Total Subsurface Storage (m³) 11.3

Stage Attenuated Areas Storage Summary

_		Su	Inface Stora	ge	Surface and Subsurface Storage				
	Stage	Ponding	h。	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m ²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	71.48		0.00			0.0	0.0	0.00	
	72.60		1.12	1.12	5.8	5.8	12.6	0.13	
T/L	73.85	1	2.37	1.25	5.5	11.3	18.4	0.17	
0.15m Ponding	74.00	948	2.52	0.15	49.3	60.6	18.9	0.89	
0.30m Ponding	74.15	2907.0	2.67	0.15	275.8	336.4	19.5	4.79	

* V=Incremental storage volume **V_{acc}=Total surface and sub-surface

 $\uparrow Q_{\text{release}} = \text{Release rate calculated from orifice equation}$

Orifice Location Total Area C

 CBMH 119
 Dia
 75

 0.60
 ha
 0.90
 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	156.8	19.1	137.8	82.7	178.6	298.6	19.4	279.2	167.
15	83.6	125.8	19.1	106.7	96.0	142.9	239.0	19.4	219.6	197.0
20	70.3	105.7	19.1	86.7	104.0	120.0	200.6	19.4	181.2	217.4
25	60.9	91.6	19.1	72.6	108.9	103.8	173.7	19.4	154.3	231.4
30	53.9	81.2	19.1	62.1	111.8	91.9	153.6	19.4	134.2	241.6
35	48.5	73.0	19.1	54.0	113.3	82.6	138.1	19.4	118.7	249.3
40	44.2	66.5	19.1	47.4	113.8	75.1	125.7	19.4	106.3	255.
45	40.6	61.1	19.1	42.1	113.6	69.1	115.5	19.4	96.1	259.4
50	37.7	56.7	19.1	37.6	112.8	64.0	106.9	19.4	87.6	262.
55	35.1	52.9	19.1	33.8	111.5	59.6	99.7	19.4	80.3	265.
60	32.9	49.6	19.1	30.5	109.9	55.9	93.5	19.4	74.1	266.
65	31.0	46.7	19.1	27.7	107.9	52.6	88.0	19.4	68.7	267.8
70	29.4	44.2	19.1	25.1	105.6	49.8	83.3	19.4	63.9	268.3
75	27.9	42.0	19.1	22.9	103.1	47.3	79.0	19.4	59.6	268.4
80	26.6	40.0	19.1	20.9	100.4	45.0	75.2	19.4	55.9	268.
85	25.4	38.2	19.1	19.1	97.5	43.0	71.8	19.4	52.5	267.
90	24.3	36.6	19.1	17.5	94.5	41.1	68.7	19.4	49.4	266.
95	23.3	35.1	19.1	16.0	91.3	39.4	65.9	19.4	46.6	265.
100	22.4	33.7	19.1	14.7	88.0	37.9	63.4	19.4	44.0	264.
105	21.6	32.5	19.1	13.4	84.6	36.5	61.0	19.4	41.7	262.
110	20.8	31.3	19.1	12.3	81.0	35.2	58.9	19.4	39.5	260.

5-year Q _{attenuated}	19.06 L/s	100-year Q _{attenuated}	19.37 L/s
5-year Max. Storage Required	113.8 m ³	100-year Max. Storage Required	268.4 m ³
Est. 5-year Storage Elevation	74.03 m	Est. 100-year Storage Elevation	74.11 m

Area ID A120

Available Sub-surface Storage Maintenance Structures

	ID	MH 120	MH 121	CB 120A	CB 120B	CB 121A
	Structure Dia./Area (mm/mm ²)	1200	1200	360	360	360
	T/L*	73.85	73.85	74.05	74.05	74.05
	INV	72.19	71.97	72.55	72.55	72.55
	Depth	1.66	1.88	1.50	1.50	1.50
	V _{structure} (m ³)	1.9	2.1	0.2	0.2	0.2
						-
Sewers	ID	250mm	450mm		U/G STORG	
	Storage Pipe Dia (mm)	250	450			
	L (m)	43.7	47.5			
	V _{sewer} (m ³)	2.1	7.6		165.0	
		*Top of lid o	r max pondir	ng elevation	74.30	

Total Subsurface Storage (m³) 179.3

Stage Attenuated Areas Storage Summary_

		Surface Storage			Surfa	ice and Sub	surface Sto	rage
	Stage	Ponding	h。	delta d	۷*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m ²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	71.97		0.00			0.0	0.0	0.00
Storage Pipe OBV	72.46		0.49	0.49	174.7	174.7	4.5	10.78
T/L	74.05	1	2.08	1.59	4.6	179.3	10.5	4.74
0.15m Ponding	74.20	440	2.23	0.15	23.1	202.4	10.8	5.21
0.25m Ponding	74.30	1264.0	2.33	0.10	81.7	284.1	11.0	7.17
								_

* V=Incremental storage volume

**V_{acc}=Total surface and sub-surface

 \dagger Q_{release} = Release rate per IPEX TEMPEST LMF flow curves graph

Orifice Location Total Area MH 121 TEMPEST LMF 90

с

0.39 ha 0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	112.0	10.0	102.0	61.2	178.6	207.7	10.9	196.8	118.1
20	70.3	115.6	10.0	105.6	126.7	120.0	143.9	10.9	133.0	159.6
25	60.9	101.5	10.0	91.5	137.3	103.8	126.4	10.9	115.5	173.2
30	53.9	91.1	10.0	81.1	145.9	91.9	113.3	10.9	102.4	184.3
35	48.5	82.9	10.0	72.9	153.1	82.6	103.2	10.9	92.3	193.8
40	44.2	76.4	10.0	66.4	159.3	75.1	95.1	10.9	84.2	202.1
45	40.6	71.0	10.0	61.0	164.8	69.1	88.5	10.9	77.6	209.4
50	37.7	65.8	10.0	55.8	167.4	64.0	82.9	10.9	72.0	216.1
55	35.1	61.3	10.0	51.3	169.4	59.6	78.2	10.9	67.3	222.1
60	32.9	57.5	10.0	47.5	170.9	55.9	74.1	10.9	63.2	227.7
65	31.0	54.1	10.0	44.1	172.1	52.6	70.6	10.9	59.7	232.9
70	29.4	51.2	10.0	41.2	173.0	49.8	67.4	10.9	56.5	237.2
75	27.9	48.6	10.0	38.6	173.6	47.3	63.9	10.9	53.0	238.5
80	26.6	46.3	10.0	36.3	174.0	45.0	60.8	10.9	49.9	239.5
85	25.4	44.2	10.0	34.2	174.2	43.0	58.0	10.9	47.1	240.3
90	24.3	42.3	10.0	32.3	174.2	41.1	55.5	10.9	44.6	240.8
95	23.3	40.5	10.0	30.5	174.1	39.4	53.2	10.9	42.3	241.2
100	22.4	39.0	10.0	29.0	173.8	37.9	51.1	10.9	40.2	241.4
105	21.6	37.5	10.0	27.5	173.4	36.5	49.2	10.9	38.3	241.4
110	20.8	36.2	10.0	26.2	172.9	35.2	47.5	10.9	36.6	241.2
115	20.1	35.0	10.0	25.0	172.3	34.0	45.8	10.9	34.9	241.0

