

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

CAIVAN GREENBANK NORTH INC. 3713 BORRISOKANE ROAD

CITY OF OTTAWA

PROJECT NO.: 19-1134

JANUARY 2020 – REV. 1 © DSEL

SITE SERVICING AND STORMWATER MANAGEMENT REPORT FOR 3713 BORRISOKANE ROAD

CAIVAN GREENBANK NORTH INC.

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
1.1	Existing Conditions	. 2
1.2	Required Permits / Approvals	. 2
1.3	Pre-consultation	. 3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	. 4
2.1	Existing Studies, Guidelines, and Reports	. 4
3.0	WATER SUPPLY SERVICING	. 6
3.1	Existing Water Supply Services	. 6
3.2	Water Supply Servicing Design	. 6
3.3	Water EPANet Model	. 7
3.4	Water Supply Conclusion	. 8
4.0	WASTEWATER SERVICING	. 9
4.1	Existing Wastewater Services	. 9
4.2	Wastewater Design	. 9
4.3	Wastewater Servicing Conclusions	10
5.0	STORMWATER MANAGEMENT	11
5.1	Existing Stormwater Services	11
5.2	Post-development Stormwater Management Target	12
5.3	Proposed Stormwater Management System	12
5.4	Stormwater Servicing Conclusions	13
6.0	UTILITIES	13
7.0	EROSION AND SEDIMENT CONTROL	14
8.0	CONCLUSION AND RECOMMENDATIONS	15

FIGURES

Figure 1

Site Location

TABLES

Table 1 Water Supply Design CriteriaTable 2 Water Demand and Boundary Conditions Proposed ConditionsTable 3 Model Simulation Output SummaryTable 4 Wastewater Design CriteriaTable 5 Summary of Estimated Peak Wastewater FlowTable 6 Summary of Existing Peak Storm Flow Rates

APPENDICES

Appendix A	Pre-consultation Notes
Appendix B	Water Supply
Appendix C	Wastewater Collection
Appendix D	Stormwater Management
Drawings / Figures	Proposed Site Plan
	Topographic Survey
	Plan and Profile (STA. 0+200.000 TO STA. 424.615)
	(Road Connection)

SITE SERVICING AND STORMWATER MANAGEMENT REPORT FOR 3713 BORRISOKANE ROAD CAIVAN GREENBANK NORTH INC. JANUARY 2020 – REV. 1

CITY OF OTTAWA PROJECT NO.: 19-1134

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by Caivan Greenbank North Inc. to prepare a Site Servicing and Stormwater Management report in support of the application for Site Plan Control (SPC) at 3713 Borrisokane Road.

The subject property is located within the City of Ottawa, Rideau-Goulbourn Ward. As illustrated in *Figure 1*, the subject property is located approximately 500 m south of the intersection of Borrisokane Road and Cambrian Road. Comprised of a single parcel of land, the subject property measures approximately *31.5 ha* and is zoned Mineral Extraction.

Figure 1: Site Location

The proposed SPC would allow for the development of a 1-storey assembly plant and a 2-storey administration building. The above ground parking areas will have access from both Borrisokane Road and the future roadway located south of the subject site. The proposed development will include a **9365** m^2 assembly plant and **2945** m^2 administration building. The proposed development occupies **7.86** ha of the subject site. A copy of the Site Plan is included in **Drawings/Figures**.

The objective of this report is to provide sufficient detail to demonstrate that the proposed development is supported by the future municipal services specified within City Application No. D07-16-18-0011 (*The Ridge Servicing Design*).

1.1 Existing Conditions

The existing site includes a rock quarry with vegetated areas. The elevations range between 110.82 m and 99.60 m, with a minimal grade change of approximately 0.50% from the Northwest to the Southeast corner of the property.

Sewer and watermain layout, collected from *The Ridge Servicing Design*, indicates that the following services will exist within the future municipal right-of-ways:

Future Roadway (South of Subject Site)

- > 300 mm diameter PVC watermain;
- 200 mm diameter PVC sanitary sewer tributary to the trunk sewer within Cambrian Road; and
- > 1500 mm diameter concrete storm sewer tributary to the Drummond Pond.

Refer to **Road Connection** included in Drawings/Figures and drawing **EX-1**, accompanying this report, for further details.

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

Ontario Water Resources Act (OWRA) s.53 approval will be required from the Ministry of the Environment, Conservation and Parks (MECP) for stormwater discharge to the future Drummond stormwater management pond and this approval falls under the Transfer of Review process through the City of Ottawa.

The Environmental Compliance Approval (ECA) review process for Transfer of Review can take several months after the City of Ottawa approves the engineering submission and provides concurrence for site plan control.

1.3 **Pre-consultation**

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-03
 City of Ottawa, March 21, 2018.
 (ISTB-2018-03)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update. (OBC)

- Design Brief for The Ridge (Brazeau Lands)
 David Schaeffer Engineering Ltd., 18-1030, Rev. 1, October 4, 2019.
 (The Ridge Servicing Design)
- Geotechnical Investigation
 Paterson Group, PG5155-1, Rev. 1, December 3, 2019.
 (Geotechnical Report)
- Master Servicing Study Barrhaven South Urban Expansion Area J.L. Richards & Associates Limited, Revision 2, May 2018. (BSUEA MSS)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa BARR pressure zone, as shown by the Pressure Zone map in *Appendix B*. As per *The Ridge Servicing Design*, a 300 mm diameter watermain is proposed within the future roadway right-of-way, located south of the development. There are currently no hydrants located within the vicinity of the site. Refer to *Road Connection* included in *Drawings/Figures* and drawing *EX-1*, accompanying this report, for further details.

3.2 Water Supply Servicing Design

It is proposed to service the development by connecting to the 300 mm diameter watermain within the future roadway, located south of the subject site, via a 200 mm diameter service connection. Two fire hydrants are proposed within the subject site. Refer to drawing **SSP-1** for a detailed servicing layout.

Table 1, below, summarizes the *Water Supply Guidelines* employed in the preparation of the preliminary water demand estimate.

Design Parameter	Value
Water Closets & Lavatories	150 L/fixture/hour
Sinks & Drinking Fountains	375 L/fixture/hour
Showers	575 L/fixture/hour
Industrial – Light	35,000 L/gross ha/d
Industrial Maximum Daily Demand	1.5 x avg. day
Industrial Maximum Hour Demand	1.8 x max. day
Minimum Watermain Size	150 mm diameter
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
During normal operating conditions desired	350 kPa and 480 kPa
operating pressure is within	
During normal operating conditions pressure must	275 kPa
not drop below	
During normal operating conditions pressure must	552 kPa
not exceed	
During fire flow operating pressure must not drop	140 kPa
below	
*Daily average based on Appendix 4-A from Water Supply Guidelines ** Residential Max. Daily and Max. Hourly peaking factors per MOE Guide	elines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.

Table 1Water Supply Design Criteria

** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons -Table updated to reflect ISD-2010-2

Table 2, below, summarizes the estimated water supply demand and boundary conditions for the proposed development based on the *Water Supply Guidelines*.

Table 2
Water Demand and Boundary Conditions
Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary ((m H ₂ O	
Average Daily Demand	108.0	147.7	420.8
Max Day + Fire Flow	163.4 + 3,725 = 3,888.4	138.6	331.6
Peak Hour	294.0	142.6	370.8
	er <i>Water Supply Guidelines</i> . See Ap ed by the City of Ottawa for the demand 104.8m. See Appendix B.		

Fire flow requirements are to be determined in accordance with City of Ottawa *Water Supply Guidelines* and the Ontario Building Code.

Based in correspondence with Lowe Fire Protection Inc., the fire flow demand was estimated as **1,192.4** *L/min* (315 US gpm) for the administrative building and **3,725** *L/min* (984 US gpm) for the assembly plant. Please refer to **Appendix B** for detailed calculations and correspondence with Lowe Fire Protection Inc.

In order to determine pressures for the development, *The Ridge Servicing Design* boundary condition results were used with the associated estimated water demand as indicated in the boundary request correspondence included in *Appendix B*.

The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow demand for the demands indicated by the correspondence in *Appendix B*. As shown by *Table 2,* above, the minimum and maximum pressures fall within the recommended range identified in *Table 1*.

3.3 Water EPANet Model

EPANet was utilized to determine pipe sizing and the availability of pressures throughout the system during average day demand, max day plus fire flow, and peak hour demands. The static model determines pressures based on the available head obtained from the boundary conditions provided by the City of Ottawa, as indicated in *Table 2*.

The model utilizes the Hazen-Williams equation to determine pressure drop, while the pipe properties, including friction factors, have been selected in accordance with Table 4.4 of the *Water Supply Guidelines*. The model was prepared to assess the available pressure at the finished first floor of the administrative building, as well as, the pressures the watermain will provide to fire hydrants during fire flow conditions.

Table 3, below, summarizes the model results. *Appendix B* contains output reports and model schematics for each scenario.

Location	Average Day	Maximum Day + Fire Flow	Peak Hour
	(kPa)	(kPa)	(kPa)
B1	462.0	310.3	411.5
B2	462.0	305.8	411.4
FH1	471.0	268.7	420.6
FH2	465.9	310.0	415.5
N1	476.9	351.9	426.5
N2	475.1	334.0	424.8
N3	473.6	322.0	423.2
N4	469.5	313.0	419.1
N5	466.4	310.2	415.9
N6	466.1	310.2	415.6

Table 3Model Simulation Output Summary

Results from modelling of the internal watermain indicate pressures will be within allowable pressure ranges at all points within the system.

3.4 Water Supply Conclusion

In order to determine pressures for the development, *The Ridge Servicing Design* boundary condition results were used with the associated estimated water demand.

Based on the EPANET model, demands fall within the recommended pressure range specified in the *Water Supply Guidelines*. Results from modelling of the internal watermain indicate pressures will be within allowable pressure ranges at all points within the system.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site will lie within the Cambrian Road trunk collection area. As per **The Ridge Servicing Design**, a 200 mm diameter sanitary sewer is proposed within the future roadway located south of the subject site. It is assumed that the future sanitary sewer fronting the subject site will be available to service the proposed development at the time of construction. Refer to **Road Connection** included in **Drawings/Figures** and drawing **EX-1**, accompanying this report, for further details.

4.2 Wastewater Design

It is proposed that the development will be serviced via the 200 mm diameter sanitary sewer within the future roadway via a network of 200 mm diameter sanitary sewers. Refer to drawing **SSP-1**, accompanying this report, for sanitary servicing layout and connection points.

Table 3, below, summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

Design Parameter	Value
Water Closets*	150.0 L/fixture/hour
Lavatories*	150.0 L/fixture/hour
Kitchen Sinks	375 L/fixture/day
Showers*	575 L/fixture/hour
Mop Sink	375 L/fixture/day
Drinking Fountains*	375 L/fixture/day
Infiltration and Inflow Allowance	0.05 L/s/ha (Dry Weather)
	0.28 L/s/ha (Wet Weather)
	0.33 L/s/ha (Total)
Industrial - Light	35,000 L/gross ha/d
Industrial Peaking Factor	4.4 per City of Ottawa Sewer Design Guidelines Appendix 4B
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
Minimum Sewer Size	200 mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5 m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6 m/s
Maximum Full Flowing Velocity	3.0 m/s
Extracted from Sections 4 and 6 of the City of Ottawa Sewe *assuming a 12 hour commercial operation	er Design Guidelines, October 2012.

Table 4Wastewater Design Criteria

Table 4, below, demonstrates the estimated peak flow from the proposed development. See *Appendix C* for associated calculations.

Table 5
Summary of Estimated Peak Wastewater Flow

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	2.21
Estimated Peak Dry Weather Flow	3.57
Estimated Peak Wet Weather Flow	5.77

The estimated sanitary flow based on the *Site Plan*, included in *Drawings/Figures*, results in a peak wet weather flow of **5.77** L/s.

In order to assess the available capacity, a sanitary analysis was conducted for the local future sanitary sewers to be located across the frontage of the subject property. The analysis was conducted from the site to the 375 mm diameter sewer within Street P, as shown by the sanitary drainage plan included in *Appendix C*.

Based on the sanitary analysis, the controlling section of the local sewer system will be located between future sanitary manholes MH134A and MH135A, at the intersection of the future roadway connection and Street P. It is estimated that the available residual capacity of the controlling leg of sewer is **9.44** L/s; detailed calculations are included in **Appendix C**.

The analysis above indicates that sufficient capacity will be available in the local sewers to accommodate the proposed development.

4.3 Wastewater Servicing Conclusions

The site will be tributary to the Cambrian Road trunk collection area. It is proposed to discharge wastewater to the 200 mm diameter sanitary sewer within the future roadway located south of the subject site, via a network of 200 mm diameter sanitary sewers. It is assumed that the future sanitary sewer fronting the subject site will be available to service the proposed development at the time of construction.

Based on the above sanitary analysis, there will be sufficient capacity available to accommodate the estimated **5.77** *L*/s peak wet weather flow from the proposed development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

In accordance with the **BSUEA MSS**, stormwater runoff from the subject property is tributary to the City of Ottawa sewer system and is located within the Jock River subwatershed. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa. Refer to **Appendix D** for the BSUEA Extents, Drainage Divide and Culverts figure included in the **BSUEA MSS** for an illustration of the local drainage boundaries.

A *Master Storm Drainage Plan* was prepared by J.L. Richards and was included in the **BSUEA MSS**. As per the *Master Storm Drainage Plan*, the subject site is situated between the future Drummond Stormwater Management Pond (Drummond SWM Pond) and the Brazeau Stormwater Management Pond (Brazeau SWM Pond). Based on the existing topography of the site, stormwater runoff will be tributary to the Drummond SWM Pond, located north of the subject site. The Drummond SWM Pond is ultimately tributary to the Jock River, located approximately 1 km downstream. Refer to *Master Storm Drainage Plan*, included in *Appendix D*, for further details.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Jock River Subwatershed, and is subject to review by the Rideau Valley Conservation Authority (RVCA).

As per **The Ridge Servicing Design**, a 1500 mm diameter storm sewer is proposed within the future roadway located south of the subject site. It is assumed that the future storm sewer fronting the subject site will be available to service the proposed development at the time of construction. Refer to **Road Connection** included in **Drawings/Figures** and drawing **EX-1**, accompanying this report, for further details.

It was determined that the existing site contained no stormwater management controls for flow attenuation. The estimated pre-development peak flows for the 2, 5, and 100-year events are summarized in *Table 6,* below:

City of Ottawa Design Storm	Estimated Peak Flow Rate (L/s)
2-year	155.5
5-year	209.3
100-year	445.2

Table 6
Summary of Existing Peak Storm Flow Rates

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with *The Ridge Servicing Design* (subject to separate City of Ottawa application D07-16-18-011), where the proposed development is required to:

- Meet the existing flow in the downstream system;
- Meet the quality control target of 80% TSS removal as per the Jock River Reach One Subwatershed Study (Stantec, 2007); and,
- > Preserve pre-infiltration condition levels (Section 5.3.4 of **BSUEA MSS**)

Relevant excerpts from *The Ridge Servicing Design* have been included in *Appendix D* for reference.

5.3 Proposed Stormwater Management System

It is proposed that stormwater runoff from the development will be captured and conveyed to the forebay of the Drummond SWM Pond, located north of the subject site. **The Ridge Servicing Design** (subject to separate City of Ottawa application D07-16-18-011), will be updated to reflect this. It should be noted that the Drummond SWM Pond depicted on the engineering drawings included with this submission has been sized to accept stormwater flows from the subject site.

The internal storm sewer network will convey stormwater to the Drummond SWM Pond via a 900 mm diameter storm sewer. Refer to drawing **SSP-1**, accompanying this report, for a detailed servicing layout.

Uncontrolled areas, as shown by drawing *STM-1*, provided along with this report, will be released uncontrolled to municipal right-of-ways, but the proposed major system will outlet to the Drummond SWM Pond.

