

ASSESSMENT OF ADEQUACY OF PUBLIC SERVICES REPORT

FOR

4497 O'KEEFE COURT

MATTAMY HOMES

CITY OF OTTAWA

DSEL PROJECT NO.: 14-746

OCTOBER 2024 1ST SUBMISSION © DSEL

ASSESSMENT OF ADEQUACY OF PUBLIC SERVICES REPORT FOR 4497 O'KEEFE COURT

DSEL PROJECT NO: 14-746

TABLE OF CONTENTS

1.0	INTRODUCTION	3
2.0	BACKGROUND INFORMATION	5
2.1	Existing Studies, Guidelines, and Reports	5
3.0	WATER SUPPLY SERVICING	7
3.1	Existing Water Services	7
3.2	Water Supply Strategy	7
3.3	Water Supply Conclusion	8
4.0	WASTEWATER SERVICING	9
4.1	Existing Wastewater Services	9
4.2	Wastewater Servicing Strategy	9
4.3	Wastewater Servicing Conclusion	10
5.0	STORM SERVICING & STORMWATER MANAGEMENT	11
5.1	Existing Stormwater Drainage Conditions	11
5.2	Stormwater Servicing Strategy	11
5.3	Storm Servicing & Stormwater Management Conclusion	12
6.0	UTILITIES	13
7.0	EROSION AND SEDIMENT CONTROL	14

APPENDICES

Appendix A – Background

- City of Ottawa Development Servicing Study Checklist
- Cedarview Community Masterplan Concept, prepared by Urbantypology, dated August 17, 2023
- Cedarview Concept Employment Block, prepared by Urbantypology, dated August 4, 2023
- Pre-consultation correspondence with Hydro One (October 2023)

Appendix B – Water Servicing

 Mattamy Cedarview Water Servicing Analysis, prepared by Stantec, dated February 8, 2024

Appendix C - Wastewater Servicing

- Sanitary Drainage, prepared by DSEL, dated August 2023
- Sanitary Design Sheet Existing (Design Sewers), prepared by DSEL, dated August 2023
- Sanitary Design Sheet Existing (As-Built Sewers), prepared by DSEL, dated August 2023
- Sanitary Design Sheet Conservancy, prepared by DSEL, dated August 2023
- Sanitary Design Sheet Option 1, prepared by DSEL, dated August 2023
- Sanitary Design Sheet Option 2, prepared by DSEL, dated August 2023
- Mattamy Cedarview Development Sanitary HGL Analysis, prepared by JFSA, dated October 6, 2023

Drawings

Overall Servicing Figure (DSEL, October 2024)

ASSESSMENT OF ADEQUACY OF PUBLIC SERVICES REPORT FOR 4497 O'KEEFE COURT MATTAMY HOMES DSEL PROJECT NO: 14-746

1.0 INTRODUCTION

Mattamy Homes has retained DSEL to prepare an assessment report evaluating the adequacy of public services to support urban residential development at their 4497 O'Keefe Court property.

The subject property is located east of Highway 416, south of West Hunt Club Road, west of Cedarview Road, and north of Fallowfield Road and O'Keefe Court. The O'Keefe Drain is located to the south of the subject property. The subject property was previously contemplated to be developed as Phase 2 of a country lot subdivision. Phase 1 of the country lot subdivision has been constructed and is located immediately to the north-east, see *Figure 1* below for the property limits.

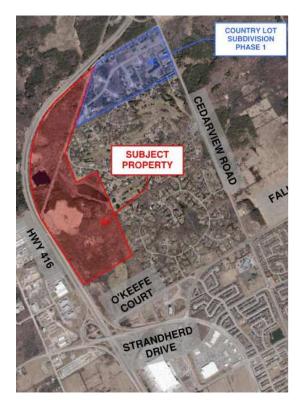


Figure 1: Site Location

The Phase 1 country lot subdivision is serviced by municipal watermains but relies on private lot-level septic systems for wastewater disposal and treatment. The subject property currently has draft plan of subdivision approval for development as a country lot subdivision, which was planned to follow the same municipal water and private lot-level

Assessment of Adequacy of Public Services Report 4497 O'Keefe Court Mattamy Homes 14-746

septic system servicing strategy that was approved for the existing Phase 1 country lot subdivision.

The following report outlines the adequacy of public services to support the potential water, wastewater, and storm servicing strategy for an updated and urbanized development concept plan for 4497 O'Keefe Court. Refer to *Appendix A* for the revised concept plan details and development statistics. The proposed plan is comprised of a mix of residential areas with varying densities, mixed-use blocks, parks, conservation areas, and a road network that includes proposed street connections to O'Keefe Court to the south and Onassa Circle to the north of the subject property.

