

Phase Two Environmental Site Assessment

Lincoln Fields Shopping Centre, 2525 Carling Avenue, Ottawa, Ontario

Submitted to:

Marc Calvé RioCan Management Inc. RioCan Young Eglinton Centre 2300 Young Street, Suite 500 Toronto, ON M4P 1E4

Submitted by:

Golder Associates Ltd. 1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada

+1 613 592 9600

1780158/2000

May 2018

Distribution List

- 1 e-copy RioCan Management Inc.
- 5 copies RioCan Management Inc.
- 1 e-copy Golder

Executive Summary

The Executive Summary highlights key points from the report only; for complete information and findings, as well as the limitations, the reader should examine the complete report.

Golder Associates Ltd. (Golder) was retained by RioCan Management Inc. (RioCan) to carry out a Phase Two Environmental Site Assessment (ESA) of the property located at Lincoln Fields Shopping Centre, 2525 Carling Avenue, Ottawa, Ontario (herein after referred to as the "Site" or "Phase Two Property") as shown on Figure 1. The Site has a total area of approximately 6.6 hectares (16.2 acres). The Site comprises City of Ottawa property identification numbers (PIN) 039630004, 03960007, and 039630038. Golder understands that RioCan is redeveloping the Site as two areas: Area A, the commercial portion of the Site, and Area B, mixed use residential/commercial towers.

Given that the Site land use will change from less sensitive (commercial) to more sensitive (residential) land use there is a mandatory requirement for filing of a Record of Site Condition (RSC) pursuant to *Ontario Regulation 153/04 – Records of Site Condition – Part XV.1 of the Act*, made under the *Environmental Protection Act*. As such, this Phase Two ESA was completed in accordance with the requirements of Schedule E of O.Reg. 153/04 (as amended) to support the filing of an RSC for the Site. The boundaries of the property for which the RSC will be filed (the "RSC Property) and the Phase Two Property are the same. As such, for reference throughout the report, the RSC Property will be referred as the Site.

The Phase Two ESA was carried out at the Site in accordance with O.Reg. 153/04 to address the following eight (8) APECs identified in the 2018 Golder Phase One ESA recently completed for the Site:

- APEC 1 Potential for soil and groundwater impacts due to the presence of a transformer vault on the Site.
 #18. Electricity Generation, Transformation and Power Stations The transformer vault for Lincoln Fields Shopping Centre in the northeast corner of the building.
- APEC 2 Potential for soil and groundwater impacts due to the presence of a pad-mounted transformer on the Site.#18. Electricity Generation, Transformation and Power Stations – One pad-mounted transformer was located in the parking lot on the southwest portion of the Site north of Wendy's.
- APEC 3 Potential for soil and groundwater impacts due to the presence of a hydraulic oil AST associated with the hydraulic elevator.#28. Gasoline and Associated Products in Fixed Tanks – The shopping centre is serviced by one hydraulic lift elevator, with associated hydraulic oil tank, located in the middle of the mall.
- APEC 4 Potential for soil and groundwater impacts due to suspected former dry cleaning activities within the Phase One Property.#37. Operation of Dry Cleaning Equipment (where chemicals are used) – Review of HLUI and Street directories indicated the presence a dry cleaner on-Site. The cleaners currently on-Site are only a drop-off depot.
- APEC 5 Potential for soil and groundwater impacts due to the presence of a bulk storage AST, former oil water separator, and former auto servicing activities.#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops The former Walmart had vehicle servicing bay in the northeast corner of the store operated as a garage for decades. A bulk storage AST in the service bay was identified, as well as an underground oil water separator.

- APEC 6 Potential for soil and groundwater impacts due to the presence of a waste oil AST with visible staining.#28. Gasoline and Associated Products in Fixed Tanks – A waste oil AST was identified in an enclosure outside the former Walmart auto service bays.
- APEC 7 Potential for soil and groundwater impacts due to the presence of fill of unknown quality beneath the Site.#30. Importation of Fill Material of Unknown Quality – The Site was graded with fill of unknown origin during the construction of the shopping centre in 1972.
- APEC 8 Potential for soil and groundwater impacts due to the former presence a retail fuel outlet and garage/#28. Gasoline and Associated Products in Fixed Tanks Records indicate that off-Site adjacent to the northwest of the Site, was a former gasoline service station with USTs.

All eight APECs were investigated during the Phase Two ESA. Based on the completed scope of work and results of the Phase Two ESA, the following conclusions are provided:

- Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (Residential/Parkland/Institutional Property Use, coarse textured soil, April 15, 2011) are considered applicable and were used to assess the environmental quality of soil and groundwater at the Site.
- Soil sampling completed at the Site indicates that none of the soil samples submitted for laboratory analysis of the COCs related to the eight APECs: PHC F1 to F4, VOCs, PAHs, metals, and/or PCBs exceeded the MOECC Table 3 Standards indicating that none of the eight APECs impacted the soil on the Site.
- Groundwater sampling completed at the Site indicates that none of the groundwater samples submitted for laboratory analyses of PHC F1 to F4, VOCs, and/or PCBs exceeded the MOE Table 3 Standards for the parameters analyzed. No odour, sheen or free product was observed or detected in any of the ten wells during the investigation. Therefore, groundwater at the Site meets the site applicable standards at the time of the investigation.
- Based on the results of the soil and groundwater duplicate samples, trip spike, trip and field blanks and the implemented quality assurance and quality control measures during the Phase Two ESA, it is considered that the data obtained during the Phase Two ESA is reliable, reproducible and representative of the Site conditions.
- Based on the results obtained during the Phase Two ESA, soil or groundwater impacts associated with the eight APECs on the Site were not identified and the soil and groundwater quality at the Site meets the applicable standards at the time of the investigation.
- The monitoring wells installed on the Site as part of the Phase Two ESA should be decommissioned in accordance with Ontario Regulation 903 if no longer required.

Table of Contents

EXE	CUTIVI	E SUMMARYi
1.0	INTRO	DUCTION1
	1.1	Site Description1
	1.2	Property Ownership1
	1.3	Current and Proposed Future Uses2
	1.4	Applicable Site Condition Standard2
	1.5	Phase Two ESA Objectives
2.0	BACK	GROUND INFORMATION
	2.1	Physical Setting
	2.2	Past Investigations
	2.2.1	Environmental and Historical Reports4
	2.2.2	Phase One ESA6
3.0	SCOP	E OF THE INVESTIGATION
	3.1	Overview of Site Investigation
	3.2	Media Investigated9
	3.3	Phase One Conceptual Site Model10
	3.4	Deviations from Sampling and Analysis Plan13
	3.5	Impediments13
4.0	INVES	TIGATION METHOD13
	4.1	General13
	4.2	Drilling13
	4.3	Soil: Sampling14
	4.4	Field Screening Measurements15
	4.5	Groundwater: Monitoring Well Installation15
	4.6	Groundwater: Field Measurements for Water Quality Parameters16
	4.7	Groundwater: Water Level Measurement and Sampling17
	4.8	Sediment: Sampling

	4.9	Analytical Testing	18
	4.10	Residue Management Procedures	18
	4.11	Elevation Surveying	18
	4.12	Quality Assurance and Quality Control Measures	18
5.0	REVIE	W AND EVALUATION	20
	5.1	Geology	20
	5.2	Groundwater: Elevations and Flow Direction	21
	5.2.1	Underground Utilities	21
	5.3	Groundwater: Hydraulic Conductivity, Hydraulic Gradients and Velocity	22
	5.3.1	Hydraulic Conductivity	22
	5.3.2	Horizontal Hydraulic Gradients	22
	5.3.3	Vertical Hydraulic Gradients	22
	5.3.4	Groundwater Velocity	22
	5.4	Soil Texture	22
	5.5	Soil: Field Screening	23
	5.6	Soil: Quality	23
	5.7	Groundwater: Quality	24
	5.8	Sediment: Quality	24
	5.9	Quality Assurance and Quality Control Results	24
	5.10	Phase Two Conceptual Site Model	25
	5.10.1	Current and Historical Site Use and Surrounding Land Use	26
	5.10.2	Potential Sources of contamination	26
	5.10.2.	1 Potentially Contaminating Activities	26
	5.10.2.	2 Areas of Potential Environmental Concern	29
	5.10.3	Subsurface Structures and Utilities and Potential Migration of COCs	30
	5.10.4	Physical Setting	30
	5.10.4.	1 Stratigraphy	30
	5.10.4.	2 Hydrogeological Characteristics	31
	5.10.5	Shallow Soil Property or Water Body (as per section 43.1 of O.Reg. 153/04)	32
	5.10.6	Potable Water Wells	32

8.0	LIMITATI	ONS	40	
7.0 REFERENCES				
6.0	CONCLU	SIONS	37	
	5.10.14	Summary of Current On-Site Conditions	36	
	5.10.13	Potential Exposure Pathways and Receptors	36	
	5.10.12	Cross-Sections	36	
	5.10.11	Soil Vapour Intrusion Pathways	36	
	5.10.10	Meteorological and Climatic Considerations	36	
	5.10.9	Findings of the Phase Two ESA (Golder, 2016) with respect to APECs	33	
	5.10.8	Applicable Site Condition Standard	33	
	5.10.7	Environmentally Sensitive Areas (as per section 41 of O.Reg. 153/04)	33	

TABLES EMBEDDED WITHIN REPORT

Table 1-1: Legal Description of Site	1
Table 1-2: Site Ownership Information	1
Table 2-1: Summary of Historical and Environmental Information Review Findings	4

TABLES FOLLOWING REPORT TEXT

- Table 1 Monitoring Well Construction and Groundwater Elevation Details
- Table 2 Summary of Soil Samples Submitted for Laboratory Analysis
- Table 3 Summary of Groundwater Samples Submitted for Laboratory Analysis
- Tables 4A to 4E Soil Analytical Results
- Tables 5A to 5C Groundwater Analytical Results

FIGURES

- Figure 1 Site Plan
- Figure 2 Groundwater Elevations and Interpreted Groundwater Flow Direction
- Figure 3 Cross Section A A'
- Figure 4 Cross Section B B'

APPENDICES

APPENDIX A Plan of Survey

APPENDIX B Sampling and Analysis Plan

APPENDIX C Borehole Logs

APPENDIX D Laboratory Certificates of Analysis

1.0 INTRODUCTION

1.1 Site Description

Golder Associates Ltd. (Golder) was retained by RioCan Management Inc. (RioCan) to carry out a Phase Two Environmental Site Assessment (ESA) of the property located at Lincoln Fields Shopping Centre, 2525 Carling Avenue, Ottawa, Ontario (herein after referred to as the "Site" or "Phase Two Property") as shown on Figure 1. The Site has a total area of approximately 6.6 hectares (16.2 acres). The Site comprises City of Ottawa property identification numbers (PIN) 039630004, 03960007, and 039630038. Golder understands that RioCan is redeveloping the Site.

Given that the Site land use will change from less sensitive (commercial) to more sensitive (residential) land use there is a mandatory requirement for filing of a Record of Site Condition (RSC) pursuant to *Ontario Regulation 153/04 – Records of Site Condition – Part XV.1 of the Act*, made under the *Environmental Protection Act*. As such, this Phase Two ESA was completed in accordance with the requirements of Schedule E of O.Reg. 153/04 (as amended) to support the filing of an RSC for the Site. The boundaries of the property for which the RSC will be filed (the "RSC Property) and the Phase Two Property are the same. As such, for easy reference throughout the report, the RSC Property will be referred as the Site.

Based on the information provided by a City of Ottawa Property Report, the legal description of the Site is:

PIN	LEGAL DESCRIPTION			
Township	Ottawa			
039630004	CON 1 OF PT LOT 22 & 23 PLAN;348 PT LOT 45 TO 57 PLAN 311;PT LOT 48 RP 4R-489 PT PT 2;PTS 5 & 11			
039630007	CON 1 OF PT LOT 22 & 23 PLAN;348 PT LOT 45 TO 57 PLAN 311;PT LOT 48 RP 4R-489 PT PT 2;PTS 5 & 11			
039630038	CON 1 OF PT LOT 22 & 23 PLAN;348 PT LOT 45 TO 57 PLAN 311;PT LOT 48 RP 4R-489 PT PT 2;PTS 5 & 11			

Table 1-1: Legal Description of Site

The Site Plan and location are provided on Figure 1. A plan of survey for the Site is provided in Appendix A. As mentioned above, the boundaries of the Phase Two Property and the RSC Property are the same and are shown on Figures 1 to 3 and on the survey plan included in Appendix A.

1.2 Property Ownership

Contact information for the Site including the current owner is provided in Table 1-2 below.

Table 1-2: Site Ownership Information

Address	Current Site Owner(s)	Contact Information	
		Marc Calvé	
2525 Carling Avenue.		RioCan Management Inc.	
Ottawa, Ontario,	RioCan Management Inc.	RioCan Young Eglinton Centre	
Canada		2300 young Street, Suite 500	
K2B 7Z2		Toronto, Ontario	
		M4P 1E4	

1.3 Current and Proposed Future Uses

The Phase Two Property is currently developed with three (3) commercial buildings including the Lincoln Fields Shopping Centre, a Wendy's Restaurant, a Pizza Pizza, and associated parking lots. The Lincoln Fields Shopping Centre that is located on the Site is mainly occupied by Metro on the ground floor, and a variety of commercial businesses on the first floor.

The majority of the Site was vacant land used for agriculture prior to the construction of the Lincoln Fields Shopping Centre in 1971. The 1952 aerial photograph shows that Site was used primarily for agriculture, with a few residential homes along the west side of the Site along Croydon Avenue. Therefore, it can be determined that the majority of the Site was first developed with the Lincoln Fields Shopping Centre in 1971. An exception is the western edge of the Site which was first developed with residential homes prior to 1952, and was later redeveloped with the Lincoln Fields Shopping Centre in 1971.

The proposed future use of the Phase Two Property is mixed commercial and residential.

1.4 Applicable Site Condition Standard

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (Residential/Parkland/Institutional (R/P/I) Property Use, coarse textured soil) ("MOECC Table 3 R/I/P") and (Industrial/Commercial/Community (I/C/C) Property Use, coarse textured soil) ("MOECC Table 3 I/C/C") for soil; and Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (All Types of Property Use) ("MOECC Table 3") presented in the Ministry of Environment and Climate Change (MOECC) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site and all other properties located, in whole or in part, within 250 metres of the Site are supplied by the City of Ottawa municipal drinking water system and there are no water supply wells which are in use;
- The Site is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water;
- Grain size analysis was performed, and the Site was found to have a coarse soil texture.
- There are no water bodies on the Site. The closest water body is the Ottawa River located approximately 850 m north of the Site;
- There are no features on the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41 of O.Reg.153/04 as amended. Based on the data obtained from the upper fill material, soil pH ranged from 7.73 to 8.27, which is within MOECC's acceptable pH range of 5 to 9.
- The intended land use for the Phase Two Property is mixed residential and commercial, as such the more sensitive land use (residential) is considered to be applicable for the Site; and,
- The overburden thickness is greater than 2 metres over more than one-third of the Phase Two Property.

1.5 Phase Two ESA Objectives

The Phase Two ESA work was completed in three stages. The first stage of the Phase Two ESA work was completed in the north east part of the Site in the former Walmart in July 2017, the second stage was completed in southwest portion of the Site in November-December 2017, and the third stage for the remaining part of the Site from January - March 2018.

The objective of the Phase Two ESA work was:

- To assess the presence/absence of subsurface impacts at the Site associated with the APECs identified during the Phase One ESA completed for the Site and to determine the location and concentration of contaminants in the land or water on, in or under the Phase Two Property;
- To determine if the soil and groundwater quality at the Site meet the applicable MOECC site condition standards at the time of the Phase Two ESA; and,
- Prepare a Phase Two ESA report including a Phase Two ESA Conceptual Site Model (CSM) for the Site in accordance with Reg.153/04 as amended to support the filing of an RSC for the Site.

2.0 BACKGROUND INFORMATION

This section presents the background conditions of the Phase Two Property including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site, and to develop the information necessary to complete a Record of Site Condition (RSC) for the property. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Site; and,
- Conducting field sampling for all contaminants of concern (COC) associated with all areas of potential environmental concern identified at the Site.

2.1 Physical Setting

The north half of the Site is generally flat with a 1 m rise along the west side. The south half is an asymmetrical flat topped mound that is approximately 3 meters higher where the parking lot meets the shopping centre than at the sides. The surrounding areas are generally flat.

The nearest surface water body is the Ottawa River is located approximately 850 m north of the Site. There are no identified areas of natural significance within the Phase Two Study area.

Based on the Ontario base maps and previous reports completed for the Site, the western portion of the Site is situated on sand deposits whereas the eastern portion of the Site is underlain by clay and silt deposits. Based on borehole logs from the 2002 Phase Two ESA, on average the overlying fill materials consist of sand a gravel fill to 1.4 m then is underlain by native material to an average bedrock depth of 6 mbgs. Bedrock at the Site consists of Beekman Group dolostone and sandstone. The static water level is between 2 and 4 mbgs. Local and regional groundwater flow is anticipated to flow to the north.

Land uses surrounding the Phase Two Property include residential and commercial land uses and is summarized below:

North: Richmond Road runs to the north of the Site. Across Richmond is mixed commercial buildings which includes two used car dealerships and several strip malls, one of which contains a dry cleaners to the northeast.

East: Three high rise apartment buildings, a parking garage, and the transitway.

South: Carling Avenue runs along the south of the Site. A residential neighbourhood is located across Carling Avenue from the Site.

West: Croydon Avenue runs to the west of the Site. A high-rise apartment building and several commercial stores, including an auto repair shop, are east of Croydon Avenue.

2.2 Past Investigations

2.2.1 Environmental and Historical Reports

The following environmental and historical reports related to the Site were completed by Golder for RioCan in 2002 and were reviewed as part of this Phase One ESA. Reports are ordered below from oldest to most recent. Noteworthy findings are summarized in Table 2-1 and a more detailed interpretation of each document follows the table. Golder consulted these reports to develop an understanding of any issues previously identified for the Site and surrounding properties.

- 1) "1987 First Floor Site Plan" Insurers' Advisory Organization. October 1972. *File No. SR 8364 Lincoln Fields Shopping Centre Ottawa, Ontario.* Prepared for unknown.
- 2) "1988 Inspection Report" Multipak Inspection Services. July 6, 1988. *Basic Underwriting Survey.* Prepared for Peaches & Cream.
- "2002 Phase I ESA" Golder Associates Ltd. March 15, 2002. Phase I Environmental Site Assessment Lincoln Fields Shopping Centre 2525 Carling Avenue Ottawa, Ontario. Prepared for Riocan Real Estate Investment Trust.
- "2002 Phase Two ESA" Golder Associates Ltd. April 8, 2002. Phase II Environmental Site Assessment Lincoln Fields Shopping Centre 2525 Carling Avenue Ottawa, Ontario. Prepared for Riocan Real Estate Investment Trust.

Report	On/Off Site	Factual Information		
1987 First Floor Site Plan	On-Site	 Occupants: grocer, department store, restaurants, various retail stores, and auto service centre. Building built in 1972, floor poured concrete on metal, gas powered forced air heating 		
1988 Inspection Report On-Site - In 19 Woo shop - Publicomi		 In 1972 the Lincoln Fields was occupied by: IGA Groceries, Woolco, Ogilvy's, an automobile servicing centre, and the shopping mall. Public utility underground service connections can be seen coming into the southeast corner, southwest corner, and west side of the building. 		

Table 2-1: Summary of Historical and Environmental Information Review Findin	igs
--	-----

Report	On/Off Site	Factual Information		
2002 Phase I ESA	On Site	 Two issues of environmental concern were identified: On-Site: Automobile service garage which historically included six service bays and, at the time of the assessment, only had four. The area had an oil water separator which required assessment. There was records of a waste oil UST which was removed in 1995 along with a remediation of 197 tons of contaminated soil. It was unclear whether the remediation was completed to modern standards. Finally, two ASTs, a waste oil and a bulk product AST, as well as hydraulic lifts were noted on the Site; and, Off-Site: The former presence of a retail fuel outlet adjacent to the northwest side of the property. A 1998 Phase Two ESA reported no impacts. A variety of designated substances within the building were also identified including: PCBs in the form of light ballasts stored in barrels in a "PCB room"; Friable and non-friable ACM materials throughout building Possible lead-based paints, pipes, and solder; ODS in roof top heating, ventilation, and air conditioning systems, as well as in cooling systems such as fridges, freezers, and vending machines; and, Possible presence of mercury in electrical equipment. 		
2002 Phase Two ESA	On Site	 Ten boreholes were tested including two on the northwest side of the property to assess the former service station, and eight in and around the service bays in the Walmart. Groundwater in service bay area was inferred to flow easterly. Flow could not be inferred near service station due to lack of data. Along the northwest side adjacent the former service station, TPH-heavy oils were detected in soil and TPH-diesel in groundwater below Table B and Table A respectively at both boreholes. No other detections were noted. In the service bay area soil samples has trace levels of TPh-heavy oils and TPH-diesel below Table B, and groundwater samples had trace levels of TPH-diesel below Table A. 		

Both the 1987 Site Plan and 1988 Inspection Report mentioned auto servicing areas, which would be considered a PCA under the regulation.

From the issues of environmental concern noted in the 2002 Phase I ESA, five PCAs were identified for the Phase One Property. There appears to have been three instances of PCA #28: Gasoline and Associated Products Storage in Fixed Tanks including the waste oil UST removed from the Walmart automotive service bay area in 1995, and two ASTs in the same area which contained waste oil and bulk products. Given that that these PCAs are on Site, they would be considered to be contributing to APECs on-Site under the current regulation. The USTs of the former retail fuel outlet adjacent to the northwest side of the site, due to its close proximity, would also be considered a PCA contributing to an APEC.

The 2002 Phase Two ESA includes figures showing the locations of the boreholes drilled during the investigation. Trace concentrations of TPH-diesel and TPH-heavy oils were detected during the investigation in soil and water, however no exceedances of the MOE Guidelines for Use at Contaminated Site in Ontario (February 1997) – Table B non-potable groundwater criteria for commercial/industrial land use, were detected. The available soil and groundwater quality data described in this report were reviewed but could not be compared to currently applicable residential property use standards due to the regulation (O.Reg 153/04) use of the PHC (F1-F4) system rather than TPH.

2.2.2 Phase One ESA

Golder conducted a Phase One ESA entitled, "*Phase One Environmental Site Assessment Lincoln Fields, Ottawa, Ontario*", dated February 2018, to assess the likelihood of soil and/or groundwater contamination resulting from historic or present activities at the Site and surrounding area. This included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. The APECs identified in the 2018 Phase One ESA are summarized in the following table:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Site	Potentially Contaminating Activity	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1 - Potential for soil and groundwater impacts due to the presence of a transformer vault on the Site.	See Figure 1	A transformer vault is located in the northeast corner of the shopping centre.	On-Site	PHCs/BTEX, PCBs	Soil and Groundwater
APEC 2 - Potential for soil and groundwater impacts due to the presence of a pad- mounted transformer on the Site.	See Figure 1	Pad-mounted transformer located on the southwestern parking lot, north of the Wendy's on the Site.	On-Site	PHCs/BTEX, PCBs	Soil and Groundwater
APEC 3 - Potential for soil and groundwater impacts due to the presence of a hydraulic oil AST associated with the hydraulic elevator.	See Figure 1	Hydraulic oil AST located in the center of the shopping centre.	On-Site	PHCs/BTEX	Soil and Groundwater
APEC 4 - Potential for soil and groundwater impacts due to suspected former dry cleaning activities within the Phase One Property.	See Figure 1	Suspected former dry cleaning facility on the Phase One Property. There is a current dry cleaning drop off depot on-Site.	On-Site	VOCs	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Site	Potentially Contaminating Activity	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 5 - Potential for soil and groundwater impacts due to the presence of a bulk storage AST, former oil water separator, and former auto servicing activities.	See Figure 1	Former Walmart auto service bays in the northeast corner of the shopping centre. AST along east side of the service bays, oil water separator under west side of the service bays.	On-Site	PHCs/BTEX	Soil and Groundwater
APEC 6 - Potential for soil and groundwater impacts due to the presence of a waste oil AST with visible staining.	See Figure 1	Waste oil AST located on the sidewalk outside the former Walmart service bays in the northeast of the Site.	On-Site	PHCs/BTEX	Soil and Groundwater
APEC 7 - Potential for soil and groundwater impacts due to the presence of fill of unknown quality beneath the Site.	See Figure 1	Fill underlies the asphalt and buildings across the Site.	On-Site	PHCs/BTEX Metals	Soil
APEC 8 - Potential for soil and groundwater impacts due to the former presence a retail fuel outlet and garage/	See Figure 1	A retail fuel outlet with associated fuel USTs and a garage were formerly located within the Phase One Study Area; approximately 15 m northwest of the Site.	Off-Site	PHCs/BTEX	Soil and Groundwater

Notes

PCA - potentially contaminating activity as listed O.Reg. 153/04, Schedule D, Table 2 PHC - petroleum hydrocarbon compound fractions PAH - polycyclic aromatic hydrocarbon

VOC - volatile organic compound

BTEX - benzene, toluene, ethylbenzene, xylenes

This report was prepared by the Qualified Person and will be relied upon for the Phase Two investigation.

3.0 SCOPE OF THE INVESTIGATION

The primary objectives of this Phase Two ESA were to assess the absence or presence of the contaminants of concern in relation to the potential environmental concerns identified in the Phase One ESA completed by Golder, to characterize the subsurface conditions at the Phase Two Property and to determine if soil and groundwater quality at the Site meet the applicable site condition standards. In addition, to delineate the horizontal and vertical extent of the subsurface impacts in soil and groundwater (if present) at the Site during the Phase Two ESA. To achieve the objectives of the Phase Two ESA, the location of the boreholes and monitoring wells and the parameters for chemical analysis of soil and groundwater samples were selected to assess the quality of soil and groundwater at the Site in relation to the APECs and PCAs identified in the 2018 Phase One ESA completed by Golder. The rationale for the soil and groundwater sampling locations, and the parameters for analysis of soil and groundwater sampling locations.

3.1 Overview of Site Investigation

The Phase Two ESA work was completed in three stages. The first stage of the Phase Two ESA work was completed in the north east part of the Site in the former Walmart in July 2017, the second stage was completed in southwest portion of the Site in November-December 2017, and the third stage for the remaining part of the Site in January-March 2018. The Phase Two was completed in conjunction with a geotechnical investigation completed on the Site as part of the proposed Site redevelopment. As such, select boreholes were completed beyond the depth of environmental interest for geotechnical purposes and required rotary coring methods to achieve the final depth. Bedrock coring was done at select locations for geotechnical purposes only and are therefore not discussed in the Phase Two ESA report.

The Phase Two ESA included the following tasks:

- Health and Safety Plan: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site.
- Utility Clearances: Prior to drilling, Golder arranged for the completion of public and private utility clearances. A private utility location contractor (USL-1 Inc.) was retained to identify private and public utilities within the work area, to mark the locations of the utilities and clear the proposed drilling locations.
- Borehole Advancement and Monitoring Well Installation: The borehole drilling program included drilling of 13 boreholes identified as BH17-01, BH17-06, BH17-08, BH17-19, BH17-20, BH17-21, BH17-23, BH17-24 BH17-25, BH17-101, BH17-108, BH17-109, and BH17-111, in and around the eight APECs identified at the Site. Nine of the 13 boreholes were completed as groundwater monitoring wells identified as MW 17-01, MW 17-06, MW17-08, MW17-19, MW17-20, MW17-21, MW17-25, MW17-101, MW17-108 to investigate the potential for groundwater impacts associated with the APECs identified on the Site. Additionally, two wells, identified as MW02-5 and MW02-6 remaining from the 2002 Golder investigation, were found to still be functional, and were also used to assess groundwater impacts. The rationale for the selected location of the boreholes is provided in the Sampling and Analysis Plan provided in Appendix B. The location of the boreholes and monitoring wells are shown on Figures 1 to 3. The monitoring well construction details are presented in Table 1 following the text of this report.

Equipment Used: The drilling equipment used for borehole drilling varied throughout the project. During the July 2017 and January/February 2018 phases of drilling, a truck mounted drill rig CME-75, supplied and operated by Grenville Drilling ("Grenville") of Grenville, Quebec was used. During the November 2017 phase of drilling a truck mounted drill rig CME-55, supplied and operated by CCC Geotechnical & Environmental Drilling Ltd. (CCC) of Ottawa, Ontario was used.

Grenville and CCC are licensed as a well contractor by the Ontario Ministry of the Environment and Climate Change (MOECC).

- Soil Sampling: Soil samples were collected from the boreholes and selected soil samples (based on visual and olfactory observations, soil vapour readings, and/or from depth horizons at which potential contamination was considered most likely to have occurred) were submitted for chemical analysis of one or more of the following chemicals of concern (COCs); petroleum hydrocarbons fraction 1 to fraction 4 ("PHCs F1-F4"), benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals, pH, and/or polychlorinated biphenyls (PCBs). In total, 29 soil samples (including three (3) duplicate soil samples) were submitted for laboratory analysis of the COCs.
- Groundwater Monitoring and Sampling: Groundwater samples were collected from the 11 monitoring wells and submitted for analysis of one or more of the following COCs: PHCs F1-F4, VOCs, and/or PCBs. In total 13 groundwater samples (including two (2) duplicate groundwater samples) were submitted for laboratory analysis of the COCs. Static groundwater levels were measured in the monitoring wells located on the Site on March 7, 2018.
- Surveying: An elevation survey relative to a geodetic benchmark was completed for the boreholes and monitoring wells advanced as part of the Phase Two ESA investigation. The survey was completed on March 7, 2018.
- Reporting: Golder compiled and assessed the field and laboratory results from the above noted activities into this report.

The Phase Two ESA was conducted in accordance with O. Reg. 153/04 (as amended) and followed the framework of the Sampling and Analysis Plan, included as Appendix B. Subsurface investigation activities as summarized in this report were carried out in general accordance with Golder's Standard Operating Procedures (SOPs), which conform to the requirements of O. Reg. 153/04 and Golder's Quality Assurance Program. The data from the Phase Two ESA investigation completed by Golder at the Site were incorporated into a single Phase Two ESA report following the Phase Two ESA report format required under O. Reg. 153/04 (as amended).

The rationale/purpose for selecting the borehole locations, samples collected and associated rationale, chemical analysis performed, sampling procedures, QA/QC, etc., as required under O. Reg. 153/04, is provided in the Sampling and Analysis Plan included in Appendix B.

There were no impediments or access limitations that would affect the conclusions of this Phase Two ESA report.

3.2 Media Investigated

To address the APECs identified in the Phase One ESA, the Phase Two ESA field program included sampling of subsurface and surface soil from the 13 boreholes and sampling of groundwater from the 11 wells screened within the overburden at the Site. No sediment was present at the Site and therefore no sediment sampling was completed. A summary of the samples collected from each media investigated (soil and groundwater) and submitted for laboratory analysis of the COCs is provided in Tables 2 and 3 following the text of this report.

Details of the number and locations of boreholes and monitoring wells, number of samples, media and parameters investigated at the Phase Two Property are presented in the Sampling and Analysis Plan provided in Appendix B. The locations of the boreholes and monitoring wells used to form the basis for the Phase Two ESA are shown on Figures 1.

3.3 Phase One Conceptual Site Model

The Phase One ESA Conceptual Site Model (CSM), described below, is based on the results of the 2018 Phase One ESA investigation.

- The Site consisted of an approximately 6.6 hectares (16.2 acres) parcel of land. It was occupied by parking lots and three buildings including a Pizza Pizza Restaurant, a Wendy's restaurant and the Lincoln Fields Shopping Centre. Historically, the Site was developed around 1972 with the shopping centre, and prior to 1972 was used as agricultural land.
- No water bodies were identified on the Site. The Ottawa River is located approximately 850 m north of the Site. No areas of natural significance were identified on or within the Phase One Study Area;
- Ten (10) records of borehole from the 2002 Phase Two ESA conducted by Golder, indicate that the stratigraphy at the Site is sand and gravel fill underlain by native sand in the western portion of the Site and native clay and silt in the eastern portion of the Site, which is underlain by dolostone and sandstone bedrock. The static water level is between 2 and 4 mbgs;
- The Site was used as a vehicle garage and is suspected to have operated as a dry cleaning facility. As such, the Site is considered to be an enhanced investigation property; and,
- At the time of the Phase One ESA, the surrounding properties within the Phase One Study Area consisted of residential and commercial (mixed use) land uses. There are indications that surrounding properties in the Phase One Study Area were/are used for the following commercial uses: vehicle garage, bulk liquid dispensing facility, and/or dry cleaning facilities.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
Site	#18. Electricity Generation, Transformation and Power Stations – The transformer vault for Lincoln Fields Shopping Centre in the northeast corner of the building.	Site Reconnaissance	This PCA is located on-Site. Given that the transformers were located in concrete vaults that reportedly had deficient maintenance, access to the transformer vault was unavailable, the state of the original transformers at removal is unknown, and the age of the original transformers (1970's), it is considered to contribute to an APEC on-Site.
	#18. Electricity Generation, Transformation and Power Stations – One pad-mounted transformer was located in the parking lot on the southwest portion of the Site north of Wendy's.	Site Reconnaissance	This PCA is located on-Site and therefore must be considered to contribute to an APEC.

PCAs and were identified in the Phase One Study Area as follows:

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	#28. Gasoline and Associated Products in Fixed Tanks – The shopping centre is serviced by one hydraulic lift elevator, with associated hydraulic oil tank, located in the middle of the mall.	Site Reconnaissance, Site Representative	This PCA is located on-Site and therefore must be considered to contribute to an APEC.
	#37. Operation of Dry Cleaning Equipment (where chemicals are used) – Review of HLUI and Street directories indicates the presence a dry cleaner on- Site. The cleaners currently on-Site are only a drop-off depot.	Site Reconnaissance, Site Representative, Previous Environmental Reports (Golder), Street Directories, HLUI	While the Site representative and previous reports indicate that the on-Site cleaners have always been a depot, it is considered unlikely that this is the case based on the years of the activity (as early as 1976). The exact location of the 1976 cleaners is unknown. As such, this PCA is considered to contribute to an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops – The former Walmart had vehicle servicing bay in the northeast corner of the store operated as a garage for decades. A bulk storage AST in the service bay was identified, as well as an underground oil water separator.	Site Reconnaissance, Site Representative, Previous Environmental Reports (Golder), HLUI, EcoLog ERIS Report	Due to the presence of ASTs on the Site, as well as the service bay's long operating life as a garage (>30 years in operation), and the PCA's location on-Site, it is considered to contribute to an APEC on-Site.
Site	#28. Gasoline and Associated Products in Fixed Tanks – A waste oil AST was identified in an enclosure outside the former Walmart auto service bays.	Site Reconnaissance, Site Representative, Previous Environmental Reports (Golder)	Given this PCA's location on- Site, as well as the staining noted to the east of the tank, this PCA is considered to contribute to an on-Site APEC.
	#30. Importation of Fill Material of Unknown Quality – The Site was graded with fill of unknown origin during the construction of the shopping centre in 1972.	Site Reconnaissance, Previous Environmental Reports (Golder)	Given this PCA's location across the Site, this PCA is considered to contribute to an APEC on- Site.
Phase One Study Area (excluding the Site)	#28. Gasoline and Associated Products in Fixed Tanks – 1386 Richmond Road. A former gasoline service and automotive repair station (15 m northwest of the Site) is known to have had USTs while in operation as a gas station. There was also automotive repair works conducted at this property.	EcoLog ERIS Report, Previous Environmental Reports (Golder)	This PCA is located off-Site. But given its close proximity to the Site (<15 m) and the former presence of gasoline USTs, the PCA is considered to represent an APEC on Site.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops 2599 Carling Avenue. A former gasoline service station and automotive repair station (100 m west of the Site) is known to have had USTs while in operation as a gas station. There is also automotive repair works and automotive wholesale conducted at this property.	EcoLog ERIS Report, Site Reconnaissance, Aerial Images, City Directories, HLUI	The PCA is separated from the Site by 100 m including Croydon Avenue and its underlying utilities. It is also hydraulically cross-gradient from the Site. As such, it is not considered to be a PCA that will result in an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks - The former Sunoco Service Station (150 m west of the Site) is known to have had USTs while in operation as a gas station.	EcoLog ERIS Report	The PCA is separated from the Site by 150 m including Croydon and Forest Street and their underlying utilities. It is also hydraulically cross-gradient from the Site. As such, it is not considered to be a PCA that will result in an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks and #10 Commercial Autobody Shops – 1325 Richmond Road. Former gas station with a UST, automotive wholesalers and automotive repair shops, namely Shell and currently Approval Genie, have been/are present north of the Site (approximately 50 m north of the Site.)	d Associated d Tanks and #10 obody Shops – 1325 Former gas station with e wholesalers and shops, namely Shell roval Genie, have north of the Site	This PCA is separated from the Site by 50 m including Richmond Road and its underlying services. It is also hydraulically downgradient from the Site. As such, it is not considered to be a PCA that will result in an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks and #10 Commercial Autobody Shops – 1377 Richmond Road. Current and historical automotive wholesaler and repair shop. Records indicate a waste oil UST was removed from the property. Approximately 50 m north of the Site.	Ecolog ERIS Report, City Directories, HLUI	Based on its close proximity adjacent to the Site, and its hydraulically upgradient location with respect to the Site, this PCA this is considered to represent an APEC.
	#10 Commercial Autobody Shops – 365 Forest Street. A former and current automotive repair shop; approximately 100 m west of the Site.	City Directories, Ecolog ERIS Report.	This PCA is separated from the Site by 100 m including Croydon Avenue and its underlying services. As such, it is not considered to be a PCA that will result in an APEC on the Site.

- Underground utilities are known to be present at the Site;
- Soil at the Site consists two primary types: medium grained stratified sand and some silt in the form of fluvial terraces and channels cut in marine clay, and clay and silt underlying erosional terraces. Bedrock at the Site consists of Beekmantown Group of dolostone and sandstone. Drift thickness in the area is estimated to be 5 to 10 metres; and,

Local groundwater flow is anticipated to flow to the northeast in the north half of the Site, and south in the south half of the Site, and regional groundwater flow is expected to flow to the north towards the Ottawa River.

3.4 Deviations from Sampling and Analysis Plan

A sampling and analysis plan is provided in Appendix B which incorporates the investigation program completed in July 2017, November-December 2017 and January-March 2018. The sampling and analysis plan outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA. This plan was prepared prior to the field investigation and outlines the activities undertaken during the Phase Two ESA. The procedures described in the Sampling and Analysis Plan were followed, with the exception of groundwater sampling of MW17-20 which was inaccessible during groundwater sampling periods. There were no other deviations from the SAP.

3.5 Impediments

No impediments to the Phase Two ESA investigation were encountered.

4.0 INVESTIGATION METHOD

4.1 General

The following sections describe the pre-field work activities and field investigation methodology employed during the Phase Two ESA conducted at the Phase Two Property. The field investigation methods were carried out in accordance with Golder's Quality Assurance Program and the SOPs. The fieldwork was conducted in three stages. The first stage was completed in July 2017, the second stage was completed in November-December 2017, and the third stage was completed in January-March 2018. Field methodologies described below include borehole drilling, soil sampling, field screening, groundwater monitoring well installation, measurement of groundwater levels and water quality parameters and groundwater sampling. Details of analytical testing, residue management, elevation surveying and Quality Assurance / Quality Control (QA/QC) measures are also included below.

Prior to initiating the field work, Golder developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. A health and safety tail gate meeting was held with Golder's subcontractors each day prior to completion of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, Golder retained USL-1 Inc. of Ottawa, Ontario to coordinate utility clearances with the local utility companies and to clear boreholes locations.

4.2 Drilling

As per the SAP, 13 boreholes (BH17-01, BH17-06, BH17-08, BH17-19, BH17-20, BH17-21, BH17-23, BH17-24 BH17-25, BH17-101, BH17-108, BH17-109, and BH17-111) were advanced at the Site. Borehole locations are provided in Figure 1. Boreholes were advanced by Grenville Drilling (Grenville) using a CME-75 truck mounted drill rig, or by CCC Geotechnical & Environmental Drilling Ltd. (CCC) using a CME-55 truck-mounted drilling rig. The borehole drilling and monitoring well installation activities were monitored in the field by an experienced Golder technician. During borehole drilling, overburden soil samples were collected continuously at 0.61 m intervals using a 0.61 m long, 50 mm (2 inch) diameter drive open stainless-steel casing ("split spoon") sampling system.

The drill rig was equipped with a 63.5 kg sampler hammer that was used to advance the split spoon into the ground and collect a discrete soil sample. The split spoon sampler was cleaned with Alconox soap and methyl hydrate then rinsed with distilled water between each sample.

During borehole drilling, overburden soil samples were collected using split spoon soil sampling equipment and augered using 200 mm outside diameter ("OD") solid stem augers. Continuous soil samples were collected using the following method:

Split-spoon: 0.61 m (2 foot) long, 5.08 cm (2 inch) diameter stainless steel split spoon sampling system at 0.76 m long intervals. Split-spoons were decontaminated between sample locations.

Select boreholes were extended beyond the depth of environmental interest for geotechnical purposes. Bedrock coring was done at select locations for geotechnical purposes only and are therefore not discussed in the Phase Two ESA report.

4.3 Soil: Sampling

Soil samples were split in the field into two components. One component of each sample was placed into laboratory supplied sample jars and stored in a cooler with ice for possible subsequent chemical analysis. The second component of the sample was placed inside a labelled plastic bag for subsequent field headspace screening. When handling all soil samples, a clean nitrile gloved hand was used and all equipment in contact with soils was decontaminated between sampling locations to minimize the potential for cross-contamination.

The subsurface soil conditions within the boreholes were described in terms of their texture, presence of staining, odour and debris, if any. Geologic descriptions of soil samples are presented in the Record of Borehole sheets (Appendix C).

All soil samples collected and submitted for chemical analysis were obtained from undisturbed soils, including fill materials (if present) and native overburden, from the Site by borehole drilling methods. Nitrile gloves were worn when handling soil samples and all equipment in contact with soils was washed between sample locations to prevent the potential of cross contamination.

Soil samples submitted for chemical analysis were based on visual or olfactory observations (e.g., staining, discolouration, free product, and/or odour, if any), from representative soil layers, and/or from depth horizons at which potential impact would most likely have occurred, such as near the water table. Otherwise, if no visual or olfactory observations were noted, the highest recorded field screening reading and/or depth horizons at which potential contamination was considered most likely to have occurred was used to determine which soil sample to submit for analysis from each test location.

Visual and olfactory observations and results of soil headspace measurements are presented on the Record of Borehole sheets provided in Appendix C.

4.4 Field Screening Measurements

Field measurements of sample headspace concentration were made using the following equipment:

Stage of Field Program	Equipment	Parameters Detected	Detection Limits	Precision	Accuracy	Calibration Standard	Calibration Procedure
First Stage	Photo- ionization detector (PID) RKI Eagle 2	Organic vapours & Combustible Vapours	0 – 2,000 ppm & 0 – 50,000 ppm	N/A	+/- 5%	100 ppm Isobutylene & 100 ppm Hexane	By supplier prior to fieldwork & by Golder Associates field staff during work
Second Stage	Photo- ionization detector (PID) UltraRae 3000 10.6 EV bulb	Organic vapours	0 - 10,000 ppm	N/A	+/- 3%	100 ppm Isobutylene	By supplier prior to fieldwork & by Golder Associates field staff during work
Third Stage	Photo- ionization detector (PID) UltraRae 3000 10.6 EV bulb	Organic vapours	0 - 10,000 ppm	N/A	+/- 3%	100 ppm Isobutylene	By supplier prior to fieldwork & by Golder Associates field staff during work

The PIDs were used to provide an estimate of the relative concentrations of organic vapours in the headspace of each soil sample and was used to support selection of soil samples for submission for laboratory analysis. The selection of "worst case" soil samples submitted for laboratory analysis of the COCs was based on professional judgement which included a consideration of the highest organic vapour readings, visual and olfactory evidence of potential contamination (PHC odour, presence of debris) and the depths of the soil sample collection (depth horizons at which potential impact would most likely have occurred, such as from the upper fill layer or near the water table).

The results of soil headspace screening measurements are provided in the Record of Boreholes in Appendix C.

4.5 Groundwater: Monitoring Well Installation

Following the completion of drilling and soil sampling at the 13 borehole locations, nine of the 13 boreholes were completed with monitoring wells. BH17-01, BH17-06, BH17-08, BH17-19, BH17-20, BH17-21, BH17-25, BH17-101, and BH17-108 were installed with monitoring wells. The depth of the screens of the monitoring wells were selected to intersect the water table in order to capture any PHC contamination from APECs 1 - 8 with the exception of APEC 5.

All monitoring wells were installed by Grenville and CCC using threaded 32 mm diameter, schedule 40, polyvinyl chloride (PVC) well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annulus surrounding the screened portion of the well and an approximately 0.2 to 0.7 m portion of the riser pipe above the slotted pipe was filled with silica filter sand. A bentonite seal was placed above the sand filter pack with a minimum thickness of 0.3 m. The monitoring wells were completed with a flush mount protective well casing set in concrete and the riser pipes were sealed with a protective cap.

The monitoring wells were developed following the drilling of stages two and three of the Phase Two ESA by removing up to ten well volumes or by removing groundwater until the well was purged three times dry, using dedicated Waterra® inertial pumps (polyethylene tubing with foot valves). The monitoring wells installed during the second stage of the Phase Two ESA (MW17-08, MW17-101, and MW17-108) were developed on December 8, 2017 and those installed during the first and third stages of the Phase Two ESA as well as those installed during the 2002 investigation (MW17-01, MW17-06, MW17-19, MW17-20, MW17-21, MW17-25, MW02-5, and MW02-6) were developed on February 27 and March 21, 2016. During monitoring well development, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odours.

Monitoring well construction details are summarized in Table 1 and presented in the Record of Borehole sheets (Appendix C).

4.6 Groundwater: Field Measurements for Water Quality Parameters

Groundwater indicator parameters including temperature, pH, conductivity, oxidation-reduction potential (ORP) and dissolved oxygen were measured prior to sampling to ensure adequate well development and purging. A water quality meter was used to measure groundwater quality during monitoring well development and groundwater sampling.

During the first and third stage water sampling, with the exception of MW17-01 and MW17-21, of the Phase Two ESA, the type of water quality meter used was an In-Situ smarTROLL. The instrument wes calibrated using factory supplied solutions for electrical conductivity, pH, turbidity, dissolved oxygen, temperature and ORP parameters. The smarTROLL unit was supplied and calibrated by Pine Environmental. Specifications of the units for each parameter are outlined in the following table:

Parameter	Range	Resolution	Accuracy
рН	0.00 to 14.00 pH	0.01 pH	±0.1 pH
Conductivity	0.00 to 100 mS/cm	0.0001 mS/cm	± 0.5%
Temperature	-5 to 50 °C	0.01 °C	± 0.1 °C
Dissolved Oxygen	0 to 50 mg/L	0.01 mg/L	± 0.2%
Oxidation-Reduction Potential	± 1400 mV	0.1 mV	± 5 mV

During the second stage of the Phase Two ESA, the type of water quality meter used was a Horiba U-52. The Horiba U-22 was supplied and calibrated by Pine Environmental. The instrument was calibrated using factory supplied solutions for electrical conductivity, pH, turbidity, dissolved oxygen, temperature and ORP parameters. Specifications of the Horiba U-52 for each parameter are outlined in the following table:

Parameter	Range	Resolution	Accuracy
рН	0.00 to 14.00 pH	0.01 pH	±0.1 pH
Conductivity	0.00 to 100 mS/cm	0.01 mS/cm	± 0.1%
Temperature	-5 to 55 ℃	0.01 °C	± (0.3 + 0.005*absolute value of temperature) ⁰C
Dissolved Oxygen	0 to 50 mg/L	0.01 mg/L	± 0.1%
Oxidation-Reduction Potential	-2000 to +2000 ORP	0.1 mV	± 15 mV

4.7 Groundwater: Water Level Measurement and Sampling

Prior to the groundwater sampling, the water levels were recorded and the potential presence of free product was measured in all eleven monitoring wells using an oil/water interface probe supplied and calibrated by Pine Environmental. The water level measurements and the groundwater sampling were completed more than 24 hours after the well development was completed. The water level measurements were taken from the top of the PVC riser and are summarized in Table 1 following the text of this report. The water levels measured between 1.58 mbgs and 6.01 mbgs.