Refer to the stormwater calculations included in *Appendix D* and drawings *SSP-1* and *STM-1* for further details.

Runoff collected along the western side of the subject site (U1) will flow to overland towards the existing Borrisokane Road ditch. Once collected within the Borrisokane roadside ditch, stormwater will be conveyed approximately 1 km downstream towards the Jock River. Stormwater within this area is considered clean as it is collected within landscaped areas. Refer to drawing **STM-1**, accompanying this report, for a detailed drainage plan.

Runoff collected along the southern side of the subject site (U2) will flow overland towards the future roadway roadside ditch. Once collected within the roadside ditch, stormwater will be directed towards the future 1500 mm diameter storm sewer and ultimately the Drummond SWM Pond. Stormwater within this area is considered clean as it is collected

within landscaped areas. Refer to drawing **STM-1**, accompanying this report, for a detailed drainage plan.

Runoff collected along the northern side of the subject site (U3) will flow to overland towards the Drummond SWM Pond. Stormwater within this area is considered clean as it is collected within landscaped areas. Refer to drawing **STM-1**, accompanying this report, for a detailed drainage plan.

5.4 Stormwater Servicing Conclusions

Post development stormwater runoff will be captured and directed to the forebay of the Drummond SWM Pond, which will be updated accordingly in *The Ridge Servicing Design*. The Drummond SWM Pond depicted on the engineering drawings included with this submission has been sized to accept stormwater flows from the subject site.

As stormwater runoff for the proposed development will outlet directly to the forebay of the Drummond SWM Pond, no additional quality controls are required within the site.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 UTILITIES

Utility servicing will be coordinated with the individual utility companies prior to site development.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. During construction the extent of erosion losses is exaggerated due to the removal of vegetation and the top layer of soil becoming agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or an approved equivalent installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- Install filter cloth between catch basins and frames;
- Plan construction at proper time to avoid flooding; and
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by Caivan Greenbank North Inc. to prepare a Site Servicing and Stormwater Management Report in support of the application for a Site Plan Control (SPC) at 3713 Borrisokane Road. The preceding report outlines the following:

- Based on boundary conditions included in *Appendix B*, the existing municipal water infrastructure is capable of providing the development with water within the City's recommended pressure range;
- Based in correspondence with Lowe Fire Protection Inc., the fire flow demand was estimated as 1,192.4 L/min (315 US gpm) for the administrative building and 3,725 L/min (984 US gpm) for the assembly plant;
- The development is estimated to have a peak wet weather flow of 5.77 L/s; Based on the sanitary analysis conducted the existing municipal sewer infrastructure has sufficient capacity to support the development;
- The Drummond SWM Pond depicted on the engineering drawings included with this submission has been sized to accept stormwater flows from the subject site;
- Based on *The Ridge Servicing Design*, the proposed development will be required to meet the existing flow in the downstream system and preserve preinfiltration condition levels; and
- As stormwater runoff for the proposed development will outlet directly to the forebay of the Drummond SWM Pond, no additional quality controls are required within the site.

Prepared by, David Schaeffer Engineering Ltd. Reviewed by, David Schaeffer Engineering Ltd.

Per: Jennifer Ailey, P.Eng.

Per: Alison J. Gosling, EIT.

© DSEL z:\projects\19-1134_abic_caivan\b_design\b3_reports\b3-2_servicing (dsel)\2019-12_sub1\spa-2020-01-15_1134_ajt.docx

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

19-1134

4.1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
\boxtimes	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
\boxtimes	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	GP-1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\boxtimes	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
\boxtimes	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	SSP-1
4.2	Development Servicing Report: Water Confirm consistency with Master Servicing Study, if available	NI / A
	Availability of public infrastructure to service proposed development	N/A Section 2.1
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1

 ☑
 Identification of system constraints
 Section 3.1

 ☑
 Identify boundary conditions
 Section 3.1, 3.2

 ☑
 Confirmation of adequate domestic supply and pressure
 Section 3.3

\times	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
\triangleleft	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.2, 3.3
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
<	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
1.3	Development Servicing Report: Wastewater	
	Development Servicing Report: Wastewater Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 4.2
3	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 4.2 N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for	
3 A D	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development.	N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	N/A N/A
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be	N/A N/A Section 4.1
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C')	N/A N/A Section 4.1 Section 4.2

	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
]	Special considerations such as contamination, corrosive environment etc.	N/A
.4	Development Servicing Report: Stormwater Checklist	
3	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
\leq	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
3	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
3	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
3	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
\triangleleft	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
]	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
]	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
]	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3
	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	N/A
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	N/A
	Identification of potential impacts to receiving watercourses	N/A
	Identification of municipal drains and related approval requirements.	N/A

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development	
	from flooding for establishing minimum building elevations (MBE) and overall	N/A
	grading.	
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for	Section 7.0
	the protection of receiving watercourse or drainage corridors.	Section 7.0
	Identification of floodplains – proponent to obtain relevant floodplain	
	information from the appropriate Conservation Authority. The proponent may	
	be required to delineate floodplain elevations to the satisfaction of the	N/A
	Conservation Authority if such information is not available or if information	
	does not match current conditions.	
	Identification of fill constraints related to floodplain and geotechnical	NI (A
	investigation.	N/A
4.5	Approval and Permit Requirements: Checklist	
	Conservation Authority as the designated approval agency for modification of	
	floodplain, potential impact on fish habitat, proposed works in or adjacent to a	
	watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement	
\boxtimes	Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2
	Rivers Improvement ct. Where there are Conservation Authority regulations in	
	place, approval under the Lakes and Rivers Improvement Act is not required,	
	except in cases of dams as defined in the Act.	
	Application for Certificate of Approval (CofA) under the Ontario Water	NI (A
	Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A
	Government Services Canada, Ministry of Transportation etc.)	
4 6		
	Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	Section 8.0
	Comments received from review agencies including the City of Ottawa and	
	information on how the comments were addressed. Final sign-off from the	
	responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional	
	Engineer registered in Ontario	

APPENDIX B

Water Supply

Caivan 3713 Borrisokane Road Proposed Site Conditions

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Institutional / Commercial / Industrial Demand

				Avg. D	Daily	Max	Day	Peak	Hour
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Water Closets	150.0	L/fixture/hour	26	46.80	32.5	70.2	48.8	126.4	87.8
Lavatories	150.0	L/fixture/hour	22	39.60	27.5	59.4	41.3	106.9	74.3
Kitchen Sinks	375	L/fixture/day	2	0.75	0.5	1.1	0.8	2.0	1.4
Showers	575	L/fixture/hour	4	27.60	19.2	41.4	28.8	74.5	51.8
Mop Sink	375	L/fixture/day	1	0.38	0.3	0.6	0.4	1.0	0.7
Drinking Fountains	375	L/fixture/day	2	9.00	6.3	13.5	9.4	24.3	16.9
Industrial - Light	35,000	L/gross ha/d	0.93	32.69	22.7	49.0	34.1	88.3	61.3
Industrial - Heavy	55,000	L/gross ha/d	-	0.00	0.0	0.0	0.0	0.0	0.0
		Total I/C	Demand	156.8	108.9	235.2	163.4	423.4	294.0
		Tota	al Demand	156.8	108.9	235.2	163.4	423.4	294.0

Minor Loss Coefficients

Fitting	Loss Coefficient
Globe valve, fully open	10
Angle valve, fully open	5
Swing check valve, fully open	2.5
Gate valve, fully open	0.2
Short-radius elbow	0.9
Medium-radius elbow	0.8
Long-radius elbow	0.6
45 degree elbow	0.4
Closed return bend	2.2
Standard tee - flow through	0.6
Standard tee - flow through	1.8
Square Entrance	0.5
Exit	1

*Minor loss coefficients based on EPANET 2 USERS MANUAL, dated September 2000

Node Pressures

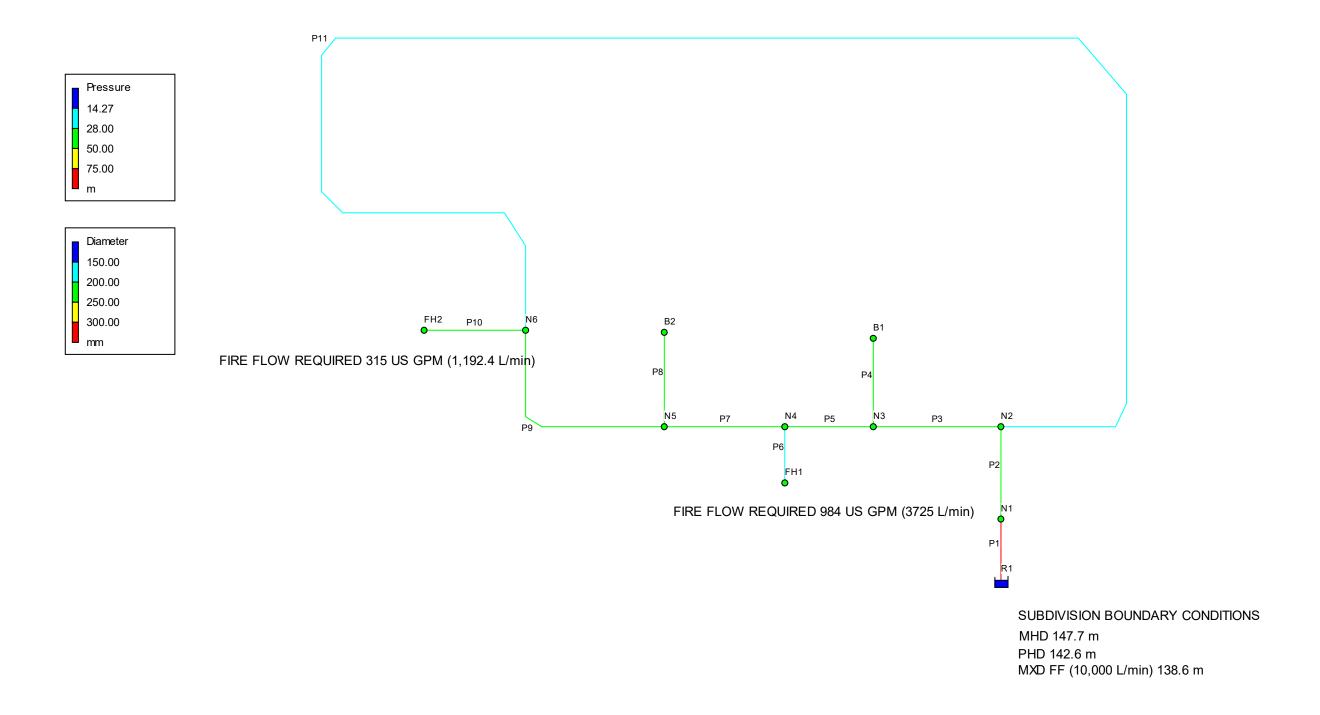
Кра	Pressure (kPa)	Pressure (m H20)
Max	552	56.3
Rec Max	480	49.0
Rec Min	350	35.7
Min	275	28.1

Location	Average Day	Max Day + Fire Flow (Fire Flow at Critical Node) (kPa)	Flow (Fire Flow	Peak Hour (kPa)
FH1	48.0	0.0	268.7	0.0
FH2	47.5	0.0	273.1	0.0

Location Average Da		Max Day + Fire Flow (kPa)	Peak Hour (kPa)
B1	462.0	310.3	411.5
B2	462.0	305.8	411.4
FH1	471.0	268.7	420.6
FH2	465.9	310.0	415.5
N1	476.9	351.9	426.5
N2	475.1	334.0	424.8
N3	473.6	322.0	423.2
N4	469.5	313.0	419.1
N5	466.4	310.2	415.9
N6	466.1	310.2	415.6

Pipe Diameter vs. "C" Factor

Pipe Diameter (m)	C-Factor
150	100
200 to 250	110
300 to 600	120
Over 600	130


Adjusted Pressures at Building FFE

Location	Average Day	Max Day + Fire Flow	Peak Hour
	(kPa)	(kPa)	(kPa)
B1	438.0	286.5	387.6
B2	438.0	281.9	387.5

Boundary Conditions Unit Conversion (Dundonald Drive)

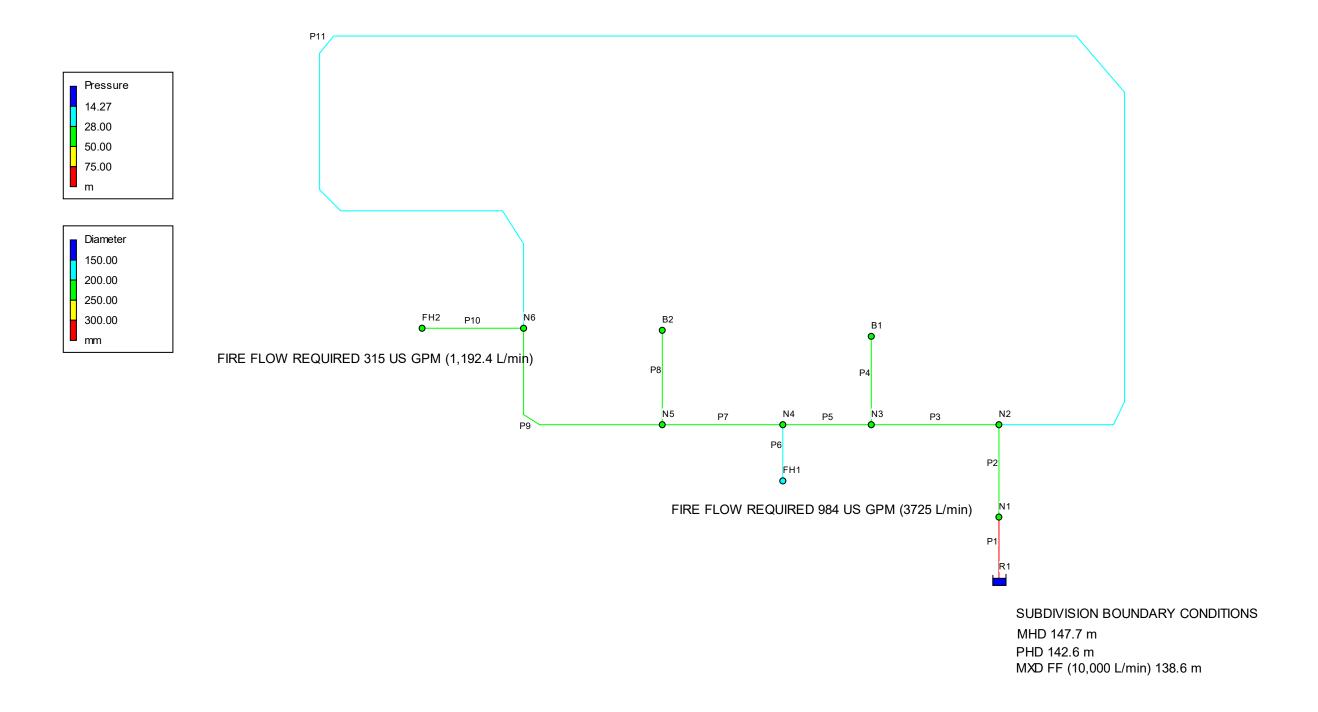
Grnd Elev	104.8		
	m H₂O	PSI	kPa
Avg. Day	147.7	61.0	420.8
Peak Hour	138.6	48.1	331.6
Max Day + FF	142.6	53.8	370.8

3713 BORRISOKANE ROAD - AVERAGE DAY DEMAND

Day 1, 12:00 AM

Page 1 ************************************	******	2019-12-13 3:10:40 PM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	********************************	******

