1.2 DO NOT SCALE DRAWINGS.

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.

1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE ARCHITECT OR DESIGN ENGINEER AS APPLICABLE.

1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION".

1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS. 1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN.

1.8 REFER TO SITE PLAN BY IBI GROUP ARCHITECTS INC.

1.9 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA. SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF SEDIMENT CAPTURE FILTER SOCKS WITHIN MANHOLES AND CATCHBASINS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED.

1.10 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS

1.11 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS. ALL ONSITE CURBS TO BE BARRIER TYPE, WITH DEPRESSIONS AS NOTED.

1.12 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS.

1.13 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM BANK STREET. 1.14 FOR GEOTECHNICAL REPORT SEE GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL

DEVELOPMENT - KELLAM LANDS, OTTAWA, ON. REPORT No. 12-1121-0286 BY GOLDER ASSOCIATES 1.15 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY.

1.16 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS. AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

1.17 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER 1.18 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES. ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL CONTRACTOR IS TO NOTIFY

1.19 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER.

1.20 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED.

1.21 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL.

ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.

1.22 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION. 1.23 CLAY DIKES TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. GRANULAR B PLACEMENT

1.24 BACKWATER VALES, PER CITY STANDARDS S14, S14.1 AND S14.2 RE TO BE INSTALLED FOR ALL STORM AND

2.0 SANITARY

SANITARY SERVICE CONNECTIONS.

2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED. BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 250mmØ AND SMALLER - PVC DR 35

2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED. 2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE

COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24. 2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT

2.5 ANY SANITARY SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22. OR AS APPROVED BY THE ENGINEER.

2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

3.1 ALL STORM SEWERS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. STORM SEWER MATERIALS TO BE: 375mmØ AND SMALLER - PVC DR 35 450mmØ AND LARGER - 100-D REINFORCED CONCRETE. UNLESS NOTED OTHERWISE

3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN ACCORDANCE WITH THE PLANS AND AS PER CITY OF

LEGEND:

MH3A EXISTING SANITARY MANHOLE

MH3 EXISTING STORM MANHOLE

CB T/G 99.76 EXISTING STREET CATCHBASIN

CICB EXISTING CURB INLET CATCHBASIN

⊗ V&VB EXISTING VALVE AND VALVE BOX

______ EXISTING DEPRESSED BARRIER CURB

EXISTING CONCRETE SIDEWALK

PRESSURE REDUCING VALVE

WATERMAIN IDENTIFICATION

INLET CONTROL DEVICE LOCATION

PROTECTIVE BOLLARD

PIPE CROSSING IDENTIFICATION

HEAVY DUTY ASPHALT / FIRE ROUTE

SIAMESE CONNECTION (IF REQUIRED)

⊗ V&C EXISTING VALVE AND CHAMBER

→ HYD B/F 100.56 EXISTING HYDRANT

250mmØ SUBDRAIN

REMOTE METER

----- EXISTING BARRIER CURB

3.3 STORM MH COVERS TO BE OPEN TYPE AS PER CITY STANDARD \$24. FRAMES TO BE PER CITY OF OTTAWA STD. S25. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE. 3.4 STORM MAINTENANCE HOLES TO BE OPSD, SIZE AS SPECIFIED, TAPER TOP.

3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & FISH TYPE GRATE AS PER CITY OF OTTAWA STD.

3.6 3m 150mm DIAMETER SOCK-WRAPPED PERFORATED PVC SUBDRAINS TO BE INSTALLED ALL CB'S. TO EXTEND PARALLEL TO CURB IN CBS ADJACENT TO CURB AND IN 4 DIRECTIONS FOR CBS IN CENTER OF

3.7 ANY STORM SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER 3.8 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER

INSTALLATION, THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS.

3.9 CONTRACTOR TO PROVIDE IPEX-TEMPEST MHF ICD'S SHOP DRAWINGS, OR EQUIVALENT, FOR ENGINEERS REVIEW PRIOR TO ORDERING ICD'S.

