REPORT PROJECT: 122012-6.2.3

DESIGN BRIEF 3636 INNES ROAD C/O AMERCO REAL ESTATE COMPANY CITY OF OTTAWA

Prepared for AMERCO REAL ESTATE COMPANY by IBI GROUP

FEBRUARY 18, 2020

Table of Contents

1	INTRO	DDUCTION		
	1.1	Purpose		1
	1.2	Pre-cor	nsultation meeting	1
2	WATE		RIBUTION	2
	2.1	Existing	g Conditions	2
	2.2	Design	Criteria	2
		2.2.1	Water Demands	2
		2.2.2	System Pressure	2
		2.2.3	Fire Flow Rate	2
		2.2.4	Boundary Conditions	3
		2.2.5	Hydraulic Model	3
	2.3	Propos	ed Water Plan	3
		2.3.1	Modeling Results	3
3	WASTE	EWATE	R	5
	3.1	Existing	g Conditions and Studies	5
	3.2	Capaci	ty in Existing Sanitary Sewer	5
	3.3	Design	Criteria	5
	3.4	Design	Flows Based on Updated Sewer Design Guidelines	5
	3.5	Propos	ed Sanitary Service	5
4	STORM	IWATE	R MANAGEMENT	7
	4.1	Backgr	ound	7
	4.2	Objecti	ve	7
	4.3	Design	Criteria	7
	4.4	System	n Concept	8
		4.4.1	Dual Drainage Design	8
		4.4.2	Proposed Minor System	8
	4.5	Stormw	vater Management – Quality Control	8
	4.6	Stormw	vater Management – Quantity Control (On-Site)	9
		4.6.1	Parking Areas1	0
		4.6.2	Roof Areas	0
		4.6.3	Total Release	0
	4.7	Low Im	pact Development	0

Table of Contents Cont'd

5	SOURC	E CONTROLS 11
	5.1	General 11
	5.2	Site Grading 11
	5.3	Vegetation
6	CONVE	EYANCE CONTROLS
	6.1	General 12
	6.2	Flat Vegetated Swales 12
	6.3	Catchbasins and Maintenance Hole Sumps 12
	6.4	Pervious Landscaped Area Drainage
7	SEDIM	ENT AND EROSION CONTROL PLAN
7	SEDIM 7.1	ENT AND EROSION CONTROL PLAN
7		
7	7.1	General 13
7	7.1 7.2	General
7	7.1 7.2 7.3	General13Trench Dewatering13Bulkhead Barriers13
7	7.1 7.2 7.3 7.4	General13Trench Dewatering13Bulkhead Barriers13Seepage Barriers13
8	 7.1 7.2 7.3 7.4 7.5 7.6 	General13Trench Dewatering13Bulkhead Barriers13Seepage Barriers13Surface Structure Filters13

Table of Contents Cont'd

List of Appendices

APPENDIX A

122012-001	Legal Plan Site Plan General Plan of Services Water Demands Calculation Sheet FUS Calculation Water Boundary Condition Water Model		
APPENDIX B	(Reserved for Mechanical Design)		
APPENDIX C			
122012-500 122012-600	DSEL MSS Drainage Area Plan DSEL MSS Storm Design Sheet Novatech Correspondence Storm Sewer Design Sheet Storm Drainage Plan Ponding Plan Stormwater Management Design Sheet On-site Underground Storage Calculations ICD Orifice Sizing Calculations Temporary Outlet Ditch Sizing Calculations		
APPENDIX D			

122012-900	Erosion and Sediment Control Plan
122012-200	Grading Plan
	Geotechnical Report

1 INTRODUCTION

1.1 Purpose

IBI has been retained by the Amerco Real Estate Company (U-Haul) to prepare detail design of private services to support the Site Plan Approval for 3636 Innes Road. The development is located in Orléans, a community in the east end of the City of Ottawa, formerly located in the City of Gloucester. The subject site is approximately 3.31 ha and consists of an existing two storey metal building, formerly a hardware store, three metal storage sheds and a large parking lot. The site is currently owned and maintained by U-Haul for its multi service offerings.

The site is bounded by Innes Road to the north, vacant future development lands to the south, and east, and an existing private road with access to Innes to the West.

U-Haul is proposing to construct a three-storey concrete and steel building for self-storage purposes on the 3.31 hectare site.

Refer to key plan on Figure 1.1 for property location.

A copy of the site plan is provided in **Appendix A**.

Figure 1.1 Site Location

1.2 Pre-consultation meeting

A pre-consultation meeting was held with the City of Ottawa on January 6, 2020. No major servicing constraints were noted in the meeting. City staff did reiterate that as a single parcel of land, they would only accept a single service to the site, unless substantial technical reasoning prohibited a single service. City noted that an ECA is probable given the industrial zoning of the site, regardless of whether industrial uses were being used.

2 WATER DISTRIBUTION

2.1 Existing Conditions

The subject property is located on Innes Road, where an existing 406mm diameter watermain runs along the north frontage of the site. An existing 200 mm diameter watermain runs from Innes Road to the site with an existing hydrant located within 20 meters of the proposed building. See General Plan of Services in **Appendix A** for details.

2.2 Design Criteria

2.2.1 Water Demands

Water demands have been calculated based on Table 4.2 – Ottawa Design Guidelines – Water Distribution. A consumption rate of 25,000 l/hectare/day is used for the commercial lands in the subject site.

A watermain demand calculation sheet is included in **Appendix A** and the total water demands are summarized as follows:

Average Daily	0.30 l/s
Maximum Daily	0.46 l/s
Peak Hourly	0.55 l/s

2.2.2 System Pressure

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi)
Fire Flow	During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.
Maximum Pressure	Maximum pressure at any point in the distribution system shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rate

As per the Ottawa Design Guidelines, fire flow requirements are to be calculated using the Fire Underwriters Survey (FUS) method. The FUS method requires the building area, type of construction, type of occupancy, use of sprinklers and exposures to adjacent buildings. The calculations result in a fire flow of 8,000 l/min for the site; a copy of the FUS calculation is included in **Appendix A**.

2.2.4 Boundary Conditions

A hydraulic boundary condition for the analysis was obtained from the City on Innes Road where the existing 200 mm watermain servicing the site connects to the existing 406 mm watermain on Innes Road.

SCENARIO	HGL (M)	PRESSURE (PSI)
SCENARIO	INNES ROAD	
Maximum HGL (Basic Day)	130.5	56.3
Minimum HGL (Peak Hour)	127.5	51.9
Max Day + Fire Flow (8,000 L/m)	126.2	50.1

A copy of the boundary condition is included in **Appendix A**, and they are summarized as follows:

2.2.5 Hydraulic Model

A computer model for the subdivision has been developed using the InfoWater 12.4 program produced by Innovyze. The boundary conditions has been incorporated into the model at Node J10 which represents the connection between the 400 mm main on Innes Road and the existing 200 mm main servicing the site. Node J16 is at the end of the 200 mm watermain where there is an existing hydrant, fire flow analysis is carried out at this node. Node J14 is where the 50 mm water service enters the building, minimum and maximum pressures for the building are recorded at this node. The location of the nodes is shown on the water model schematic in **Appendix A**.

2.3 Proposed Water Plan

2.3.1 Modeling Results

The hydraulic model was run under basic day, maximum day with fire flows and under peak hour conditions. Results of the hydraulic model are included in **Appendix A** and summarized as follows:

SCENARIO	
Basic Day (Max HGL) Pressure (kPa)	387.8
Peak Hour Pressure (kPa)	356.0
Minimum Design Fire Flow @140 kPa Residual Pressure (l/s)	153.5

Results of the hydraulic analysis are summarized as follows:

A comparison of the results and the design criteria is summarized as follows:

Maximum Pressure:	The pressure at the building for the basic day analysis is less than 552 kPa therefore pressure reducing control is not required for this building.
Minimum Pressure:	In the peak hour analysis the pressure at the building is greater than the required 276 kPa pressure.
Fire Flow:	Under the fire flow analysis the node adjacent to the existing hydrant has a design fire flow greater than the required 133 l/s (8,000 l/min) flow.

General Plan of Service in Appendix A illustrate the extension of a 50mm diameter water service to the proposed building. The existing fire hydrant is able to provide adequate fire flow for the site.

3 WASTEWATER

3.1 Existing Conditions and Studies

The existing building on the subject lands is serviced with a shallow 150mm diameter sanitary service. The service discharges into a private sewer on running parallel with the north property line. The private sewer outlets to the west, prior to discharging into a manhole on Innes Road. The sewer outlets north into a 300mm sanitary sewer in Boyer Street. The trunk sewer in Boyer continues north until it intersects with the St. Joseph Blvd trunk sewer. Eventually, sewage from the site reaches the R.O. Pickard Wastewater treatment plant. See General Plan of Service in **Appendix A** for details.

3.2 Capacity in Existing Sanitary Sewer

The existing private sewers were designed using an assumed criteria of 50,000 L/Ha/day with a Peaking factor of 1.5 for the commercial lands, which is based on the previous design capacities used by the City of Ottawa. The total existing peak flow from that site, including extraneous flow @ 0.28L/s/Ha is 3.97 L/s. The existing 150mm sewer, at 1.0% slope has a capacity of 15.89 L/s.

3.3 Design Criteria

All on-site sewers have been designed to City of Ottawa and MOE design criteria which include but are not limited to the below listed criteria.

Institutional/Commercial:	28,000 l/d/Ha
Institutional/Commercial Peak Factor:	1.5
Extraneous Flow:	0.33 l/s/Ha
Minimum Pipe Size:	200 mm diameter
Forcemain Pipe Size:	50 mm diameter
Maximum Velocity	3.0 m/s
Minimum Velocity	0.6 m/s

3.4 Design Flows Based on Updated Sewer Design Guidelines

The peak flow from the subject lands, based on the updated City of Ottawa Sewer Design Guidelines is 2.70 L/s. The updated design flow is less than the existing design flow, and less than the capacity of the existing service.

Notwithstanding the aforementioned calculations, the building specific flows are limited to 1 bathroom for visitors to the storage facility. The facility is intended to be un-manned, with the exception of daily cleaning staff. The City of Ottawa's Daily Sewage Flow for Various Types of Establishments Table, in Appendix A4-A does not have a reasonable comparable use for a large unmanned storage facility, however the waste water discharge from the new building is expected to be minimal and have a negligible impact on existing sewers.

3.5 Proposed Sanitary Service

As previously mentioned, the existing sewer is shallow, with approximately 1.8m of cover. The existing, and proposed grades of the subject lands generally fall from north to south. A 150mm diameter gravity sewer to the new building would have required the proposed building slab to be raised by a minimum of 1.5m and insulation provided. This would have resulted in a significant

increase in site grading expense, would have subjected the existing metal storage buildings to flooding risks, and would have required grading transitions in order to connect with future road grades for the adjacent land owner (Glenview homes). As a result, an in-building sewage pump and a 50mm forcemain is proposed. The duplex sanitary sewage pump system and private forcemain is to be designed in accordance with City of Ottawa criteria. The pump, forcemain, check valve and pit are to be designed by a Mechanical Engineer licensed in the province of Ontario prior to Site Plan Approval. See General Plan of Service in **Appendix A** for the proposed location of the forcemain and connection to the existing sewer and the proposed building.

4 STORMWATER MANAGEMENT

4.1 Background

There is an existing 375mm diameter storm service connection to the site, which eventually drains to the existing 1475mm x 2310mm storm sewer trunk along Innes Road, and outlets north along Boyer Road. As a result of the East Urban Community Phase 3 CDP Master Servicing Study, prepared by DSEL, dated October 2019, the subject lands are to be entirely tributary to EUC SWM Pond #1. As a result, the existing 375mm storm connection will be abandoned. See General Plan of Service in **Appendix A** for details of the existing storm sewers.

The lands immediately downstream of the subject site, owned by Glenview Homes are to construct storm sewers suitably sized for the upstream lands, as per the MSS. Amerco Real Estate Company will enter into a cost sharing agreement with Glenview Homes for its share of the downstream storm sewers. Amerco will also be responsible for its fair share of the EUC SWM facility Pond #1.

The Glenview Homes subdivision, has provided the U-Haul site with a stormwater boundary condition of a restricted flow rate of 786.60 l/s, based on the 5-year storm event with a time of concentration of 12 minutes and a runoff coefficient of 0.90.

4.2 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for 3636 Innes Road development. The design includes the assignment of inlet control devices, on-site storage, maximum depth of surface ponding and hydraulic grade line analysis. The evaluation takes into consideration the design requirement of the existing stormwater management pond, City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01 and the June 2018 Technical Bulletin ISTB-2018-04.

4.3 Design Criteria

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

٠	Design Storm	1:2 year return (Ottawa)
•	Rational Method Sewer Sizing	
•	Initial Time of Concentration	10 minutes
•	Runoff Coefficients	
	- Landscaped Areas	C = 0.25
	- Building and Roof Area	C = 0.90
	- Parking Area and Driveway	C = 0.90
•	Pipe Velocities	0.80 m/s to 3.0 m/s
•	Minimum Pipe Size	250 mm diameter (200 mm CB Leads)

4.4 System Concept

According to the current detail design report for the Glenview subdivision prepared by Novatech, the development of the downstream system omitted MSS requirement to provide an outlet for the subject property. Subsequently, Novatech has confirmed that capacity will be provided as per the MSS, at the aforementioned 5 year event, C=0.90 and a Tc=12min, see e-mail from Novatech dated February 10, 2020 in Appendix C. The existing storm sewers constructed adjacent to the site will be oversized to provide the needed capacity for minor storm runoff from the subject site. Minor storm runoff from the subject site will connect to the proposed 975mm storm sewer in Street 9 along the west side of the site. Copies of the storm design sheet and the conceptual storm sewer layout and tributary areas for 3636 Innes Road are provided in the **Appendix C**.

The downstream sewers are not sized for major flow from the site, therefore flows generated in excess of the 5 year up to 100 year event will be retained onsite. Flows in excess of 100 year will discharges onto the adjacent subdivision Street 9.

4.4.1 Dual Drainage Design

The dual drainage system proposed for the subject site will accommodate both major and minor stormwater runoff. Minor flow from the subject site will be conveyed through the storm sewer network and discharge into the proposed 975mmØ storm sewer in Street 9.

The balance of the surface flow not captured by the minor system will be conveyed via the major system. Where possible, storage will be provided in surface sags or low points within the parking lot and landscaped areas. Once the maximum storage is utilized, the excess flow from the catchment will cascade to the next downstream sag. Major flow up to 100-year storm event will be restricted and detained on-site. Emergency overflow will be directed towards Street 9.