Input File: 2019-11-26_1134_Average.net


Link Start End Length Diameter ID Node m mm P1 N1 R1 869.18 300 P2 N1 N2 42.91 200 P3 N3 N2 34.7 200 P4 N3 B1 16.7 200 P5 N4 N3 18.77 200 P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	Link - Node Table:					
P1 N1 R1 869.18 300 P2 N1 N2 42.91 200 P3 N3 N2 34.7 200 P4 N3 B1 16.7 200 P5 N4 N3 18.77 200 P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Demand Head Pressure Quality ID LPM m m m	Link	Start	End		Length	Diameter
P1 N1 R1 869.18 300 P2 N1 N2 42.91 200 P3 N3 N2 34.7 200 P4 N3 B1 16.7 200 P5 N4 N3 18.77 200 P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:			Node		m	mm
P2 N1 N2 42.91 200 P3 N3 N2 34.7 200 P4 N3 B1 16.7 200 P5 N4 N3 18.77 200 P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:			 R1		869.18	300
P4 N3 B1 16.7 200 P5 N4 N3 18.77 200 P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	P2	N1	N2			
P5 N4 N3 18.77 200 P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	Р3	N3	N2		34.7	200
P6 N4 FH1 7.55 150 P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	P4	N3	B1		16.7	200
P7 N5 N4 79.15 200 P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	P5	N4	N3		18.77	200
P8 B2 N5 24.09 200 P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	P6	N4	FH1		7.55	150
P9 N6 N5 54.89 200 P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	P7	N5	N4		79.15	200
P10 FH2 N6 6.95 200 P11 N6 N2 570.18 150 Node Results:	P8	B2	N5		24.09	200
P11 N6 N2 570.18 150 Node Results:	P9	N6	N5		54.89	200
Node Results: Demand Head Pressure Quality ID LPM m m m N1 0.00 147.70 48.61 0.00 N2 0.00 147.69 48.28 0.00 B1 54.45 147.69 47.09 0.00 K4 0.00 147.69 48.01 0.00 R1 0.00 147.69 47.86 0.00 B1 54.45 147.69 47.09 0.00 R4 0.00 147.69 48.01 0.00 R5 0.00 147.69 47.54 0.00 R5 0.00 147.69 47.09 0.00 R2 54.45 147.69 47.09 0.00 R5 0.00 147.69 47.54 0.00 R2 54.45 147.69 47.09 0.00 R6 0.00 147.69 47.51 0.00 R6 0.00 147.69 47.49 0.00	P10	FH2	N6		6.95	200
NodeDemandHeadPressureQualityIDLPMmmmN10.00147.7048.610.00N20.00147.6948.430.00N30.00147.6948.280.00B154.45147.6947.090.00N40.00147.6948.010.00FH10.00147.6948.010.00N50.00147.6947.540.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00	P11	N6	N2		570.18	150
IDLPMmmN10.00147.7048.610.00N20.00147.6948.430.00N30.00147.6948.280.00B154.45147.6947.090.00N40.00147.6948.010.00FH10.00147.6948.010.00N50.00147.6947.540.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00	Node Results:					
N10.00147.7048.610.00N20.00147.6948.430.00N30.00147.6948.280.00B154.45147.6947.090.00N40.00147.6947.860.00FH10.00147.6948.010.00N50.00147.6947.540.00B254.45147.6947.990.00N60.00147.6947.510.00FH20.00147.6947.490.00	Node	Demand	Head	Pressure	Quality	
N20.00147.6948.430.00N30.00147.6948.280.00B154.45147.6947.090.00N40.00147.6947.860.00FH10.00147.6948.010.00N50.00147.6947.990.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00	ID	LPM	m	m	-	
N20.00147.6948.430.00N30.00147.6948.280.00B154.45147.6947.090.00N40.00147.6947.860.00FH10.00147.6948.010.00N50.00147.6947.990.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00	N1		 147.70	48.61	0.00	
N30.00147.6948.280.00B154.45147.6947.090.00N40.00147.6947.860.00FH10.00147.6948.010.00N50.00147.6947.540.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00						
B154.45147.6947.090.00N40.00147.6947.860.00FH10.00147.6948.010.00N50.00147.6947.540.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00						
FH10.00147.6948.010.00N50.00147.6947.540.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00						
N50.00147.6947.540.00B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00	N4	0.00	147.69	47.86	0.00	
B254.45147.6947.090.00N60.00147.6947.510.00FH20.00147.6947.490.00	FH1	0.00	147.69	48.01	0.00	
N60.00147.6947.510.00FH20.00147.6947.490.00	N5	0.00	147.69	47.54	0.00	
FH2 0.00 147.69 47.49 0.00	B2	54.45	147.69	47.09	0.00	
	N6	0.00	147.69	47.51	0.00	
R1 -108.90 147.70 0.00 0.00 Reservoir	FH2	0.00	147.69	47.49	0.00	
	R1	-108.90	147.70	0.00	0.00	Reservoir

♠

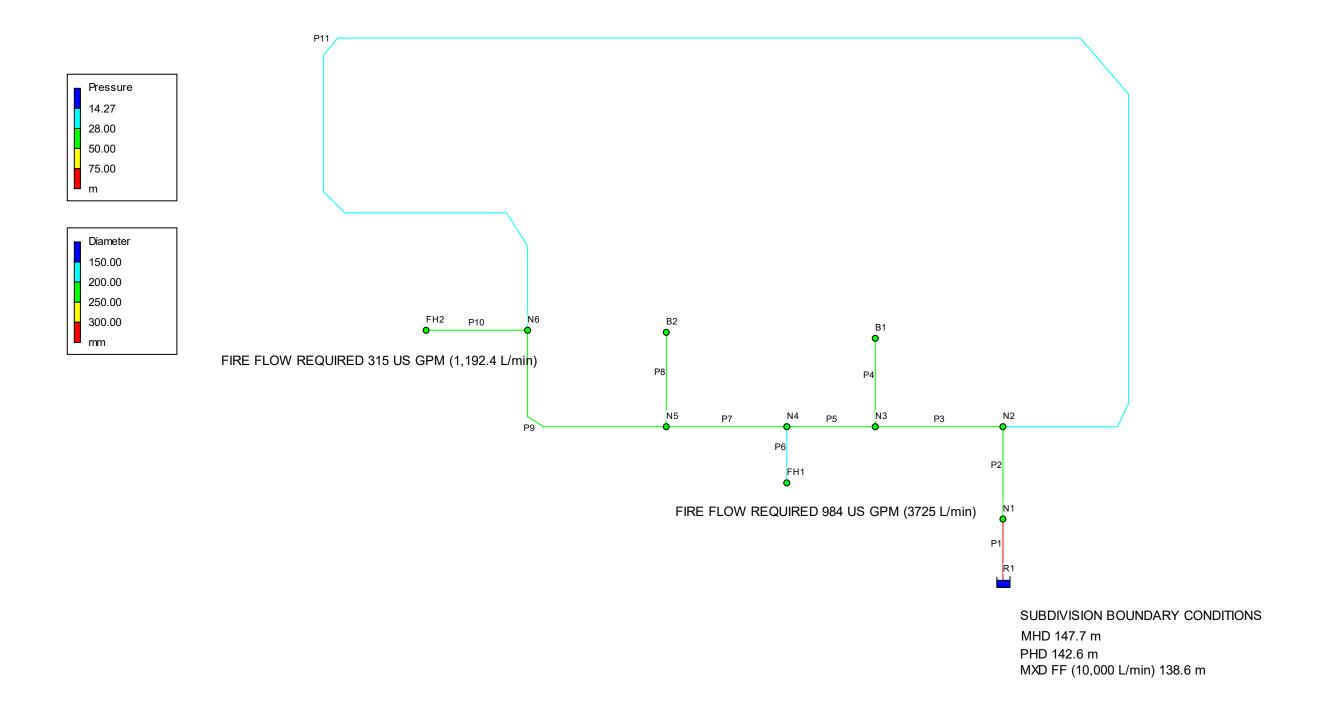
Page 2 Link Results:

Link ID	Flow LPM	VelocityUnit m/s	Headloss m/km	Status
P1	-108.90	0.03	0.01	Open
P2	108.90	0.06	0.05	Open
P3	-96.37	0.05	0.04	Open
P4	54.45	0.03	0.02	Open
P5	-41.92	0.02	0.01	Open
P6	0.00	0.00	0.00	Open
P7	-41.92	0.02	0.01	Open
P8	-54.45	0.03	0.02	Open
P9	12.53	0.01	0.00	Open
P10	0.00	0.00	0.00	Open
P11	-12.53	0.01	0.00	Open

3713 BORRISOKANE ROAD - MAXDAY + FIRE FLOW DEMAND FH1

Day 1, 12:00 AM

Page 1 ************************************	******	2019-12-13 3:06:28 PM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	********	******


Input File: 2019-11-26_1134_Fire-Flow2.net

Link - Node Table:					
Link	Start	End		Length	Diameter
	Node	Node		m	mm
P1	N1	R1		869.18	
P2	N1	N2		42.91	200
P3	N3	N2		34.7	200
P4	N3	B1		16.7	200
P5	N4	N3		18.77	200
P6	N4	FH1		7.55	150
P7	N5	N4		79.15	200
P8	B2	N5		24.09	200
P9	N6	N5		54.89	200
P10	FH2	N6		6.95	200
P11	N6	N2		570.18	150
Node Results:					
Node	Demand	Head	Pressure	Quality	
ID	LPM		m		
N1			35.87		
N2	0.00			0.00	
N3	0.00	132.23	32.82	0.00	
B1	81.70	132.23	31.63	0.00	
N4	0.00	131.74	31.91	0.00	
FH1	3725.00	127.07	27.39	0.00	
N5	0.00	131.77	31.62	0.00	
B2	81.70	131.77	31.17	0.00	
N6	0.00	131.80	31.62	0.00	
FH2	0.00	131.80	31.60	0.00	
R1	-3888.40	138.60	0.00	0.00	Reservoir

♠

Page 2 Link Results:

Link ID	Flow LPM	VelocityUni m/s	t Headloss m/km	Status
P1	-3888.40	0.92	4.19	Open
P2	3888.40	2.06	38.36	Open
P3	-3427.17	1.82	31.10	Open
P4	81.70	0.04	0.03	Open
P5	-3345.47	1.77	26.52	Open
P6	3725.00	3.51	617.76	Open
P7	379.53	0.20	0.40	Open
P8	-81.70	0.04	0.03	Open
P9	461.23	0.24	0.62	Open
P10	0.00	0.00	0.00	Open
P11	-461.23	0.44	2.65	Open

Day 1, 12:00 AM

Page 1 ************************************	*********	2019-12-13 3:12:31 PM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*******	************	******

Input File: 2019-11-26_1134_Peak.net

Link - Node Ta	ble:				
Link	Start	End		Length	Diameter
ID	Node	Node		m	mm
P1	N1	R1		869.18	
P2	N1	N2		42.91	
P3	N3	N2		34.7	200
P4	N3	B1		16.7	200
P5	N4	N3		18.77	200
P6	N4	FH1		7.55	150
P7	N5	N4		79.15	200
P8	B2	N5		24.09	200
P9	N6	N5		54.89	200
P10	FH2	N6		6.95	
P11	N6	N2		570.18	150
Node Results:					
Node	Demand	Head	Pressure	Oualitv	
ID	LPM	m	m	c ,	
N1			43.48		
N2	0.00		43.30		
N3	0.00		43.14		
B1	147.00		41.95		
N4	0.00	142.55	42.72		
FH1	0.00	142.55	42.87		
N5	0.00	142.55	42.40	0.00	
B2	147.00	142.54	41.94	0.00	
N6	0.00		42.37		
FH2	0.00		42.35		
R1	-294.00	142.60	0.00	0.00	Reservoir

♠

Page 2 Link Results:

Link ID	Flow LPM	VelocityUnit m/s	Headloss m/km	Status
P1	-294.00	0.07	0.03	Open
P2	294.00	0.16	0.29	Open
P3	-259.85	0.14	0.24	Open
P4	147.00	0.08	0.10	Open
P5	-112.85	0.06	0.05	Open
P6	0.00	0.00	0.00	Open
P7	-112.85	0.06	0.04	Open
P8	-147.00	0.08	0.10	Open
P9	34.15	0.02	0.00	Open
P10	0.00	0.00	0.00	Open
P11	-34.15	0.03	0.02	Open
P6 P7 P8 P9 P10	0.00 -112.85 -147.00 34.15 0.00	0.00 0.06 0.08 0.02 0.00	0.00 0.04 0.10 0.00 0.00	Open Open Open Open Open

LOWE FIRE PROTECTION INC.

Raymond Tanguay 101-2435 Holly Lane Ottawa, Ontario K1V 7P2 Telephone (613) 739-5693 (739-LOWE) Fax (613) 739-2922

B.B.S. Construction (Ontario) Ltd.

November 19, 2019

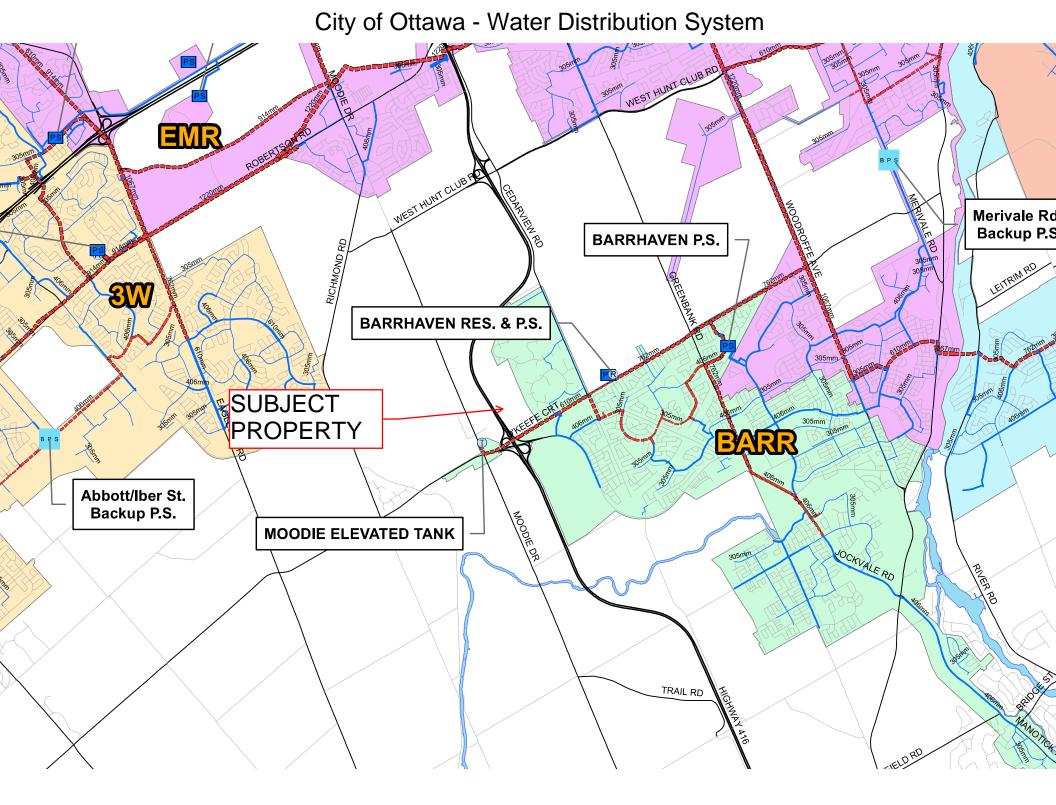
Attention: Pete Van Grootheest

Re: Fire Protection Installation 1944 ABIC Admin Offices & Assembly Plant Ottawa, Ontario

Dear Sirs:

We are pleased to offer the following fire sprinkler system flow calculations for your use.