4.1 ALL WATERMAINS TO BE PVC DR 18, WITH MINIMUM COVER OF 2.4m AND INSTALLED PER CITY OF OTTAWA STANDARDS. ALL DOMESTIC WATER SERVICES ARE TO BE 200mmØ. 4.2 THRUST BLOCKS TO BE INSTALLED AT ALL BENDS, TEES, AND CAPS ALL AS PER OPSD 1103.01 AND 1103.02. 4.3 CONTRACTOR TO CONDUCT PRESSURE AND LEAKAGE TESTING OF ALL WATERMAINS AND DISINFECT AND CHLORINATE ALL WATERMAINS TO THE SATISFACTION OF M.O.E. AND THE CITY OF OTTAWA. 4.4 TRACER WIRE TO BE INSTALLED ALONG THE FULL LENGTH OF WATERMAIN AND ATTACHED TO EACH MAIN

STOP AS PER CITY OF OTTAWA STANDARDS 4.5 ALL COMPONENTS OF THE WATER DISTRIBUTION SYSTEM SHALL BE CATHODICALLY PROTECTED AS PER CITY OF OTTAWA STANDARDS. 4.6 ALL VALVES & VALVE BOXES AND CHAMBERS, HYDRANTS, AND HYDRANT VALVES AND ASSEMBLIES SHALL

BE INSTALLED AS PER CITY OF OTTAWA STANDARDS. 4.7 ANY WATERMAIN WITH LESS THAN 2.4m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

4.8 CONTRACTOR IS RESPONSIBLE FOR ACQUIRING THE WATER PERMIT FROM THE CITY OF OTTAWA AND PAYMENT OF ANY FEES ASSOCIATED WITH SECURING THE WATER PERMIT. OWNER IS RESPONSIBLE FOR REIMBURSING THE CONTRACTOR FOR THE ACTUAL COST OF ACQUIRING THE WATER PERMIT

4.9 CONNECTION TO EXISTING WATERMAIN TO BE INCLUDED IN THE COST FOR THE WATERMAIN INSTALLATION. THIS COST INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS. 4.10 ALL WATERMAIN CROSSINGS TO BE COMPLETED AS PER CITY OF OTTAWA STANDARDS W25 AND W25.2

5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY

AND ROAD AUTHORITY SHALL BE THE CONTRACTOR'S RESPONSIBILITY

SANITARY MANHOLE

STORM MANHOLE

RYCB REAR YARD CATCHBASIN c/w GUTTER GRADE

GECB REAK YARD LINE T/G 100.25 C/W TOP OF GRATE 3000)

CATCHBASIN MANHOLE C/W TOP OF GRATE

BARRIER CURB AS PER SC1.1

200mmø SAN SANITARY SEWER & FLOW DIRECTION

825mmø STM SEWER & FLOW DIRECTION

200¢ WATERMAIN WATERMAIN

200¢ RED 150¢ WATERMAIN REDUCER

PROPERTY LINE

2 VBENDS VERTICAL BEND LOCATION

□□□ PROPOSED MAIL BOX

CATCHBASIN c/w TOP OF GRATE

REAR YARD "END" CATCHBASIN

VALVE AND VALVE BOX

VALVE AND CHAMBER

HYD HYDRANT c/w BOTTOM OF FLANGE ELEVATION

DEPRESSED BARRIER CURB AS PER SC1.1

PROPOSED CONCRETE SIDEWALK

5.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTAWA STANDARD R-10. 5.2 THE CONTRACTOR SHALL PREPARE A TRAFFIC MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY THE CITY OF OTTAWA. CONTRACTOR TO MAINTAIN TRAFFIC FLOW DURING THE ENTIRE CONSTRUCTION PERIOD. MAINTENANCE OF ROAD CUTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. PROVISION OF FLAGMEN, DETOURS AS NECESSARY, BARRICADES AND SIGNS TO THE FULL SATISFACTION OF THE ENGINEER