4.4.2 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan is included in **Appendix C**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

The owner of the site will be responsible for regular maintenance of the on-site sewers, catch basins and inlet control devices (ICDs). Maintenance includes but is not limited to the cost of regular cleaning of the structures and ICDs as necessary. The site owner will also be responsible for replacement of damaged or missing catch basin structures, grates or ICDs as needed.

In the absence of the Glenview storm trunk system, an improvement to the existing drainage ditch, or a new ditch will be required to be constructed to the south. This ditch will be located on Glenview lands. The ditch will be required to have a minimum cross section which is based on a minimum level of service of 786.60 l/s. Using the Manning's Formula from City of Ottawa sewer design guidelines 6.4.1., the ditch required will have a minimum depth of 0.8m, with 3:1 side slope and a longitudinal gradient of 0.1%. A ditch with these properties has a maximum flow rate of 1031.10 l/s. Refer to calculations in **Appendix C.**

4.5 Stormwater Management – Quality Control

Quality control will be provided by the EUC SWM Pond #1 previously constructed for the subject lands. No additional quality control measures are required on the site. It should be noted that the proposed building has a sloped roof, hence no roof top storage is available for the building.

4.6 Stormwater Management – Quantity Control (On-Site)

The subject site will be limited to a maximum minor system release rate of 786.60 l/s according to the design report being prepared by Novatech. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations, surface storage where possible and underground storage tanks where required.

Surface flows in excess of the site's allowable release rate will be stored on site in strategic surface storage areas or underground storage tanks and gradually released into the minor system to respect the site's allowable release rate. The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100 year event as show on the ponding plan located in **Appendix C** and grading plans located in **Appendix D**. There is one maximum ponding depth of 0.35m in the existing parking lot, which is still in line with current City of Ottawa guidelines for residential streets. 2 year, 5 year, 100 year and maximum ponding elevations are show on the ponding plan. Overland flow routes will be provided in the grading to permit emergency overland flow.

Along the north property line, due to the existing conditions adjacent to Innes Road, the opportunity to capture and store runoff is limited due to grading constraints and existing building geometry. These areas will discharge to Innes Road uncontrolled. The southwest portion of the existing parking lot will also be uncontrolled release with the current grading pattern. Additionally, the depressed loading bay of the new building will also require uncontrolled release.

Based on the proposed site plan, the total uncontrolled area has been calculated to be (0.09+0.01+0.21) 0.31 ha. Refer to Drawing 500 in **Appendix D** for the detailed storm drainage area plan for the site.

Based on a 1:100 year event, the flow from the 0.31 Ha uncontrolled area can be determined as:

Quncontrolled	= 2.78 x C x i _{100yr} x A where:
С	= Average runoff coefficient = 0.9 (increased by 20%, use 1.0 max)
İ _{100yr}	= Intensity of 100-year storm event (mm/hr)
	= 1735.688 x (T_c + 6.014)^{0.820} = 178.56 mm/hr; where T_c = 10 minutes
Α	= Uncontrolled Area = 0.31 Ha

Therefore, the uncontrolled release rate can be determined as:

Quncontrolled	= $2.78 \times C \times i_{100yr} \times A$
	= 2.78 x 1.0 x 178.56 x 0.31
	= 153.88 L/s

The maximum allowable release rate from the remainder of the site can then be determined as:

Qmax allowable	= Qrestricted - Quncontrolled
	= 786.60 L/s – 153.88 L/s
	= 632.72 L/s

Based on the previously noted factors, the rest of the site will be limited to 632.72 l/s discharging rate with inlet control devices.

4.6.1 Parking Areas

The following table identifies the ICD type for each drainage area and corresponding storage requirements as noted in the modified rational method calculation included in **Appendix D**. The total restricted flow through the ICDs is 491.64 l/s. A detailed calculation of the underground storage volume is also included in **Appendix D**.

DRAINAGE AREA	ICD TYPE	RESTRICTED FLOW (L/s)	100yr STORAGE REQUIRED (m ³)	STORAGE PROVIDED (m ³)
CB 9 & 10	Custom 168mm Dia. Orifice	100.64	58.70	63.25
CB 1 & 2	Tempest HMF 152mm	75.20	26.10	27.25
MH 6	Custom 207mm Dia. Orifice	174.57	239.55	245.24
CB 7	Tempest HMF 83mm	22.94	15.72	39.15
CB 6	Custom 187mm Dia. Orifice	118.29	70.93	71.09
TOTAL	-	491.64	507.72	540.98

4.6.2 Roof Areas

The existing building has a flat roof, and for the purposed of this report, it has been assumed that the structure of the existing building is adequately designed and constructed to support the snow load in additional to the live load of the required rooftop storage. <u>A letter from a structural engineer</u> will be required prior to site plan approval. At the time of writing this report, winter 2020, the roof of the existing building was snow covered and counting roof drains would have been challenging. Prior to site plan approval, a review of the number of inlets, and their associated roof areas will need to be further analyzed. It is anticipated that the existing roof is currently draining uncontrolled, as it was constructed in the early 1980's.

Based on these assumptions, a very generous release rate has been applied to the existing building of 140 L/s. This would require a total 100year retention volume of 94.65m3.

Typically, the available storage on a flat roof building can be determined using 75% of the total roof area, with a maximum depth of 150mm. For the existing building, the roof area is approximately 6,000m2. This would provide an approximate storage volume of 225m3 [($6,000 \times 0.15m \times 75\%$) / 3].

The proposed building has a low slope flat roof, which drains from east to west, into a gutter and downspout system. The system discharges to surface onto the asphalt perimeter drive aisle. For stormwater management purposes, the area of the proposed building is included in the **CB6** drainage area.

4.6.3 Total Release

As previously mentioned, the total release rate from all on-site parking areas is 491.64 L/s and the total release rate for the existing building is 140 L/s. The total controlled release from the site is **631.64 L/s**, which is less than the aforementioned maximum allowable release rate of 632.72 L/s.

4.7 Low Impact Development

As per the discussions in the pre-consult with City Staff Will Curry, although the subject lands are tributary to Mud Creek, which is undergoing a Cumulative Impact Statement in regards to the impact on its reach from upstream development, it was agreed that the since the majority of the existing asphalt site area was left to discharge uncontrolled towards the south, that the redevelopment would not alter the existing conditions enough to warrant implementation of LIDs on this site.

5 SOURCE CONTROLS

5.1 General

Since an end of pipe treatment facility is provided for Glenview subdivision development, stormwater site management for the subject lands will focus on site level or source control management of runoff. Such controls or mitigative measures are proposed for this site not only for final development but also during construction. Some of these measures are:

- flat site grading;
- vegetation planting; and
- groundwater recharge in landscaped areas.

5.2 Site Grading

In accordance with local municipal standards, all grading will be between 1.0 and 6.0 percent for hard surfaces and 1.0 and 7.0 percent for all landscaped areas, or terracing and/or retaining walls will be implemented. A copy of the grading plan has been included in **Appendix D**.

5.3 Vegetation

As with most site plan agreements, the developer will be required to complete a vegetation and planting program. Vegetation will be provided where opportunities exist to re-create lost vegetation.

6 CONVEYANCE CONTROLS

6.1 General

Besides source controls, the site plan also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales; and
- catchbasin sumps.

6.2 Flat Vegetated Swales

The site plan will make use of relatively flat vegetated swales where possible to encourage infiltration and runoff treatment.

6.3 Catchbasins and Maintenance Hole Sumps

All catchbasins within the development will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Catchbasins will be to OPSD 705.02. All storm sewer maintenance holes on site shall be constructed with a 300 mm sump as per City standards.

6.4 Pervious Landscaped Area Drainage

Some of the landscaped area swales make use of a filter wrapped perforated drainage pipe constructed below the swales. This perforated system is designed to provide some ground water recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system.

7 SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed in the existing manholes which connect to the existing downstream sewers;
- seepage barriers will be constructed in any temporary drainage ditches;
- filter cloths will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use; and
- Silt fence on the site perimeter.

7.2 Trench Dewatering

Although little groundwater is expected during construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

Temporary $\frac{1}{2}$ diameter bulkhead barriers will be constructed for the existing manholes at the property limits. This bulkhead will trap any sediment carrying flows thus preventing any construction-related contamination of the existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed and removed prior to top course asphalt being laid.

7.4 Seepage Barriers

The presence of road side ditches along Innes Road and the proximity of the proposed temporary ditch necessitate the installation of seepage barriers. These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with Drawing 900 in Appendix G. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures should be covered in some fashion to prevent sediment from entering the minor storm sewer system. Until landscaped areas are sodded or until parking lot is asphalted and curbed, all catchbasins and manholes will be constructed with a geotextile filter fabric located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

7.6 Stockpile Management

During construction of any development similar to that proposed by the Owner, both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems or natural stream systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern provided the previous noted seepage barriers are installed.

The parking lot granular materials are not stockpiled on site. They are immediately placed in the parking lot and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

8 GEOTECHNICAL RECOMMENDATION

At this time of preparing this report, the geotechnical engineer has not completed their investigation report. When available, this report and drawings will be updated to include the geotechnical recommendations.

9 CONCLUSIONS

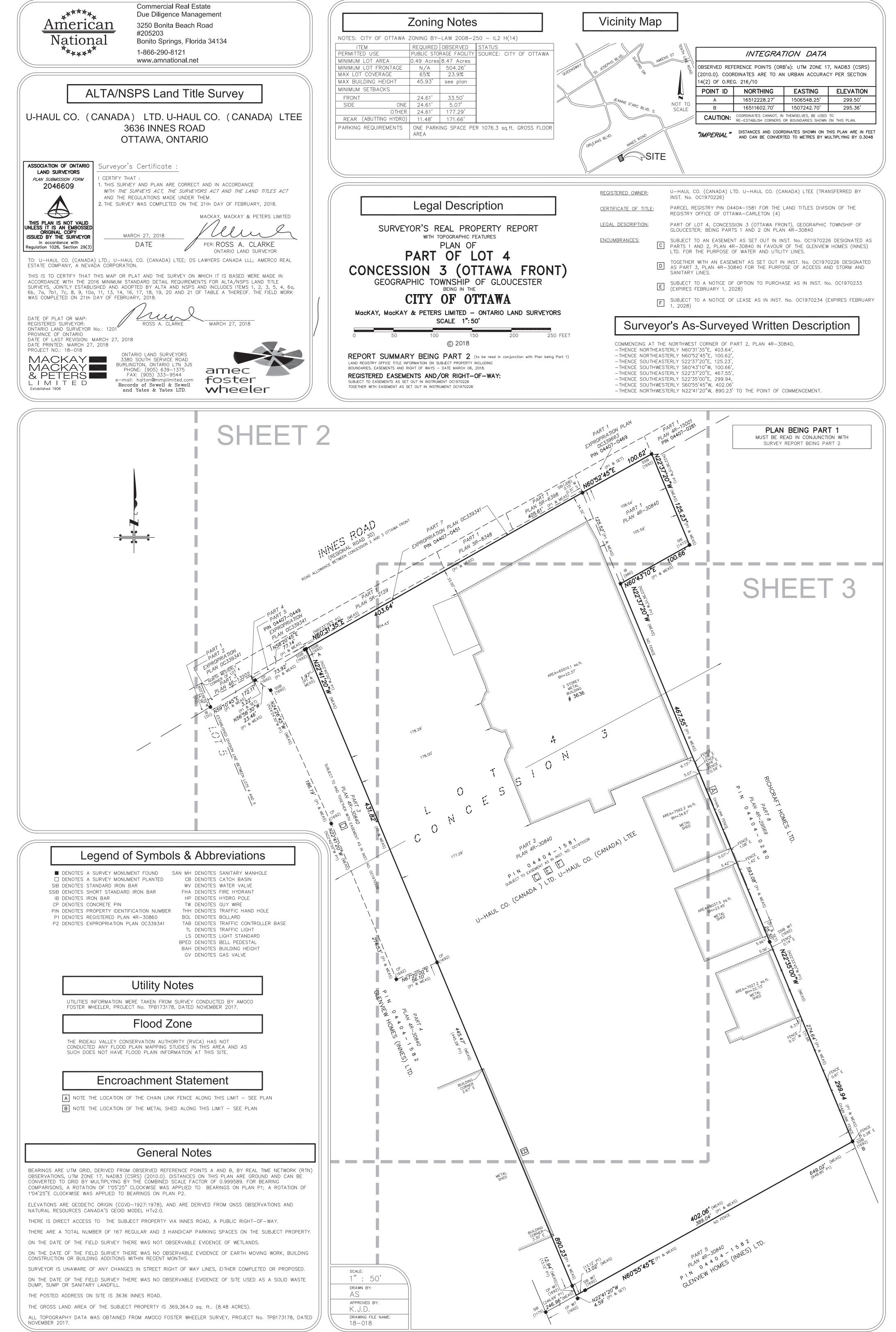
Water, wastewater and stormwater systems required to develop 3636 Innes Road will be designed in accordance with MOE and City of Ottawa's current level of service requirements.