‡ Includes controlled flow from BLDG-B

5-year Q _{attenuated}	4.49 L/s	100-year Q _{attenuated}	10.90 L/s
5-year Max. Storage Required	174.2 m ³	100-year Max. Storage Required	241.4 m ³
Est. 5-year Storage Elevation	72.46 m	Est. 100-year Storage Elevation	74.25 m

Area ID A100, A101

Available Sub-surface Storage Maintenance Structures

	_					
	ID	MH 100	MH 101	DCB 100A	DCB 100B	CB 101A
	Structure Dia./Area (mm/mm ²)	1200	1200	720	720	360
	T/L*	74.13	74.05	74.00	74.00	74.00
	INV	71.95	71.50	72.50	72.50	72.50
	Depth	2.18	2.55	1.50	1.50	1.50
	V _{structure} (m ³)	2.5	2.9	0.8	0.8	0.2
				-		•
Sewers	ID	250mm	375mm		U/G STORG	
	Storage Pipe Dia (mm)	250	375			
	L (m)	12.3	46.4			
	V _{sewer} (m ³)	0.6	5.1		239.0	
	-	*Top of lid o	r max pondir	ng elevation	74.20	

Total Subsurface Storage (m³) 251.8

Stage Attenuated Areas Storage Summary_

		Surface Storage			Surfa	ice and Sub	surface Sto	rage
	Stage	Ponding	h₀	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	71.50		0.00			0.0	0.0	0.00
Storage Pipe OBV	72.03		0.53	0.53	244.7	244.7	3.5	19.42
T/L	74.00	2	2.50	1.97	7.1	251.8	5.9	11.86
0.10m Ponding	74.10	208	2.60	0.10	7.6	259.5	6.0	12.01
0.20m Ponding	74.20	782.0	2.70	0.10	46.4	305.9	6.2	13.71

* V=Incremental storage volume

**V_{acc}=Total surface and sub-surface

 \dagger Q $_{\rm release}$ = Release rate per IPEX TEMPEST LMF flow curves graph

MH 101 TEMPEST LMF 65 Orifice Location

Total Area с
 0.51 ha
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

Γ	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	133.9	2.3	131.6	79.0	178.6	255.0	6.1	248.9	149.3
15	83.6	107.4	2.3	105.1	94.6	142.9	204.1	6.1	198.0	178.2
20	70.3	90.3	2.3	88.0	105.6	120.0	171.3	6.1	165.2	198.2
25	60.9	78.3	2.3	76.0	114.0	103.8	148.3	6.1	142.2	213.3
30	53.9	69.3	2.3	67.0	120.6	91.9	131.2	6.1	125.1	225.1
35	48.5	62.4	2.3	60.1	126.1	82.6	117.9	6.1	111.8	234.8
40	44.2	56.8	2.3	54.5	130.8	75.1	107.3	6.1	101.2	242.9
45	40.6	52.2	2.3	49.9	134.8	69.1	98.6	6.1	92.5	249.7
50	37.7	48.4	2.3	46.1	138.3	64.0	91.3	6.1	85.2	255.6
55	35.1	45.2	2.3	42.8	141.4	59.6	85.2	6.1	79.0	260.8
60	32.9	42.3	2.3	40.0	144.1	55.9	79.8	6.1	73.7	265.3
65	31.0	39.9	2.3	37.6	146.6	52.6	75.2	6.1	69.1	269.3
70	29.4	37.8	2.3	35.4	148.9	49.8	71.1	6.1	65.0	272.9
75	27.9	35.9	2.3	33.5	150.9	47.3	67.5	6.1	61.4	276.1
80	26.6	34.1	2.3	31.8	152.8	45.0	64.3	6.1	58.1	279.0
85	25.4	32.6	2.3	30.3	154.5	43.0	61.4	6.1	55.2	281.6
90	24.3	31.2	2.3	28.9	156.1	41.1	58.7	6.1	52.6	283.9
95	23.3	30.0	2.3	27.7	157.6	39.4	56.3	6.1	50.2	286.1
100	22.4	28.8	2.3	26.5	159.0	37.9	54.1	6.1	48.0	288.0
105	21.6	27.7	2.3	25.4	160.2	36.5	52.1	6.1	46.0	289.8
110	20.8	26.8	2.3	24.5	161.4	35.2	50.3	6.1	44.1	291.3
		5-yea	ar Q _{attenuated}	2.31	L/s		100-yea	r Q _{attenuated}	6.14 L	/s

5-year Max. Storage Required Est. 5-year Storage Elevation

161.4 m³ 71.85 m

100-year Max. Storage Required Est. 100-year Storage Elevation 291.3 m³ 74.17 m

Area ID A109

Available Sub-surface Storage Maintenance Structures

	ID	MH 109	MH 110	CB 109A	CB 109B	CB 109C	CB 109D
	Structure Dia./Area (mm/mm ²)	1200	1200	360	360	360	360
	T/L*	73.25	73.21	73.05	73.20	73.20	73.20
	INV	71.23	70.78	71.55	71.70	71.70	71.70
	Depth	2.02	2.43	1.50	1.50	1.50	1.50
	V _{structure} (m ³)	2.3	2.7	0.2	0.2	0.2	0.2
	• structure (···· /	2.0	2.1	0.2	0.2	0.2	0.2
	• structure (···· /	2.0	2.1	0.2	0.2	0.2	0.2
Sewers	· structure (····)	250mm	375mm		U/G STORG		0.2
Sewers		250mm					0.2
Sewers	ID	250mm	375mm				0.2
Sewers	ID Storage Pipe Dia (mm)	250mm 250	375mm 375				0.2

Total Subsurface Storage (m³) 267.4

Stage Attenuated Areas Storage Summary

		Su	Surface Storage		Surfa	Surface and Subsurface Stor		
	Stage	Ponding	h _o	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	70.78		0.00			0.0	0.0	0.00
Storage Pipe OBV	71.42		0.64	0.64	261.6	261.6	4.0	18.17
T/L	73.05	0	2.27	1.63	5.8	267.4	8.5	8.74
0.15m Ponding	73.20	142	2.42	0.15	7.5	274.9	8.8	8.68
0.30m Ponding	73.35	870.0	2.57	0.15	68.2	343.1	9.2	10.36