Following the water level measurement and prior to the groundwater sampling the wells were purged by using a peristaltic pump. During the well purging, qualitative observations were made of water colour, clarity, the presence or absence of any hydrocarbon sheen and any odours present. Free phase product, odour or sheen were not observed in any the monitoring wells during the groundwater purging or sampling. Groundwater sampling of the monitoring wells (MW17-08, MW17-101, and MW17-108) installed during the second stage of the Phase Two ESA was carried out on December 11, 2017 and the groundwater sampling of the monitoring wells (MW17-01, MW17-06, MW17-19, MW17-20, MW17-21, MW17-25, MW02-5, and MW02-6) installed during the first and third stages of the Phase Two ESA, as well as during the 2002 investigations, was carried on February 27-28, 2018, March 7, 2018, and March 21, 2018.

The monitoring well purging and groundwater sampling was conducted using the low flow procedure. This method involved purging each well at a constant pumping rate (between 0.1 and 1 L/min) using dedicated 6.3 mm (1/4 inch) diameter low density polyethylene (LDPE) tubing attached to a peristaltic geo-pump. Multi-parameter water meter (In-Situ smarTROLL and Horiba U-22) was used to measure groundwater temperature, pH, ORP, DO and conductivity during purging and prior to sampling. One groundwater sample was collected from each of the monitoring wells after the water quality parameters and water level stabilized over three successive measurement intervals. Disposable nitrile gloves were worn at all times by the technician to handle the groundwater samples. A dedicated pair of gloves was used for each sample collected to minimize the risk of cross-contamination between samples and potential contaminant exposure to field staff. During the well purging, qualitative observations were made of water colour, clarity, the presence or absence of any hydrocarbon sheen and any odours present. No free product was noted during the groundwater purging or sampling.

Following purging, groundwater samples were collected into the laboratory provided sample bottles, placed in a cooler on ice and delivered under chain-of-custody procedures to AGAT. The groundwater samples were analyzed for one or more of the following parameters: PHC F1, PHCs F2-F4, BTEX, VOCs, and/or PCBs following chain-of-custody procedures. Details of the parameters analyzed at each monitoring well are presented in Table 3.

4.8 Sediment: Sampling

There is no sediment on the Site and as such, no sediment samples were collected as part of this investigation.

4.9 Analytical Testing

Soil and groundwater analyses were conducted by AGAT. The contact information for the analytical laboratory is included below.

AGAT Laboratories

5835 Coopers Avenue Mississauga, Ontario, L4Z 1Y2 Laboratory Contact: Mazen Hussein 905-712-5106

The analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 (CALA) (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation or another accreditation body accepted by the MOECC.

4.10 Residue Management Procedures

All residues produced during the investigation (soil cuttings from drilling, groundwater from well development purging, wash water from equipment decontamination) were placed in sealed drums and temporarily stored on-Site. Upon receipt of analytical results, all residues were disposed of off-Site.

4.11 Elevation Surveying

An elevation survey of boreholes and monitoring wells was completed on March 21, 2018. Elevations were determined relative to the surface the parking lot, marked with a dot of survey paint, directly in front of the second most west garage bay door for former Walmart.

4.12 Quality Assurance and Quality Control Measures

Golder's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities;
- All monitoring wells were developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling;
- Monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable;
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples;

- Submission of one trip blank for laboratory analysis of VOCs during each of the groundwater sampling events completed during all stages of the Phase Two ESA. The trip blanks were supplied and sealed by the laboratory, were brought to the Site and then shipped back to the laboratory unopened for analysis of VOCs.
- Initial calibration of field equipment was performed at the start of each field day, with daily checks of calibration, as needed, using a standard of known concentration;
- Soil and groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the Ministry of the Environment (MOE) Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act, July 1, 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody;
- Dedicated sampling equipment (tubing and foot valves) and clean disposable NitrileTM gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment was: cleaned by mechanical means; washed with a laboratory-grade detergent (e.g., phosphate-free LiquiNox or AlcoNox) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water;
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses; and,
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

Stage of Phase Two ESA	Drilling Dates	Soil Samples Collected	Duplicates
First Stage	July 17 – 21, 2017	17-6 (SA-4), 17-6 (SA-7), 17-19 (SA1), 17-19 (SA4), 17-23 (SA-2), 17-23 (SA- 4), 17-24 (SA-1), 17-24 (SA-5), 17-25 (SA-3), and 17-25 (SA-6) Total of 10 samples	17-23 (SA-14) (duplicate of 17-23 (SA-4))
Second Stage	November 28 – 29, 2017	17-08 SA1, 17-08 SA4, 17-101 SA1, 17- 101 SA 4, 17-108 SA3, and 17-108 SA7 Total of 6 samples	17-101 SA44 (duplicate of 17-101 SA4)
Third Stage	February 13 – 22, 2018	17-01 SA3, 17-01 SA4, 17-20 SA2, 17- 20 SA5, 17-21 SA1, 17-21 SA2, 17-21 SA3, 17-21 SA5, 17-109 SA4, and 17- 111 SA3 total of 10 samples	17-20 SA22 (duplicate DUP)

Below is a summary of the primary and duplicate samples collected during each stage of the Phase Two ESA (i.e., between October 2015 and February 2016).

Stage of Phase Two ESA	Groundwater Sample Date	Groundwater Samples Collected	Duplicates
First and Third Stages	February 27 – March 21, 2018	17-01, 17-06, 17-19, 17-21, 17- 25, 02-5, and 02-6 total of 8 samples	DUP026 (duplicate of 02-6)
Second Stage	December 11, 2017	17-08, 17-101, and 17-108 total of 3 samples	DUP1 (duplicate of 17-08)

5.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, monitoring and sampling activities conducted as part of the Phase Two ESA.

5.1 Geology

The soil conditions encountered during the borehole drilling are presented in the Record of Borehole sheets and provided in Appendix C. The following presents a summary of the subsurface soil conditions encountered during the investigation.

In general, the pavement structure within the project limits consists of asphaltic concrete overlying granular base/subbase. The asphaltic concrete is underlain by a 60 millimetre thick layer of recycled asphalt product (RAP). The composition of the granular base and subbase varies between angular sandy gravel (i.e., crushed stone), gravelly sand, and sand and gravel with some fines. Heterogeneous fill exists beneath the pavement structure at all of the boreholes advanced. The composition of the fill is variable, consisting of sand, silty sand, clayey silt, and silty clay with varying amounts of gravel, concrete chunks, asphalt and organic matter. The fill extends to depths ranging from about 1.1 to 6.9 metres below the existing ground surface.

A layer of silty sand to sandy silt was encountered below the fill in boreholes in the southwest corner of the property. This layer was encountered at a depth of about 2.1 to 3.8 metres and extends to a depth of about 3.1 to 4.7 metres below the existing ground surface.

A thick deposit of sensitive silty clay was encountered beneath the fill and silty sand (where present). At all boreholes, the upper portion of the silty clay has been generally weathered to a grey brown colour (i.e., weathered crust) and extends to depths ranging from about 2.6 to 6.9 metres below the existing ground surface. The silty clay below the weathered crust, where encountered, is grey in colour. The lower grey silty clay extends to depths of between about 3.8 to 6.4 metres below the existing ground surface.

In boreholes that were extended to greater depths, a deposit of glacial till was encountered below the silty clay. The where the glacial till was penetrated it extends to depths of about 11.6 and 13.7 metres below the existing ground surface. In general, the glacial till consist of a heterogeneous mixture of cobbles, boulders, and gravel in a matrix of silty sand to sandy silt.

A layer of native sand was encountered below the glacial till in borehole 17-8. The sand was encountered at a depth of about 6.7 metres but was not fully penetrated and its full thickness was not confirmed. However, this layer was proven to a depth of about 7.6 metres below the existing ground surface

The fill and silty sand layers are the hydrostratigraphic units which are located at a depth between 0.5 and 6.9 mbgs. Underlying the silty sand later is a silty clay layer that limits the potential for downward migration of potential groundwater impacts at the Site. Both the silty clay and the glacial till units are not considered to be water bearing formations at the Phase Two Property.

5.2 Groundwater: Elevations and Flow Direction

A full round of water level measurements at all wells, with the exception of MW17-19, was completed on March 21, 2018. As such, an interpretation of the groundwater flow direction was created based upon the water level measurement completed on March 21, 2018. The water levels were measured more than 24 hours after monitoring well development. Details of the groundwater flow are discussed in the paragraphs below.

The screens of all eleven monitoring wells were installed between 0.91 and 6.10 mbgs with the exception of MW17-108 which was located approximately four metres higher than the other wells and was screened from 6.10 – 9.15 mbgs. All monitoring wells installed during the Phase Two ESA were used for the interpretation of the groundwater flow direction within the fill/silty sand layer based on the water level measurements on March 21, 2018. An exception was MW7-19 which could not be accessed at the time of groundwater measurement. The static groundwater levels measured on March 21, 2018 in these ten accessible monitoring wells were between 0.91 and 6.10 mbgs or at elevations 96.08 metres above bench mark (mABM) (MW17-01) and 100.55 mABM (MW17-08). Based on the water level elevations measured in the ten monitoring wells at the Site on March 21, 2018, the shallow groundwater flow direction at the Site is generally interpreted to be in a north northeast direction, consistent with previous information.

The groundwater elevations measured at the ten shallow monitoring wells and the interpreted groundwater flow directions in the fill and silty sand based on the water levels measured on March 21, 2018 are shown on Figure 2.

Monitoring for free phase product using an interface probe was conducted on March 21, 2018. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed or measured.

The measured water levels and elevations for monitoring wells are presented on Table 2 following the text of the report and are shown on the Record of Borehole sheets.

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified, however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

Any temporary fluctuation in water levels on the Phase Two Property is not anticipated to effect the conclusions of the Phase Two ESA.

5.2.1 Underground Utilities

There are shallow services throughout the Site for building services and parking lot storm drainage. The main utility lines are located off-Site in Croydon Avenue and Richmond Road and the main shopping centre connects to the utilities in Richmond Road. Underground utilities on the Site may influence the groundwater flow direction and migration of COCs in groundwater. However, there were no groundwater exceedances of MOECC Table 3 Standards at the Site and no indication of contaminant migration along the underground utilities within the site.

5.3 Groundwater: Hydraulic Conductivity, Hydraulic Gradients and Velocity

5.3.1 Hydraulic Conductivity

Based on known values for silty sand (Freeze and Cherry, 1979) the measured hydraulic conductivity at the Site for the silty sand/fill is approximately 1×10^{-7} m/s. This hydraulic conductivity value was used to calculate the groundwater velocity in the hydrostratigraphic units.

5.3.2 Horizontal Hydraulic Gradients

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions within the fill and silty sand based on water levels collected on March 21, 2018, and the inferred groundwater contours are presented on Figure 2. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be approximately 0.0146 m/m. Variability in hydraulic gradients calculated at the Phase Two property may be related to the presence of foundations/buried structure, bedding materials, and buried services at the Site.

5.3.3 Vertical Hydraulic Gradients

The vertical hydraulic gradients were not obtained as no groundwater contamination was detected,

5.3.4 Groundwater Velocity

The groundwater flow velocity can be calculated using the Darcy equation as follows:

V=ki/n_e

Where V=Groundwater flow velocity

k=Hydraulic conductivity

i =Horizontal hydraulic gradient

ne =Effective porosity

Based on the hydraulic conductivity of 1x10-7 m/s for silty sand, and a horizontal hydraulic gradient of approximately 0.0146 and porosities of 25% (max) to 49% (min) (for silty sand), the minimum and the maximum groundwater velocity within the silty clay is estimated to be approximately 1.84x10-1 m/year and 9.40x10-2 m/year, respectively. Note that actual groundwater velocity may vary significantly not only because of variability of the hydraulic gradient, but also because of variability of the hydraulic conductivity within the silty clay.

Based on the hydraulic conductivity of 1x10-7 m/s for glacial till, horizontal hydraulic gradients of 0.0011 (min) and 0.0035 (max) and a porosity of 40% (for glacial till), the minimum and the maximum groundwater velocity within the glacial till is estimated to be approximately 8.57x10-3 m/year and 2.76x10-2 m/year, respectively. Note that actual groundwater velocity may vary significantly not only because of variability of the hydraulic gradient, but also because of variability of the hydraulic conductivity within the glacial till.

5.4 Soil Texture

Based on laboratory grain size analysis, coarse soil texture was considered applicable for the Site.

5.5 Soil: Field Screening

Headspace vapour measurements were conducted on the soil samples collected from each borehole. Organic vapour measurements ranged from non-detect to 10.2 ppm (highest reading measured at 17-108 at a depth between 5.34 and 5.95 mbgs). Combustible vapour measurements ranged from non-detect to 15 ppm (highest reading measured at 17-6 at a depth between 1.83 and 2.44 mbgs).

The results of headspace vapour measurements are presented on the Record of Borehole sheets in Appendix C.

5.6 Soil: Quality

A summary of the soil samples submitted for analysis, the associated test parameters and the soil samples exceedances of the MOECC Table 3 R/I/P and MOECC Table 3 I/C/C Standards is provided in the Table 2 following the text of this report. The analytical results of the soil samples are presented in Tables 4A to 4C following the text of this report. Laboratory Certificates of Analysis for the soil samples are included in Appendix D.

Golder completed soil sampling at the Site during borehole advancement between July 2017 (first stage of the Phase Two ESA), November 2017 (second stage of Phase Two ESA), and January/February 2018 (third stage of the Phase Two ESA). The soil samples were submitted to AGAT for analysis of one or more of the following COCs: PHCs + BTEX, PAHs, VOCs, PCBs, pH, and/or metals.

Parameter	Number of soil samples analysed	Number of soil samples exceeding the Table 3 R/I/P Standards	Number of soil samples exceeding the Table 3 I/C/C Standards
PHCs F1 to F4 and BTEX	26 (including 3 duplicate soil samples)	0	0
VOCs	21 (including 3 duplicate soil samples)	0	0
PCBs	5 (including one duplicate soil sample)	0	0
PAHs	9 (including one duplicate soil sample)	0	0
рН	7 (including one duplicate soil sample)	0	0
Metals	28 (including 3 duplicate soil samples)	0	0

A summary of the parameters, the number of soil samples analyzed and the number of soil samples exceeding the MOECC Table 3 R/I/P and MOECC Table 3 I/C/C Standards is provided below:

The results of this Phase Two ESA indicate that no soil impacts were identified in any of the analyzed soil samples collected from the 13 boreholes completed within the eight APECs identified on the Site. The concentrations of the COCs (PHCs F1 to F4, VOCs, PAHs, metals, and PCBs) associated with the eight APECs were all below both the MOECC Table 3 R/I/P and MOECC Table 3 I/C/C Standards.

5.7 Groundwater: Quality

Monitoring well construction details are summarized in Table 1 and a list of groundwater samples submitted for laboratory analysis is provided in Table 3 following the text of this report. The analytical results for groundwater samples are summarized in Tables 5A through 5C, along with the applicable MOECC Table 3 Standards. Laboratory Certificates of Analysis for groundwater are provided in Appendix D.

A summary of the parameters analyzed, the number of groundwater samples analysed and number of groundwater samples exceeding the MOECC Table 3 Standards is provided below:

Parameter	Number of groundwater samples analysed from the shallow monitoring wells	Number of groundwater samples analysed from the deeper monitoring wells	Number of groundwater samples exceeding the 2011 Table 3 Standards
PHCs F1 to F4,	13		
BTEX	(including 2 duplicate groundwater	0	0
	samples		
VOCs	13		
	(including 2 duplicate groundwater	0	0
	samples)		
PCBs	4		
	(including 2 duplicate groundwater	0	0
	samples)		

A review of the groundwater analytical results from the groundwater sampling completed during the Phase Two ESA indicated that the concentrations of the COCs (PHCs F1-F4, VOCs, and PCBs) associated with the eight APECs were below the laboratory detection limit or were at measured concentrations below the applicable MOE Table 3 Standards. The results show that the groundwater at the Site has not been impacted by the eight APECs.

In addition to numerical standards, the O.Reg.153/04 sets out non-numerical (aesthetic) standards relating to the petroleum hydrocarbons. Specifically, a property does not meet an applicable site condition standard in relation to a petroleum hydrocarbon unless the qualified person has determined that there is no evidence of free product, including but not limited to, any visible petroleum hydrocarbon film or sheen present in the ground water or surface water or in any ground water or surface water samples. Monitoring for free phase product using an interface probe was conducted on December 11, 2017 and March 21, 2018 during the groundwater sampling. No evidence of free product or sheen in groundwater was observed.

Therefore, the groundwater quality at the Site meets the applicable MOECC Table 3 Standards and is not contaminated in terms of the regulation.

5.8 Sediment: Quality

There is no sediment on the Site and as such, no sediment samples were collected as part of this investigation.

5.9 Quality Assurance and Quality Control Results

The quality assurance assessment of the field duplicate sample results was conducted according to the document entitled Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

To determine the precision of the analytical methods and field sampling procedures, blind duplicate samples were collected during the soil and groundwater sampling. Precision is determined by the relative percent difference ("RPD") between the duplicate and original samples and was calculated as follows:

$$RPD = \frac{|x_1 - x_2|}{x_m}$$

Where

 x^2 duplicate sample results xm mean of x^1 , x^2

 x^1 initial sample results

RPDs are calculated only if the concentrations of a parameter are greater than the laboratory reported detection limit ("RDL") in both the duplicate and original samples. In addition, lower precision in the RPD calculation is expected when concentrations of the analytes are less than ten (10) times the RDL. Therefore, RPDs were calculated for the original and duplicate groundwater and soil samples only in cases where the measured concentrations of analytes in both samples were ten (10) times greater than the RDL.

The following RPD limits were considered reasonable and are based on Analytical Protocol: RPDs in soil, 30% for metals, 50% for VOCs, 30% for PHCs, 40% for PCBs and 40% for PAHs and in groundwater/surface water, 20% for metals, 30% for VOCs, 30% for PHCs, 30% for PCBs and 30% for PAHs.

RPDs could not be calculated for PHCs, PCBs, PAHs and VOCs in the original and duplicate soil samples, as these results were below the laboratory RDL. The calculated RPDs for the original and duplicate groundwater sample were less than 25% for metals which is considered to be within acceptable limits.

A trip blank was submitted for analysis of VOCs as part of the groundwater monitoring conducted at the Site during each groundwater sampling event of the Phase Two ESA. It is noted that the trip blank samples were found to have no detectable concentrations of VOCs. The quality of the analytical results is further supported by AGAT's internal quality assurance program that includes laboratory blanks, spikes, surrogates and duplicate samples.

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix D. The analytical laboratory did not qualify any of the analytical results.

Accordingly, the analytical data generated during the investigation are valid and representative and may be used in this Phase Two ESA without further qualification.

5.10 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model (CSM) consists of a narrative description of the current condition of the Site and accompanying diagrams, cross-sections and Figures. The Phase Two conceptual site model is presented in the following sections and the Figures that comprise the Phase Two CSM include:

Figure 1: Site Plan

Figure 2: Groundwater Elevations and Interpreted Shallow Groundwater Flow Direction

Figure 3: Cross Section A-A'

Figure 4: Cross Section B-B'

5.10.1 Current and Historical Site Use and Surrounding Land Use

The Site is located at 2525 Carling Avenue, Ottawa, Ontario and consists of an approximately 6.6 hectares (16.2 acres) parcel of land that is occupied by three buildings including the Lincoln Fields Shopping Centre, a Wendy's Restaurant, a Pizza Pizza Restaurant, and associated parking lots. The surrounding properties within the Phase Two Study Area currently include residential, community and commercial (general mixed use) land uses.

Based on the aerial photographs, the majority of the Site was vacant land used for agriculture prior to the construction of the Lincoln Fields Shopping Centre in 1971. The 1952 aerial photograph shows that Site was used primarily for agriculture, with a few residential homes along the west side of the Site along Croydon Avenue. Therefore, it can be determined that the majority of the Site was first developed with the Lincoln Fields Shopping Centre in 1971. An exception is the western edge of the Site which was first developed with residential homes prior to 1952, and was later redeveloped with the Lincoln Fields Shopping Centre in 1971.

5.10.2 Potential Sources of contamination

5.10.2.1 Potentially Contaminating Activities

Based on the information obtained as part of the Phase One ESA, the following potentially contaminating activities (PCAs) were identified on Site and off-Site within the Phase One Study Area.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
Site	#18. Electricity Generation, Transformation and Power Stations – The transformer vault for Lincoln Fields Shopping Centre in the northeast corner of the building.	Site Reconnaissance	This PCA is located on-Site. Given that the transformers were located in concrete vaults that reportedly had deficient maintenance, access to the transformer vault was unavailable, the state of the original transformers at removal is unknown, and the age of the original transformers (1970's), it is considered to contribute to an APEC on-Site.
	#18. Electricity Generation, Transformation and Power Stations – One pad-mounted transformer was located in the parking lot on the southwest portion of the Site north of Wendy's.	Site Reconnaissance	This PCA is located on-Site and therefore must be considered to contribute to an APEC.
	#28. Gasoline and Associated Products in Fixed Tanks – The shopping centre is serviced by one hydraulic lift elevator, with associated hydraulic oil tank, located in the middle of the mall.	Site Reconnaissance, Site Representative	This PCA is located on-Site and therefore must be considered to contribute to an APEC.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	#37. Operation of Dry Cleaning Equipment (where chemicals are used) – Review of HLUI and Street directories indicates the presence a dry cleaner on-Site. The cleaners currently on-Site are only a drop-off depot.	Site Reconnaissance, Site Representative, Previous Environmental Reports (Golder), Street Directories, HLUI	While the Site representative and previous reports indicate that the on- Site cleaners have always been a depot, it is considered unlikely that this is the case based on the years of the activity (as early as 1976). The exact location of the 1976 cleaners is unknown. As such, this PCA is considered to contribute to an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops – The former Walmart had vehicle servicing bay in the northeast corner of the store operated as a garage for decades. A bulk storage AST in the service bay was identified, as well as an underground oil water separator.	Site Reconnaissance, Site Representative, Previous Environmental Reports (Golder), HLUI, Ecolog ERIS Report	Due to the presence of ASTs on the Site, as well as the service bay's long operating life as a garage (>30 years in operation), and the PCA's location on-Site, it is considered to contribute to an APEC on-Site.
Site	#28. Gasoline and Associated Products in Fixed Tanks – A waste oil AST was identified in an enclosure outside the former Walmart auto service bays.	Site Reconnaissance, Site Representative, Previous Environmental Reports (Golder)	Given this PCA's location on-Site, as well as the staining noted to the east of the tank, this PCA is considered to contribute to an on-Site APEC.
	#30. Importation of Fill Material of Unknown Quality – The Site was graded with fill of unknown origin during the construction of the shopping centre in 1972.	Site Reconnaissance, Previous Environmental Reports (Golder)	Given this PCA's location across the Site, this PCA is considered to contribute to an APEC on-Site.
Phase One Study Area (excluding the Site)	#28. Gasoline and Associated Products in Fixed Tanks – 1386 Richmond Road. A former gasoline service and automotive repair station (15 m northwest of the Site) is known to have had USTs while in operation as a gas station. There was also automotive repair works conducted at this property.	Ecolog ERIS Report, Previous Environmental Reports (Golder)	This PCA is located off-Site. But given its close proximity to the Site (<15 m) and the former presence of gasoline USTs, the PCA is considered to represent an APEC on Site.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops 2599 Carling Avenue. A former gasoline service station and automotive repair station (100 m west of the Site) is known to have had USTs while in operation as a gas station. There is also automotive repair works and automotive wholesale conducted at this property.	EcoLog ERIS Report, Site Reconnaissance, Aerial Images, City Directories, HLUI	The PCA is separated from the Site by 100 m including Croydon Avenue and its underlying utilities. It is also hydraulically cross-gradient from the Site. As such, it is not considered to be a PCA that will result in an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks - The former Sunoco Service Station (150 m west of the Site) is known to have had USTs while in operation as a gas station.	EcoLog ERIS Report	The PCA is separated from the Site by 150 m including Croydon and Forest Street and their underlying utilities. It is also hydraulically cross- gradient from the Site. As such, it is not considered to be a PCA that will result in an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks and #10 Commercial Autobody Shops – 1325 Richmond Road. Former gas station with a UST, automotive wholesalers and automotive repair shops, namely Shell and currently Approval Genie, have been/are present north of the Site (approximately 50 m north of the Site.)	City Directories, EcoLog ERIS Report, HLUI	This PCA is separated from the Site by 50 m including Richmond Road and its underlying services. It is also hydraulically downgradient from the Site. As such, it is not considered to be a PCA that will result in an APEC on the Site.
	#28. Gasoline and Associated Products in Fixed Tanks and #10 Commercial Autobody Shops – 1377 Richmond Road. Current and historical automotive wholesaler and repair shop. Records indicate a waste oil UST was removed from the property. Approximately 50 m north of the Site.	Ecolog ERIS Report, City Directories, HLUI	Based on its close proximity adjacent to the Site, and its hydraulically upgradient location with respect to the Site, this PCA this is considered to represent an APEC.
	#10 Commercial Autobody Shops – 365 Forest Street. A former and current automotive repair shop; approximately 100 m west of the Site.	City Directories, Ecolog ERIS Report.	This PCA is separated from the Site by 100 m including Croydon Avenue and its underlying services. As such, it is not considered to be a PCA that will result in an APEC on the Site.
5.10.2.2 Areas of Potential Environmental Concern

The following eight APECs were identified on the Site. The location of the eight APECs is shown on Figure 1.

Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1 - Potential for soil and groundwater impacts due to the presence of a transformer vault on the Site.	A transformer vault is located in the northeast corner of the shopping centre.	On-Site	PHCs/BTEX, PCBs	Soil and Groundwater
APEC 2 - Potential for soil and groundwater impacts due to the presence of a pad- mounted transformer on the Site.	Pad-mounted transformer located on the southwestern parking lot, north of the Wendy's on the Site.	On-Site	PHCs/BTEX, PCBs	Soil and Groundwater
APEC 3 - Potential for soil and groundwater impacts due to the presence of a hydraulic oil AST associated with the hydraulic elevator.	Hydraulic oil AST located in the center of the shopping centre.	On-Site	PHCs/BTEX	Soil and Groundwater
APEC 4 - Potential for soil and groundwater impacts due to suspected former dry cleaning activities within the Phase One Property.	raulic elevator Potential for groundwater due to ed former dry g activities within se OneSuspected former dry cleaning facility on the Phase One Property. There is a current dry cleaning drop off depot on-Site.		VOCs	Soil and Groundwater
APEC 5 - Potential for soil and groundwater impacts due to the presence of a bulk storage AST, former oil water separator, and former auto servicing activities.	Former Walmart auto service bays in the northeast corner of the shopping centre. AST along east side of the service bays, oil water separator under west side of the service bays.	On-Site	PHCs/BTEX	Soil and Groundwater

Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 6 - Potential for soil and groundwater impacts due to the presence of a waste oil AST with visible staining.	Waste oil AST located on the sidewalk outside the former Walmart service bays in the northeast of the Site.	On-Site	PHCs/BTEX	Soil and Groundwater
soil and groundwater impacts due to the presence of fill of unknown quality beneath the Site.	Fill underlies the asphalt and buildings across the Site.	On-Site	PHCs/BTEX, Metals	Soil
APEC 8 - Potential for soil and groundwater impacts due to the former presence a retail fuel outlet and garage/	A retail fuel outlet with associated fuel USTs and a garage were formerly located within the Phase One Study Area; approximately 15 m northwest of the Site.	Off-Site	PHCs/BTEX	Soil and Groundwater

5.10.3 Subsurface Structures and Utilities and Potential Migration of COCs

The Site and surrounding area are serviced with storm sewers, sanitary sewers, municipal water, natural gas and telecommunication. The main utility lines are located off-Site in Croydon Avenue and Richmond Road and the main shopping centre connects to the utilities in Richmond Road. Underground utilities on the Site may influence the groundwater flow direction and migration of COCs in groundwater. However, there were no groundwater exceedances of MOECC Table 3 Standards at the Site and no indication of contaminant migration along the underground utilities within the Site.

5.10.4 Physical Setting

5.10.4.1 Stratigraphy

Representative geologic cross-sections of the Site are presented in Figures 4 and 5.

In general, the subsurface stratigraphy at the Site consists of pavement structure comprised of gravelly sand (associated with the parking lot pavement structure) overlying silty sand fill which is generally underlain by sensitive silty clay, overlying glacial till. The silty sand and fill layers extended from depths ranging from approximately 0.1 mbgs to 6.9 mbgs. The silty clay layer ranged from 2.1 mbgs to 6.9 mbgs, and the glacial till generally ranged from the bottom of the clay to 11 to 14 mbgs.

5.10.4.2 Hydrogeological Characteristics

The fill and silty sand layers are the hydrostratigraphic units which are located at a depth between 0.5 and 6.9 mbgs. Underlying the silty sand later is a silty clay layer that limits the potential for downward migration of potential groundwater impacts at the Site. Both the silty clay and the glacial till units are not considered to be water bearing formations at the Phase Two Property.

Groundwater: Elevations and Flow Direction

A full round of water level measurements at all wells, with the exception of MW17-19, was completed on March 21, 2018. As such, an interpretation of the groundwater flow direction was created based upon the water level measurement completed on March 21, 2018. The water levels were measured more than 24 hours after monitoring well development. Details of the groundwater flow are discussed in the paragraphs below.

The screens of all eleven monitoring wells were installed between 0.91 and 6.10 mbgs with the exception of MW17-108 which was located approximately four metres higher than the other wells and was screened from 6.10 – 9.15 mbgs. All monitoring wells installed during the Phase Two ESA were used for the interpretation of the groundwater flow direction within the fill/silty sand layer based on the water level measurements on March 21, 2018. An exception was MW7-19 which could not be accessed at the time of groundwater measurement. The static groundwater levels measured on March 21, 2018 in these ten accessible monitoring wells were between 0.91 and 6.10 mbgs or at elevations 96.08 metres above bench mark (mABM) (MW17-01) and 100.55 mABM (MW17-08). Based on the water level elevations measured in the ten monitoring wells at the Site on March 21, 2018, the shallow groundwater flow direction at the Site is generally interpreted to be in a north northeast direction, consistent with previous information.

The groundwater elevations measured at the ten shallow monitoring wells and the interpreted groundwater flow directions in the fill and silty sand based on the water levels measured on March 21, 2018 are shown on Figure 2.

Monitoring for free phase product using an interface probe was conducted on March 21, 2018. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed or measured.

The measured water levels and elevations for monitoring wells are presented on Table 2 following the text of the report and are shown on the Record of Borehole sheets.

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified, however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

Any temporary fluctuation in water levels on the Phase Two Property is not anticipated to effect the conclusions of the Phase Two ESA.

Underground Utilities

There are shallow services throughout the Site for building services and parking lot storm drainage. The main utility lines are located off-Site in Croydon Avenue and Richmond Road and the main shopping centre connects to the utilities in Richmond Road. Underground utilities on the Site may influence the groundwater flow direction and migration of COCs in groundwater. However, there were no groundwater exceedances of MOECC Table 3 Standards at the Site and no indication of contaminant migration along the underground utilities within the site.

Hydraulic Conductivity

Based on known values for silty sand (Freeze and Cherry, 1979) the measured hydraulic conductivity at the Site for the silty sand/fill is approximately $1x10^{-7}$ m/s. This hydraulic conductivity value was used to calculate the groundwater velocity in the hydrostratigraphic units.

Horizontal Hydraulic Gradients

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions within the fill and silty sand based on water levels collected on March 21, 2018, and the inferred groundwater contours are presented on Figure 2. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be approximately 0.0146 m/m. Variability in hydraulic gradients calculated at the Phase Two property may be related to the presence of foundations/buried structure, bedding materials, and buried services at the Site.

Vertical Hydraulic Gradients

The vertical hydraulic gradients were not obtained as no groundwater contamination was detected,

Groundwater Velocity

The groundwater flow velocity can be calculated using the Darcy equation as follows:

V=ki/n_e

Where V=Groundwater flow velocity

k =Hydraulic conductivity

i =Horizontal hydraulic gradient

ne =Effective porosity

Based on the hydraulic conductivity of 1x10-7 m/s for silty sand, and a horizontal hydraulic gradient of approximately 0.0146 and porosities of 25% (max) to 49% (min) (for silty sand), the minimum and the maximum groundwater velocity within the silty clay is estimated to be approximately 1.84x10-1 m/year and 9.40x10-2 m/year, respectively. Note that actual groundwater velocity may vary significantly not only because of variability of the hydraulic conductivity within the silty clay.

Based on the hydraulic conductivity of 1x10-7 m/s for glacial till, horizontal hydraulic gradients of 0.0011 (min) and 0.0035 (max) and a porosity of 40% (for glacial till), the minimum and the maximum groundwater velocity within the glacial till is estimated to be approximately 8.57x10-3 m/year and 2.76x10-2 m/year, respectively. Note that actual groundwater velocity may vary significantly not only because of variability of the hydraulic gradient, but also because of variability of the hydraulic conductivity within the glacial till.

5.10.5 Shallow Soil Property or Water Body (as per section 43.1 of O.Reg. 153/04)

Based on the information obtained from the Phase Two ESA, the sandstone bedrock was encountered at depths ranging from 9.7 to 13.7 mbgs. According to O.Reg.153/04, as amended, "shallow soil property" refers to a property for which 1/3 or more of the area consists of soil equal to or less than 2 metres in depth beneath the soil surface, excluding any non-soil surface treatment such as asphalt, concrete or aggregate. As such, based on the depth to bedrock encountered at the Site, the Site is not considered a shallow soil property.

5.10.6 Potable Water Wells

No potable water wells are located on the Site or within 250 m of the Site, based on the results of the Phase One ESA. As such, the Site is not considered to be a potable water site.

5.10.7 Environmentally Sensitive Areas (as per section 41 of O.Reg. 153/04)

The Site is developed with a commercial plaza and there is no habitat for potential species of risk at the Site. In addition, based on the information provided in the Ministry of Natural Resource and Forestry on-line database, no areas of natural significance are present on the Site or within 30 m of the Site. In addition, based on the data obtained from the upper fill material, soil pH ranged from 7.73 to 8.27, which is within MOECC's acceptable pH range of 5 to 9. As such, the Site is not considered to be environmentally sensitive.

5.10.8 Applicable Site Condition Standard

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (Residential/Parkland/Institutional (R/P/I) Property Use, coarse textured soil) ("MOECC Table 3 R/I/P") and (Industrial/Commercial/Community (I/C/C) Property Use, coarse textured soil) ("MOECC Table 3 I/C/C") for soil; and Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (All Types of Property Use) ("MOECC Table 3") presented in the Ministry of Environment and Climate Change (MOECC) "*Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site and all other properties located, in whole or in part, within 250 metres of the Site are supplied by the City of Ottawa municipal drinking water system and there are no water supply wells which are in use;
- The Site is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water;
- Grain size analysis was performed, and the Site was found to have a coarse soil texture.
- There are no water bodies on the Site. The closest water body is the Ottawa River located approximately 850 m north of the Site;
- There are no features on the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41 of O.Reg.153/04 as amended. Based on the data obtained from the upper fill material, soil pH ranged from 7.73 to 8.27, which is within MOECC's acceptable pH range of 5 to 9.
- The intended land use for the Phase Two Property is mixed residential and commercial, as such the more sensitive land use (residential) is considered to be applicable for the Site; and,
- The overburden thickness is greater than 2 metres over more than one-third of the Phase Two Property.

5.10.9 Findings of the Phase Two ESA (Golder, 2016) with respect to APECs

To address the APECs identified at the Site, soil and groundwater sampling and analysis of potential COCs was completed as part of this Phase Two ESA. MOECC Table 3 Standards for Residential/Parkland/Institutional Property Use (April 15, 2011) were used for comparison of the soil and groundwater results. A summary of the findings of the Phase Two ESA with respect to the APECs identified by the Phase One ESA (Golder, 2017) is provided in the table below:

APEC (location shown on Figure 1)	PCA resulting in APEC (location shown on Figure 1)	Boreholes/Monitoring to Address APEC (locations are shown on Figure 1)	COC Laboratory Analysis	Soil and/or Groundwater Exceedances of 2011 MOE Table 3 R/P/I Standards
APEC 1 - Potential for soil and groundwater impacts due to the presence of a transformer vault on the Site.	#18. Electricity Generation, Transformation and Power Stations – The transformer vault for Lincoln Fields Shopping Centre in the northeast corner of the building.	Completion of BH17-23 within APEC 1 and the sampling of groundwater in MW02-06.	Soil: PHCs F1 to F4, PCBs, VOCs Groundwater: PHCs F1 to F4, PCBs, VOCs	None
APEC 2 - Potential for soil and groundwater impacts due to the presence of a pad-mounted transformer on the Site.	#18. Electricity Generation, Transformation and Power Stations – One pad-mounted transformer was located in the parking lot on the southwest portion of the Site north of Wendy's.	Completion of BH17-08 installed with a monitoring well within APEC 2.	Soil: PHCs F1 to F4, PCBs, VOCs Groundwater: PHCs F1 to F4, PCBs, VOCs	None
APEC 3 - Potential for soil and groundwater impacts due to the presence of a hydraulic oil AST associated with the hydraulic elevator.	#28. Gasoline and Associated Products in Fixed Tanks – The shopping centre is serviced by one hydraulic lift elevator, with associated hydraulic oil tank, located in the middle of the mall.	Completion of BH17-6 installed with a monitoring well within APEC 3.	Soil: PHCs F1 to F4, VOCs Groundwater: PHCs F1 to F4, VOCs	None
APEC 4 - Potential for soil and groundwater impacts due to suspected former dry cleaning activities within the Phase One Property.	#37. Operation of Dry Cleaning Equipment (where chemicals are used) – Review of HLUI and Street directories indicated the presence a dry cleaner on-Site. The cleaners currently on-Site are only a drop-off depot.	Completion BH17-109 installed with a monitoring well near the current dry cleaning depot. The testing for VOCs in all groundwater and soil samples taken from the Site.	Soil: VOCs, PHCs F1 to F4 Groundwater: VOCs, PHCs F1 to F4	None

APEC (location shown on Figure 1)	PCA resulting in APEC (location shown on Figure 1)	Boreholes/Monitoring to Address APEC (locations are shown on Figure 1)	COC Laboratory Analysis	Soil and/or Groundwater Exceedances of 2011 MOE Table 3 R/P/I Standards
APEC 5 - Potential for soil and groundwater impacts due to the presence of a bulk storage AST, former oil water separator, and former auto servicing activities.	#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops – The former Walmart had vehicle servicing bay in the northeast corner of the store operated as a garage for decades. A bulk storage AST in the service bay was identified, as well as an underground oil water separator.	Completion of four boreholes (BH17-6, BH17-23, BH17-24, and BH17-25) within APEC 5. The installation of monitoring wells in BH17-6, and BH17-25 within APEC 5. Groundwater sampling from MW17-6, MW17- 25, MW02-05, and MW02-06.	Soil: PHCs F1 to F4, VOCs Groundwater: PHCs F1 to F4, VOCs	None
APEC 6 - Potential for soil and groundwater impacts due to the presence of a waste oil AST with visible staining.	#28. Gasoline and Associated Products in Fixed Tanks – A waste oil AST was identified in an enclosure outside the former Walmart auto service bays.	Completion of BH17-19 installed with a monitoring well within APEC 6.	Soil: PHCs F1 to F4, VOCs Groundwater: PHCs F1 to F4, VOCs	None
APEC 7 - Potential for soil and groundwater impacts due to the presence of fill of unknown quality beneath the Site.	#30. Importation of Fill Material of Unknown Quality – The Site was graded with fill of unknown origin during the construction of the shopping centre in 1972.	Completion of BH17-111 and BH17-109, as well as additional sampling from BH17-20 and BH17-19.	Soil: PHCs F1 to F4, VOCs, metals, PAHs, pH.	None
APEC 8 - Potential for soil and groundwater impacts due to the former presence a retail fuel outlet and garage/	#28. Gasoline and Associated Products in Fixed Tanks – Records indicate that off-Site adjacent to the northwest of the Site, was a former gasoline service station with USTs.	Completion of three boreholes (BH17-1, BH17-20, and BH17-21) installed with monitoring wells within APEC 8.	Soil: PHCs F1 to F4, VOCs Groundwater: PHCs F1 to F4, VOCs	None

As summarized in the above table, the results of this Phase Two ESA indicate that no soil or groundwater impacts associated with the eight APECs were identified in any of the analyzed soil and groundwater samples collected from the boreholes and the monitoring wells completed within the eight APECs at the Site. The concentrations of the COCs (PHCs F1 to F4, VOCs, PAHs and PCBs) in soil and groundwater associated with the eight APECs were all below the MOECC Table 3 R/P/I Standards.

5.10.10 Meteorological and Climatic Considerations

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified, however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter. The entire site is paved and serviced by storm sewer catchments connected to the City storm sewer. As such, not much local recharge is anticipated. In addition, given that the concentrations of the COCs in soil and groundwater were below the applicable MOECC Table 3 Standards and no impacts in soil or groundwater were identified, the temporal fluctuations in the groundwater levels due to variable effects of climatic or meteorological conditions would not influence the distribution and migration of contaminants on the Site.

5.10.11 Soil Vapour Intrusion Pathways

No volatile compounds exceeding MOECC Table 3 Standards were identified in soil or groundwater at the Site. As such, vapour intrusion was not investigated as part of this Phase Two ESA as it is not considered to be a concern for the Site.

5.10.12 Cross-Sections

Lateral and Vertical Distribution of Contaminants

No COCs were identified in soil or groundwater at the Site.

Representative cross-sections of the Site are presented in Figures 4 and 5.

5.10.13 Potential Exposure Pathways and Receptors

Given that the concentrations of the COCs in soil and groundwater were below the applicable MOECC Table 3 Standards and no impacts in soil or groundwater were identified there is no potential for contaminant release and migration at the Site.

As such, no description of the potential contaminant release and transport mechanisms, exposure pathways and human and ecological receptors located on-Site in relation to COCs is provided as part of the report.

5.10.14 Summary of Current On-Site Conditions

Based on findings of the Phase Two ESA, no exceedances of the applicable MOE Table 3 Standards were identified in soil and groundwater for the contaminants of concern associated with the eight APECs on the Site (PHC F1 to F4, VOCs (including BTEX), PCBs, metals, and PAHs.

Vapour intrusion was not investigated as part of this Phase Two ESA as it is not of concern for the Site (no VOCs impacts were identified on the Site).

6.0 CONCLUSIONS

The Phase Two ESA was carried out at the Site in accordance with O.Reg. 153/04 to address the following eight APECs identified in the 2018 Golder Phase One ESA recently completed for the Site:

- APEC 1 Potential for soil and groundwater impacts due to the presence of a transformer vault on the Site.
 #18. Electricity Generation, Transformation and Power Stations The transformer vault for Lincoln Fields Shopping Centre in the northeast corner of the building.
- APEC 2 Potential for soil and groundwater impacts due to the presence of a pad-mounted transformer on the Site.#18. Electricity Generation, Transformation and Power Stations – One pad-mounted transformer was located in the parking lot on the southwest portion of the Site north of Wendy's.
- APEC 3 Potential for soil and groundwater impacts due to the presence of a hydraulic oil AST associated with the hydraulic elevator.#28. Gasoline and Associated Products in Fixed Tanks – The shopping centre is serviced by one hydraulic lift elevator, with associated hydraulic oil tank, located in the middle of the mall.
- APEC 4 Potential for soil and groundwater impacts due to suspected former dry cleaning activities within the Phase One Property.#37. Operation of Dry Cleaning Equipment (where chemicals are used) – Review of HLUI and Street directories indicated the presence a dry cleaner on-Site. The cleaners currently on-Site are only a drop-off depot.
- APEC 5 Potential for soil and groundwater impacts due to the presence of a bulk storage AST, former oil water separator, and former auto servicing activities.#28. Gasoline and Associated Products in Fixed Tanks, #10 Commercial Autobody Shops The former Walmart had vehicle servicing bay in the northeast corner of the store operated as a garage for decades. A bulk storage AST in the service bay was identified, as well as an underground oil water separator.
- APEC 6 Potential for soil and groundwater impacts due to the presence of a waste oil AST with visible staining.#28. Gasoline and Associated Products in Fixed Tanks A waste oil AST was identified in an enclosure outside the former Walmart auto service bays.
- APEC 7 Potential for soil and groundwater impacts due to the presence of fill of unknown quality beneath the Site.#30. Importation of Fill Material of Unknown Quality – The Site was graded with fill of unknown origin during the construction of the shopping centre in 1972.
- APEC 8 Potential for soil and groundwater impacts due to the former presence a retail fuel outlet and garage/#28. Gasoline and Associated Products in Fixed Tanks Records indicate that off-Site adjacent to the northwest of the Site, was a former gasoline service station with USTs.

All eight APECs were investigated during the Phase Two ESA. Based on the completed scope of work and results of the Phase Two ESA, the following conclusions are provided:

- Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (Residential/Parkland/Institutional Property Use, coarse textured soil, April 15, 2011) are considered applicable and were used to assess the environmental quality of soil and groundwater at the Site.
- Soil sampling completed at the Site indicates that none of the soil samples submitted for laboratory analysis of the COCs related to the eight APECs: PHC F1 to F4, VOCs, PAHs, metals, and/or PCBs exceeded the MOECC Table 3 Standards indicating that none of the eight APECs impacted the soil on the Site.

- Groundwater sampling completed at the Site indicates that none of the groundwater samples submitted for laboratory analyses of PHC F1 to F4, VOCs, and/or PCBs exceeded the MOE Table 3 Standards for the parameters analyzed. No odour, sheen or free product was observed or detected in any of the ten wells during the investigation. Therefore, groundwater at the Site meets the site applicable standards at the time of the investigation.
- Based on the results of the soil and groundwater duplicate samples, trip spike, trip and field blanks and the implemented quality assurance and quality control measures during the Phase Two ESA, it is considered that the data obtained during the Phase Two ESA is reliable, reproducible and representative of the Site conditions.
- Based on the results obtained during the Phase Two ESA, soil or groundwater impacts associated with the eight APECs on the Site were not identified and the soil and groundwater quality at the Site meets the applicable standards at the time of the investigation.
- The monitoring wells installed on the Site as part of the Phase Two ESA should be decommissioned in accordance with Ontario Regulation 903 if no longer required.

7.0 REFERENCES

- MOECC. 2004. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (amended in July 2009 and effective as of July 1, 2011).
- MOECC. 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 15, 2011
- MOECC. 2011. Ontario Regulation 153/04, as amended, *Record of Site Condition Part XV.1 of the Environmental Protection Act*, amended October 31, 2011
- MOECC, 2013. Report Template for Phase Two Environmental Site Assessment Conducted in Accordance with Ontario Regulation 153/04, as amended, prepared by Association of Professional Geoscientists of Ontario, dated October, 2013.
- MOECC, 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04, dated June, 2011.
- R. Allan Freeze and John A. Cherry, Groundwater, dated 1979
- Golder Associates (Golder), Phase I Environmental Site Assessment Lincoln Fields Shopping Centre 2525 Carling Avenue Ottawa, Ontario, dated March 2002.
- Golder Associates (Golder), Phase II Environmental Site Assessment Lincoln Fields Shopping Centre 2525 Carling Avenue Ottawa, Ontario, dated April 2002.
- Golder, 2018 Phase One ESA Report No. 1783221 entitled, "*Phase One Environmental Site Assessment, Lincoln Fields, Ottawa, Ontario*", dated February 2018

8.0 LIMITATIONS

This report was prepared for the exclusive use of RioCan Management Inc. The report, which specifically includes all tables, figures and appendices, is based on data and information, collected during conducting the Phase Two ESA, and is based solely on the conditions of the property at the time of conducting investigations, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report.

The assessment of environmental conditions at this Site has been made using the results of field screening techniques and chemical analysis of soil and groundwater samples at a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at the sampling locations. Conditions may vary from these sample locations. Additional study, including further investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected. The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The content of this report is based on information collected during the drilling, soil and groundwater sampling activities, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

The monitoring wells installed as part of this project have been constructed using licensed drilling/well contractors employing licensed well technicians. It is owner's responsibility to have a licensed well technician properly abandon all monitoring wells, if required.

Signature Page

We trust that this report meets your current needs. If you have any questions, or if we may be of further assistance, please contact the undersigned.

Golder Associates Ltd.