5.3 CONTRACTOR TO PREPARE SUBGRADE, INCLUDING PROOFROLLING, TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER PRIOR TO THE COMMENCEMENT OF PLACEMENT OF GRANULAR B MATERIAL. 5.4 FILL TO BE PLACED AND COMPACTED PER THE GEOTECHNICAL REPORT REQUIREMENTS. 5.5 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR B MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR B MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

5.6 GRANULAR A MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF

5.7 ASPHALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF **GRANULAR A PLACEMENT** 5.8 CONTRACTOR TO SUPPLY, PLACE AND COMPACT ASPHALT MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF ASPHALT MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT

5.9 CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING LINE AND GRADE IN ACCORDANCE WITH THE PLANS, AND FOR PROVIDING THE ENGINEER WITH VERIFICATION PRIOR TO PLACEMENT. 5.10 DITCHES DISTURBED DURING CULVERT INSTALLATION AND GRADING OPERATIONS ARE TO BE REINSTATED TO THEIR ORIGINAL CONDITION AND FLOWLINE GRADES.

5.11 EXISTING EAST SIDE ROAD DITCH ALONG PALLADIUM DRIVE TO BE REALIGNED AS PER THE GRADING PLAN. ADJACENT AREAS BETWEEN ROAD SIDE DITCH AND PARKING LOT TO BE RE GRADED AS PER THE GRADING PLAN. ALL RE GRADED AREAS IN EXISTING PUBLIC RIGHTS OF WAY AND ANY OTHER DISTURBED AREAS IN EXISTING PUBLIC RIGHTS OF WAY ARE TO BE FINISHED WITH SOD ON 100mm TOPSOIL

5.12 PAVEMENT STRUCTURE (MATERIAL TYPES AND THICKNESSES) FOR HEAVY DUTY AND LIGHT DUTY AREAS TO BE AS SPECIFIED IN THE GEOTECHNICAL REPORT AND SHOWN ON THE PLANS.

EXISTING UTILITIES

EXISTING DUCT BANK

SLOPE C/W FLOW DIRECTION

MAJOR OVERLAND FLOW ROUTE

H/B/T/G

86.45 EX ×

×92.51

×92.35 FG

TOF=94.731

SAN STRUCTURE TABLE									
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION			
EXMH13123	91.51	NW90.700				1200mmø OPSD-701.010			
MH01A	94.01			SE91.796		1200mmø OPSD-701.010			
MH02A	94.03	NW91.615 SE91.915		NE91.315		1200mmø OPSD-701.010			
мноза	94.00			NW92.057		1200mmø OPSD-701.010			
MH04A	93.85	SW91.222		NE91.202		1200mmø OPSD-701.010			
MH05A	93.96	SW91.086 SE91.126		NE91.066		1200mmø OPSD-701.010			
мно6А	93.37			NW91.253		1200mmø OPSD-701.010			
мно7А	94.21			NE91.255		1200mmø OPSD-701.010			
мнова	93.81	SW91.076		SE91.016		1200mmø OPSD-701.010			
MH09A	93.74	SW90.955 NW90.915		SE90.895		1200mmø OPSD-701.010			
MH10A	93.22	NW90.752		SW90.752		1200mmø OPSD-701.010			
MH11A	93.31	NE90.732		SE90.732		1200mmø OPSD-701.010			

	STM STRUCTURE TABLE									
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION				
EXMH13123	94.14	NW89.694				1200mmø OPSD-701.010				
MHO1	93.85	SW91.787		SE90.390		1200mmø OPSD-701.010				
MH02	93.89			NE91.110		1200mmø OPSD-701.010				
MH04	93.85	SW90.900 SE91.041 NW90.700		NE90.141		1200mmø OPSD-701.010				
MH07	93.79	W91.823		SE90.878		1200mmø OPSD-701.010				
MH9	93.71	NW90.175 SW90.025		SE89.875		1500mmø OPSD-701.011				
MH10	93.25	NW89.818		SW89.788		1500mmø OPSD-701.011				
MH11	93.24	NE89.779 SW91.890		SE89.704		1500mmø OPSD-701.011				
MH12	93.86	SW91.842		NW91.167		1200mmø OPSD-701.010				