There is an existing City park as well as a vacant parcel owned by others directly south of the subject property. In an effort to consider all potential development opportunities in the area surrounding the subject properties in this report, a potential residential concept for the vacant parcel has been prepared and can be found in *Appendix A*.

As part of this report, **Stantec Consulting Ltd.** has prepared a water servicing analysis for the subject property, included in **Appendix B** of this report. **Paterson Group** have prepared a geotechnical investigation of the subject property to be submitted under separate cover.

2.0 BACKGROUND INFORMATION

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

Ottawa Sewer Design Guidelines

City of Ottawa, October 2012 (Sewer Design Guidelines)

Technical Bulletin ISDTB-2014-01

City of Ottawa, February 5, 2014 (ITSB-2014-01)

Technical Bulletin PIEDTB-2016-01

City of Ottawa, September 6, 2016 (PIEDTB-2016-01)

> Technical Bulletin ISTB-2018-01

City of Ottawa, March 21, 2018 (PIEDTB-2016-01)

Technical Bulletin ISTB-2018-04

City of Ottawa, June 27, 2018 (PIEDTB-2016-01)

> Technical Bulletin ISTB-2019-02

City of Ottawa, July 8, 2019 (ITSB-2019-02)

Ottawa Design Guidelines – Water Distribution

City of Ottawa, July 2010 (Water Supply Guidelines)

> Technical Bulletin ISD-2010-2

City of Ottawa, December 15, 2010 (ISDTB-2010-2)

> Technical Bulletin ISDTB-2014-02

City of Ottawa, May 27, 2014 (ISDTB-2014-02)

Technical Bulletin ISTB-2018-02

City of Ottawa, March 21, 2018 (ISTB-2018-02)

> Technical Bulletin ISTB-2021-03

City of Ottawa, August 18, 2021 (ISDTB-2021-03)

> City of Ottawa Official Plan

Adopted by Council 2021, amended from time to time. (Official Plan)

Stormwater Management Planning and Design Manual

Ministry of Environment, March 2003 (SWMP Design Manual)

Design Guidelines for Sewage Works,

Ministry of the Environment, 2008. (MECP Design Guidelines)

Jock River Reach One Subwatershed Study

Stantec, June 2007

O'Keefe Drain Environmental and Stormwater Management Plan

CH2M Hill, May 2013

Mattamy Cedarview Water Servicing Analysis

Stantec, February 8, 2024

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Services

The existing water services in the vicinity of the proposed development include a 600mm diameter watermain within O'Keefe Court and a 305mm diameter watermain within Onassa Circle at Trilby Court. The 600mm watermain within O'Keefe Court is connected to the Moodie Drive elevated tank, located approximately 1 km to the west, across Hwy 416. For further details on the existing watermain network in the area, refer to *Drawing* 1.

3.2 Water Supply Strategy

The subject property is proposed to be serviced by connections to existing watermains within Pressure Zone 3SW. Specifically, connections are to be made to the existing 600mm diameter watermain within O' Keefe Court, and the existing 305mm diameter watermain within Onassa Circle, at Trilby Court.

Stantec has completed a preliminary water servicing analysis for the subject property and the Cedarview Employment Lands. See the *Mattamy Cedarview Water Servicing Analysis* (Stantec, February 8, 2024), included in *Appendix B* for details. Further investigations are to be completed as the development process advances and the development statistics are refined, and additional input is provided by the City of Ottawa (e.g. boundary conditions).

The Stantec analysis utilized the City of Ottawa Water Design Guidelines and criteria outlined in the 2013 Water Master Plan (WMP) to establish water demands, level of service and pressure objectives during normal and emergency conditions. The estimated residential population for the subject lands was estimated based on projected household sizes as per population densities specified in the City's 2013 WMP. As per the 2013 WMP, the zone/system-level criteria for water demands were used for populations that exceed 3,000 persons.

Per the Stantec analysis, offsite upgrades to the City's potable water distribution system are expected to be required to service the subject property. Specifically, but not limited to, pumping upgrades within Pressure Zone 3SW.

It is understood that the City of Ottawa is in the process of a multi-year water infrastructure upgrade program to reconfigure the pressure zones in Barrhaven. Further coordination with City staff will be required to confirm that the planned upgrades will be sufficient to service the subject property.