* V=Incremental storage volume

**V_{acc}=Total surface and sub-surface † Q_{release} = Release rate per IPEX TEMPEST LMF flow curves graph

Orifice Location Total Area MH 110 TEMPEST LMF 80

с

0.62 ha 0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

Γ	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	161.0	2.9	158.0	94.8	178.6	306.5	9.2	297.4	178.4
15	83.6	129.1	2.9	126.1	113.5	142.9	245.3	9.2	236.1	212.5
20	70.3	108.5	2.9	105.6	126.7	120.0	205.9	9.2	196.7	236.1
25	60.9	94.1	2.9	91.1	136.7	103.8	178.3	9.2	169.1	253.6
30	53.9	83.3	2.9	80.4	144.7	91.9	157.7	9.2	148.5	267.4
35	48.5	75.0	2.9	72.0	151.2	82.6	141.8	9.2	132.6	278.4
40	44.2	68.3	2.9	65.3	156.8	75.1	129.0	9.2	119.8	287.6
45	40.6	62.8	2.9	59.8	161.5	69.1	118.5	9.2	109.4	295.3
50	37.7	58.2	2.9	55.2	165.7	64.0	109.8	9.2	100.6	301.8
55	35.1	54.3	2.9	51.3	169.3	59.6	102.4	9.2	93.2	307.5
60	32.9	50.9	2.9	47.9	172.6	55.9	96.0	9.2	86.8	312.4
65	31.0	48.0	2.9	45.0	175.6	52.6	90.4	9.2	81.2	316.7
70	29.4	45.4	2.9	42.4	178.2	49.8	85.5	9.2	76.3	320.5
75	27.9	43.1	2.9	40.1	180.6	47.3	81.1	9.2	71.9	323.8
80	26.6	41.0	2.9	38.1	182.8	45.0	77.2	9.2	68.1	326.7
85	25.4	39.2	2.9	36.2	184.9	43.0	73.7	9.2	64.6	329.3
90	24.3	37.5	2.9	34.6	186.7	41.1	70.6	9.2	61.4	331.6
95	23.3	36.0	2.9	33.1	188.4	39.4	67.7	9.2	58.5	333.6
100	22.4	34.6	2.9	31.7	190.0	37.9	65.1	9.2	55.9	335.4
105	21.6	33.3	2.9	30.4	191.5	36.5	62.7	9.2	53.5	336.9
110	20.8	32.2	2.9	29.2	192.9	35.2	60.4	9.2	51.3	338.3
		5-yea	ar Q _{attenuated}	2.95	L/s		100-yea	r Q _{attenuated}	9.17 L	./s

	5-year	Qattenuated	
ear Max.	Storage	Required	1

5-year Max. Storage Required Est. 5-year Storage Elevation

192.9 m³ 71.25 m

100-year Max. Storage Required Est. 100-year Storage Elevation 338.3 m³ 73.34 m Estimated Post Development Peak Flow from Attenuated Areas

Area ID Available So Maintenance	A122 ub-surface Storage e Structures				
	ID	CBMH 122	DCB 122A	DCB 122B	
	Structure Dia./Area (mm/mm ²)	1200	720	720	
	T/L*	71.70	71.70	71.70	
	INV	69.77	70.20	70.20	
	Depth	1.93	1.50	1.50	
	V _{structure} (m ³)	2.2	0.8	0.8	
Sewers	ID	250mm			U/G STORG.
	Storage Pipe Dia (mm)	250			
	L (m)	69.6			
	V _{sewer} (m ³)	3.4			250.0
		*Top of lid o	r max pondir	ng elevation	72.00

Total Subsurface Storage (m³) 257.2

Stage Attenuated Areas Storage Summary

		Su	Irface Stora	ge	Surface and Subsurface Storage				
	Stage	Ponding	h。	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m ²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	69.77		0.00			0.0	0.0	0.00	
Storage Pipe OBV	70.44		0.67	0.67	253.4	253.4	9.8	7.20	
T/L	71.70	2	1.93	1.26	3.7	257.2	16.6	4.31	
0.15m Ponding	71.85	1,348	2.08	0.15	70.0	327.1	17.2	5.28	
0.30m Ponding	72.00	3690	2.23	0.15	363.4	690.5	17.8	10.76	

* V=Incremental storage volume **V_{acc}=Total surface and sub-surface

 $\uparrow Q_{\text{release}} = \text{Release rate calculated from orifice equation}$