Alex Wood, EIT Environmental Consultant

Berend Jan Velderman, PGeo, QPESA, RA Principal

AW/BJV/ca/hw

https://golderassociates.sharepoint.com/sites/13747g/deliverables/enviro folder/full site - phase two esa/final/1783221 - riocan lincoln fields phase two esa_15may2018.docx

Golder and the G logo are trademarks of Golder Associates Corporation

Tables

Monitoring Well ID	Location (UTM	18)	Installation Date	End of Borehole (mbgs)	Screen (mbgs)	Ground Surface Elevation (in relation to	Water Level Depth (mbgs)	Water Level Elevation (in relation to
	Easting	Northing				benchmark)		Denominarky
MW17-01	438303.82	5023779.31	21/02/2018	10.82	2.89 - 5.94	102.18	5.97	96.08
MW17-06	438451 ⁽¹⁾	5023823 ⁽¹⁾	14/07/2017	6.86	1.52 - 4.57	100.04	1.58	98.41
MW17-08	438359.92	5023668.76	28/11/2017	7.02	3.05 - 6.10	102.75	2.11	100.55
MW17-19	438464.00	5023861.00	21/07/2017	6.10	1.52 - 4.57	NA	NA	NA
MW17-20	438321.12	5023785.80	20/02/2018	5.94	2.89 - 5.94	101.66	2.17	99.42
MW17-21	438318.24	5023811.38	22/02/2018	5.94	2.89 - 5.94	100.77	1.96	98.66
MW17-25	438465 ⁽¹⁾	5023846 ⁽¹⁾	18/07/2017	6.10	1.52 - 4.57	100.05	2.07	97.89
MW17-101	438330.01	5023733.50	24/11/2017	6.70	3.20 - 6.25	102.71	2.54	100.07
MW17-108	438424.05	5023739.24	29/11/2017	9.15	6.10 - 9.15	105.9	6.01	99.81
MW02-05	438469 (1)	5023857 ⁽¹⁾	03/2002	3.96	0.91 - 3.96	100.05	2.21	97.79
MW02-06	438478 ⁽¹⁾	5023860 ⁽¹⁾	03/2002	4.42	0.95 - 4.00	100.05	2.35	97.65

ら GOLDER

Created by: AW Checked by: BJV Page 1 of 1
 Table 2

 Summary of Soil Samples Submitted for Laboratory Analysis

Borehole ID	Soil Samples Submitted for Analysis	Sample Depths (mbgs)	PID (ppm) IBL or IBL/HEX	Sample Collection Date	Analytical Paramaters	MOECC Table 3 Exceedances ⁽¹⁾
BH17-01	17-01 SA3	2.29 - 2.90	0.7	21/02/18	PHCs and VOCs	None
DITT-01	17-01 SA4	3.05 - 3.66	0.9	21/02/18	PHCs and VOCs	None
BH17-06	17-6 (SA-4)	1.83 - 2.44	0/15	19/07/17	PHCs and VOCs	None
BITT7-00	17-6 (SA-7)	3.66 - 4.27	0/0	19/07/17	PHCs and VOCs	None
BH17-08	17-08 SA1	2.29 - 2.90	0.6	28/11/17	153 Metals, PHCs + BTEX, PAHs and PCBs	None
	17-08 SA4	4.57 - 5.18	0.4	28/11/17	PHCs + BTEX, pH and PCBs	None
BH17-10	17-19 (SA1)	0.15 - 0.45	0/0	21/07/17	Metals and Inorganics, PHCs, and VOCs	None
DH17-19	17-19 (SA4)	2.29 - 2.90	2/0	21/07/17	PHCs and VOCs	None
	17-20 SA2	1.52 - 2.51	0.6	20/02/18	Metals and Inorganics, PHCs, VOCs, and PAHs	None
BH17-20	17-20 SA2 DUP	1.52 - 2.51	0.6	20/02/18	Metals and Inorganics, PHCs, VOCs, and PAHs	None
	17-20 SA5	3.81 - 4.42	0.9	20/02/18	PHCs and VOCs	None
	17-21 SA1	0.76 - 1.37	0.3	22/02/18	PHCs and VOCs	None
DU17 01	17-21 SA2	1.52 - 2.13	0.4	22/02/18	PHCs and VOCs	None
DITT-21	17-21 SA3	2.29 - 2.90	0.4	22/02/18	PHCs and VOCs	None
	17-21 SA5	3.31 - 4.42	0.3	22/02/18	PHCs and VOCs	None
	17-23 (SA-2)	0.61 - 1.22	0/0	17/07/17	PHCs, VOCs, and PCBs	None
BH17-23	17-23 (SA-4)	1 92 - 2 11	0/0	17/07/17	PHCs V/OCs and PCBs	None
	17-23 (SA-14)	1.05 - 2.44	0/0	17/07/17		None
BH17-24	17-24 (SA-1)	0.15 - 0.61	0/10	17/07/17	PHCs and VOCs	None
DI117-24	17-24 (SA-5)	2.44 - 3.05	0/0	17/07/17	PHCs and VOCs	None
BH17-25	17-25 (SA-3)	1.37 - 1.98	2/0	18/07/17	PHCs and VOCs	None
DITT-25	17-25 (SA-6)	3.05 - 3.66	2/10	18/07/17	PHCs and VOCs	None
	17-101 SA1	0.76 - 1.32	1.2	28/11/17	153 Metals, PHCs + BTEX, and PAHs	None
BH17-101	17-101 SA4	3.05 - 3.66	1	28/11/17		None
	17-101 SA44	5.05 - 5.00	I	20/11/17	THOSEBIEN	None
BH17-108	17-108 SA3	2.24 - 2.90	0.6	29/11/17	153 Metals, PHCs + BTEX, and PAHs	None
0117-100	17-108 SA7	5.34 - 5.95	10.2	29/11/17	153 Metals, VOCs, PHCs, and PAHs	None
BH17-109	17-109 SA4	3.81 - 4.42	5	13/02/18	Metals and Inorganics, PHCs, and PAHs	None
BH17-111	17-111 SA3	0.76 - 1.37	0.5	20/02/18	Metals and Inorganics, PHCs, and PAHs	None

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MOECC Table 3 Standards).

None = Not detected above method detection limit and/ or does not exceed MOE Table 3 Standards

N/A - Not applicable

 Table 3

 Summary of Groundwater Samples Submitted for Laboratory Analysis

Monitoring Well ID	Groundwater Samples Submitted for Analysis	Date Sampled	Observations	Analytical Paramaters	MOECC Table 3 Exceedances ⁽¹⁾
MW17-01	17-01	21/03/2018	Turbid, grey, some sediment, no odour, no sheen	PHCs and VOCs	None
MW17-06	17-06	28/02/2018	Clear, slight grey/brown colour, odourless	PHCs and VOCs	None
MW17-08	17-08	11/12/2017	Clear, colourless, no sediment, no	PHCs, PCBs, and VOCs	None
Duplicate (MW17-08)	DUP1	11/12/2017	odour, no sheen	PHCs, PCBs, and VOCs	None
MW17-19	17-19	28/02/2018	Clear and odourless	PHCs and VOCs	None
MW17-20			Not Sampled (Inaccessible)		
		27/02/2018	Clear, odourless, transparent	PHCs and VOCs	None
MW17-21	17-21	21-03-2018	Clear, colourless, no sediment, no odour, no sheen	PHCs and VOCs	None
MW17-25	17-25	28/02/2018	None PHCs and VOCs		None
MW17-101	17-101	11/12/2017	Clear, colourless, no sediment, no odour, no sheen	PHCs and VOCs	None
MW17-108	17-108	11/12/2017	Clear, colourless, no sediment, no odour, no sheen	PHCs and VOCs	None
MW02-05	02-5	28/02/2018	Clear, transparent to translucent, slight odour.	PHCs and VOCs	None
MW02-06	02-6	28/02/2018 (PCHs, & VOCs) 07/03/2018 (PCBs)	Slightly turbid, grey, no odour, no sed, no sheen.	PHCs, PCBs, and VOCs	None
Duplicate (MW02-06)	DUP026	28/02/2018 (PCHs, & VOCs) 07/03/2018 (PCBs)	None	PHCs, PCBs, and VOCs	None
Trip Blank 1	Trip Blank	11/12/2017	NA	PHCs and VOCs	None
Trip Blank 2	Trip Blank	28/02/2018	NA	PHCs and VOCs	None
Trip Blank 2	Trip Blank	21/03/2018	NA	PHCs and VOCs	None

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, All Property Use, coarse-textured soil, April 15, 2011 (MOECC Table 3 Standards).

None = Not detected above method detection limit and/ or does not exceed MOE Table 3 Standards N/A - Not applicable

				17-1	17-1	17-101	17-101	17-101	17-108	17-108	17-109	17-111	17-19
	Unit	REG153 (11)	REG153 (11)	21-Feb-2018	3 21-Feb-2018	28-Nov-2017	28-Nov-2017	28-Nov-2017	29-Nov-2017	29-Nov-2017	13-Feb-2018	20-Feb-2018	21-Jul-2017
Parameter		T3-R/P/I SOIL	T3-I/C/C SOIL	17-01 SA3	17-01 SA4	17-101 SA1	17-101 SA4	17-101 SA44 (Field Duplicate) 17-108 SA3	17-108 SA7	17-109 SA4	17-111 SA3	17-19 (SA1)
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	2.29 - 2.9	3.05 - 3.66	0.76 - 1.32	3.05 - 3.66	3.05 - 3.66	2.24 - 2.9	5.34 - 5.95	3.81 - 4.42	0.76 - 1.37	0.15 - 0.45
General Chemistry													
Conductivity	ms/cm	0.7	1.4										0.508
Cyanide (free)	ug/g	0.051	0.051										<0.040
Moisture, Percent	%			10.8	10.0	5.4	26.5	27.8	15.3	11.2	5.0	10.3	2.8
						5.4			15.3	11.2			
рН	-										7.95	8.27	8.15
PCBs													
Aroclor 1242	ug/g												
Aroclor 1248	ug/g												
Aroclor 1254	ug/g												
Aroclor 1260	ug/g												
Polychlorinated Biphenyls	ug/g	0.35	1.1										

				17-19	17-20	17-20	17-20	17-21	17-21	17-21	17-21	17-23	17-23
	Unit	REG153 (11)	REG153 (11)	21-Jul-2017	20-Feb-2018	20-Feb-2018	20-Feb-2018	22-Feb-2018	22-Feb-2018	22-Feb-2018	22-Feb-2018	17-Jul-2017	17-Jul-2017
Parameter		T3-R/P/I SOIL	T3-I/C/C SOIL	17-19 (SA4)	17-20 SA2	DUP (Field Duplicate)	17-20 SA5	17-21 SA1	17-21 SA3	17-21 SA2	17-21 SA5	17-23 (SA-2)	17-23 (SA-4)
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	2.29 - 2.9	1.52 - 2.51	1.52 - 2.51	3.81 - 4.42	0.76 - 1.37	2.29 - 2.9	1.52 - 2.13	3.31 - 4.42	0.61 - 1.22	1.83 - 2.44
General Chemistry													
Conductivity	ms/cm	0.7	1.4										
Cyanide (free)	ug/g	0.051	0.051										
Moisture, Percent	%			19.8	11.4	11.0	6.9	17.9	11.3	6.4	9.3	25.3 25.3	20.2 20.2
рН	-				7.84	7.79		7.61					
PCBs													
Aroclor 1242	ug/g											<0.1	<0.1
Aroclor 1248	ug/g											<0.1	<0.1
Aroclor 1254	ug/g											<0.1	<0.1
Aroclor 1260	ug/g											<0.1	<0.1
Polychlorinated Biphenyls	ua/a	0.35	1.1									<0.1	<0.1

				17-23	17-24	17-24	17-25	17-25	17-6	17-6	17-8	17-8
	Unit	REG153 (11)	REG153 (11)	17-Jul-2017	17-Jul-2017	17-Jul-2017	18-Jul-2017	18-Jul-2017	19-Jul-2017	19-Jul-2017	28-Nov-2017	28-Nov-2017
Parameter		13-R/P/I SOIL	13-1/C/C SUIL	17-23 (SA-14) (Field Duplicate)	17-24 (SA-1)	17-24 (SA-5)	17-25 (SA-3)	17-25 (SA-6)	17-6 (SA-4)	17-6 (SA-7)	17-08 SA1	17-08 SA4
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	1.83 - 2.44	0.15 - 0.61	2.44 - 3.05	1.37 - 1.98	3.05 - 3.66	1.83 - 2.44	3.66 - 4.27	2.29 - 2.9	4.57 - 5.18
General Chemistry												
Conductivity	ms/cm	0.7	1.4									
Cyanide (free)	ug/g	0.051	0.051									
Moisture, Percent	0/			18.4	22.9	31.9	26.2	30.9	17.1	13.0	15.2	31.4
	70			18.4	22.9	31.9	26.2	30.9	17.1	13.0	15.2	
рН	-											7.73
PCBs												
Aroclor 1242	ug/g			<0.1								
Aroclor 1248	ug/g			<0.1								
Aroclor 1254	ug/g			<0.1								
Aroclor 1260	ug/g			<0.1								
Polychlorinated Biphenyls	ug/g	0.35	1.1	<0.1	<0.1	<0.1					<0.1	<0.1

		REG153	REG153	17-101	17-108	17-108	17-109	17-111	17-19	17-20	17-20	17-8
	Unit	(11) T3-R/P/I	(11) T3-	28-Nov-2017	29-Nov-2017	29-Nov-2017	13-Feb-2018	20-Feb-2018	21-Jul-2017	20-Feb-2018	20-Feb-2018	28-Nov-2017
Parameter		SOIL	I/C/C SOIL	17-101 SA1	17-108 SA3	17-108 SA7	17-109 SA4	17-111 SA3	17-19 (SA1)	17-20 SA2	DUP (Field Duplicate)	17-08 SA1
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	0.76 - 1.32	2.24 - 2.9	5.34 - 5.95	3.81 - 4.42	0.76 - 1.37	0.15 - 0.45	1.52 - 2.51	1.52 - 2.51	2.29 - 2.9
Metals												
Antimony	ug/g	7.5	40				<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	ug/g	18	18				1	1	3	2.00	2.00	
Barium	ug/g	390	670	29	58	76	29	290	169	93.00	74.00	32
Beryllium	ug/g	4	8	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5
Boron	ug/g	120	120	<5	<5	<5	<5	<5	13	6.00	7.00	<5
Boron, Hot Water Soluble	ug/g	1.5 ⁽³⁾	2 ⁽³⁾						1.07			
Cadmium	ug/g	1.2	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	ug/g	160	160	8	23	17	7	55	10	13.00	13.00	9
Cobalt	ug/g	22	80	2.8	7.4	5.7	3.8	15.9	7.4	7.1	6.90	2.6
Copper	ug/g	140	230	6	11	13	9	33	12	13	13.00	4
Hexavalent Chromium	ug/g	8	8						<0.2			
Lead	ug/g	120	120	3	4	4	3	7	12	6	6.00	5
Mercury	ug/g	0.27	3.9						<0.10			
Molybdenum	ug/g	6.9	40	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	1.0	0.90	<0.5
Nickel	ug/g	100	270	5	12	13	6	34	15	13	12.00	4
Selenium	ug/g	2.4	5.5				<0.4	<0.4	<0.4	<0.4	<0.4	
Silver	ug/g	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	ug/g	1	3.3	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	ug/g	23	33	<0.5	0.8	<0.5	<0.5	0.7	<0.5	<0.5	0.50	0.5
Vanadium	ug/g	86	86	13	25	24	12	55	19	16	16.00	16
Zinc	ug/g	340	340	10	23	27	12	90	16	19	17.00	16

Created by: AW Checked by: BJV Page 1 of 1

	11			17-1	17-1	17-101	17-101	17-101	17-108	17-108
	Unit	REG153 (11) T3-	REG153 (11) T3-	21-Feb-2018	21-Feb-2018	28-Nov-2017	28-Nov-2017	28-Nov-2017	29-Nov-2017	29-Nov-2017
Parameter		R/P/I SOIL	I/C/C SOIL	17-01 SA3	17-01 SA4	17-101 SA1	17-101 SA4	17-101 SA44 (Field Duplicate)	17-108 SA3	17-108 SA7
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	2.29 - 2.9	3.05 - 3.66	0.76 - 1.32	3.05 - 3.66	3.05 - 3.66	2.24 - 2.9	5.34 - 5.95
Petroleum Hydrocarbons										
Benzene	ug/g	0.21	0.32	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	2	9.5	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
m,p-Xylenes	ug/g			< 0.05	< 0.05					< 0.05
o-Xylene	ug/g			<0.05	<0.05					< 0.05
Petroleum Hydrocarbons - F1 (C6-C10)	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F1 (C6-C10) -BTEX	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F2 (C10-C16)	ug/g	98	230	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons - F2 (C10-C16) less Naphthalene	ug/g					<10			<10	<10
Petroleum Hydrocarbons - F3 (C16-C34)	ug/g	300	1700	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons - F3 (C16-C34) less PAHs	ug/g					<50			<50	<50
Petroleum Hydrocarbons - F4 (C34-C50)	ug/g	2800	3300	<50	<50	<50	<50	<50	<50	<50
Toluene	ug/g	2.3	68	< 0.02	< 0.02	<0.08	<0.08	<0.08	<0.08	< 0.02
Xylenes, Total	ug/g	3.1	26	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05

	Unit	PEC153 (11) T3-	PEC153 (11) T3	17-109	17-111	17-19	17-19	17-20	17-20	17-20
Parameter		R/P/I SOIL	I/C/C SOIL	13-Feb-2018 17-109 SA4	20-Feb-2018 17-111 SA3	21-Jul-2017 17-19 (SA1)	21-Jul-2017 17-19 (SA4)	20-Feb-2018 17-20 SA2	20-Feb-2018 DUP (Field Duplicate)	20-Feb-2018 17-20 SA5
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	3.81 - 4.42	0.76 - 1.37	0.15 - 0.45	2.29 - 2.9	1.52 - 2.51	1.52 - 2.51	3.81 - 4.42
Petroleum Hydrocarbons										
Benzene	ug/g	0.21	0.32	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	2	9.5	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
m,p-Xylenes	ug/g					<0.05	< 0.05	< 0.05	<0.05	< 0.05
o-Xylene	ug/g					<0.05	<0.05	<0.05	<0.05	< 0.05
Petroleum Hydrocarbons - F1 (C6-C10)	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F1 (C6-C10) -BTEX	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F2 (C10-C16)	ug/g	98	230	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons - F2 (C10-C16) less Naphthalene	ug/g			<10	<10			<10	<10	
Petroleum Hydrocarbons - F3 (C16-C34)	ug/g	300	1700	210	<50	150	<50	<50	<50	<50
Petroleum Hydrocarbons - F3 (C16-C34) less PAHs	ug/g			210	<50			<50	<50	
Petroleum Hydrocarbons - F4 (C34-C50)	ug/g	2800	3300	110	<50	170	<50	<50	<50	<50
Toluene	ug/g	2.3	68	<0.08	<0.08	< 0.02	<0.02	< 0.02	<0.02	< 0.02
Xylenes, Total	ug/g	3.1	26	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05

				17-21	17-21	17-21	17-21	17-23	17-23	17-23
	Unit	REG153 (11) T3-	REG153 (11) T3-	22-Feb-2018	22-Feb-2018	22-Feb-2018	22-Feb-2018	17-Jul-2017	17-Jul-2017	17-Jul-2017
Parameter		R/P/I SOIL	I/C/C SOIL	17-21 SA1	17-21 SA3	17-21 SA2	17-21 SA5	17-23 (SA-2)	17-23 (SA-4)	(SA-14) (Field Dup
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	0.76 - 1.37	2.29 - 2.9	1.52 - 2.13	3.31 - 4.42	0.61 - 1.22	1.83 - 2.44	1.83 - 2.44
Petroleum Hydrocarbons										
Benzene	ug/g	0.21	0.32	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	2	9.5	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
m,p-Xylenes	ug/g			< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
o-Xylene	ug/g			< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Petroleum Hydrocarbons - F1 (C6-C10)	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F1 (C6-C10) -BTEX	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F2 (C10-C16)	ug/g	98	230	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons - F2 (C10-C16) less Naphthalene	ug/g									
Petroleum Hydrocarbons - F3 (C16-C34)	ug/g	300	1700	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons - F3 (C16-C34) less PAHs	ug/g									
Petroleum Hydrocarbons - F4 (C34-C50)	ug/g	2800	3300	<50	<50	<50	<50	<50	<50	<50
Toluene	ug/g	2.3	68	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02
Xylenes, Total	ug/g	3.1	26	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05

				17-24	17-24	17-25	17-25	17-6	17-6	17-8	17-8
Parameter	Unit	REG153 (11) T3- R/P/I SOIL	REG153 (11) T3- I/C/C SOIL	17-Jul-2017 17-24 (SA-1)	17-Jul-2017 17-24 (SA-5)	18-Jul-2017 17-25 (SA-3)	18-Jul-2017 17-25 (SA-6)	19-Jul-2017 17-6 (SA-4)	19-Jul-2017 17-6 (SA-7)	28-Nov-2017 17-08 SA1	28-Nov-2017 17-08 SA4
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	0.15 - 0.61	2.44 - 3.05	1.37 - 1.98	3.05 - 3.66	1.83 - 2.44	3.66 - 4.27	2.29 - 2.9	4.57 - 5.18
Petroleum Hydrocarbons											
Benzene	ug/g	0.21	0.32	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02
Ethylbenzene	ug/g	2	9.5	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
m,p-Xylenes	ug/g			<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05		
o-Xylene	ug/g			<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05		
Petroleum Hydrocarbons - F1 (C6-C10)	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F1 (C6-C10) -BTEX	ug/g	55 ⁽⁴⁾	55 ⁽⁴⁾	<5	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F2 (C10-C16)	ug/g	98	230	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons - F2 (C10-C16) less Naphthalene	ug/g									<10	
Petroleum Hydrocarbons - F3 (C16-C34)	ug/g	300	1700	<50	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons - F3 (C16-C34) less PAHs	ug/g									<50	
Petroleum Hydrocarbons - F4 (C34-C50)	ug/g	2800	3300	<50	<50	<50	<50	<50	<50	<50	<50
Toluene	ug/g	2.3	68	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.08	<0.08
Xylenes, Total	ug/g	3.1	26	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05

				17-1	17-1	17-108	17-19	17-19	17-20	17-20	17-20
		REG153 (11)	REG153 (11)	21-Feb-2018	21-Feb-2018	29-Nov-2017	21-Jul-2017	21-Jul-2017	20-Feb-2018	20-Feb-2018	20-Feb-2018
Parameter	Unit	T3-R/P/I SOIL	T3-I/C/C SOIL	17-01 SA3	17-01 SA4	17-108 SA7	17-19 (SA1)	17-19 (SA4)	17-20 SA2	DUP (Field Duplicate)	17-20 SA5
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	2.29 - 2.9	3.05 - 3.66	5.34 - 5.95	0.15 - 0.45	2.29 - 2.9	1.52 - 2.51	1.52 - 2.51	3.81 - 4.42
VOCs											
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.087	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04
1,1,1-Trichloroethane	ug/g	0.38	6.1	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
1,1,2-Trichloroethane	ug/g	0.05	0.05	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04
1,1-Dichloroethane	ug/g	3.5	17	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
1,1-Dichloroethylene	ug/g	0.05	0.064	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
1,2-Dibromoethane	ug/g	0.05	0.05	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04
1,2-Dichlorobenzene	ug/g	3.4	6.8	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	ug/g	0.05	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,2-Dichloropropane	ug/g	0.05	0.16	< 0.03	< 0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03
1,3-Dichlorobenzene	ug/g	4.8	9.6	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichloropropene, Total	ug/g	0.05	0.18	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04
1,4-Dichlorobenzene	ug/g	0.083	0.2	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	ug/g	16	70	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	1.7	31	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Acetone	ug/g	16	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	ug/g	13	18	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
Bromoform	ug/g	0.27	0.61	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Bromomethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Carbon Tetrachloride	ug/g	0.05	0.21	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	ug/g	2.4	2.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Chloroform	ug/g	0.05	0.47	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04
cis-1,2-Dichloroethene	ug/g	3.4	55	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibromochloromethane	ug/g	9.4	13	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Dichlorodifluoromethane	ug/g	16	16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
Methyl tert-Butyl Ether	ug/g	0.75	11	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	ug/g	0.1	1.6	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
n-Hexane	ug/g	2.8	46	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
Styrene	ug/g	0.7	34	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Tetrachloroethylene	ug/g	0.28	4.5	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
trans-1,2-Dichloroethene	ug/g	0.084	1.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Trichloroethene	ug/g	0.061	0.91	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03
Trichlorofluoromethane	ug/g	4	4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Vinyl Chloride	ug/g	0.02	0.032	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02

				17-21	17-21	17-21	17-21	17-23	17-23
		REG153 (11)	REG153 (11)	22-Feb-2018	22-Feb-2018	22-Feb-2018	22-Feb-2018	17-Jul-2017	17-Jul-2017
Parameter	Unit	T3-R/P/I SOIL	T3-I/C/C SOIL	17-21 SA1	17-21 SA3	17-21 SA2	17-21 SA5	17-23 (SA-2)	17-23 (SA-4)
Sample Depth	m	COARSE	COARSE ⁽²⁾	0.76 - 1.37	2.29 - 2.9	1.52 - 2.13	3.31 - 4.42	0.61 - 1.22	1.83 - 2.44
VOCs									
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.087	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
1,1,1-Trichloroethane	ug/g	0.38	6.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
1,1,2-Trichloroethane	ug/g	0.05	0.05	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
1,1-Dichloroethane	ug/g	3.5	17	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,1-Dichloroethylene	ug/g	0.05	0.064	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
1,2-Dibromoethane	ug/g	0.05	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04
1,2-Dichlorobenzene	ug/g	3.4	6.8	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
1,2-Dichloroethane	ug/g	0.05	0.05	< 0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03
1,2-Dichloropropane	ug/g	0.05	0.16	< 0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03
1,3-Dichlorobenzene	ug/g	4.8	9.6	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
1,3-Dichloropropene, Total	ug/g	0.05	0.18	<0.04	< 0.04	< 0.04	< 0.04	<0.04	<0.04
1,4-Dichlorobenzene	ug/g	0.083	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	ug/g	16	70	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	1.7	31	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Acetone	ug/g	16	16	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	ug/g	13	18	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	ug/g	0.27	0.61	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.21	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	ug/g	2.4	2.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	ug/g	0.05	0.47	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
cis-1,2-Dichloroethene	ug/g	3.4	55	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02
Dibromochloromethane	ug/g	9.4	13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Dichlorodifluoromethane	ug/g	16	16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Methyl tert-Butyl Ether	ug/g	0.75	11	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Methylene Chloride	ug/g	0.1	1.6	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
n-Hexane	ug/g	2.8	46	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	ug/g	0.7	34	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Tetrachloroethylene	ug/g	0.28	4.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethene	ug/g	0.084	1.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethene	ug/g	0.061	0.91	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Trichlorofluoromethane	ug/g	4	4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	uq/q	0.02	0.032	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02

Created by: AW Checked by: BJV Page 2 of 3

				17-23	17-24	17-24	17-25	17-25	17-6	17-6
		REG153 (11)	REG153 (11)	17-Jul-2017	17-Jul-2017	17-Jul-2017	18-Jul-2017	18-Jul-2017	19-Jul-2017	19-Jul-2017
Parameter	Unit	T3-R/P/I SOIL	T3-I/C/C SOIL	17-23 (SA-14) (Field Duplicate)	17-24 (SA-1)	17-24 (SA-5)	17-25 (SA-3)	17-25 (SA-6)	17-6 (SA-4)	17-6 (SA-7)
Sample Depth	m	COARSE ⁽¹⁾	COARSE ⁽²⁾	1.83 - 2.44	0.15 - 0.61	2.44 - 3.05	1.37 - 1.98	3.05 - 3.66	1.83 - 2.44	3.66 - 4.27
VOCs										
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.087	<0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04
1,1,1-Trichloroethane	ug/g	0.38	6.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	ug/g	0.05	0.05	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04
1,1-Dichloroethane	ug/g	3.5	17	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,1-Dichloroethylene	ug/g	0.05	0.064	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dibromoethane	ug/g	0.05	0.05	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04
1,2-Dichlorobenzene	ug/g	3.4	6.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichloroethane	ug/g	0.05	0.05	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03
1,2-Dichloropropane	ug/g	0.05	0.16	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,3-Dichlorobenzene	ug/g	4.8	9.6	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene, Total	ug/g	0.05	0.18	<0.04	< 0.04	<0.04	< 0.04	<0.04	< 0.04	< 0.04
1,4-Dichlorobenzene	ug/g	0.083	0.2	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05
Methyl Ethyl Ketone	ug/g	16	70	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	1.7	31	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Acetone	ug/g	16	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	ug/g	13	18	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Bromoform	ug/g	0.27	0.61	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.21	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	ug/g	2.4	2.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	ug/g	0.05	0.47	<0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04
cis-1,2-Dichloroethene	ug/g	3.4	55	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibromochloromethane	ug/g	9.4	13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	ug/g	16	16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-Butyl Ether	ug/g	0.75	11	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1	1.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
n-Hexane	ug/g	2.8	46	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	34	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	ug/g	0.28	4.5	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethene	ug/g	0.084	1.3	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethene	ug/g	0.061	0.91	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Trichlorofluoromethane	ug/g	4	4	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
Vinyl Chloride	ug/g	0.02	0.032	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Created by: AW Checked by: BJV Page 3 of 3

		REG153	REG153	17-101	17-108	17-108	17-109	17-111	17-20	17-20	17-8
		(11) T3-	(11) T3-	28-Nov-2017	29-Nov-2017	29-Nov-2017	13-Feb-2018	20-Feb-2018	20-Feb-2018	20-Feb-2018	28-Nov-2017
Parameter	Unit	R/P/I	I/C/C	17-101 SA1	17-108 SA3	17-108 SA7	17-109 SA4	17-111 SA3	17-20 SA2	DUP (Field Duplicate)	17-08 SA1
Sample Depth	m	SOIL	SOIL	0.76 - 1.32	2.24 - 2.9	5.34 - 5.95	3.81 - 4.42	0.76 - 1.37	1.52 - 2.51	1.52 - 2.51	2.29 - 2.9
Semi-VOCs											
1-Methylnaphthalene	ug/g	0.99 (5)	76 ⁽⁵⁾	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
4-Methyl-2-pentanone	ug/g	1.7	31			<0.50			<0.50	<0.50	
Acenaphthene	ug/g	7.9	96	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	0.15	0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	0.67	0.67	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	0.5	0.96	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	0.3	0.3	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	0.78	0.96	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	ug/g	6.6	9.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	0.78	0.96	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	7	9.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	0.1	0.1	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	ug/g	0.69	9.6	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Fluorene	ug/g	62	62	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	0.38	0.76	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Naphthalene	ug/g	0.6	9.6	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	ug/g	6.2	12	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	78	96	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	34			< 0.05			<0.05	<0.05	

Tables 4A to 4E Soil Analytical Results - Notes

Footnotes:

<

- Tables should be read in conjunction with the accompanying document.
- Indicates parameter not detected above laboratory method detection limit.
- > Indicates parameter detected above equipment analytical range.
- Chemical not analyzed or criteria not defined.
- Value Parameter is greater than REG153 (11) T3-R/P/I SOIL COARSE
- Value Parameter is greater than REG153 (11) T3-I/C/C SOIL COARSE
 - (1) O.Reg 153 (2011) Table 3 Standards for residential/parkland/institutional property use for coarse textured soil in full depth generic site condition in a non-potable groundwater condition
 - (2) O.Reg 153 (2011) Table 3 Standards for industrial/commerical/community property use for coarse textured soil in full depth generic site condition in a non-potable groundwater condition
 - (3) The boron standards are for hot water soluble extract for all surface soils. For subsurface soils the standards are for total boron (mixed strong acid digest), as ecological criteria are not considered.
 - (4) F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result.

			02-5	02-6	02-6	06-Feb	17-101	17-108	17-19	17-21	17-21	17-25	17-6	17-8	17-8
	Unit	REG153 (09) T3-GW	28-Feb-2018	28-Feb-2018	07-Mar-2018	07-Mar-2018 DUP-P	11-Dec-2017	11-Dec-2017	28-Feb-2018	28-Feb-2018	21-Mar-2018	28-Feb-2018	28-Feb-2018	11-Dec-2017	11-Dec-2017 DUP1
Parameter		COARSE ⁽¹⁾	02 - 5	02 - 6	MW02-6	(Field Duplicate)	17-101	17-108	17 - 19	17 - 21	17-21	17 - 25	17 - 06	17-08	(Field Duplicate)
General Chemistry															
Conductivity (Field)	ms/cm	(2)	1.90	2.93	-	-	7.09	7.09	2.36	2.46	2.27	3.47	1.59	7.09	-
Dissolved Oxygen (Field)	ug/l		7130	8250	-	-	870	870	7030	9640	2130	3250	5620	870	-
Oxidation-Reduction Potential (Field)	millivolts		219	227	-	-	132	132	140	-7	-137	191	183	132	-
pH (Field)	-		7.68	7.73	-	-	7.50	7.50	7.59	1.83	7.60	7.59	7.60	7.50	-
Temperature (Field)	deg c		13.72	13.28	-	-	8.82	8.82	11.26	9.44	6.21	13.47	16.91	8.82	-
Turbidity (Field)	NTU		198	158	-	-	232	232	30.3	150	24.8	281	800	232	-
PCBs															
Polychlorinated Biphenyls	ug/l	7.8	-	-	<0.1	<0.1	-	-	-	-	-	-	-	<0.1	<0.1

		REG153	02-5	02-6	02-6	17-1	17-101	17-108	17-19	17-21
		(09) T3-GW	28-Feb-2018	3 28-Feb-2018	28-Feb-2018	21-Mar-2018	11-Dec-2017	11-Dec-2017	28-Feb-2018	28-Feb-2018
Parameter	Unit	COARSE ⁽¹⁾	02 - 5	02 - 6	DUP026 (Field Duplicate)	17-1	17-101	17-108	17 - 19	17 - 21
Petroleum Hydrocarbons										
Benzene	ug/l	44	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	ug/l	2300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m,p-Xylenes	ug/l		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	ug/l		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Petroleum Hydrocarbons - F1 (C6-C10)	ug/l	750 ⁽³⁾	<25	<25	<25	<25	<25	<25	<25	<25
Petroleum Hydrocarbons - F1 (C6-C10)-BTEX	ug/l	750 ⁽³⁾	<25	<25	<25	<25	<25	<25	<25	<25
Petroleum Hydrocarbons - F2 (C10-C16)	ug/l	150	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons - F3 (C16-C34)	ug/l	500	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons - F4 (C34-C50)	ug/l	500	<100	<100	<100	<100	<100	<100	<100	<100
Toluene	ug/l	18000	<0.20	<0.20	<0.20	7.3	0.64	0.84	<0.20	<0.20
Xylenes, Total	ug/l	4200	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Created by: AW Checked by: BJV Page 1 of 2

		REG153	17-21	17-25	17-6	17-8	17-8	[TB]	[TB]	[TB]
		(09) T3-GW	21-Mar-2018	28-Feb-2018	28-Feb-2018	11-Dec-2017	11-Dec-2017	11-Dec-2017	28-Feb-2018	19-Mar-2018
Parameter	Unit	COARSE ⁽¹⁾	17-21	17 - 25	17 - 06	17-08	DUP1 (Field Duplicate)	Trip Blank	Trip Blank	Trip Blank
Petroleum Hydrocarbons										
Benzene	ug/l	44	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	ug/l	2300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m,p-Xylenes	ug/l		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	ug/l		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Petroleum Hydrocarbons - F1 (C6-C10)	ug/l	750 ⁽³⁾	<25	<25	<25	<25	<25		<25	
Petroleum Hydrocarbons - F1 (C6-C10)-BTEX	ug/l	750 ⁽³⁾	<25	<25	<25	<25	<25		<25	
Petroleum Hydrocarbons - F2 (C10-C16)	ug/l	150	<100	<100	<100	<100	<100			
Petroleum Hydrocarbons - F3 (C16-C34)	ug/l	500	<100	<100	<100	<100	<100			
Petroleum Hydrocarbons - F4 (C34-C50)	ug/l	500	<100	<100	<100	<100	<100			
Toluene	ug/l	18000	<0.20	<0.20	<0.20	0.28	0.32	<0.20	<0.20	<0.20
Xylenes, Total	ug/l	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

			02-5	02-6	02-6	17-1	17-101	17-108	17-19	17-21	17-21	17-25
		REG153	28-Feb-2018	28-Feb-2018	28-Feb-2018	21-Mar-2018	11-Dec-2017	11-Dec-2017	28-Feb-2018	28-Feb-2018	21-Mar-2018	28-Feb-2018
		(09) T3-GW			DUP026							
Parameter	Unit	COARSE ⁽¹⁾	02 - 5	02 - 6	(Field Duplicate)	17-1	17-101	17-108	17 - 19	17 - 21	17-21	17 - 25
VOCs												
1,1,1,2-Tetrachloroethane	ug/l	3.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,1-Trichloroethane	ug/l	640	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,1,2,2-Tetrachloroethane	ug/l	3.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2-Trichloroethane	ug/l	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	ug/l	320	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,1-Dichloroethylene	ug/l	1.6	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,2-Dibromoethane	ug/l	0.25	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	ug/l	4600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichloroethane	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	ug/l	16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,3-Dichlorobenzene	ug/l	9600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene, Total	ug/l	5.2	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,4-Dichlorobenzene	ug/l	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Methyl Ethyl Ketone	ug/l	470000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl Isobutyl Ketone	ug/l	140000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acetone	ug/l	130000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	ug/l	85000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	ug/l	380	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromomethane	ug/l	5.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	ug/l	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/l	630	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloroform	ug/l	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,2-Dichloroethene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	ug/l	82000	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dichlorodifluoromethane	ug/l	4400	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-Butyl Ether	ug/l	190	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	ug/l	610	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
n-Hexane	ug/l	51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Styrene	ug/l	1300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,2-Dichloroethene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	ug/l	2500	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	ug/l	0.5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	< 0.17	<0.17

1780158

			17-6	17-8	17-8	[TB]	[TB]	[TB]
		REG153	28-Feb-2018	11-Dec-2017	11-Dec-2017	11-Dec-2017	28-Feb-2018	19-Mar-2018
		(09) T3-GW			DUP1			
Parameter	Unit	COARSE ⁽¹⁾	17 - 06	17-08	(Field Duplicate)	Trip Blank	Trip Blank	Trip Blank
VOCs								
1,1,1,2-Tetrachloroethane	ug/l	3.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,1-Trichloroethane	ug/l	640	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,1,2,2-Tetrachloroethane	ug/l	3.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2-Trichloroethane	ug/l	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	ug/l	320	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,1-Dichloroethylene	ug/l	1.6	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,2-Dibromoethane	ug/l	0.25	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	ug/l	4600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichloroethane	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	ug/l	16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,3-Dichlorobenzene	ug/l	9600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene, Total	ug/l	5.2	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1,4-Dichlorobenzene	ug/l	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Methyl Ethyl Ketone	ug/l	470000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl Isobutyl Ketone	ug/l	140000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acetone	ug/l	130000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	ug/l	85000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	ug/l	380	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromomethane	ug/l	5.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	ug/l	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/l	630	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloroform	ug/l	2.4	<0.20	0.22	0.26	<0.20	<0.20	<0.20
cis-1,2-Dichloroethene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	ug/l	82000	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dichlorodifluoromethane	ug/l	4400	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-Butyl Ether	ug/l	190	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	ug/l	610	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
n-Hexane	ug/l	51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Styrene	ug/l	1300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,2-Dichloroethene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethene	ug/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	ug/l	2500	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	ug/l	0.5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17

Tables 5A to 5C Groundwater Analytical Results - Notes

Footnotes:

<

- Tables should be read in conjunction with the accompanying document.
- Indicates parameter not detected above laboratory method detection limit.
- > Indicates parameter detected above equipment analytical range.
- -- Chemical not analyzed or criteria not defined.

Value Parameter is greater than REG153 (09) T3-GW COARSE

- (1) O.Reg 153 (2009) Table 3 Standards for all types of property use for groundwater in coarse textured soil in full depth generic site condition in a non-potable ground water condition
- (2) Not Applicable.
- (3) F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result.

Figures

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HA

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN

LEGEND

STRATIGRAPHY LEGEND

ASPHALTIC CONCRETE
CONCRETE
FILL
SILTY CLAY
SILTY SAND
GLACIAL TILL
SAND
SANDY SILT
CLAYEY SILT

NOTE(S)

1. ALL LOCATIONS ARE APPROXIMATE 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

CLIENT RIOCAN MANAGEMENT INC.

PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT LINCOLN FIELDS SHOPPING MALL, 2525 CARLING AVENUE OTTAWA, ONTARIO

TITLE GEOLOGICAL CROSS-SECTION A-A'

CONSULTANT		YYYY-MM-DD	2018-04-23	
-		DESIGNED		
	Colden	PREPARED	JEM	
	ssociates	REVIEWED	AW	
		APPROVED	BJV	
PROJECT NO. 1780158	CONTROL	RE 0	W.	FIGURE

(metres) Elevation

LEGEND

STRATIGRAPHY LEGEND

	ASPHALTIC CONCRETE
	CONCRETE
	FILL
	SILTY CLAY
	SILTY SAND
	GLACIAL TILL
<u>~~</u>	SAND
	SANDY SILT
	CLAYEY SILT

NOTE(S)

1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

CLIENT RIOCAN MANAGEMENT INC.

PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT LINCOLN FIELDS SHOPPING MALL, 2525 CARLING AVENUE OTTAWA, ONTARIO

GEOLOGICAL CROSS-SECTION B-B'

CONSULTANT		YYYY-MM-DD	2018-04-23	
-		DESIGNED		
	Colden	PREPARED	JEM	
	Associates	REVIEWED	AW	
		APPROVED	BJV	
PROJECT NO.	CONTROL	RE	EV.	FIGURE
1780158	0003	0		4

APPENDIX A

Plan of Survey

APPENDIX B

Sampling and Analysis Plan

Appendix B SAMPLING AND ANALYSIS PLAN Lincoln Fields Shopping Centre, 2525 Carling Avenue, Ottawa, ON

Area of Potential Environmental Concern	Rationale	Location	Borehole/ Monitoring Well Location ID	Well Installed (Y/N)	Depth and/or Screen Length	Soil Samples ¹	Groundwater Samples ²
	Borehole completed to assess potential soil impacts, and existing monitoring well from 2002 investigation	East side of the former Walmart Garage within second most eastern bay.	MW02-6	Υ	4.42 m - Screen 0.95 to 4.00 m	None (existing well)	Groundwater sample will be analyzed for PHCs, VOCs, and PCBs.
	used to assess potential groundwater impacts related to the presence of the on-Site transformer vault (PHCs, PCBs) and the former automotive garage (PHCs).	East side of the former Walmart Garage within second most eastern bay. Three feet away from existing well.	BH17-23	N	5.10 m - no well	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: PHCs, VOCs, and PCBs	N/A
APEC 1 - Transformer Vault On-Site. APEC 5 - Former Automotive Garage with Associated Oil ASTs and Oil Water Separator.	Parabalaa come completed with monitoring wells	West side of the former Walmart Garage within most western bay.	MW02-5	Υ	3.96 m - Screen 0.91 to 3.96 m	None (existing well)	Groundwater sample will be analyzed for PHCs, and VOCs.
	and existing monitoring wells from 2002 investigation, used to assess potential soil or groundwater impacts related to the presence the former automotive garage and its associated oil ASTs and oil-water separator	West side of the former Walmart Garage approximately 5 m south of MW02-5.	BH17-24	N	6.10 m - no well	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: PHCs and VOCs.	N/A
	(PHCs, VOCs).	In the northeast corner of the former Walmart. Located approximately 7 m west of the door to the former garage.	BH17-25	Y	6.10 m - Screen 1.52 - 4.57 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: PHCs and VOCs.	Groundwater sample will be analyzed for PHCs, and VOCs.
APEC 2 - Pad mounted Transformer APEC 7 - Fill of Unknown Quality	Borehole completed with monitoring well to assess potential soil or groundwater impacts related to the presence the pad mounted transformer (PHCs, PCBS), and fill of unknown quality on-Site (Metals, PAHs).	Located in the southwest quadrant of the Site north of the Wendy's a few meters east of the transformer.	BH17-08	Y	7.02 m - Screen 3.05 to 6.10 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for some or all of the following: PHCs, Metals, pH, PAHs, BTEX, and PCBs	Groundwater sample will be analyzed for PHCs, VOCs, and PCBs.
APEC 3 - Oil AST for Hydraulic Elevator	Borehole completed with monitoring well to assess potential soil or groundwater impacts related to the presence the Hydraulic Oil AST (PHCs).	Centre of the shopping centre on the west side of the former Walmart.	BH17-06	Y	6.86 m - Screen 1.52 to 4.57 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: PHCs and VOCs.	Groundwater sample will be analyzed for PHCs and VOCs.
APEC 4 - Suspected Former Dry Cleaning Activities APEC 7 - Fill of Unknown Quality	Borehole completed with monitoring well, and VOC analysis added to all samples to assess potential soil or groundwater impacts related to suspected former dry cleaning activities on Site (VOCS), and fill of unknown quality on-Site (Metals, PAHs).	Located on the central south side of the Shopping centre. Nearcurrent dry cleaning depot.	BH17-108	Y	9.15 m - Screen 6.10 to 9.15 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: O.Reg 153 Metals, PHCs, PAHs and VOCs.	Groundwater sample will be analyzed for PHCs and VOCs.
APEC 6 - Waste Oil AST for Former Garage APEC 7 - Fill of Unknown Quality	Borehole completed with monitoring well to assess potential soil or groundwater impacts related to the presence the waste oil AST (PHCs), and fill of unknown quality on-Site (Metals, PAHs).	Located outside, north of the former Walmart Automotive Garage, and ~3 m east of the AST.	BH17-19	Y	6.10 m - Screen 1.52 - 4.57 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for some or all of the following: PHCs, Metals, pH, PAHs, BTEX, and PCBs	Groundwater sample will be analyzed for PHCs and VOCs.
	Boreholes completed to assess potential soil impacts related to the presence of the fill across the Site (Metals, PAHs, PHCs, BTEX, and pH).	In the west parking lot approximately 50 m west of the shopping centre.	BH17-101	Y	6.70 m - Screen 3.20 to 6.25 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for some or all of the following: PHCs, Metals, PAHs, BTEX	Groundwater sample will be analyzed for PHCs and VOCs.
APEC 7 - Fill of Unknown Quality		Just off the side walk to the south and centred of the shopping centre.	BH17-109	Ν	7.47 m - no well	One soil sample selected based on field screening measurements and/or estimated depth of contamination. Submitted for some or all of the following: PHCs, Metals, pH, PAHs, and BTEX.	N/A
		Southeast corner of the property in the parking lot.	BH17-111	N	1.52 m - no well	One soil sample selected based on field screening measurements and/or estimated depth of contamination. Submitted for some or all of the following: PHCs, Metals, pH, PAHs, and BTEX.	N/A
APEC 7 - Fill of Unknown Quality APEC 8 - Former Off-Site Gasoline Service Station	Borehole completed with monitoring well to assess potential soil or groundwater impacts related to the presence the waste oil AST (PHCs), and fill of unknown quality on-Site (Metals, PAHs, and pH).	Adjacent to the southeast corner of the Quickie property, on-Site.	BH17-20	Y	5.94 m - Screen 2.89 to 5.94 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for some or all of the following: PHCs, Metals, pH, PAHs, and VOCs.	Groundwater sample will be analyzed for PHCs and VOCs.
APEC 8 - Former Off-Site Casoline Service	Boreholes completed with monitoring wells to assess	Most western point on-Site, adjacent to the southwest corner of the Quickie property.	BH17-01	Y	10.82 m - Screen 2.89 to 5.94 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: PHCs and VOCs.	Groundwater sample will be analyzed for PHCs and VOCs.
Station	protential son or groundwater impacts related to the presence of the off-Site source.	East of the Quickie property, adjacent to the Quickie building, on-Site.	BH17-21	Y	5.94 m - Screen 2.89 to 5.94 m	Two soil samples selected based on field screening measurements and/or estimated depth of contamination. Submitted for: PHCs and VOCs.	Groundwater sample will be analyzed for PHCs and VOCs.

1: Three (3) duplicate soil samples from three different boreholes will be submitted for quality assurance purposes of all parameters. 2: Two (2) duplicate groundwater samples from two of the wells will be submitted for quality assurance purposes of all parameters.

3: One (1) VOC trip blank will be submitted along with each groundwater VOC sample submission for quality assurance purposes of VOCs.