CROSSING SCHEDULE

- 200ø SAN 0.50m CLEARANCE OVER 300ø STM. 200¢ SAN 0.45m CLEARANCE OVER 300¢ STM. 150¢ W/M 0.30m CLEARANCE OVER 200¢ SAN. 150¢ W/M 0.50m CLEARANCE OVER 450¢ STM. 450ø STM 0.50m CLEARANCE UNDER 200ø SAN.
- 200¢ W/M 0.45m CLEARANCE OVER 250¢ STM. 200ø SAN 0.50m CLEARANCE OVER 250ø STM.
- 150¢ W/M 0.50m CLEARANCE UNDER 200¢ WM. 150¢ W/M 0.30m CLEARANCE OVER 200¢ SAN.
- (13) 1500 W/M 0.50m CLEARANCE UNDER 2000 WM. 200¢ SAN 0.50m CLEARANCE OVER 250¢ STM. 150¢ W/M 0.50m CLEARANCE OVER 250¢ STM.
- ① 150ø W/M 1.00m CLEARANCE UNDER 200ø SAN. 200ø W/M 0.15m CLEARANCE UNDER 150ø W/M.
- 2000 W/M 0.80m CLEARANCE OVER 3000 STM.

- 200¢ W/M 0.30m CLEARANCE OVER 200¢ SAN.
- 200ø W/M 0.80m CLEARANCE UNDER 200ø STM. 200¢ W/M 0.50m CLEARANCE UNDER 200¢ SAN.
- 1500 W/M 0.50m CLEARANCE UNDER 2500 STM.
- 200ø W/M 0.50m CLEARANCE OVER 975ø STM. 200¢ W/M 1.50m CLEARANCE OVER 200¢ SAN.

PAVEMENT STRUCTURE **

CAR ONLY PARKING AREAS:

50mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 150mm BASE - OPSS GRANULARGRANULAR "A" CRUSHED STONE 300mm SUBBASE - OPSS GRANULAR "B" TYPE II SUBGRADE - IN SITU SOIL, OR OPSS GRANULAR "B" TYPE I OR II MATERIAL PLACED OVER IN SITU SOIL

HEAVY TRUCK PARKING AREAS AND ACCESS LANES:

40mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 50mm BINDER COURSE - HL-8 OR SUPERPAVE 19.0 ASPHALTIC CONCRETE 150mm BASE COURSE - OPSS GRANULAR "A" CRUSHED STONE 450mm SUBBASE - OPSS GRANULAR "B" TYPE II SUBGRADE - IN SITU SOIL, OR OPSS GRANULAR "B" TYPE I OR II MATERIAL PLACED OVER IN SITU SOIL