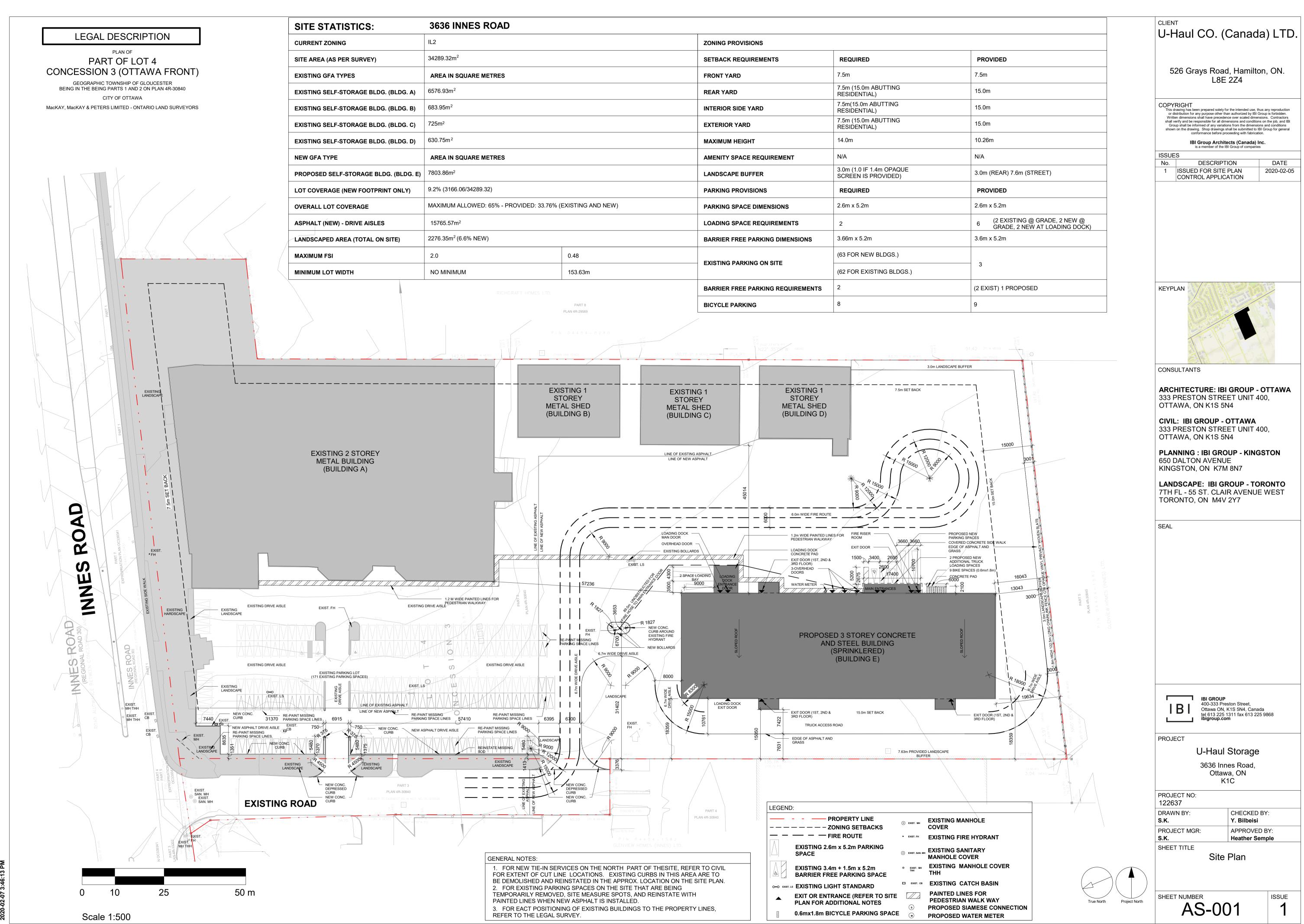
The use of lot level control outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the proposed sediment and erosion control plan during construction will minimize harmful impacts on surface water.

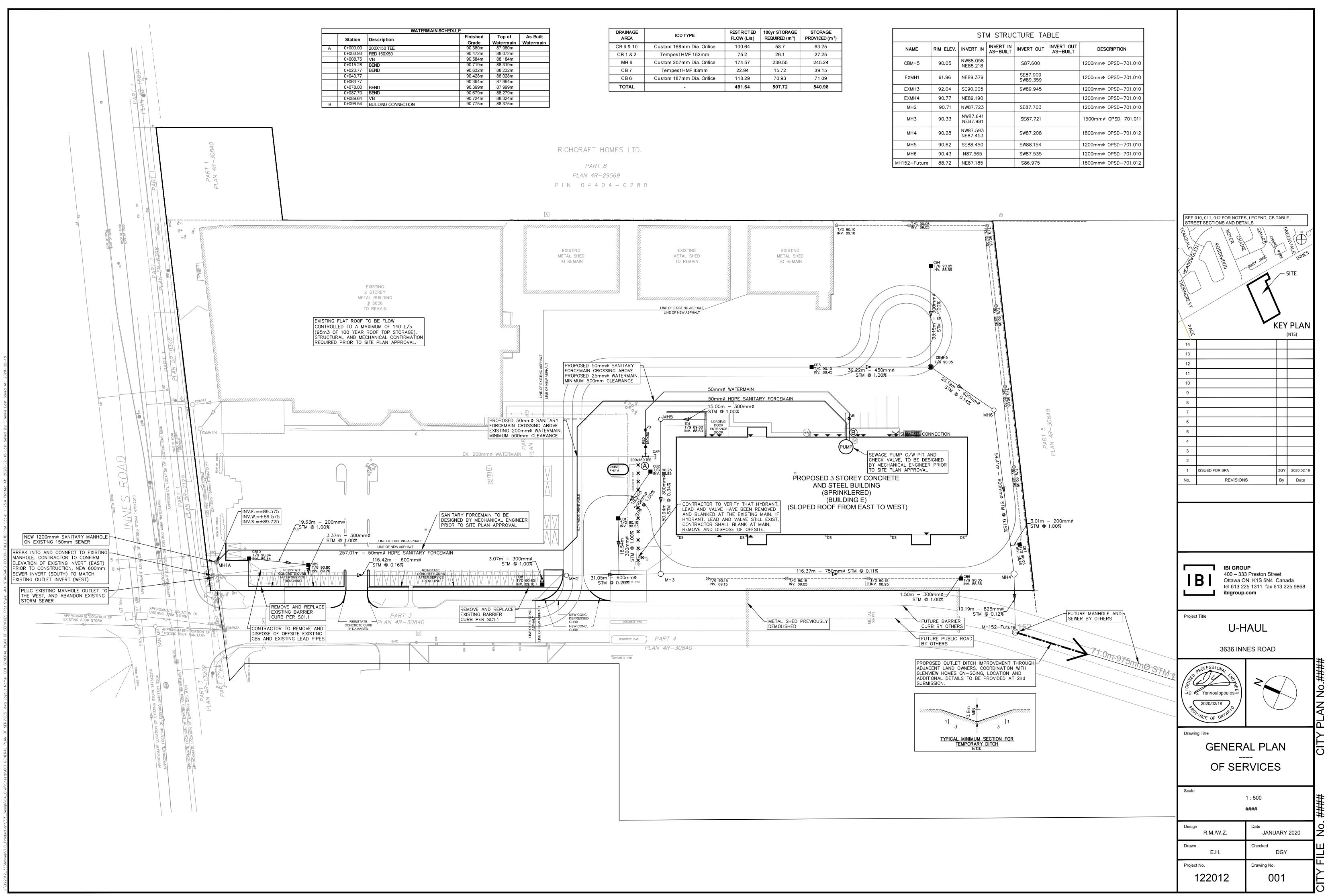
Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

- Site Plan Approval: City of Ottawa
- Water Data Card: City of Ottawa

Report Prepared By:

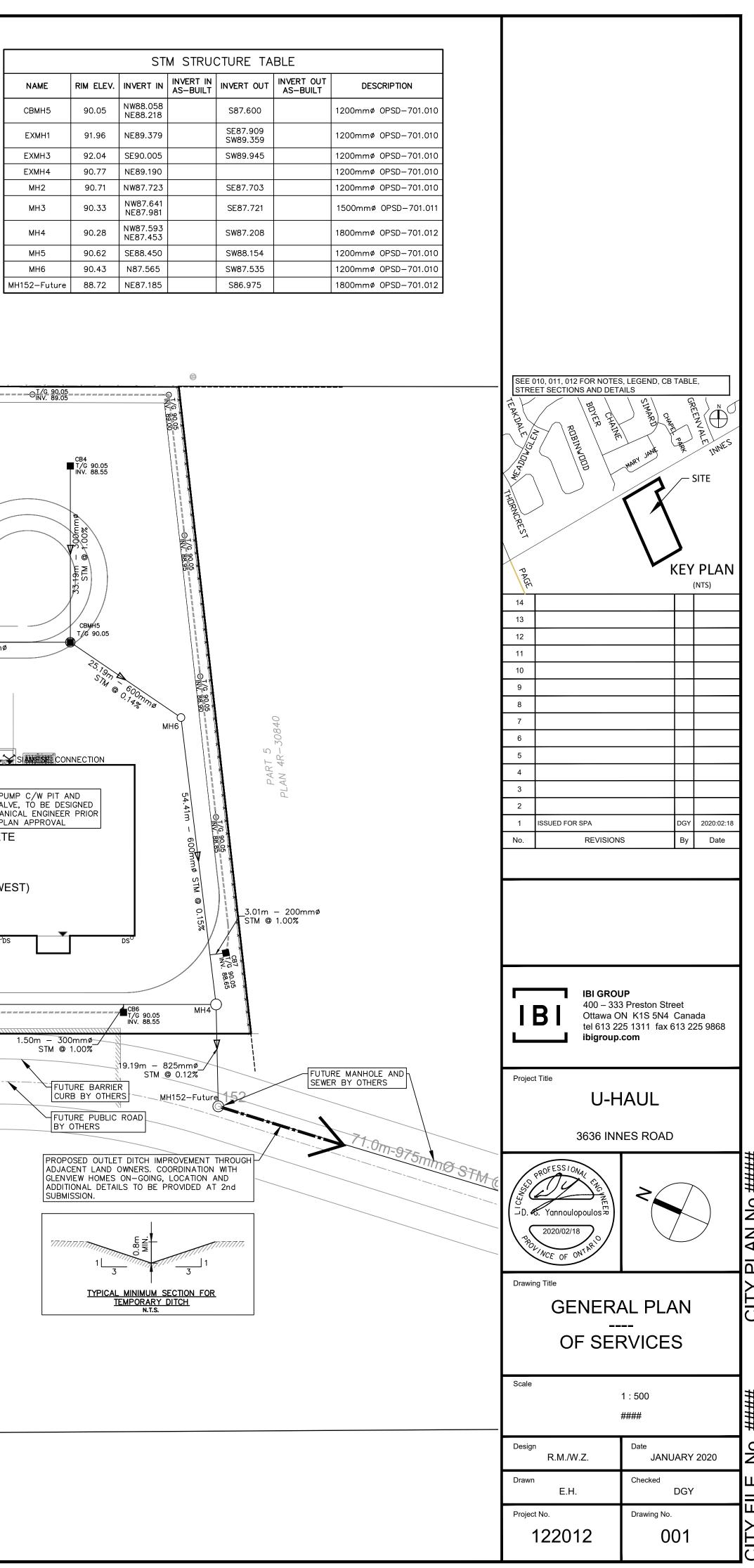

Demetrius Yannoulopoulos, P.Eng. Director


Prthy


Ryan Magladry, CET / Project Manager

J:\122012_3636Innes\6.0_Technical\6.2_Civil_Eng_Muni_Transp\6.2.3_Tech-Reports\Submission #1\CTR_Design Brief_2020-02-18.docx\

APPENDIX A



Finished	Top of	As Built
Grade	Watermain	Watermain
90.380m	87.980m	
90.472m	88.072m	
90.584m	88.184m	
90.719m	88.319m	
90.632m	88.232m	
90.428m	88.028m	
90.394m	87.994m	
90.399m	87.999m	
90.679m	88.279m	
90.724m	88.324m	
 90.775m	88.375m	

DRAINAGE AREA	ICD TYPE	RESTRICTED FLOW (L/s)	100yr STORAGE REQUIRED (m ³)	STORAGE PROVIDED (m ³)
CB 9 & 10	Custom 168mm Dia. Orifice	100.64	58.7	63.25
CB 1 & 2	Tempest HMF 152mm	75.2	26.1	27.25
MH 6	Custom 207mm Dia. Orifice	174.57	239.55	245.24
CB 7	Tempest HMF 83mm	22.94	15.72	39.15
CB6	Custom 187mm Dia. Orifice	118.29	70.93	71.09
TOTAL	-	491.64	507.72	540.98

No.## LAN ٦ CIT

0 Ž Ш

	1					-	WATERMAIN D	WATERMAIN DEMAND CALCIII ATION SHEFT	ATION SHEFT	F							
	_															FILE:	
Ŷ		I STREET					PROJECT :	PROJECT : U-Haul Ottawa, 3636 Innes Road	, 3636 Innes Rt	oad						DATE PRINTED:	18-Feb-20
	OTTAWA, ONTARIO	TARIO					CLIENT :									DESIGN:	W.Z.
GROUP	K1S 5N4															PAGE:	1 OF 1
		RESIDENTIAL	ENTIAL		-NON	NON-RESIDENTIAL (ICI)	(ICI)	AVERAG	AVERAGE DAILY DEMAND (I/s)	(s/I) UNt	MAXIMUI	MAXIMUM DAILY DEMAND (I/s)	4ND (I/s)	MAXIMUM	MAXIMUM HOURLY DEMAND (I/s)	IAND (I/s)	
NODE	SINGLE	TOWN	MEDIUM														FIRE
	FAMILY	HOUSE	DENSITY	DENSITY POPULATION	INDUST.	COMM.	INSTIT.	RESIDENTIAL	D	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	Ū	TOTAL	DEMAND
	UNITS	UNITS	(ha)		(ha)	(ha)	(ha)					_					(I/min)
																-	
Site						1.02			0.30	0.30		0.44	0.44		0.53	0.53	8,000
	POPULATION DENSITY	ENSITY			WATER DEMAND RATES	O RATES		PEAKING FACTORS	JRS		FIRE DEMANDS						
	Single Family	3.4	3.4 persons/unit	Ľ	Residential	350	350 I/cap/day	Maximum Daily			Single Family 10,000 I/min (166.7 I/s)	10,000 l/min (1	66.7 I/s)				
	Semi Detached &	~*		U	Commercial Shopping Center	ping Center		Residential Commercial	2.5	2.5 x avg. day 1.5 x avg. dav	Semi Detached &						
	Townhouse	2.7	2.7 persons/unit			2,500	2,500 L/(1000m2)/day	Maximum Hourly			Townhouse	10,000 l/min (166.7 l/s)	66.7 I/s)				
								Residential	2.2								
	Medium Density		1.8 persons/unit					Commercial	1.8	1.8 x avg. day	Medium Density 15,000 I/min (250 I/s)	15,000 l/min (2	50 l/s)				

Fire Flow Requirement from Fire Underwriters Survey - U-Haul Ottawa, 3636 Innes Road

Building

Floor Are	ea of Largest building Storey Total Floor Area	3,104 3 9,311	m ² m ² m ²		
F = 220C√A					
С	1.0	C =	15	wood frame	
A	9,311 m ²	0-		ordinary	
A	9,311 11			non-combustible	
F	21,229 l/min			fire-resistive	
use	21,000 l/min				
- ·			0.50/		
Occupancy A	djustment			non-combustible	
Use	-25%			limited combustible combustible	
Use	-2370			free burning	
Adjustment	-5250 //	/min		rapid burning	
Fire flow	15,750 l/		2070	apia saining	
Sprinkler Adju	<u>stment</u>			system conforming to	
			-50%	complete automatic s	ystem
Use	-50%				
Adjustment	-7875 l/	/min			
Exposure Adj	ustment			Separation (Charge
				0 to 3m	+25%
Building Face	Separation C	Charge		3.1 to 10m	+20%
				10.1 to 20m	+15%
north	Greater than 45	0%		20.1 to 30m	+10%
east	Greater than 45	0%		30.1 to 45m	+5%
south	Greater than 45	0%			
west	Greater than 45	0%			
Total		0%			
Adjustment		-	l/min		
Fire flow Use		7,875 8,000 133	l/min		