- The Administration building: Light Hazard Occupancy Sprinkler system density requirement: 0.10 usgpm/sq ft over 1500 sq ft = 150 usgpm 10% Sprinkler system overage = 15 usgpm Inside and outside hoses = 150 usgpm Total Admin Building Demand = 315 usgpm
- 2) The Assembly Plant:


The outdoor storage is the highest density requirement:0.40 usgpm/sq ft over 100 sq ft per sprinkler x 11 sprinklers = 440 usgpm10% Sprinkler system overage= 44 usgpmInside and outside hoses= 500 usgpmTotal Assembly Building Demand= 984 usgpm

We trust that the above calculations are satisfactory, should you have any questions please do not hesitate to ask.

Yours Truly, Lowe Fire Protection Inc.

lac d las my

Raymond Tanguay

Design Brief for Caivan Communities The Ridge (Brazeau Lands) David Schaeffer Engineering Ltd.

> DSEL No. 18-1030 October 4, 2019 Rev1

Charlotte Kelly

From:	Shillington, Jeffrey <jeff.shillington@ottawa.ca></jeff.shillington@ottawa.ca>		
Sent:	October 3, 2019 8:44 AM		
То:	Anthony Temelini; Kevin Murphy		
Subject:	FW: Bc for the Meadows - Phase 7/8 and Brazeau		
Attachments:	HMB5_Brazeau_Boundary Conditions_April262017.docx		

Anthony/Kevin,

Please see the boundary conditions for the Meadows Phase 7/8 and the Brazeau Lands.

Let me know if you require anything further.

Regards,

Jeff Shillington, P.Eng. Project Manager, Development Review, South Branch Planning, Infrastructure and Economic Development City of Ottawa tel: 580-2424 x 16960 email: jeff.shillington@ottawa.ca

From: Bougadis, John <John.Bougadis@ottawa.ca>
Sent: October 02, 2019 6:15 PM
To: Shillington, Jeffrey <jeff.shillington@ottawa.ca>
Subject: Bc for the Meadows - Phase 7/8 and Brazeau

Hi Jeff,

The attached BC is for the Meadows Phase 7 and 8 and the Brazeau lands.

Let me know if you have any questions.

John X14990

From: Shillington, Jeffrey <<u>jeff.shillington@ottawa.ca</u>>
Sent: September 23, 2019 9:53 AM
To: Bougadis, John <<u>John.Bougadis@ottawa.ca</u>>
Subject: FW: The Meadows - Phase 7/8 Boundary Condition Request

John,

Please see the request below for BC's. Let me know if you need additional information.

Jeff

From: Anthony Temelini <<u>ATemelini@dsel.ca</u>>
Sent: September 12, 2019 1:40 PM
To: Shillington, Jeffrey <<u>jeff.shillington@ottawa.ca</u>>
Cc: Matt Wingate <<u>MWingate@dsel.ca</u>>
Subject: The Meadows - Phase 7/8 Boundary Condition Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Jeff,

Please see attached for the updated boundary condition request for the Meadows – Phase 7/8. Note that we require the boundary conditions for the latest fire flow requirements in order to compare modelling results with the assumptions made in the latest watermain report.

Can you please forward the request to the appropriate contact and let us know when we can expect to receive the boundary conditions?

Please let me know if you have any questions.

Thank you,

Anthony Temelini, P.Eng. Junior Project Manager

DSEL

ı

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.524 email: <u>atemelini@dsel.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

ı


Boundary Conditions for HMB Phases 7 and 8 and Brazeau Lands

Information Provided:

Date provided: September 2019

	Demand	
Scenario	L/min	L/s
Average Daily Demand	846	14.10
Maximum Daily Demand	1961	32.69
Peak Hour	4224	70.40
Fire Flow Demand #1	10000	166.67
Fire Flow Demand #2	15000	250.00
Fire Flow Demand #3	17000	283.33

Location:

Results

Connection 1 - Cambrian Road

	Existing Barrhaven PZ		Future Zone 3C	
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	102.9	147.7	77.3
Peak Hour	135.7	60.4	142.8	70.4
Max Day plus Fire (#1)	144.0	72.2	140.0	66.4
Max Day plus Fire (#2)	135.4	59.9	134.9	59.2
Max Day plus Fire (#3)	133.7	57.4	132.5	55.7

¹ Ground Elevation = 93.3 m

Connection 2 - Brambling Way

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	100.1	147.7	74.6
Peak Hour	135.6	57.4	142.7	67.5
Max Day plus Fire (#1)	141.2	65.4	135.8	57.7
Max Day plus Fire (#2)	129.9	49.4	126.3	44.3
Max Day plus Fire (#3)	126.6	44.7	121.8	37.8

¹ Ground Elevation = 95.2 m

Connection 3 - Dundonald Drive

	Existing Barrhaven PZ		Future Zone 3C	
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	86.5	147.7	61.0
Peak Hour	135.7	43.9	142.6	53.7
Max Day plus Fire (#1)	142.0	52.9	133.0	40.0
Max Day plus Fire (#2)	131.5	38.0	120.6	22.5
Max Day plus Fire (#3)	128.7	34.0	114.7	14.0

¹ Ground Elevation = 104.8 m

Notes:

- 1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.

- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.
- 2) A third pump was turned on during all fire simulations under Existing Barrhaven Pressure.
- 3) Future pipes were added to the water model as shown in the figure above.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

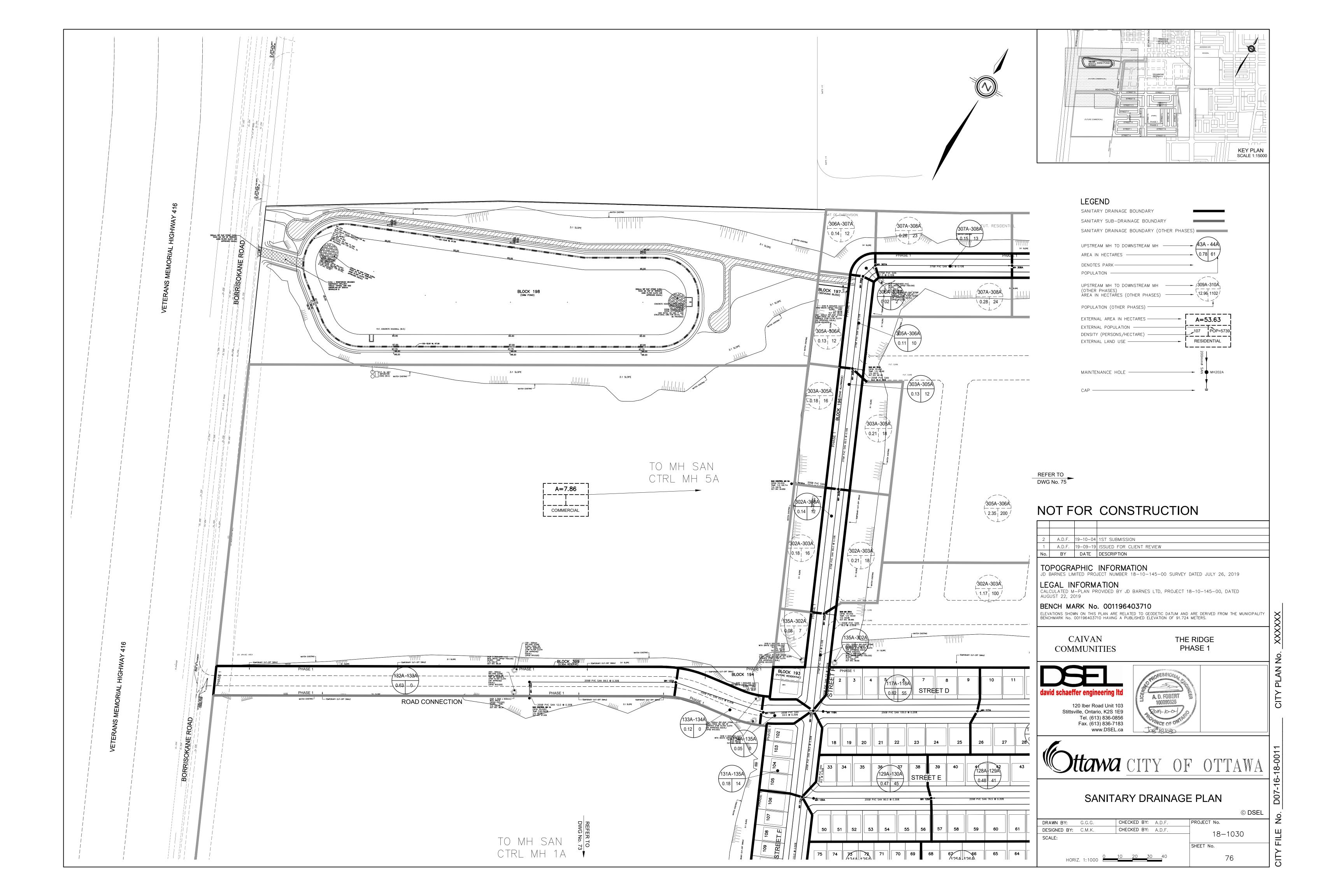
APPENDIX C

Wastewater Collection

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area	7.855 ha
Extraneous Flow Allowances Infiltration / Inf	low (Drv) 0.39 L/s
Infiltration / Infl Infiltration / Inflo	ow (Wet) 2.20 L/s

Institutional / Commercial	/ Industrial Cor	tributions		
Property Type	Unit	Rate	No. of Units	Avg Wastewater (L/s)
Water Closets*	150.0	L/fixture/hour	26	0.54
Lavatories*	150.0	L/fixture/hour	22	0.46
Kitchen Sinks	375	L/fixture/day	2	0.01
Showers*	575	L/fixture/hour	4	0.32
Mop Sink	375	L/fixture/day	1	0.00
Drinking Fountains*	375	L/fixture/day	2	0.10
Industrial - Light**	35,000	L/gross ha/d	0.93	0.38
Industrial - Heavy**	55,000	L/gross ha/d		0.00
		Ave	erage I/C/I Flow	1.82
	Peak In	stitutional / Co	mmercial Flow	1.51
		Peak In	dustrial Flow**	1.66
			Peak I/C/I Flow	3.18
* assuming a 12 hour commerce	ial operation		-	


* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B (Peaking Factor of 4.4)

Total Estimated Average Dry Weather Flow Rate	2.21 L/s
Total Estimated Peak Dry Weather Flow Rate	3.57 L/s
Total Estimated Peak Wet Weather Flow Rate	5.77 L/s

Design Brief for Caivan Communities The Ridge (Brazeau Lands) David Schaeffer Engineering Ltd.