APPENDIX C

Borehole Logs

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{30^{2}}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name			
		Gravels تو يو آل with		Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL			
(ss	5 mm)	EL2% Fines (by mass) + 1.22 u				1 to 3	3		GW	GRAVEL					
by ma	SOILS an 0.07	GRA 50% by arse fr er than	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL			
SANIC ≤30%	AINED ger tha	cc cc larg	fines (by mass)	Above A Line	n/a					10001	GC	CLAYEY GRAVEL			
INORG	E-GR/ ss is lar	of s nm)	Sands with	Poorly Graded		<6		≤1 or ≩	≥3	≤30%	SP	SAND			
ganic C	DARS by mas	DS mass action i 14.75 r	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND			
(Org	>50%	SAN 50% by arse fra	Sands with	Below A Line			n/a				SM	SILTY SAND			
	Ŭ	(≥5 co small	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND			
Organic	Soil	Tune	of Soil	Laboratory		F	ield Indica	itors	Toughness	Organic	USCS Group	Primary			
or Inorganic	Group	туре	01 501	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	(of 3 mm thread)	Content	Symbol	Name			
		plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT			
(ss	75 mm)	and Ll	 city low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT			
by ma	OILS an 0.0	SILTS ic or PI	low A-I n Plasti art be		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT			
aANIC t ≤30%	NED So aller th	(Non-Plast be or Ch		Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT			
INORG	-GRAII s is sm (No			≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT			
ganic (FINE oy mas	FINE oy mas	FINE oy mas	FINE oy mas	art o		Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY
(Org	≥50% b	AYS d LL p A-Line sity Ch elow)	SAN L	elow)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY		
		(Pl ai above Plasti		Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY			
≻ ^O o	30% (s)	Peat and mix	mineral soil tures							30% to 75%		SILTY PEAT, SANDY PEAT			
HIGHL	organ ntent > by mas	Predomin may con	antly peat, tain some					75% PT							
	° °	mineral so amorph	il, fibrous or ous peat							to PEAT					
 amorphous pear Low Plasticity Low Plasticity Medium Plasticity High Plasticity High					separated by ML. e used when a. to identify rty" sand or ed when the CL-ML area .). two symbols SM, CL/ML. that the soil are on the a borderline lar soil types										
Note 1 – Fin slight plast named SIL Note 2 – Fo between 5%	0 10 20 25.5 10 40 50 60 70 80 symbol may be used to indicate a range of similar soil types Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) within a stratum. Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) within a stratum. Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) within a stratum. Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) within a stratum. Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) within a stratum. Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (LL) Idquid Limit (Idquid Limit (Idquid Limit (LL)) Idquid Limit (Id														

🕓 GOLDER

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier			
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)			
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable			
> 5 to 12	some			
≤ 5	trace			

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_i), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- wн Sampler advanced by static weight of hammer
- Sampler advanced by weight of sampler and rod WR:

-

NON-COHESIVE (COHESIONLESS) SOILS

Compactness ²				
Term	SPT 'N' (blows/0.3m) ¹			
Very Loose	0 - 4			
Loose	4 to 10			
Compact	10 to 30			
Dense	30 to 50			
Very Dense	>50			

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects.

2. Definition of compactness terms are based on SPT-N' ranges as provided in Terzaghi, Peck and Mesri (1996) and correspond to typical average N₆₀ values. Many factors affect the recorded SPT-N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), groundwater conditions, and grainsize. As such, the recorded SPT-'N' value(s) should be considered only an approximate guide to the compactness term. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction. Ciald Maint

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
GS	Grab Sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
то	Thin-walled, open – note size
TP	Thin-walled, piston – note size
WS	Wash sample

SOIL TESTS

w	water content		
PL, w _p	plastic limit		
LL , w∟	liquid limit		
С	consolidation (oedometer) test		
CHEM	chemical analysis (refer to text)		
CID	consolidated isotropically drained triaxial test ¹		
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹		
D _R	relative density (specific gravity, Gs)		
DS	direct shear test		
GS	specific gravity		
М	sieve analysis for particle size		
MH	combined sieve and hydrometer (H) analysis		
MPC	Modified Proctor compaction test		
SPC	Standard Proctor compaction test		
OC	organic content test		
SO ₄	concentration of water-soluble sulphates		
UC	unconfined compression test		
UU	unconsolidated undrained triaxial test		
V (FV)	field vane (LV-laboratory vane test)		
Y	unit weight		
1. Tests anisotropically consolidated prior to shear are shown as CAD, CAU.			

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

COHESIVE SOILS

	Consistency	
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure 1. effects; approximate only. SPT 'N' values should be considered ONLY an approximate guide to 2

consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

-	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I. /n x log ₁₀ g t	GENERAL 3.1416 natural logarithm of x x or log x, logarithm of x to base 10 acceleration due to gravity time	(a) W W₁ or LL W₂ or PL I₂ or PI W₅ I∟ Ic emax emin Ip	Index Properties (continued) water content liquid limit plastic limit plasticity index = $(w_l - w_p)$ shrinkage limit liquidity index = $(w - w_p) / I_p$ consistency index = $(w_l - w) / I_p$ void ratio in loosest state void ratio in densest state density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ Δ ε εν η υ σ σ΄ σ΄ σ΄νο	shear strain change in, e.g. in stress: $\Delta \sigma$ linear strain volumetric strain coefficient of viscosity Poisson's ratio total stress effective stress ($\sigma' = \sigma - u$) initial effective overburden stress	(b) h q v i k	Hydraulic Properties hydraulic head or potential rate of flow velocity of flow hydraulic gradient hydraulic conductivity (coefficient of permeability) seepage force per unit volume
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c) C _c	Consolidation (one-dimensional) compression index
σ _{oct} τ Ε G K	The an stress or octaneoral stress = $(\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress porewater pressure modulus of deformation shear modulus of deformation bulk modulus of compressibility	Cr Cs Cα mv Cv	(normally consolidated range) recompression index (over-consolidated range) swelling index secondary compression index coefficient of volume change coefficient of consolidation (vertical direction)
III.	SOIL PROPERTIES	Ch Τν U σ΄ρ	direction) time factor (vertical direction) degree of consolidation pre-consolidation stress
(a) ρ(γ) ρd(γd) ρw(γw) ρs(γs) γ' D _R e n S	Index Properties bulk density (bulk unit weight)* dry density (dry unit weight) density (unit weight) of water density (unit weight) of solid particles unit weight of submerged soil $(\gamma' = \gamma - \gamma_w)$ relative density (specific gravity) of solid particles (D _R = ρ_s / ρ_w) (formerly G _s) void ratio porosity degree of saturation	ΟCR (d) τ _p , τr φ' δ μ c' Cu, Su p Cu, Su p q u St	over-consolidation ratio = σ'_p / σ'_{vo} Shear Strength peak and residual shear strength effective angle of internal friction angle of interface friction coefficient of friction = tan δ effective cohesion undrained shear strength ($\phi = 0$ analysis) mean total stress ($\sigma_1 + \sigma_3$)/2 mean effective stress ($\sigma'_1 + \sigma'_3$)/2 ($\sigma_1 - \sigma_3$)/2 or ($\sigma'_1 - \sigma'_3$)/2 compressive strength ($\sigma_1 - \sigma_3$) sensitivity
* Densi where accele	ty symbol is ρ . Unit weight symbol is $\gamma = \rho g$ (i.e. mass density multiplied by eration due to gravity)	Notes: 1 2	τ = c' + σ' tan φ' shear strength = (compressive strength)/2

RECORD OF BOREHOLE: 17-01

BORING DATE: February 21, 2018

SHEET 1 OF 2

DATUM: CGVD28

LOCATION: N 5023779.3 ;E 438303.4 SAMPLER HAMMER, 64kg; DROP, 760mm

<u>م</u>	ETHOD	SOIL PROFILE			SAMP	LES	HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected	HYDRAULIC CONDUCTIVITY, k, cm/s	NAL	PIEZOMETER
MEIKE	ORING ME	DESCRIPTION	RATA PLO	LEV.	TYPE	OWS/0.30	LU 4U 6U 8U HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [%LEL] ND = Not Detected	WATER CONTENT PERCENT	ADDITIOI LAB. TES ¹	STANDPIPE INSTALLATION
_	ă	GROUND SURFACE	ST		_	В	20 40 60 80	20 40 60 80	_	
0	Т	ASPHALTIC CONCRETE		74.10						Flush Mount
1		FILL - (SW/GW) gravelly SAND to sandy GRAVEL, some non-plastic fines; grey (PAVEMENT STRUCTURE) FILL - (CI) SILTY CLAY, some sand, trace gravel; brown, contains cobbles and boulders; cohesive, w>PL FILL - (SM) SILTY SAND, some gravel; brown; non-cohesive, moist, compact		73.77 0.33 73.34 0.76	1 55	6 28 9	Ð			Casing Gravel
2		FILL - (SM/ML) SILTY SAND to sandy SILT, some gravel to gravelly; brown, contains cobbles and boulders; non-cohesive, wet, compact		72.58	2 SS	6 24 6	₽			Bentonite Seal
				;	3 55	6 13 9	Ð			Silica Sand
3		(ML) sandy SILT, some gavel; brown (GLACIAL TILL); non-cohesive, wet, compact (ML) CLAYEY sandy SILT, some gravel to gravelly; grey, contains cobbles		3.05 <u>70.60</u> 3.50	4 SS	6 12 (Ð			
4	Diam. (Hollow Stem)	GLACIAL TILL); non-cohesive, wet, very loose to compact			5 55	6 8 9	Ð			32 mm Diam. PVC #10 Slot Screen
5	200 mm				5 SS	5 4 9	₽			47, 447, 447, 447, 447, 447, 447, 447,
6				-	7 55	6 16 9	Ð			
7		(SM) gravelly SILTY SAND; grey, contains cobbles (GLACIAL TILL); non-cohesive, wet, very dense		6.10	3 55	68				
8					₽ SS	\$ >50				Cave
9		Borehole continued on RECORD OF DRILLHOLE 17-1		<u>65.52</u> 8.58						Destanti - S1
10										Dentonite Seal
	TH	ISCALE			_⊥_ Į		GOLDER		L	I OGGED: KM

P Lu IN	PRC .OC	JEC ATIC .INAT	T: 1780158 NN: N 5023779.3 ;E 438303.4 FION: -90° AZIMUTH:		RE	cc	ORD	OF	DR DR DR		NG I NG I RIG:			DLI Febri 5 \CT(E: uary DR:	/ 21 M3	1 , 20 3/Gr	7-01 118 renville D	Drillir	Iq							S⊦ DA	ieet 2 of 2 NTUM: CGVD28	
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	JN FLT SHR VN CJ RE(TOTA CORE 8894	- Join - Fau - She - Veir - Con COVE	nt ilt ar njugat ERY SOLID ORE %	e R.(BE FC OF CL Q.D.	FRAC	ding ation tact ogona vage T. X B m ogona	Angle		L - PI U- C N- U T - SI R - In DISCO W.r.t. ORE XIS R888	lanar urved Indulating tepped regular ONTINUITY TYPE AND 5 DESCRI	P K SI R M Y DAT	D- Po - Sliv M- Sn D - Ro B- Me FA	lishe cken hooth ugh char	nical	BI ab of k sy CK NGTI EX	R - I brevia abbre mbols	Broke For add titions r viation VEATI ERING	en Ro ditiona refer to is & H- G X X	Q AVG.		
- - - - - - - - - - - - - - - - - - -	9	NQ Core	BEDROCK SURFACE Slightly weathered to fresh, medium strong to strong SANDSTONE, with thinly bedded shale partings - Broken core from 8.58 m to 8.90 m		65.52 8.58	1	95																					Bentonite Seal	-
- 10 - - - - - - - - 11 - - - - -	1		End of Drillhole		63.26 10.84	2	95																			-		WL in Screen at Elev. 70.86 m on Feb. 27, 2018	
- - - - - - - - - - - - - - - - - - -	2																												
- - - - - - - - - - - - - - - - - - -	4																												-
4/23/18 ZS	6																												-
4 1780158-ENVIRO.GPJ GAL-MISS.GDT	8																												
MIS-RCK 00- 1)EP : 5	TH S	CALE				₿		С	5 (C	L	D) E		R							 	. 1		. 1	LC	DGGED: KM ECKED: BJV	

RECORD OF BOREHOLE: 17-06

BORING DATE: July 19, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023803.7 ;E 438426.8 SAMPLER HAMMER, 32kg; DROP, 760mm

	Ę	SOIL PROFILE			SA	MPL	ES	HEADSPACE	ORGANIO	C VAPOL PM]	JR ⊕	HYDRAUI k,	IC CONDU cm/s	CTIVITY,	<u>ں</u> آ	PIEZOMETE
METRES	BORING MET	DESCRIPTION	TRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	3LOWS/0.30m	HEADSPACE VAPOUR CON [%LEL] ND = N	ACCOMBUS	TIBLE		10 ⁻⁶ WAT Wp H		10 ⁻⁴ 10 ⁻³ NT PERCENT	ADDITIONA LAB. TESTIN	OR STANDPIPE INSTALLATIO
+		GROUND SURFACE	0	74.26				20	+0 6	8		20	40	08 00		
°F		CONCRETE		0.00												Flush Mount Casing
		(CL/ML/SM) SILTY CLAY, CLAYEY SILT and SILTY SAND, fine; grey brown		0.13 73.88 0.38	1	76	20 €	ND ND								Silica Sand
1		(WEATHERED CRUST), thinly to thickly laminated; cohesive, w~PL, very stiff			2	SS	9 €	ND								Bentonite Seal
Wash Boring	NW Casing	buse Salar		70.42	3	ss	12	€								Silica Sand
2		(SM) SILTY SAND, fine; brown, contains clayey silt seams; non-cohesive, wet, loose		1.83	4	ss	8 €	ND								
3		(CI/CH) SILTY CLAY; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PI frm		2.59	5	ss	4 €	DN								32 mm Diam. PVC
		· · · -, ·····														#10 Slot Screen
		(ML) gravelly sandy SILT, some low plastic fines; grey (GLACIAL TILL); non-cohesive, wet loose to compact		70.60 3.66	7	55	6.6									
	m Diam							ND								
5		E 2			8	55	106	ND								Silica Sand
					9	ss	5 €	ND								
6				68.16	10	SS	11€	ND								Cave
DCDT	Onen Hole			6.10												
7		End of Borehole		6.86	i											WL in Screen at Elev. 72.66 m on Feb. 27, 2018
8																
9																
0																
EP	TH D	SCALE						GC) L [DE	R				L CH	ogged: Pah Iecked: BJV

RECORD OF BOREHOLE: 17-08

BORING DATE: November 28, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023668.6 ;E 438359.9 SAMPLER HAMMER, 64kg; DROP, 760mm

	ДОН	SOIL	PROFILE	1.	1	SA	MPL	ES	HEADSPACE ORGANIC CONCENTRATIONS [PPI	VAPOUR M]	•	HYDRAULIC C k, cm/s	ONDUCT	IVITY,	2 G F	PIEZOMETEI
	3 METI			PLOT	FLEV	ER	ш	D.30m	ND = NOT Detected 20 40 60	80		10 ⁻⁶ 1	0 ⁻⁵ 1	D ⁻⁴ 10 ⁻³	TION	OR
ME	RING	DESCRIPTIO	N	RATA	DEPTH	NMB	TYPI)/S/(C	HEADSPACE COMBUST VAPOUR CONCENTRAT	IBLE IONS □		WATER C			ADDI AB. T	INSTALLATIC
	BO			STF	(m)	2		BLG	20 40 60	80		20 4	<u>10 6</u>	0 80		
0		GROUND SURFACE			74.67	<u> </u>									_	Flush Mount
		FILL - (SW) gravely SAN	D, angular;	1	0.05											Casing
		FILL - (SP) SAND, fine to silt; brown; non-cohesive,	medium, trace moist,													Silica Sand
1		compact			Š.											
					73.35	1	SS	14 €	Ð							
		FILL - (SM) SILTY SAND, dark brown; non-cohesive compact	some gravel; , moist,		1.32											
		CONCRETE - Mud Slab?			72.84	2	SS	29 6	Ð							Bentonite Seal
2		FILL - (SM) gravelly SILTY brown; non-cohesive, mois	Y SAND; st, compact		1.91 72.38											Σ
		(CL/CI) SILTY CLAY, trace sand; grey brown, highly fi	e to some ssured, o very thin		2.29	3	22	3.4	۵							
		beds of silty sand (WEATH CRUST); cohesive, w>PL	HERED , stiff				55	5.								Silica Sand
3		(CL/CI) SILTY CLAY, trace	e to some		71.62 3.05											
		laminations to thin beds of cohesive, w>PL, stiff	silty sand;			4	SS	1 €	Ð							
	er Auger	(Ноllo					-									
4	Mod 1	mm Diat				5	SS	1 €	Ð							50 mm Diam. PVC #10 Slot Screen
	ç	200														
						6										
5		(SM/ML) gravelly SILTY S	AND to sandy		<u>69.64</u> 5.03		33	VVIR								
		TILL); non-cohesive, wet, (ML/SM) gravelly SILTY S	very loose AND to sandy		69.3 <u>3</u> 5.34		-									
		SILT, trace to some plastic (GLACIAL TILL); non-cohe	c fines; grey esive, wet,			7	SS	1 €	Ð							Silica Sand
6		very loose to compact														
						8	SS	15 €	Ð							
					67.81		-									
7		(SP) SAND, some non-pla grey, stratified; non-cohes	astic fines; ive, moist,		6.86			50.0								Bentonite Seal
		very dense				А	55	526								
╞		End of Borehole			. 67.05 7.62											
8																WL in Screen at Eley, 72,47 m on
																Dec. 5, 2017
9																
10																
DEF	тн	1 SCALE						Ċ	GOLD	ER					L	OGGED: RI
1:5	0						•		-						CH	IECKED: BJV

RECORD OF BOREHOLE: 17-19

BORING DATE: July 21, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023854.6 ;E 438451.3 SAMPLER HAMMER, 64kg; DROP, 760mm

ES .		ELHOD	SOIL PROFILE	OT		SA ~	MPL	ES E	HEADSPACE OF CONCENTRATION ND = Not Detecter 20 40	RGANIO DNS [Pi ed	C VAPOL PM]	JR ⊕ 30	HYDRAULIC k, cr 10 ⁻⁶	CONDUCTIN n/s 10 ⁻⁵ 10 ⁻⁴	/ITY, ⁴ 10 ⁻³	STING	PIEZOMETER
METRI		BURING M	DESCRIPTION	STRATA PL	ELEV DEPTH (m)	NUMBER	TYPE	BLOWS/0.30	HEADSPACE CO VAPOUR CONCI [%LEL] ND = Not 20 40	DMBUS ENTRA Detect	TIBLE TIONS ed	30	WATEF Wp		PERCENT WI 80	ADDITIC LAB. TES	STANDPIPE
0			GROUND SURFACE		71.84	4											
Ū			ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; grey, contains recycled asphalt (PAVEMENT STRUCTURE) FILL - (GW) sandy GRAVEL, angular; grey, contains recycled asphalt GRAVEL AT CONCETURES		0.00 0.09 71.54 0.30 71.17 0.61	$\frac{1}{2}$ 1 $\frac{1}{7}$ 1 $\frac{7}{7}$	GRAI	3 - (ND								Casing Silica Sand
1			(CI/CH) SILTY CLAY; grey brown, fissured, contains silty sand seams (WEATHERED CRUST); cohesive, w~PL, very stiff to stiff			2	ss	4 (ND								Bentonite Seal Silica Sand
2						3	ss	3 (ND								
3	Auger	(Hollow Stem)	(ML) sandy SILT; brown; non-cohesive, wet, loose (CI/CH) SILTY CLAY to CLAY; grey		69.2 2.5 68.9 2.9	5 9 4	ss	3	€								32 mm Diam. PVC
	Power	200 mm Diam.	brown to grey, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL, very stiff		68.10	5	ss	5	Ð								#10 Slot Screen
4			gravel; grey; non-cohesive, wet, very loose		67.42	6	ss	10	ND								
5			(ML) sandy SILT, some low plastic fines, some gravel; grey (GLACIAL TILL); non-cohesive, wet, loose to compact		4.4	7	ss	5	Ð								Silica Sand
6					65.74	8	ss	12	Ð								Bentonite Seal
			End of Borehole		6.10	0											WL in Screen at Elev. 69.48 m on Feb. 27, 2018
7																	
8																	
9																	
10																	
	PT	́нs	CALE	_					GO	LC	ΣE	R	• I				OGGED: PAH

RECORD OF BOREHOLE: 17-20

BORING DATE: February 20, 2018

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023785.7 ;E 438321.0 SAMPLER HAMMER, 64kg; DROP, 760mm

ES	ETHOD		SOIL PROFILE	TC		s/		ES	HEADSPACE ORGAN CONCENTRATIONS [I ND = Not Detected 20 40	IC VAPOUR PPM] 60 80	⊕	HYDRAULIC COND k, cm/s 10 ⁻⁶ 10 ⁻⁵	10 ⁻⁴ 10 ⁻³	ING	PIEZOMETEI
METRE	SORING ME		DESCRIPTION	TRATA PLO	ELEV DEPTH (m)	NUMBER	TYPE	LOWS/0.30	HEADSPACE COMBU VAPOUR CONCENTR [%LEL] ND = Not Deter	STIBLE ATIONS [WATER CONT		ADDITIO	STANDPIPE
_		_	GROUND SURFACE	ŝ	70.50	_		В	20 40	60 80		20 40	60 80		
0 -			ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; grey (PAVEMENT STRUCTURE) FILL - (CI) sandy SILTY CLAY, trace gravel; brown, contains, cobbles; cohesive, w>PL FILL - (ML) CLAYEY sandy SILT, trace		73.52 0.00 0.20 72.76	2 2 3 3 3 3									Flush Mount Casing
1		-	gravel; brown, contains cobbles and boulders; non-cohesive, moist, compact FILL - (SM) gravelly SILTY SAND, trace to some low plasticity fines; brown,		72.00	1	SS	20 €	Ð						Native Backfill
2			contains cobbles and boulders; non-cohesive, moist, loose to very dense												Bentonite Seal
3	wer Auger	am. (Hollow Stem)				3	-	>50€	Ð						Silica Sand
	PG	200 mm D	(MI) sandy SILT, some gravel to		<u>69.86</u>	4	ss	9 (Ð						
4			(GLACIAL TILL); non-cohesive, moist, loose to compact			5	ss	6							32 mm Diam. PVC #10 Slot Screen
5						6	ss	12 €	₽						
					67.58	7	ss	25 (Ð						
0			End of Borenole		5.94	+									
'															
8															
9															
10															
DEF	PTF	нs	CALE	1	<u> </u>	1			GOL					I	I OGGED: KM

RECORD OF BOREHOLE: 17-21

BORING DATE: February 22, 2018

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023811.2 ;E 438317.9 SAMPLER HAMMER, 64kg; DROP, 760mm

METRES	ORING METHOD		SOIL PROFILE DESCRIPTION	TRATA PLOT	ELEV. DEPTH (m)	NUMBER	MPL	LOWS/0.30m	HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected 20 40 60 80 HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [%LEL] ND = Not Detected	•	HYDRAULIC CONDUCTI k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 WATER CONTENT Wp - OW	VITY, ⁻⁴ 10 ⁻³ PERCENT 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		•	GROUND SURFACE	ſS	72.68			BI	20 40 60 80		20 40 60	0 80		
0 -			ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; brown (PAVEMENT STRUCTURE) FILL - (ML/CI) sandy CLAYEY SILT to sandy SILTY CLAY; grey brown, contains cobbles and boulders; cohesive, w>PL, very stiff		0.00 0.10 72.35 0.33									Flush Mount 3 Casing 9
1		-	FILL - (ML) sandy SILT, some gravel; brown and grey, contains cobbles and boulders; non-cohesive, moist, compact to loose		71.61	1	SS	19 6	€					Gravel
2		Stem)	(ML/SM) sandy SILT to SILTY SAND, some gravel to gravelly; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist,		70.55 2.13	3	SS	10 6	Ð					⊑ Bentonite Seal
3	Power Auger	00 mm Diam. (Hollow	compact to very loose			4	SS	1 €	₽					Silica Sand
4		- 20	(ML) sandy SILT, some gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist, very loose to compact		68.87 3.81	5	SS	4 €	€					32 mm Diam. PVC
5					67.35	6	SS	19 €	€					
6			(SM) SILTY SAND, some gravel to gravelly; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist, very dense End of Borehole		5.33 66.74 5.94	7	SS	>506	€					5.745.744 5.744 5.744
7														WL in Screen at Elev. 70.48 m on Feb. 27, 2018
8														
9														
10														
DEF	PTF	нs	CALE			•			GOLDER	2		I	LC	DGGED: KM

SAMPLER HAMMER, 32kg; DROP, 760mm

RECORD OF BOREHOLE: 17-23 LOCATION: N 5023855.1 ;E 438477.2

BORING DATE: July 17-18, 2017

SHEET 1 OF 1

DATUM: CGVD28

H SCALE TRES		3 METHOD	SOIL PROFILE	PLOT	ELEV	SA	MPL	.ES 0.30m	HEADSPACE CONCENTRAT ND = Not Detec 20	DRGANIC IONS [PI ted 10 6	VAPOU PM] 0 8	IR ⊕ 0	HYDR/	AULIC CC k, cm/s D ⁻⁶ 10	DNDUCTI	VITY, -4 10) ⁻³	ITIONAL FESTING	PIEZOMETER OR STANDPIPE
DEPTI		BORING	DESCRIPTION	STRATA	DEPTH (m)	NUMB	TΥΡΙ	BLOWS/(HEADSPACE VAPOUR CON [%LEL] ND = N 20	CENTRA CENTRA ot Detect	I IBLE TIONS ed 08	0	W W 2	ATER CO 	0 60	PERCEN	NI NI 0	ADDI LAB. T	INSTALLATION
			GROUND SURFACE		71.50														
È	ĺ		CONCRETE FLOOR		0.00														
F			grey brown; non-cohesive, dry, very		71.05	1	SS	32€	₽										
Ē			(CI/CH) SILTY CLAY; grey brown,		0.45				ND										
-			fissured, contains silty sand seams (WEATHERED CRUST); cohesive,																
- ·			w~PL, very stiff			2	SS	30€	ND										-
E																			-
F						3	SS	126	•										:
F					69.75	-			ND										
Ē,	,		(SM) SILTY SAND, fine; grey brown; non-cohesive, wet, loose		1.75														
Ē						4	SS	11€											
È.	Lo Lo	ole			69.06														
F	lit Spc	en He	(CI/CH) SILTY CLAY; grey brown, fissured, contains silty sand seams		2.44														
-	S	ō	(WEATHERED CRUST); cohesive, w~PL, very stiff			5	SS	76	ND										-
- :	3				CD 20														_
F			(CI/CH) SILTY CLAY; grey, contains silty		3.20	6	22	10.6											:
Ē			sand seams; conesive, w>PL, stiff to firm			0			ND										
E																			-
- 4						7	SS	96	Þ										-
F									ND										:
Ē																			
E						8	SS	7 €	ND										-
F			(SM-ML) SILTY SAND to sandy SILT		66.62														
	; _		some gravel; grey with clayey silt seams		66.39	9	SS	>50	Ð										-
E			dense		0.11														-
E			End of Borehole Sampler Refusal																:
F																			
- 6	5																		-
F																			:
F																			
F																			-
E,	,																		-
È																			-
F																			-
E																			-
ZZ																			-
23/18 - T	3																		-
T 4/2																			
S.GD																			-
SIM-																			-
eal Gal																			-
GPJ																			-
RO.																			-
≩- µ-																			-
0158																			
11/18	ĺ																		-
001	_			I	1	I				1		l	I	1			[I	
Нан Нан	EP1	TH S	CALE					C	GC) L [) E	R						LC	DGGED: PAH
vi∎ 1	: 50						•											CH	ECKED: BJV

RECORD OF BOREHOLE: 17-24

BORING DATE: July 17, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023844.6 ;E 438456.6 SAMPLER HAMMER, 32kg; DROP, 760mm

	Τ	Q	SOIL PROFILE			SA	MPL	ES	HEADSPACE			R	HYDRA		ONDUCT	IVITY,			
SCALE		AETHC		TO_		<u>م</u>		30m	ND = Not Dete 20	ted 40 6	- IVIJ 60 8(⊕ 0	10	к, cm/s	0 ⁻⁵ 10)-4 10) ⁻³	ONAL	PIEZOMETER OR
PTH S		NG ∿	DESCRIPTION	TA PL	ELEV.	MBEF	ΥPE	VS/0.3	HEADSPACE		TIBLE		w	ATER C	ONTENT	PERCE	NT	DDITI(B. TE	STANDPIPE INSTALLATION
DE		BOR		STRA	(m)	∣₽		BLOV	[%LEL] ND = /	lot Detect	ed 80	0	Wp 2	0 4		0 8	WI 0	LAI	
_	。		GROUND SURFACE		72.68							-							
Ē			FILL - (GW) sandy GRAVEL, angular;		0.00 0.10 72.38	-		e	€										
F			grey brown, contains plastic pieces (CI/CH) SILTY CLAY; grey brown,		0.30	1	76	¹⁵ €											
Ē			(WEATHERED CRUST)		0.61				NB										
È.	1		(CL/ML) SILTY CLAY to CLAYEY SILT; grey brown, fissured, contains sand			2	SS	15€	ND										
E			cohesive, w~PL, very stiff																-
Ē						3	SS	166											
-									ND										
-	2					4	SS	7 €	Ð										-
-									ND										
Ē					69.94														
F	- interest	Billio	(ML) CLAYEY SILT, some sand, fine, trace gravel; grey to brown;		2.74	5	SS	12€	ND										
Ē	3 2	NV Ca	non-cohesive, wet, compact																
Ē						6	SS	16	₽										
Ē			(ML/SM) sandy SILT to SILTY SAND,		69.02 3.66														
È.	4		some gravel; grey, contains clayey silt seams (GLACIAL TILL); non-cohesive,			7	SS	28€											
E																			
Ē						8	SS	28€	Ð										
Ē									ND										
-	5						22		A										-
F					Š	5	33	-	Ψ										-
Ē																			
È,	6					10	SS	11€	ND										- - -
-	╞	End of Borehole 66.58																	
Ę																			
E																			
È.	7																		-
Ē																			
F																			:
s zs																			
/23/18	8																		-
101 1																			
MIS.G																			
GAL-	9																		-
GPJ																			
17801	0																		_
001																			
BHS)EP	TH S	SCALE					¢	GC) L [ЭE	R						LC	OGGED: PAH
¥ 1	: 5	0																CH	ECKED: BJV

RECORD OF BOREHOLE: 17-25

BORING DATE: July 18, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5023836.5 ;E 438437.4 SAMPLER HAMMER, 32kg; DROP, 760mm

Bit of the second sec	S THOD		SOIL PROFILE	⊢		SA	AMPL	ES E	HEADSPACE ORGANIC CONCENTRATIONS [PP ND = Not Detected	VAPOUR M] \oplus	HYDRAU	JLIC CO k, cm/s		IVITY,	IAL ING	PIEZOMETER
0 0 <th0< th=""> <th0< th=""></th0<></th0<>			DESCRIPTION	RATA PLO	ELEV. DEPTH (m)	NUMBER	TYPE	-OWS/0.30n	20 40 60 HEADSPACE COMBUST VAPOUR CONCENTRAT [%LEL] ND = Not Detecte) 80 TIBLE TIONS d	10 ⁻⁶ WA Wp	" 10 TER CO	0 ⁵ 10 DNTENT 0W	PERCENT	ADDITION LAB. TEST	OR STANDPIPE INSTALLATION
0 COUCHERTE FLOOR b 0.00 1 TRL - SWOW SAD and GRVEL 1 70 0 0 1 TRL - SWOW SAD and GRVEL 1 70 0 0 1 TRL - SWOW SAD and GRVEL 1 70 0 0 1 TRL - SWOW SAD and GRVEL 1 70 0 0 1 GRVEL 1 70 0 0 0 1 GRVEL TRL - SWOW SAD and GRVEL 1 70 0 0 1 GRVEL TRL - SWOW SAD and GRVEL 1 1 1 0 0 0 1 GRVEL TRL - SWOW SAD and GRVEL 1 1 4 6 0 0 1 GRVEL TRL - SWOW SAD and GRVEL 1 4 6 0			GROUND SURFACE	ST	72.50			В	20 40 60	80	20	4	06	0 80	-	
Image: Constraint of the second constraint of th	0		CONCRETE FLOOR	P 6	0.00											Flush Mount
Image: Series of the transmission of transmissi			FILL - (SW/GW) SAND and GRAVEL, angular; grey brown; non-cohesive, moist, compact		0.15	1	76	15	Ð							Silica Sand
1 CLANUS SLTY CLAV and CLAVEY 1 3 10 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100 17 3 100	1		(SM) SILTY SAND, fine; brown, contains clayey silt seams; non-cohesive, moist, compact		0.68	2	76	12	€							Bentonite Seal
2 2 2 2 2 2 2 0			(CL/ML) SILTY CLAY and CLAYEY SILT; grey brown, contains sand layers (WEATHERED CRUST); cohesive, w~PL, very stiff		71.13	3	ss	17	Ð							Silica Sand
3 1	2		(SM) SILTY SAND; grey brown, contains clayey silt seams; non-cohesive, wet, loose		1.98	4	ss	8	€							 2
Image: Serie of a serie of Series (WEALTHERED) Image: Series Series (WEALTHERED)	6 Boring	asing	(CI/CH) SILTY CLAY; grey brown,		<u>69.60</u> 2.90	5	SS	7	Ð							32 mm Diam. PVC
4 grey; non-contestive, well, loose 00.55 7 5 0 5 0 0 5.85 7 5 0 6 0 5.85 0 0 5 5 0 6 0 5.85 0 0 5 5 0 7 0 5 5 0 0 5 5 5 0 6 0 58 2 0 5 5 5 6 5 5 5 6 5 5 6 6 5 5 6	Wash	NW C	contains sand seams (WEATHERED CRUST); cohesive, w>PL, very stiff (SP) SAND, fine, some non-plastic fines:		68.99 3.51	6	SS	9	€							#10 Slot Screen
some gravel: grav (GLACAL TLL); a s a b b b b s s b b s s b b s s b b s s b b s s s b b s s b b s s s b b s	4		(ML) sandy SILT, some low plastic fines,	atta	68.54 3.96	7	ss	-	€ €							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s 0 55 22 Φ 10 55 10 0 10			some gravel; grey (GLACIAL TILL); non-cohesive, wet, loose to compact			8	ss	9	⊕							Silica Sand
Image: Sector of Borehole Image:	5					9	ss	22	Ð							
0 SS 10 SS 10 9 0 08.40 08.40 0.10 1																Bentonite Seal
7 8 9 0	6		End of Borehole		66.40 6.10	10	SS	16	Φ							
																WL in Screen at Elev. 70.26 m on Feb. 27, 2018
	7															
	9															
	10															
JEPTH SCALE IN COGED: PAH		нs	CALE	<u> </u>	<u> </u>	<u> </u>									L) OGGED: PAH

APPENDIX D

Laboratory Certificates of Analysis

May 2018

SOIL

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z314189

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Mar 05, 2018

PAGES (INCLUDING COVER): 19

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES			

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 19

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - Metals (Including Hydrides) (Soil) DATE RECEIVED: 2018-02-23 DATE REPORTED: 2018-03-05 SAMPLE DESCRIPTION: 17-111 SA3 17-20 SA2 17-109 SA4 SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2018-02-20 2018-02-20 2018-02-13 G/S:A G/S:B RDL 9086476 9086480 9086484 Parameter Unit 40 7.5 0.8 <0.8[<B] <0.8[<B] <0.8[<B] Antimony µg/g Arsenic 18 18 1[<A] 2[<A] 1[<A] µg/g 1 Boron 120 120 5 6[<A] µg/g <5[<A] <5[<A] 670 2 Barium µg/g 390 290[<B] 93[<B] 29[<B] 0.5 Beryllium µg/g 8 4 0.6[<B] <0.5[<B] <0.5[<B] Cadmium µg/g 1.9 1.2 0.5 <0.5[<B] <0.5[<B] <0.5[<B] Chromium µg/g 160 160 2 55[<A] 13[<A] 7[<A] Cobalt µg/g 80 22 0.5 15.9[<B] 7.1[<B] 3.8[<B] 230 140 9[<B] Copper µg/g 1 33[<B] 13[<B] Lead 120 120 7[<A] 6[<A] 3[<A] µg/g 1 Molvbdenum µg/g 40 6.9 0.5 <0.5[<B] 1.0[<B] <0.5[<B] Nickel 270 100 13[<B] 6[<B] µg/g 1 34[<B] Selenium 5.5 2.4 0.4 <0.4[<B] <0.4[<B] <0.4[<B] µg/g Silver 20 µg/g 40 0.2 <0.2[<B] <0.2[<B] <0.2[<B] Thallium 3.3 1 0.4 <0.4[<B] <0.4[<B] <0.4[<B] µg/g Uranium µg/g 33 23 0.5 0.7[<B] <0.5[<B] <0.5[<B] Vanadium µg/g 86 86 1 55[<A] 16[<A] 12[<A] Zinc 340 340 5 90[<A] 19[<A] 12[<A] µg/g

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

DATE RECEIVED: 2018-02-23								DATE REPORTED: 2018-03-05						
			SAMPLE DE	SCRIPTION:	17-111 SA3	17-20 SA2	17-109 SA4							
			SAI	MPLE TYPE:	Soil	Soil	Soil							
			DATE	E SAMPLED:	2018-02-20	2018-02-20	2018-02-13							
Parameter	Unit	G / S: A	G / S: B	RDL	9086476	9086480	9086484							
pH, 2:1 CaCl2 Extraction	pH Units			NA	8.27	7.84	7.95							
Sodium Adsorption Ratio	NA	12	5	NA	49.2[>A]	17.4[>A]	42.7[>A]							

O Reg 153(511) - ORPs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086476-9086484 SAR was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Certified By:

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - ORPs (Soil)

DATE	RECEIVED .	2018-02-23	
		2010-02-23	

			SAMPLE DE	SCRIPTION:	17-21 SA1
			•••••		
			SAI	Soil	
			DATE	2018-02-22	
Parameter	Unit	G / S: A	G / S: B	RDL	9086482
	بمنابا المناب			NIA	7.04
pH, 21 CaCIZ Extraction	ph Units			NA	7.01

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086482 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Certified By:

DATE REPORTED: 2018-03-05

AGAT WORK ORDER: 18Z314189 **PROJECT: 1780158**

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alex Wood

5835 COOPERS AVENUE

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Pyrene

Dibenz(a,h)anthracene

2-and 1-methyl Naphthalene

Surrogate

Benzo(g,h,i)perylene

SAMPLED BY: O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2018-02-23 DATE REPORTED: 2018-03-05 SAMPLE DESCRIPTION: 17-111 SA3 17-20 SA2 17-109 SA4 SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2018-02-20 2018-02-20 2018-02-13 G/S:A G/S:B RDL 9086476 9086480 9086484 Parameter Unit Naphthalene 9.6 0.6 0.05 <0.05[<B] <0.05[<B] µg/g <0.05[<B] Acenaphthylene 0.15 0.15 0.05 <0.05[<A] <0.05[<A] <0.05[<A] µg/g Acenaphthene µg/g 96 7.9 0.05 <0.05[<B] <0.05[<B] <0.05[<B] 62 62 Fluorene 0.05 <0.05[<A] <0.05[<A] <0.05[<A] µg/g Phenanthrene 12 6.2 0.05 <0.05[<B] <0.05[<B] <0.05[<B] µg/g Anthracene µg/g 0.67 0.67 0.05 <0.05[<A] <0.05[<A] <0.05[<A] Fluoranthene µg/g 9.6 0.69 0.05 <0.05[<B] <0.05[<B] <0.05[<B] µg/g 96 78 0.05 <0.05[<B] <0.05[<B] <0.05[<B] 0.96 0.5 0.05 <0.05[<B] Benz(a)anthracene µg/g <0.05[<B] <0.05[<B] Chrysene 9.6 7 0.05 <0.05[<B] <0.05[<B] µg/g <0.05[<B] Benzo(b)fluoranthene µg/g 0.96 0.78 0.05 <0.05[<B] <0.05[<B] <0.05[<B] Benzo(k)fluoranthene 0.96 µg/g 0.78 0.05 <0.05[<B] <0.05[<B] <0.05[<B] Benzo(a)pyrene 0.3 0.3 µg/g 0.05 <0.05[<A] <0.05[<A] <0.05[<A] 0.76 0.38 Indeno(1,2,3-cd)pyrene µg/g 0.05 <0.05[<B] <0.05[<B] <0.05[<B]

Chrysene-d12 % 50-140 99 100 82 G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: RDL - Reported Detection Limit: Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

<0.05[<A]

<0.05[<B]

<0.05[<B]

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9086476-9086484 Results are based on the dry weight of the soil.

<0.05[<A]

<0.05[<B]

<0.05[<B]

Certified By:

<0.05[<A]

<0.05[<B]

<0.05[<B]

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

0.1

9.6

76

µg/g

µg/g

µg/g

Unit

0.1

6.6

0.99

Acceptable Limits

0.05

0.05

0.05

NPopukolof

AGAT WORK ORDER: 18Z314189 **PROJECT: 1780158**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Terphenyl

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2018-02-23 DATE REPORTED: 2018-03-05 SAMPLE DESCRIPTION: 17-01 SA3 17-01 SA4 17-20 SA5 17-21 SA1 17-21 SA3 SAMPLE TYPE: Soil Soil Soil Soil Soil DATE SAMPLED: 2018-02-21 2018-02-21 2018-02-20 2018-02-22 2018-02-21 G/S:A G/S:B RDL 9086478 9086479 9086481 9086482 9086483 Parameter Unit F1 (C6 to C10) 55 55 5 µg/g <5[<A] <5[<A] <5[<A] <5[<A] <5[<A] F1 (C6 to C10) minus BTEX 55 55 5 <5[<A] <5[<A] <5[<A] <5[<A] <5[<A] µg/g F2 (C10 to C16) <10[<B] <10[<B] µg/g 230 98 10 <10[<B] <10[<B] <10[<B] F3 (C16 to C34) 50 1700 300 <50[<B] <50[<B] <50[<B] <50[<B] <50[<B] µg/g F4 (C34 to C50) 3300 2800 50 <50[<B] <50[<B] <50[<B] µg/g <50[<B] <50[<B] Gravimetric Heavy Hydrocarbons µg/g 3300 2800 50 NA[<B] NA[<B] NA[<B] NA[<B] NA[<B] Moisture Content % 0.1 10.8 10.0 6.9 17.9 11.3 Surrogate Unit Acceptable Limits % 60-140 76 83 74 73 84 RDL - Reported Detection Limit: G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Comments: Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086478-9086483 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPopukolof

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2018-02-23

			SAMPLE DE	ESCRIPTION:	17-20 SA2
	SAMPLE TYPE:		Soil		
			DATE SAMPLED:		2018-02-20
Parameter	Unit	G / S: A	G / S: B	RDL	9086480
F1 (C6 to C10)	µg/g	55	55	5	<5[<a]< td=""></a]<>
F1 (C6 to C10) minus BTEX	µg/g	55	55	5	<5[<a]< td=""></a]<>
F2 (C10 to C16)	µg/g	230	98	10	<10[<b]< td=""></b]<>
F2 (C10 to C16) minus Naphthalene	µg/g			10	<10
F3 (C16 to C34)	µg/g	1700	300	50	<50[<b]< td=""></b]<>
F3 (C16 to C34) minus PAHs	µg/g			50	<50
F4 (C34 to C50)	µg/g	3300	2800	50	<50[<b]< td=""></b]<>
Gravimetric Heavy Hydrocarbons	µg/g	3300	2800	50	NA[<b]< td=""></b]<>
Moisture Content	%			0.1	11.4
Surrogate	Unit	Ac	ceptable Lim	its	
Terphenyl	%		60-140		133

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086480 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

NPopukoloj

DATE REPORTED: 2018-03-05

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2018-02-23

				IT IT OAD	17-109 SA4
		SA	MPLE TYPE:	Soil	Soil
		DATI	E SAMPLED:	2018-02-20	2018-02-13
Unit	G / S: A	G / S: B	RDL	9086476	9086484
µg/g	0.32	0.21	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<>	<0.02[<b]< td=""></b]<>
µg/g	68	2.3	0.08	<0.08[<b]< td=""><td><0.08[<b]< td=""></b]<></td></b]<>	<0.08[<b]< td=""></b]<>
µg/g	9.5	2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
µg/g	26	3.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""></a]<></td></a]<>	<5[<a]< td=""></a]<>
µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""></a]<></td></a]<>	<5[<a]< td=""></a]<>
µg/g	230	98	10	<10[<b]< td=""><td><10[<b]< td=""></b]<></td></b]<>	<10[<b]< td=""></b]<>
µg/g			10	<10	<10
µg/g	1700	300	50	<50[<b]< td=""><td>210[<b]< td=""></b]<></td></b]<>	210[<b]< td=""></b]<>
µg/g			50	<50	210
µg/g	3300	2800	50	<50[<b]< td=""><td>110[<b]< td=""></b]<></td></b]<>	110[<b]< td=""></b]<>
µg/g	3300	2800	50	NA[<b]< td=""><td>NA[<b]< td=""></b]<></td></b]<>	NA[<b]< td=""></b]<>
%			0.1	10.3	5.0
Unit	Ac	cceptable Limi	its		
%		60-140		110	120
	Unit µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g Unit	Unit G / S: A μg/g 0.32 μg/g 0.32 μg/g 68 μg/g 9.5 μg/g 26 μg/g 55 μg/g 55 μg/g 230 μg/g 1700 μg/g 3300 μg/g 3300 % Unit	Unit G / S: A G / S: B μg/g 0.32 0.21 μg/g 68 2.3 μg/g 9.5 2 μg/g 9.5 2 μg/g 55 55 μg/g 55 55 μg/g 230 98 μg/g 1700 300 μg/g 3300 2800 μg/g 3300 2800 μg/g 3300 2800 % 60-140 60-140	DATE SAMPLED: Unit G / S: A G / S: B RDL µg/g 0.32 0.21 0.02 µg/g 68 2.3 0.08 µg/g 9.5 2 0.05 µg/g 26 3.1 0.05 µg/g 55 55 5 µg/g 230 98 10 µg/g 1700 300 50 µg/g 1700 300 50 µg/g 3300 2800 50 % 0.1 0.1	DATE SAMPLED: 2018-02-20 Unit G / S: A G / S: B RDL 9086476 µg/g 0.32 0.21 0.02 <0.02[<b]< td=""> µg/g 68 2.3 0.08 <0.08[<b]< td=""> µg/g 9.5 2 0.05 <0.05[<b]< td=""> µg/g 26 3.1 0.05 <0.05[<b]< td=""> µg/g 55 55 5 <5[<a]< td=""> µg/g 230 98 10 <10[</a]<></b]<></b]<></b]<></b]<>

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086476-9086484 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

NPopukoloj

DATE REPORTED: 2018-03-05

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood SAMPLED BY:

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2018-02-23								I	DATE REPORTI	ED: 2018-03-05	
			SAMPLE DE	SCRIPTION:	17-01 SA3	17-01 SA4	17-20 SA2	17-20 SA5	17-21 SA1	17-21 SA3	
			SA	MPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
			DATI	E SAMPLED:	2018-02-21	2018-02-21	2018-02-20	2018-02-20	2018-02-22	2018-02-21	
Parameter	Unit	G / S: A	G / S: B	RDL	9086478	9086479	9086480	9086481	9086482	9086483	
Dichlorodifluoromethane	µg/g	16	16	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Vinyl Chloride	ug/g	0.032	0.02	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>	
Bromomethane	ug/g	0.05	0.05	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Trichlorofluoromethane	ug/g	4	4	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Acetone	ug/g	16	16	0.50	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<>	<0.50[<a]< td=""><td></td></a]<>	
1,1-Dichloroethylene	ug/g	0.064	0.05	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Methylene Chloride	ug/g	1.6	0.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.084	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Methyl tert-butyl Ether	ug/g	11	0.75	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
1,1-Dichloroethane	ug/g	17	3.5	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>	
Methyl Ethyl Ketone	ug/g	70	16	0.50	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<>	<0.50[<b]< td=""><td></td></b]<>	
Cis- 1,2-Dichloroethylene	ug/g	55	3.4	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>	
Chloroform	ug/g	0.47	0.05	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<>	<0.04[<b]< td=""><td></td></b]<>	
1,2-Dichloroethane	ug/g	0.05	0.05	0.03	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td></td></a]<></td></a]<>	<0.03[<a]< td=""><td></td></a]<>	
1,1,1-Trichloroethane	ug/g	6.1	0.38	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Carbon Tetrachloride	ug/g	0.21	0.05	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Benzene	ug/g	0.32	0.21	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>	
1,2-Dichloropropane	ug/g	0.16	0.05	0.03	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<>	<0.03[<b]< td=""><td></td></b]<>	
Trichloroethylene	ug/g	0.91	0.061	0.03	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<>	<0.03[<b]< td=""><td></td></b]<>	
Bromodichloromethane	ug/g	18	13	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Methyl Isobutyl Ketone	ug/g	31	1.7	0.50	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<>	<0.50[<b]< td=""><td></td></b]<>	
1,1,2-Trichloroethane	ug/g	0.05	0.05	0.04	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<>	<0.04[<a]< td=""><td></td></a]<>	
Toluene	ug/g	68	2.3	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>	
Dibromochloromethane	ug/g	13	9.4	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Ethylene Dibromide	ug/g	0.05	0.05	0.04	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<>	<0.04[<a]< td=""><td></td></a]<>	
Tetrachloroethylene	ug/g	4.5	0.28	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.058	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<>	<0.04[<b]< td=""><td></td></b]<>	
Chlorobenzene	ug/g	2.4	2.4	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Ethylbenzene	ug/g	9.5	2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
m & p-Xylene	ug/g			0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