** REFER TO GEOTECHNICAL REPORT BY GOLDER ASSOCIATES 12-1121-0286

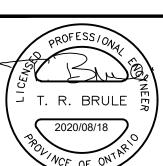
	Station	De scription	Finished Grade	Top of Waterain	As Buil Waterai
Α	0+000.00	TVS	93.457m	91.057m	
	0+031.60	V&VC	94.393m	91.993m	
	0+050.54	V BEND	93.941m	91.541m	
	0+051.04	V BEND	93.935m	91.535m	
	0+057.54	V BEND	94.186m	91.786m	
	0+058.04	V BEND	94.204m	91.804m	
	0+061.31	SERVICE TEE	94.172m	91.772m	
	0+076.65	HYDRANT	94.062m	91.662m	
	0+084.86	11.25° BEND	93.901m	91.501m	
	0+145.92	V BEND	93.730m	91.330m	
	0+146.42	V BEND	93.722m	91.415m	
	0+150.81	45° BEND	93.658m	91.415m	
	0+151.81	V BEND	93.641m	91.415m	
	0+152.31 0+153.30	V BEND 45° BEND	93.633m	91.233m 91.216m	
	0+153.30	HYDRANT	93.616m 93.554m	91.216m 91.154m	
	0+162.14	45° BEND	93.294m	91.154III 90.894m	
	0+191.77	45° BEND	93.242m	90.842m	
	0+194.33	V&VC	93.248m	90.848m	
	0+190.33	V BEND	93.820m	91.420m	
	0+202.20	V BEND	93.903m	91.503m	
	0+205.70	V BEND	93.130m	90.730m	
	0+206.43	V BEND	93.130m	90.730m	
В	0+210.35	TVS	93.000m	90.600m	
	3 210.00	· · -	35.000111	35.300/11	
С	0+000.00	TEE	93.988m	91.588m	
	0+004.92	SERVICE TEE	94.304m	91.904m	
	0+006.42	SERVICE TEE	94.206m	91.806m	
	0+008.13	V BEND	94.247m	91.847m	
	0+008.63	V BEND	94.255m	91.855m	
	0+029.19	11.25° BEND	93.910m	91.510m	
	0+061.04	V BEND	93.891m	91.491m	
	0+061.54	V BEND	93.891m	91.566m	
	0+063.54	45° BEND	93.891m	91.566m	
	0+066.03	45° BEND	93.859m	91.566m	
	0+068.99	V BEND	93.785m	91.566m	
	0+069.49	V BEND	93.773m	91.373m	
	0+079.18	SERVICE CROSS	93.656m	91.256m	
	0+086.82	SERVICE CROSS	93.531m	91.131m	
	0+094.29	SERVICE CROSS	93.469m	91.069m	
	0+101.76	SERVICE CROSS	93.408m	91.008m	
D	0+102.50	SERVICE TEE	93.406m	91.006m	
<u>C</u>	0+000.00	TEE	93.988m	91.588m	
	0+002.17	VB	93.965m	91.565m	
	0+003.03	V BEND	93.955m	91.555m	
	0+003.53	V BEND SERVICE TEE	93.947m	91.547m	
	0+016.19	SERVICE TEE	94.307m	91.907m	
	0+017.76 0+019.87	SERVICE TEE	94.349m	91.949m	
	0+019.67	SERVICE TEE	94.361m 94.295m	91.961m 91.895m	
	0+031.33	SERVICE TEE	94.293m	91.812m	
	0+032.81	SERVICE TEE	94.191m	91.791m	
	0+034.81	SERVICE TEE	94.165m	91.765m	
	0+042.28	SERVICE TEE	94.080m	91.680m	
E	0+045.98	CAP	94.231m	91.831m	
С	0+000.00	TEE	93.985m	91.585m	
	0+002.02	VB	94.020m	91.620m	
	0+012.03	SERVICE TEE	94.030m	91.630m	
	0+019.50	SERVICE TEE	94.259m	91.859m	
	0+023.19	SERVICE TEE	94.322m	91.922m	
F	0+025.00	TEE	94.232m	91.832m	
	0+030.69	SERVICE TEE	94.226m	91.826m	
	0+041.97	SERVICE TEE	94.220m	91.820m	
	0+045.66	SERVICE TEE	94.215m	91.815m	
G	0+047.65	CAP	94.213m	91.813m	
F	0+000.00	TEE	94.200m	91.800m	
	0+002.00	VB	94.000m	91.410m	
	0+005.54	11.25° BEND	93.900m	91.410m	
	0+009.42	VB	93.813m	91.413m	
	0+041.41	SERVICE CROSS	94.299m	91.899m	
	0+048.88	SERVICE CROSS	94.391m	91.991m	
	0+052.56	SERVICE CROSS	94.369m	91.969m	
	0+063.88	SERVICE CROSS	94.275m	91.875m	
	0+067.56	SERVICE CROSS	94.234m	91.834m	
		LOSEN MOS ORGAN	04.450	04.750	
Н	0+075.03 0+075.97	SERVICE CROSS CAP	94.153m 94.143m	91.753m 91.743m	