Fire flow requirements for the proposed development are to be confirmed at the time of functional servicing design, and fire control measures are to be incorporated as required.

Assessment of Adequacy of Public Services Report 4497 O'Keefe Court Mattamy Homes 14-746

3.3 Water Supply Conclusion

The subject property will connect to existing watermains in Pressure Zone 3SW, specifically a 600mm watermain on O'Keefe Court and a 305mm watermain on Onassa Circle at Trilby Court. The O'Keefe Court watermain is linked to the Moodie Drive elevated tank.

Further water investigations are to be completed as the development process advances. As the City of Ottawa is upgrading water infrastructure and reconfiguring pressure zones in Barrhaven, ongoing coordination with City staff is required. Detailed water demands and fire flow requirements will be confirmed at functional servicing design.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The existing wastewater services in the vicinity of the subject lands include a 525mm diameter South Nepean Collector (SNC) sanitary sewer located on Strandherd Drive at the Maravista Drive intersection, approximately 1.8 km south of the subject property. Additionally, there is a nearby sanitary sewer on Citigate Drive, about 1.4 km south of the property, that varies in diameter from 250 to 375 mm. For details on the existing sewer network, refer to *Drawing 1*.

4.2 Wastewater Servicing Strategy

The subject property is proposed to be serviced via a gravity sewer connection to the South Nepean Collector (SNC) sanitary sewer. Refer to the overall servicing figure, *Drawing 1*, for an illustration of the proposed sanitary sewer network.

The design of the SNC was detailed in the *Strandherd Drive Widening Project – South Nepean Collector Phase 3: Sanitary Flow Calculations* report (Novatech, May 2019). DSEL has recreated the SNC drainage plan and sewer design sheet from this report, to investigate the capacity of the SNC to accommodate wastewater flows from the subject property. Refer to *Appendix C*.

The SNC sewer design sheet has also been updated using recorded as-built information made available from the City of Ottawa, see *Appendix C*. Considering the recorded as-built conditions, it has been identified that the residual free-flowing capacity within the critical sewer segment of the downstream SNC (MHSA 9 to MHSA 10, part of SNC Phase 2, located within Chapman Mills Drive) is 121.21 L/s.

Since the time that the *Strandherd Drive Widening Project – South Nepean Collector Phase 3* sanitary analysis was prepared, the Barrhaven Conservancy development project has been added to the planned SNC drainage area. The location of the Barrhaven Conservancy development is illustrated in the DSEL August 2023 Sanitary Drainage Plan included in *Appendix C*. The capacity of the SNC, when considering the wastewater flow contribution from Barrhaven Conservancy, is presented in the DSEL August 2023 Sanitary Design Sheet in *Appendix C*. With the wastewater flows from Barrhaven Conservancy considered, the residual free-flowing capacity within the critical SNC sewer segment is reduced to 32.85 L/s.

There are two potential routes to extend the subject property's sanitary sewer network to the existing SNC on Strandherd Drive. Option 1 would be for external sanitary sewers to be installed on O'Keefe Court, Fallowfield Drive, and Strandherd Drive before connecting to the existing SNC on Strandherd Drive at the Maravista Drive intersection. Option 2 would be for external sanitary sewers to be installed on O'Keefe Court, Fallowfield Road, and Citigate Drive before connecting to the existing sanitary sewer on Citigate Drive and ultimately connecting to the existing SNC via Systemhouse Street. Both routing options

can be seen in **Drawing 1**. Note that Option 2 will likely require sanitary sewer replacements/upsizing within Citigate Drive and Systemhouse Street.

The design sheets for both Option 1 and Option 2 can be found in *Appendix C*. Note that in both options, the planned wastewater flow from Barrhaven Conservancy and the Cedarview Employment Lands have been considered. As shown in the sanitary sewer design sheets, the free-flowing capacity of the critical downstream sewer segment of the SNC is exceeded by roughly 5% for both options. Refer to *Table 1* for a comparison of the free-flowing sewer capacity at the critical SNC sewer segment.

Table 1: Summary of Residual Capacity in Critical SNC Trunk Sewer Segment

Critical Sewer	As-Built Cond SNC Phase 3		Barrhaven Co Adde	_	Subject Development Added Residual Capacity		
Segment	Residual Capacity (L/s)	Capacity Ratio	Residual Capacity (L/s)	Capacity Ratio	Residual Capacity (L/s)	Capacity Ratio	
MHSA 9 to MHSA 10	121.21	71%	32.85	92%	-20.55	105%	

As shown in both sets of design sheets included in *Appendix C*, MHSA 9 to MHSA 10 is the only sewer segment that is expected to exceed the pipe's free-flowing capacity, likely due to the recorded as-built sewer slope of 0.05%. Seeing as this segment of the SNC was shown to be above capacity in the proposed development conditions, JFSA has conducted a preliminary sanitary Hydraulic Grade Line (HGL) analysis for the SNC, included in *Appendix C*.