> DSEL No. 18-1030 October 4, 2019 Rev1

Sewer l anticipa 5.77 + 9

Licent U <th>SANITAF</th> <th>RY SEWER CALC</th> <th>CULAT</th> <th>ION SHI</th> <th>EET</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>5.77</th> <th>ipated flow of + 9.96 = 15. er capacity =</th> <th>73 L/s</th> <th></th> <th>m subje</th> <th>ect site.</th> <th></th> <th>_T</th> <th></th> <th></th> <th></th> <th></th> <th>6</th> <th>ttav</th> <th>va</th> <th></th>	SANITAF	RY SEWER CALC	CULAT	ION SHI	EET										5.77	ipated flow of + 9.96 = 15. er capacity =	73 L/s		m subje	ect site.		_T					6	ttav	va	
V3 H1 V2 H4 V62 V61 V61 V61 V61 V61							RESIDENTI	AL AREA AND I	POPULATION					CO	ММ	INSTIT	PA	RK	C+I+I		INFILTRATIO	N					PIPE			
NUME Distance Dis		STREET		-		UNITS			POP.	AREA	1		FLOW		AREA	AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW		2		(FULL)	_	. ,	EL. (ACT.) (m/s)
$ \begin{array}{ $																														
TO STREET PLUS 05A - 16A SOME COLL	FUTURE ROAL	1	00.44									0.50										0.70				<u> </u>	10.10			0.45
Solutional Loop: Solutional Loop: <th< td=""><td></td><td></td><td>304A</td><td>305A</td><td>2.35</td><td></td><td></td><td></td><td>200</td><td></td><td></td><td>3.52</td><td>2.28</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>2.35</td><td></td><td>0.78</td><td>3.06</td><td>8.0</td><td>200</td><td>0.35</td><td>19.40</td><td>0.16</td><td>0.62</td><td>0.45</td></th<>			304A	305A	2.35				200			3.52	2.28						0.00	2.35		0.78	3.06	8.0	200	0.35	19.40	0.16	0.62	0.45
CTRL MF 64 OBA CON Fight 75 Con OBA Con OBA Con	<u>IOSIREELP,</u>	Pipe 305A - 306A								2.35	200				0.00	0.00		0.00			2.35			+		├ ────′				
CTRL MF 64 OBA CON Fight 75 Con OBA Con OBA Con		BLOCK - NORTH (DRUM		IDS)																						·'				
ETURE ROAD OR LUMADON Image: Solution of Laboral State of Labo		<u>`````````````````````````````````````</u>								0.00				7.86	7.86	0.00		0.00	2.55	7.86	7.86	2.59	<mark>5.14</mark>	32.0	200	0.35	19.40	0.26	0.62	0.52
L Site Bite 1.7 Io Site	To STREET P,	Pipe 303A - 305A								0.00	0				7.86	0.00		0.00			7.86									
L 36/A 36/A 17 0.00 100 101 100 100 100 100 100 100 100 100 000 100 101 110 000 000 000 101 110 0.00 000 000 000 000 100 <td></td> <td>ļ</td> <td></td> <td></td> <td>Ļ'</td> <td></td> <td></td> <td></td> <td></td>																							ļ			Ļ'				
To: STRET P: Provide: USA: USA: USA: USA: USA: USA: USA: USA	FUTURE ROAL	· · · · · · · · · · · · · · · · · · ·	004.0	0004	4 4 7				400	4.47	400	0.50	4 4 7		0.00	0.00		0.00	0.00	4 4 7	4 4 7	0.00	4.55	0.0			40.40	0.00	0.00	0.07
Some Image: Some Constraints			301A	302A	1.17				100			3.59	1.17						0.00	1.17		0.39	1.55	8.0	200	0.35	19.40	0.08	0.62	0.37
L CTRL Mr 14 1324 L COS L 1.62 0.00 4.00 4.02 1.62 0.00 4.00 4.02 1.62 0.00 4.00 4.02 1.62 0.00 0.00 4.00 4.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 1.02 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.0	IUSIKEELF,	Fipe 302A - 303A								1.17	100				0.00	0.00		0.00			1.17		┼┨────			├ ───′				
L CTRL Mr 14 1324 L COS L 1.62 0.00 4.00 4.02 1.62 0.00 4.00 4.02 1.62 0.00 4.00 4.02 1.62 0.00 0.00 4.00 4.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 1.02 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.00 4.00 4.00 0.00 0.00 4.0		BLOCK - SOUTH																								('				
Boad Condection Co			RL MH 1A	132A						0.00				14.82	14.82	0.00		0.00	4.80	14.82	14.82	4.89	9.69	12.0	200	0.35	19.40	0.50	0.62	0.61
Controlution From COMMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From COMMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From COMMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 12A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 1A 14A Image: Controlution From ComMERICAL BLOCK - SOUTH 124, CTRL MH 14A 14A Image: Controlution From Com	To ROAD CON	INECTION, Pipe 132A - 133	A							0.00	0				14.82	0.00		0.00			14.82									
Continuum From COMMERICAL BLOCK: SDUTT 124, CTRL MP1 1-12, CTRL MP1 1-126, TRL MP1 1-126																														
Image: state in the s										0.00					44.00			0.00		1100	44.00		<u> </u>			└──				
Image: state in the image: state in the image: state in the image: state	Contribution Fro	OM COMMERICAL BLOCK				<u>2</u> A			0		<u> </u>								4.90			5 10	0.00	00.5	200	0.25	10.40	0.51	0.62	0.62
In STREET Pupe 15A-302A International Pupe 15A-302A In									0		0																			0.62
To: STREET P: Pige 138 - 302A Image: Stress P: Str									0																		and the second			0.62
Image: Note:	To STREET P,								•		0																	0.01	0.01	0.01
Image: Note:																														
To STREET F 128A 128A 128 12 12 12 14 0.98 0.83 1.94 0.00 0	STREET C1																									<u> </u>				
To STREET F, Pipe 128A - 127A Image: Str				-																										0.39
STREET Image Image <t< td=""><td></td><td></td><td>125A</td><td>126A</td><td>0.50</td><td>12</td><td>12</td><td></td><td>41</td><td></td><td></td><td>3.61</td><td>1.04</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.50</td><td></td><td>0.32</td><td>1.36</td><td>91.0</td><td>200</td><td>0.35</td><td>19.40</td><td>0.07</td><td>0.62</td><td>0.35</td></t<>			125A	126A	0.50	12	12		41			3.61	1.04						0.00	0.50		0.32	1.36	91.0	200	0.35	19.40	0.07	0.62	0.35
Contribution From STREET F, Pipe 123A 128A UNDER FF, Pipe 123A 128A UNDER FF, Pipe 123A 127A 0.24 3 3 UNDER FE F, Pipe 123A 128A UNDER STREET G, Pipe 123A	<u>IUSIREELE,</u>	Pipe 126A - 127A								0.96	09				0.00	0.00		0.00			0.90					├ ───′				
Contribution From STREET F, Pipe 123A 1 26A v 0.81 6.31 0.00 0.00 0.00 0.81 0.81 v </td <td>STREET E</td> <td></td> <td>├────′</td> <td></td> <td></td> <td></td> <td></td>	STREET E																									├ ────′				
Contribution From STREET C1, Pipe 128A + 126A r 0.08 89 r 0.00 0.00 0.00 0.09 1.78 r </td <td></td> <td>om STREET F, Pipe 123A -</td> <td>126A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.81</td> <td>63</td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td>0.81</td> <td>0.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		om STREET F, Pipe 123A -	126A							0.81	63				0.00	0.00		0.00		0.81	0.81									
Image: constraint of the second sec	Contribution Fro	om STREET C1, Pipe 125A	- 126A							0.98	89									0.98	1.79									
Image: constraint of the second se						3	-		11																					0.42
Image: biology 129A 130A 0.47 13 13 14 5 3.11 2.56 3.48 2.89 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Ζ</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.53</td></t<>						Ζ			1																					0.53
Image: Construction of the second state of						. =								-																0.46
To STREET F. Pipe 131A - 135A Image: constraint of the strate of the					0.47	13	13		45																					0.48
STREET I Image: Control of the control of	To STREET F		IJUA	131A								3.49	2.09						0.00	0.00		1.03	5.92	0.0	200	0.35	19.40	0.20	0.02	0.40
211A 204A 0.52 12 12 14 0.52 13 3.67 0.49 0.00 0.00 0.00 0.52 0.52 0.17 0.66 88.5 200 0.80 29.34 0.02 0.93 0.03 0.93 0.03 0.93 0.0											200				0.00			0.00			<u> </u>					['				
Image: constraint of the set of	STREET I																													
Image: Normal series of the series																														0.37
To STREET H, Pipe 206A - 207A Image: Construction of the state					0.59	15	15		51																					0.36
STREET H Image: Constraint of the strange			205A	206A								3.60	1.07						0.00	0.00		0.37	1.44	8.0	200	0.35	19.40	0.07	0.62	0.36
Image: Normal State Stress of State	IUSIKEELH,	Pipe 200A - 207A								1.11	92	+			0.00	0.00		0.00			1.11					 '			<u> </u>	
Image: Constraint of the constraint	STRFFT H																									├ ────′				
210A 211A 0.20 4 4 14 0.29 18 3.71 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.31 50.5 200 3.80 63.94 0.00 2.04 0 211A 212A 0.19 4 4 14 0.48 32 3.68 0.38 0.00 0.00 0.00 0.00 0.00 0.19 0.48 0.16 0.54 50.0 200 0.45 22.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.48 0.16 0.54 50.0 200 0.45 22.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.16 0.54 50.0 200 0.43 20.00 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <th< td=""><td></td><td></td><td>209A</td><td>210A</td><td>0.09</td><td>1</td><td>1</td><td></td><td>4</td><td>0.09</td><td>4</td><td>3.76</td><td>0.05</td><td></td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td>0.09</td><td>0.09</td><td>0.03</td><td>0.08</td><td>12.5</td><td>200</td><td>2.95</td><td>56.33</td><td>0.00</td><td>1.79</td><td>0.29</td></th<>			209A	210A	0.09	1	1		4	0.09	4	3.76	0.05		0.00	0.00		0.00	0.00	0.09	0.09	0.03	0.08	12.5	200	2.95	56.33	0.00	1.79	0.29
211A 212A 0.19 4 4 14 0.48 32 3.68 0.38 0.00 0.00 0.00 0.19 0.48 0.16 0.54 50.0 200 0.45 22.00 0.02 0.70 0 Park Flow = 9300 L/ha/da 0.10764 V/s/Ha Industrial Peak Factor = as per MOE Graph SLM SLM PROJECT: Caivan Communities - Brazeau Phase 1 City of Uttawa Max Res. Peak Factor = 3.60 1.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00						4	4		14		18																			0.52
Park Flow =9300L/ha/da0.10764I/s/HaAverage Daily Flow =280I/p/dayIndustrial Peak Factor = as per MOE GraphComm/Inst Flow =28000L/ha/da0.3241I/s/HaExtraneous Flow =0.330L/s/haIndustrial Flow =35000L/ha/da0.40509I/s/HaExtraneous Flow =0.600m/sMax Res. Peak Factor =3.80						4	4		14																					0.29
Park Flow =9300L/ha/da0.10764I/s/HaAverage Daily Flow =280I/p/dayIndustrial Peak Factor = as per MOE GraphComm/Inst Flow =28000L/ha/da0.3241I/s/HaExtraneous Flow =0.330L/s/haIndustrial Flow =35000L/ha/da0.40509I/s/HaExtraneous Flow =0.600m/sMax Res. Peak Factor =3.80																										′				
Average Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph Industrial Peak Factor = as per MOE Graph Industrial Peak Factor = as per MOE Graph LOCATION: Comm/Inst Flow = 28000 L/ha/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha LOCATION: City of Ottawa Industrial Flow = 35000 L/ha/da 0.40509 I/s/Ha Minimum Velocity = 0.600 m/s ADF City of Ottawa Max Res. Peak Factor = 3.80 Manning's n = (Conc) 0.013 (Pvc) 0.013 Dvg. Reference: File Ref: 18-1030 Date: Sheet No.	Dark Flass		0200	1/6-6/-1-	0 40704	DESIGN P		ERS									d:				PROJECT	Γ:		Calver	Comm	unition F	r0700D	hace 1		
Com/Inst Flow =2800L/ha/da0.3241I/s/HaExtraneous Flow =0.330L/s/haChecked:LOCATION:Industrial Flow =35000L/ha/da0.40509I/s/HaMinimum Velocity =0.600m/sADFCity of OttawaMax Res. Peak Factor =3.80Manning's n =(Conc)0.013(Pvc)0.013Dwg. Reference:File Ref:18-1030Date:Sheet No.					0.10764		i/s/Ha			Industrial	Poak Foo	tor - as n		ranh		SLM								Gaivar	Commu	mues - B	nazeau P	11026 1		
Industrial Flow =3500L/ha/da0.40509I/s/HaMinimum Velocity =0.600m/sADFADFCity of OttawaMax Res. Peak Factor =3.80	• •				0.3241		/s/Ha					– us p		•		Checker	1:				LOCATIO	N:								
Max Res. Peak Factor =3.80Manning's n =(Conc)0.013 (Pvc)0.013Commercial/Inst./Park Peak Factor =1.00Townhouse coeff=2.7Dwg. Reference:File Ref:18-1030Date:Sheet No.												:														City of	Ottawa			
Commercial/Inst./Park Peak Factor =1.00Date:Sheet No.Townhouse coeff=2.7Dwg. Reference:File Ref:18-1030Date:Sheet No.							-								0.013											•				
Institutional = 0.32 I/s/Ha	Commercial/Inst.		1.00							Townhous	se coeff=	· · · ·	2.7	. /	-	0					File Ref:		18-1020					Shee	No.	1
	Institutional =		0.32	l/s/Ha						Single ho	use coeff=	=	3.4			Sanitary	Drainage P	lan, Dwgs.	. No. 73-76	;			10-1030			20 Sep 2019	9		of	5

has sufficient capacity to accommodate	
ated flow of 5.77 L/s from subject site.	
9.96 = 15.73 L/s	

SANITAI Manning's n=		ALCULAT	ION SH	EET																					6	ttaw	a	
inanning e n=	LOCATION	1				RESIDENTIAL	AREA AND P	OPULATION					СОММ	INSTIT	P	ARK	C+l+l		INFILTRATIC	N					PIPE			
	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA ACCU	. AREA ACCL	. AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	ΈL.
		М.Н.	M.H.			Singles T	Townhouse		AREA	POP.	FACT.	FLOW	AREA	AREA	Λ	AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
	1			(ha)					(ha)			(l/s)	(ha) (ha)	(ha) (ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
		0.4.0.4	0.1.0.1						0.57		0.07	0.40							0.57			40.5		4 55	40.00		4.00	0.47
		212A	213A	0.09	1	1		4	0.57	36	3.67	0.43	0.00			0.00		0.09	0.57	0.19	0.62	12.5	200	1.55	40.83	0.02	1.30	0.47
		213A	214A	0.51	13	13		45	1.08	81	3.61	0.95	0.00			0.00	0.00	0.51	1.08	0.36	1.31	86.5	200	2.35	50.28	0.03	1.60	0.68
10 SIREEI G	6, Pipe 214A - 119A								1.08	81			0.00	0.00)	0.00			1.08									
		209A	201A	0.56	13	13		45	0.56	45	3.66	0.53	0.00	0.00		0.00	0.00	0.56	0.56	0.18	0.72	93.5	200	0.65	26.44	0.03	0.84	0.36
		203A 201A	201A 202A	0.62	17	17		58	1.18	103	3.59	1.20	0.00			0.00		0.62	1.18	0.39	1.59	94.5	200	0.05	31.97	0.05	1.02	0.53
		201A	202A	0.02	2	2		7	1.31	100	3.59	1.28	0.00			0.00		0.02	1.10	0.43	1.71	13.5	200	0.80	29.34	0.06	0.93	0.50
		203A	206A	0.17	4	4		14	1.48	124	3.57	1.44	0.00			0.00	0.00	0.17	1.48	0.49	1.92	50.5	200	1.10	34.40	0.06	1.09	0.59
Contribution Fr	rom STREET I, Pipe 20		2007	0111					1.11	92	0.01		0.00			0.00		1.11	2.59		1102	0010	200			0.00	1.00	0.00
		206A	207A	0.20	5	5		17	2.79	233	3.50	2.64	0.00			0.00		0.20	2.79	0.92	3.56	50.5	200	1.05	33.61	0.11	1.07	0.69
		207A	208A	0.12	2	2		7	2.91	240	3.49	2.72	0.00			0.00		0.12	2.91	0.96	3.68	12.0	200	2.45	51.34	0.07	1.63	0.94
		208A	214A	0.54	15	15	†	51	3.45	291	3.47	3.27	0.00			0.00		0.54	3.45	1.14	4.41	90.0	200	1.90	45.21	0.10	1.44	0.91
To STREET G	6, Pipe 214A - 119A	-			_		†		3.45	291		1	0.00			0.00			3.45						1	-	1	
	·																											
STREET G																												
Contribution Fr	rom STREET H, Pipe 2	08A - 214A							3.45	291			0.00	0.00)	0.00		3.45	3.45									
Contribution Fr	rom STREET H, Pipe 2	13A - 214A							1.08	81			0.00			0.00		1.08	4.53									
		214A	119A	0.08				0	4.61	372	3.43	4.13	0.00			0.00	0.00	0.08	4.61	1.52	5.66	59.0	200	1.65	42.13	0.13	1.34	0.93
To STREET F,	, Pipe 119A - 120A								4.61	372			0.00	0.00)	0.00			4.61									
STREET F																												
		119A	122A	0.52	13	13		45	0.52	45	3.66	0.53	0.00			0.00	0.00	0.52	0.52	0.17	0.71	86.0	200	0.65	26.44	0.03	0.84	0.36
		122A	123A	0.09	1	1		4	0.61	49	3.65	0.58	0.00			0.00		0.09	0.61	0.20	0.78	12.5	200	1.50	40.17	0.02	1.28	0.50
		123A	126A	0.20	4	4		14	0.81	63	3.63	0.74	0.00			0.00		0.20	0.81	0.27	1.01	50.0	200	1.60	41.49	0.02	1.32	0.55
	, Pipe 126A - 127A								0.81	63			0.00			0.00		1.01	0.81									
Contribution Fr	rom STREET G, Pipe 2		1001	0.47	40	40		45	4.61	372	0.44	4.04	0.00			0.00		4.61	4.61	4.00	0.00	01.0	000	0.05	10.40	0.00	0.00	0.55
		119A	120A	0.47	13	13		45	5.08	417	3.41	4.61	0.00			0.00		0.47	5.08	1.68	6.29	81.0	200	0.35	19.40	0.32	0.62	0.55
		120A	121A	0.14	۷ ک	2		/	5.22	424	3.41	4.68	0.00			0.00		0.14	5.22	1.72	6.41	13.5	200	0.35	19.40	0.33	0.62	0.55
		121A	131A	0.43	10	10		34	5.65	458	3.39	5.04	0.00			0.00		0.43	5.65	1.86	6.90	110.0	200	0.50	23.19	0.30	0.74	0.64
	rom STREET E, Pipe 13		135A	0.10	1	4		14	3.11	256 728	2.24	7.80	0.00			0.00		3.11 0.18	8.76 8.94	2.95	10.75	50.0	200	0.35	19.40	0.55	0.62	0.63
	l , Pipe 135A - 302A	131A	135A	0.18	4	4		14	8.94	728	3.31	7.80	0.00			0.00		0.18	8.94	2.95	10.75	59.0	200	0.35	19.40	0.55	0.62	0.63
IU SIKEEI P,	, Pipe 135A - 30ZA								8.94	120			0.00	0.00	,	0.00			0.94									
STREET K																+			ł – –						+		+	
OTREET R		107A	108A	0.14	3		3	9	0.14	9	3.74	0.11	0.00	0.00)	0.00	0.00	0.14	0.14	0.05	0.16	12.5	200	2.45	51.34	0.00	1.63	0.36
		107/A	110A	0.17	5		5	14	0.31	23	3.70	0.28	0.00			0.00		0.17	0.31	0.10	0.38	50.5	200	0.35	19.40	0.00	0.62	0.24
To STREET J.	, Pipe 110A - 111A	100/1		0111	<u> </u>				0.31	23	0110	0.20	0.00			0.00		0.117	0.31		0.00	0010	200	0.00		0.02	0.02	0.2.1
,		1																1		1		1		1			1	
		107A	112A	0.45	18		18	49	0.45	49	3.65	0.58	0.00	0.00)	0.00	0.00	0.45	0.45	0.15	0.73	73.5	200	0.70	27.44	0.03	0.87	0.37
		112A	113A	0.43	16		16	44	0.88	93	3.60	1.09	0.00			0.00	0.00	0.43	0.88	0.29	1.38	70.5	200	0.35	19.40	0.07	0.62	0.36
		113A	114A	0.12	3		3	9	1.00	102	3.59	1.19	0.00			0.00		0.12	1.00	0.33	1.52	12.5	200	0.35	19.40	0.08	0.62	0.36
		114A	115A	0.18	5		5	14	1.18	116	3.58	1.35	0.00			0.00		0.18	1.18	0.39	1.74	50.5	200	0.40	20.74	0.08	0.66	0.40
To STREET J,	, Pipe 115A - 116A								1.18	116			0.00	0.00)	0.00			1.18									
		╡────┤				+							├ ── │ ──	_ _					 								 	
	L BLOCK - EAST		0050			+			0.05	ļ						0.07	0.07	0.07	0.07	0.05		4		0.07	40.45	0.05	0.00	0.05
		CTRL MH 2A	2250A			+			0.00				2.68 2.68			0.00		2.68	2.68	0.88	1.75	11.0	200	0.35	19.40	0.09	0.62	0.38
IOSIKEELB,	, Pipe 2250A - 226A	┨				+			0.00	0			2.68	0.00	,	0.00			2.68									
		+				+			+				├ <u></u>	+ +		+		-									+	
	1				DESIGN F	PARAMETER	RS		1	1	1	1		Desig	ned:	1		1	PROJEC	T:	1	1	1	1	1	1	1	
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha								SLN								Caiva	n Commi	unities - E	Brazeau P	hase 1		
Average Daily F	-low =	280	l/p/day	-					Industrial	Peak Fac	tor = as	per MOE G	raph										-	_				
Comm/Inst Flow		28000	L/ha/da	0.3241		l/s/Ha			Extraneou			0.330	•	Check	ed:				LOCATIO	N:								
Industrial Flow =		35000	L/ha/da	0.40509		l/s/Ha			Minimum			0.600		ADF										Citv of	Ottawa			
Max Res. Peak		3.80							Manning's	•	(Conc)													, - ,				
	t./Park Peak Factor =	1.00							Townhous		/	2.7	. ,		Reference:				File Ref:		18-1030		Date:			Shee	t No.	2
		0.32	l/s/Ha						Single ho			3.4					s. No. 73-76							20 Sep 201				