BOUNDARY CONDITIONS

Boundary Conditions For: 3636 Innes Road

Date of Boundary Conditions: 2019-Aug-19

Provided Information:

Scenario	Den	nand
	L/min	L/s
Average Daily Demand	18	0.3
Maximum Daily Demand	28	0.5
Peak Hour	33	0.6
Fire Flow #1 Demand	8,000	133.3

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

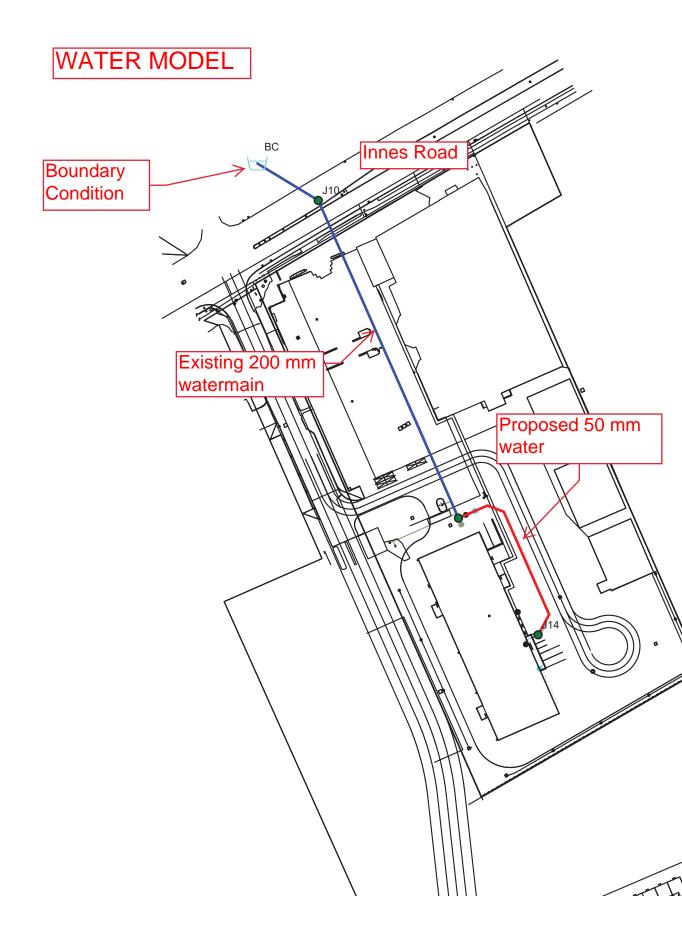
Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.5	56.3
Peak Hour	127.5	51.9
Max Day Plus Fire (8,000) L/min	126.2	50.1

¹Elevation: **90.94 m**

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:


- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

2) Click or tap here to enter text.

3) Click or tap here to enter text.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

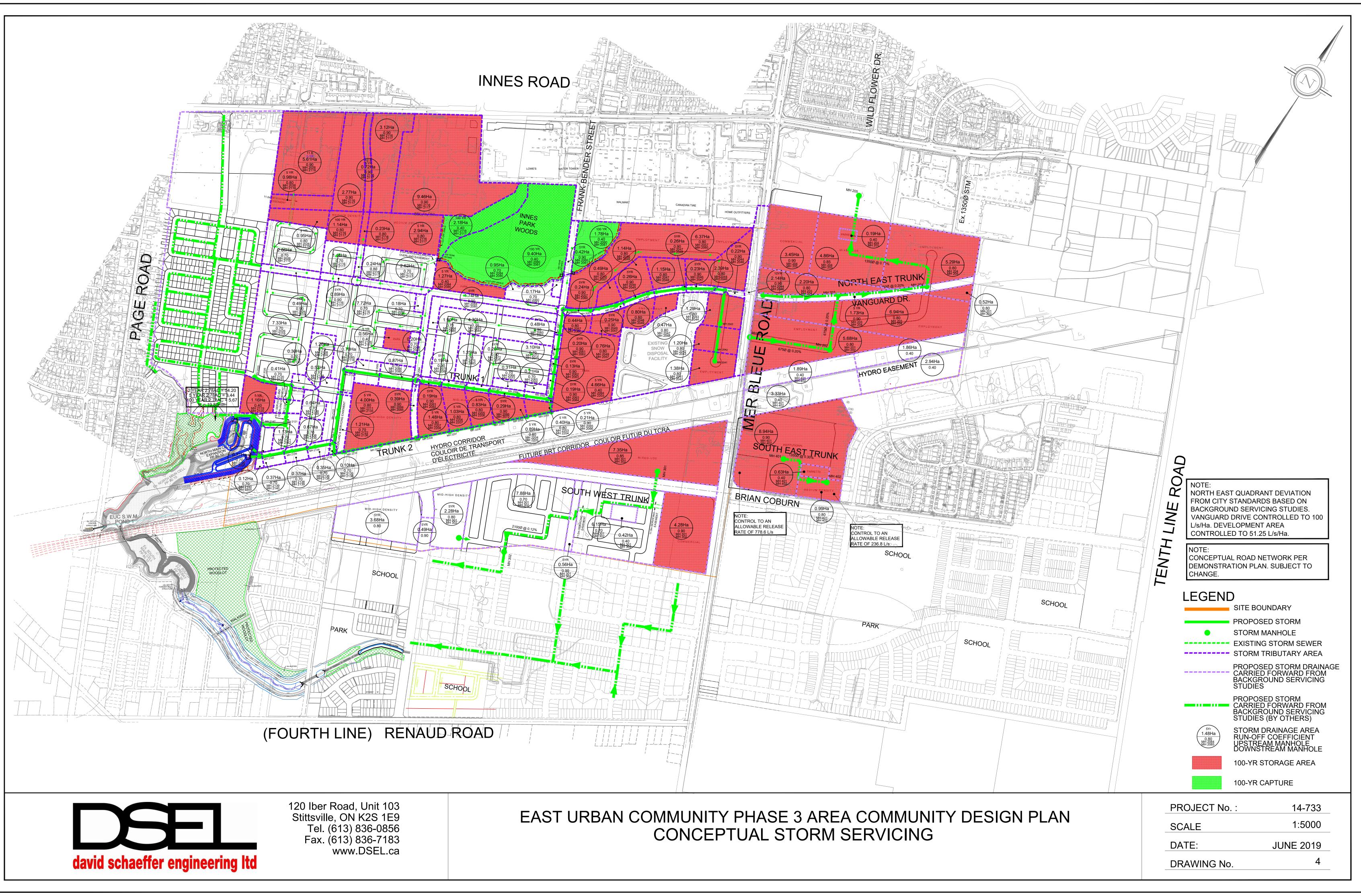
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	J10	0.00	91.50	130.50	382.17
2	J14	0.30	90.80	130.38	387.83
3	J16	0.00	90.40	130.50	392.95

Peak Hour HGL 127.5 m - Junction Report

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	J10	0.00	91.50	127.50	352.77
2	J14	0.55	90.80	127.12	355.95
3	J16	0.00	90.40	127.50	363.54

Max Day + Fire (8,000 l/min) HGL 126.2 m - Fireflow Design Report

Date: Thursday, February 06, 2020, Page 1


Peak Hour HGL 127.5 m - Pipe Report

Status Flow Reversal Count	0	0	0
Status	Open	Open	Open
HL/1000 (m/k-m)	0.01	4.21	0.00
Headloss (m)	00.0	0.38	00.0
Velocity (m/s)	0.02	0.28	0.02
Flow (L/s)	-0.55	0.55	-0.55
Roughness	110.00	100.00	110.00
Diameter (mm)	204.00	50.00	204.00
Length (m)	1.00	89.15	167.93
To Node	BC	J14	J10
From Node To Node	J10	J16	J16
₽	P11	P19	P21
	-	2	ო