SAMPLED BY:

ATTENTION TO: Alex Wood

				-										
DATE RECEIVED: 2018-02-23	TE RECEIVED: 2018-02-23 DATE REPORTED: 2018-03-05													
			SAMPLE DE	ESCRIPTION:	17-01 SA3	17-01 SA4	17-20 SA2	17-20 SA5	17-21 SA1	17-21 SA3				
			SA	MPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil				
			DAT	DATE SAMPLED: 20 ⁷		2018-02-21	2018-02-20	2018-02-20	2018-02-22	2018-02-21				
Parameter	Unit	G / S: A	G / S: B	RDL	9086478	9086479	9086480	9086481	9086482	9086483				
Bromoform	ug/g	0.61	0.27	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
Styrene	ug/g	34	0.7	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>				
o-Xylene	ug/g			0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
1,3-Dichlorobenzene	ug/g	9.6	4.8	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
1,4-Dichlorobenzene	ug/g	0.2	0.083	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
1,2-Dichlorobenzene	ug/g	6.8	3.4	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
Xylene Mixture	ug/g	26	3.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
1,3-Dichloropropene	µg/g	0.18	0.05	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<>	<0.04[<b]< td=""><td></td></b]<>				
n-Hexane	µg/g	46	2.8	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>				
Surrogate	Unit	А	cceptable Limits											
Toluene-d8	% Recovery		50-140		107	95	94	92	92	91				
4-Bromofluorobenzene	% Recovery		50-140		80	85	79	89	81	83				

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086478-9086483 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Certified By:

NPopukolof

Guideline Violation

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alex Wood

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9086476	17-111 SA3	ON T3 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	12	49.2
9086476	17-111 SA3	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	49.2
9086480	17-20 SA2	ON T3 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	12	17.4
9086480	17-20 SA2	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	17.4
9086484	17-109 SA4	ON T3 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	12	42.7
9086484	17-109 SA4	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	42.7

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189 **ATTENTION TO: Alex Wood**

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Mar 05, 2018				UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	ptable nits	Recovery	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inclue	ding Hydride	s) (Soil)													
Antimony	9081332		<0.8	<0.8	NA	< 0.8	108%	70%	130%	105%	80%	120%	78%	70%	130%
Arsenic	9081332		1	1	NA	< 1	107%	70%	130%	101%	80%	120%	99%	70%	130%
Boron	9081332		<5	<5	NA	< 5	71%	70%	130%	111%	80%	120%	71%	70%	130%
Barium	9081332		203	204	0.5%	< 2	102%	70%	130%	99%	80%	120%	103%	70%	130%
Beryllium	9081332		0.5	<0.5	NA	< 0.5	93%	70%	130%	113%	80%	120%	73%	70%	130%
Cadmium	9081332		<0.5	<0.5	NA	< 0.5	105%	70%	130%	99%	80%	120%	98%	70%	130%
Chromium	9081332		51	50	2.0%	< 2	93%	70%	130%	100%	80%	120%	110%	70%	130%
Cobalt	9081332		13.8	13.8	0.0%	< 0.5	96%	70%	130%	103%	80%	120%	95%	70%	130%
Copper	9081332		30	29	3.4%	< 1	94%	70%	130%	104%	80%	120%	88%	70%	130%
Lead	9081332		5	5	0.0%	< 1	109%	70%	130%	91%	80%	120%	90%	70%	130%
Molybdenum	9081332		<0.5	<0.5	NA	< 0.5	98%	70%	130%	101%	80%	120%	100%	70%	130%
Nickel	9081332		32	31	3.2%	< 1	99%	70%	130%	110%	80%	120%	100%	70%	130%
Selenium	9081332		<0.4	<0.4	NA	< 0.4	110%	70%	130%	102%	80%	120%	97%	70%	130%
Silver	9081332		<0.2	<0.2	NA	< 0.2	89%	70%	130%	95%	80%	120%	91%	70%	130%
Thallium	9081332		<0.4	<0.4	NA	< 0.4	112%	70%	130%	103%	80%	120%	103%	70%	130%
Uranium	9081332		<0.5	<0.5	NA	< 0.5	91%	70%	130%	101%	80%	120%	102%	70%	130%
Vanadium	9081332		48	46	4.3%	< 1	84%	70%	130%	95%	80%	120%	94%	70%	130%
Zinc	9081332		85	83	2.4%	< 5	103%	70%	130%	104%	80%	120%	100%	70%	130%
O. Reg. 153(511) - ORPs (Soil)															
pH, 2:1 CaCl2 Extraction	9092575		7.49	7.51	0.3%	NA	100%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9090102		2.42	2.44	0.8%	NA	NA			NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

Trace Organics Analysis

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189 ATTENTION TO: Alex Wood

SAMPLED BY:

					-										
RPT Date: Mar 05, 2018			D	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
DADAMETED	D. C. I	Sample				Method Blank	Measured	Acce	ptable nits		Acce	ptable nits		Acce Lin	ptable nits
PARAMETER	Batch	lď	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	4 (with PAHs)	(Soil)				1	1			1					
Benzene	9081930	. ,	< 0.02	< 0.02	NA	< 0.02	91%	60%	130%	86%	60%	130%	105%	60%	130%
Toluene	9081930		< 0.08	< 0.08	NA	< 0.08	89%	60%	130%	87%	60%	130%	107%	60%	130%
Ethylbenzene	9081930		< 0.05	< 0.05	NA	< 0.05	89%	60%	130%	88%	60%	130%	110%	60%	130%
Xylene Mixture	9081930		< 0.05	< 0.05	NA	< 0.05	88%	60%	130%	88%	60%	130%	104%	60%	130%
F1 (C6 to C10)	9081930		< 5	< 5	NA	< 5	89%	60%	130%	88%	85%	115%	97%	70%	130%
F2 (C10 to C16)	9086385		< 10	< 10	NA	< 10	92%	60%	130%	84%	80%	120%	83%	70%	130%
F3 (C16 to C34)	9086385		< 50	< 50	NA	< 50	92%	60%	130%	88%	80%	120%	91%	70%	130%
F4 (C34 to C50)	9086385		< 50	< 50	NA	< 50	96%	60%	130%	97%	80%	120%	102%	70%	130%
O. Reg. 153(511) - PHCs F1 - F4	4 (with PAHs)	(Soil)													
Benzene	9079035	(,	< 0.02	< 0.02	NA	< 0.02	110%	60%	130%	92%	60%	130%	101%	60%	130%
Toluene	9079035		< 0.08	< 0.08	NA	< 0.08	109%	60%	130%	95%	60%	130%	106%	60%	130%
Ethylbenzene	9079035		< 0.05	< 0.05	NA	< 0.05	109%	60%	130%	99%	60%	130%	109%	60%	130%
Xvlene Mixture	9079035		< 0.05	< 0.05	NA	< 0.05	105%	60%	130%	93%	60%	130%	102%	60%	130%
F1 (C6 to C10)	9045803		< 5	< 5	NA	< 5	84%	60%	130%	90%	85%	115%	94%	70%	130%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	9086386		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	115%	50%	140%	94%	50%	140%
Vinyl Chloride	9086386		< 0.02	< 0.02	NA	< 0.02	101%	50%	140%	113%	50%	140%	80%	50%	140%
Bromomethane	9086386		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	113%	50%	140%	86%	50%	140%
Trichlorofluoromethane	9086386		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	119%	50%	140%	82%	50%	140%
Acetone	9086386		< 0.50	< 0.50	NA	< 0.50	100%	50%	140%	108%	50%	140%	98%	50%	140%
1,1-Dichloroethylene	9086386		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	102%	60%	130%	88%	50%	140%
Methylene Chloride	9086386		< 0.05	< 0.05	NA	< 0.05	75%	50%	140%	98%	60%	130%	85%	50%	140%
Trans- 1,2-Dichloroethylene	9086386		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	98%	60%	130%	78%	50%	140%
Methyl tert-butyl Ether	9086386		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	95%	60%	130%	75%	50%	140%
1,1-Dichloroethane	9086386		< 0.02	< 0.02	NA	< 0.02	91%	50%	140%	95%	60%	130%	95%	50%	140%
Methyl Ethyl Ketone	9086386		< 0.50	< 0.50	NA	< 0.50	87%	50%	140%	99%	50%	140%	81%	50%	140%
Cis- 1,2-Dichloroethylene	9086386		< 0.02	< 0.02	NA	< 0.02	77%	50%	140%	106%	60%	130%	84%	50%	140%
Chloroform	9086386		< 0.04	< 0.04	NA	< 0.04	85%	50%	140%	102%	60%	130%	97%	50%	140%
1,2-Dichloroethane	9086386		< 0.03	< 0.03	NA	< 0.03	87%	50%	140%	100%	60%	130%	96%	50%	140%
1,1,1-Trichloroethane	9086386		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	97%	60%	130%	87%	50%	140%
Carbon Tetrachloride	9086386		< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	102%	60%	130%	70%	50%	140%
Benzene	9086386		< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	90%	60%	130%	78%	50%	140%
1,2-Dichloropropane	9086386		< 0.03	< 0.03	NA	< 0.03	80%	50%	140%	102%	60%	130%	85%	50%	140%
Trichloroethylene	9086386		< 0.03	< 0.03	NA	< 0.03	88%	50%	140%	98%	60%	130%	78%	50%	140%
Bromodichloromethane	9086386		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	105%	60%	130%	91%	50%	140%
Methyl Isobutyl Ketone	9086386		< 0.50	< 0.50	NA	< 0.50	101%	50%	140%	95%	50%	140%	88%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

9086386

9086386

9086386

< 0.04

< 0.02

< 0.05

< 0.04

< 0.02

< 0.05

1,1,2-Trichloroethane

Dibromochloromethane

Toluene

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

NA

NA

NA

< 0.04

< 0.02

< 0.05

93%

88%

81%

50% 140%

50% 140%

50% 140%

110%

101%

101%

60% 130% 101%

82%

92%

60% 130%

60% 130%

50% 140%

50% 140%

50% 140%

Page 13 of 19

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189 ATTENTION TO: Alex Wood SAMPLED BY:

Trace Organics Analysis (Continued)

PT Date: Mar 05, 2018			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLAN	(SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
Ethylene Dibromide	9086386		< 0.04	< 0.04	NA	< 0.04	87%	50%	140%	101%	60%	130%	92%	50%	140%
Tetrachloroethylene	9086386		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	106%	60%	130%	80%	50%	140%
1,1,1,2-Tetrachloroethane	9086386		< 0.04	< 0.04	NA	< 0.04	101%	50%	140%	99%	60%	130%	89%	50%	140%
Chlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	97%	60%	130%	82%	50%	140%
Ethylbenzene	9086386		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	101%	60%	130%	71%	50%	140%
m & p-Xylene	9086386		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	110%	60%	130%	84%	50%	140%
Bromoform	9086386		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	101%	60%	130%	91%	50%	140%
Styrene	9086386		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	92%	60%	130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	9086386		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	108%	60%	130%	106%	50%	140%
o-Xylene	9086386		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	104%	60%	130%	88%	50%	140%
1,3-Dichlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	85%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	91%	60%	130%	81%	50%	140%
1,2-Dichlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	92%	60%	130%	80%	50%	140%
1,3-Dichloropropene	9086386		< 0.04	< 0.04	NA	< 0.04	105%	50%	140%	98%	60%	130%	114%	50%	140%
n-Hexane	9086386		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	100%	60%	130%	88%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PAHs (Soil)														
Naphthalene	9083880	< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	96%	50%	140%	75%	50%	140%
Acenaphthylene	9083880	< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	106%	50%	140%	84%	50%	140%
Acenaphthene	9083880	< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	99%	50%	140%	81%	50%	140%
Fluorene	9083880	< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	115%	50%	140%	98%	50%	140%
Phenanthrene	9083880	0.21	0.21	NA	< 0.05	116%	50%	140%	110%	50%	140%	112%	50%	140%
Anthracene	9083880	< 0.05	0.05	NA	< 0.05	96%	50%	140%	91%	50%	140%	101%	50%	140%
Fluoranthene	9083880	0.46	0.49	6.3%	< 0.05	111%	50%	140%	107%	50%	140%	113%	50%	140%
Pyrene	9083880	0.37	0.40	7.8%	< 0.05	109%	50%	140%	108%	50%	140%	113%	50%	140%
Benz(a)anthracene	9083880	0.19	0.21	NA	< 0.05	99%	50%	140%	102%	50%	140%	106%	50%	140%
Chrysene	9083880	0.18	0.19	NA	< 0.05	99%	50%	140%	110%	50%	140%	109%	50%	140%
Benzo(b)fluoranthene	9083880	0.35	0.33	5.9%	< 0.05	84%	50%	140%	94%	50%	140%	90%	50%	140%
Benzo(k)fluoranthene	9083880	0.16	0.15	NA	< 0.05	87%	50%	140%	87%	50%	140%	79%	50%	140%
Benzo(a)pyrene	9083880	0.23	0.22	NA	< 0.05	97%	50%	140%	92%	50%	140%	91%	50%	140%
Indeno(1,2,3-cd)pyrene	9083880	0.08	0.09	NA	< 0.05	93%	50%	140%	101%	50%	140%	81%	50%	140%
Dibenz(a,h)anthracene	9083880	< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	100%	50%	140%	94%	50%	140%
Benzo(g,h,i)perylene	9083880	0.09	0.09	NA	< 0.05	77%	50%	140%	87%	50%	140%	76%	50%	140%
2-and 1-methyl Naphthalene	9083880	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	85%	50%	140%	68%	50%	140%

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Mar 05, 2018			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		Id	•				value	Lower	Upper		Lower	Upper		Lower	Upper

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 18Z314189

PROJECT: 1780158

ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	pH METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

AGAT WORK ORDER: 18Z314189 **ATTENTION TO: Alex Wood**

SAMPLED BY:

PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Trace Organics Analysis Naphthalene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthylene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluorene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyre
Trace Organics Analysis ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthylene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluorene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106
Naphthalene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthylene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluorene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106
Acenaphthylene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Acenaphthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluorene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91
Acenaphthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluorene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)phloranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS In
Fluorene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene
Phenanthrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Dibose(b) bergene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Dihono(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Benz(a)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Diberco(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Chrysene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Benzo(b)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Dihono(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Benzo(k)fluoranthene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Benzo(a)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Diversion (a, b) with management ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Indeno(1,2,3-cd)pyrene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS Discrete to backback ORO-94 5400 ERA SW846 3541 & 8270 GC/MS
Uldenz(a,n)anthracene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Benzo(g,h,i)perylene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
2-and 1-methyl Naphthalene ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
Chrysene-d12 ORG-91-5106 EPA SW846 3541 & 8270 GC/MS
F1 (C6 to C10) VOL-91-5009 CCME Tier 1 Method, SW846 5035 P &T GC / FID
F1 (C6 to C10) minus BTEX VOL-91-5009 CCME Tier 1 Method, SW846 5035 P & T GC / FID
F2 (C10 to C16) VOL-91-5009 CCME Tier 1 Method GC / FID
F3 (C16 to C34) VOL-91-5009 CCME Tier 1 Method GC / FID
F4 (C34 to C50) VOL-91-5009 CCME Tier 1 Method GC / FID
Gravimetric Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method Balance
Moisture Content VOL-91-5009 CCME Tier 1 Method, SW846 5035,8015 BALANCE
Terphenyl VOL-91-5009 CCME Tier 1 Method GC/FID
F1 (C6 to C10) VOL-91-5009 CCME Tier 1 Method GC / FID
F1 (C6 to C10) minus BTEX VOL-91-5009 CCME Tier 1 Method GC / FID
F2 (C10 to C16) minus Naphthalene VOL-91-5009 CCME Tier 1 Method GC / FID
F3 (C16 to C34) VOL-91-5009 CCME Tier 1 Method GC / FID
F3 (C16 to C34) minus PAHs VOL-91-5009 CCME Tier 1 Method GC / FID
Gravimetric Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method BALANCE
Moisture Content VOL-91-5009 CCME Tier 1 Method BALANCE
Terphenyl VOL-91-5009 GC/FID
Benzene VOL-91-5009 EPA SW-846 5035 & 8260 P & T GC/MS
Toluene VOL-91-5009 EPA SW-846 5035 & 8260 P & T GC/MS
Ethylbenzene VOL-91-5009 EPA SW-846 5035 & 8260 P & T GC/MS
Xylene Mixture VOL-91-5009 EPA SW-846 5035 & 8260 P & T GC/MS
Dichlorodifluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS
Vinyl Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS
Bromomethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS
I richiorofiluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS
ACETONE VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS
I. I-Dichloroeutryiene VOL-91-0002 EPA SW-846 0035 & 8260 (P&T)GC/MS Mathulana Chlorida VOL-91-0002 EDA SW-846 5025 & 8260 (P&T)GC/MS
Invientifie VOL-91-3002 EFA 3W-640 3033 & 6200 (F&T)GU/MS Trans. 1.2 Dichloroothylono VOL-91-5002 EDA SW/ 846 5025 & 8260 (D&T)CC/MS
Industry
1.1-Dichloroethane VOL-91-5002 FPA SW-846 5035 & 8260 (P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189 ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

	(AG)	A1	F La	abor	ato	ories 11	orge	Ph: 90	Mi 05.71	5 ssissau 2.5100 we	835 Coop Iga, Ontar Fax: 905 bearth.ag	io L4 5.712. atlabs	/enue Z 1Y2 5122 s.com		Li W	abor ork Or	der #)uant	tity:	Use 18 <u>61</u>	Only Z:	3(L -157	-11E	39. C	
Chain of C	Custody Record	If this is	a Drinking Wat	ter sample, p	lease u	se Drinking Water Chain of	Custody Form ((potable v	water i	ntended	for human	consur	nption)	Ar	rival T	empe	eratu	ires:	4	Ø	11.5	21)	5
Report Inform Company: Contact:	Mation: Colder	J,				Regulatory Requ (Please check all applicable boxes	irements:	er Use	No R	egula	tory Re	quire	emei	nt		ustody otes:	Seal			2	· 2 22		No	
Address: Phone: Reports to be sent to:	1931 Roberts 613-408-4804	Fax:				Table	Sar Sto	nitary erm			CCME Prov. Wate	r Qual (PWQ	ity O)		Tu Re Ru	rnar gula sh T/	our r TA AT (Re	nd T T	Fime	(TA)	T) Re	quire Susiness	d: Days	
1. Email: 2. Email:	alex woodlar gol	der.cor	n			Solf Texture (Check One)	Indica	ate One			Indicate	One	_	=			Bus) Bays Br D	ines ate F	s Reguire	ed (Ru	2 Busin Days sh Sur	ess charges		t Business
Project Infor Project: Site Location:	mation: 1780158 Lincoln Fr	elds				Is this submission Record of Site Co	n for a ndition? No		Re Cer	port (tifica Yes	Guidelli te of An	ne or alys N	n Is O	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		* For 'S	Ple TAT is ame	ease s exc Day'	provic lusive analy	le prio of wee sis, pl	r notifi ekends lease c	cation f and sta	or rush T, itutory hc your AG/	AT lidays T CPM
Sampled By: AGAT Quote #:	Please note: If quotation number is	PO:	ill be billed full price	e for analysis.		Sample Matrix Leg B Biota	gend	CrVI		O. Reg	153									P DPCRs		10-5		
Invoice Infor Company: Contact: Address: Emall:	mation:		Bill To Same:	Yes No		GWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water		Field Filtered - Metals, Hg	and Inorganics	als 🗌 153 Metals (excl. Hydi e Metals	JB-HWS CICICION JEC DFOCDHg SAR	als Scan	ion/Custom Metals	DNO2 DN03+NO2	: Хиос 🗆 втех 🗆 тнм	ractions 1 to 4			Total Daroclors	Shiorine Pesticides M&I	lse		14 14	
Samp	ole Identification	Date Sampled	Time Sampled	# of Containers	Sam Mat	ple Commer rix Special Instr	its/ ructions	Y/N	Metals	D All Me	ORPS: Cr ⁶⁺ [Full Me	Regulat	Nutrien UN03	Volatile	CCME F	ABNs	PAHs	PCBs: [Sewer (1.0	
17-11	SA 3	See Jar		3	S	>						X				X		X		-				
17-01	SA3	-1		3	S										X	X			51					
17-01	SAY		2	3	S			50,000							X	\times								1111
17-20	SAZ			3	5			10.00	110			×			X	X		X		_				
17-20	SAS			3	S			L L B					T		X	X							-	1.26
17-21	SAI			3	5	•		_							X	×								
17-21	5A3	*		3	5										X	X								
17-10	9 SA4	Feb 13/18		3	5							X				X		×						100
																_								
Samples Relinquished By (F Aux W Samples Relinquisher DX (F	Print Name and Signit		Date Date	Tim	le Ie	Samples Received By (P Under Verbag Samples Received By (P	int Name and Sign		U	U	Å	J	Date 3-1 Date	et	2-1	8	10 21	13	0		Parti		of	
Samples Relinquished By (F	Fint Name and Sign):	(Date		shi	Samples Roleided By (P	Int Name and Signi	50	NC	B		20	Date	16	18	Tin	na	S	Ø	∕] №: [•]	-age)41	.79	4
Document ID: DIV-78-1511.0	013			hard hard hard hard	555.			. And And An	Subs		Pink	Сору -	Clier	nt I Y€	ellow	Сору -	AGA	T L	White	Сору-	AGAT	Date iss F	ued: Septem	ber 20, 2016 of 19

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1783221

AGAT WORK ORDER: 17Z240230

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jul 31, 2017

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 13

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2017-07-21

		SAMPLE DESC	RIPTION:	17-23 (SA-2)	17-23 (SA-4)	17-23 (SA-14)	ł
		SAMPL	LE TYPE:	Soil	Soil	Soil	
		DATE SA	AMPLED:	2017-07-17	2017-07-17	2017-07-17	
Parameter	Unit	G/S	RDL	8578470	8578483	8578488	
Aroclor 1242	µg/g		0.1	<0.1	<0.1	<0.1	
Aroclor 1248	hð/ð		0.1	<0.1	<0.1	<0.1	
Aroclor 1254	hð/ð		0.1	<0.1	<0.1	<0.1	
Aroclor 1260	hð/ð		0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	µg/g	0.35	0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptable	e Limits				
Decachlorobiphenyl	%	60-14	10	120	96	116	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8578470-8578488 Results are based on the dry weight of soil extracted.

Certified By:

NPopukoloj

DATE REPORTED: 2017-07-31

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2017-07-21								C	DATE REPORTI	ED: 2017-07-31	
		SAMPLE DES	CRIPTION:	17-6 (SA-4)	17-6 (SA-7)	17-23 (SA-2)	17-23 (SA-4)	17-23 (SA-14)	17-24 (SA-1)	17-24 (SA-5)	17-25 (SA-3)
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	2017-07-19	2017-07-19	2017-07-17	2017-07-17	2017-07-17	2017-07-17	2017-07-17	2017-07-18
Parameter	Unit	G / S	RDL	8578449	8578468	8578470	8578483	8578488	8578490	8578502	8578507
F1 (C6 to C10)	µg/g	55	5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	NA	NA	NA	NA	NA
Moisture Content	%		0.1	17.1	13.0	25.3	20.2	18.4	22.9	31.9	26.2
Surrogate	Unit	Acceptab	le Limits								
Terphenyl	%	60-1	140	99	74	98	87	107	104	95	103
		SAMPLE DES	CRIPTION:	17-25 (SA-6)							
		SAMI	PLE TYPE:	Soil							
		DATE S	SAMPLED:	2017-07-18							
Parameter	Unit	G / S	RDL	8578509							
F1 (C6 to C10)	µg/g	55	5	<5							
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5							
F2 (C10 to C16)	µg/g	98	10	<10							
F3 (C16 to C34)	µg/g	300	50	<50							
F4 (C34 to C50)	µg/g	2800	50	<50							
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA							
Moisture Content	%		0.1	30.9							
Surrogate	Unit	Acceptab	le Limits								
Terphenyl	%	60-1	140	73							

NPopukolof

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2017-07-21

DATE REPORTED: 2017-07-31

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8578449-8578509 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPopukoloj

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221

O. Reg. 153(511) - VOCs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

							-				
DATE RECEIVED: 2017-07-21								C	DATE REPORTI	ED: 2017-07-31	
	:	SAMPLE DESCRI	IPTION:	17-6 (SA-4)	17-6 (SA-7)	17-23 (SA-2)	17-23 (SA-4)	17-23 (SA-14)	17-24 (SA-1)	17-24 (SA-5)	17-25 (SA-3)
		SAMPLE	E TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAM	MPLED:	2017-07-19	2017-07-19	2017-07-17	2017-07-17	2017-07-17	2017-07-17	2017-07-17	2017-07-18
Parameter	Unit	G/S	RDL	8578449	8578468	8578470	8578483	8578488	8578490	8578502	8578507
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	ug/g	0.05	0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04
Toluene	ug/g	2.3	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	<0.04	< 0.04	< 0.04
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	ug/g	2	0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene	ua/a		0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05

Certified By:

NPopukolof

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

DATE RECEIVED: 2017-07-21					-			Г	DATE REPORT	ED: 2017-07-31	
				47.0 (0.4.4)		47.02 (04.0)	47.02 (0.4.4)		47.04 (04.4)		47.05 (0.4.0)
	5	SAMPLE DESU	CRIPTION:	17-6 (SA-4)	17-6 (SA-7)	17-23 (SA-2)	17-23 (SA-4)	17-23 (SA-14)	17-24 (SA-1)	17-24 (SA-5)	17-25 (SA-3)
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	2017-07-19	2017-07-19	2017-07-17	2017-07-17	2017-07-17	2017-07-17	2017-07-17	2017-07-18
Parameter	Unit	G/S	RDL	8578449	8578468	8578470	8578483	8578488	8578490	8578502	8578507
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	17.1	13.0	25.3	20.2	18.4	22.9	31.9	26.2
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	86	88	86	83	86	87	86	87
4-Bromofluorobenzene	% Recovery	50-1	40	88	87	90	88	89	91	88	88

O. Reg. 153(511) - VOCs (Soil)

Certified By:

NPopukolof

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221

O. Reg. 153(511) - VOCs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

				3	
DATE RECEIVED: 2017-07-21					DATE REPORTED: 2017-07-31
	S	AMPLE DES	CRIPTION:	17-25 (SA-6)	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2017-07-18	
Parameter	Unit	G/S	RDL	8578509	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	2.3	0.02	<0.02	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	

Certified By:

NPopukoloj

AGAT WORK ORDER: 17Z240230 PROJECT: 1783221 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2017-07-21

	SA	MPLE DESC	RIPTION:	17-25 (SA-6)
		SAMF	LE TYPE:	Soil
		DATE S	AMPLED:	2017-07-18
Parameter	Unit	G/S	RDL	8578509
Bromoform	ug/g	0.27	0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05
o-Xylene	ug/g		0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05
Xylene Mixture	ug/g	3.1	0.05	<0.05
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04
n-Hexane	hð/ð	2.8	0.05	<0.05
Moisture Content	%		0.1	30.9
Surrogate	Unit	Acceptabl	e Limits	
Toluene-d8	% Recovery	50-1	40	84
4-Bromofluorobenzene	% Recovery	50-1	40	86

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8578449-8578509 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Certified By:

NPopukolof

DATE REPORTED: 2017-07-31

Page 9 of 13

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 17Z240230

ATTENTION TO: Alex Wood

SAMPLED BY: P.H.

Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Jul 31, 2017 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Maggurad Blank Limits Limits Limits PARAMETER Batch Dup #1 Dup #2 RPD Recovery Recovery Value Id Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil) E1 (C6 to C10) 130% 8582484 NA 71% 60% 130% 87% 85% 77% 70% < 5 < 5 < 5 115% F2 (C10 to C16) 130% 8585284 < 10 < 10 NA < 10 100% 60% 130% 92% 80% 120% 78% 70% F3 (C16 to C34) 8585284 < 50 < 50 NA < 50 109% 60% 130% 106% 80% 120% 89% 70% 130% F4 (C34 to C50) 8585284 < 50 < 50 NA < 50 94% 60% 130% 90% 80% 120% 71% 70% 130% O. Reg. 153(511) - VOCs (Soil) Dichlorodifluoromethane 8584664 < 0.05 < 0.05 NA < 0.05 79% 50% 140% 87% 50% 140% 90% 50% 140% Vinyl Chloride 97% 140% 8584664 < 0.02 < 0.02 NA < 0.0294% 50% 140% 50% 140% 77% 50% 81% 140% Bromomethane 8584664 < 0.05 < 0.05 NA < 0.05 90% 50% 140% 50% 140% 78% 50% Trichlorofluoromethane 8584664 < 0.05 < 0.05 NA < 0.05 85% 50% 140% 82% 50% 140% 90% 50% 140% Acetone 8584664 < 0.50 < 0.50 NA < 0.50 98% 50% 140% 93% 50% 140% 92% 50% 140% 1,1-Dichloroethylene 8584664 < 0.05 < 0.05 NA < 0.05 97% 50% 140% 95% 130% 80% 50% 140% 60% Methylene Chloride < 0.05 < 0.05 NA < 0.0598% 50% 140% 90% 130% 84% 50% 140% 8584664 60% Trans- 1,2-Dichloroethylene 8584664 < 0.05 < 0.05 NA < 0.0578% 50% 140% 81% 60% 130% 95% 50% 140% Methyl tert-butyl Ether 8584664 < 0.05 < 0.05 NΑ < 0.05 84% 50% 140% 97% 60% 130% 84% 50% 140% 1.1-Dichloroethane 50% 79% 140% 8584664 < 0.02 < 0.02 NA < 0.02 91% 140% 60% 130% 83% 50% 140% Methyl Ethyl Ketone 8584664 < 0.50 < 0.50 NA < 0.50 88% 50% 140% 89% 50% 140% 92% 50% Cis- 1,2-Dichloroethylene 8584664 < 0.02 < 0.02 NA < 0.02 99% 50% 140% 98% 60% 130% 98% 50% 140% Chloroform 8584664 < 0.04 < 0.04 NA < 0.04 88% 50% 140% 92% 130% 96% 50% 140% 60% < 0.03 < 0.03 90% 50% 140% 93% 92% 50% 140% 1.2-Dichloroethane 8584664 < 0.03 NA 60% 130% 1,1,1-Trichloroethane 140% 8584664 < 0.05 < 0.05 NA < 0.05 96% 50% 140% 98% 60% 130% 82% 50% Carbon Tetrachloride 8584664 < 0.05 < 0.05 NA < 0.05 85% 50% 140% 92% 60% 130% 85% 50% 140% Benzene 8584664 < 0.02 < 0.02 NA < 0.02 97% 50% 140% 98% 60% 130% 80% 50% 140% 1.2-Dichloropropane 8584664 < 0.03 < 0.03 NA < 0.03 93% 50% 140% 97% 60% 130% 89% 50% 140% Trichloroethylene 8584664 < 0.03 < 0.03 NA < 0.0392% 50% 140% 86% 60% 130% 86% 50% 140% Bromodichloromethane 97% 82% 140% 8584664 < 0.05 < 0.05 NA < 0.05 50% 140% 60% 130% 92% 50% Methyl Isobutyl Ketone 8584664 < 0.50 < 0.50 NA < 0.50 95% 50% 140% 98% 50% 140% 91% 50% 140% 1.1.2-Trichloroethane 8584664 < 0.04< 0.04 NA < 0.0497% 50% 140% 83% 60% 130% 90% 50% 140% Toluene 8584664 < 0.02 < 0.02 NA < 0.02 96% 50% 140% 89% 60% 130% 81% 50% 140% Dibromochloromethane 8584664 < 0.05 < 0.05 NA < 0.05 91% 50% 140% 99% 60% 130% 91% 50% 140% Ethylene Dibromide 8584664 50% 84% 50% 140% < 0.04 < 0.04 NA < 0.04 96% 140% 60% 130% 93% Tetrachloroethylene 140% 8584664 < 0.05 < 0.05 NA < 0.05 85% 50% 140% 95% 60% 130% 93% 50% 1.1.1.2-Tetrachloroethane 8584664 < 0.04 < 0.04 NA < 0.04 96% 50% 140% 98% 60% 130% 85% 50% 140% Chlorobenzene 8584664 < 0.05 < 0.05 NA < 0.05 90% 50% 140% 90% 60% 130% 82% 50% 140% Ethylbenzene 8584664 < 0.05 < 0.05 NA < 0.05 93% 50% 140% 95% 60% 130% 89% 50% 140% m & p-Xylene 8584664 < 0.05< 0.05 < 0.0575% 50% 140% 75% 60% 130% 73% 50% 140% NA < 0.05 Bromoform 8584664 82% 84% 130% 93% 140% < 0.05 NA < 0.0550% 140% 60% 50% 50% 140% 91% Stvrene 8584664 < 0.05 < 0.05 NA < 0.05 91% 140% 60% 130% 89% 50% 8584664 84% 140% 1,1,2,2-Tetrachloroethane < 0.05 < 0.05 NA < 0.05 91% 50% 140% 60% 130% 91% 50% o-Xylene 8584664 < 0.05 < 0.05 NA < 0.05 91% 50% 140% 81% 60% 130% 89% 50% 140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 17Z240230

ATTENTION TO: Alex Wood

SAMPLED BY:P.H.

RPT Date: Jul 31, 2017	DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	(SPIKE	MATRIX SPIKE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acce Lir	ptable nits
				value	Lower	Upper		Lower	Upper		Lower	Upper			
1,3-Dichlorobenzene	8584664		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	86%	60%	130%	85%	50%	140%
1,4-Dichlorobenzene	8584664		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	98%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	8584664		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	91%	60%	130%	82%	50%	140%
1,3-Dichloropropene	8584664		< 0.04	< 0.04	NA	< 0.04	82%	50%	140%	84%	60%	130%	91%	50%	140%
n-Hexane	8584664		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	81%	60%	130%	85%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PCBs (Soil))													
Aroclor 1242	8585284	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	8585284	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	8585284	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	8585284	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	8585284	< 0.1	< 0.1	NA	< 0.1	102%	60%	140%	108%	60%	140%	102%	60%	140%

Certified By:

NPopukok

Page 10 of 13

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

AGAT WORK ORDER: 17Z240230 ATTENTION TO: Alex Wood

SAMPLING SITE:Lincoln Fields		SAMPLED BY:P.H.						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis								
Aroclor 1242	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
Aroclor 1248	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
Aroclor 1254	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
Aroclor 1260	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
Polychlorinated Biphenyls	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD					
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID					
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P & T GC / FID					
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID					
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID					
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	Balance					
Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE					
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID					
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS					

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 17Z240230 ATTENTION TO: Alex Wood

SAMI LING SITE. LINCOIN FIELDS										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Moisture Content	VOL-91-5002	MOE E3139	BALANCE							

Chain of Custody Record If this is a Drinking Water sample, pleas	Ories	Ph Ph Custody Form (potal	Mississ 905.712.51	5835 Coopers Avenue auga, Ontario L4Z 1Y2 00 Fax: 905.712.5122 webearth.agatlabs.com	La Wor Coo Arri	bora rk Ord bler Qu val Te	ator ler #: uantit	y Use	e Only 72 Oge	240	$\frac{22}{2}$	20 2.4
Report Information: Odder Associates Company: Alex wood Contact: Alex wood Address: 1931 Robertson Road, Ottawa Phone: 613-408-4804 Reports to be sent to: 613-408-4804 1. Email: alex_wood@gober.ca 2. Email: 1783221 Project: 1783221 Site Location: Interference	Regulatory Requirements: No Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Ind/Com Ind/Com Soil Texture (Check One) Soil Texture (Check One) Fine Indicate One Is this submission for a Record of Site Condition? Yes No			Iatory Requirement Regulation 558 CCME Prov. Water Quality Objectives (PWQO) Other Indicate One t Guideline on cate of Analysis S NO	Custody Seal Intact: Yes No Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days 1 Busines OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT							Business y ply): TAT olidays
Sampled By: Pice Po: AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Bill To Same: Yes No D Company: Contact: Address: Email:	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI (Please Circle)	s and Inorganics Scan e Forming Metals	Custom Metals Custom Metals BHWS CI: CN EC TFOC NO2, NO2 IN THE DH INO2 TKN TKN BNO2 TKN TKN	Fractions 1 to 4		phenols	ochlorine Pesticides	vletals/Inorganics Use			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Comments/ Special Instructions	Y/N	Metals Metals Metals Metals Mydrid	Client ORPs: 0		PAHS	Chloro	PCBs	TCLP N			
Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign) Time Time Time Date	Samples Received By (Prin	It Name and Sign):	Inn	Date Date	y-1 7/22	Tim	ISh 10 10	00	Nº:	Page	of.)314	4

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Keith Holmes

PROJECT: 1783221

AGAT WORK ORDER: 17Z292531

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Dec 14, 2017

PAGES (INCLUDING COVER): 17

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 402-2050

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 17

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - Metals (Excluding Hydrides) (Soil)											
DATE RECEIVED: 2017-12-06							DATE REPORTED: 2017-12-14				
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDI	17-08 SA1 Soil 2017-11-28 8960894	17-101 SA1 Soil 2017-11-28 8960913	17-108 SA3 Soil 2017-11-29 8960938	17-108 SA7 Soil 2017-11-29 8960953					
Boron	µg/g	5	<5	<5	<5	<5					
Barium	µg/g	2	32	29	58	76					
Beryllium	µg/g	0.5	<0.5	<0.5	<0.5	<0.5					
Cadmium	µg/g	0.5	<0.5	<0.5	<0.5	<0.5					
Chromium	µg/g	2	9	8	23	17					
Cobalt	µg/g	0.5	2.6	2.8	7.4	5.7					
Copper	µg/g	1	4	6	11	13					
Lead	µg/g	1	5	3	4	4					
Molybdenum	µg/g	0.5	<0.5	<0.5	<0.5	<0.5					
Nickel	µg/g	1	4	5	12	13					
Silver	µg/g	0.2	<0.2	<0.2	<0.2	<0.2					
Thallium	µg/g	0.4	<0.4	<0.4	<0.4	<0.4					
Uranium	µg/g	0.5	0.5	<0.5	0.8	<0.5					
Vanadium	µg/g	1	16	13	25	24					
Zinc	µg/g	5	16	10	23	27					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

				O. Reg.	153(511) - ORPs (Soil)
DATE RECEIVED: 2017-12-0	06				DATE REPORTED: 2017-12-14
	S	AMPLE DES	CRIPTION:	17-08 SA4	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2017-11-28	
Parameter	Unit	G/S	RDL	8960903	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.73	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8960903 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

				• • •	•	,	
DATE RECEIVED: 2017-12-06							DATE REPORTED: 2017-12-14
		SAMPLE DESCRIPTION:	17-08 SA1	17-101 SA1	17-108 SA3	17-108 SA7	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2017-11-28	2017-11-28	2017-11-29	2017-11-29	
Parameter	Unit	G/S RDL	8960894	8960913	8960938	8960953	
Naphthalene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
2-and 1-methyl Naphthalene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%	0.1	15.2	5.4	15.3	11.2	
Surrogate	Unit	Acceptable Limits					
Chrysene-d12	%	50-140	115	116	121	124	

O. Reg. 153(511) - PAHs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8960894-8960953 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Certified By:

NPopukolof

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PCBs (Soil)										
DATE RECEIVED: 2017-12-06						DATE REPORTED: 2017-12-14				
		SAMPLE DES	CRIPTION:	17-08 SA1	17-08 SA4					
		SAM	PLE TYPE:	Soil	Soil					
		DATES	SAMPLED:	2017-11-28	2017-11-28					
Parameter	Unit	G/S	RDL	8960894	8960903					
Polychlorinated Biphenyls	µg/g		0.1	<0.1	<0.1					
Surrogate	Unit	Acceptab	le Limits							
Decachlorobiphenyl	%	60-1	40	88	120					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8960894-8960903 Results are based on the dry weight of soil extracted.

Certified By:

NPopukolof

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2017-12-06

		SAMPLE DESCRIPTION:	17-08 SA4	17-101 SA4	17-101 SA44	
		SAMPLE TYPE:	Soil	Soil	Soil	
		DATE SAMPLED:	2017-11-28	2017-11-28	2017-11-28	
Parameter	Unit	G/S RDL	8960903	8960920	8960930	
Benzene	µg/g	0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	0.08	<0.08	<0.08	<0.08	
Ethylbenzene	µg/g	0.05	<0.05	<0.05	<0.05	
Xylene Mixture	µg/g	0.05	<0.05	<0.05	<0.05	
F1 (C6 to C10)	µg/g	5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	5	<5	<5	<5	
F2 (C10 to C16)	µg/g	10	<10	<10	<10	
F3 (C16 to C34)	µg/g	50	<50	<50	<50	
F4 (C34 to C50)	µg/g	50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	50	NA	NA	NA	
Moisture Content	%	0.1	31.4	26.5	27.8	
Surrogate	Unit	Acceptable Limits				
Terphenyl	%	60-140	90	125	130	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8960903-8960930 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

The chromatogram has returned to baseline by the retention time of

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Certified By:

NPopukoloj

DATE REPORTED: 2017-12-14

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2017-12-06

		SAMPLE DESCRIPTION:	17-108 SA7
1		SAMPLE TYPE:	Soil
		DATE SAMPLED:	2017-11-29
Parameter	Unit	G/S RDL	8960953
F1 (C6 to C10)	µg/g	5	<5
F1 (C6 to C10) minus BTEX	µg/g	5	<5
F2 (C10 to C16)	µg/g	10	<10
F2 (C10 to C16) minus Naphthalene	µg/g	10	<10
F3 (C16 to C34)	µg/g	50	<50
F3 (C16 to C34) minus PAHs	µg/g	50	<50
F4 (C34 to C50)	µg/g	50	<50
Gravimetric Heavy Hydrocarbons	µg/g	50	NA
Moisture Content	%	0.1	11.2
Surrogate	Unit	Acceptable Limits	
Terphenyl	%	60-140	140

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on sample dry weight.

8960953

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

NPopukoloj

DATE REPORTED: 2017-12-14

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221

10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Terphenyl

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2017-12-06

		SAMPLE DESCRIPTION:	17-08 SA1	17-101 SA1	17-108 SA3
		SAMPLE TYPE:	Soil	Soil	Soil
		DATE SAMPLED:	2017-11-28	2017-11-28	2017-11-29
Parameter	Unit	G / S RDL	8960894	8960913	8960938
Benzene	µg/g	0.02	<0.02	<0.02	<0.02
Toluene	µg/g	0.08	<0.08	<0.08	<0.08
Ethylbenzene	µg/g	0.05	<0.05	<0.05	<0.05
Xylene Mixture	µg/g	0.05	<0.05	<0.05	<0.05
F1 (C6 to C10)	µg/g	5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	5	<5	<5	<5
F2 (C10 to C16)	µg/g	10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	µg/g	10	<10	<10	<10
F3 (C16 to C34)	µg/g	50	<50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g	50	<50	<50	<50
F4 (C34 to C50)	µg/g	50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	50	NA	NA	NA
Moisture Content	%	0.1	15.2	5.4	15.3
Surrogate	Unit	Acceptable Limits			
Terphenyl	%	60-140	140	110	130

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8960894-8960938 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10. nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

NPopukoloj

DATE REPORTED: 2017-12-14

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

			O. Re	g. 153(511) - VOCs (Soil)
DATE RECEIVED: 2017-12-06				DATE REPORTED: 2017-12-14
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	17-108 SA7 Soil 2017-11-29	
Dichlorodifluoromethane		0.05	<0.05	
	µg/g	0.03	<0.00	
Bromomethane	ug/g	0.02	<0.02	
Trichlorofluoromethane	ug/g	0.05	<0.05	
Acetone	ug/g	0.50	<0.50	
1 1-Dichloroethylene	ug/g	0.05	<0.05	
Methylene Chloride	ua/a	0.05	<0.05	
Trans- 1.2-Dichloroethylene	ua/a	0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	0.05	<0.05	
1,1-Dichloroethane	ug/g	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.02	<0.02	
Chloroform	ug/g	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	<0.05	
Benzene	ug/g	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.03	<0.03	
Trichloroethylene	ug/g	0.03	<0.03	
Bromodichloromethane	ug/g	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.04	<0.04	
Toluene	ug/g	0.02	<0.02	
Dibromochloromethane	ug/g	0.05	<0.05	
Ethylene Dibromide	ug/g	0.04	<0.04	
Tetrachloroethylene	ug/g	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.04	<0.04	
Chlorobenzene	ug/g	0.05	<0.05	
Ethylbenzene	ug/g	0.05	<0.05	
m & p-Xvlene	ua/a	0.05	< 0.05	

Certified By:

NPopukoloj

10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

AGAT WORK ORDER: 17Z292531 PROJECT: 1783221 10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - VOCs (Soil) DATE RECEIVED: 2017-12-06 **DATE REPORTED: 2017-12-14** SAMPLE DESCRIPTION: 17-108 SA7 SAMPLE TYPE: Soil DATE SAMPLED: 2017-11-29 G/S RDL 8960953 Parameter Unit Bromoform 0.05 < 0.05 ug/g Styrene 0.05 < 0.05 ug/g 0.05 1,1,2,2-Tetrachloroethane ug/g < 0.05 0.05 o-Xylene < 0.05 ug/g 1,3-Dichlorobenzene 0.05 < 0.05 ug/g 1.4-Dichlorobenzene ug/g 0.05 < 0.05 1,2-Dichlorobenzene ug/g 0.05 < 0.05 Xylene Mixture ug/g 0.05 < 0.05 1,3-Dichloropropene 0.04 < 0.04 µg/g n-Hexane 0.05 < 0.05 µg/g Unit Surrogate Acceptable Limits Toluene-d8 % Recovery 50-140 96 4-Bromofluorobenzene % Recovery 50-140 84

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8960953 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Certified By:

NPopukolof

.. .