SANITAF	RY SEWER CA 0.013	LCULAI	TON SHI	EET																						6	ttaw	a	
	LOCATION					RESIDENTIA	L AREA AND	POPULATION					COMN	N	INS	STIT P	ARK	C+I+I		INFILTRATIO	N					PIPE			
	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.	CUMUI	ATIVE	PEAK	PEAK	AREA A	ACCU.	AREA	ACCU. AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	EL.
		M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)		AREA (ha)	(ha)	AREA (ha) (ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
STREET B																													
		224A	225A	0.33	9		9	25	0.33	25	3.69	0.30		0.00		0.00	0.00	0.00	0.33	0.33	0.11	0.41	75.0	200	0.65	26.44	0.02	0.84	0.30
		225A	2250A	0.27	8		8	22	0.60	47	3.66	0.56		0.00		0.00	0.00	0.00	0.27	0.60	0.20	0.75	67.5	200	0.90	31.12	0.02	0.99	0.41
Contribution Fro	om COMMERCIAL BLO		· · ·	1	2250A				0.00	0				2.68		0.00	0.00		2.68	3.28									
		2250A	226A	0.15	3		3	9	0.75	56	3.64	0.66		2.68		0.00	0.00	0.87	0.15	3.43	1.13	2.66	46.0	200	1.40	38.81	0.07	1.24	0.70
	Pipe 109A - 110A	226A	109A	0.34	9		9	25	1.09	81 81	3.61	0.95		2.68 2.68		0.00	0.00	0.87	0.34	3.77 3.77	1.24	3.06	92.0	200	1.60	41.49	0.07	1.32	0.76
IUSIREEIJ,	Pipe TU9A - TTUA								1.09	01				2.00		0.00	0.00			3.77									
STREET J																													
		CTRL MH 3A	109A	1.92				164	1.92	164	3.54	1.88	(0.00		0.00	0.00	0.00	1.92	1.92	0.63	2.52	11.0	200	0.35	19.40	0.13	0.62	0.42
Contribution Fro	om STREET B, Pipe 22								1.09	81				2.68		0.00	0.00		3.77	5.69									
		109A	110A	0.25	6	+	6	17	3.26	262	3.48	2.96		2.68		0.00	0.00	0.87	0.25	5.94	1.96	5.79	60.0	200	1.20	35.93	0.16	1.14	0.84
Contribution Fro	om STREET K, Pipe 10		444	0.44	40	+	40	ЛЛ	0.31	23	0 45	2.60		0.00		0.00	0.00	0.07	0.31	6.25	2.00	674	745	200	0.50	00.40	0.00	0.74	0.04
┠────┼		110A 111A	111A 115A	0.41	16 19	+	16 19	44 52	3.98 4.47	329 381	3.45 3.43	3.68 4.23		2.68 2.68		0.00	0.00	0.87	0.41	6.66 7.15	2.20 2.36	6.74 7.46	74.5 87.5	200 200	0.50 0.35	23.19 19.40	0.29	0.74	0.64 0.58
Contribution Fre	om STREET K, Pipe 11			0.43	13	+	ιJ	52	1.18	116	0.40	7.20		0.00		0.00	0.00	0.07	1.18	8.33	2.00	1.40	01.5	200	0.00	10.40	0.00	0.02	0.00
		115A	116A	0.24	6	1 1	6	17	5.89	514	3.37	5.62		2.68		0.00	0.00	0.87	0.24	8.57	2.83	9.32	63.0	200	0.35	19.40	0.48	0.62	0.61
To STREET D,	Pipe 116A - 117A								5.89	514				2.68		0.00	0.00			8.57									
STREET D																													
	om STREET A, Pipe 10	6A - 116A							7.71	651				0.00		0.00	1.72		9.43	9.43									
Contribution Fro	om STREET J, Pipe 115	5A - 116A							5.89	514				2.68		0.00	0.00		8.57	18.00									
		116A	117A	0.62	15	15		51	14.22	1216		12.59		2.68		0.00	1.72	1.05	0.62	18.62	6.14	19.79	117.0	250	0.25	29.73	0.67	0.61	0.65
		117A	118A	0.62	16	16		55	14.84	1271	3.18	13.12		2.68		0.00	1.72	1.05	0.62	19.24	6.35	20.52	105.0	250	0.25	29.73	0.69	0.61	0.65
	Dine 1254 2024	118A	135A						14.84	1271	3.18	13.12		2.68 2.68		0.00	1.72	1.05	0.00	19.24	6.35	20.52	7.0	250	0.25	29.73	0.69	0.61	0.65
IUSIREELP,	Pipe 135A - 302A								14.84	1271				2.00		0.00	1.72			19.24									
STREET P																													
Contribution Fro	om STREET D, Pipe 11	8A - 135A							14.84	1271				2.68		0.00	1.72		19.24	19.24									
	om STREET F, Pipe 13								8.94	728				0.00		0.00	0.00		8.94	28.18									
Contribution Fro	om ROAD CONNECTIC	DN, Pipe 134A	- 135A						0.80	0				14.82		0.00	0.00		15.62	43.80									
		135A	302A	0.08	1	1		7	24.66 24.81	2006	2.07	19.98		17.50 17.50		0.00 0.00	1.72	5.96	0.08	43.88	14.50	40.37	CC F	275	0.15	67.01	0.59	0.61	0.64
Contribution Fre	om FUTURE ROAD (DF				. 302A	1		4	1.17	2010 100	3.07	19.90		0.00		0.00	1.72	5.86	0.15	44.03 45.20	14.53	40.37	66.5	375	0.15	67.91	0.59	0.61	0.64
Contribution				0.14	002/1			12	26.12	2122				17.50		0.00	1.72		0.14	45.34									
				0.18				16	26.30	2138				17.50		0.00	1.72		0.18	45.52									
		302A	303A	0.21				18	26.51	2156	3.05	21.30		17.50		0.00	1.72	5.86	0.21	45.73	15.09	42.24	85.0	375	0.15	67.91	0.62	0.61	0.65
Contribution Fro	om FUTURE ROAD (DF	RUMMOND LA	NDS) - 125, P		- 303A	\downarrow			0.00	0				7.86		0.00	0.00		7.86	53.59			ļ			ļ	ļ	<u> </u>	
┟────┼				0.13		+		12	26.64 26.82	2168 2184				25.36 25.36		0.00	1.72		0.13	53.72									
		303A	305A	0.18		+		<u>16</u> 18	26.82	2184	3 04	21.71		25.36 25.36		0.00	1.72	8.40	0.18	53.90 54.11	17.86	47.97	82.5	375	0.15	67.91	0.71	0.61	0.67
Contribution Fro	om FUTURE ROAD (DF				· 305A	+ +		10	27.03	2202	0.04	<u> </u>		0.00		0.00	0.00	0.70	2.35	56.46	17.00	71.31	02.0	575	0.10	07.01	0.71		0.07
	(2)		,, , , ,	0.11				10	29.49	2412				25.36		0.00	1.72		0.11	56.57								1	
		305A	306A	0.13				12	29.62	2424	3.02	23.69		25.36		0.00	1.72	8.40	0.13	56.70	18.71	50.80	63.0	375	0.15	67.91	0.75	0.61	0.67
				0.02				2	29.64	2426				25.36		0.00	1.72		0.02	56.72									
		306A	307A	0.14		+		12	29.78	2438	3.01	23.81	2	25.36		0.00	1.72	8.40	0.14	56.86	18.76	50.98	11.0	375	0.15	67.91	0.75	0.61	0.67
			1	1	DESIGN F		ERS									Designed:	1	1	1	PROJEC	г Г:	1				<u> </u>	1	1	1
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha										SLM							Caivar	n Commu	inities - E	Brazeau P	hase 1		
Average Daily Flo		280	l/p/day	0.0011		17- 11-					or = as p	er MOE Gr	•								N I.								
Comm/Inst Flow		28000	L/ha/da	0.3241		l/s/Ha I/s/Ha			Extraneou			0.330 I				Checked:				LOCATIC	VIN:				City of	Ottowo			
Industrial Flow = Max Res. Peak F		35000 3.80	L/ha/da	0.40509		l/s/Ha			Minimum \ Manning's		(Conc)	0.600 r 0.013 (0.013		ADF									Gity of	Juawa			
	/Park Peak Factor =	1.00							Townhous			2.7	(1 00)	0.010		Dwg. Reference:				File Ref:		40.4000		Date:			Shee	t No.	3
Institutional =			l/s/Ha						Single hou			3.4				Sanitary Drainage		s. No. 73-76				18-1030			20 Sep 201	9		of	5

SANITAF	RY SEWER CA		TION SH	IEET																							6	ttaw	a	
Marining 5 ri–c	LOCATION					RESIDENTI	AL AREA AND I	POPULATION					CO	мм	INS	тіт	PA	RK	C+I+I		NFILTRATIO	N					PIPE			
	STREET	FROM	ТО	AREA	UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	EL.
		M.H.	M.H.			Singles	Townhouse		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
				(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
				0.15				13	29.93	2451				25.36		0.00		1.72		0.15	57.01									
				0.26				23	30.19	2474	-			25.36		0.00		1.72		0.26	57.27						07.04	0.70		
		307A	308A	0.28				24	30.47	2498	3.01	24.34		25.36		0.00		1.72	8.40	0.28	57.55	18.99	51.74	93.0	375	0.15	67.91	0.76	0.61	0.68
				0.15				13	30.62	2511	_			25.36		0.00		1.72		0.15	57.70									
			0.4.0.4	0.23				20	30.85	2531				25.36		0.00		1.72	0.10	0.23	57.93	10.00			075	0.45	07.04		0.04	
		308A	310A	0.24				21	31.09	2552	3.00	24.82		25.36		0.00		1.72	8.40	0.24	58.17	19.20	52.42	94.0	375	0.15	67.91	0.77	0.61	0.68
IO SIREELA,	Pipe 310A - 800A								31.09	2552				25.36		0.00		1.72			58.17									
PARK BLOCK				+																									+	
		CTRL MH 4A	1010						0.00					0.00		0.00	4 70	1 70	0.10	4 70	4 70	0.57	0.75	10 5	200	0.05	10.40	0.04	0.00	0.00
	2, Pipe 104A - 106A	CTRL MH 4A	104A						0.00	0						0.00	1.72	1.72	0.19	1.72	1.72	0.57	0.75	10.5	200	0.35	19.40	0.04	0.62	0.29
IU SIREEI CZ	2, Pipe 104A - 106A								0.00	0				0.00		0.00		1.72			1.72									
STREET L																														
		229A	230A	0.42	15		15	41	0.42	41	3.67	0.49	┟──┤	0.00		0.00		0.00	0.00	0.42	0.42	0.14	0.63	73.5	200	2.00	46.38	0.01	1.48	0.51
		229A 230A	103A	0.42	15		15	41	0.42	90	3.67	1.05	╞──┤	0.00		0.00		0.00	0.00	0.42	0.42	0.14	1.35	90.0	200	2.00	46.38	0.01	1.48	0.51
	2, Pipe 103A - 104A	ZOUA	103A	0.40	10		10	49	0.90	90	3.00	1.05	┟──┟	0.00		0.00		0.00	0.00	0.40	0.90	0.30	1.50	90.0	200	2.00	40.30	0.03	1.40	0.00
	-, i ipe 100A - 104A		+	+ +					0.90	30			+ +	0.00		0.00		0.00			0.90						+		+	
STREET M			<u> </u>	+ +		1			1		1	}	<u>├</u>						1	}	1		ļ	<u> </u>		<u> </u>	1		1	1
		227A	228A	0.47	18		18	49	0.47	49	3.65	0.58		0.00		0.00		0.00	0.00	0.47	0.47	0.16	0.74	72.5	200	2.00	46.38	0.02	1.48	0.53
		227A 228A	102A	0.47	18		18	49	0.95	98	3.60	1.14		0.00		0.00		0.00	0.00	0.47	0.95	0.10	1.46	90.0	200	0.85	30.24	0.02	0.96	0.33
To STREET C2	2, Pipe 102A - 103A	2207	1027	0.40	10		10		0.95	98	5.00	1.14		0.00		0.00		0.00	0.00	0.40	0.95	0.01	1.40	30.0	200	0.00	50.24	0.00	0.30	0.43
TO OTICET OZ	2, TIPC TOZA - TOJA								0.00	30				0.00		0.00		0.00			0.00									
STREET C2																														
011121 02		101A	102A	0.14	3		3	g	0.14	9	3.74	0.11		0.00		0.00		0.00	0.00	0.14	0.14	0.05	0.16	25.5	200	2.60	52.89	0.00	1.68	0.34
Contribution Fr	om STREET M, Pipe 228	-	102/(0.14	0		Ŭ	0	0.95	98	0.7 1	0.11		0.00		0.00		0.00	0.00	0.95	1.09	0.00	0.10	20.0	200	2.00	02.00	0.00	1.00	0.01
		102A	103A	0.22	7		7	19	1.31	126	3.57	1.46		0.00		0.00		0.00	0.00	0.33	1.31	0.43	1.89	59.0	200	1.70	42.76	0.04	1.36	0.67
Contribution Fr	om STREET L, Pipe 230		100/1	0.22	I		, '	10	0.90	90	0.07	1.40		0.00		0.00		0.00	0.00	0.90	2.21	0.40	1.00	00.0	200	1.70	42.70	0.04	1.00	0.07
		103A	104A	0.46	14		14	38	2.67	254	3.49	2.87		0.00		0.00		0.00	0.00	0.46	2.67	0.88	3.75	120.0	200	0.35	19.40	0.19	0.62	0.47
Contribution Fr	om PARK BLOCK- 123,			0.10	1.1			00	0.00	0	0.10	2.07		0.00		0.00		1.72	0.00	1.72	4.39	0.00	0.70	120.0	200	0.00	10.10	0.10	0.02	0.17
		104A	101/(106A	0.08	1		1	3	2.75	257	3.49	2.90		0.00		0.00		1.72	0.19	0.08	4.47	1.48	4.56	45.5	200	0.35	19.40	0.24	0.62	0.50
To STREET A	Pipe 106A - 116A	10 // (100/1	0.00	•			•	2.75	257	0.10	2.00		0.00		0.00		1.72	0.10	0.00	4.47	1.10	1.00	10.0	200	0.00	10.10	0.21	0.02	0.00
									2.70	201				0.00		0.00		1.12												
STREET N																														
		220A	221A	0.42	10		10	27	0.42	27	3.69	0.32		0.00		0.00		0.00	0.00	0.42	0.42	0.14	0.46	77.5	200	0.95	31.97	0.01	1.02	0.35
		221A	222A	0.49	18		18	49	0.91	76	3.62	0.89		0.00		0.00		0.00	0.00	0.49	0.91	0.30	1.19	93.0	200	0.35	19.40	0.06	0.62	0.34
		222A	223A	0.52	20		20	54	1.43	130	3.57	1.50		0.00		0.00		0.00	0.00	0.52	1.43	0.47	1.98	100.5	200	0.35	19.40	0.10	0.62	0.40
To STREET A,	Pipe 223A - 105A								1.43	130				0.00		0.00		0.00			1.43									
STREET O																														
		215A	216A	0.49	12	12		41	0.49	41	3.67	0.49		0.00		0.00		0.00	0.00	0.49	0.49	0.16	0.65	68.5	200	0.85	30.24	0.02	0.96	0.39
		216A	217A	0.72	17	17		58	1.21	99	3.60	1.15		0.00		0.00		0.00	0.00	0.72	1.21	0.40	1.55	107.0	200	0.35	19.40	0.08	0.62	0.37
		217A	219A	0.42	12	12		41	1.63	140	3.56	1.62		0.00		0.00		0.00	0.00	0.42	1.63	0.54	2.15	97.0	200	0.35	19.40	0.11	0.62	0.40
To STREET A,	Pipe 219A - 223A								1.63	140				0.00		0.00		0.00			1.63									
STREET A																														
		218A	219A	0.13	2	2		7	0.13	7	3.74	0.08		0.00		0.00		0.00	0.00	0.13	0.13	0.04	0.13	24.0	200	2.65	53.39	0.00	1.70	0.35
Contribution Fro	om STREET O, Pipe 217	7A - 219A							1.63	140				0.00		0.00		0.00		1.63	1.76									
		219A	223A	0.23	4	4		14	1.99	161	3.54	1.85		0.00		0.00		0.00	0.00	0.23	1.99	0.66	2.51	59.0	200	0.85	30.24	0.08	0.96	0.57
					DESIGN F		ERS									Designe	d:				PROJEC	T:								
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha										SLM								Caiva	n Commi	unities - I	Brazeau F	hase 1		
Average Daily Fl	ow =	280	l/p/day						Industrial	Peak Fac	ctor = as p	oer MOE G	Braph																	
Comm/Inst Flow	=	28000	L/ha/da	0.3241		l/s/Ha			Extraneou	is Flow =	-	0.330	L/s/ha			Checked	d:				LOCATIC	DN:	_					_		
Industrial Flow =		35000	L/ha/da	0.40509		l/s/Ha			Minimum	Velocity =	=	0.600	m/s			ADF										City of	Ottawa			
Max Res. Peak F		3.80							Manning's		(Conc)	0.013	(Pvc)	0.013																
	/Park Peak Factor =	1.00							Townhous	se coeff=		2.7				-	eference:				File Ref:		18-1030		Date:			Shee	t No.	4
Institutional =		0.32	l/s/Ha						Single ho	use coeff:	=	3.4				Sanitary I	Drainage P	lan, Dwgs.	s. No. 73-76				10-1030		1	20 Sep 201	9		of	5