Date: Thursday, February 06, 2020, Page 1

APPENDIX B

APPENDIX C

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years Manning 0.013

	Manning 0.013		Arterial Ro	oads Return	Frequency	r = 10 years																								COLITI	-
	LOCA						1			AREA (Ha)			T																I		
		-		2 Y	1		1054			A				100 YE				,	· · · · · ·			Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	1 TIME OF	RATIO
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location From Node	To Node		R				- к			R	_	-	R								O(1/s)	(actual)	(nominal)		(%)	(m)	(1/s)	(m/s)	LOW (min	O/O full
Import Import<	Location	Tortoue	(1.04)		2.70710	2.70710	(1.00)			2.707.00 (1.02)	2.70710	2.70710	(1.04)		2.70710	2.70710	()	(((((())))))	((((((((((((((((((((((((((((((((((((((((Q (1/5)	(uotuur)	(noninar)		(70)	(111)	(1/5)	(11/3)	LOW (IIIII	Q/Q Iuli
	2085	2116	0.70	0.70	1.36	68.69			0.00	14.26	0.00	5.35			0.00	12.43	26.63	43.35	58.42	0.00	99.58	5049	3000	3000	CONC	0.10	119.5	14194	2.01	0.99	0.36
	PARK		0.56	0.40	0.62	69.32			0.00	14.26	0.00	5.35			0.00	12.43															
number 1/2 0/2<													1.13	0.80																<u> </u>	<u> </u>
I 0																														<u> </u>	<u> </u>
NUMENUMES.10S.40V.4S.40	FUTURE EXT. COMM				-								2.04	0.00																<u> </u>	<u> </u>
	FUTURE EXT. COMM		+		-								2.94	0.00																├ ────′	┝───
Image Image <th< td=""><td></td><td>•</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td><u> </u></td></th<>		•	+									_																		+	<u> </u>
Image <td></td> <td></td> <td>0.23</td> <td>0.80</td> <td>0.51</td> <td>106.94</td> <td></td> <td></td> <td>0.00</td> <td>14.26</td> <td>0.00</td> <td>5.35</td> <td></td> <td></td> <td>0.00</td> <td>21.48</td> <td></td>			0.23	0.80	0.51	106.94			0.00	14.26	0.00	5.35			0.00	21.48															
nume 1 1 1 0 0 0 0			0.72	0.90	1.80	108.75			0.00	14.26	0.00	5.35			0.00	21.48															
Image <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>2.18</td> <td>0.40</td> <td></td> <td><u> </u></td> <td>L</td>			-									_	2.18	0.40																<u> </u>	L
Image Image <th< td=""><td></td><td></td><td>+</td><td></td><td>-</td><td></td><td>0.89</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>1</td></th<>			+		-		0.89					-																		-	1
Image Image <t< td=""><td>211/</td><td>211ŏ</td><td>1</td><td></td><td>1</td><td></td><td> </td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td>├</td><td></td><td></td><td>20.10</td><td>41.//</td><td>12.00</td><td>0.00</td><td>93.89</td><td>0033</td><td>3000</td><td>3000</td><td>CONC</td><td>0.13</td><td>0.00</td><td>10103</td><td>2.29</td><td>0.62</td><td>0.53</td></t<>	211/	211ŏ	1		1							-	+	├			20.10	41.//	12.00	0.00	93.89	0033	3000	3000	CONC	0.13	0.00	10103	2.29	0.62	0.53
Image: Imag		1											1	\vdash																+'	
TUPLE CT. MED. No. o. No. <	2118	2119										_	1				28.78	41.17	55.46	0.00	94.49	8696	3000	3000	CONC	0.10	80.5	14194	2.01	0.67	0.61
NM I 1 0	FUTURE EXT. COMM		·										İ																		
Image: Property im	FUTURE EXT. MED.		0.00	0.00	-							-	0.95	0.80																ļ'	
-	PARK		1		-							-																		 '	
110 120 7.3 0.70 1.88 1.88 1.90 7.0 0.00 5.87 0.00 8.13 8.44 6.40 0.00 8.00 1.004 300 0.00 0.00 0.00 1.84 0.00 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0.05</td> <td>0.00</td> <td></td> <td><u> </u></td> <td> </td>					-							-	0.05	0.00																<u> </u>	
128 121 041 0.70 0.80 15.80 0.00 28.10 98.40 0.10 97.20 0.50 0.500 <td>2110</td> <td>2120</td> <td></td> <td></td> <td></td> <td></td> <td>0.40</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0.95</td> <td>0.80</td> <td></td> <td></td> <td>20.45</td> <td>10 54</td> <td>54.60</td> <td>0.00</td> <td>03.03</td> <td>10463</td> <td>3000</td> <td>3000</td> <td>CONC</td> <td>0.10</td> <td>47.0</td> <td>1/10/</td> <td>2.01</td> <td>0.30</td> <td>0.74</td>	2110	2120					0.40					-	0.95	0.80			20.45	10 54	54.60	0.00	03.03	10463	3000	3000	CONC	0.10	47.0	1/10/	2.01	0.30	0.74
121 142 131 0.70 242 132 0.70 242 132 0.70 243 132 0.70 243 134 0.70 243 0.70 0.					-		0.49					-																		-	+
DT NUK I I I I <td></td> <td></td> <td></td> <td></td> <td>1. A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1. A							1																			
2 2 2 2 6 7 0.80 15.06 5.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.86 1.10 1.88 1.86 1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 0.00 0.00 1.55 0.00 0.00 1.55 0.00 0.00 1.55 0.01 1.00 1.88 1.88 1.85 0.50 0.00 2205 2205 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 1.66 6.27 0.01 1.00 1.88<	To TRUNK 2											_																-	-		
2 2 2 2 6 7 0.80 15.06 5.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.86 1.10 1.88 1.86 1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 0.00 0.00 1.55 0.00 0.00 1.55 0.00 0.00 1.55 0.01 1.00 1.88 1.88 1.85 0.50 0.00 2205 2205 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 1.66 6.27 0.01 1.00 1.88<																															
2822 2833 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 7.33 96.4 0.00 16.8 17.3 95.4 0.00 15.0 <th< td=""><td>TRUNK 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td><u> </u></td></th<>	TRUNK 2																													<u> </u>	<u> </u>
Image: Image:			+		-							-																			
2203 2204 4.64 0.40 5.10 2.11 0 0.00 0.00 0.00 0.00 0.00 1.311 66.62 9.21 0.00 14.79 14.44 150 150 0.00 1.00 188 1.81 1.55 0.83 2205 2205 0.83 0.80 1.85 2.433 0.00 0.00 0.00 0.00 0.00 0.00 1.68.6 59.28 80.21 0.00 1.87.5 1.80.7 1.86.6 57.8 7.82.5 0.00 1.87.5 1.80.7	2202	2203				-											11.55	/1.31	90.04	0.00	165.49	1074	1350	1350	CONC	0.10	110.0	1000	1.10	1.55	0.64
2204 2205 0.89 0.80 1.88 2.00 0.00 </td <td>2203</td> <td>2204</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>13 11</td> <td>66 62</td> <td>90.21</td> <td>0.00</td> <td>154 38</td> <td>1406</td> <td>1350</td> <td>1350</td> <td>CONC</td> <td>0.10</td> <td>110.0</td> <td>1688</td> <td>1 18</td> <td>1 55</td> <td>0.83</td>	2203	2204			-							-					13 11	66 62	90.21	0.00	154 38	1406	1350	1350	CONC	0.10	110.0	1688	1 18	1 55	0.83
2206 2207 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 5.80 1.50 1.500												-																		1	
2207 2208 0.00 0.00 2228 0.00	2205	2206	0.83	0.80	1.85	24.93			0.00	0.00	0.00	0.00			0.00	0.00	16.08	59.32	80.21	0.00	137.12	1479	1350	1350	CONC	0.12	110.0	1849	1.29	1.42	0.80
2209 1.48 0.80 3.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00	2206	2207	1.03	0.80	2.29				0.00	0.00	0.00	0.00			0.00	0.00	17.50	56.43	76.26	0.00	130.30	1536	1500	1500		0.10	109.5	2235	1.26	1.44	0.69
2209 210 0.00 30.51 0.30 0.98 0.90 0.98 0.00 0.00 0.00 23.58 49.49 67.39 0.00 115.03 1589 1500												-																		-	+
2210 0.00			1.48	0.80	-		0.00					-																		-	1
2211 23.7 0.80 8.8 9.9.4 0.00 0.98 0.00 0.00 2.0.3 47.62 64.23 0.00 1936 1650 CONC 0.10 35.0 2882 1.35 0.43 0.67 2212 2136 0.10 0.70 0.68 40.22 0.00 0.98 0.00 0.00 0.00 23.46 47.05 64.37 0.00 108.27 1922 1650 1650 CONC 0.10 35.0 2882 1.35 0.43 0.67 2136 0.12 0.70 0.58 42.57 0.00 0.98 0.00 0.00 0.00 23.46 47.05 64.37 0.00 108.27 1922 1650 1650 CONC 0.10 9.05 2690 1800 1650 CONC 0.10 7.0 <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.39</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>├</td> <td></td> <td>-</td> <td>+</td>			0.00	0.00			0.39					-		├																-	+
2212 2136 0.10 0.70 0.19 39.54 0.00 0.98 0.00 0.00 0.00 23.64 47.05 63.47 0.00 108.27 1650 CONC 0.10 95.0 28.82 1.35 0.43 0.67 2136 2138 1.21 0.70 2.55 42.57 0.00 0.88 0.00 0.00 0.00 23.03 47.62 64.23 0.00 108.27 62.40 0.00 1800 CONC 0.10 90.5 3635 1.43 0.43 0.57 2138 2139 0.70 0.72 43.29 0.00 0.98 0.00 0.00 0.00 24.09 46.27 62.40 0.00 1800 1800 CONC 0.10 77.0 3635 1.43 0.90 0.98 0.00 0.00 24.09 46.27 62.40 0.00 1800 1800 CONC 0.10 77.0 3635 1.43 0.90 0.98 0.00 0.00 24.42 55.8 0.00 101.88 2107 1800 1800 CONC			+		-							1	1																	-	1
Image: Note of the state					-							-	1																	-	1
Image: Normal State Image: Normal State<			+		-						0.00	-																			
2138 2139 0.67 0.70 1.30 44.60 0.00 0.98 0.00 0.00 0.00 24.99 46.27 62.00 0.00 106.33 2124 1800 1800 CONC 0.10 77.0 3635 1.43 0.90 0.58 2140 2141 0.17 0.70 0.72 45.32 0.00 0.98 0.00 0.00 0.00 24.98 45.19 60.92 0.00 103.89 2107 1800 1800 CONC 0.10 77.0 3635 1.43 0.80 0.58 2141 2142 0.37 0.70 0.72 46.27 0.00 0.98 0.00 0.00 0.00 26.04 44.80 59.58 0.00 101.08 2007 1800 1800 CONC 0.10 77.0 3635 1.43 0.80 0.58 ontibultor Figure 14 0.10 0.20 0.00 0.00 26.35 0.00 26.34 39.56 53.28 0.00 101.08 2003 3000 CONC 0.10 32.5 14	2136	2138															23.03	47.62	64.23	0.00	109.59	2090	1800	1800	CONC	0.10	90.5	3635	1.43	1.06	0.57
2139 2140 0.37 0.70 0.72 45.32 0.00 0.98 0.00 0.00 0.00 24.98 45.19 60.92 0.00 103.09 2107 1800 1800 CONC 0.10 73.5 3635 1.43 0.86 0.58 2140 2141 0.12 0.70 0.23 45.55 0.00 0.98 0.00 0.00 0.00 28.04 43.98 59.88 0.00 101.69 2072 1800 1800 CONC 0.10 17.0 3635 1.43 0.86 0.58 ontribuic rom FULK1 Pipe 2121-2143 152.79 0 17.71 0 5.35 0.00 28.13 30.54 9.6 53.28 0.00 90.75 1229 3000 3000 CONC 0.10 32.5 14.14 0.21 0.27 0.86 2142 2143 0.00 199.06 0.00 18.69 0.00 5.35 0.00 28.13 30.81 39.33 52.96 0.00 90.06 0.00 14.9 2.0 0.27 <		0100			-							0.00					04.00	40.07	00.10	0.00	100.10	0101	1000	1000	0.0110	0.10	77.0	0005	4.10		0.50
2140 2141 0.12 0.70 0.23 45.55 0.00 0.98 0.00 0.00 0.00 0.00 25.84 44.20 59.58 0.00 101.59 2072 1800 1800 CONC 0.10 17.0 3635 1.43 0.20 0.57 2141 2142 0.37 0.70 0.72 46.27 0.00 0.98 0.00 0.00 0.00 26.04 43.98 59.28 0.00 101.69 2072 1800 1800 CONC 0.10 17.0 3635 1.43 0.20 0.57 ontribution From TRUNK 1, Pip 2121-2143 152.79 17.71 16 5.35 0.00 28.13 30.54 39.56 53.28 0.00 90.75 12229 3000 2000 CONC 0.10 32.5 1414 2.01 0.27 0.86 2142 2143 HW 0 0.00 18.69 0.00 5.35 0.00 28.13 30.81 39.33 52.96 0.00 90.00 14194 2.01 0.20 0.86 21																															
2141 2142 0.37 0.70 0.72 46.27 0.00 0.98 0.00 0.00 0.00 26.04 43.98 59.28 0.00 1800 CONC 0.10 95.0 3635 1.43 1.11 0.58 ontif 0.00 152.79 0 17.71 0 5.35 0 28.13 30.54 5.32 0.00 90.05 1229 3000 CONC 0.10 95.0 3635 1.43 1.11 0.58 2143 HW 0.00 199.06 0.00 18.69 0.00 5.35 0.00 28.13 30.54 39.56 53.28 0.00 90.75 1229 3000 CONC 0.10 32.5 1419 2.01 0.27 0.86 2143 HW 0 0.00 18.69 0.00 5.35 0.00 28.13 30.81 39.35 5.28 0.00 90.75 1229 3000 CONC 0.10 32.5 1.41 0.32 0.32 1419 2.01 0.32 1419 2.01 0.32 0.32																															
ontribution From Full NR 1, Pipe 2121-2143152.79152.79152.79152.79152.79152.79152.79152.79152.79152.79141.942.010.270.86214221430.00199.060.0018.690.005.350.0028.1330.5439.5653.280.0090.751222930003000CONC0.1032.5141.942.010.270.862143HW00.00199.060.0018.690.005.3500.0028.1330.8139.3352.960.0090.071222930003000CONC0.1032.5141.942.010.270.86O PONIII </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>+</td> <td></td> <td>1</td> <td>1</td>													1	+																1	1
2142 2143 0.00 199.06 0.00 18.69 0.00 5.35 0.00 28.13 30.54 39.56 53.28 0.00 90.75 12229 3000 2000 20.00 32.5 14194 2.01 0.27 0.86 2143 HW 0.00 199.06 0.00 18.69 0.00 5.35 0.00 28.13 30.81 39.33 52.96 0.00 90.20 12162 3000 3000 CONC 0.10 39.01 14194 2.01 0.32 0.86 0 FOND 1 1 1 0 1 1 0 0 2.01 0.85 0.00 28.13 30.81 39.33 52.96 0.00 90.00 120.29 30.00 20					1						0.00		1																	1 1	
O POND 1 199.06 18.69 5.35 28.13 30.81 Image: Constraint of the constraint of t	2142	2143	Ĺ		0.00	199.06				18.69	0.00	5.35			0.00		30.54	39.56	53.28									14194	2.01	0.27	
Image: Control in the image		HW			0.00				0.00		0.00				0.00			39.33	52.96	0.00	90.20	12162	3000	3000	CONC	0.10	39.0	14194	2.01	0.32	0.86
= 2.78 AIR, where Notes: = Peak Flow in Litres per second (L/s) 1) Ottawa Rainfall-Intensity Curve = Areas in hectares (ha) 2) Min. Velocity = 0.80 m/s = Rainfall Intensity (mm/h) Sile Ref:	TO POND 1					199.06				18.69		5.35				28.13	30.81													 '	
= 2.78 AIR, where Notes: = Peak Flow in Litres per second (L/s) 1) Ottawa Rainfall-Intensity Curve = Areas in hectares (ha) 2) Min. Velocity = 0.80 m/s = Rainfall Intensity (mm/h) Sile Ref:	Definitions																					Destand			DDOIECT					<u> </u>	L
= Peak Flow in Litres per second (L/s) LOCATION: = Areas in hectares (ha) 2) Min. Velocity = 0.80 m/s = Rainfall Intensity (mm/h) Date: Description: Date: Sheet No.									ז	Notes:												Designed:			r KUJEUI:			Ort	eans FLIC	MUC	
= Areas in hectares (ha) 2) Min. Velocity = 0.80 m/s = Rainfall Intensity (mm/h) Date: Sheet No.		es per seco	nd (L/s)								sity Curve											Checked:	n.D.		LOCATIO	N:		01			
Dwg. Reference:File Ref:Date:Sheet No.	A = Areas in hectares	(ha)	< · ···/							,													V.C.					City of	f Ottawa		
= Runoff Coefficient 2018 2	I = Rainfall Intensity (mm/h)								-												Dwg. Refe	rence:		File Ref:			Date:		Sheet No.	
	R = Runoff Coefficien	it																								14-733		Octobe	er 2018		2

From:	Ryan Magladry
Sent:	Monday, February 10, 2020 3:23 PM
То:	Ryan Magladry
Subject:	FW: UHO - Glenview servicing

From: Sam Bahia <<u>s.bahia@novatech-eng.com</u>>
Sent: Thursday, February 6, 2020 4:35 PM
To: Ryan Magladry <<u>rmagladry@IBIGroup.com</u>>
Cc: Amy Zhuang <<u>Amy.Zhuang@ibigroup.com</u>>; Ben Sweet <<u>b.sweet@novatech-eng.com</u>>
Subject: RE: UHO - Glenview servicing

Hi Ryan

Based on discussion with Ben, we can likely accommodate the 87.95 obvert during detailed design stage or earlier, if we can.

We can discuss timing next Wed.

Thanks

Sam Bahia, P.Eng., Project Manager | Land Development

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 285 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Ryan Magladry <<u>rmagladry@IBIGroup.com</u>>

Sent: Tuesday, February 4, 2020 3:16 PM

To: Sam Bahia <<u>s.bahia@novatech-eng.com</u>>

Cc: Amy Zhuang <<u>Amy.Zhuang@ibigroup.com</u>>; Ben Sweet <<u>b.sweet@novatech-eng.com</u>>

Subject: RE: UHO - Glenview servicing

Hey Sam,

I tried calling you, and rather than a voicemail decided to email...

Given that the spill elevation of the ROW is confirmed to be lowered to 90.32. We have many on-site CB's around the 90.10-90.15 mark. With an obvert of 88.20 at the connection, we are barely making minimum cover throughout our site.

Is this obvert elevation you provided based on my original request of an obvert 88.25 – which was based on a ROW spill elevation of 90.65? Or is it based on a flat pipe design? The cad file we have on file has an invert elevation of 86.46, which would be an obvert of +/- 87.44. Is it possible for the connecting obvert to be lowered by 300mm to **87.95**? This would still be above your current design (CAD file we received), and the additional foot would keep us from insulating most of our pipes.

Thanks,

Ryan Magladry CET

Project Manager

IBI GROUP 400-333 Preston Street

Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64061 fax +1 613 225 9868

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message. NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Sam Bahia <<u>s.bahia@novatech-eng.com</u>>
Sent: Friday, January 31, 2020 4:38 PM
To: Ryan Magladry <<u>rmagladry@IBIGroup.com</u>>
Cc: Amy Zhuang <<u>Amy.Zhuang@ibigroup.com</u>>; Ben Sweet <<u>b.sweet@novatech-eng.com</u>>
Subject: RE: UHO - Glenview servicing

Hi Ryan

There may be a revision to our Draft Plan's Street 9 / 2 layout, which will change sewer inverts/road grades. But I think the current layout is as long and high as it would get, so it may improve. Notwithstanding, you can use the following information as the basis of your design:

- **STMMH 152** Storm obvert of the **975mm** diameter storm (assuming a pipe size to accommodate UHO/cost sharing) will be **88.20m**
- The roadway spill overelevation point at the edge of pavement within Street 9 near the STMMH 152 can be lowered to provide a spill over elevation of 90.32 at UHO's south-west property corner/ROW.

I trust this meets your needs for the time being, and we'll coordinate cost sharing/detailed design in due course. Is you client willing to meet over the next 2 weeks to discuss those outstanding issues?