10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z292531

ATTENTION TO: Keith Holmes

SAMPLED BY:

Soil Analysis															
RPT Date: Dec 14, 2017			DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce Lir	ptable nits
		lu	-				value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Exclud	ling Hydride	es) (Soil)													
Boron	8956479		16	16	NA	< 5	82%	70%	130%	99%	80%	120%	75%	70%	130%
Barium	8956479		141	114	21.2%	< 2	98%	70%	130%	100%	80%	120%	88%	70%	130%
Beryllium	8956479		0.8	0.9	NA	< 0.5	91%	70%	130%	102%	80%	120%	104%	70%	130%
Cadmium	8956479		<0.5	<0.5	NA	< 0.5	113%	70%	130%	101%	80%	120%	98%	70%	130%
Chromium	8956479		23	23	0.0%	< 2	86%	70%	130%	102%	80%	120%	112%	70%	130%
Cobalt	8956479		12.3	13.1	6.3%	< 0.5	87%	70%	130%	103%	80%	120%	92%	70%	130%
Copper	8956479		14	14	0.0%	< 1	83%	70%	130%	98%	80%	120%	95%	70%	130%
Lead	8956479		10	10	0.0%	< 1	106%	70%	130%	105%	80%	120%	101%	70%	130%
Molybdenum	8956479		1.0	0.9	NA	< 0.5	98%	70%	130%	103%	80%	120%	88%	70%	130%
Nickel	8956479		29	29	0.0%	< 1	93%	70%	130%	105%	80%	120%	90%	70%	130%
Silver	8956479		<0.2	<0.2	NA	< 0.2	94%	70%	130%	108%	80%	120%	109%	70%	130%
Thallium	8956479		<0.4	<0.4	NA	< 0.4	103%	70%	130%	106%	80%	120%	108%	70%	130%
Uranium	8956479		1.0	1.1	NA	< 0.5	112%	70%	130%	114%	80%	120%	118%	70%	130%
Vanadium	8956479		30	29	3.4%	< 1	92%	70%	130%	103%	80%	120%	87%	70%	130%
Zinc	8956479		52	58	10.9%	< 5	85%	70%	130%	101%	80%	120%	92%	70%	130%
O. Reg. 153(511) - ORPs (Soil)															
pH, 2:1 CaCl2 Extraction	8967659		7.65	7.71	0.8%	NA	101%	90%	110%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z292531

ATTENTION TO: Keith Holmes

SAMPLED BY:

Trace Organics Analysis															
RPT Date: Dec 14, 2017		-	C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable mits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	8961873		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	83%	50%	140%
Vinyl Chloride	8961873		< 0.02	< 0.02	NA	< 0.02	87%	50%	140%	127%	50%	140%	115%	50%	140%
Bromomethane	8961873		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	123%	50%	140%	121%	50%	140%
Trichlorofluoromethane	8961873		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	111%	50%	140%	122%	50%	140%
Acetone	8961873		< 0.50	< 0.50	NA	< 0.50	95%	50%	140%	103%	50%	140%	98%	50%	140%
1,1-Dichloroethylene	8961873		< 0.05	< 0.05	NA	< 0.05	71%	50%	140%	83%	60%	130%	74%	50%	140%
Methylene Chloride	8961873		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	74%	60%	130%	112%	50%	140%
Trans- 1,2-Dichloroethylene	8961873		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	112%	60%	130%	97%	50%	140%
Methyl tert-butyl Ether	8961873		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	80%	60%	130%	70%	50%	140%
1,1-Dichloroethane	8961873		< 0.02	< 0.02	NA	< 0.02	112%	50%	140%	112%	60%	130%	95%	50%	140%
Methyl Ethyl Ketone	8961873		< 0.50	< 0.50	NA	< 0.50	114%	50%	140%	96%	50%	140%	100%	50%	140%
Cis- 1,2-Dichloroethylene	8961873		< 0.02	< 0.02	NA	< 0.02	88%	50%	140%	95%	60%	130%	98%	50%	140%
Chloroform	8961873		< 0.04	< 0.04	NA	< 0.04	113%	50%	140%	117%	60%	130%	109%	50%	140%
1,2-Dichloroethane	8961873		< 0.03	< 0.03	NA	< 0.03	105%	50%	140%	112%	60%	130%	111%	50%	140%
1,1,1-Trichloroethane	8961873		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	100%	60%	130%	106%	50%	140%
Carbon Tetrachloride	8961873		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	104%	60%	130%	106%	50%	140%
Benzene	8961873		< 0.02	< 0.02	NA	< 0.02	80%	50%	140%	103%	60%	130%	88%	50%	140%
1,2-Dichloropropane	8961873		< 0.03	< 0.03	NA	< 0.03	102%	50%	140%	110%	60%	130%	99%	50%	140%
Trichloroethylene	8961873		< 0.03	< 0.03	NA	< 0.03	82%	50%	140%	105%	60%	130%	87%	50%	140%
Bromodichloromethane	8961873		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	114%	60%	130%	107%	50%	140%
Methyl Isobutyl Ketone	8961873		< 0.50	< 0.50	NA	< 0.50	99%	50%	140%	93%	50%	140%	94%	50%	140%
1,1,2-Trichloroethane	8961873		< 0.04	< 0.04	NA	< 0.04	94%	50%	140%	101%	60%	130%	113%	50%	140%
Toluene	8961873		< 0.05	< 0.05	NA	< 0.02	99%	50%	140%	96%	60%	130%	98%	50%	140%
Dibromochloromethane	8961873		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	98%	60%	130%	106%	50%	140%
Ethylene Dibromide	8961873		< 0.04	< 0.04	NA	< 0.04	119%	50%	140%	97%	60%	130%	105%	50%	140%
Tetrachloroethylene	8961873		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	106%	60%	130%	99%	50%	140%
1,1,1,2-Tetrachloroethane	8961873		< 0.04	< 0.04	NA	< 0.04	72%	50%	140%	101%	60%	130%	104%	50%	140%
Chlorobenzene	8961873		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	96%	60%	130%	100%	50%	140%
Ethylbenzene	8961873		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	93%	60%	130%	90%	50%	140%
m & p-Xylene	8961873		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	97%	60%	130%	100%	50%	140%
Bromoform	8961873		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	98%	60%	130%	108%	50%	140%
Styrene	8961873		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	78%	60%	130%	79%	50%	140%
1,1,2,2-Tetrachloroethane	8961873		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	99%	60%	130%	91%	50%	140%
o-Xylene	8961873		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	102%	60%	130%	107%	50%	140%
1,3-Dichlorobenzene	8961873		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	85%	60%	130%	87%	50%	140%
1,4-Dichlorobenzene	8961873		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	95%	60%	130%	104%	50%	140%
1,2-Dichlorobenzene	8961873		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	89%	60%	130%	95%	50%	140%
1,3-Dichloropropene	8961873		< 0.04	< 0.04	NA	< 0.04	115%	50%	140%	97%	60%	130%	86%	50%	140%
n-Hexane	8961873		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	97%	60%	130%	87%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 12 of 17

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z292531

ATTENTION TO: Keith Holmes

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Dec 14, 2017	DUPLICATE				REFEREN	ICE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	FR Batch Sample Dup #1 Dup #2 RPD		Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recoverv	Acceptable Limits				
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PHCs F1 - F4 ((with PAHs) (Soil)													
Benzene	8959499	< 0.02	< 0.02	NA	< 0.02	94%	60%	130%	77%	60%	130%	95%	60%	130%
Toluene	8959499	< 0.08	< 0.08	NA	< 0.08	102%	60%	130%	87%	60%	130%	106%	60%	130%
Ethylbenzene	8959499	< 0.05	< 0.05	NA	< 0.05	98%	60%	130%	86%	60%	130%	106%	60%	130%
Xylene Mixture	8959499	< 0.05	< 0.05	NA	< 0.05	99%	60%	130%	89%	60%	130%	107%	60%	130%
F1 (C6 to C10)	8959499	< 5	< 5	NA	< 5	86%	60%	130%	87%	85%	115%	78%	70%	130%
F2 (C10 to C16)	8954793	< 10	< 10	NA	< 10	107%	60%	130%	100%	80%	120%	100%	70%	130%
F3 (C16 to C34)	8954793	< 50	< 50	NA	< 50	109%	60%	130%	93%	80%	120%	104%	70%	130%
F4 (C34 to C50)	8954793	< 50	< 50	NA	< 50	101%	60%	130%	99%	80%	120%	86%	70%	130%
O. Reg. 153(511) - PAHs (Soil)														
Naphthalene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	126%	50%	140%	80%	50%	140%	79%	50%	140%
Acenaphthylene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	83%	50%	140%	84%	50%	140%
Acenaphthene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	85%	50%	140%	79%	50%	140%
Fluorene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	90%	50%	140%	87%	50%	140%
Phenanthrene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	86%	50%	140%	86%	50%	140%
Anthracene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	88%	50%	140%	87%	50%	140%
Fluoranthene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	130%	50%	140%	97%	50%	140%	102%	50%	140%
Pyrene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	124%	50%	140%	94%	50%	140%	102%	50%	140%
Benz(a)anthracene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	129%	50%	140%	98%	50%	140%	101%	50%	140%
Chrysene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	124%	50%	140%	102%	50%	140%	107%	50%	140%
Benzo(b)fluoranthene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	132%	50%	140%	123%	50%	140%	102%	50%	140%
Benzo(k)fluoranthene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	116%	50%	140%	101%	50%	140%
Benzo(a)pyrene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	89%	50%	140%	82%	50%	140%
Indeno(1,2,3-cd)pyrene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	67%	50%	140%	63%	50%	140%
Dibenz(a,h)anthracene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	63%	50%	140%	76%	50%	140%
Benzo(g,h,i)perylene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	77%	50%	140%	70%	50%	140%
2-and 1-methyl Naphthalene	8960913 8960913	< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	89%	50%	140%	86%	50%	140%
O. Reg. 153(511) - PCBs (Soil)														
Polychlorinated Biphenyls	8956367	< 0.1	< 0.1	NA	< 0.1	102%	60%	140%	105%	60%	140%	88%	60%	140%

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 13 of 17

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

AGAT WORK ORDER: 17Z292531

ATTENTION TO: Keith Holmes

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Soil Analysis												
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	pH METER									

ANALYTICAL TECHNIQUE

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

AGAT WORK ORDER: 17Z292531 ATTENTION TO: Keith Holmes

SAMPLED BY:

LITERATURE REFERENCE

PARAMETER	AGAT S.O.P
Trace Organics Analysis	L.
Naphthalene	ORG-91-5106
Acenaphthylene	ORG-91-5106
Acenaphthene	ORG-91-5106
Fluorene	ORG-91-5106

Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Polychlorinated Biphenyls	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	GC / FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	CCME Tier 1 Method	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

AGAT METHOD SUMMARY (V1)

10203B 123 STREET GRANDE PRAIRIE, ALBERTA CANADA T8V 8B7 TEL (780)402-2050 FAX (780)402-2078 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

AGAT WORK ORDER: 17Z292531 ATTENTION TO: Keith Holmes

SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS							

	11 0	5835 Coopers Avenu	Laboratory Use Only
Laborate	ories	Mississauga, Ontario L4Z 1Y Ph: 905.712.5100 Fax: 905.712.512	12 Work Order #: 172292531
Chain of Custody Record If this is a Drinking Water sample, please	use Drinking Water Chain of Custody Form ((potable water consumed by humans)	Cooler Quantity: Concerning Arrival Temperatures: 899.019.1
Report Information:	Regulatory Requirements: (Please check all applicable boxes)	No Regulatory Requireme	ent Custody Seal Intact:
Contact: Keith Habes	Regulation 153/04 Sewe	er Use	Turnaround Time (TAT) Required:
	Table	nitary CCME	Regular TAT 5 to 7 Business Days
Phone: Fax:	Agriculture	rm Prov. Water Quality Objectives (PWOO)	Rush TAT (Rush Surcharges Apply)
1. Email: Kystnes Q goldar. Com	Soil Texture (Check One) Region	ate One	3 Business 2 Business Next Business
2. Email: a wood a golder con	Fine MISA	Indicate One	OR Date Required (Rush Surcharges May Apply):
Project Information:	Is this submission for a	Report Guideline on	
Project: 1785221	Record of Site Condition?	Certificate of Analysis	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays
Site Location:	Yes LI No	Yes I No	For 'Same Day' analysis, please contact your AGAT CPM
AGAT Quote #: PO:	Sample Matrix Legend	0. Reg 153	Le
Invoice Information: Bill To Same: Yes Yes Yo I Company:	GWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Filtered - Metals, Hg and Inorganics tals For an Metals (excl. Hydrde- e Metals [153 Metals (Incl. Hyd D B-HWS D Cr D CN D EC FOC Hg 35AR 161S Scan tals Scan	Its: Dro Droy-Trkn Dro, Droy-Ho, S: X voc D BTEX DTHM is: A voc D BTEX DTHM I - F4 Mai D vocs D ABNs DB(a) Mai D vocs D ABNs DB(a) Mai D vocs D ABNs DB(a)
Sample Identification Date Sampled Time Sampled # of Containers San Ma	nple Comments/ trix Special Instructions	A Al Metals Metals DH C DH Al Metals Cr ⁶⁺ I D DH C Cr ⁶⁺ I Full Me	Nutrien Nutrien Volatile PAHs PAHs PCBs: PCBs: Sewer TCLP:
7-08 SAL 28/11/17 12:00 3 5	5	X	
17-08 SA4			
		×	
17-101 (4444			× × ×
17-108 483 29/11/17		×	XXX
17-108 CA7 11 V 2 1	I IF, too little volume	×	XXX
	COP VAR		
Samples finaling die hogie grant Namo and Sign): Date // Time	Samples Roceived Set Print Name and Signite		ate Time
Samples Rolinguiphed by Rent Rymonogad Synals	Samples Bacelved By (Print Name and Sign)?	Ballin 6-1	RC-17 12 hou
Samples Relinquished by LPINT Name and Start	Samples Received By (Print Name and Sign):	Da	7/12/7 8° Page of
Decument Dr. 2017 28 1521 014		Pink Conv. Clic	r N°: U63223 Pent Yellow Conv. AGAT White Conv. AGAT Data Known Convert

opy --opy -Copy- AGAT

Page 17 of 17

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1783221

AGAT WORK ORDER: 17Z241763

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Aug 04, 2017

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 13

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17Z241763

PROJECT: 1783221

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2017-07-26 **DATE REPORTED: 2017-08-04** SAMPLE DESCRIPTION: 17-19 (SA1) SAMPLE TYPE: Soil DATE SAMPLED: 2017-07-21 G/S RDL 8602588 Parameter Unit 7.5 0.8 <0.8 Antimony µg/g Arsenic 18 1 3 µg/g Barium 390 2 169 µg/g 4 0.5 Beryllium < 0.5 µg/g Boron 120 5 13 µg/g Boron (Hot Water Soluble) µg/g 1.5 0.10 1.07 Cadmium µg/g 1.2 0.5 <0.5 Chromium µg/g 160 2 10 Cobalt 22 0.5 7.4 µg/g Copper 140 1 12 µg/g Lead µg/g 120 1 12 6.9 0.5 1.1 Molybdenum µg/g Nickel 100 1 15 µg/g 2.4 0.4 < 0.4 Selenium µg/g Silver 20 0.2 <0.2 µg/g Thallium µg/g 1 0.4 < 0.4 Uranium µg/g 23 0.5 < 0.5 Vanadium 86 19 µg/g 1 Zinc µg/g 340 5 16 Chromium VI 8 0.2 <0.2 µg/g Cyanide µg/g 0.051 0.040 < 0.040 Mercury 0.27 0.10 <0.10 µg/g Electrical Conductivity mS/cm 0.7 0.005 0.508 Sodium Adsorption Ratio NA 5 NA 10.8 pH, 2:1 CaCl2 Extraction pH Units NA 8.15

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 8602588 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Amanjot Bhela

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 17Z241763

PROJECT: 1783221

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2017-07-26

	S	SAMPLE DESC	RIPTION:	17-19 (SA1)	17-19 (SA4)
		SAMP	LE TYPE:	Soil	Soil
		DATE S	AMPLED:	2017-07-21	2017-07-21
Parameter	Unit	G/S	RDL	8602588	8602594
F1 (C6 to C10)	µg/g	55	5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10
F3 (C16 to C34)	µg/g	300	50	150	<50
F4 (C34 to C50)	µg/g	2800	50	170	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA
Moisture Content	%		0.1	2.8	19.8
Surrogate	Unit	Acceptabl	e Limits		
Terphenyl	%	60-14	40	83	119

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8602588-8602594 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPopukoloj

DATE REPORTED: 2017-08-04

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 17Z241763

PROJECT: 1783221

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

http://www.agatlabs.com ATTENTION TO: Alex Wood

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

SAMPLED BY:

			0. Re	eg. 153(511) - \	VOCs (Soil)	
DATE RECEIVED: 2017-07-26					DATE REPORTED: 2017-08-04	
	S	SAMPLE DESCRIPTI SAMPLE TY	ON: 17-19 (SA1) PE: Soil	17-19 (SA4) Soil		
Descurator	11.2	DATE SAMPL	ED: 2017-07-21	2017-07-21		
Parameter	Unit	G/S RD	L 8602588	8602594		
	µg/g	16 0.0	s <0.05	<0.05		
Vinyi Chionde	ug/g	0.02 0.0	Z <0.0Z	<0.02		
Biomomethane	ug/g	0.05 0.0	5 <0.05	<0.05		
Asstance	ug/g	4 0.0	5 <0.05	<0.05		
	ug/g	16 0.5	0 <0.50	<0.50		
	ug/g	0.05 0.0	5 <0.05	<0.05		
	ug/g	0.1 0.0	5 <0.05	<0.05		
I rans- 1,2-Dichloroethylene	ug/g	0.084 0.0	5 <0.05	<0.05		
Methyl tert-butyl Ether	ug/g	0.75 0.0	5 <0.05	<0.05		
1,1-Dichloroethane	ug/g	0.47 0.0	2 <0.02	<0.02		
Methyl Ethyl Ketone	ug/g	16 0.5	0 <0.50	<0.50		
Cis- 1,2-Dichloroethylene	ug/g	1.9 0.0	2 <0.02	<0.02		
Chloroform	ug/g	0.05 0.0	4 <0.04	<0.04		
1,2-Dichloroethane	ug/g	0.05 0.0	3 <0.03	<0.03		
1,1,1-Trichloroethane	ug/g	0.38 0.0	5 <0.05	<0.05		
Carbon Tetrachloride	ug/g	0.05 0.0	5 <0.05	<0.05		
Benzene	ug/g	0.21 0.0	2 <0.02	<0.02		
1,2-Dichloropropane	ug/g	0.05 0.0	3 <0.03	<0.03		
Trichloroethylene	ug/g	0.061 0.0	3 <0.03	<0.03		
Bromodichloromethane	ug/g	1.5 0.0	5 <0.05	<0.05		
Methyl Isobutyl Ketone	ug/g	1.7 0.5	0 <0.50	<0.50		
1,1,2-Trichloroethane	ug/g	0.05 0.0	4 <0.04	<0.04		
Toluene	ug/g	2.3 0.0	2 <0.02	<0.02		
Dibromochloromethane	ug/g	2.3 0.0	5 <0.05	<0.05		
Ethylene Dibromide	ug/g	0.05 0.0	4 <0.04	<0.04		
Tetrachloroethylene	ua/a	0.28 0.0	5 <0.05	<0.05		
1,1,1,2-Tetrachloroethane	ua/a	0.058 0.0	4 <0.04	<0.04		
Chlorobenzene	ug/g	2.4 0.0	5 <0.05	<0.05		
Ethylbenzene	ua/a	1.1 0.0	5 <0.05	< 0.05		
m & p-Xvlene	ua/a	0.0	5 <0.05	< 0.05		

Certified By:

NPopukolof

AGAT WORK ORDER: 17Z241763

PROJECT: 1783221

O Reg 153(511) - VOCs (Soil)

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

				01110	gee(e,	
DATE RECEIVED: 2017-07-2	6					DATE REPORTED: 2017-08-04
	S	AMPLE DES	CRIPTION:	17-19 (SA1)	17-19 (SA4)	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2017-07-21	2017-07-21	
Parameter	Unit	G/S	RDL	8602588	8602594	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	1.2	0.05	<0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
1,3-Dichloropropene	hð\ð	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-1	140	83	83	
4-Bromofluorobenzene	% Recovery	50-1	140	94	97	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8602588-8602594 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

	AGAT	Laboratorie	S Guideline Violati AGAT WORK ORDER: 17Z2417 PROJECT: 1783221	Guideline Violation AGAT WORK ORDER: 17Z241763 PROJECT: 1783221				
CLIENT NAM	E: GOLDER ASSOCIATES L	TD		ATTENTION TO: Alex W	ood	Thep.y	,aganabo.oom	
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT	
8602588	17-19 (SA1)	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	10.8	

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z241763

ATTENTION TO: Alex Wood

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Aug 04, 2017			C	DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MAT	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Soil)														
Antimony	8607606		<0.8	<0.8	NA	< 0.8	118%	70%	130%	101%	80%	120%	84%	70%	130%
Arsenic	8607606		2	2	NA	< 1	101%	70%	130%	99%	80%	120%	99%	70%	130%
Barium	8607606		35	39	10.8%	< 2	108%	70%	130%	112%	80%	120%	106%	70%	130%
Beryllium	8607606		<0.5	<0.5	NA	< 0.5	101%	70%	130%	105%	80%	120%	103%	70%	130%
Boron	8607606		<5	<5	NA	< 5	99%	70%	130%	100%	80%	120%	103%	70%	130%
Boron (Hot Water Soluble)	8603244		0.16	0.16	NA	< 0.10	110%	60%	140%	103%	70%	130%	88%	60%	140%
Cadmium	8607606		<0.5	<0.5	NA	< 0.5	93%	70%	130%	102%	80%	120%	105%	70%	130%
Chromium	8607606		11	11	0.0%	< 2	101%	70%	130%	110%	80%	120%	112%	70%	130%
Cobalt	8607606		4.0	3.9	2.5%	< 0.5	104%	70%	130%	107%	80%	120%	109%	70%	130%
Copper	8607606		23	23	0.0%	< 1	102%	70%	130%	108%	80%	120%	112%	70%	130%
Lead	8607606		38	40	5.1%	< 1	105%	70%	130%	109%	80%	120%	116%	70%	130%
Molybdenum	8607606		0.6	0.6	NA	< 0.5	114%	70%	130%	106%	80%	120%	114%	70%	130%
Nickel	8607606		9	9	0.0%	< 1	104%	70%	130%	109%	80%	120%	111%	70%	130%
Selenium	8607606		1.4	0.9	NA	< 0.4	106%	70%	130%	104%	80%	120%	113%	70%	130%
Silver	8607606		<0.2	<0.2	NA	< 0.2	103%	70%	130%	103%	80%	120%	98%	70%	130%
Thallium	8607606		<0.4	<0.4	NA	< 0.4	118%	70%	130%	102%	80%	120%	103%	70%	130%
Uranium	8607606		<0.5	<0.5	NA	< 0.5	109%	70%	130%	110%	80%	120%	107%	70%	130%
Vanadium	8607606		18	17	5.7%	< 1	106%	70%	130%	107%	80%	120%	108%	70%	130%
Zinc	8607606		70	69	1.4%	< 5	102%	70%	130%	106%	80%	120%	108%	70%	130%
Chromium VI	8602502		<0.2	<0.2	NA	< 0.2	101%	70%	130%	102%	80%	120%	102%	70%	130%
Cyanide	8601948		<0.040	<0.040	NA	< 0.040	92%	70%	130%	100%	80%	120%	92%	70%	130%
Mercury	8607606		0.1	0.1	NA	< 0.10	114%	70%	130%	106%	80%	120%	81%	70%	130%
Electrical Conductivity	8603244		0.166	0.165	0.6%	< 0.005	97%	90%	110%	NA			NA		
Sodium Adsorption Ratio	8603244		0.320	0.325	1.6%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	8604030		7.72	7.77	0.6%	NA	101%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 7 of 13

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z241763

ATTENTION TO: Alex Wood

SAMPLED BY:

			Trac	e Or	ganio	cs Ar	nalys	is							
RPT Date: Aug 04, 2017				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acce	eptable mits	Recovery	Acce Lir	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	8600328		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	94%	50%	140%	86%	50%	140%
Vinyl Chloride	8600328		< 0.02	< 0.02	NA	< 0.02	98%	50%	140%	88%	50%	140%	95%	50%	140%
Bromomethane	8600328		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	92%	50%	140%	99%	50%	140%
Trichlorofluoromethane	8600328		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	85%	50%	140%	80%	50%	140%
Acetone	8600328		< 0.50	< 0.50	NA	< 0.50	82%	50%	140%	94%	50%	140%	82%	50%	140%
1,1-Dichloroethylene	8600328		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	98%	60%	130%	86%	50%	140%
Methylene Chloride	8600328		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	95%	60%	130%	89%	50%	140%
Trans- 1,2-Dichloroethylene	8600328		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	94%	60%	130%	82%	50%	140%
Methyl tert-butyl Ether	8600328		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	91%	60%	130%	81%	50%	140%
1,1-Dichloroethane	8600328		< 0.02	< 0.02	NA	< 0.02	87%	50%	140%	90%	60%	130%	89%	50%	140%
Methyl Ethyl Ketone	8600328		< 0.50	< 0.50	NA	< 0.50	93%	50%	140%	84%	50%	140%	93%	50%	140%
Cis- 1,2-Dichloroethylene	8600328		< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	82%	60%	130%	91%	50%	140%
Chloroform	8600328		< 0.04	< 0.04	NA	< 0.04	115%	50%	140%	85%	60%	130%	98%	50%	140%
1,2-Dichloroethane	8600328		< 0.03	< 0.03	NA	< 0.03	91%	50%	140%	89%	60%	130%	95%	50%	140%
1,1,1-Trichloroethane	8600328		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	90%	60%	130%	91%	50%	140%
Carbon Tetrachloride	8600328		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	89%	60%	130%	95%	50%	140%
Benzene	8600328		< 0.02	< 0.02	NA	< 0.02	91%	50%	140%	83%	60%	130%	99%	50%	140%
1,2-Dichloropropane	8600328		< 0.03	< 0.03	NA	< 0.03	95%	50%	140%	89%	60%	130%	90%	50%	140%
Trichloroethylene	8600328		< 0.03	< 0.03	NA	< 0.03	86%	50%	140%	81%	60%	130%	87%	50%	140%
Bromodichloromethane	8600328		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	90%	60%	130%	88%	50%	140%
Methyl Isobutyl Ketone	8600328		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	96%	50%	140%	88%	50%	140%
1,1,2-Trichloroethane	8600328		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	96%	60%	130%	87%	50%	140%
Toluene	8600328		< 0.02	< 0.02	NA	< 0.02	97%	50%	140%	90%	60%	130%	85%	50%	140%
Dibromochloromethane	8600328		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	82%	60%	130%	88%	50%	140%
Ethylene Dibromide	8600328		< 0.04	< 0.04	NA	< 0.04	90%	50%	140%	93%	60%	130%	90%	50%	140%
Tetrachloroethylene	8600328		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	81%	60%	130%	96%	50%	140%
1.1.1.2-Tetrachloroethane	8600328		< 0.04	< 0.04	NA	< 0.04	85%	50%	140%	95%	60%	130%	83%	50%	140%
Chlorobenzene	8600328		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	87%	60%	130%	96%	50%	140%
Ethylbenzene	8600328		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	81%	60%	130%	89%	50%	140%
m & p-Xylene	8600328		< 0.05	< 0.05	NA	< 0.05	74%	50%	140%	72%	60%	130%	77%	50%	140%
Bromoform	8600328		< 0.05	< 0.05	NΔ	< 0.05	87%	50%	140%	97%	60%	130%	95%	50%	140%
Styrene	8600328		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	99%	60%	130%	90%	50%	140%
1 1 2 2-Tetrachloroethane	8600328		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	94%	60%	130%	89%	50%	140%
o-Xvlene	8600328		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	96%	60%	130%	89%	50%	140%
1,3-Dichlorobenzene	8600328		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	80%	60%	130%	80%	50%	140%
1,4-Dichlorobenzene	8600328		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	89%	60%	130%	84%	50%	140%
1,2-Dichlorobenzene	8600328		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	85%	60%	130%	96%	50%	140%
1,3-Dichloropropene	8600328		< 0.04	< 0.04	NA	< 0.04	95%	50%	140%	96%	60%	130%	93%	50%	140%
n-Hexane	8600328		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	60%	130%	96%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 13

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z241763

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis (Continued)

						-									
RPT Date: Aug 04, 2017				DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE		KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acce Lii	eptable mits	Recovery	Acceptable Limits	
		ld					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (-	BTEX) (So	il)													
F1 (C6 to C10)	8591491		< 5	< 5	NA	< 5	74%	60%	130%	87%	85%	115%	81%	70%	130%
F2 (C10 to C16)	8600186		< 10	< 10	NA	< 10	109%	60%	130%	84%	80%	120%	78%	70%	130%
F3 (C16 to C34)	8600186		< 50	< 50	NA	< 50	108%	60%	130%	82%	80%	120%	83%	70%	130%
F4 (C34 to C50)	8600186		< 50	< 50	NA	< 50	100%	60%	130%	83%	80%	120%	103%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 13

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 17Z241763

PROJECT: 1783221

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis	•									
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES							
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER							
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER							
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER							
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES							
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER							

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

SAMPLING SITE:

AGAT WORK ORDER: 17Z241763

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis Vol91-5009 CCME Tier 1 Method, SW846 5035 P &T GC / FID F1 (G6 to C10) minus BTEX VOL-91-5009 CCME Tier 1 Method GC / FID F2 (10 to C16) VOL-91-5009 CCME Tier 1 Method GC / FID F2 (10 to C16) VOL-91-5009 CCME Tier 1 Method GC / FID F3 (C16 to C34) VOL-91-5009 CCME Tier 1 Method Balance Moisture Content VOL-91-5009 CCME Tier 1 Method Balance Terphenyl VOL-91-5009 CCME Tier 1 Method GC / FID Dichtorodillucoromethane VOL-91-5002 EPA SW-446 5035 & 8200 (P&T)GCMS Yinyl Chioride VOL-91-5002 EPA SW-446 5035 & 8200 (P&T)GCMS Smomenthane VOL-91-5002 EPA SW-446 5035 & 8200 (P&T)GCMS 1-10 bichorodillucoromethane VOL-91-5002 EPA SW-446 5035 & 8200 (PAT)GCMS 1-1-10 bichorodillytene VOL-91-5002 EPA SW-446 5035 & 8200 (PAT)GCMS 1-1-10 bichorodilytene VOL-91-5002 EPA SW-446 5035 & 8200 (PAT)GCMS Trans-1.2-Dichorodilytene VOL-91-5002 EPA	PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Fi (G6 to C10) VOL-91-5009 CCME Tier 1 Method, SW446 5035 P A T GC / FID Fi (G6 to C10) minus BTEX VOL-91-5009 CCME Tier 1 Method GC / FID F3 (C16 to C16) VOL-91-5009 CCME Tier 1 Method GC / FID F3 (C16 to C36) VOL-91-5009 CCME Tier 1 Method GC / FID Gravimetic Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method GC / FID Gravimetic Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method GC / FID Dichloradfluoromethane VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Viny Chloride VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Bromomethane VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Chichroadflytone VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Highlyten Choinde VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Highlyten Choinde VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Highlyten Choinde VOL-91-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS L1-Dichionorethytene VOL-91-5002	Trace Organics Analysis			
F1 (C6 to C10) minus BTEX VOL-91-5009 CCME Tier 1 Method GC / FID F2 (C10 to C14) VOL-91-5009 CCME Tier 1 Method GC / FID F3 (C5 1to C34) VOL-91-5009 CCME Tier 1 Method GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method Balance Dichorofillucomethane VOL-91-5009 CCME Tier 1 Method GC / FID Dichorofillucomethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Vinyl Choinde VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Simomethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Tichiorofuluromethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Aeatone VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Tichiorofuluromethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Methylene Choinolde VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Taras-1.2-Dichioroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS 1.1-Dichioroethylene VOL-91-5002	F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID
F2 (C16) to C16) VOL-01-5009 CCME Tier 1 Method GC / FID F3 (C16 to C34) VOL-01-5009 CCME Tier 1 Method GC / FID Gravimetric Heavy Hydrocarbons VOL-01-5009 CCME Tier 1 Method Balance Moisture Content VOL-01-5009 CCME Tier 1 Method BALANCE Moisture Content VOL-01-5009 CCME Tier 1 Method GC/FID Dichlorodfluoromethane VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Bromomethane VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Bromomethane VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Acatone VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Acatone VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Methylene Choride VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS Methylene Choride VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS 1.1-Dichlorodthane VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)GC/MS 1.1-Dichlorodthane VOL-01-5002 EPA SW-446 5035 & 8250 (PAT)	F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P & T GC / FID
F3 (C1 to C34) VOL-91-5009 CCME Tier 1 Method GC / FID F4 (C34 to C50) VOL-91-5009 CCME Tier 1 Method Balance Moisture Content VOL-91-5009 CCME Tier 1 Method BALANCE Dichlorodillucomethane VOL-91-5009 CCME Tier 1 Method BALANCE Dichlorodillucomethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Smommethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Smommethane VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Thichlorothylene VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Acetone VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS 1.1-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Methylene Choide VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS Methylene Choide VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS L1-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (PAT)GC/MS L1-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 <	F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F4 (C34 to C50) VOL-91-5009 CCME Tier 1 Method Balance Gravimetric Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method, SW846 BALANCE Terphenyl VOL-91-5002 EPA SW-845 5035 & 8260 (PAT)GC/MS Vinyl Chloride VOL-91-5002 EPA SW-845 5035 & 8260 (PAT)GC/MS Bromomethane VOL-91-5002 EPA SW-845 5035 & 8260 (PAT)GC/MS Bromomethane VOL-91-5002 EPA SW-845 5035 & 8260 (PAT)GC/MS Acatone VOL-91-5002 EPA SW-845 5035 & 8260 (PAT)GC/MS Acatone VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Mathylen Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Mathylen Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Mathylen Ehr VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS L1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS L1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS L1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260	F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Gravimetric Heavy Hydrocarbons VOL-91-5009 CCME Tier 1 Method Balance Molisture Content VOL-91-5009 CCME Tier 1 Method, SW846 BALANCE Terphanyl VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Dichorodfiluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Bromomethane VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Strongentrane VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Trichlorodtylene VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Mathylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS Mathylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS 1.1-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS 1.2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (PATIGC/MS 1.2-Dichloroethane VOL-91-5002 EPA SW-846 5035 &	F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Moisture Content VOL-91-5009 CCME Tier 1 Mathod, SW846 BALANCE Terphenyl VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromomethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylene Chioride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Ethyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cintorotordm VOL-91-5002 EPA SW-	Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	Balance
Terphenyl VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Dichlorodfluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Bromomethane VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Tichlorofluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Trahs-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS Methyle Ether VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS 1.1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS 1.1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS 1.1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (PAT)GC/MS 1.1-Tichloroethylene VOL-91-5002 <td>Moisture Content</td> <td>VOL-91-5009</td> <td>CCME Tier 1 Method, SW846 5035,8015</td> <td>BALANCE</td>	Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE
Dicklorodiflucromethane VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Vinyi Chloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Bromomethane VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Acetone VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Acetone VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Methylene Chloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Taris -1,2-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Methyl tert-butyl Ether VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Methyl tert-butyl Ether VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS Cls -1,2-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS L-1,1-Chrichoroethane VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS L,2-Dichloroethane VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS L,2-Dichloropropane VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GCMS L,2-Dichloropropane VOL-91-5002	Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Vinyl Chloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Bromomethane VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Acetone VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Acetone VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Methyl terb-trylipte VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Methyl Ether VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Cist 1_2-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS 1_1-Dichloroethylene VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-446 5035 & 8260 (P&T)GC/MS L3_Dichloropropane VOL-91-5002 EPA SW-446 50	Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromomethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichlorodituoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl terb-tutyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl terb-tutyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Clas 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Clas 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Entrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.2-Dichloroephylene	Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tichlorofluoromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Aceione VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I-1Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trans-1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl tert-butyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl tert/ ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS L-2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS L-2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS L-1,1-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS L-2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS L-2-Dichloroethane VOL-91-5002	Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Acetone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyle ther VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyle ther VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Gis-1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I_1-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I_1-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260	Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trans -1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl tert-bulyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl tertyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroothane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroethane VO	Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methylene Chloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trans-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl terb-uryl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Gis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Stromodichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002	1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trans- 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl tert-bulyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I.1-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cls- 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1.2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tolkoroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tolkoroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tolkoroethylene VOL-91-5002<	Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl tert-butyl Ether VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Wethyl Ethyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroptopane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Hothyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1.2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1_2-Tricholoroethane	Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1.1-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cisi 1.2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Lifylene Dibromide VOL-91-5002 EPA SW-846	Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Cis- 1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bormodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bormodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Interviewe VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS L1,12-Tratichoroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylben Dibromide VOL-91-5002	1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Cis-1,2-Dichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chloroform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Iterachloroethylene VOL-91-5002	Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorotorm VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I,2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002	Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-50	Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylenezene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene	1.2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Carbon Tetrachloride VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 50	1.1.1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Benzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1,2-Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 50	Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1.2-Dichloropropane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS I,1,2,2-Tetrachloroethane VOL-91-5002	Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromodichloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260	1.2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromodichloromethane VOL.91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1.2-Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846	Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5	Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloroben	Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5	1.1.2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Dibromochloromethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS -Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 &	Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylene Dibromide VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS c-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260<	Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tetrachloroethylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 <t< td=""><td>Ethylene Dibromide</td><td>VOL-91-5002</td><td>EPA SW-846 5035 & 8260</td><td>(P&T)GC/MS</td></t<>	Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 0-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 503	Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene <	1.1.1.2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylbenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 503	Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
m & p-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene	Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromoform VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene <td>m & n-Xylene</td> <td>VOL-91-5002</td> <td>EPA SW-846 5035 & 8260</td> <td>(P&T)GC/MS</td>	m & n-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Styrene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS o-Xylene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS n-Hexane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
i, j., j. Production of the end of	1 1 2 2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS n-Hexane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	o-Xvlene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS n-Hexane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	1 3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS n-Hexane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	1.4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Xylene Mixture VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS n-Hexane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	1.2-Dichlorobenzene	VOI -91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichloropropene VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS n-Hexane VOL-91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
n-Hexane VOL -91-5002 EPA SW-846 5035 & 8260 (P&T)GC/MS	1.3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
	n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1783221

AGAT WORK ORDER: 17Z241763

ATTENTION TO: Alex Wood

SAMPLING SITE:	SAMPLED BY:		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

	26							Missi	583	35 Coope	rs Aven	1日	La	abor	ator	y U	se (Only 누구	-41=	26	2	
	S La		La	borat	ories	F	'h: 90!	5.712.5	1.00 F	Fax: 905. Farth aga	712.51: tiabs.co	22 m	Co	oler Q	uanti	ty:	4	me	-07	nice.	>	
Chain of Custody I	Record	If this is a Dri	nking Water	sample, please	use Drinking Water Chaln of Cus	tody Form (po	table wa	ater inter	ded fo	r human c	onsumpti	on)	Ar	rival Te	empe	atur	es:	_4	-0	41	10	10
Report Information:	ler Assoc	iates			Regulatory Require (Please check all applicable boxes)	ments:	□ N	o Reg	ulato	ory Req	uirem	ent	Cu	stody otes:	Seal	ntac	t:	ΠYe	S	□No		
Contact: Address: Phone: Reports to be sent to: Reports to be sent to: Re				Regulation 153/04 Sewer Use Regulation 558 Table Prov. Value Sanitary Ind/Corn Storm Prov. Water Quality Agriculture Objectives (W000)			Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)															
Reports to be sent to: 1. Email: 2. Email:	alex wood @golder. com				Soll Texture (check One) Reg	gion Indicate	One		Oth	her	ne one			2 3 D	Busii ays	ness		□ 2 □	Busines ays	s [] ^{1 Bu} Day	siness
Project Information: Project: Site Location:	Is this submission for a Record of Site Condition? Record of Site Condition?					OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT																
Sampled By: Pau AGAT Quote #: Please note: If qu	tulan	PO: vided, client will be	billed full price for	analysis.	Sample Matrix Legend					(Check	Applicabi	=)										
Invoice Information: Company: Contact: Address: Email:		Bill	To Same: Y	es 🗶 No 🗆	BBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Fittered - Métals, Hg. (Piease Circle)	and Inorganics	Scan e Forming Metals	Custom Metals	B-HWS CC C CN C C C C C CN C C C C C C C C C	nts: DTP DNH ₃ DTKN DNO ₂ DNO ₂ /NO ₂	es: X voc BTEX THM			phenols		ochlorine Pesticides	Aetals/Inorganics	0.04			
Sample Identification	Date Sampled	Time Sampled	# of Gontainers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metal : Hvdrid	Client	ORPs: Cr ⁶⁺ Total		Volatil	ABNS	PAHs	Chloro	PCBs	Organo	TCLPN	0646			
17-19 (SA1) 17-19 (SA4)	July 21/17		32	5			X			\times		*										
																					N N	
Samples Relinquished By (Print Name and Sign):	wood edEx	26	Date Date	5/17 13 17 16	Samples Received By Print Na Samples Received By (Print Na Samples Received By (Print Na	ame and Sign:	Ś		U		25-		4-1	7 7	101A	M			Page_	1.	of	
						- 6.77	-					-				_	_	Nº:		33]	4)

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z314192

TRACE ORGANICS REVIEWED BY: Gyulhan Yalamova, Report Reviewer

DATE REPORTED: Feb 28, 2018

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 9

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z314192

PROJECT: 1780158

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2018-02-23

			SAMPLE DE	SAMPLE DESCRIPTION:		17-21 SA5	
			SA	MPLE TYPE:	Soil	Soil	
			DAT	E SAMPLED:	2018-02-22	2018-02-22	
Parameter	Unit	G / S: A	G / S: B	RDL	9087115	9087117	
F1 (C6 to C10)	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F1 (C6 to C10) minus BTEX	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F2 (C10 to C16)	µg/g	230	98	10	<10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<>	<10[<b]< td=""><td></td></b]<>	
F3 (C16 to C34)	µg/g	1700	300	50	<50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<>	<50[<b]< td=""><td></td></b]<>	
F4 (C34 to C50)	µg/g	3300	2800	50	<50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<>	<50[<b]< td=""><td></td></b]<>	
Gravimetric Heavy Hydrocarbons	µg/g	3300	2800	50	NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<>	NA[<b]< td=""><td></td></b]<>	
Moisture Content	%			0.1	6.4	9.3	
Surrogate	Unit	A	cceptable Lim	its			
Terphenyl	%		60-140		89	94	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9087115-9087117 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

DATE REPORTED: 2018-02-28

Certified By:

AGAT WORK ORDER: 18Z314192

PROJECT: 1780158

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

O. Reg. 153(511) - VOCs (Soil)												
DATE RECEIVED: 2018-02-23							DATE REPORTED: 2018-02-28					
			SAMPLE DE SAI DATE	SCRIPTION: MPLE TYPE: E SAMPLED:	17-21 SA2 Soil 2018-02-22	17-21 SA5 Soil 2018-02-22						
Parameter	Unit	G / S: A	G / S: B	RDL	9087115	9087117						
Dichlorodifluoromethane	µg/g	16	16	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>						
Vinyl Chloride	ug/g	0.032	0.02	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>						
Bromomethane	ug/g	0.05	0.05	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>						
Trichlorofluoromethane	ug/g	4	4	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>						
Acetone	ug/g	16	16	0.50	<0.50[<a]< td=""><td><0.50[<a]< td=""><td></td></a]<></td></a]<>	<0.50[<a]< td=""><td></td></a]<>						
1,1-Dichloroethylene	ug/g	0.064	0.05	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Methylene Chloride	ug/g	1.6	0.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.084	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Methyl tert-butyl Ether	ug/g	11	0.75	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
1,1-Dichloroethane	ug/g	17	3.5	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>						
Methyl Ethyl Ketone	ug/g	70	16	0.50	<0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<>	<0.50[<b]< td=""><td></td></b]<>						
Cis- 1,2-Dichloroethylene	ug/g	55	3.4	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>						
Chloroform	ug/g	0.47	0.05	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<>	<0.04[<b]< td=""><td></td></b]<>						
1,2-Dichloroethane	ug/g	0.05	0.05	0.03	<0.03[<a]< td=""><td><0.03[<a]< td=""><td></td></a]<></td></a]<>	<0.03[<a]< td=""><td></td></a]<>						
1,1,1-Trichloroethane	ug/g	6.1	0.38	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Carbon Tetrachloride	ug/g	0.21	0.05	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Benzene	ug/g	0.32	0.21	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>						
1,2-Dichloropropane	ug/g	0.16	0.05	0.03	<0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<>	<0.03[<b]< td=""><td></td></b]<>						
Trichloroethylene	ug/g	0.91	0.061	0.03	<0.03[<b]< td=""><td><0.03[<b]< td=""><td></td></b]<></td></b]<>	<0.03[<b]< td=""><td></td></b]<>						
Bromodichloromethane	ug/g	18	13	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Methyl Isobutyl Ketone	ug/g	31	1.7	0.50	<0.50[<b]< td=""><td><0.50[<b]< td=""><td></td></b]<></td></b]<>	<0.50[<b]< td=""><td></td></b]<>						
1,1,2-Trichloroethane	ug/g	0.05	0.05	0.04	<0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<>	<0.04[<a]< td=""><td></td></a]<>						
Toluene	ug/g	68	2.3	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>						
Dibromochloromethane	ug/g	13	9.4	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
Ethylene Dibromide	ug/g	0.05	0.05	0.04	<0.04[<a]< td=""><td><0.04[<a]< td=""><td></td></a]<></td></a]<>	<0.04[<a]< td=""><td></td></a]<>						
Tetrachloroethylene	ug/g	4.5	0.28	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.058	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<>	<0.04[<b]< td=""><td></td></b]<>						
Chlorobenzene	ug/g	2.4	2.4	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>						
Ethylbenzene	ug/g	9.5	2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>						
m & p-Xylene	ug/g			0.05	<0.05	<0.05						

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alex Wood

SAMPLED BY:

AGAT WORK ORDER: 18Z314192

PROJECT: 1780158

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alex Wood

SAMPLED BY:

				0			,
DATE RECEIVED: 2018-02-23							DATE REPORTED: 2018-02-28
			SAMPLE DE	SCRIPTION:	17-21 SA2	17-21 SA5	
			SA	MPLE TYPE:	Soil	Soil	
			DAT	E SAMPLED:	2018-02-22	2018-02-22	
Parameter	Unit	G / S: A	G / S: B	RDL	9087115	9087117	
Bromoform	ug/g	0.61	0.27	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Styrene	ug/g	34	0.7	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
o-Xylene	ug/g			0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	9.6	4.8	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
1,4-Dichlorobenzene	ug/g	0.2	0.083	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
1,2-Dichlorobenzene	ug/g	6.8	3.4	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Xylene Mixture	ug/g	26	3.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
1,3-Dichloropropene	µg/g	0.18	0.05	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td></td></b]<></td></b]<>	<0.04[<b]< td=""><td></td></b]<>	
n-Hexane	µg/g	46	2.8	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Surrogate	Unit	А	cceptable Lim	its			
Toluene-d8	% Recovery		50-140		95	99	
4-Bromofluorobenzene	% Recovery		50-140		79	78	
1							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9087115-9087117 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Certified By:

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314192

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Feb 28, 2018 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Measured Blank Limits Limits Limits PARAMETER Batch Dup #1 Dup #2 RPD Recovery Recovery Value Id Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - VOCs (Soil) 94% Dichlorodifluoromethane < 0.05 140% < 0.05 < 0.05 NA 93% 50% 140% 115% 140% 50% 9086386 50% Vinyl Chloride 140% 9086386 < 0.02 < 0.02 NA < 0.02 101% 50% 140% 113% 50% 140% 80% 50% Bromomethane 9086386 < 0.05 < 0.05 NA < 0.05 111% 50% 140% 113% 50% 140% 86% 50% 140% Trichlorofluoromethane 9086386 < 0.05 < 0.05 NA < 0.05 100% 50% 140% 119% 50% 140% 82% 50% 140% 9086386 < 0.50 < 0.50 < 0.50 100% 50% 140% 108% 50% 140% 98% 50% 140% Acetone NA 1,1-Dichloroethylene < 0.05 < 0.05 < 0.05 80% 50% 140% 102% 130% 88% 50% 140% 9086386 NA 60% Methylene Chloride 9086386 < 0.05 < 0.05 NA < 0.05 75% 50% 140% 98% 60% 130% 85% 50% 140% Trans- 1,2-Dichloroethylene 9086386 < 0.05 < 0.05 NA < 0.05 73% 50% 140% 98% 60% 130% 78% 50% 140% 60% Methyl tert-butyl Ether 9086386 < 0.05 < 0.05 NA < 0.05 102% 50% 140% 95% 130% 75% 50% 140% 9086386 91% 95% 140% 1.1-Dichloroethane < 0.02 < 0.02 NA < 0.02 50% 140% 60% 130% 95% 50% Methyl Ethyl Ketone 87% 140% 99% 140% 81% 50% 140% 9086386 < 0.50< 0.50NA < 0.5050% 50% < 0.02 77% Cis- 1,2-Dichloroethylene < 0.02 < 0.02 NA 50% 106% 130% 84% 50% 140% 9086386 140% 60% 140% Chloroform 9086386 < 0.04 < 0.04 NA < 0.04 85% 50% 140% 102% 60% 130% 97% 50% 1,2-Dichloroethane 9086386 < 0.03 < 0.03 NA < 0.03 87% 50% 140% 100% 60% 130% 96% 50% 140% 1,1,1-Trichloroethane 9086386 < 0.05 < 0.05 NA < 0.05 79% 50% 140% 97% 60% 130% 87% 50% 140% Carbon Tetrachloride 9086386 < 0.05 < 0.05 NA < 0.05 72% 50% 140% 102% 60% 130% 70% 50% 140% Benzene 9086386 < 0.02 < 0.02 NA < 0.02 83% 50% 140% 90% 60% 130% 78% 50% 140% 1,2-Dichloropropane 9086386 < 0.03< 0.03 NA < 0.0380% 50% 140% 102% 60% 130% 85% 50% 140% Trichloroethylene 9086386 < 0.03 < 0.03 NA < 0.0388% 50% 140% 98% 60% 130% 78% 50% 140% Bromodichloromethane 9086386 < 0.05 < 0.05 NA < 0.05 87% 50% 140% 105% 130% 91% 50% 140% 60% Methyl Isobutyl Ketone 9086386 50% 140% 95% 88% 50% 140% < 0.50 < 0.50 NA < 0.50 101% 50% 140% 1.1.2-Trichloroethane < 0.04< 0.04NA 93% 50% 140% 110% 130% 101% 50% 140% 9086386 < 0.0460% 82% 140% Toluene 88% 50% 101% 130% 50% 9086386 < 0.02< 0.02 NA < 0.02140% 60% 50% Dibromochloromethane 50% 101% 140% 9086386 < 0.05< 0.05NA < 0.0581% 140% 60% 130% 92% Ethylene Dibromide 9086386 < 0.04 < 0.04 NA < 0.04 87% 50% 140% 101% 60% 130% 92% 50% 140% Tetrachloroethylene 9086386 < 0.05 < 0.05 NA < 0.05 88% 50% 140% 106% 60% 130% 80% 50% 140% 1,1,1,2-Tetrachloroethane 9086386 < 0.04 < 0.04 NA < 0.04 101% 50% 140% 99% 60% 130% 89% 50% 140% Chlorobenzene 9086386 < 0.05 < 0.05 NA < 0.05 89% 50% 140% 97% 60% 130% 82% 50% 140% 101% Ethylbenzene 9086386 < 0.05 < 0.05 NA < 0.05 99% 50% 140% 60% 130% 71% 50% 140% m & p-Xylene 9086386 < 0.05 < 0.05 NA < 0.05 81% 50% 140% 110% 60% 130% 84% 50% 140% Bromoform 9086386 < 0.05 < 0.05 NA < 0.05 89% 50% 140% 101% 60% 130% 91% 50% 140% 9086386 < 0.05 < 0.05 < 0.05 83% 50% 92% 83% 140% Styrene NA 140% 60% 130% 50% 140% 1.1.2.2-Tetrachloroethane 9086386 < 0.05 < 0.05 101% 50% 108% 106% < 0.05NA 140% 60% 130% 50% o-Xylene 104% 140% 9086386 < 0.05< 0.05NA < 0.0583% 50% 140% 60% 130% 88% 50% 50% 9086386 NA 95% 85% 130% 93% 50% 140% 1,3-Dichlorobenzene < 0.05 < 0.05 < 0.05 140% 60% 1.4-Dichlorobenzene 140% 9086386 < 0.05 < 0.05 NA < 0.05 81% 50% 140% 91% 60% 130% 81% 50% 1.2-Dichlorobenzene 9086386 < 0.05 < 0.05 NA < 0.05 99% 50% 140% 92% 60% 130% 80% 50% 140% 1,3-Dichloropropene 9086386 < 0.04 < 0.04 NA < 0.04 105% 50% 140% 98% 60% 130% 114% 50% 140% n-Hexane 9086386 < 0.05 < 0.05 NA < 0.05 89% 50% 140% 100% 60% 130% 88% 50% 140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation

Page 5 of 9

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314192

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Feb 28, 2018				DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce	ptable nits
	Value		value	Lower	Upper		Lower	Upper		Lower	Upper				
O. Reg. 153(511) - PHCs F1 - F4 (-	BTEX) (So	il)													
F1 (C6 to C10)	9087379		< 5	< 5	NA	< 5	89%	60%	130%	88%	85%	115%	97%	70%	130%
F2 (C10 to C16)	9086385		< 10	< 10	NA	< 10	92%	60%	130%	84%	80%	120%	83%	70%	130%
F3 (C16 to C34)	9086385		< 50	< 50	NA	< 50	92%	60%	130%	88%	80%	120%	91%	70%	130%
F4 (C34 to C50)	9086385		< 50	< 50	NA	< 50	96%	60%	130%	97%	80%	120%	102%	70%	130%

Comments:

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 9

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314192

ATTENTION TO: Alex Wood

SAMPLING SITE:	SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis		1	1						
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID						
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P & T GC / FID						
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID						
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID						
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	Balance						
Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE						
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID						
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

AGAT WORK ORDER: 18Z314192

ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

CAGAT Laborate	Cories LAASE RED 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com
If this is a Drinking Water sample, please Report Information: Company: Colder Contact: Alex Wood Address: 1931 Kobertson Rel	use Drinking Water Chain of Custody Form (potable water intended for human consumption) Arrival Temperatures: Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Custody Seal Intact: Regulation 153/04 Sewer Use Table Sanitary CCME Comparison
Phone: Reports to be sent to: 1. Email: 2. Email: Project Information:	Image: Storm Image: Storm Soil Texture (Check One) Image: Storm Image: Store Image: Storm Image: Store Image: Storm Image: Store Image: Store
Project: If BOUSS Site Location: Lin Coln Fields Sampled By: Kom MacDonald AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis.	Image: Section of the contraction of th
Invoice Information: Bill To Same: Yes No Company: Contact: Address: Email:	Matrix Matrix Matrix Matrix
Sample IdentificationDate SampledTime Sampled# of ContainersSam Matrix $17-21$ SA 1 $feb 22/18$ 35 $17-21$ SA 2111 $17-21$ SA 3111 $17-21$ SA 5111 $17-21$ SA 6111 $17-21$ SA 6111 $17-21$ SA 7111 $17-21$ $17-21$ $17-21$ 11 $17-21$ $17-21$ $17-21$ 11 $17-21$ $17-21$ $17-21$ 11 $17-21$	Comments/ Special Instructions Y/N Weiling Weiling Non the second second second
mples Relinquished By (Print Name and Sign): A ex wood mples Relinquished By (Print Name and Sign): A bit wood A bit a constraint of the constraint of t	Samples Received By (Print Name and State): Data Data Data Data Data Data Page

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z314189

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Gyulhan Yalamova, Report Reviewer

DATE REPORTED: Mar 14, 2018

PAGES (INCLUDING COVER): 20

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 20

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

			0 . nog.	100(011)									
DATE RECEIVED: 2018-02-23									DATE REPORTED: 2018-03-14				
			SAMPLE DE	SCRIPTION:	17-111 SA3	17-20 SA2	17-109 SA4	DUP					
			SA	MPLE TYPE:	Soil	Soil	Soil	Soil					
			DATE	E SAMPLED:	2018-02-20	2018-02-20	2018-02-13	2018-02-20					
Parameter	Unit	G / S: A	G / S: B	RDL	9086476	9086480	9086484	9103007					
Antimony	µg/g	40	7.5	0.8	<0.8[<b]< td=""><td><0.8[<b]< td=""><td><0.8[<b]< td=""><td><0.8[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.8[<b]< td=""><td><0.8[<b]< td=""><td><0.8[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.8[<b]< td=""><td><0.8[<b]< td=""><td></td></b]<></td></b]<>	<0.8[<b]< td=""><td></td></b]<>					
Arsenic	µg/g	18	18	1	1[<a]< td=""><td>2[<a]< td=""><td>1[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>1[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	1[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<>	2[<a]< td=""><td></td></a]<>					
Boron	µg/g	120	120	5	<5[<a]< td=""><td>6[<a]< td=""><td><5[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td><5[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<>	7[<a]< td=""><td></td></a]<>					
Barium	µg/g	670	390	2	290[<b]< td=""><td>93[<b]< td=""><td>29[<b]< td=""><td>74[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	93[<b]< td=""><td>29[<b]< td=""><td>74[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	29[<b]< td=""><td>74[<b]< td=""><td></td></b]<></td></b]<>	74[<b]< td=""><td></td></b]<>					
Beryllium	µg/g	8	4	0.5	0.6[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td><0.5[<b]< td=""><td></td></b]<></td></b]<>	<0.5[<b]< td=""><td></td></b]<>					
Cadmium	µg/g	1.9	1.2	0.5	<0.5[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td><0.5[<b]< td=""><td></td></b]<></td></b]<>	<0.5[<b]< td=""><td></td></b]<>					
Chromium	µg/g	160	160	2	55[<a]< td=""><td>13[<a]< td=""><td>7[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>7[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<>	13[<a]< td=""><td></td></a]<>					
Cobalt	µg/g	80	22	0.5	15.9[<b]< td=""><td>7.1[<b]< td=""><td>3.8[<b]< td=""><td>6.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	7.1[<b]< td=""><td>3.8[<b]< td=""><td>6.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	3.8[<b]< td=""><td>6.9[<b]< td=""><td></td></b]<></td></b]<>	6.9[<b]< td=""><td></td></b]<>					
Copper	µg/g	230	140	1	33[<b]< td=""><td>13[<b]< td=""><td>9[<b]< td=""><td>13[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	13[<b]< td=""><td>9[<b]< td=""><td>13[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	9[<b]< td=""><td>13[<b]< td=""><td></td></b]<></td></b]<>	13[<b]< td=""><td></td></b]<>					
Lead	µg/g	120	120	1	7[<a]< td=""><td>6[<a]< td=""><td>3[<a]< td=""><td>6[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>3[<a]< td=""><td>6[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>6[<a]< td=""><td></td></a]<></td></a]<>	6[<a]< td=""><td></td></a]<>					
Molybdenum	µg/g	40	6.9	0.5	<0.5[<b]< td=""><td>1.0[<b]< td=""><td><0.5[<b]< td=""><td>0.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	1.0[<b]< td=""><td><0.5[<b]< td=""><td>0.9[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td>0.9[<b]< td=""><td></td></b]<></td></b]<>	0.9[<b]< td=""><td></td></b]<>					
Nickel	µg/g	270	100	1	34[<b]< td=""><td>13[<b]< td=""><td>6[<b]< td=""><td>12[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	13[<b]< td=""><td>6[<b]< td=""><td>12[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	6[<b]< td=""><td>12[<b]< td=""><td></td></b]<></td></b]<>	12[<b]< td=""><td></td></b]<>					
Selenium	µg/g	5.5	2.4	0.4	<0.4[<b]< td=""><td><0.4[<b]< td=""><td><0.4[<b]< td=""><td><0.4[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.4[<b]< td=""><td><0.4[<b]< td=""><td><0.4[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.4[<b]< td=""><td><0.4[<b]< td=""><td></td></b]<></td></b]<>	<0.4[<b]< td=""><td></td></b]<>					
Silver	µg/g	40	20	0.2	<0.2[<b]< td=""><td><0.2[<b]< td=""><td><0.2[<b]< td=""><td><0.2[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.2[<b]< td=""><td><0.2[<b]< td=""><td><0.2[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.2[<b]< td=""><td><0.2[<b]< td=""><td></td></b]<></td></b]<>	<0.2[<b]< td=""><td></td></b]<>					
Thallium	µg/g	3.3	1	0.4	<0.4[<b]< td=""><td><0.4[<b]< td=""><td><0.4[<b]< td=""><td><0.4[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.4[<b]< td=""><td><0.4[<b]< td=""><td><0.4[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.4[<b]< td=""><td><0.4[<b]< td=""><td></td></b]<></td></b]<>	<0.4[<b]< td=""><td></td></b]<>					
Uranium	µg/g	33	23	0.5	0.7[<b]< td=""><td><0.5[<b]< td=""><td><0.5[<b]< td=""><td>0.5[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td><0.5[<b]< td=""><td>0.5[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.5[<b]< td=""><td>0.5[<b]< td=""><td></td></b]<></td></b]<>	0.5[<b]< td=""><td></td></b]<>					
Vanadium	µg/g	86	86	1	55[<a]< td=""><td>16[<a]< td=""><td>12[<a]< td=""><td>16[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>12[<a]< td=""><td>16[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>16[<a]< td=""><td></td></a]<></td></a]<>	16[<a]< td=""><td></td></a]<>					
Zinc	µg/g	340	340	5	90[<a]< td=""><td>19[<a]< td=""><td>12[<a]< td=""><td>17[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>12[<a]< td=""><td>17[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>17[<a]< td=""><td></td></a]<></td></a]<>	17[<a]< td=""><td></td></a]<>					

O Reg. 153(511) - Metals (Including Hydrides) (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Amanjot Bhela

ATTENTION TO: Alex Wood

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

SAMPLED BY: O. Reg. 153(511) - ORPs (Soil) DATE RECEIVED: 2018-02-23 **DATE REPORTED: 2018-03-14** SAMPLE DESCRIPTION: 17-111 SA3 17-20 SA2 17-109 SA4 DUP SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 2018-02-20 2018-02-20 2018-02-13 2018-02-20 G / S: A 9086476 9086480 9086484 9103007 Parameter Unit G / S: B RDL pH. 2:1 CaCl2 Extraction pH Units NA 8.27 7.84 7.95 7.79 Sodium Adsorption Ratio NA 12 NA 49.2[>A] 17.4[>A] 42.7[>A] 7.04[B-A] 5

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086476-9103007 SAR was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Amanjot Bhela

Certified By:

AGAT WORK ORDER: 18Z314189

PROJECT: 1780158

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

				O. Reg	. 153(511) ·	- ORPs (Soil)
DATE RECEIVED: 2018-02-23						DATE REPORTED: 2018-03-14
			SAMPLE DE	SCRIPTION:	17-21 SA1	
			SA	MPLE TYPE:	Soil	
			DATI	E SAMPLED:	2018-02-22	
Parameter	Unit	G / S: A	G / S: B	RDL	9086482	
pH, 2:1 CaCl2 Extraction	pH Units			NA	7.61	
Comments: RDL - Reported D	Detection Limit;	G / S - Guidelii	ne / Standard: /	A Refers to Tal	ole 3: Full Depth C	Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -
Industrial/Comme Residential/Parkia	rcial/Community	Property Use -	Coarse Texture	ed Soils, B Ref	ers to Table 3: Fu	Il Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086482 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Amanjot Bhela

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

DATE RECEIVED: 2018-02-23									DATE REPORTED: 2018-03-14
			SAMPLE DE	SCRIPTION:	17-111 SA3	17-20 SA2	17-109 SA4	DUP	
			SAI	MPLE TYPE:	Soil	Soil	Soil	Soil	
			DATE	SAMPLED:	2018-02-20	2018-02-20	2018-02-13	2018-02-20	
Parameter	Unit	G / S: A	G / S: B	RDL	9086476	9086480	9086484	9103007	
Naphthalene	µg/g	9.6	0.6	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Acenaphthylene	µg/g	0.15	0.15	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Acenaphthene	µg/g	96	7.9	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Fluorene	µg/g	62	62	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Phenanthrene	µg/g	12	6.2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Anthracene	µg/g	0.67	0.67	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Fluoranthene	µg/g	9.6	0.69	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Pyrene	µg/g	96	78	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Benz(a)anthracene	µg/g	0.96	0.5	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Chrysene	µg/g	9.6	7	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Benzo(b)fluoranthene	µg/g	0.96	0.78	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Benzo(k)fluoranthene	µg/g	0.96	0.78	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Benzo(a)pyrene	µg/g	0.3	0.3	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Indeno(1,2,3-cd)pyrene	µg/g	0.76	0.38	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Dibenz(a,h)anthracene	µg/g	0.1	0.1	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Benzo(g,h,i)perylene	µg/g	9.6	6.6	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
2-and 1-methyl Naphthalene	µg/g	76	0.99	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Surrogate	Unit	A	cceptable Limi	ts					
Chrysene-d12	%		50-140		99	100	82	84	

O. Reg. 153(511) - PAHs (Soil)

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9086476-9103007 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2018-02-23								I	DATE REPORTEI	D: 2018-03-14
			SAMPLE DE	SCRIPTION:	17-01 SA3	17-01 SA4	17-20 SA5	17-21 SA1	17-21 SA3	
			SA	MPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
			DATI	E SAMPLED:	2018-02-21	2018-02-21	2018-02-20	2018-02-22	2018-02-21	
Parameter	Unit	G / S: A	G / S: B	RDL	9086478	9086479	9086481	9086482	9086483	
F1 (C6 to C10)	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F1 (C6 to C10) minus BTEX	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F2 (C10 to C16)	µg/g	230	98	10	<10[<b]< td=""><td><10[<b]< td=""><td><10[<b]< td=""><td><10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<10[<b]< td=""><td><10[<b]< td=""><td><10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<10[<b]< td=""><td><10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<>	<10[<b]< td=""><td></td></b]<>	
F3 (C16 to C34)	µg/g	1700	300	50	<50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<>	<50[<b]< td=""><td></td></b]<>	
F4 (C34 to C50)	µg/g	3300	2800	50	<50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<50[<b]< td=""><td><50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<>	<50[<b]< td=""><td></td></b]<>	
Gravimetric Heavy Hydrocarbons	µg/g	3300	2800	50	NA[<b]< td=""><td>NA[<b]< td=""><td>NA[<b]< td=""><td>NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	NA[<b]< td=""><td>NA[<b]< td=""><td>NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	NA[<b]< td=""><td>NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<>	NA[<b]< td=""><td></td></b]<>	
Moisture Content	%			0.1	10.8	10.0	6.9	17.9	11.3	
Surrogate	Unit	A	cceptable Limi	its						
Terphenyl	%		60-140		76	83	74	73	84	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086478-9086483 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

AGAT WORK ORDER: 18Z314189

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

DATE REPORTED: 2018-03-14

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

PROJECT: 1780158

DATE RECEIVED: 2018-02-23

			SAMPLE DE	SCRIPTION:	17-20 SA2	DUP	
			SA	MPLE TYPE:	Soil	Soil	
			DATI	DATE SAMPLED:		2018-02-20	
Parameter	Unit	G / S: A	G / S: B	RDL	9086480	9103007	
F1 (C6 to C10)	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F1 (C6 to C10) minus BTEX	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F2 (C10 to C16)	µg/g	230	98	10	<10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<>	<10[<b]< td=""><td></td></b]<>	
F2 (C10 to C16) minus Naphthalene	µg/g			10	<10	<10	
F3 (C16 to C34)	µg/g	1700	300	50	<50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<>	<50[<b]< td=""><td></td></b]<>	
F3 (C16 to C34) minus PAHs	µg/g			50	<50	<50	
F4 (C34 to C50)	µg/g	3300	2800	50	<50[<b]< td=""><td><50[<b]< td=""><td></td></b]<></td></b]<>	<50[<b]< td=""><td></td></b]<>	
Gravimetric Heavy Hydrocarbons	µg/g	3300	2800	50	NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<>	NA[<b]< td=""><td></td></b]<>	
Moisture Content	%			0.1	11.4	11.0	
Surrogate	Unit	A	cceptable Limi	ceptable Limits			
Terphenyl	%		60-140		133	100	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086480-9103007 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2018-02-23

			SAMPLE DE	SCRIPTION:	17-111 SA3	17-109 SA4	
			SAMPLE TYPE:		Soil	Soil	
			DATE	E SAMPLED:	2018-02-20	2018-02-13	
Parameter	Unit	G / S: A	G / S: B	RDL	9086476	9086484	
Benzene	µg/g	0.32	0.21	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>	
Toluene	µg/g	68	2.3	0.08	<0.08[<b]< td=""><td><0.08[<b]< td=""><td></td></b]<></td></b]<>	<0.08[<b]< td=""><td></td></b]<>	
Ethylbenzene	µg/g	9.5	2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
Xylene Mixture	µg/g	26	3.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
F1 (C6 to C10)	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F1 (C6 to C10) minus BTEX	µg/g	55	55	5	<5[<a]< td=""><td><5[<a]< td=""><td></td></a]<></td></a]<>	<5[<a]< td=""><td></td></a]<>	
F2 (C10 to C16)	µg/g	230	98	10	<10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<>	<10[<b]< td=""><td></td></b]<>	
F2 (C10 to C16) minus Naphthalene	µg/g			10	<10	<10	
F3 (C16 to C34)	µg/g	1700	300	50	<50[<b]< td=""><td>210[<b]< td=""><td></td></b]<></td></b]<>	210[<b]< td=""><td></td></b]<>	
F3 (C16 to C34) minus PAHs	µg/g			50	<50	210	
F4 (C34 to C50)	µg/g	3300	2800	50	<50[<b]< td=""><td>110[<b]< td=""><td></td></b]<></td></b]<>	110[<b]< td=""><td></td></b]<>	
Gravimetric Heavy Hydrocarbons	µg/g	3300	2800	50	NA[<b]< td=""><td>NA[<b]< td=""><td></td></b]<></td></b]<>	NA[<b]< td=""><td></td></b]<>	
Moisture Content	%			0.1	10.3	5.0	
Surrogate	Unit	A	cceptable Limi	ts			
Terphenyl	%		60-140		110	120	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086476-9086484 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

DATE REPORTED: 2018-03-14

Certified By:

ATTENTION TO: Alex Wood

SAMPLED BY:

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

				O. Reg	g. 153(511)	- VOCs (So	il)				
DATE RECEIVED: 2018-02-23								I	DATE REPORT	ED: 2018-03-14	r
			SAMPLE DE SA	SCRIPTION: MPLE TYPE:	17-01 SA3 Soil	17-01 SA4 Soil	17-20 SA2 Soil	17-20 SA5 Soil	17-21 SA1 Soil	17-21 SA3 Soil	DUP Soil
			DATI	E SAMPLED:	2018-02-21	2018-02-21	2018-02-20	2018-02-20	2018-02-22	2018-02-21	2018-02-20
Parameter	Unit	G / S: A	G / S: B	RDL	9086478	9086479	9086480	9086481	9086482	9086483	9103007
Dichlorodifluoromethane	µg/g	16	16	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<>	<0.05[<a]< td=""></a]<>
Vinyl Chloride	ug/g	0.032	0.02	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<>	<0.02[<b]< td=""></b]<>
Bromomethane	ug/g	0.05	0.05	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<>	<0.05[<a]< td=""></a]<>
Trichlorofluoromethane	ug/g	4	4	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<>	<0.05[<a]< td=""></a]<>
Acetone	ug/g	16	16	0.50	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""><td><0.50[<a]< td=""></a]<></td></a]<></td></a]<>	<0.50[<a]< td=""><td><0.50[<a]< td=""></a]<></td></a]<>	<0.50[<a]< td=""></a]<>
1,1-Dichloroethylene	ug/g	0.064	0.05	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Methylene Chloride	ug/g	1.6	0.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.084	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Methyl tert-butyl Ether	ug/g	11	0.75	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
1,1-Dichloroethane	ug/g	17	3.5	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<>	<0.02[<b]< td=""></b]<>
Methyl Ethyl Ketone	ug/g	70	16	0.50	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<>	<0.50[<b]< td=""></b]<>
Cis- 1,2-Dichloroethylene	ug/g	55	3.4	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<>	<0.02[<b]< td=""></b]<>
Chloroform	ug/g	0.47	0.05	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<>	<0.04[<b]< td=""></b]<>
1,2-Dichloroethane	ug/g	0.05	0.05	0.03	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""><td><0.03[<a]< td=""></a]<></td></a]<></td></a]<>	<0.03[<a]< td=""><td><0.03[<a]< td=""></a]<></td></a]<>	<0.03[<a]< td=""></a]<>
1,1,1-Trichloroethane	ug/g	6.1	0.38	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Carbon Tetrachloride	ug/g	0.21	0.05	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Benzene	ug/g	0.32	0.21	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<>	<0.02[<b]< td=""></b]<>
1,2-Dichloropropane	ug/g	0.16	0.05	0.03	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<>	<0.03[<b]< td=""></b]<>
Trichloroethylene	ug/g	0.91	0.061	0.03	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<></td></b]<>	<0.03[<b]< td=""><td><0.03[<b]< td=""></b]<></td></b]<>	<0.03[<b]< td=""></b]<>
Bromodichloromethane	ug/g	18	13	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Methyl Isobutyl Ketone	ug/g	31	1.7	0.50	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<></td></b]<>	<0.50[<b]< td=""><td><0.50[<b]< td=""></b]<></td></b]<>	<0.50[<b]< td=""></b]<>
1,1,2-Trichloroethane	ug/g	0.05	0.05	0.04	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<>	<0.04[<a]< td=""></a]<>
Toluene	ug/g	68	2.3	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<></td></b]<>	<0.02[<b]< td=""><td><0.02[<b]< td=""></b]<></td></b]<>	<0.02[<b]< td=""></b]<>
Dibromochloromethane	ug/g	13	9.4	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
Ethylene Dibromide	ug/g	0.05	0.05	0.04	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<></td></a]<>	<0.04[<a]< td=""><td><0.04[<a]< td=""></a]<></td></a]<>	<0.04[<a]< td=""></a]<>
Tetrachloroethylene	ug/g	4.5	0.28	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.058	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<>	<0.04[<b]< td=""></b]<>
Chlorobenzene	ug/g	2.4	2.4	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<>	<0.05[<a]< td=""></a]<>
Ethylbenzene	ug/g	9.5	2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>
m & p-Xylene	ug/g			0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Certified By:

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

					. ,	•	,							
DATE RECEIVED: 2018-02-23								DATE REPORTED: 2018-03-14						
			SAMPLE DE	SCRIPTION:	17-01 SA3	17-01 SA4	17-20 SA2	17-20 SA5	17-21 SA1	17-21 SA3	DUP			
			SA	MPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
			DAT	E SAMPLED:	2018-02-21	2018-02-21	2018-02-20	2018-02-20	2018-02-22	2018-02-21	2018-02-20			
Parameter	Unit	G / S: A	G / S: B	RDL	9086478	9086479	9086480	9086481	9086482	9086483	9103007			
Bromoform	ug/g	0.61	0.27	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
Styrene	ug/g	34	0.7	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""></a]<></td></a]<>	<0.05[<a]< td=""></a]<>			
o-Xylene	ug/g			0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05			
1,3-Dichlorobenzene	ug/g	9.6	4.8	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
1,4-Dichlorobenzene	ug/g	0.2	0.083	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
1,2-Dichlorobenzene	ug/g	6.8	3.4	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
Xylene Mixture	ug/g	26	3.1	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
1,3-Dichloropropene	µg/g	0.18	0.05	0.04	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<></td></b]<>	<0.04[<b]< td=""><td><0.04[<b]< td=""></b]<></td></b]<>	<0.04[<b]< td=""></b]<>			
n-Hexane	µg/g	46	2.8	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""></b]<></td></b]<>	<0.05[<b]< td=""></b]<>			
Surrogate	Unit	A	cceptable Lim	its										
Toluene-d8	% Recovery		50-140		107	95	94	92	92	91	101			
4-Bromofluorobenzene	% Recovery		50-140		80	85	79	89	81	83	99			

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils, B Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9086478-9103007 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Guideline Violation

AGAT WORK ORDER: 18Z314189 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alex Wood

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9086476	17-111 SA3	ON T3 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	12	49.2
9086476	17-111 SA3	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	49.2
9086480	17-20 SA2	ON T3 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	12	17.4
9086480	17-20 SA2	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	17.4
9086484	17-109 SA4	ON T3 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	12	42.7
9086484	17-109 SA4	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	42.7
9103007	DUP	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	7.04

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189

ATTENTION TO: Alex Wood

SAMPLED BY:

				Soi	l Ana	alysi	5								
RPT Date: Mar 14, 2018			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce	ptable mits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Includ	ding Hydride	es) (Soil)													
Antimony	9081332		<0.8	<0.8	NA	< 0.8	108%	70%	130%	105%	80%	120%	78%	70%	130%
Arsenic	9081332		1	1	NA	< 1	107%	70%	130%	101%	80%	120%	99%	70%	130%
Boron	9081332		<5	<5	NA	< 5	71%	70%	130%	111%	80%	120%	71%	70%	130%
Barium	9081332		203	204	0.5%	< 2	102%	70%	130%	99%	80%	120%	103%	70%	130%
Beryllium	9081332		0.5	<0.5	NA	< 0.5	93%	70%	130%	113%	80%	120%	73%	70%	130%
Cadmium	9081332		<0.5	<0.5	NA	< 0.5	105%	70%	130%	99%	80%	120%	98%	70%	130%
Chromium	9081332		51	50	2.0%	< 2	93%	70%	130%	100%	80%	120%	110%	70%	130%
Cobalt	9081332		13.8	13.8	0.0%	< 0.5	96%	70%	130%	103%	80%	120%	95%	70%	130%
Copper	9081332		30	29	3.4%	< 1	94%	70%	130%	104%	80%	120%	88%	70%	130%
Lead	9081332		5	5	0.0%	< 1	109%	70%	130%	91%	80%	120%	90%	70%	130%
Molybdenum	9081332		<0.5	<0.5	NA	< 0.5	98%	70%	130%	101%	80%	120%	100%	70%	130%
Nickel	9081332		32	31	3.2%	< 1	99%	70%	130%	110%	80%	120%	100%	70%	130%
Selenium	9081332		<0.4	<0.4	NA	< 0.4	110%	70%	130%	102%	80%	120%	97%	70%	130%
Silver	9081332		<0.2	<0.2	NA	< 0.2	89%	70%	130%	95%	80%	120%	91%	70%	130%
Thallium	9081332		<0.4	<0.4	NA	< 0.4	112%	70%	130%	103%	80%	120%	103%	70%	130%
Uranium	9081332		<0.5	<0.5	NA	< 0.5	91%	70%	130%	101%	80%	120%	102%	70%	130%
Vanadium	9081332		48	46	4.3%	< 1	84%	70%	130%	95%	80%	120%	94%	70%	130%
Zinc	9081332		85	83	2.4%	< 5	103%	70%	130%	104%	80%	120%	100%	70%	130%
O Reg. 153(511) - ORPs (Soil)															
pH 2.1 CaCl2 Extraction	9107591		7 52	7 51	0.1%	NA	100%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9090102		2.42	2.44	0.8%	NA	NA	0070		NA			NA		
O Dag 152(511) Matala (Inclus	din a Uudrida														
O. Reg. 155(511) - Metals (Includ		(3011)	-0.0	-0.9	NIA		1000/	700/	1200/	1069/	0.00/	1000/	0.20/	700/	1200/
Anumony	9102090		<0.0	<0.0		< 0.0	100%	70%	130%	100%	00%	120%	03%	70%	120%
Alsenic	9102090		.г	Г		< 1	101%	70%	130%	104%	00%	120%	107%	70%	130%
Boron	9102698		<5	<5		< 5	86%	70%	130%	101%	80%	120%	90%	70%	130%
Barium	9102698		38	37	2.7%	< 2	104%	70%	130%	102%	80%	120%	103%	70%	130%
Beryllium	9102698		<0.5	<0.5	NA	< 0.5	18%	70%	130%	97%	80%	120%	94%	70%	130%
Cadmium	9102698		<0.5	<0.5	NA	< 0.5	99%	70%	130%	100%	80%	120%	107%	70%	130%
Chromium	9102698		10	10	0.0%	< 2	86%	70%	130%	105%	80%	120%	106%	70%	130%
Cobalt	9102698		4.3	4.3	0.0%	< 0.5	97%	70%	130%	108%	80%	120%	111%	70%	130%
Copper	9102698		14	15	6.9%	< 1	89%	70%	130%	104%	80%	120%	108%	70%	130%
Lead	9102698		15	14	6.9%	< 1	106%	70%	130%	106%	80%	120%	103%	70%	130%
Molybdenum	9102698		<0.5	<0.5	NA	< 0.5	96%	70%	130%	104%	80%	120%	109%	70%	130%
Nickel	9102698		9	9	0.0%	< 1	90%	70%	130%	99%	80%	120%	103%	70%	130%
Selenium	9102698		<0.4	<0.4	NA	< 0.4	114%	70%	130%	98%	80%	120%	107%	70%	130%
Silver	9102698		<0.2	<0.2	NA	< 0.2	72%	70%	130%	102%	80%	120%	91%	70%	130%
Thallium	9102698		<0.4	<0.4	NA	< 0.4	99%	70%	130%	103%	80%	120%	100%	70%	130%
Uranium	9102698		<0.5	<0.5	NA	< 0.5	92%	70%	130%	100%	80%	120%	102%	70%	130%
AGAT QUALITY ASSURA	NCE REPOR	RT (V1)											P	age 12	2 of 20

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189

ATTENTION TO: Alex Wood

SAMPLED BY:

Soil Analysis (Continued)

					-	•		•							
RPT Date: Mar 14, 2018			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce	eptable mits	Recovery	Acce	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
Vanadium	9102698		16	17	6.1%	< 1	88%	70%	130%	101%	80%	120%	96%	70%	130%
Zinc	9102698		65	62	4.7%	< 5	96%	70%	130%	106%	80%	120%	118%	70%	130%
O. Reg. 153(511) - ORPs (Soil)															
pH, 2:1 CaCl2 Extraction	9107591		7.52	7.51	0.1%	NA	100%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9103007 9	9103007	7.04	7.08	0.6%	NA	NA			NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

Page 13 of 20

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189

ATTENTION TO: Alex Wood

SAMPLED BY:

			Trac	e Org	ganio	cs Ar	alys	is							
RPT Date: Mar 14, 2018			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce	ptable mits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 ((with PAHs)	(Soil)													
Benzene	9081930		< 0.02	< 0.02	NA	< 0.02	91%	60%	130%	86%	60%	130%	105%	60%	130%
Toluene	9081930		< 0.08	< 0.08	NA	< 0.08	89%	60%	130%	87%	60%	130%	107%	60%	130%
Ethylbenzene	9081930		< 0.05	< 0.05	NA	< 0.05	89%	60%	130%	88%	60%	130%	110%	60%	130%
Xylene Mixture	9081930		< 0.05	< 0.05	NA	< 0.05	88%	60%	130%	88%	60%	130%	104%	60%	130%
F1 (C6 to C10)	9081930		< 5	< 5	NA	< 5	89%	60%	130%	88%	85%	115%	97%	70%	130%
F2 (C10 to C16)	9086385		< 10	< 10	NA	< 10	92%	60%	130%	84%	80%	120%	83%	70%	130%
F3 (C16 to C34)	9086385		< 50	< 50	NA	< 50	92%	60%	130%	88%	80%	120%	91%	70%	130%
F4 (C34 to C50)	9086385		< 50	< 50	NA	< 50	96%	60%	130%	97%	80%	120%	102%	70%	130%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	9079035	()	< 0.02	< 0.02	NA	< 0.02	110%	60%	130%	92%	60%	130%	101%	60%	130%
Toluene	9079035		< 0.08	< 0.08	NA	< 0.08	109%	60%	130%	95%	60%	130%	106%	60%	130%
Ethvlbenzene	9079035		< 0.05	< 0.05	NA	< 0.05	109%	60%	130%	99%	60%	130%	109%	60%	130%
Xvlene Mixture	9079035		< 0.05	< 0.05	NA	< 0.05	105%	60%	130%	93%	60%	130%	102%	60%	130%
F1 (C6 to C10)	9045803		< 5	< 5	NA	< 5	84%	60%	130%	90%	85%	115%	94%	70%	130%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	9086386		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	115%	50%	140%	94%	50%	140%
Vinyl Chloride	9086386		< 0.02	< 0.02	NA	< 0.02	101%	50%	140%	113%	50%	140%	80%	50%	140%
Bromomethane	9086386		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	113%	50%	140%	86%	50%	140%
Trichlorofluoromethane	9086386		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	119%	50%	140%	82%	50%	140%
Acetone	9086386		< 0.50	< 0.50	NA	< 0.50	100%	50%	140%	108%	50%	140%	98%	50%	140%
1,1-Dichloroethylene	9086386		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	102%	60%	130%	88%	50%	140%
Methylene Chloride	9086386		< 0.05	< 0.05	NA	< 0.05	75%	50%	140%	98%	60%	130%	85%	50%	140%
Trans- 1,2-Dichloroethylene	9086386		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	98%	60%	130%	78%	50%	140%
Methyl tert-butyl Ether	9086386		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	95%	60%	130%	75%	50%	140%
1,1-Dichloroethane	9086386		< 0.02	< 0.02	NA	< 0.02	91%	50%	140%	95%	60%	130%	95%	50%	140%
Methyl Ethyl Ketone	9086386		< 0.50	< 0.50	NA	< 0.50	87%	50%	140%	99%	50%	140%	81%	50%	140%
Cis- 1,2-Dichloroethylene	9086386		< 0.02	< 0.02	NA	< 0.02	77%	50%	140%	106%	60%	130%	84%	50%	140%
Chloroform	9086386		< 0.04	< 0.04	NA	< 0.04	85%	50%	140%	102%	60%	130%	97%	50%	140%
1,2-Dichloroethane	9086386		< 0.03	< 0.03	NA	< 0.03	87%	50%	140%	100%	60%	130%	96%	50%	140%
1,1,1-Trichloroethane	9086386		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	97%	60%	130%	87%	50%	140%
Carbon Tetrachloride	9086386		< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	102%	60%	130%	70%	50%	140%
Benzene	9086386		< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	90%	60%	130%	78%	50%	140%
1,2-Dichloropropane	9086386		< 0.03	< 0.03	NA	< 0.03	80%	50%	140%	102%	60%	130%	85%	50%	140%
Trichloroethylene	9086386		< 0.03	< 0.03	NA	< 0.03	88%	50%	140%	98%	60%	130%	78%	50%	140%
Bromodichloromethane	9086386		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	105%	60%	130%	91%	50%	140%
Methyl Isobutyl Ketone	9086386		< 0.50	< 0.50	NA	< 0.50	101%	50%	140%	95%	50%	140%	88%	50%	140%
1,1,2-Trichloroethane	9086386		< 0.04	< 0.04	NA	< 0.04	93%	50%	140%	110%	60%	130%	101%	50%	140%
Toluene	9086386		< 0.02	< 0.02	NA	< 0.02	88%	50%	140%	101%	60%	130%	82%	50%	140%
Dibromochloromethane	9086386		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	101%	60%	130%	92%	50%	140%
AGAT QUALITY ASSURAL	NCE REPOF	RT (V1)											P	age 14	of 20

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189 ATTENTION TO: Alex Wood

SAMPLED BY:

	7	Frace	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Mar 14, 2018			DUPLICATE			REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable mits	Recovery	Acce	eptable mits	Recovery	Acce	ptable mits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
Ethylene Dibromide	9086386		< 0.04	< 0.04	NA	< 0.04	87%	50%	140%	101%	60%	130%	92%	50%	140%
Tetrachloroethylene	9086386		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	106%	60%	130%	80%	50%	140%
1,1,1,2-Tetrachloroethane	9086386		< 0.04	< 0.04	NA	< 0.04	101%	50%	140%	99%	60%	130%	89%	50%	140%
Chlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	97%	60%	130%	82%	50%	140%
Ethylbenzene	9086386		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	101%	60%	130%	71%	50%	140%
m & p-Xylene	9086386		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	110%	60%	130%	84%	50%	140%
Bromoform	9086386		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	101%	60%	130%	91%	50%	140%
Styrene	9086386		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	92%	60%	130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	9086386		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	108%	60%	130%	106%	50%	140%
o-Xylene	9086386		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	104%	60%	130%	88%	50%	140%
1,3-Dichlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	85%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	91%	60%	130%	81%	50%	140%
1,2-Dichlorobenzene	9086386		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	92%	60%	130%	80%	50%	140%
1,3-Dichloropropene	9086386		< 0.04	< 0.04	NA	< 0.04	105%	50%	140%	98%	60%	130%	114%	50%	140%
n-Hexane	9086386		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	100%	60%	130%	88%	50%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	9083880		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	96%	50%	140%	75%	50%	140%
Acenaphthylene	9083880		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	106%	50%	140%	84%	50%	140%
Acenaphthene	9083880		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	99%	50%	140%	81%	50%	140%
Fluorene	9083880		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	115%	50%	140%	98%	50%	140%
Phenanthrene	9083880		0.21	0.21	NA	< 0.05	116%	50%	140%	110%	50%	140%	112%	50%	140%
Anthracene	9083880		< 0.05	0.05	NA	< 0.05	96%	50%	140%	91%	50%	140%	101%	50%	140%
Fluoranthene	9083880		0.46	0.49	6.3%	< 0.05	111%	50%	140%	107%	50%	140%	113%	50%	140%
Pyrene	9083880		0.37	0.40	7.8%	< 0.05	109%	50%	140%	108%	50%	140%	113%	50%	140%
Benz(a)anthracene	9083880		0.19	0.21	NA	< 0.05	99%	50%	140%	102%	50%	140%	106%	50%	140%
Chrysene	9083880		0.18	0.19	NA	< 0.05	99%	50%	140%	110%	50%	140%	109%	50%	140%
Benzo(b)fluoranthene	9083880		0.35	0.33	5.9%	< 0.05	84%	50%	140%	94%	50%	140%	90%	50%	140%
Benzo(k)fluoranthene	9083880		0.16	0.15	NA	< 0.05	87%	50%	140%	87%	50%	140%	79%	50%	140%
Benzo(a)pyrene	9083880		0.23	0.22	NA	< 0.05	97%	50%	140%	92%	50%	140%	91%	50%	140%
Indeno(1,2,3-cd)pyrene	9083880		0.08	0.09	NA	< 0.05	93%	50%	140%	101%	50%	140%	81%	50%	140%
Dibenz(a,h)anthracene	9083880		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	100%	50%	140%	94%	50%	140%
Benzo(g,h,i)perylene	9083880		0.09	0.09	NA	< 0.05	77%	50%	140%	87%	50%	140%	76%	50%	140%
2-and 1-methyl Naphthalene	9083880		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	85%	50%	140%	68%	50%	140%

Comments:

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 20

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z314189

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis (Continued)

						•	•								
RPT Date: Mar 14, 2018			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 16 of 20

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 18Z314189

PROJECT: 1780158

ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	pH METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES

Method Summary

AGAT

ORG-91-5106

CLIENT NAME: GOLDER ASSOCIATES LTD

PARAMETER

PROJECT: 1780158

Trace Organics Analysis

SAMPLING SITE:

Naphthalene

AGAT WORK ORDER: 18Z314189 ATTENTION TO: Alex Wood

	SAMPLED BY:	
S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
		-
	EPA SW846 3541 & 8270	GC/MS
	EPA SW846 3541 & 8270	GC/MS
	EPA SW846 3541 & 8270	GC/MS
	EPA SW846 3541 & 8270	GC/MS

Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P & T GC / FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	Balance
Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	GC / FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	CCME Tier 1 Method	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE

AGAT WORK ORDER: 18Z314189 ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption) Arrival Temperatures: Arrival Temperatures: Arrival Temperatures: If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption) Report Information: Company: If this is a Drinking Water sample, please use Drinking Water chain of Custody Form (potable water intended for human consumption) If this is a Drinking Water sample, please use Drinking Water chain of Custody Form (potable water intended for human consumption) Report Information: Company: If this is a Drinking Water sample, please use Drinking Water chain of Custody Form (potable water intended for human consumption) If this is a Drinking Water sample, please use Drinking Water chain of Custody Form (potable water intended for human consumption) Company: Company: If this is a Drinking Water sample, please check all applicable boxes) If Regulation 153/04 If Regulation 153/04 If Regulation 558 Indicate One If able If able <td< th=""><th></th></td<>	
Report Information: Company: Company: <td></td>	
Address: 1931 Robertson Red Table 3 Table 3 Table 0 ISanitary CCME	
Phone: Phone: Reports to be sent to: Reports to be	Rucinece
1. Email: Indicate One Indicate One Days Days Days Days	
Project Information: Is this submission for a Report Guideline on Project: 17480/58 Is this submission for a Record of Site Condition? Project Information: Site Location: Lin Colume Freduled Wes No Wes No Sameled Program Key or Same Day analysis, please contact your AGAT Contact or Same Day analysis, p	ays CPM
Sample By: Concernence O. Reg 153 B AGAT Quote #: PO: Sample Matrix Legend Sample Matrix Legend <td></td>	
Invoice Information: Bill To Same: No No Outact:	
Sample Identification Date Time # of Sample Comments/ Y/N Y/N Image: April and the state of	(1999) ×
17-111 SA3 Se Jur 3 S X X X	
17-01 SA3 1 3 S XX 1	
17-01 SA4 3 S XX	
17-20 SAZ 3 S X X X X	
17-20 SAS 3 S	200
17-21 SAI XX	
17-21 SA3 V 3 5	122
17-109 SA4 126 3/18 5 5 X X X	
Samples Relinquished By (Print Name and Sign): Date Time Samples Received By (Print Name and Sign): Date	
Aux wood Aux bood Aux bood <th< td=""><td>20, 2016</td></th<>	20, 2016

WATER

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z315692

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Mar 07, 2018

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 10

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

		SAMPLE DESCRIPTION:	17 - 21	17 - 25	17 - 06	02 - 6	DUP026	02 - 5	17 - 19	
		SAMPLE TYPE:	Water							
		DATE SAMPLED:	2018-02-27	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	
Parameter	Unit	G/S RDL	9094032	9094040	9094041	9094042	9094047	9094048	9094049	
F1 (C6 to C10)	µg/L	25	<25	<25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	25	<25	<25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L	500	NA							
Surrogate	Unit	Acceptable Limits								
Terphenyl	%	60-140	100	97	93	101	100	96	109	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9094032-9094049 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

DATE REPORTED: 2018-03-07

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158

15692

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

9094050

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1/BTEX (Water)

DATE RECEIVED: 2018-02-28

	S	AMPLE DES	CRIPTION:	Trip Blank
		SAM	PLE TYPE:	Water
		DATE	SAMPLED:	
Parameter	Unit	G/S	RDL	9094050
F1 (C6 to C10)	µg/L		25	<25
F1 (C6 to C10) minus BTEX	μg/L		25	<25

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Certified By:

DATE REPORTED: 2018-03-07

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

			O. Reg	g. 153(511) -	VOCs (Wat	ter)				
DATE RECEIVED: 2018-02-28							I	DATE REPORTI	ED: 2018-03-07	
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	17 - 21 Water 2018-02-27 9094032	17 - 25 Water 2018-02-28 9094040	17 - 06 Water 2018-02-28 9094041	02 - 6 Water 2018-02-28 9094042	DUP026 Water 2018-02-28 9094047	02 - 5 Water 2018-02-28 9094048	17 - 19 Water 2018-02-28 9094049	Trip Blank Water 9094050
Dichlorodifluoromethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride	µg/L	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Certified By:

teus

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

			0.1009		1000 (114	.01)				
DATE RECEIVED: 2018-02-28							I	DATE REPORT	ED: 2018-03-07	
	S	SAMPLE DESCRIPTION:	17 - 21	17 - 25	17 - 06	02 - 6	DUP026	02 - 5	17 - 19	Trip Blank
		SAMPLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE SAMPLED:	2018-02-27	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	
Parameter	Unit	G/S RDL	9094032	9094040	9094041	9094042	9094047	9094048	9094049	9094050
Bromoform	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylene Mixture	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits								
Toluene-d8	% Recovery	50-140	93	94	105	85	90	92	91	92
4-Bromofluorobenzene	% Recovery	50-140	103	97	94	107	90	90	87	88

O Reg 153(511) - VOCs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

teus

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z315692

ATTENTION TO: Alex Wood

SAMPLED BY:

			Trac	e Org	ganio	cs An	alys	is							
RPT Date: Mar 07, 2018			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		lu					value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	9092559		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	82%	50%	140%	102%	50%	140%
Vinyl Chloride	9092559		< 0.17	< 0.17	NA	< 0.17	80%	50%	140%	119%	50%	140%	122%	50%	140%
Bromomethane	9092559		< 0.20	< 0.20	NA	< 0.20	96%	50%	140%	103%	50%	140%	108%	50%	140%
Trichlorofluoromethane	9092559		< 0.40	< 0.40	NA	< 0.40	84%	50%	140%	98%	50%	140%	110%	50%	140%
Acetone	9092559		< 1.0	< 1.0	NA	< 1.0	123%	50%	140%	102%	50%	140%	109%	50%	140%
1,1-Dichloroethylene	9092559		< 0.30	< 0.30	NA	< 0.30	72%	50%	140%	104%	60%	130%	111%	50%	140%
Methylene Chloride	9092559		< 0.30	< 0.30	NA	< 0.30	102%	50%	140%	115%	60%	130%	98%	50%	140%
trans- 1,2-Dichloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	107%	60%	130%	112%	50%	140%
Methyl tert-butyl ether	9092559		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	96%	60%	130%	110%	50%	140%
1,1-Dichloroethane	9092559		< 0.30	< 0.30	NA	< 0.30	95%	50%	140%	99%	60%	130%	111%	50%	140%
Methyl Ethyl Ketone	9092559		< 1.0	< 1.0	NA	< 1.0	118%	50%	140%	87%	50%	140%	85%	50%	140%
cis- 1,2-Dichloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	99%	60%	130%	94%	50%	140%
Chloroform	9092559		< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	115%	60%	130%	112%	50%	140%
1,2-Dichloroethane	9092559		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	115%	60%	130%	117%	50%	140%
1,1,1-Trichloroethane	9092559		< 0.30	< 0.30	NA	< 0.30	71%	50%	140%	107%	60%	130%	104%	50%	140%
Carbon Tetrachloride	9092559		< 0.20	< 0.20	NA	< 0.20	72%	50%	140%	90%	60%	130%	89%	50%	140%
Benzene	9092559		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	85%	60%	130%	95%	50%	140%
1,2-Dichloropropane	9092559		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	87%	60%	130%	88%	50%	140%
Trichloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	96%	60%	130%	102%	50%	140%
Bromodichloromethane	9092559		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	106%	60%	130%	105%	50%	140%
Methyl Isobutyl Ketone	9092559		< 1.0	< 1.0	NA	< 1.0	111%	50%	140%	78%	50%	140%	82%	50%	140%
1,1,2-Trichloroethane	9092559		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	99%	60%	130%	109%	50%	140%
Toluene	9092559		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	94%	60%	130%	102%	50%	140%
Dibromochloromethane	9092559		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	107%	60%	130%	105%	50%	140%
Ethylene Dibromide	9092559		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	97%	60%	130%	105%	50%	140%
Tetrachloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	104%	60%	130%	111%	50%	140%
1,1,1,2-Tetrachloroethane	9092559		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	105%	60%	130%	104%	50%	140%
Chlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	93%	50%	140%	107%	60%	130%	114%	50%	140%
Ethylbenzene	9092559		< 0.10	< 0.10	NA	< 0.10	71%	50%	140%	93%	60%	130%	99%	50%	140%
m & p-Xylene	9092559		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	103%	60%	130%	111%	50%	140%
Bromoform	9092559		< 0.10	< 0.10	NA	< 0.10	117%	50%	140%	111%	60%	130%	111%	50%	140%
Styrene	9092559		< 0.10	< 0.10	NA	< 0.10	73%	50%	140%	87%	60%	130%	94%	50%	140%
1,1,2,2-Tetrachloroethane	9092559		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	92%	60%	130%	103%	50%	140%
o-Xylene	9092559		< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	109%	60%	130%	93%	50%	140%
1,3-Dichlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	104%	60%	130%	109%	50%	140%
1,4-Dichlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	117%	50%	140%	116%	60%	130%	104%	50%	140%
1,2-Dichlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	103%	60%	130%	109%	50%	140%
1,3-Dichloropropene	9092559		< 0.30	< 0.30	NA	< 0.30	78%	50%	140%	76%	60%	130%	76%	50%	140%
n-Hexane	9092559		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	109%	60%	130%	96%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 10

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z315692

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Mar 07, 2018			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lin	ptable nits	Recoverv	Acce Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

0 ()	,,,,,,													
F1 (C6 to C10)	9094041 9094041	< 25	< 25	NA	< 25	84%	60%	140%	110%	60%	140%	96%	60%	140%
F2 (C10 to C16)	TW	< 100	< 100	NA	< 100	96%	60%	140%	74%	60%	140%	68%	60%	140%
F3 (C16 to C34)	TW	< 100	< 100	NA	< 100	94%	60%	140%	106%	60%	140%	102%	60%	140%
F4 (C34 to C50)	TW	< 100	< 100	NA	< 100	81%	60%	140%	74%	60%	140%	85%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

wg

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 7 of 10

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z315692 ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
F1 (C6 to C10)	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

AGAT WORK ORDER: 18Z315692

ATTENTION TO: Alex Wood

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

		A 1	J La	abor	ato	IM.	<u>2</u> cl	Ph: 9	M 05.71	5 lississau 2.5100 we	835 Coop Iga, Ontar Fax: 905 bearth.ag	oers Av io 1.42 5.712.9 atlabs	enue 1Y2 5122 .com		La Wor	bor k Ord	der #:	ty: C	se 0 32		515	69	ድ	
Chain of C	ustody Record	If this is	a Drinking Wat	er sample, p	lease u	ise Drinking Water Chain o	Custody For	n (potable	water	consume	d by humai	ns)		_	Arri	val Te	empe	rature	s:	9.	26	9.2	-18	3.8
Report Inform Company: Contact:	Lation: Gonder Mssocia Alex Ward	uts Lte	۱.			Regulatory Requ	irements	:	No F	Regula	tory Re	quire	men	t	Cus Not	tody es:	Seal	Intact	9	X □Yes	د			
Address:	1931 Robertso	in Rat				Table		anitary			CME	558			Turi Reg	naro ular	oun • TAT	d Tir	ne (⊳	(TAT)	o 7 Bus	uired:	/S	
Phone: Reports to be sent to: 1. Email: 2. Email:	Alex_ Wood (D Fax: 5	592-9	401		☐ Res/Park ☐ Agriculture Soil Texture (<i>check One</i>) ☐ Coarse ☐ Fine	Region	torm licate One			rov. Wate bjectives ther	r Quali (PWQC	ty))		Rus i	h TA	Busin ays	h Surch ness	arges A	2 E Da	Busines	s	Next Day	Business
Project Inform Project: Site Location:	ation: 1780158 - 2525 Caring	Linco	Inticko	- Shopf	ing	Is this submission Record of Site Co	n for a ndition? No		Re Cer	port C tificat Yes	auidelin te of An	one e on alysi No	5		-	*T	Plea AT is o	ise pro	ovide	prior i	n Surcha notificat ends an	tion for rund statuto	y Apply) Ish TAT ry holic	: —— lays
Sampled By: AGAT Quote #:	Please note: If quotation number is	PO:	will be billed full price	for analysis.	_	Sample Matrix Leg	çend	CrVI		O. Reg	153		1		Fo	r 'Sa	ime D	ay' ar	nalysi	s, plea	ase con	tact your	AGAT	SPM
Invoice Inform Company: Contact: Address: Email:	nation:	a' = 1	Bill To Same:	Yes 🖌 No		GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water		Field Filtered - Metals, Hg,	and Inorganics	als 🗌 153 Metals (excl. Hydrides Metals 📋 153 Metals (Incl. Hydr	JB-HWS CCI CN JEC CFOC CHE SAR	als Scan	on/Custom Metals	DNO, DNO, +NO,		+		Total 🗆 Aroclors	hlorine Pesticides	A&I 🗆 VOCs 🗆 ABNs 🗆 B(a)P	9			
Sample	Identification	Date Sampled	Time Sampled	# of Containers	Samp Matr	ole Commer rix Special Instr	ts/ uctions	Y/N	Metals a	All Met	ORPs: C	Full Met	Regulati	D NO, D	Volatiles		PAHC	PCBs:	Organoc	TCLP: D	Sewer U	-		
17-20 17-25 17-06 02-6 02-6 02-5	1P026	Feb 28 Feb 28 feb 28 feb 28 feb 28 feb 28 feb 28	2:30PM 9:6:25:19M 12:8:30 11:00 11:00 11:00 10:15	1+ 1+ 1+ 1+ 1+ 18 1	600 600 600 600 600 600										× ; × ; × ; × ; × ;			××						
177-19		ters 28	17 00 PM		50	2 P. 4 5 1										×								
Samples Rolinquished By (Print Samples Rolinquished By (Print Samples Rolinquished By (Print	Name and Sign): CANALA YMMY Name and Sign):	naciden EX	ald The		: 15 6hk	Samples Received By Pri Samples Received By Pri Samples Received By (Pri Samples Received By (Pri	It Name and Sign): It Million and Sign): At Name and Sign):	10	X	W	18/	×- 3/1	Date)- / (8	Time	2h	15		P	°age	of	1	
locument ID: DIV-78 1511_014		alaa dagaalaa dagaalaa dagaa									Pink C	ору - С	lient	Yello	ow Coj) by - A	GAT	l Whi	te Co	· py- AG/	AT AT	Date Listert: Page 10	<u> </u>	22_2017

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Keith Holmes

PROJECT: 1780158

AGAT WORK ORDER: 17Z293747

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Dec 15, 2017

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES			

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 10

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

....