SANITAI Manning's n=		CALCULA	TION SH	IEET																			Ottawa PIPE								
ina ining o ri=	LOCAT	ION				RESIDENTIAL AREA	A AND POPULATIC	N				СОММ	IN	STIT	PA	RK	C+I+I		NFILTRATIO	N					PIPE						
	STREET	FROM	ТО	AREA	UNITS	UNITS UNI	TS POP.	CUMU	JLATIVE	PEAK	PEAK	AREA ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL										
		M.H.	M.H.			Singles Townh	nouse	AREA	POP.	FACT.	FLOW	AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap					
				(ha)				(ha)			(l/s)	(ha) (ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)			
			_	_					100																						
Contribution Fr	rom STREET N, Pipe		1054					1.43	130	0.40	0.50	0.00		0.00	ļ	0.00		1.43	3.42	4.07				0.05	04.07	0.45	1 1 0 0	0.70			
		223A	105A	0.42	6	6	21	3.84	312		3.50	0.00		0.00		0.00	0.00	0.42	3.84	1.27	4.76	82.5	200	0.95	31.97	0.15	1.02	0.73			
		105A	106A	0.42	/	/	24	4.26	336	3.45	3.75	0.00		0.00		0.00	0.00	0.42	4.26	1.41	5.16	94.0	200	1.30	37.40	0.14	1.19	0.83			
	rom STREET C2, Pip	e 104A - 106A		0.05	44		1 00	2.75	257			0.00		0.00		1.72		4.47	8.73												
		1000	1100	0.35	11	1'		7.36	623	2.22	7.00	0.00		0.00		1.72	0.40	0.35	9.08	2.44	40.00	110.0	200	0.05	10.40	0.50	0.00	0.00			
		106A	116A	0.35	8	8	28	7.71	651	3.33	7.03	0.00		0.00		1.72 1.72	0.19	0.35	9.43	3.11	10.32	118.0	200	0.35	19.40	0.53	0.62	0.63			
IO SIREEI D	, Pipe 116A - 117A							7.71	651			0.00		0.00		1.72			9.43												
		309A	310A	8.79			748	8.79	748	3 30	8.00	0.00		0.00		0.00	0.00	8.79	8.79	2.90	10.91	8.5	250	0.35	35.18	0.31	0.72	0.63			
Contribution Fr	I rom STREET P, Pipe		310A	0.79			740	31.09		5.50	0.00	25.36		0.00		1.72	0.00	58.17	66.96	2.30	10.91	0.5	230	0.55	55.10	0.31	0.72	0.03			
		310A - 310A	800A	0.09			8	39.97	3308	202	31.35	25.36		0.00		1.72	8.40	0.09	67.05	22.13	61.89	36.0	375	0.25	87.67	0.71	0.79	0.86			
		STUR	OUUA	0.08		+ +	0	59.97	5500	2.32	51.55	20.30	-	0.00		1.12	0.40	0.09	07.00	22.13	01.09	30.0	515	0.20	07.07	0.71	0.19	0.00			
			1						1	1													1				1				
						<u> </u>			<u> </u>	1 1																					
																											-				
													-																		
				-									-																		
																											1				
													-														-				
			-	-									-											1			-				
																1						1									
						<u> </u>			1	$\left \right $																					
						+ +			1	+			+														+				
										┨			+	1													1	1			
									1	1			1	1	1				1			1	1	1	1		1				
						ļ																									
						┥──┤──			-	1																	<u> </u>				
						<u>↓ </u>			-	+																					
						+ +			1	+			+														+				
	1	I	1	I	DESIGN	PARAMETERS	<u> </u>	I	1	1		<u> </u>		Designe	d:	L			PROJEC	I T:	l	I	L	I	I	l	I	1			
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha								SLM						-		Caivar	ר Comm	unities - F	Brazeau P	hase 1					
Average Daily F	low –	280	l/p/day	0.10704		., o/ Fio		Industria	Peak Fac	tor – ac c		ranh										-ui ful									
Comm/Inst Flow		28000	L/ha/da	0.3241		l/s/Ha			us Flow =	-	0.330	-		Checke	4.				LOCATIC)N·											
ndustrial Flow =		35000	L/ha/da	0.3241		l/s/Ha			Velocity =		0.330			ADF	<i>а</i> .					/ N.				City of	Ottawa						
Max Res. Peak I		35000	L/IId/Ua	0.40009		1/5/17d		Manning	-	(Conc)	0.600		1												Juawa						
	t./Park Peak Factor =	1.00							s n = se coeff=		2.7	(1.00) 0.013			eference:				File Ref:				Date:			Shee	t No	5			
		1.00												DVV0 11-							18-1030										

APPENDIX D

Stormwater Management

Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2012

Existing Drainage Charateristics From Internal Site

Area C	7.86 0.20	ha Rational Method runoff coefficient
L	303.23	m
Up Elev	109.4	m
Dn Elev	100.42	m
Slope	3.0	%
Tc	35.6	min

1) Time of Concentration per Federal Aviation Administration

<i>t</i> –	$1.8(1.1-C)L^{0.5}$
ι_c –	S ^{0.333}

tc, in minutes

C, rational method coefficient, (-)

L, length in ft

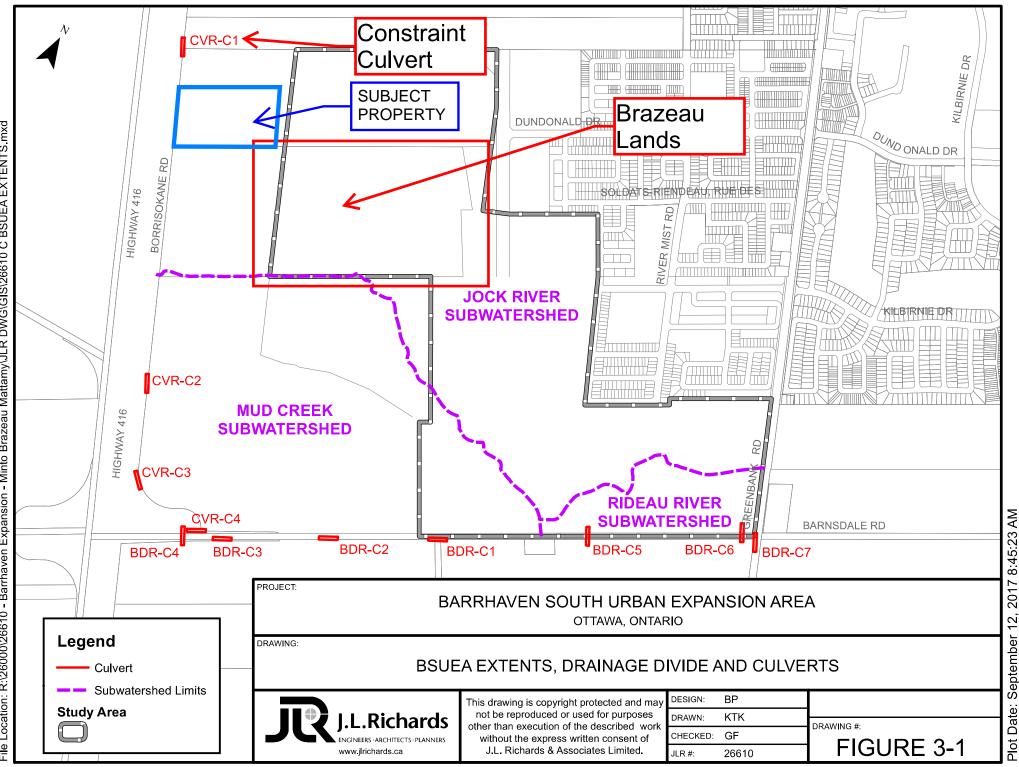
S, average watershed slope in %

Estimated Peak Flow

	2-year	5-year	100-year	
i	35.6	48.0	81.6	mm/hr
Q	155.5	209.3	445.2	L/s

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

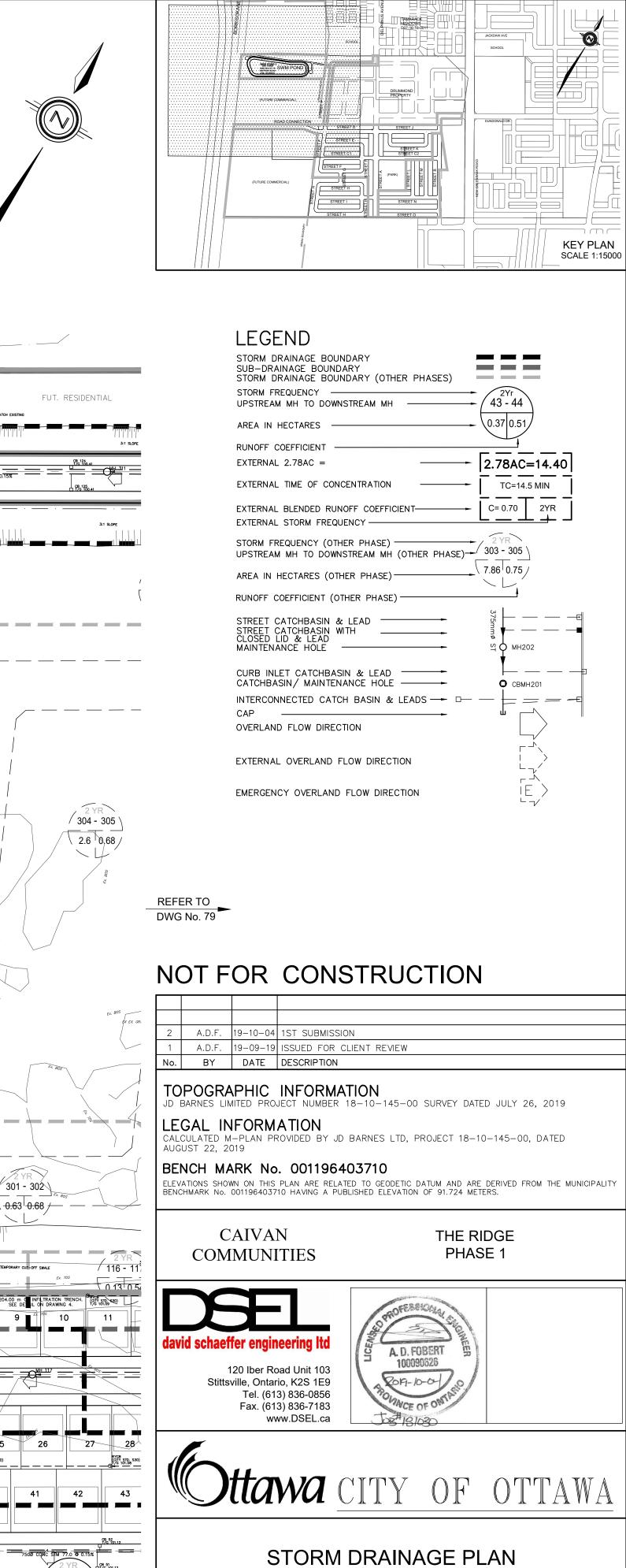

														Sewer Data				
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	I	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q ful
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)
	CB100	CBMH1A	0.187	0.68	0.13	0.13	10.0	104.2	36.8	250	1.00	26.1	0.049	0.063	1.21	59.5	0.4	0.6
		-					10.4	-										
	CB101	CBMH1A	0.340	0.39	0.13	0.13	10.0	104.2	38.3	250	1.00	1.1	0.049	0.063	1.21	59.5	0.0	0.6
						-	10.0											
	CBMH1A	STM1B	0.111	0.65	0.07	0.33	10.4	102.3	94.2	375	0.35	15.3	0.110	0.094	0.94	103.7	0.3	0.9
							10.6											
	CB102	STM1B	0.099	0.57	0.06	0.06	10.0	104.2	16.3	250	1.00	3.6	0.049	0.063	1.21	59.5	0.0	0.2
							10.0											
	STM1B	STM1C			0.00	0.39	10.6	101.0	108.7	450	0.35	57.8	0.159	0.113	1.06	168.7	0.9	0.6
							11.5											
	CB103	STM1C	0.055	0.90	0.05	0.05	10.0	104.2	14.4	250	1.00	2.4	0.049	0.063	1.21	59.5	0.0	0.2
							10.0											
	STM1C	STM1D			0.00	0.44	11.5	96.7	117.5	450	0.50	16.1	0.159	0.113	1.27	201.6	0.2	0.5
	STM1D	STM1E			0.00	0.44	11.8 12.3	95.8	116.4	450	0.50	39.5	0.159	0.113	1.27	201.6	0.5	0.5
	CB104	STM1F	0.459	0.36	0.17	0.17	10.0	104.2	48.2	250	1.00	1.8	0.049	0.063	1.21	59.5	0.0	0.8
	CB104	511111	0.435	0.30	0.17	0.17	10.0	104.2	40.2	230	1.00	1.0	0.049	0.003	1.21	39.5	0.0	0.0
	CB105	STM1F	0.155	0.55	0.08	0.08	10.0	104.2	24.5	250	1.00	3	0.049	0.063	1.21	59.5	0.0	0.4
	00100	0 mm	0.100	0.00	0.00	0.00	10.0	104.2	24.0	200	1.00	0	0.045	0.000	1.21	00.0	0.0	0.4
	STM1F	STM1E			0.00	0.25	10.0	104.0	72.5	375	0.50	23.8	0.110	0.094	1.12	124.0	0.4	0.5
							10.4											
	STM1E	STM1G			0.00	0.69	12.3	93.6	178.9	450	0.50	103.6	0.159	0.113	1.27	201.6	1.4	0.8
							13.6											
	CB106	STM1G	0.308	0.20	0.06	0.06	10.0	104.2	17.8	250	1.00	16.6	0.049	0.063	1.21	59.5	0.2	0.3
							10.2											
	CB107	STM1G	0.272	0.60	0.16	0.16	10.0	104.2	47.2	250	1.00	4.4	0.049	0.063	1.21	59.5	0.1	0.7
							10.1											
	CB108	STM1G	0.259	0.70	0.18	0.18	10.0	104.2	52.2	250	1.00	1.9	0.049	0.063	1.21	59.5	0.0	0.8
							10.0											
	STM1G	STM1H			0.00	1.09	13.6	88.3	268.1	525	0.50	48.5	0.216	0.131	1.40	304.1	0.6	0.8
							14.2											
	CB109	STM 1H	0.365	0.75	0.27	0.27	10.0	104.2	79.2	300	1.00	2	0.071	0.075	1.37	96.7	0.0	0.8
							10.0											
	BLDG A	STM1H	0.295	0.90	0.27	0.27	10.0	104.2	76.7	300	1.00	69	0.071	0.075	1.37	96.7	0.8	0.7
	DLDG A		0.230	0.30	0.27	0.27	10.8	104.2	70.7	300	1.00	09	0.071	0.075	1.37	30.7	0.0	