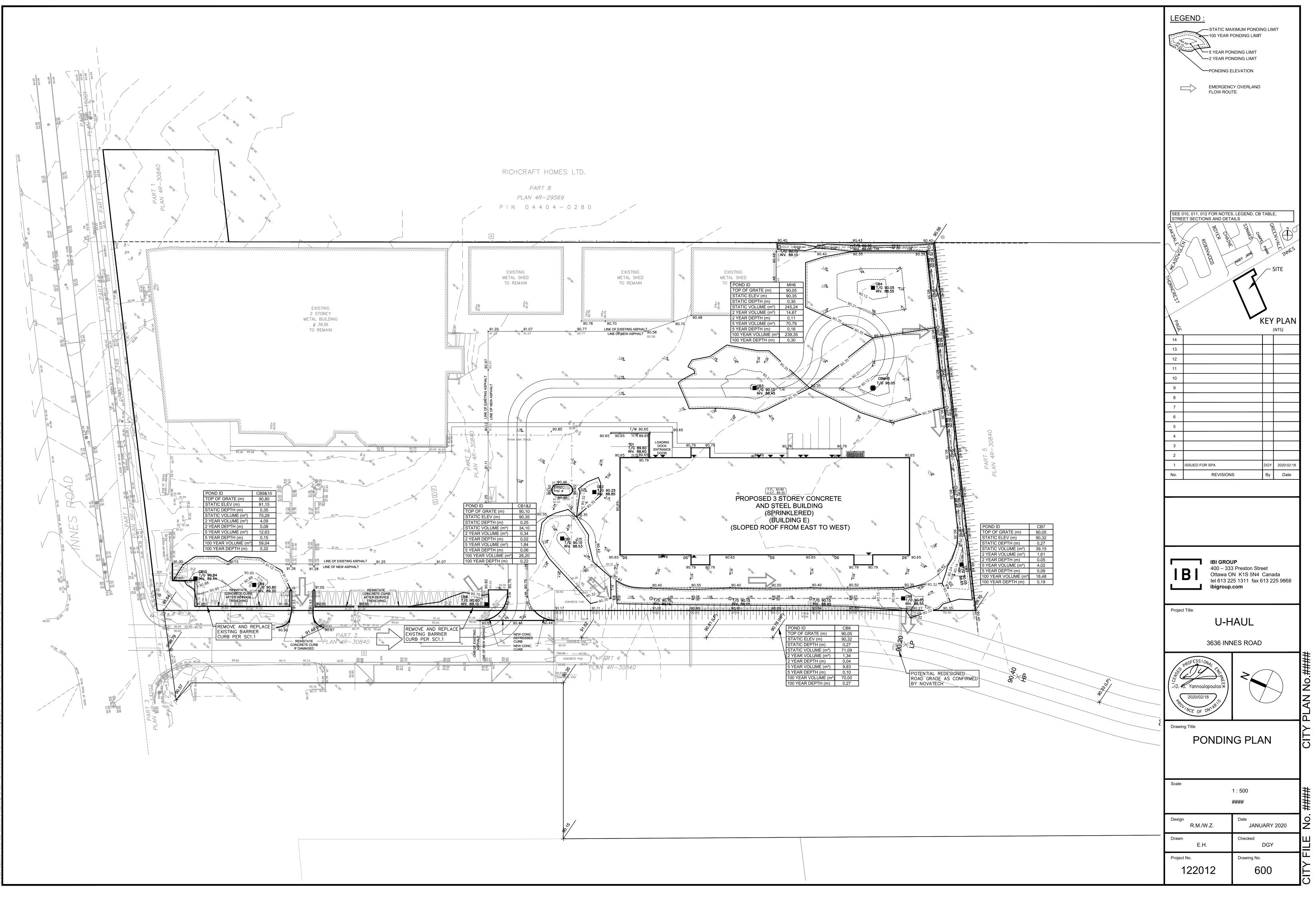
Regards

Sam Bahia, P.Eng., Project Manager | Land Development

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 285 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868


ibigroup.com

	LOCATION						AREA	A (Ha)									R	RATIONAL D										SEWER DATA				
STREET	AREA ID	FROM	то	C=		C=	C=	C= C=	C=	C= C=	IND	CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100)	2yr PEAK	5yr PEAK	10yr PEAK	100yr PEAK FIXED			LENGTH				VELOCITY		CAP (2yr)
JIKEET	AREA ID	FROM	10	0.20	0.25 0.40	0.50	0.57	0.65 0.65	0.70	0.75 0.90	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s) FLOW (L/s	FLOW (L/s)	FLOW (L/s) FLOW (L/s)	FLOW (L/s)	(L/s)	(m)	DIA	W H	(%)	(m/s)	(L/s)	(%)
	ROOF CB10, CB9, CB8	EXMH11 EXMH1										1.50	10.00 10.44	0.44	10.44	76.81 75.17	104.19	122.14 119.50		115.30 227.58			268.05	115.30		44.27			1.50 0.16	1.693 0.878	8.25 28.65	
	CB10, CB9, CB8	EXIVITI	IVIH2						_	0.01	1.53	3.03	10.44	2.21	12.65	/5.1/	101.95	119.50	174.07	227.58	308.03	361.76	528.80	227.58	200.22	116.42	600		0.16	0.878	28.00	11.18%
	CB2	CB2	CB1						-	0.15	0.38	0.38	10.00	0.30	10.30	76.81	104.19	122 14	178.56	28.82	39.10	45.84	67.01	28.82	34 22	18.71	200		1.00	1.055	5.39	15.76%
	CB1	CB1	MAIN			0.12				0.10		0.54	10.00	0.22	10.22	76.81	104.19	122.14	178.56	41.64	56.48	66.21	96.80	41.64	100.88		300		1.00	1.383	59.25	
	001	MH2	MH3			0.12						3.57	12.65	0.53	13.17	67.95	92.02	107.81		242.54			562.26	242.54		31.05			0.20	0.982	43.93	
								1																								
	TD1	TD1	MH5							0.01		0.03	10.00	0.18	10.18	76.81	104.19	122.14		1.92	2.61	3.06	4.47	1.92		15.00			1.00	1.383	98.96	
		MH5	MH3								0.00	0.03	10.18	1.05	11.23	76.12	103.25	121.03	176.92	1.90	2.58	3.03	4.43	1.90	58.82	50.94	300		0.34	0.806	56.92	96.76%
	CB6	CB6	MAIN MH4							0.53		1.11	10.00	0.02	10.02	76.81	104.19	122.14	178.56	84.87	115.14	134.97	197.32	84.87	100.88	1.50	300		1.00	1.383	16.01	15.87%
		MH3	MH4								0.00	4.70	13.17	2.30	15.47	66.44	89.96	105.39	153.96	312.26	422.80	495.29	723.54	312.26	385.20	116.37	750		0.11	0.845	72.93	18.93%
	CB3	CB3	CBMH5			1	+	<u>├</u>	+	0.74	1.85	1.85	10.00	0.36	10.36	76.81	104.19	122.14	178.56	142.20	192.91	226.14	330.60	142.20	297 43	39.22	450		1.00	1.812	155 23	52.19%
	663	005	CDIVIT15							0.74	1.00	1.05	10.00	0.50	10.50	70.01	104.19	122.14	170.30	142.20	132.31	220.14	550.00	142.20	231.43	33.22	430		1.00	1.012	155.25	JZ.1370
	CB4	CB4	CBMH5			1				0.18	0.45	0.45	10.00	0.40	10.40	76.81	104.19	122.14	178.56	34.59	46.92	55.01	80.42	34.59	100.88	33.19	300		1.00	1.383	66.29	65.71%
	CBMH5	CBMH5								0.18	0.45	2.75	10.40	0.51	10.91	75.30	102.13	119.71	174.98	207.25	281.07	329.46	481.59	207.25	239.68	25.19	600		0.14	0.821	32.43	13.53%
	CB7	CB7	MAIN							0.11		0.28		0.05	10.05	76.81	104.19	122.14		21.14		33.62	49.14	21.14		3.01			1.00	1.055		38.22%
		MH6	MH4								0.00	3.03	10.91	1.07	11.98	73.47	99.61	116.75	170.64	222.44	301.57	353.44	516.59	222.44	248.09	54.41	600		0.15	0.850	25.65	10.34%
			MUAGO								0.00	7 70	45.47	0.04	45.04	00.00	00.07	00.40	4.40.00	400.00	004.40	740.50	4 00 4 00	400.00	540.75	40.40	005		0.40	0.040	40.00	0.040/
		MH4	-									7.73	15.47	0.34	15.81	60.68	82.07	96.10	140.33	468.89	634.16	742.59	1,084.32	468.89	518.75	19.19	825		0.12	0.940	49.86	9.61%
			Ditch								1.13	TRUE										_										
									-									1			1	-										+
									-																							
																		1												1		
								1																								
		-							-									-		_												-
								<u>├── </u>		╂──┤───																						
						1	+				1	+					+			1												
									-	1 1	1									1												
								<u>i</u>		1																						
						I	\vdash				I	 				ļ	 		ļ							ļ				ļ		
Definitional				Notoci		1					<u> </u>		Deciancel		W/7				No		1	1		Baviaian	l	L				Dete	I	1
Definitions: Q = 2.78CiA, where:				Notes:	nings coefficien	t(n) =	0.012						Designed:		W.Z. R.M.				No.				Servicing Brief - S	Revision	1					Date 2020-02-18		
Q = Peak Flow in Litre	s per Second (L/s)			r. wan	ings coenicien	n (11) –	0.013								IX.IVI.				1.	+			Servicing Brief - 3	JUDITIISSIOTI INO	. 1					2020-02-18		
A = Area in Hectares (1									Checked:		D.G.Y.				1	1												
	millimeters per hour (n	nm/hr)		1									Shooked.		2.0.1.					1												
[i = 732.951 / (TC+6		2 YEAR																		1												
[i = 998.071 / (TC+6		5 YEAR											Dwg. Refe	rence:	122012-50	0			1	1												
[i = 1174.184 / (TC+		10 YEAR																		File R	eference:				Date:					Sheet No:		
[i = 1735.688 / (TC+	6.014)^0.820]	100 YEAR																		1220	12-6.2.4			2	2020-02-18					1 of 1		

STORM SEWER DESIGN SHEET

3636 Innes Road City of Ottawa U-Haul Ottawa

2_3636Innes/7.0_Production/7.3_Design/04_Civil\Sheets\600 PONDING PLAN.dwg Layout Name: 600 PONDING PLAN Plot Style: AIA STANDARD-FULL.CTB Plot Scale: 1:25.4 Plotted At: 2020-02-18 Last Saved By: EHenrie Last Saved At: 2020-02-

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

STORMWATER MANAGEMENT

Formulas and Descriptions

 i_{2yr} = 1:2 year Intensity = 732.951 / (T_c+6.199)^{0.810} i_{5yr} = 1:5 year Intensity = 998.071 / (T_c+6.053)^{0.814} i_{100yr} = 1:100 year Intensity = 1735.688 / (T_c+6.014)^{0.820} T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (5yr C=0.9 tc =12min)

A site =	3.32 Ha	Area Received from Novatech
$T_c =$	12.00 min	
C=	0.90	
I _{5yr} =	94.70 mm/hr	
Q _{restricted} =	786.60 L/s	

Uncontrolled Release (Q uncontrolled = 2.78*C*i 100yr *A uncontrolled)

<i>C</i> =	1.0 (C=0.9 increase by 20% for 100year storm, max C=1.0)
$T_c =$	10 min
i _{100yr} =	178.56 mm/hr
$A_{uncontrolled} =$	0.31 Ha

Q _{uncontrolled} =	153.88 L/s
-	

Maximum Allowable Release Rate (Q_{max allowable} = Q_{restricted} - Q_{uncontrolled})

Q _{max allowable} = 632.72 L/s

MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding)

Drainage Area	EX Roo					Drainage Area	EX Roof					Drainage Area	EX Roof				
Area (Ha)	0.60					Area (Ha)	0.600					Area (Ha)	0.600				
C =	1.0	0 Restricted Flow Q _r (I	_/s)=	140.00		C =	0.90) Restricted Flow Q _r (L/s)=	140.00		C =	0.90) Restricted Flow Q _r (L	./s)=	140.00	
		100-Year Pondi	ng					5-Year Pondin	g					2-Year Ponding	g		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
7	211.67	353.06	140.00	213.06	89.49	3	166.09	249.33	140.00	109.33	19.68	5.0	103.57	155.48	140.00	15.48	4.64
9	188.25	314.01	140.00	174.01	93.96	4	152.51	228.95	140.00	88.95	21.35	5.2	102.10	153.27	140.00	13.27	4.14
11	169.91	283.40	140.00	143.40	94.65	5	141.18	211.94	140.00	71.94	21.58	5.4	100.67	151.12	140.00	11.12	3.60
13	155.11	258.72	140.00	118.72	92.60	6	131.57	197.51	140.00	57.51	20.70	5.6	99.28	149.05	140.00	9.05	3.04
15	142.89	238.35	140.00	98.35	88.51	7	123.30	185.10	140.00	45.10	18.94	5.8	97.94	147.03	140.00	7.03	2.45
		Sto	rage (m ³)					Sto	rage (m ³)					Stor	age (m ³)		
-	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	94.65	0.00	95	0.00		0.00	21.58	0.00	95	0.00		0.00	3.60	0.00	95	0.00
				overflows to:	CB9&10					overflows to:	CB9&10					overflows to:	CB9&10

BBO IECT.	3636 Innes Rd
DATE:	
	122012-6 2 4
REV #:	-
DESIGNED BY:	W.Z. & R.M.
CHECKED BY:	D.G.Y.