 Orifice Location Total Area
 CBMH 122
 Dia
 75

 1.22
 ha
 0.90
 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

i m/hr) 104.2 70.3 53.9 44.2 37.7 32.9 29.4 26.6 24.3 22.4 20.8	Q _{actual} ‡ (L/s) 318.0 214.4 164.6 134.9 114.9 100.6 89.7 81.1 74.1 68.4 63.6	Q _{release} (L/s) 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	Q _{stored} (L/s) 300.9 197.3 147.4 117.7 97.8 83.4 72.5 63.9 57.0 57.0	V _{stored} (m ³) 180.5 236.7 265.4 282.5 293.3 300.2 300.4 300.4 306.7 307.6 307.3	i (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 49.8 45.0 49.8 45.0 41.1 37.9	Q _{actual} ‡ (L/s) 605.6 406.8 311.6 254.9 216.9 189.6 168.9 152.6 139.4 128.6	Q _{release} (L/s) 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8	Q _{stored} (L/s) 587.8 389.0 293.8 237.1 199.1 171.8 151.1 134.8 151.1 134.8 121.6 440 7	V _{stored} (m ³) 352.7 466.8 528.8 568.9 597.3 618.3 634.4 646.9 656.7
104.2 70.3 53.9 44.2 37.7 32.9 29.4 26.6 24.3 22.4 20.8	(L/s) 318.0 214.4 164.6 134.9 114.9 100.6 89.7 81.1 74.1 68.4	(L/s) 17.2	(L/s) 300.9 197.3 147.4 117.7 97.8 83.4 72.5 63.9 57.0 51.2	180.5 236.7 265.4 282.5 293.3 300.2 304.4 306.7 307.6	178.6 120.0 91.9 75.1 64.0 55.9 49.8 45.0 41.1	(L/s) 605.6 406.8 311.6 254.9 216.9 189.6 168.9 152.6 139.4	(L/s) 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8	(L/s) 587.8 389.0 293.8 237.1 199.1 171.8 151.1 134.8 121.6	352.7 466.8 528.8 568.9 597.3 618.3 634.4 646.9 656.7
70.3 53.9 44.2 37.7 32.9 29.4 26.6 24.3 22.4 20.8	214.4 164.6 134.9 114.9 100.6 89.7 81.1 74.1 68.4	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	197.3 147.4 117.7 97.8 83.4 72.5 63.9 57.0 51.2	236.7 265.4 282.5 293.3 300.2 304.4 306.7 307.6	120.0 91.9 75.1 64.0 55.9 49.8 45.0 41.1	406.8 311.6 254.9 216.9 189.6 168.9 152.6 139.4	17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8	389.0 293.8 237.1 199.1 171.8 151.1 134.8 121.6	466.8 528.8 568.9 597.3 618.3 634.4 646.9 656.7
53.9 44.2 37.7 32.9 29.4 26.6 24.3 22.4 20.8	164.6 134.9 114.9 100.6 89.7 81.1 74.1 68.4	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	147.4 117.7 97.8 83.4 72.5 63.9 57.0 51.2	265.4 282.5 293.3 300.2 304.4 306.7 307.6	91.9 75.1 64.0 55.9 49.8 45.0 41.1	311.6 254.9 216.9 189.6 168.9 152.6 139.4	17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8	293.8 237.1 199.1 171.8 151.1 134.8 121.6	528.8 568.9 597.3 618.3 634.4 646.9 656.7
44.2 37.7 32.9 29.4 26.6 24.3 22.4 20.8	134.9 114.9 100.6 89.7 81.1 74.1 68.4	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	117.7 97.8 83.4 72.5 63.9 57.0 51.2	282.5 293.3 300.2 304.4 306.7 307.6	75.1 64.0 55.9 49.8 45.0 41.1	254.9 216.9 189.6 168.9 152.6 139.4	17.8 17.8 17.8 17.8 17.8 17.8 17.8	237.1 199.1 171.8 151.1 134.8 121.6	568.9 597.3 618.3 634.4 646.9 656.7
37.7 32.9 29.4 26.6 24.3 22.4 20.8	114.9 100.6 89.7 81.1 74.1 68.4	17.2 17.2 17.2 17.2 17.2 17.2 17.2	97.8 83.4 72.5 63.9 57.0 51.2	293.3 300.2 304.4 306.7 307.6	64.0 55.9 49.8 45.0 41.1	216.9 189.6 168.9 152.6 139.4	17.8 17.8 17.8 17.8 17.8 17.8	199.1 171.8 151.1 134.8 121.6	597.3 618.3 634.4 646.9 656.7
32.9 29.4 26.6 24.3 22.4 20.8	100.6 89.7 81.1 74.1 68.4	17.2 17.2 17.2 17.2 17.2 17.2	83.4 72.5 63.9 57.0 51.2	300.2 304.4 306.7 307.6	55.9 49.8 45.0 41.1	189.6 168.9 152.6 139.4	17.8 17.8 17.8 17.8 17.8	171.8 151.1 134.8 121.6	618.3 634.4 646.9 656.7
29.4 26.6 24.3 22.4 20.8	89.7 81.1 74.1 68.4	17.2 17.2 17.2 17.2	72.5 63.9 57.0 51.2	304.4 306.7 307.6	49.8 45.0 41.1	168.9 152.6 139.4	17.8 17.8 17.8	151.1 134.8 121.6	634.4 646.9 656.7
26.6 24.3 22.4 20.8	81.1 74.1 68.4	17.2 17.2 17.2	63.9 57.0 51.2	306.7 307.6	45.0 41.1	152.6 139.4	17.8 17.8	134.8 121.6	646.9 656.7
24.3 22.4 20.8	74.1 68.4	17.2 17.2	57.0 51.2	307.6	41.1	139.4	17.8	121.6	656.7
22.4 20.8	68.4	17.2	51.2						
20.8				307.3	37.9	100.6	47.0	440.7	
	63.6	17.0				120.0	17.8	110.7	664.4
		17.2	46.4	306.1	35.2	119.4	17.8	101.6	670.4
19.5	59.4	17.2	42.2	304.2	32.9	111.6	17.8	93.8	675.0
18.3	55.8	17.2	38.7	301.6	30.9	104.8	17.8	87.0	678.4
17.3	52.7	17.2	35.5	298.5	29.2	98.9	17.8	81.1	680.9
16.4	49.9	17.2	32.8	294.9	27.6	93.6	17.8	75.8	682.5
15.6	47.5	17.2	30.3	291.0	26.2	89.0	17.8	71.2	683.3
14.8	45.3	17.2	28.1	286.6	25.0	84.8	17.8	67.0	683.5
14.2	43.3	17.2	26.1	282.0	23.9	81.1	17.8	63.3	683.1
13.6	41.5	17.2	24.3	277.1	22.9	77.7	17.8	59.8	682.2
13.0	39.8	17.2	22.7	271.9	22.0	74.6	17.8	56.7	680.9
12.6	38.3	17.2	21.2	266.5	21.1	71.7	17.8	53.9	679.1
	15.6 14.8 14.2 13.6 13.0	15.6 47.5 14.8 45.3 14.2 43.3 13.6 41.5 13.0 39.8	15.6 47.5 17.2 14.8 45.3 17.2 14.2 43.3 17.2 13.6 41.5 17.2 13.0 39.8 17.2	15.6 47.5 17.2 30.3 14.8 45.3 17.2 28.1 14.2 43.3 17.2 26.1 13.6 41.5 17.2 24.3 13.0 39.8 17.2 22.7	15.6 47.5 17.2 30.3 291.0 14.8 45.3 17.2 28.1 286.6 14.2 43.3 17.2 26.1 282.0 13.6 41.5 17.2 24.3 277.1 13.0 39.8 17.2 22.7 271.9	15.6 47.5 17.2 30.3 291.0 26.2 14.8 45.3 17.2 28.1 286.6 25.0 14.2 43.3 17.2 26.1 282.0 23.9 13.6 41.5 17.2 24.3 277.1 22.9 13.0 39.8 17.2 22.7 271.9 22.0	15.6 47.5 17.2 30.3 291.0 26.2 89.0 14.8 45.3 17.2 28.1 286.6 25.0 84.8 14.2 43.3 17.2 26.1 282.0 23.9 81.1 13.6 41.5 17.2 24.3 277.1 22.9 77.7 13.0 39.8 17.2 22.7 271.9 22.0 74.6	15.6 47.5 17.2 30.3 291.0 26.2 89.0 17.8 14.8 45.3 17.2 28.1 286.6 25.0 84.8 17.8 14.2 43.3 17.2 26.1 286.0 23.9 81.1 17.8 13.6 41.5 17.2 24.3 277.1 22.9 77.7 17.8 13.0 39.8 17.2 22.7 271.9 22.0 74.6 17.8	15.6 47.5 17.2 30.3 291.0 26.2 89.0 17.8 71.2 14.8 45.3 17.2 28.1 286.6 25.0 84.8 17.8 67.0 14.2 43.3 17.2 26.1 282.0 23.9 81.1 17.8 63.3 13.6 41.5 17.2 24.3 277.1 22.9 77.7 17.8 59.8 13.0 39.8 17.2 22.7 271.9 22.0 74.6 17.8 56.7

5-year Q _{attenuated}	17.04 L/s	100-year Q _{attenuated}
5-year Max. Storage Required	307.6 m ³	100-year Max. Storage Required
Est. 5-year Storage Elevation	71.81 m	Est. 100-year Storage Elevation