Storm Sewer Calculation Sheet

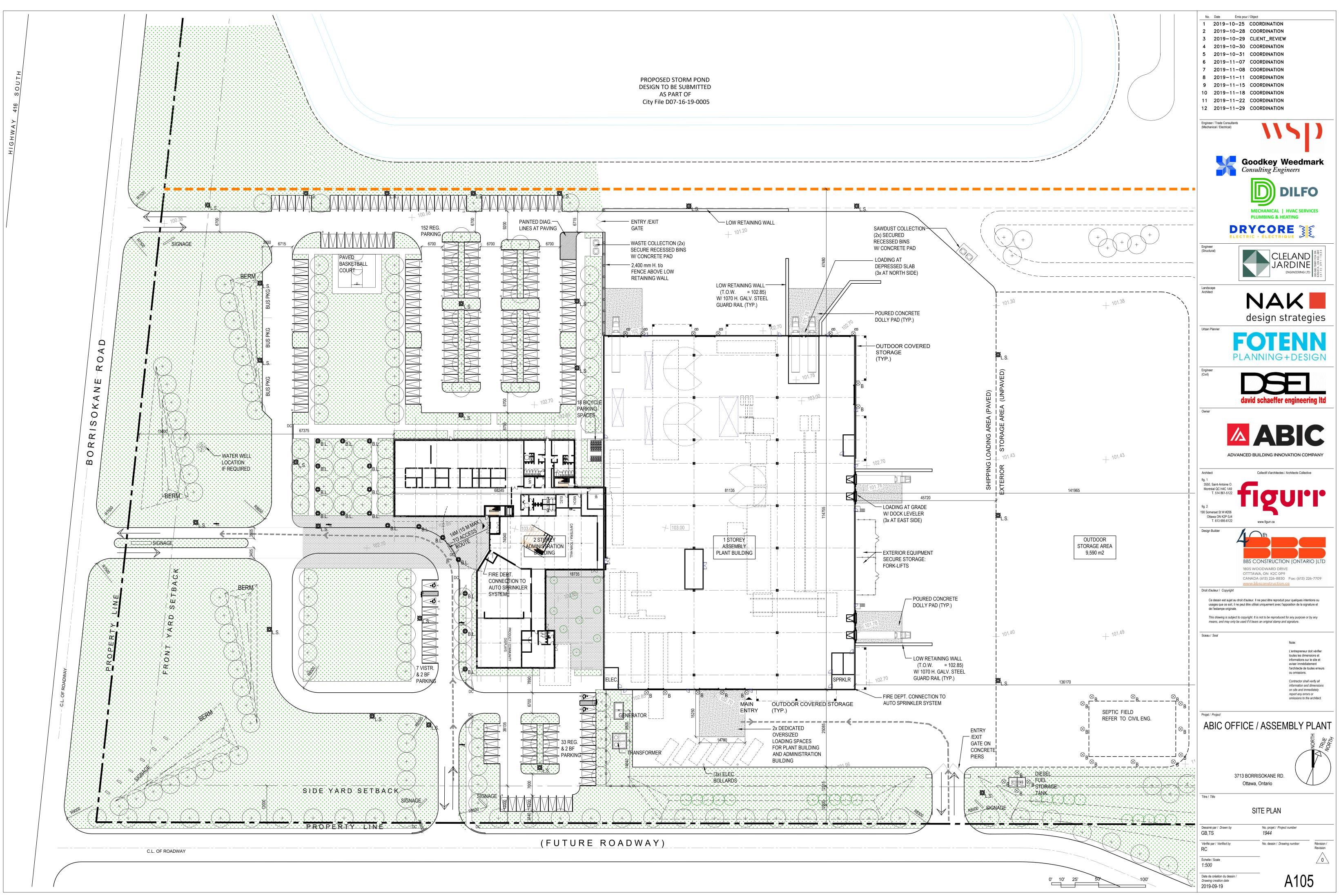

STM 1H	STM2F			0.00	1.63	14.2	86.2	390.9	675	0.50	60.5	0.358	0.169	1.66	594.4	0.6	0.66
	-				-	14.8											
 CB200	STM2A	0.607	0.64	0.39	0.39	10.0 10.0	104.2	112.1	375	1.00	0.8	0.110	0.094	1.59	175.3	0.0	0.64
STM2A	STM2B			0.00	0.39	10.0 10.4	104.1	112.0	375	0.50	28.9	0.110	0.094	1.12	124.0	0.4	0.90
CB201	STM2B	0.604	0.65	0.39	0.39	10.0	104.2	113.8	375	1.00	1.6	0.110	0.094	1.59	175.3	0.0	0.65
						10.0											
STM2B	STM2C			0.00	0.78	10.4 11.3	101.9	221.0	525	0.50	73.5	0.216	0.131	1.40	304.1	0.9	0.73
CB202	STM2C	0.692	0.80	0.55	0.55	10.0	104.2	159.4	375	1.00	1.5	0.110	0.094	1.59	175.3	0.0	0.91
 	0	0.002	0.00	0.00	0.00	10.0			0.0			00	0.001			0.0	
 CB203	STM2C	0.560	0.63	0.35	0.35	10.0 10.0	104.2	102.4	375	1.00	1.5	0.110	0.094	1.59	175.3	0.0	0.58
STM2C	STM2E			0.00	1.69	11.3 12.0	97.7	457.6	675	1.00	99.5	0.358	0.169	2.35	840.6	0.7	0.54
CB204	STM2F	0.057	0.90	0.05	0.05	10.0 10.1	104.2	14.8	250	1.00	7.4	0.049	0.063	1.21	59.5	0.1	0.25
CB205	STM2F	0.121	0.90	0.11	0.11	10.0 10.0	104.2	31.5	250	1.00	1.4	0.049	0.063	1.21	59.5	0.0	0.53
 CB206	STM2F	0.117	0.90	0.11	0.11	10.0	104.2	30.4	250	1.00	1.3	0.049	0.063	1.21	59.5	0.0	0.51
						10.0											
CB207	STM2F	0.119	0.90	0.11	0.11	10.0 10.0	104.2	31.1	250	1.00	1.2	0.049	0.063	1.21	59.5	0.0	0.52
 BLDG B	STM2F	0.936	0.90	0.84	0.84	10.0 10.3	104.2	243.9	450	1.00	36.2	0.159	0.113	1.79	285.1	0.3	0.86
 CB208	STM2F	0.173	0.20	0.03	0.03	10.0	104.2	10.0	250	1.00	3	0.049	0.063	1.21	59.5	0.0	0.17
CB200	5111/21	0.175	0.20	0.03	0.03	10.0	104.2	10.0	230	1.00	5	0.049	0.003	1.21	39.3	0.0	0.17
STM2F	STM2E			0.00	2.94	14.8	84.2	686.2	750	0.50	113.2	0.442	0.188	1.78	787.2	1.1	0.87
						15.9											
STM2E	STM2G			1.63	4.57	15.9 16.7	80.8	1025.6	900	0.50	101.3	0.636	0.225	2.01	1280.1	0.8	0.80
CB300	STM2G	0.381	0.20	0.08	0.08	10.0	104.2	22.1	250	1.00	2.3	0.049	0.063	1.21	59.5	0.0	0.37
 						10.0											
STM2G	STM2H			0.00	4.64	16.7 17.1	78.4	1011.4	900	0.50	47.9	0.636	0.225	2.01	1280.1	0.4	0.79
						17.1											

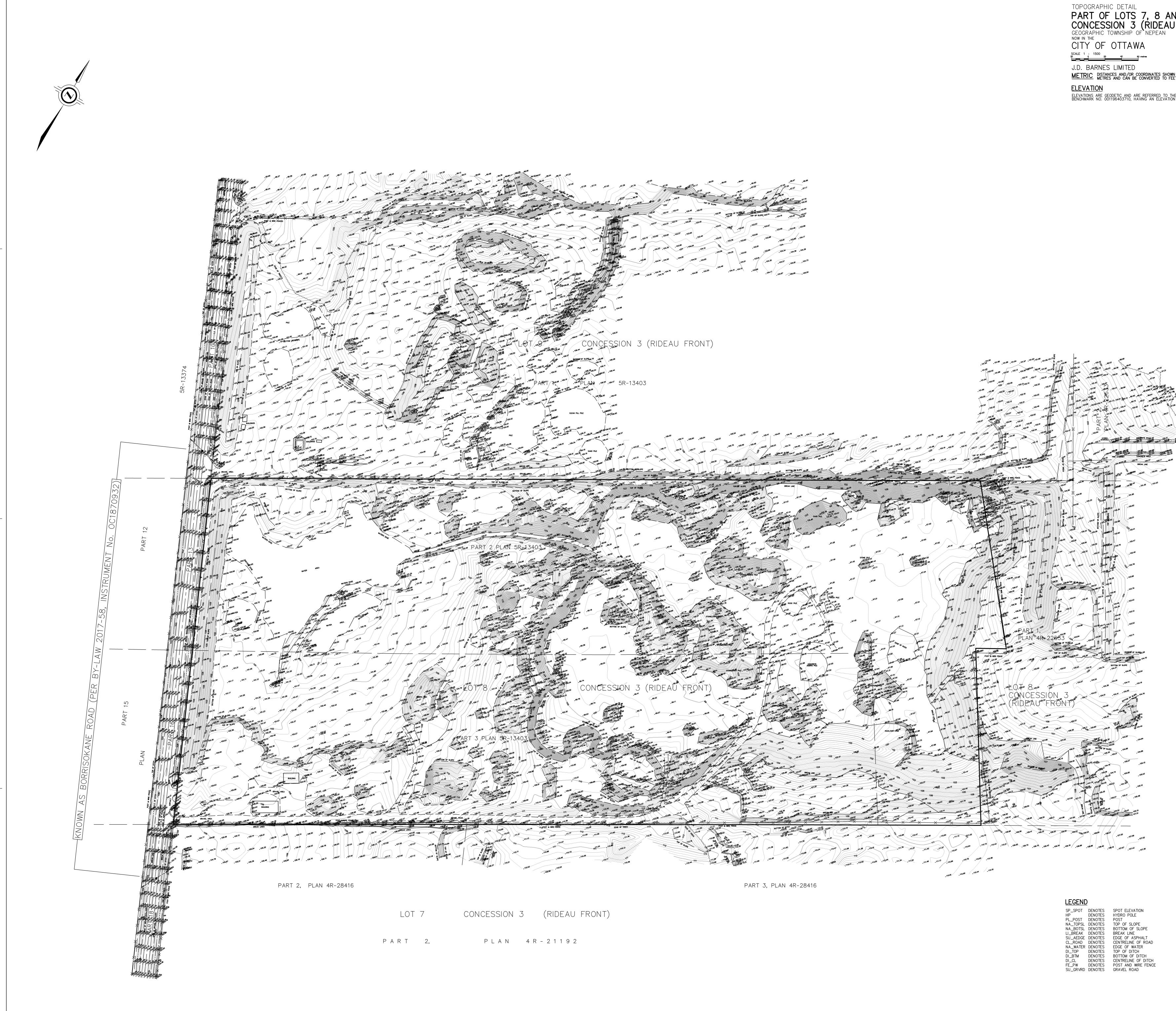
Barrhaven South Urban Expansion Area Excerpts J.L. Richards & Associates Limited

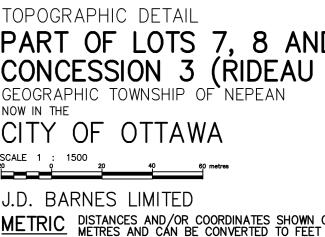
JLR No. 26610 May 4, 2018 Rev2

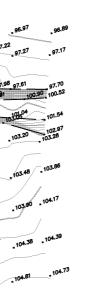

2017 12, September Plot Date:

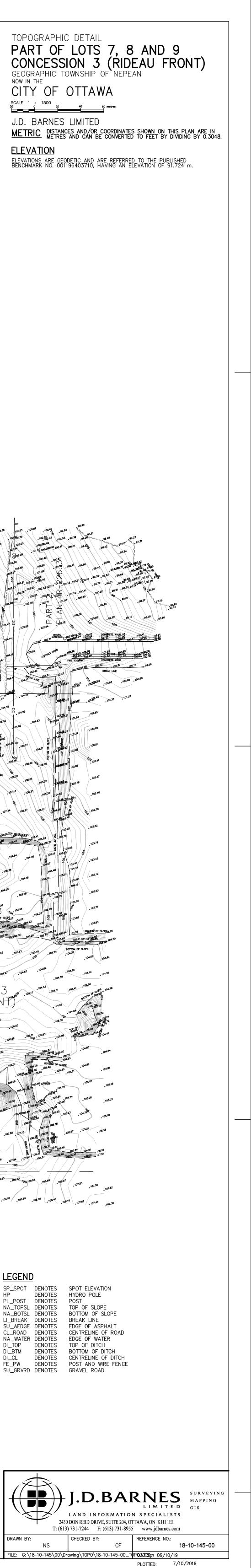
Design Brief for Caivan Communities The Ridge (Brazeau Lands) David Schaeffer Engineering Ltd.


> DSEL No. 18-1030 October 4, 2019 Rev1






		© DSEL	
DRAWN BY: G.G.G.	CHECKED BY: A.D.F.	PROJECT No.	Z
DESIGNED BY: C.M.K.	CHECKED BY: A.D.F.	18-1030	Ц
SCALE:		18-1050	=
		SHEET No.	Ш
HORIZ. 1:1000	<u>10 20 30 </u> 40	80	


DRAWINGS / FIGURES