	CB9&10	7				Drainage Area	CB9&10	7				Drainage Area	CB9&10	2			
Drainage Area Area (Ha)	0.400					Area (Ha)	0.400					Area (Ha)	0.40				
;=		0 Restricted Flow Q _r (L/s)=	100.64	100	C =	0.90) Restricted Flow Q _r (L/s)=	100.64		C =		0 Restricted Flow Q _r (L/s)=	100.64	
		100-Year Pondi	ng					5-Year Pondin	g		•		•	2-Year Pondin	g		
T _c	;	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	;	Peak Flow		0.0	Volume	T _c		Peak Flow	0	0.0	Volume
Variable	I _{100yr}	Q _p =2.78xCi _{100yr} A	Qr	$Q_p - Q_r$	100yr	Variable	i _{5yr}	Q _p =2.78xCi _{5yr} A	Q,	$Q_p - Q_r$	5yr	Variable	l _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
5	242.70	269.89	100.64	169.25	50.77	2	182.69	182.83	100.64	82.19	9.86	1.9	134.66	134.77	100.64	34.13	3.89
7	211.67	235.37	100.64	134.73	56.59	3	166.09	166.22	100.64	65.58	11.80	2.1	132.03	132.13	100.64	31.49	3.97
9 11	188.25 169.91	209.34 188.94	100.64 100.64	108.70 88.30	58.70 58.28	<u>4</u> 5	152.51 141.18	152.63 141.29	100.64 100.64	51.99 40.65	12.48 12.20	2.3 2.5	129.51 127.09	129.61 127.19	100.64 100.64	28.97 26.55	4.00 3.98
13	155.11	172.48	100.64	71.84	56.03	6	131.57	131.67	100.64	31.03	11.17	2.7	124.77	124.87	100.64	24.23	3.93
													•				
-	Overflow		rage (m ³)	Cub curfees	Balanaa		Overflow		rage (m ³)	Sub surface	Palanaa	-	Overflow		rage (m ³)	Cub curfees	Palana
	Overflow 0.00	Required 58.70	Surface 70.29	Sub-surface	Balance 0.00		Overflow 0.00	Required 12.48	Surface 70.29	Sub-surface	Balance 0.00		Overflow 0.00	Required 4.00	Surface 70.29	Sub-surface 0	Balance 0.00
	0.00	30.70	10.23	0	0.00		0.00	12.40	10.23	0	0.00		0.00	4.00	10.23	0	0.00
				overflows to:	Future Street					overflows to:	Future Street					overflows to:	Future Stre
Drainage Area	CB1-2	2				Drainage Area	CB1-2	ī				Drainage Area	CB1-2	2			
Area (Ha)	0.270					Area (Ha)	0.270					Area (Ha)	0.27				
) =	0.8	7 Restricted Flow Q _r (L/s)=	75.20		C =	0.72	Restricted Flow Q _r (L/s)=	75.20		C =	0.7	2 Restricted Flow Q _r (L/s)=	75.20	
		100-Year Pondi	ng					5-Year Pondin	g					2-Year Pondin	g		
T _c	1	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i.	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i.	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable	l _{100yr}	Q _p =2.78xCi _{100yr} A	œ _r	$\mathbf{q}_p \cdot \mathbf{q}_r$	100yr	Variable	i _{5yr}	Q _p =2.78xCi _{5yr} A	∝,	$\mathbf{q}_p - \mathbf{q}_r$	5yr	Variable	l _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	se r	q _p - q _r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
4	262.41	170.70	75.20	95.50	22.92	0	230.48	124.94	75.20	49.74	0.00	0.4	158.96	86.17	75.20	10.97	0.26
6 8	226.01 199.20	147.02 129.58	75.20 75.20	71.82 54.38	25.86 26.10	1 2	203.51 182.69	110.32	75.20	35.12 23.84	2.11 2.86	0.6	155.17 151.56	84.12 82.16	75.20	8.92 6.96	0.32
0 10	178.56	129.56	75.20	40.96	24.57	3	166.09	99.04 90.04	75.20 75.20	14.84	2.67	1.0	151.50	80.31	75.20 75.20	5.11	0.33
12	162.13	105.47	75.20	30.27	21.79	4	152.51	82.67	75.20	7.47	1.79	1.2	144.89	78.55	75.20	3.35	0.24
			3					-	3						2		
-	Overflow		rage (m ³)	Sub-surface	Balance		Overflew		rage (m ³)	Sub ourfood	Balanaa	-	Overflow		rage (m ³)	Sub surface	Palana
	Overflow 0.00	Required 26.10	Surface 34.10	Sub-surface	Balance 0.00		Overflow 0.00	Required 2.86	Surface 34.10	Sub-surface 0	Balance 0.00		Overflow 0.00	Required 0.33	Surface 34.10	Sub-surface	Balanc 0.00
	0.00	20.10	01110	Ũ			0.00	2.00	01110	Ū	0.00		0.00	0.00	01110	ũ	0.00
				overflows to:	CB6					overflows to:	CB6					overflows to:	CB6
Drainage Area	МН6	5				Drainage Area	МН6	1				Drainage Area	МН	6			
Area (Ha)	1.110					Area (Ha)	1.110					Area (Ha)	1.11				
) =	1.00	0 Restricted Flow Q _r (L/s)=	174.78		C =	0.90) Restricted Flow Q _r (L/s)=	174.78		C =	0.9	0 Restricted Flow Q _r (L/s)=	174.78	
		100-Year Pondi	ng					5-Year Pondin	g				•	2-Year Pondin	g		
T _c	1	Peak Flow	Q	$Q_p - Q_r$	Volume	T _c	<i>i</i>	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	<i>i</i> .	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable	I 100yr	Q _p =2.78xCi _{100yr} A		∝ _p -∝ _r	100yr	Variable	I _{5yr}	Q _p =2.78xCi _{5yr} A		∝ _p -∝ _r	5yr	Variable	I _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$		∝ _p -∝ _r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
11	169.91	524.30	174.78	349.52	230.68	6	131.57	365.39	174.78	190.61	68.62	5.0	103.57	287.64	174.78	112.86	33.86
13 15	155.11 142.89	478.63 440.94	174.78 174.78	303.85 266.16	237.00 239.55	7 8	123.30 116.11	342.44 322.47	174.78 174.78	167.66 147.69	70.42 70.89	<u>5.2</u> 5.4	102.10 100.67	283.55 279.58	174.78 174.78	108.77 104.80	33.93 33.95
15	142.89	440.94	174.78	200.10	239.55	9	109.79	322.47	174.78	147.69	70.89	5.4	99.28	279.58	174.78	104.80	33.95
19	123.87	382.23	174.78	207.45	236.50	10	109.79	289.37	174.78	114.59	68.75	5.8	97.94	272.01	174.78	97.23	33.83
		•	rage (m ³)	· ·					rage (m ³)				•		rage (m ³)	•	-
											Balance	-					Balanc
	Overflow		Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Dalanc
-	Overflow 0.00	Required 239.55		Sub-surface 0	Balance 0.00		Overflow 0.00	Required 70.89	Surface 245.24	Sub-surface 0	0.00		0.00	33.95	Surface 245.24	Sub-surface 0	0.00
-		Required	Surface								0.00						0.00

an average minor 2 year ponding volume of 4.9m3 each. Given the nature of the sites use, and the spacing between catchbasins, the 2 year ponding on the surface is considered neglible.

Drainage Area	CB7	1				Drainage Area	CB7	7				Drainage Area	CB7	1			
Area (Ha)	0.110	7				Area (Ha)	0.110					Area (Ha)	0.110				
C =	0.90	Restricted Flow Q _r (L	_/s)=	22.94		C =	0.75	Restricted Flow Q _r (I	L/s)=	22.94		C =	0.75	5 Restricted Flow Q _r (L	/s)=	22.94	
	•	100-Year Pondi	ng					5-Year Pondin	g				1	2-Year Ponding	j		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q _r	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
7	211.67	58.26	22.94	35.32	14.83	2	182.69	41.90	22.94	18.96	2.28	3.3	118.35	27.14	22.94	4.20	0.83
9	188.25	51.81	22.94	28.87	15.59	3	166.09	38.09	22.94	15.15	2.73	3.4	117.35	26.91	22.94	3.97	0.81
11 13	169.91 155.11	46.76 42.69	22.94 22.94	23.82 19.75	15.72 15.40	4 5	152.51 141.18	34.98 32.38	22.94 22.94	12.04 9.44	2.89 2.83	3.5 3.6	116.37 115.40	26.69 26.47	22.94 22.94	3.75 3.53	0.79 0.76
15	142.89	39.33	22.94	16.39	14.75	6	131.57	32.30	22.94	7.24	2.60	3.7	115.40	26.25	22.94	3.31	0.76
10	142.00	00.00	22.04	10.00	14.70		101.07	00.10	22.04	1.27	2.00	0.7	114.40	20.20	22.04	0.01	0.74
		Stor	rage (m³)					Sto	rage (m ³)					Stor	age (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	15.72	39.15	0	0.00		0.00	2.89	39.15	0	0.00		0.00	0.79	39.15	0	0.00
				overflows to:	CB6					overflows to:	CB6					overflows to:	CB6
Drainage Area	CB6	1				Drainage Area	CB6					Drainage Area	CB6				
Area (Ha)	0.530					Area (Ha)	0.530					Area (Ha)	0.530				
C =		Restricted Flow Q _r (L	_/s)=	118.29		C =		Restricted Flow Q _r (I	L/s)=	118.29		C =		5 Restricted Flow Q _r (L	/s)=	118.29	
		100-Year Pondi				-		5-Year Pondin	-					2-Year Ponding			
Τ _c																	
					Volume	T.			Ĩ		Volume	T.					Volume
Variable	i _{100yr}	Peak Flow	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow	9 Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow	Q,	Q _p -Q _r	Volume 2yr
Variable	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A	Q,		100yr	Variable		Peak Flow Q _p =2.78xCi _{5yr} A	Q,		5yr	Variable		Peak Flow Q _p =2.78xCi _{2yr} A	Q,		2yr
		Peak Flow		Q _p -Q _r (L/s) 203.55			i _{5yr} (mm/hour) 182.69	Peak Flow	Ĩ	Q _p -Q _r (L/s) 83.59			i _{2yr} (mm/hour) 140.30	Peak Flow		Q _p -Q _r (L/s) 36.75	
Variable (min)	(mm/hour) 242.70 211.67	Peak Flow Q _p =2.78xCi _{100yr} A (L/s) 321.84 280.68	Q , (L/s)	(L/s)	100yr (m³)	Variable (min)	(mm/hour) 182.69 166.09	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53	Q , (L/s)	(L/s) 83.59 65.24	5yr (m ³) 10.03 11.74	Variable (min)	(<i>mm/hour)</i> 140.30 137.42	Peak Flow Q _p =2.78xCi _{2yr} A (L/s)	Q , (L/s)	(L/s)	2yr (m ³) 3.31 3.42
Variable (min) 5 7 9	(mm/hour) 242.70 211.67 188.25	Peak Flow Q _p =2.78xCi _{100yr} A (L/s) 321.84 280.68 249.64	Q , (L/s) 118.29 118.29 118.29	(L/s) 203.55 162.39 131.35	100yr (m ³) 61.06 68.21 70.93	Variable (min) 2 3 4	(mm/hour) 182.69 166.09 152.51	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53	Q , (L/s) 118.29 118.29 118.29	(L/s) 83.59 65.24 50.24	5yr (m ³) 10.03 11.74 12.06	Variable (min) 1.5 1.7 1.9	(<i>mm/hour)</i> 140.30 137.42 134.66	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81	Q , (L/s) 118.29 118.29 118.29	(L/s) 36.75 33.56 30.52	2yr (m ³) 3.31 3.42 3.48
Variable (min) 5 7 9 11	(mm/hour) 242.70 211.67 188.25 169.91	Peak Flow Q _p =2.78xCi _{100yr} A (L/s) 321.84 280.68 249.64 225.31	Q , (L/s) 118.29 118.29 118.29 118.29	(L/s) 203.55 162.39 131.35 107.02	100yr (m ³) 61.06 68.21 70.93 70.63	Variable (min) 2 3 4 5	(mm/hour) 182.69 166.09 152.51 141.18	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53 156.01	Q , (L/s) 118.29 118.29 118.29 118.29	(L/s) 83.59 65.24 50.24 37.72	5yr (m ³) 10.03 11.74 12.06 11.32	Variable (min) 1.5 1.7 1.9 2.1	(mm/hour) 140.30 137.42 134.66 132.03	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81 145.90	Q , (L/s) 118.29 118.29 118.29 118.29	(L/s) 36.75 33.56 30.52 27.61	2yr (m ³) 3.31 3.42 3.48 3.48
Variable (min) 5 7 9	(mm/hour) 242.70 211.67 188.25	Peak Flow Q _p =2.78xCi _{100yr} A (L/s) 321.84 280.68 249.64	Q , (L/s) 118.29 118.29 118.29	(L/s) 203.55 162.39 131.35	100yr (m ³) 61.06 68.21 70.93	Variable (min) 2 3 4	(mm/hour) 182.69 166.09 152.51	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53	Q , (L/s) 118.29 118.29 118.29	(L/s) 83.59 65.24 50.24	5yr (m ³) 10.03 11.74 12.06	Variable (min) 1.5 1.7 1.9	(<i>mm/hour)</i> 140.30 137.42 134.66	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81	Q , (L/s) 118.29 118.29 118.29	(L/s) 36.75 33.56 30.52	2yr (m ³) 3.31 3.42 3.48
Variable (min) 5 7 9 11	(mm/hour) 242.70 211.67 188.25 169.91 155.11	Peak Flow Q _p =2.78xCi _{100yr} A (L/s) 321.84 280.68 249.64 225.31 205.68 Stor	Q , (L/s) 118.29 118.29 118.29 118.29 118.29 118.29	(L/s) 203.55 162.39 131.35 107.02 87.39	100yr (m ³) 61.06 68.21 70.93 70.63 68.17	Variable (min) 2 3 4 5	(mm/hour) 182.69 166.09 152.51 141.18 131.57	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53 168.53 156.01 145.39 Sto	Q , (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 rage (m ³)	(L/s) 83.59 65.24 50.24 37.72 27.10	5yr (m ³) 10.03 11.74 12.06 11.32 9.76	Variable (min) 1.5 1.7 1.9 2.1	(mm/hour) 140.30 137.42 134.66 132.03 129.51	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81 145.90 143.11	Q , (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 age (m ³)	(L/s) 36.75 33.56 30.52 27.61 24.82	2yr (m ³) 3.31 3.42 3.48 3.48 3.43
Variable (min) 5 7 9 11	(mm/hour) 242.70 211.67 188.25 169.91 155.11 Overflow	Peak Flow Q _p =2.78xCi 100yr A (L/s) 321.84 280.68 249.64 225.31 205.68 Stor Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 318.29 30 30 30 30 30 30 30 30 30 30 30 30 30	(L/s) 203.55 162.39 131.35 107.02 87.39 Sub-surface	100yr (m ³) 61.06 68.21 70.93 70.63 68.17 Balance	Variable (min) 2 3 4 5	(mm/hour) 182.69 166.09 152.51 141.18 131.57 Overflow	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53 156.01 145.39 Sto Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 rage (m ³) Surface	(L/s) 83.59 65.24 50.24 37.72 27.10 Sub-surface	5yr (m ³) 10.03 11.74 12.06 11.32 9.76 Balance	Variable (min) 1.5 1.7 1.9 2.1	(mm/hour) 140.30 137.42 134.66 132.03 129.51 Overflow	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81 145.90 143.11 Stor Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 age (m ³) Surface	(L/s) 36.75 33.56 30.52 27.61 24.82 Sub-surface	2yr (m ³) 3.31 3.42 3.48 3.48 3.43 Balance
Variable (min) 5 7 9 11	(mm/hour) 242.70 211.67 188.25 169.91 155.11	Peak Flow Q _p =2.78xCi _{100yr} A (L/s) 321.84 280.68 249.64 225.31 205.68 Stor	Q , (L/s) 118.29 118.29 118.29 118.29 118.29 118.29	(L/s) 203.55 162.39 131.35 107.02 87.39	100yr (m ³) 61.06 68.21 70.93 70.63 68.17	Variable (min) 2 3 4 5	(mm/hour) 182.69 166.09 152.51 141.18 131.57	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53 168.53 156.01 145.39 Sto	Q , (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 rage (m ³)	(L/s) 83.59 65.24 50.24 37.72 27.10	5yr (m ³) 10.03 11.74 12.06 11.32 9.76	Variable (min) 1.5 1.7 1.9 2.1	(mm/hour) 140.30 137.42 134.66 132.03 129.51	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81 145.90 143.11	Q , (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 age (m ³)	(L/s) 36.75 33.56 30.52 27.61 24.82	2yr (m ³) 3.31 3.42 3.48 3.48 3.43
Variable (min) 5 7 9 11	(mm/hour) 242.70 211.67 188.25 169.91 155.11 Overflow	Peak Flow Q _p =2.78xCi 100yr A (L/s) 321.84 280.68 249.64 225.31 205.68 Stor Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 318.29 30 30 30 30 30 30 30 30 30 30 30 30 30	(L/s) 203.55 162.39 131.35 107.02 87.39 Sub-surface 0.00	100yr (m ³) 61.06 68.21 70.93 70.63 68.17 Balance	Variable (min) 2 3 4 5	(mm/hour) 182.69 166.09 152.51 141.18 131.57 Overflow	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53 156.01 145.39 Sto Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 rage (m ³) Surface	(L/s) 83.59 65.24 50.24 37.72 27.10 Sub-surface 0	5yr (m ³) 10.03 11.74 12.06 11.32 9.76 Balance 0.00	Variable (min) 1.5 1.7 1.9 2.1	(mm/hour) 140.30 137.42 134.66 132.03 129.51 Overflow	Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 155.04 151.85 148.81 145.90 143.11 Stor Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 age (m ³) Surface	(L/s) 36.75 33.56 30.52 27.61 24.82 Sub-surface 0	2yr (m ³) 3.31 3.42 3.48 3.48 3.43 Balance 0.00
Variable (min) 5 7 9 11	(mm/hour) 242.70 211.67 188.25 169.91 155.11 Overflow	Peak Flow Q _p =2.78xCi 100yr A (L/s) 321.84 280.68 249.64 225.31 205.68 Stor Required	Q, (L/s) 118.29 118.29 118.29 118.29 118.29 118.29 318.29 30 30 30 30 30 30 30 30 30 30 30 30 30	(L/s) 203.55 162.39 131.35 107.02 87.39 Sub-surface 0.00 overflows to:	100yr (m ³) 61.06 68.21 70.93 70.63 68.17 Balance 0.00	Variable (min) 2 3 4 5	(mm/hour) 182.69 166.09 152.51 141.18 131.57 Overflow	Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 201.88 183.53 168.53 156.01 145.39 Sto Required	(<i>I</i> 11 11 11 11 11 11 11 rage Su	/s) 8.29 8.29 8.29 8.29 8.29 (m ³) rface	L/s) (L/s) 8.29 83.59 8.29 65.24 8.29 50.24 8.29 37.72 8.29 27.10 (m ³) rface 1.09 0	Qr Qr Syr L/s) (L/s) (m³) 8.29 83.59 10.03 8.29 65.24 11.74 8.29 50.24 12.06 8.29 37.72 11.32 8.29 27.10 9.76 (m³) state state	u_r u_{ρ} - u_r $5yr$ Variable L/s (L/s) (m^3) (min) 8.29 83.59 10.03 1.5 8.29 65.24 11.74 1.7 8.29 50.24 12.06 1.9 8.29 37.72 11.32 2.1 8.29 27.10 9.76 2.3 (m^3) Trace Sub-surface Balance 1.09 0 0.00 0.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 3636 Innes Road