683.5 m³

72.00 m

Area ID A103-A

Available Sub-surface Storage Maintenance Structures

0.2

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary_

		Sı	Irface Stora	ge	Surface and Subsurface Storage				
	Stage	Ponding	h₀	delta d	V*	V _{acc} **	Q _{release} +	V _{drawdown}	
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	73.00		0.00			0.0	0.0	0.00	
T/L	74.50	0	1.50	1.50	0.2	0.2	3.2	0.02	
0.05m Ponding	74.55	10	1.55	0.05	0.2	0.4	3.3	0.03	
0.20m Ponding	74.70	139.0	1.70	0.15	9.3	9.7	3.5	0.77	

* V=Incremental storage volume

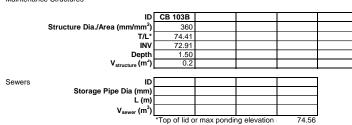
**V_{acc}=Total surface and sub-surface \dagger Q $_{\rm release}$ = Release rate per IPEX TEMPEST LMF flow curves graph

CB 103A TEMPEST LMF 55 Orifice Location 0.03 ha

Total Area с

0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	8.3	3.4	5.0	3.0	178.6	15.9	3.5	12.4	7.4
15	83.6	6.7	3.4	3.3	3.0	142.9	12.7	3.5	9.2	8.3
20	70.3	5.6	3.4	2.3	2.7	120.0	10.7	3.5	7.2	8.6
25	60.9	4.9	3.4	1.5	2.3	103.8	9.2	3.5	5.8	8.6
30	53.9	4.3	3.4	1.0	1.7	91.9	8.2	3.5	4.7	8.4
35	48.5	3.9	3.4	0.5	1.1	82.6	7.3	3.5	3.9	8.1
40	44.2	3.5	3.4	0.2	0.4	75.1	6.7	3.5	3.2	7.7
45	40.6	3.3	3.3	0.0	0.0	69.1	6.1	3.5	2.7	7.2
50	37.7	3.0	3.0	0.0	0.0	64.0	5.7	3.5	2.2	6.6
55	35.1	2.8	2.8	0.0	0.0	59.6	5.3	3.5	1.8	6.0
60	32.9	2.6	2.6	0.0	0.0	55.9	5.0	3.5	1.5	5.4
65	31.0	2.5	2.5	0.0	0.0	52.6	4.7	3.5	1.2	4.7
70	29.4	2.3	2.3	0.0	0.0	49.8	4.4	3.5	0.9	4.0
75	27.9	2.2	2.2	0.0	0.0	47.3	4.2	3.5	0.7	3.3
80	26.6	2.1	2.1	0.0	0.0	45.0	4.0	3.5	0.5	2.5
85	25.4	2.0	2.0	0.0	0.0	43.0	3.8	3.5	0.3	1.7
90	24.3	1.9	1.9	0.0	0.0	41.1	3.7	3.5	0.2	1.0
95	23.3	1.9	1.9	0.0	0.0	39.4	3.5	3.5	0.0	0.2
100	22.4	1.8	1.8	0.0	0.0	37.9	3.4	3.5	0.0	0.0
105	21.6	1.7	1.7	0.0	0.0	36.5	3.2	3.5	0.0	0.0
110	20.8	1.7	1.7	0.0	0.0	35.2	3.1	3.5	0.0	0.0
		5-yea	ar Q _{attenuated}	3.36 L	./s		100-yea	ar Q _{attenuated}	3.48 L	_/s


5-year Max. Storage Required Est. 5-year Storage Elevation 3.0 m³ 74.59 m

100-year Max. Storage Required Est. 100-year Storage Elevation

8.6 m³ 74.68 m

Area ID A103-B

Available Sub-surface Storage Maintenance Structures

0.2

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary_

		Sı	Irface Stora	ge	Surfa	ace and Sub	surface Sto	rage
	Stage	Ponding	h₀	delta d	V*	V _{acc} **	Q _{release} +	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	72.85		0.00			0.0	0.0	0.00
T/L	74.35	0	1.50	1.50	0.2	0.2	6.0	0.01
0.15m Ponding	74.50	39.0	1.65	0.15	2.2	2.3	6.3	0.10
0.25m Ponding	74.60	136.0	1.75	0.10	8.3	10.6	6.5	0.45

* V=Incremental storage volume

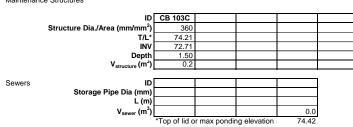
**V_{acc}=Total surface and sub-surface \dagger Q $_{\rm release}$ = Release rate per IPEX TEMPEST LMF flow curves graph

CB 103B TEMPEST LMF 75 Orifice Location

Total Area с

0.04 ha 0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

Γ	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	11.2	6.3	4.9	2.9	178.6	21.3	6.5	14.9	8.9
15	83.6	9.0	6.3	2.7	2.4	142.9	17.1	6.5	10.6	9.5
20	70.3	7.6	6.3	1.2	1.5	120.0	14.3	6.5	7.9	9.4
25	60.9	6.5	6.3	0.2	0.3	103.8	12.4	6.5	5.9	8.9
30	53.9	5.8	5.8	0.0	0.0	91.9	11.0	6.5	4.5	8.1
35	48.5	5.2	5.2	0.0	0.0	82.6	9.9	6.5	3.4	7.1
40	44.2	4.7	4.7	0.0	0.0	75.1	9.0	6.5	2.5	6.0
45	40.6	4.4	4.4	0.0	0.0	69.1	8.2	6.5	1.8	4.8
50	37.7	4.0	4.0	0.0	0.0	64.0	7.6	6.5	1.2	3.5
55	35.1	3.8	3.8	0.0	0.0	59.6	7.1	6.5	0.6	2.1
60	32.9	3.5	3.5	0.0	0.0	55.9	6.7	6.5	0.2	0.7
65	31.0	3.3	3.3	0.0	0.0	52.6	6.3	6.5	0.0	0.0
70	29.4	3.2	3.2	0.0	0.0	49.8	5.9	6.5	0.0	0.0
75	27.9	3.0	3.0	0.0	0.0	47.3	5.6	6.5	0.0	0.0
80	26.6	2.9	2.9	0.0	0.0	45.0	5.4	6.5	0.0	0.0
85	25.4	2.7	2.7	0.0	0.0	43.0	5.1	6.5	0.0	0.0
90	24.3	2.6	2.6	0.0	0.0	41.1	4.9	6.5	0.0	0.0
95	23.3	2.5	2.5	0.0	0.0	39.4	4.7	6.5	0.0	0.0
100	22.4	2.4	2.4	0.0	0.0	37.9	4.5	6.5	0.0	0.0
105	21.6	2.3	2.3	0.0	0.0	36.5	4.4	6.5	0.0	0.0
110	20.8	2.2	2.2	0.0	0.0	35.2	4.2	6.5	0.0	0.0
		5-yea	ar Q _{attenuated}	6.31	L/s		100-yea	r Q _{attenuated}	6.47 L	./s