MIABOR OVEREARD FEOW ROOTE
PROPOSED SPOT GRADE
PROPOSED SWALE GRADE
PROPOSED SWALE HIGH POINT
LOT CORNER GRADE C/W EXISTING GROUND
TIE INTO EXISTING GRADE
EXISTING AOV SURVEY GRADE
EXISTING IBI SURVEY GRADE
FULL STATIC PONDING GRADE
RETAINING WALL
TOP OF RETAINING WALL
PROPOSED BOTTOM OF RETAINING WALL
TERRACING 3:1 MAXIMUM UNLESS NOTED OTHERWISE
PRELIMINARY ROOF DRAIN LOCATION
TEST PITS (SEE GEOTECHNICAL REPORT)
CLAY DYKES PER S8
PROPOSED UNDERSIDE OF FOOTING ELEVATION
PROPOSED TOP OF FOUNDATION

				CATC	H BASIN DA	TA TABLE					
	AREA ID	STRUCTURE	COVER	ELEVATION			OUTLET PIPE				
STRUCTURE				TOP OF		VERT	DIAMETER	TVDE	HEAD	FLOW	ICD TYPE
ID				GRATE	INLET	OUTLET	(mm)	TYPE			
CB10	P1	OPSD 705.010	S19	93.900	92.350		200	PVC DR-35	1.65	13.00	IPEX MHF
CB06	Р3	OPSD 705.010	S19	93.800	92.250		200	PVC DR-35	1.65	27.00	IPEX MHF
CB12	P5	OPSD 705.010	S19	93.750	92.200		200	PVC DR-35	1.65	15.00	IPEX MHF
CB11	P4	OPSD 705.010	S19	93.800	92.250		200	PVC DR-35	1.65	16.00	IPEX MHF
CB08	P2	OPSD 705.010	S19	93.650	92.100		200	PVC DR-35	1.65	19.00	IPEX MHF
CB07	P2	OPSD 705.010	S19	93.650	92.100		200	PVC DR-35	1.65	19.00	IPEX MHF
CB05	P6	OPSD 705.010	S19	93.650	92.100		200	PVC DR-35	1.65	21.00	IPEX MHF
CB13	P6	OPSD 705.010	S19	93.600	92.050		200	PVC DR-35	1.65	18.00	IPEX MHF
CB09	P7	OPSD 705.010	S19	93.750	92.200		200	PVC DR-35	1.65	18.00	IPEX MHF
CB01	P8	OPSD 705.010	S19	93.700	92.150		200	PVC DR-35	1.65	9.00	IPEX MHF
CB02	P9	OPSD 705.010	S19	93.700	92.150		200	PVC DR-35	1.65	24.00	IPEX MHF
CB03	P10	OPSD 705.010	S19	93.550	92.000		200	PVC DR-35	1.65	18.00	IPEX MHF
CB04	P12	OPSD 705.010	S19	93.100	91.550		200	PVC DR-35	1.65	35.00	IPEX MHF
RYCB14	R1	OPSD 705.010	S19	93.180	91.880		200	PVC DR-35	1.400	29.00	IPEX MHF

Bold font indicates CB's with ICD's

200 | PVC DR-35 | 1.400 | 29.00 | IPEX MHF Revision: 2020-08-18


STREET SECTIONS AND DETAILS KEY PLAN§ (NTS) REVISED AS PER COMMENTS 2020:08:18 SSUED FOR SPA 2020:02:13 SSUED TO CITY FOR REVIEW REVISIONS

SEE 010, 011, 012 FOR NOTES, LEGEND, CB TABLE,

400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

COWAN'S GROVE MID-DENSITY 4791 BANK STREET

DETAILS AND NOTES

N.T.S.

JANUARY 2020 EΗ TRB 121753 C-010