 DATE:
 2020-02-18

 FILE:
 122012-6.2.4

 REV #:

 DESIGNED BY:
 W.Z. & R.M.

 CHECKED BY:
 D.G.Y.

UNDERGROUND STORAGE CALCULATIONS - 3636 Innes Road

Pipe Storage	MH6				
From	То	Length	Diameter	X-sec Area	Volume
CB3	CBMH5	39.22	450	0.159	6.24
Subdrain	CB3	3.00	250	0.049	0.15
Subdrain	CB3	3.00	250	0.049	0.15
Subdrain	CB3	3.00	250	0.049	0.15
Subdrain	CB3	3.00	250	0.049	0.15
Subdrain	CB4	3.00	250	0.049	0.15
Subdrain	CB4	3.00	250	0.049	0.15
Subdrain	CB4	3.00	250	0.049	0.15
Subdrain	CB4	3.00	250	0.049	0.15
Subdrain	CB5	3.00	250	0.049	0.15
Subdrain	CB5	3.00	250	0.049	0.15
Subdrain	CB5	3.00	250	0.049	0.15
Subdrain	CB5	3.00	250	0.049	0.15
CB4	CBMH5	33.19	300	0.071	2.35
CBMH5	MH6	25.19	450	0.159	4.01
				Total	14.36

Structure Sto	rage	МН6				
	Base	Тор	Height	diameter	X-sec Area	Volume
CB3	88.700	90.10	1.40	600	0.360	0.50
CB4	88.800	90.05	1.25	600	0.360	0.45
MH6	88.800	90.35	1.55	1200	1.440	2.23
CBMH5	88.510	90.05	1.54	1200	1.131	1.74
					Total	4.93
					Total	7.

MH6	TOTAL	19.28

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 3636 Innes Road (UHO)

 DATE:
 2020-02-18

 FILE:
 122012-62.4

 REV #:

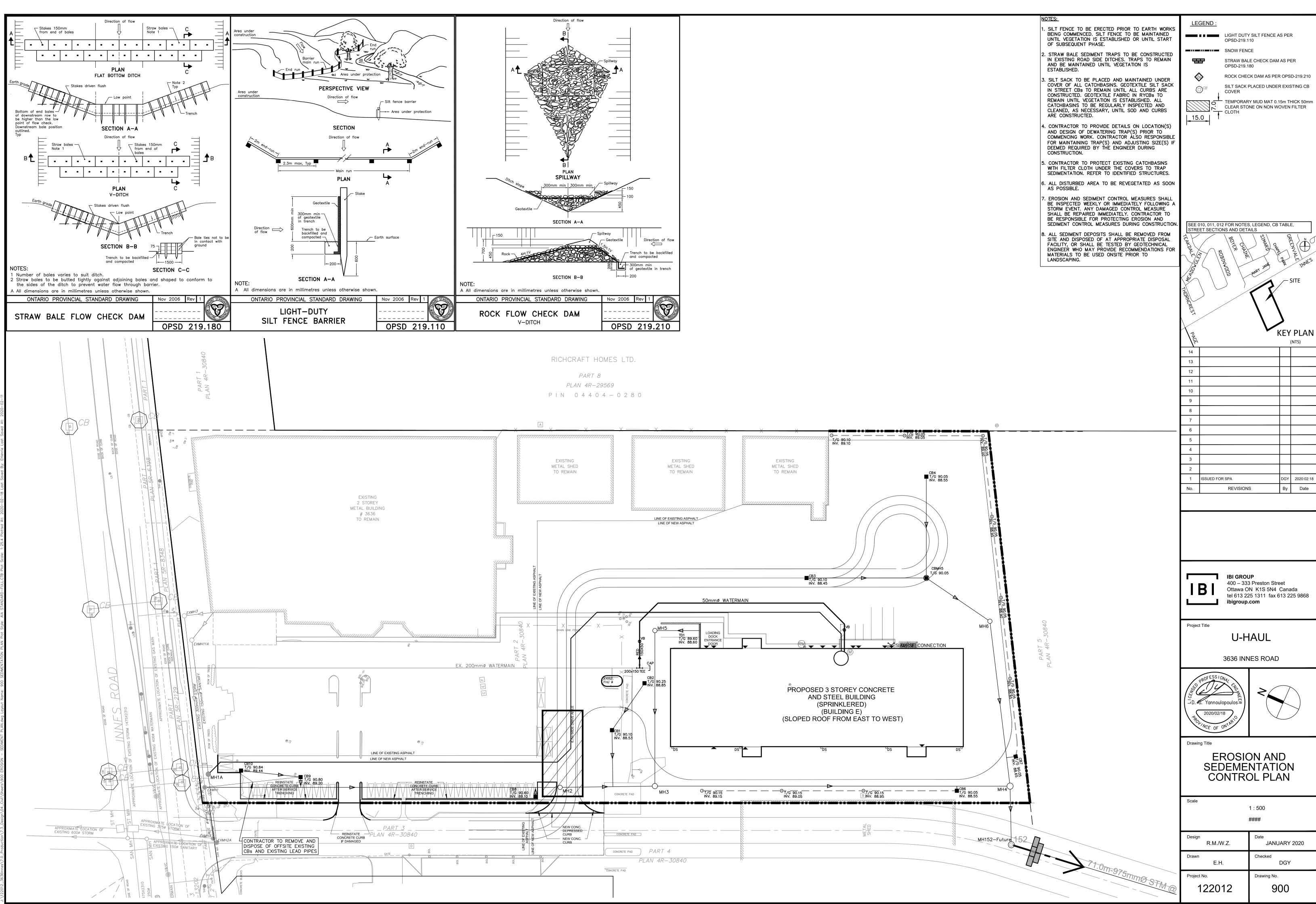
 DESIGNED BY:
 RM

 CHECKED BY:
 RM

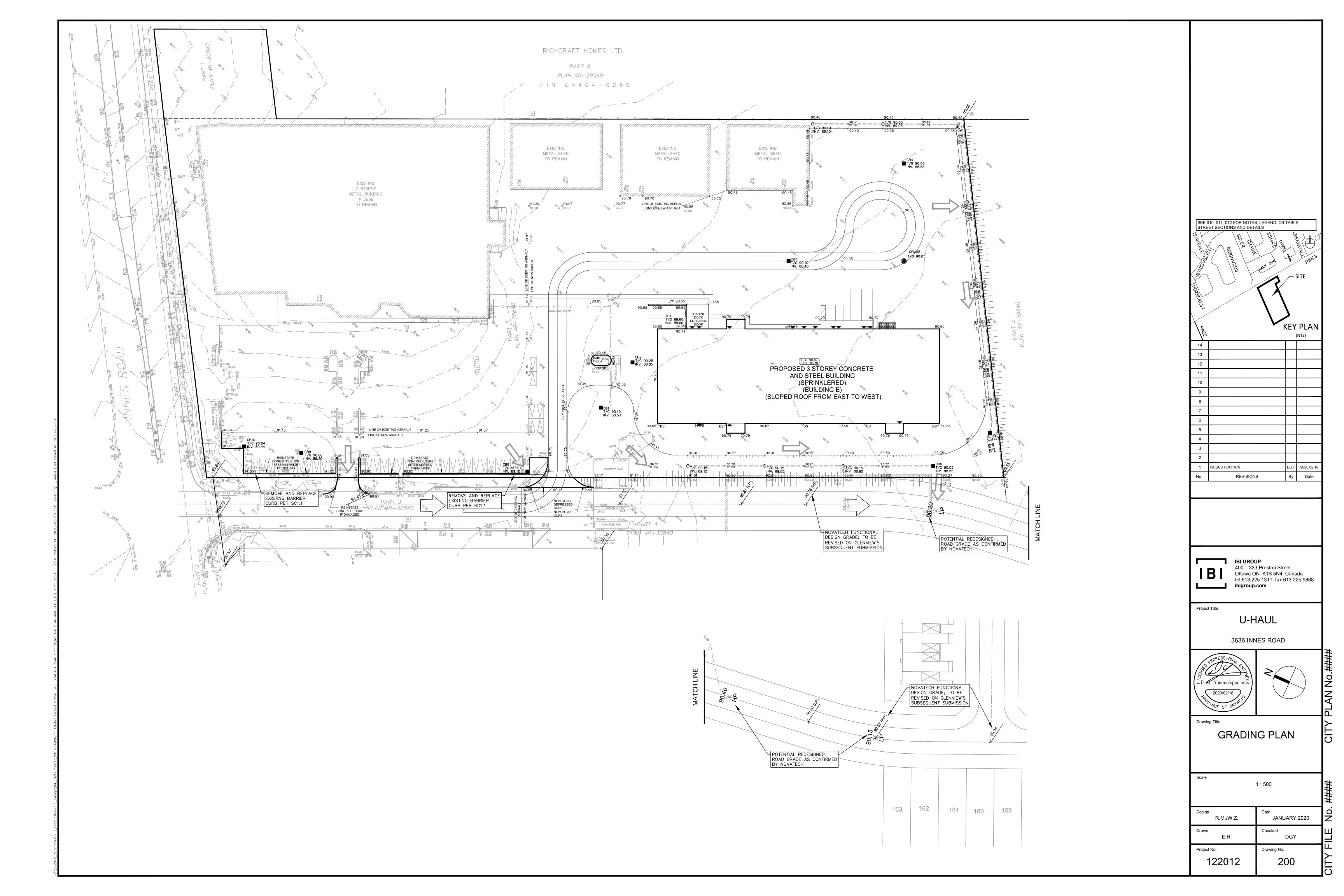
ORIFICE SIZING

Orifice coeffic	ients
Cv =	
Cv =	0.65

							Theo	oretical		Recommended	
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope	Target Flow	Orifice	Actual Flow	Orifice	Actual Flow	
	(m)	(mm)	(m)	(m)	(m)	(l/s)	(m)	(l/s)	(m)	(I/s)	
CB 9	89.200	300	89.350	91.15	1.800	100.64	0.1680	100.64	0.168	100.64	Custom
CB 1	88.700	300	88.850	90.35	1.500	75.20	0.1520	75.20	0.152	75.20	Standard
MH6	87.700	600	88.000	90.35	2.350	174.57	0.2070	174.57	0.207	174.57	Custom
CB7	88.650	200	88.750	90.32	1.570	22.94	0.0830	22.94	0.083	22.94	Standard
CB6	88.550	300	88.700	90.32	1.620	118.29	0.1870	118.29	0.187	118.29	Custom
						491.64				491.64	


BI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

Flow Calculations:


Depth Grade	0.8 0.1	
Roughness:	0.02	low vegetation
Properties		
Area Wetted Per. Hydr. Radius	9.860	
Q = (1/N)(A))(R^0.66)(S ⁻	^0.5)
Q _{CAPACITY} =	1031.10	l/s
Target Release rate=	786.60 refer to on-	l/s site swm calcs

Dimensions Used for AreaWidth4.8 mDepth0.8 m

APPENDIX D

No. AN CH