5-year Q _{attenuated}	6.31 L/s
5-year Max. Storage Required	2.9 m ³
Est. 5-year Storage Elevation	74.51 m

100-year Max. Storage Required Est. 100-year Storage Elevation

9.5 m³ 74.59 m

Area ID A103-C

Available Sub-surface Storage Maintenance Structures

0.2

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary_

		Sı	Irface Stora	ge	Surface and Subsurface Storage				
	Stage	Ponding	ho	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	72.62		0.00			0.0	0.0	0.00	
T/L	74.12	0	1.50	1.50	0.2	0.2	9.8	0.01	
0.15m Ponding	74.27	94	1.65	0.15	5.0	5.2	10.5	0.14	
0.30m Ponding	74.42	428.0	1.80	0.15	36.1	41.3	11.0	1.04	

* V=Incremental storage volume

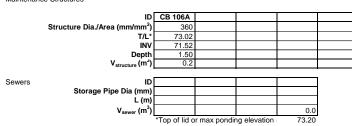
**V_{acc}=Total surface and sub-surface \dagger Q $_{\rm release}$ = Release rate per IPEX TEMPEST LMF flow curves graph

CB 103C TEMPEST LMF 95 Orifice Location 0.13 ha

Total Area с

0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

Γ	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	34.1	10.6	23.5	14.1	178.6	65.0	11.0	54.0	32.4
15	83.6	27.4	10.6	16.7	15.1	142.9	52.0	11.0	41.0	36.9
20	70.3	23.0	10.6	12.4	14.8	120.0	43.6	11.0	32.7	39.2
25	60.9	19.9	10.6	9.3	14.0	103.8	37.8	11.0	26.8	40.2
30	53.9	17.7	10.6	7.0	12.6	91.9	33.4	11.0	22.4	40.4
35	48.5	15.9	10.6	5.3	11.0	82.6	30.0	11.0	19.1	40.0
40	44.2	14.5	10.6	3.8	9.2	75.1	27.3	11.0	16.4	39.3
45	40.6	13.3	10.6	2.7	7.2	69.1	25.1	11.0	14.1	38.2
50	37.7	12.3	10.6	1.7	5.1	64.0	23.3	11.0	12.3	36.9
55	35.1	11.5	10.6	0.9	2.9	59.6	21.7	11.0	10.7	35.3
60	32.9	10.8	10.6	0.2	0.5	55.9	20.3	11.0	9.4	33.7
65	31.0	10.2	10.2	0.0	0.0	52.6	19.2	11.0	8.2	31.9
70	29.4	9.6	9.6	0.0	0.0	49.8	18.1	11.0	7.1	29.9
75	27.9	9.1	9.1	0.0	0.0	47.3	17.2	11.0	6.2	27.9
80	26.6	8.7	8.7	0.0	0.0	45.0	16.4	11.0	5.4	25.8
85	25.4	8.3	8.3	0.0	0.0	43.0	15.6	11.0	4.6	23.7
90	24.3	8.0	8.0	0.0	0.0	41.1	15.0	11.0	4.0	21.5
95	23.3	7.6	7.6	0.0	0.0	39.4	14.3	11.0	3.4	19.2
100	22.4	7.3	7.3	0.0	0.0	37.9	13.8	11.0	2.8	16.8
105	21.6	7.1	7.1	0.0	0.0	36.5	13.3	11.0	2.3	14.5
110	20.8	6.8	6.8	0.0	0.0	35.2	12.8	11.0	1.8	12.0
		5-yea	ar Q _{attenuated}	10.64 l	_/s		100-yea	r Q _{attenuated}	10.99 L	/s


5-year Q_{attenuated} 5-year Max. Storage Required Est. 5-year Storage Elevation

15.1 m³ 74.31 m

100-year Q_{attenuated} 100-year Max. Storage Required Est. 100-year Storage Elevation 40.4 m³ 74.42 m

Area ID A106

Available Sub-surface Storage Maintenance Structures

0.2

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary

		Su	Irface Stora	ge	Surface and Subsurface Storage				
	Stage	Ponding	h。	delta d	۷*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	71.52		0.00			0.0	0.0	0.00	
T/L	73.02	0	1.50	1.50	0.2	0.2	23.5	0.00	
0.15m Ponding	73.07	30	1.55	0.05	0.6	0.8	23.8	0.01	
0.30m Ponding	73.20	94.0	1.68	0.13	7.7	8.4	24.8	0.09	

* V=Incremental storage volume

**V_{acc}=Total surface and sub-surface

95

 \dagger Q $_{\rm release}$ = Release rate per IPEX TEMPEST LMF flow curves graph

Orifice Location CB 106A Dia

Total Area 0.28 ha с

0.20 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

Γ	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	15.9	15.7	0.2	0.1	178.6	34.1	24.5	9.6	5.8
15	83.6	12.8	12.8	0.0	0.0	142.9	27.3	24.5	2.8	2.5
20	70.3	10.7	10.7	0.0	0.0	120.0	22.9	24.5	0.0	0.0
25	60.9	9.3	9.3	0.0	0.0	103.8	19.8	24.5	0.0	0.0
30	53.9	8.2	8.2	0.0	0.0	91.9	17.5	24.5	0.0	0.0
35	48.5	7.4	7.4	0.0	0.0	82.6	15.8	24.5	0.0	0.0
40	44.2	6.8	6.8	0.0	0.0	75.1	14.4	24.5	0.0	0.0
45	40.6	6.2	6.2	0.0	0.0	69.1	13.2	24.5	0.0	0.0
50	37.7	5.8	5.8	0.0	0.0	64.0	12.2	24.5	0.0	0.0
55	35.1	5.4	5.4	0.0	0.0	59.6	11.4	24.5	0.0	0.0
60	32.9	5.0	5.0	0.0	0.0	55.9	10.7	24.5	0.0	0.0
65	31.0	4.7	4.7	0.0	0.0	52.6	10.1	24.5	0.0	0.0
70	29.4	4.5	4.5	0.0	0.0	49.8	9.5	24.5	0.0	0.0
75	27.9	4.3	4.3	0.0	0.0	47.3	9.0	24.5	0.0	0.0
80	26.6	4.1	4.1	0.0	0.0	45.0	8.6	24.5	0.0	0.0
85	25.4	3.9	3.9	0.0	0.0	43.0	8.2	24.5	0.0	0.0
90	24.3	3.7	3.7	0.0	0.0	41.1	7.9	24.5	0.0	0.0
95	23.3	3.6	3.6	0.0	0.0	39.4	7.5	24.5	0.0	0.0
100	22.4	3.4	3.4	0.0	0.0	37.9	7.2	24.5	0.0	0.0
105	21.6	3.3	3.3	0.0	0.0	36.5	7.0	24.5	0.0	0.0
110	20.8	3.2	3.2	0.0	0.0	35.2	6.7	24.5	0.0	0.0