AGAT WORK ORDER: 17Z293747 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Keith Holmes

SAMPLED BY: Aaron Bradshaw

				O. Reg	j. 153(511) -	PCBs (Water)
DATE RECEIVED: 2017-12-11						DATE REPORTED: 2017-12-15
		SAMPLE DES	CRIPTION:	17-08	DUP1	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2017-12-11	2017-12-11	
Parameter	Unit	G/S	RDL	8967712	8967713	
Polychlorinated Biphenyls	µg/L	7.8	0.1	<0.1	<0.1	
Surrogate	Unit	Acceptab	ole Limits			
Decachlorobiphenyl	%	60-	140	65	64	

_

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

NPopukolof

AGAT WORK ORDER: 17Z293747 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Keith Holmes

SAMPLED BY: Aaron Bradshaw

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2017-12-11

	:	SAMPLE DESCR	IPTION:	17-108	17-101	17-08	DUP1	
		SAMPLE	E TYPE:	Water	Water	Water	Water	
		DATE SAM	MPLED:	2017-12-11	2017-12-11	2017-12-11	2017-12-11	
Parameter	Unit	G/S	RDL	8967708	8967711	8967712	8967713	
F1 (C6 to C10)	µg/L	750	25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25	<25	
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100	
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA	NA	NA	NA	
Surrogate	Unit	Acceptable L	Limits					
Terphenyl	%	60-140		84	73	78	62	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8967708-8967713 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPopukoloj

DATE REPORTED: 2017-12-15

AGAT WORK ORDER: 17Z293747 PROJECT: 1780158

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Keith Holmes

SAMPLED BY: Aaron Bradshaw

DATE RECEIVED: 2017-12-11									DATE REPORTED: 2017-12-15
		SAMPLE DESCRIP	TION:	17-108	17-101	17-08	DUP1	Trip Blank	
		SAMPLE T	TYPE:	Water	Water	Water	Water	Water	
		DATE SAMP	PLED:	2017-12-11	2017-12-11	2017-12-11	2017-12-11	2017-12-11	
Parameter	Unit	G/S R	DL	8967708	8967711	8967712	8967713	8967714	
Dichlorodifluoromethane	µg/L	4400 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	µg/L	0.5 0.	.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	5.6 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	2500 0.	.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	µg/L	130000 1	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6 0.	.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methylene Chloride	µg/L	610 0.	.30	<0.30	<0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	190 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	320 0.	.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000 1	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	µg/L	2.4 0.	.20	<0.20	<0.20	0.22	0.26	<0.20	
1,2-Dichloroethane	µg/L	1.6 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640 0.	.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	44 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	µg/L	16 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	1.6 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	85000 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000 1	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	µg/L	18000 0.	.20	0.84	0.64	0.28	0.32	<0.20	
Dibromochloromethane	µg/L	82000 0.	.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.25 0.	.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	1.6 0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3 0.	.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	µg/L	630 0.	.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	µg/L	2300 0.	.10	<0.10	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	µg/L	0.	.20	<0.20	<0.20	<0.20	<0.20	<0.20	

Certified By:

NPopukoloj

AGAT WORK ORDER: 17Z293747 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Keith Holmes

SAMPLED BY: Aaron Bradshaw

					· · · ·	`	,		
DATE RECEIVED: 2017-12-11									DATE REPORTED: 2017-12-15
	:	SAMPLE DES	CRIPTION:	17-108	17-101	17-08	DUP1	Trip Blank	
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	
		DATES	SAMPLED:	2017-12-11	2017-12-11	2017-12-11	2017-12-11	2017-12-11	
Parameter	Unit	G/S	RDL	8967708	8967711	8967712	8967713	8967714	
Bromoform	µg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	µg/L	1300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Xylene Mixture	µg/L	4200	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	µg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits						
Toluene-d8	% Recovery	50-1	140	97	88	87	89	89	
4-Bromofluorobenzene	% Recovery	50-1	140	97	98	96	94	95	

O. Reg. 153(511) - VOCs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

NPopukolof

MATRIX SPIKE

Recovery

80%

64%

Acceptable Limits

Lower Upper

60% 140%

60% 140%

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 17Z293747

ATTENTION TO: Keith Holmes

SAMPLED BY: Aaron Bradshaw

			Trac	e Org	gani	cs Ar	nalysi	is				
RPT Date: Dec 15, 2017			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	(SPIKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		Id					value	Lower	Upper]	Lower	Upper
O. Reg. 153(511) - PHCs F1 - I	-4 (-BTEX) (Wa	ter)										
F1 (C6 to C10)	8964683		< 25	< 25	NA	< 25	95%	60%	140%	81%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	96%	60%	140%	75%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	96%	60%	140%	92%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	98%	60%	140%	86%	60%	140%
O. Reg. 153(511) - VOCs (Wat	er)											
Dichlorodifluoromethane	8962685		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	50%	140%
Vinyl Chloride	8962685		< 0.17	< 0.17	NA	< 0.17	104%	50%	140%	104%	50%	140%

F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	96%	60%	140%	92%	60%	140%	84%	60%	140%
F4 (C34 to C50)		ΤW	< 100	< 100	NA	< 100	98%	60%	140%	86%	60%	140%	85%	60%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	8962685		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	50%	140%	74%	50%	140%
Vinyl Chloride	8962685		< 0.17	< 0.17	NA	< 0.17	104%	50%	140%	104%	50%	140%	96%	50%	140%
Bromomethane	8962685		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	90%	50%	140%	86%	50%	140%
Trichlorofluoromethane	8962685		< 0.40	< 0.40	NA	< 0.40	64%	50%	140%	92%	50%	140%	86%	50%	140%
Acetone	8962685		< 1.0	< 1.0	NA	< 1.0	113%	50%	140%	114%	50%	140%	110%	50%	140%
1,1-Dichloroethylene	8962685		< 0.30	< 0.30	NA	< 0.30	69%	50%	140%	78%	60%	130%	106%	50%	140%
Methylene Chloride	8962685		< 0.30	< 0.30	NA	< 0.30	67%	50%	140%	95%	60%	130%	112%	50%	140%
trans- 1,2-Dichloroethylene	8962685		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	86%	60%	130%	93%	50%	140%
Methyl tert-butyl ether	8962685		< 0.20	< 0.20	NA	< 0.20	101%	50%	140%	92%	60%	130%	88%	50%	140%
1,1-Dichloroethane	8962685		< 0.30	< 0.30	NA	< 0.30	88%	50%	140%	87%	60%	130%	112%	50%	140%
Methyl Ethyl Ketone	8962685		< 1.0	< 1.0	NA	< 1.0	126%	50%	140%	100%	50%	140%	93%	50%	140%
cis- 1,2-Dichloroethylene	8962685		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	106%	60%	130%	117%	50%	140%
Chloroform	8962685		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	89%	60%	130%	98%	50%	140%
1,2-Dichloroethane	8962685		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	93%	60%	130%	96%	50%	140%
1,1,1-Trichloroethane	8962685		< 0.30	< 0.30	NA	< 0.30	107%	50%	140%	76%	60%	130%	92%	50%	140%
Carbon Tetrachloride	8962685		< 0.20	< 0.20	NA	< 0.20	72%	50%	140%	70%	60%	130%	76%	50%	140%
Benzene	8962685		< 0.20	< 0.20	NA	< 0.20	66%	50%	140%	72%	60%	130%	81%	50%	140%
1,2-Dichloropropane	8962685		< 0.20	< 0.20	NA	< 0.20	68%	50%	140%	80%	60%	130%	87%	50%	140%
Trichloroethylene	8962685		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	74%	60%	130%	87%	50%	140%
Bromodichloromethane	8962685		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	84%	60%	130%	91%	50%	140%
Methyl Isobutyl Ketone	8962685		< 1.0	< 1.0	NA	< 1.0	85%	50%	140%	85%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	8962685		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	109%	60%	130%	107%	50%	140%
Toluene	8962685		< 0.20	< 0.20	NA	< 0.20	70%	50%	140%	89%	60%	130%	95%	50%	140%
Dibromochloromethane	8962685		< 0.10	< 0.10	NA	< 0.10	79%	50%	140%	90%	60%	130%	95%	50%	140%
Ethylene Dibromide	8962685		< 0.10	< 0.10	NA	< 0.10	76%	50%	140%	98%	60%	130%	99%	50%	140%
Tetrachloroethylene	8962685		< 0.20	< 0.20	NA	< 0.20	71%	50%	140%	90%	60%	130%	96%	50%	140%
1,1,1,2-Tetrachloroethane	8962685		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	87%	60%	130%	98%	50%	140%
Chlorobenzene	8962685		< 0.10	< 0.10	NA	< 0.10	91%	50%	140%	97%	60%	130%	104%	50%	140%
Ethylbenzene	8962685		< 0.10	< 0.10	NA	< 0.10	70%	50%	140%	78%	60%	130%	82%	50%	140%
m & p-Xylene	8962685		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	82%	60%	130%	88%	50%	140%
Bromoform	8962685		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	84%	60%	130%	86%	50%	140%
Styrene	8962685		< 0.10	< 0.10	NA	< 0.10	61%	50%	140%	73%	60%	130%	75%	50%	140%
1,1,2,2-Tetrachloroethane	8962685		< 0.10	< 0.10	NA	< 0.10	67%	50%	140%	106%	60%	130%	97%	50%	140%
o-Xylene	8962685		< 0.10	< 0.10	NA	< 0.10	81%	50%	140%	87%	60%	130%	90%	50%	140%
AGAT QUALITY ASSURAN	NCE REPOR	RT (V1)												Page 6	of 10

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 17Z293747

ATTENTION TO: Keith Holmes

SAMPLED BY: Aaron Bradshaw

	Т	race	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Dec 15, 2017			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		iù					value	Lower	Upper		Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	8962685		< 0.10	< 0.10	NA	< 0.10	91%	50%	140%	85%	60%	130%	90%	50%	140%
1,4-Dichlorobenzene	8962685		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	98%	60%	130%	98%	50%	140%
1,2-Dichlorobenzene	8962685		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	89%	60%	130%	89%	50%	140%
1,3-Dichloropropene	8962685		< 0.30	< 0.30	NA	< 0.30	111%	50%	140%	65%	60%	130%	77%	50%	140%
n-Hexane	8962685		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	101%	60%	130%	77%	50%	140%
O. Reg. 153(511) - PCBs (Water)															
Polychlorinated Biphenyls		TW	< 0.1	< 0.1	NA	< 0.1	105%	60%	140%	99%	60%	140%	111%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoh

Page 7 of 10

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 17Z293747 ATTENTION TO: Keith Holmes SAMPLED BY:Aaron Bradshaw

O/ WILLING OFFELENIOON FICIUS		O/ WIT EED DT./	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Polychlorinated Biphenyls	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-I richloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
loluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-I etrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
	VOL-91-5001	EPA SW-846 5030 & 8260	
	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromororm	VOL-91-5001	EPA SW-846 5030 & 8260	
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	
	VOL-91-5001	EPA SW-846 5030 & 8260	
0-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	
		EFA 300-040 3030 & 8260	
		EDA SM 946 5030 & 0200	
		EDA SM 846 5020 8 8260	
Vulopo Mixturo		EDA SM 946 5030 & 0200	
		EDA SM 846 5020 8 8260	
II-IIGAAIIG	VOL-91-0001	LFA 3W-040 3030 & 0200	

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

AGAT WORK ORDER: 17Z293747

ATTENTION TO: Keith Holmes

SAMPLING SITE:Lincoln Fields		SAMPLED BY:Aar	on Bradshaw
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

Laborate	Ph: 905.7	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 212.5100 Fax: 905.712.5122 webearth.agattabs.com	Laboratory Use Only Work Order #: 172293747
Chain of Custody Record If this is a Drinking Water sample, please Report Information: Company:	se Drinking Water Chain of Custody Form (potable wate Regulatory Requirements: No (Picose check all applicable boxes)	er consumed by humans) Regulatory Requirement	Arrival Temperatures:
Contact: Address: 1231 Robert Son Rd. Bells Corners Cl3-592-9600 Fax: Reports to be sent to: 1. Email: 2. Email: Project Information: Project: Site Location: Sampled By: 1000 Ford Should 1780158 1780158 1780158 1000 Ford Should 1000 Ford Should	Regulation 153/04 Sewer Use Table Indicate One Indicate One Sanitary Agriculture Storm Soil Texture (check One) Indicate One Coarse Indicate One Fine MISA Is this submission for a Is Record of Site Condition? Ca Yes No	Report Guideline on ertificate of Analysis Yes Report Guideline On ertificate One Nettor Comparise No	Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days 0 R Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM
AGAT Quote #:	Sample Matrix Legend No B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Ind Inorganics Is 1153 Metals (excl. Hydrides) Metals [1253 Metals (excl. Hydrides) Metals [1253 Metals (Incl. Hydrides) BB+WS C C H (Incl. Hydrides) BB+WS C C H (Incl. Hydrides) BB+WS C C H (Incl. Hydrides) SAR SAR SAR SAR SAR SAR SAR SAR	- F4 - F4 Total Anodors hlorine Pesticides f&I UVOS DANS DB(a)P DPCBs se
Sample Identification Date Sampled Time Sampled # of Containers Sam Ma 17-108 17/12/11 930 4 6 17-08 1010 4 1 17-08 1110 5 1 DUP 105 5 1 Trip Blank 4 3 1	Image: special line Image: special line N N N N N N N N N N	Metals a Metals a	Image: Selection of the selection of th
Samples Rolinquished By (Print Name and Sign): Samples Rolinquished By (Print Name and Sign): Samples Rolinquished By (Print Name and Sign): Date Time Date Time Date Time	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	Pink Conv Client 1 Ve	-17 Time Page of

Page 10 of 10

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z315692

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Mar 07, 2018

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 10

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

		SAMPLE DESCRIPTION:	17 - 21	17 - 25	17 - 06	02 - 6	DUP026	02 - 5	17 - 19	
		SAMPLE TYPE:	Water							
		DATE SAMPLED:	2018-02-27	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	
Parameter	Unit	G/S RDL	9094032	9094040	9094041	9094042	9094047	9094048	9094049	
F1 (C6 to C10)	µg/L	25	<25	<25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	25	<25	<25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L	500	NA							
Surrogate	Unit	Acceptable Limits								
Terphenyl	%	60-140	100	97	93	101	100	96	109	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9094032-9094049 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

DATE REPORTED: 2018-03-07

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158

15692

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

9094050

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - PHCs F1/BTEX (Water)

DATE RECEIVED: 2018-02-28

	S	AMPLE DES	CRIPTION:	Trip Blank
		SAM	PLE TYPE:	Water
		DATE	SAMPLED:	
Parameter	Unit	G/S	RDL	9094050
F1 (C6 to C10)	µg/L		25	<25
F1 (C6 to C10) minus BTEX	μg/L		25	<25

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Certified By:

DATE REPORTED: 2018-03-07

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)												
DATE RECEIVED: 2018-02-28							I	DATE REPORTI	ED: 2018-03-07			
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	17 - 21 Water 2018-02-27 9094032	17 - 25 Water 2018-02-28 9094040	17 - 06 Water 2018-02-28 9094041	02 - 6 Water 2018-02-28 9094042	DUP026 Water 2018-02-28 9094047	02 - 5 Water 2018-02-28 9094048	17 - 19 Water 2018-02-28 9094049	Trip Blank Water 9094050		
Dichlorodifluoromethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Vinyl Chloride	µg/L	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17		
Bromomethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Trichlorofluoromethane	µg/L	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40		
Acetone	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
1,1-Dichloroethylene	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30		
Methylene Chloride	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30		
trans- 1,2-Dichloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Methyl tert-butyl ether	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
1,1-Dichloroethane	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30		
Methyl Ethyl Ketone	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
cis- 1,2-Dichloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Chloroform	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
1,2-Dichloroethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
1,1,1-Trichloroethane	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30		
Carbon Tetrachloride	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Benzene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
1,2-Dichloropropane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Trichloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Bromodichloromethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Methyl Isobutyl Ketone	µg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
1,1,2-Trichloroethane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Toluene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Dibromochloromethane	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Ethylene Dibromide	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Tetrachloroethylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
1,1,1,2-Tetrachloroethane	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Chlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Ethylbenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
m & p-Xylene	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		

Certified By:

teus

AGAT WORK ORDER: 18Z315692 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alex Wood

SAMPLED BY:

DATE RECEIVED: 2018-02-28	i						I	DATE REPORT	ED: 2018-03-07			
	S	SAMPLE DESCRIPTION:	17 - 21	17 - 25	17 - 06	02 - 6	DUP026	02 - 5	17 - 19	Trip Blank		
		SAMPLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water		
		DATE SAMPLED:	2018-02-27	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28	2018-02-28			
Parameter	Unit	G/S RDL	9094032	9094040	9094041	9094042	9094047	9094048	9094049	9094050		
Bromoform	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Styrene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
1,1,2,2-Tetrachloroethane	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
o-Xylene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
1,3-Dichlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
1,4-Dichlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
1,2-Dichlorobenzene	µg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
1,3-Dichloropropene	µg/L	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30		
Xylene Mixture	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
n-Hexane	µg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
Surrogate	Unit	Acceptable Limits										
Toluene-d8	% Recovery	50-140	93	94	105	85	90	92	91	92		
4-Bromofluorobenzene	% Recovery	50-140	103	97	94	107	90	90	87	88		

O Reg 153(511) - VOCs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

teus

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z315692

ATTENTION TO: Alex Wood

SAMPLED BY:

			Trac	e Org	ganio	cs An	alys	is							
RPT Date: Mar 07, 2018	DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX		SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		lu					value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	9092559		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	82%	50%	140%	102%	50%	140%
Vinyl Chloride	9092559		< 0.17	< 0.17	NA	< 0.17	80%	50%	140%	119%	50%	140%	122%	50%	140%
Bromomethane	9092559		< 0.20	< 0.20	NA	< 0.20	96%	50%	140%	103%	50%	140%	108%	50%	140%
Trichlorofluoromethane	9092559		< 0.40	< 0.40	NA	< 0.40	84%	50%	140%	98%	50%	140%	110%	50%	140%
Acetone	9092559		< 1.0	< 1.0	NA	< 1.0	123%	50%	140%	102%	50%	140%	109%	50%	140%
1,1-Dichloroethylene	9092559		< 0.30	< 0.30	NA	< 0.30	72%	50%	140%	104%	60%	130%	111%	50%	140%
Methylene Chloride	9092559		< 0.30	< 0.30	NA	< 0.30	102%	50%	140%	115%	60%	130%	98%	50%	140%
trans- 1,2-Dichloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	107%	60%	130%	112%	50%	140%
Methyl tert-butyl ether	9092559		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	96%	60%	130%	110%	50%	140%
1,1-Dichloroethane	9092559		< 0.30	< 0.30	NA	< 0.30	95%	50%	140%	99%	60%	130%	111%	50%	140%
Methyl Ethyl Ketone	9092559		< 1.0	< 1.0	NA	< 1.0	118%	50%	140%	87%	50%	140%	85%	50%	140%
cis- 1,2-Dichloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	99%	60%	130%	94%	50%	140%
Chloroform	9092559		< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	115%	60%	130%	112%	50%	140%
1,2-Dichloroethane	9092559		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	115%	60%	130%	117%	50%	140%
1,1,1-Trichloroethane	9092559		< 0.30	< 0.30	NA	< 0.30	71%	50%	140%	107%	60%	130%	104%	50%	140%
Carbon Tetrachloride	9092559		< 0.20	< 0.20	NA	< 0.20	72%	50%	140%	90%	60%	130%	89%	50%	140%
Benzene	9092559		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	85%	60%	130%	95%	50%	140%
1,2-Dichloropropane	9092559		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	87%	60%	130%	88%	50%	140%
Trichloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	96%	60%	130%	102%	50%	140%
Bromodichloromethane	9092559		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	106%	60%	130%	105%	50%	140%
Methyl Isobutyl Ketone	9092559		< 1.0	< 1.0	NA	< 1.0	111%	50%	140%	78%	50%	140%	82%	50%	140%
1,1,2-Trichloroethane	9092559		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	99%	60%	130%	109%	50%	140%
Toluene	9092559		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	94%	60%	130%	102%	50%	140%
Dibromochloromethane	9092559		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	107%	60%	130%	105%	50%	140%
Ethylene Dibromide	9092559		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	97%	60%	130%	105%	50%	140%
Tetrachloroethylene	9092559		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	104%	60%	130%	111%	50%	140%
1,1,1,2-Tetrachloroethane	9092559		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	105%	60%	130%	104%	50%	140%
Chlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	93%	50%	140%	107%	60%	130%	114%	50%	140%
Ethylbenzene	9092559		< 0.10	< 0.10	NA	< 0.10	71%	50%	140%	93%	60%	130%	99%	50%	140%
m & p-Xylene	9092559		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	103%	60%	130%	111%	50%	140%
Bromoform	9092559		< 0.10	< 0.10	NA	< 0.10	117%	50%	140%	111%	60%	130%	111%	50%	140%
Styrene	9092559		< 0.10	< 0.10	NA	< 0.10	73%	50%	140%	87%	60%	130%	94%	50%	140%
1,1,2,2-Tetrachloroethane	9092559		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	92%	60%	130%	103%	50%	140%
o-Xylene	9092559		< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	109%	60%	130%	93%	50%	140%
1,3-Dichlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	104%	60%	130%	109%	50%	140%
1,4-Dichlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	117%	50%	140%	116%	60%	130%	104%	50%	140%
1,2-Dichlorobenzene	9092559		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	103%	60%	130%	109%	50%	140%
1,3-Dichloropropene	9092559		< 0.30	< 0.30	NA	< 0.30	78%	50%	140%	76%	60%	130%	76%	50%	140%
n-Hexane	9092559		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	109%	60%	130%	96%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 10

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z315692

ATTENTION TO: Alex Wood

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Mar 07, 2018	DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acce Lin	ptable nits	Recoverv	Acceptable Limits		Recoverv	Acce Lin	ptable nits
					NI D			Lower	Upper		Lower	Upper		Lower	Upper

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

0 ()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
F1 (C6 to C10)	9094041 9094041	< 25	< 25	NA	< 25	84%	60%	140%	110%	60%	140%	96%	60%	140%
F2 (C10 to C16)	TW	< 100	< 100	NA	< 100	96%	60%	140%	74%	60%	140%	68%	60%	140%
F3 (C16 to C34)	TW	< 100	< 100	NA	< 100	94%	60%	140%	106%	60%	140%	102%	60%	140%
F4 (C34 to C50)	TW	< 100	< 100	NA	< 100	81%	60%	140%	74%	60%	140%	85%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

wg

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 7 of 10

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:

AGAT WORK ORDER: 18Z315692 ATTENTION TO: Alex Wood

AMPLING SITE: SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID				
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID				
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID				
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE				
Terphenyl	VOL-91-5010		GC/FID				
F1 (C6 to C10)	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

AGAT WORK ORDER: 18Z315692

ATTENTION TO: Alex Wood

SAMPLING SITE:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

		A 1	J La	abor	ato	IM.	<u>2</u> cl	Ph: 9	M 05.71	5 lississau 2.5100 we	835 Coop Iga, Ontar Fax: 905 bearth.ag	oers Av io 1.42 5.712.9 atlabs	enue 1Y2 5122 .com		La Wor	bor k Ord	der #:	ty: C	se 0 32		515	69	ድ	
Chain of C	ustody Record	If this is	a Drinking Wat	er sample, p	lease u	ise Drinking Water Chain o	Custody For	n (potable	water	consume	d by humai	ns)		_	Arri	val Te	empe	rature	s:	9.	26	9.2	-18	3.8
Report Inform Company: Contact:	Laber Associa Alex Ward	uts Lte	۱.			Regulatory Requ	irements	:	No F	Regula	tory Re	quire	men	t	Cus Not	tody es:	Seal	Intact	9	X □Yes	د			
Address:	Address: 1931 Robertson Rot					Table		anitary			CME	558			Turnaround Time (TAT) Required: Regular TAT									
Phone: Reports to be sent to: 1. Email: 2. Email:	Phone: Let 2 - 59 2 - 9 Let 0 Reports to be sent to: 1. Email: 2. Email:				Res/Park Storm Prov. Water Quality Agriculture Objectives (PWQO) Soil Texture (check One) Region Other Coarse Indicate One Other				Rush TAT (Rush Surcharges Apply) 3 Business Days Next Business							Business								
Project Inform Project: Site Location:	ation: 1780158 - 2525 Caring	Linco	Inticko	- Shopf	ing	Is this submission Record of Site Co	n for a ndition? No		Re Cer	port C tificat Yes	auidelin te of An	one e on alysi No	5		-	*T	Plea AT is o	ise pro	ovide	prior i	n Surcha notificat ends an	tion for rund statuto	y Apply) Ish TAT ry holic	: —— lays
Sampled By: AGAT Quote #:	Please note: If quotation number is	PO:	will be billed full price	for analysis.	_	Sample Matrix Leg	çend	CrVI		O. Reg	153		1		Fo	r 'Sa	ime D	ay' ar	nalysi	s, plea	ase con	tact your	AGAT	SPM
Invoice Inform Company: Contact: Address: Email:	nation:	a' = 1	Bill To Same:	Yes 🖌 No		GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water		Field Filtered - Metals, Hg,	and Inorganics	als 🗌 153 Metals (excl. Hydrides Metals 📋 153 Metals (Incl. Hydr	JB-HWS CCI CN JEC CFOC CHE SAR	als Scan	on/Custom Metals	DNO, DNO, +NO,		+		Total 🗆 Aroclors	hlorine Pesticides	A&I 🗆 VOCs 🗆 ABNs 🗆 B(a)P	9			
Sample	Identification	Date Sampled	Time Sampled	# of Containers	Samp Matr	ole Commer rix Special Instr	ts/ uctions	Y/N	Metals a	All Met	ORPs: C	Full Met	Regulati	D NO, D	Volatiles		PAHC	PCBs:	Organoc	TCLP: D	Sewer U	-		
17-20 17-25 17-06 02-6 02-6 02-5	1P026	Feb 28 Feb 28 feb 28 feb 28 feb 28 feb 28 feb 28	2:30PM 9:6:25:19M 12:8:30 11:00 11:00 11:00 10:15	1+ 1+ 1+ 1+ 1+ 18 1	600 600 600 600 600 600										× ; × ; × ; × ; × ;			××						
177-19		ters 28	1° 00 PM		50	2 2. 2. 2. 1										×								
Samples Rolinquished By (Print Samples Rolinquished By (Print Samples Rolinquished By (Print	Name and Sign): CANALA YMMY Name and Sign):	naciden EX	ald The		: 15 6hk	Samples Received By Pri Samples Received By Pri Samples Received By (Pri Samples Received By (Pri	It Name and Sign): It Million and Sign): At Name and Sign):	10	X	W	18/	×- 3/1	Date)- / (8	Time	2h	15		P	°age	of	1	
locument ID: DIV-78 1511_014		alaa dagaalaa dagaalaa dagaa									Pink C	ору - С	lient	Yello	ow Coj) by - A	GAT	l Whi	te Co	· py- AG/	AT AT	Date Listert: Page 10	<u> </u>	22_2017

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z322248

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Mar 27, 2018

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 8

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z322248

PROJECT: 1780158

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

DATE REPORTED: 2018-03-27

SAMPLED BY: Aaron Bradshaw

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2018-03-21

		SAMPLE DESCR	RIPTION:	17-1	17-21
		SAMPL	E TYPE:	Water	Water
		DATE SA	AMPLED:	2018-03-21	2018-03-21
Parameter	Unit	G/S	RDL	9141608	9141609
F1 (C6 to C10)	µg/L	750	25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA	NA
Surrogate	Unit	Acceptable	Limits		
Terphenyl	%	60-14	0	97	89

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9141608-9141609 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 18Z322248 PROJECT: 1780158

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY: Aaron Bradshaw

DATE RECEIVED: 2018-03-21						DATE REPORTED: 2018-03-27
		SAMPLE DESCRIPT	ON: 17-1	17-21	Trip Blank	
		SAMPLE TY	PE: Water	Water	Water	
		DATE SAMPL	ED: 2018-03-2	2018-03-21	2018-03-19	
Parameter	Unit	G/S RD	L 9141608	9141609	9141610	
Dichlorodifluoromethane	μg/L	4400 0.2	0 <0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	0.5 0.1	7 <0.17	<0.17	<0.17	
Bromomethane	µg/L	5.6 0.2	0 <0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500 0.4	0 <0.40	<0.40	<0.40	
Acetone	µg/L	130000 1.0) <1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6 0.3	0 <0.30	<0.30	<0.30	
Methylene Chloride	μg/L	610 0.3	0 <0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6 0.2	0 <0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	190 0.2	0 <0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	320 0.3	0 <0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000 1.0) <1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6 0.2	0 <0.20	<0.20	<0.20	
Chloroform	µg/L	2.4 0.2	0 <0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6 0.2	0 <0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640 0.3	0 <0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79 0.2	0 <0.20	<0.20	<0.20	
Benzene	µg/L	44 0.2	0 <0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	16 0.2	0 <0.20	<0.20	<0.20	
Trichloroethylene	µg/L	1.6 0.2	0 <0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	85000 0.2	0 <0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000 1.0) <1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7 0.2	0 <0.20	<0.20	<0.20	
Toluene	µg/L	18000 0.2	0 7.3	<0.20	<0.20	
Dibromochloromethane	µg/L	82000 0.1	0 <0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.25 0.1	0 <0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	1.6 0.2	0 <0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3 0.1	0 <0.10	<0.10	<0.10	
Chlorobenzene	µg/L	630 0.1	0 <0.10	<0.10	<0.10	
Ethylbenzene	µg/L	2300 0.1	0 <0.10	<0.10	<0.10	
m & p-Xylene	µg/L	0.2	0 <0.20	<0.20	<0.20	

Certified By:

AGAT WORK ORDER: 18Z322248 PROJECT: 1780158 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY: Aaron Bradshaw

						•	•
DATE RECEIVED: 2018-03-21							DATE REPORTED: 2018-03-27
	S	AMPLE DES	CRIPTION:	17-1	17-21	Trip Blank	
		SAME	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	2018-03-21	2018-03-21	2018-03-19	
Parameter	Unit	G/S	RDL	9141608	9141609	9141610	
Bromoform	µg/L	380	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30	<0.30	<0.30	
Xylene Mixture	μg/L	4200	0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	% Recovery	50-1	40	91	94	94	
4-Bromofluorobenzene	% Recovery	50-1	40	87	86	85	

O. Reg. 153(511) - VOCs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 18Z322248

ATTENTION TO: Alex Wood SAMPLED BY: Aaron Bradshaw

Trace Organics Analysis

					9										
RPT Date: Mar 27, 2018			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	< SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lii	eptable mits	Recovery	Acce	ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (-	BTEX) (Wa	ater)													
F1 (C6 to C10)	9141609	,	< 25	< 25	NA	< 25	108%	60%	140%	108%	60%	140%	110%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	98%	60%	140%	62%	60%	140%	64%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	97%	60%	140%	64%	60%	140%	71%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	84%	60%	140%	80%	60%	140%	96%	60%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	9139726		< 0.20	< 0.20	NA	< 0.20	72%	50%	140%	93%	50%	140%	90%	50%	140%
Vinyl Chloride	9139726		< 0.17	< 0.17	NA	< 0.17	119%	50%	140%	117%	50%	140%	111%	50%	140%
Bromomethane	9139726		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	74%	50%	140%	73%	50%	140%
Trichlorofluoromethane	9139726		< 0.40	< 0.40	NA	< 0.40	123%	50%	140%	112%	50%	140%	121%	50%	140%
Acetone	9139726		< 1.0	< 1.0	NA	< 1.0	101%	50%	140%	86%	50%	140%	98%	50%	140%
1,1-Dichloroethylene	9139726		< 0.30	< 0.30	NA	< 0.30	71%	50%	140%	87%	60%	130%	93%	50%	140%
Methylene Chloride	9139726		< 0.30	< 0.30	NA	< 0.30	89%	50%	140%	100%	60%	130%	113%	50%	140%
trans- 1,2-Dichloroethylene	9139726		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	97%	60%	130%	101%	50%	140%
Methyl tert-butyl ether	9139726		< 0.20	< 0.20	NA	< 0.20	77%	50%	140%	96%	60%	130%	100%	50%	140%
1,1-Dichloroethane	9139726		< 0.30	< 0.30	NA	< 0.30	82%	50%	140%	90%	60%	130%	94%	50%	140%
Methyl Ethyl Ketone	9139726		< 1.0	< 1.0	NA	< 1.0	114%	50%	140%	92%	50%	140%	88%	50%	140%
cis- 1,2-Dichloroethylene	9139726		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	98%	60%	130%	101%	50%	140%
Chloroform	9139726		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	94%	60%	130%	101%	50%	140%
1,2-Dichloroethane	9139726		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	88%	60%	130%	99%	50%	140%
1,1,1-Trichloroethane	9139726		< 0.30	< 0.30	NA	< 0.30	78%	50%	140%	93%	60%	130%	98%	50%	140%
Carbon Tetrachloride	9139726		< 0.20	< 0.20	NA	< 0.20	75%	50%	140%	91%	60%	130%	96%	50%	140%
Benzene	9139726		< 0.20	< 0.20	NA	< 0.20	77%	50%	140%	93%	60%	130%	95%	50%	140%
1,2-Dichloropropane	9139726		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	92%	60%	130%	92%	50%	140%
Trichloroethylene	9139726		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	96%	60%	130%	100%	50%	140%
Bromodichloromethane	9139726		< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	94%	60%	130%	98%	50%	140%
Methyl Isobutyl Ketone	9139726		< 1.0	< 1.0	NA	< 1.0	88%	50%	140%	95%	50%	140%	97%	50%	140%
1,1,2-Trichloroethane	9139726		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	108%	60%	130%	114%	50%	140%
Toluene	9139726		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	103%	60%	130%	103%	50%	140%
Dibromochloromethane	9139726		< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	105%	60%	130%	111%	50%	140%
Ethylene Dibromide	9139726		< 0.10	< 0.10	NA	< 0.10	85%	50%	140%	108%	60%	130%	116%	50%	140%
Tetrachloroethylene	9139726		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	109%	60%	130%	117%	50%	140%
1,1,1,2-Tetrachloroethane	9139726		< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	103%	60%	130%	114%	50%	140%
Chlorobenzene	9139726		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	103%	60%	130%	111%	50%	140%
Ethylbenzene	9139726		< 0.10	< 0.10	NA	< 0.10	78%	50%	140%	95%	60%	130%	99%	50%	140%
m & p-Xylene	9139726		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	92%	60%	130%	95%	50%	140%
Bromoform	9139726		< 0.10	< 0.10	NA	< 0.10	99%	50%	140%	101%	60%	130%	118%	50%	140%
Styrene	9139726		< 0.10	< 0.10	NA	< 0.10	84%	50%	140%	88%	60%	130%	92%	50%	140%
1,1,2,2-Tetrachloroethane	9139726		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	97%	60%	130%	104%	50%	140%
o-Xylene	9139726		< 0.10	< 0.10	NA	< 0.10	80%	50%	140%	96%	60%	130%	98%	50%	140%
AGAT QUALITY ASSURAN	ICE REPOR	RT (V1)												Page	5 of 8

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 18Z322248

ATTENTION TO: Alex Wood

SAMPLED BY: Aaron Bradshaw

Trace Organics Analysis (Continued)

RPT Date: Mar 27, 2018	DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	(SPIKE	MATRIX SPIKE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce	ptable nits
		Id					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
1,3-Dichlorobenzene	9139726		< 0.10	< 0.10	NA	< 0.10	79%	50%	140%	89%	60%	130%	96%	50%	140%
1,4-Dichlorobenzene	9139726		< 0.10	< 0.10	NA	< 0.10	85%	50%	140%	97%	60%	130%	103%	50%	140%
1,2-Dichlorobenzene	9139726		< 0.10	< 0.10	NA	< 0.10	83%	50%	140%	92%	60%	130%	99%	50%	140%
1,3-Dichloropropene	9139726		< 0.30	< 0.30	NA	< 0.30	87%	50%	140%	88%	60%	130%	102%	50%	140%
n-Hexane	9139726		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	106%	60%	130%	87%	50%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Page 6 of 8

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 18Z322248 ATTENTION TO: Alex Wood SAMPLED BY:Aaron Bradshaw

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&I)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&I)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&I)GC/MS
	VOL-91-5001	EPA SW-846 5030 & 8260	(P&I)GC/MS
l oluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&I)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

Chain of Custody Record	tories Ubik State Chain of Custody Form (notable water intereded for human concustor) and the product of the human concustories and the human concustories a	248 mice 1.3 9.0
Report Information: Golder Company: $Afex$ bood Address: 1931 Robertson Rd- Address: 1931 Robertson Rd- Offania, ON $613-592$ 9600 Fax: Reports to be sent to: $alex - wood$ and $alex - com 1. Email: alex - wood and alex - com 2. Email: alex - wood and alex - com $	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) A Regulation 153/04 Sewer Use Indicate One Sewer Use Indicate One Sanitary Indicate One Sanitary Indicate One Storm Regulation 153/04 Storm Res/Park Storm Agriculture Region Soil Texture (check One) Region Fine Indicate One Is this submission for a Report Guideline on	INO IN/A INO IN/A Juired: Jainess Days INS Next Business Day harges May Apply):
Project: 1780158 Site Location: Lincoln Fields Sampled By: AGAT Quote #: AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Bill To Same: Yes No Company: Contact: Address: Email:	Record of Site Condition? Certificate of Analysis Please provide prior notificate of weekends of weekends of weekends of weekends of weekends of the second of the second weekends of the secon	ation for rush TAT and statutory holidays Intact your AGAT CPM
Sample Identification Date Sampled,	ample Matrix Comments/ Special Instructions Y/N Tage Hat Instructions Instructions SW Image Image <td< th=""><th>S</th></td<>	S
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Time	NOD Samples Received By (Print Name and Sign): Def Mar 22 Date Time Page Samples Received By (Print Name and Sign): Def Mar 22 Date Time Page	of 68131

Document ID: DIV-78 1511 013

Pink Copy - Client I Yellow Copy - AGAT | White Copy- AGAT Date Issual: Supported 20, 2016

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alex Wood

PROJECT: 1780158

AGAT WORK ORDER: 18Z317884

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Mar 15, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18Z317884

PROJECT: 1780158

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Lincoln Fields

ATTENTION TO: Alex Wood

SAMPLED BY: Aaron Bradshaw

				O. Reg). 153(511) -	PCBs (water)
DATE RECEIVED: 2018-03-07						DATE REPORTED: 2018-03-15
		SAMPLE DES	CRIPTION:	MW02-6	DUP-P	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2018-03-07	2018-03-07	
Parameter	Unit	G/S	RDL	9107005	9107006	
Polychlorinated Biphenyls	µg/L	7.8	0.1	<0.1	<0.1	
Surrogate	Unit	Acceptab	le Limits			
Decachlorobiphenyl	%	60-1	140	90	86	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1780158

SAMPLING SITE:Lincoln Fields

AGAT WORK ORDER: 18Z317884

ATTENTION TO: Alex Wood

SAMPLED BY: Aaron Bradshaw

			Trac	e Or	ganio	cs Ar	nalysi	is							
RPT Date: Mar 15, 2018			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
		Id					value	Lower	Upper]	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PCBs (Water) Polychlorinated Biphenyls		TW	< 0.1	< 0.1	NA	< 0.1	107%	60%	140%	98%	60%	140%	90%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 3 of 5

CLIENT NAME: GOLDER ASSOCIATES LTD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 18Z317884

ATTENTION TO: Alex Wood

SAMPLING SITE:Lincoln Fields

PROJECT: 1780158

SAMPLED BY: Aaron Bradshaw

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Polychlorinated Biphenyls	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				

Chain of Custody Record	lsmall red Ories Ph: 9	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 205.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	Laboratory Use Only Work Order #: 187317884 Cooler Quantity: one -on ice
Report Information: Company: Contact: Address: 1931 Phone: Contact: Report to: 0449000 From: Contact: Address: 1931 Report to: 0449000 From: Contact: Address: 1931 Report to: 044900 Contact: 04600 Contact: 046000 Contac	use Drinking Water Chain of Custody Form (potable Regulatory Requirements: (Prease check all applicable bases) Regulation 153/04 Table Ind/Come Ind/Corr Agriculture Soil Texture (check one) Coarse Fine Is this submission for a Record of Site Condition? Yes No	No Regulatory Requirement Regulation 558 CCME Prov. Water Quality Objectives (PWQO) Other Report Guideline on Certificate of Analysis X Yes No	Arrival Temperatures: 14.0 114.0144.4 Custody Seal Intact: IVes INO IN/A Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT * TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your ACAT CPAN
AGAN Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Bill To Same: Yes X Company: Contact: Address: Email: Sample Identification Date Time # of Sampled Multiple 1 Give Give Matrix Multiple 1 Give 1 Give	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water P Comments/ Special Instructions V/N	Metals and Inorganics Metals and Inorganics Image: International control of the state of	Volatiles: Uvoc Dans PHCs F1 - F4 PHCs PHCs F1 - F4 ABNs Paths Phcs Phcs<
Samples Rolinguaged By trift Name and Sign):	Samples Threived By Ofau Name and Sign: Samples Horeived By (Print Name and Sign): Samples Horeived By (Print Name and Sign):	UMM Date Date	18 Time Time Time Page of

ink Copy - Client	Yellow Copy - AGAT	White Copy- AGAT	Date Iss Rade 5 of 5 1012

golder.com