5-year Max. Storage Required Est. 5-year Storage Elevation

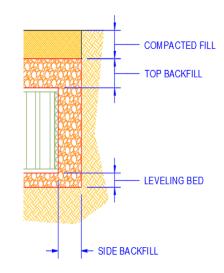
0.1 m³ 72.52 m

100-year Max. Storage Required Est. 100-year Storage Elevation 5.8 m³ 73.15 m

Summary of Release Rates and Storage Volumes

Control Area	Drainage Area	Inlet Control	5-Year Release	5-Year Required	100-Year Release	100-Year Required	100-Year Available
	(Ha)	Device	Rate (L/s)	Storage (m ³)	Rate (L/s)	Storace (m ³)	Storace (m ³)
Unattenuated Areas (U1)	0.028		2.0	0.0	4.4	0.0	0.0
Roof Controls (BLDG-A)	0.407		24.2	56.7	32.0	129.4	322.2
Attenutated Areas (A118+A119)	0.602	75	19.1	113.8	19.4	268.4	336.4
Attenutated Areas (A120+BLDG-B)	0.482	TEMPEST LMF 90	4.5	174.2	10.9	241.4	284.1
Attenutated Areas (A100+A101)	0.514	TEMPEST LMF 65	2.3	161.4	6.1	291.3	305.9
Attenutated Areas (A109)	0.618	TEMPEST LMF 80	2.9	192.9	9.2	338.3	343.1
Attenutated Areas (A122)	1.221	75	17.0	307.6	17.8	683.5	690.5
Attenutated Areas (A103-A)	0.032	TEMPEST LMF 55	3.4	3.0	3.5	8.6	9.7
Attenutated Areas (A103-B)	0.043	TEMPEST LMF 75	6.3	2.9	6.5	9.5	10.6
Attenutated Areas (A103-C)	0.131	TEMPEST LMF 95	10.6	15.1	11.0	40.4	41.3
Attenutated Areas (A106)	0.275	95	15.7	0.1	24.5	5.8	8.4
Total	4.355		108.1	1027.8	145.2	2016.7	2352.2

STORMTANK Module Volume Calculator


	Project Name:		A12	0			Mod	ule	
				- .		Length:		28	m
	Engineer:			Date:		Width:		12	m
	Units:	SI	Shape:	Square/R	ectangle		Excava	ition	
						Length:		28.5	m
	Liner:	No	Location:	N/	Ά	Width:		12.5	m
	Stacking:	Single	Height:	914	4.4	suo	Stor	ne	
6						Leveling Be Top Backfill Compacted	d:	0	m
Inputs	Stone Storage:		All	Porosity:	40%	Top Backfill	l: _	0	m
L L						Compacted	l Fill:	0	m
				Result	S				
Ca	pacity:								
	Stone Storage Vo	olume:	7.41	_m^3	Sto	rage Capacity	Ratio		
	Module Storage	Volume:	298.47	_m^3					
	Total Storage Vo	lume:	305.88	_m^3					
_						2%			
Qu	antities:								
	Required Excava	tion:	325.76	_m^3					
	Required Stone	Volume:	18.52	_m^3		98%			
	Estimated Geote	extile:	1,702.93	_m^2					
	Estimated Liner:		0.00	m^2	Stone Storage		ule Storage	Volumo:	
	(Estimations include	10% for scrap	o and overlap)				are storage	e volume.	

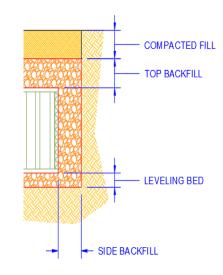
Component Quantities:

	Bottom Layer	Top Layer	Total
Height	914.4	N/A	914.4
# of Modules	804	N/A	804
# of Platens	1,607	N/A	1,607
# of Side Panels	175	N/A	175
# of Columns	6,429	N/A	6,429
# of Stacking Pins	0	N/A	0

Basin Detail

STORMANN Module Volume Calculator

	Project Name:		A100, A	101			Мо	dule	
	Engineer:			Date:			igth: dth:	26 17.5	m m
	Units:	SI	Shape:	Square/R	ectangle		Exca	vation	
							igth:	26.5	m
	Liner:	No	Location:	N/	A	Wio	dth:	18	m
	Stacking:	Single	Height:	914	1.4	suc	St	one	
S						Dimensions Dimensions	eling Bed:	0	m
Inputs	Stone Storage:		All	Porosity:	40%	and a set	o Backfill:	0	m
<u>-</u>						Cor	mpacted Fill:	0	m
				Result	S				
Ca	pacity:								
-	Stone Storage Vo	olume:	8.05	m^3	Sto	rage Ca	pacity Ratio)	
	Module Storage	Volume:	404.18	m^3	0.0				
	Total Storage Vol	lume:	412.23	m^3					
Qu	antities:						2%		
	Required Excavat	tion:	436.17	m^3			U A		
	Required Stone V	/olume:	20.12	m^3		98	3%		
	Estimated Geote	xtile:	2,249.93	_m^2					
	Estimated Liner:		0.00	_m^2	Stone Storag	e Volume:	Module Stora	ige Volume:	

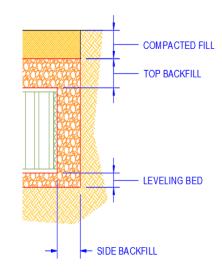

(Estimations include 10% for scrap and overlap)

	Bottom	Тор	Total
	Layer	Layer	
Height	914.4	N/A	914.4
# of Modules	1,088	N/A	1,088
# of Platens	2,177	N/A	2,177
# of Side Panels	190	N/A	190
# of Columns	8,706	N/A	8,706
# of Stacking Pins	0	N/A	0

Basin Detail

Cross-Section:

STORMTANK Module Volume Calculator

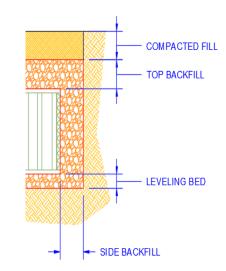

Project Name: A109		09		N	1odule		
					Length:	26	m
	Engineer:		Date:		Width:	13.5	m
	Units: SI	Shape:	Square/R	ectangle	Exc	cavation	
					Length:	26.5	m
	Liner: No	Location:	N	/A	Width:	14	m
	Stacking: Sing	gle Height:	914	4.4	suc	Stone	
10					Eveling Bed:	0	m
Inputs	Stone Storage:	All	Porosity:	40%	Leveling Bed: Top Backfill: Compacted Fill:	0	m
Ing					Compacted Fill:	0	m
			Result	:S			
Ca	pacity:						
	Stone Storage Volume	e: 7.32	m^3	Stora	ge Capacity Rat	io	
	Module Storage Volu	me: 311.79	m^3	01010	Be capacity nat		
	Total Storage Volume	: 319.11	m^3				
					2%		
Qu	antities:						
	Required Excavation:	339.24	m^3				
	Required Stone Volun	ne: 18.29	m^3		98%		
	Estimated Geotextile:	1,767.00	m^2				
	Estimated Liner:	0.00	 m^2				
	(Estimations include 10% f	or scrap and overlap)	_	Stone Storage V	olume: Module Sto	orage Volume:	

Component Quantities:

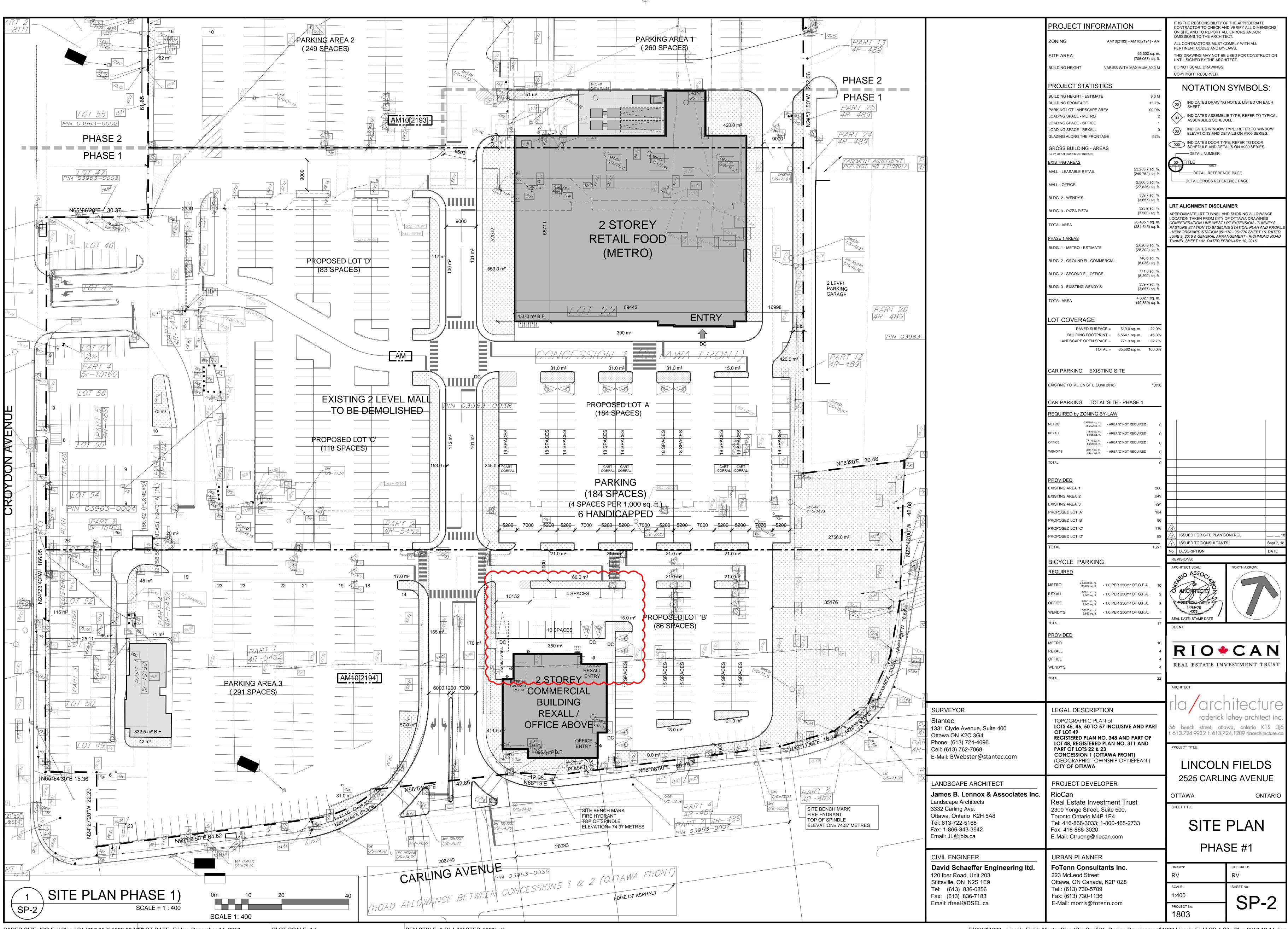
-	Bottom Layer	Top Layer	Total
Height	914.4	N/A	914.4
# of Modules	840	N/A	840
# of Platens	1,679	N/A	1,679
# of Side Panels	173	N/A	173
# of Columns	6,716	N/A	6,716
# of Stacking Pins	0	N/A	0

Basin Detail

STORMTANK Module Volume Calculator


	Project Name:		A12	2			Мо	dule	
						Le	ength:	43	m
	Engineer:			Date:		W	idth:	8	m
	Units:	SI	Shape:	Square/R	ectangle		Excav	vation	
			-			Le	ength:	43.5	m
	Liner:	No	Location:	N/	Ά	W	/idth:	8.5	m
	Stacking:	Single	Height:	914	1.4	ns	Sto	one	
						Le Si	veling Bed:	0	m
Inputs	Stone Storage:		All	Porosity:	40%	Dimensions	p Backfill:	0	m
dul							ompacted Fill:	0	m
	-								
				Result	S				
Caj	pacity:								
	Stone Storage Vo	olume:	9.42	m^3	Sto	rage Ca	apacity Ratio)	
	Module Storage	Volume:	305.58	m^3	010				
	Total Storage Vo	olume:	314.99	m^3					
							3%		
Qu	antities:								
	Required Excava	ition:	338.10	_m^3					
	Required Stone	Volume:	23.55	_m^3			97%		
	Estimated Geote	extile:	1,795.41	m^2					
	Estimated Liner:		0.00	 m^2					
	(Estimations include	10% for scrap	o and overlap)	_	Stone Storag	e volume:	 Module Stora 	ge volume:	

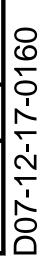
Component Quantities:


-										
		Bottom	Тор	Total						
		Layer	Layer	TOLAI						
	Height	914.4	N/A	914.4						
	# of Modules	823	N/A	823						
	# of Platens	1,646	N/A	1,646						
	# of Side Panels	223	N/A	223						
	# of Columns	6,582	N/A	6,582						
	# of Stacking Pins	0	N/A	0						

Basin Detail

Cross-Section:

DRAWINGS / FIGURES



PAPER SIZE: ISO Full Bleed B1 (707.00 X 1000.00 MIRLOT DATE: Friday, December 14, 2018

PLOT SCALE: 1:1

PEN STYLE: 0-RLA-MASTER-100%.ctb