The JFSA analysis determined that, while the sewer design sheet indicates the peak wastewater flow rate within the MHSA 9 to MHSA 10 SNC sewer segment will exceed the pipe's calculated free-flowing capacity by 20.55 L/s, the hydraulic grade line (HGL) will remain at least 12 cm below the obvert of the SNC sewer. This suggests that the pipes will not be surcharged during peak flow conditions. Therefore, it can be concluded that there is sufficient capacity within the SNC to accommodate wastewater flows from both the urbanized development of the subject property and the Cedarview Employment Lands to the south.

4.3 Wastewater Servicing Conclusion

The analysis of the South Nepean Collector sewer's capacity reveals that the current and proposed wastewater flows, will slightly exceed the free-flowing capacity of the critical sewer segment (MHSA 9 to MHSA 10) by approximately 5%. A preliminary Hydraulic Grade Line (HGL) analysis confirms that despite this excess, the sewer system will not experience surcharge conditions. Therefore, both proposed routing options for connecting the subject property to the SNC, although slightly over capacity, are deemed viable for accommodating the planned wastewater flows.

5.0 STORM SERVICING & STORMWATER MANAGEMENT

5.1 Existing Stormwater Drainage Conditions

The subject property is located within the Jock River subwatershed, which is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA). Under existing conditions, runoff is ultimately directed into the O'Keefe Drain located south of the subject property. The O'Keefe Drain is defined as a Municipal Drain under the Drainage Act.

Within the subject property, there is an existing wetland area that feeds the O'Keefe Drain, as well as an abandoned quarry. The locations of the existing wetlands and the O'Keefe Drain can be seen in *Drawing 1*.

There are existing water features within the Conservation Lands shown in the concept plan at the south end of the subject property. Under existing conditions, these features ultimately outlet to the O'Keefe drain via an existing ditch in the location of the proposed road connection from the subject property to O'Keefe Court. Through coordination with **Kilgour & Associates**, the environmental consultant on file, it is understood that the function of these two existing watercourses within the subject property is to be maintained for environmental purposes. To accommodate the proposed road connection while preserving these water features' function, the existing features will be re-directed to drain eastward, directly to the O'Keefe Drain. The locations of the existing features and the proposed re-alignment are illustrated in **Drawing 1**.

5.2 Stormwater Servicing Strategy

Stormwater runoff from the urbanized development of the subject property will be collected into a storm sewer network and directed into on-site wet ponds. Designated pond blocks can be seen in the latest development concept included in *Appendix A*, and on the Overall Servicing Figure (*Drawing 1*). Note, the abandoned quarry on site is expected to be converted into a wet pond to service the site. Further design details, as well as geotechnical input and recommendations will be prepared as part of the functional servicing design.

The stormwater runoff will be treated in the wet ponds for quantity and quality control before being directed into the O'Keefe Drain. The treatment criteria will be established to adhere to Official Plan policies, the City of Ottawa and MECP design guidelines, and the *Jock River Reach 1 Subwatershed Study* (Stantec, June 2007).

Per the *Jock River Reach 1 Subwatershed Study* (Stantec, June 2007), the Jock River does not have quantity control requirements and requires an Enhanced Treatment level (80% removal of Total Suspended Solids (TSS)) of quality control.

It is conceptually proposed that the treated stormwater flows from the ponds will be directed via gravity sewer into the O'Keefe Drain just before the drain crosses O'Keefe Court. See Drawing 1 for details. While there are no quantity control requirements for Jock River, capacity constraints within the O'Keefe Drain will be confirmed as part of the

Assessment of Adequacy of Public Services Report 4497 O'Keefe Court Mattamy Homes 14-746

functional servicing design and the preliminary stormwater management strategy will be designed accordingly. It is anticipated that as part of the preliminary servicing design, in accordance with the Drainage Act, an engineer's report will need to be prepared by a Drainage Engineer to account for the proposed land use changes and modifications to the O'Keefe Drain.

5.3 Storm Servicing & Stormwater Management Conclusion

The stormwater management strategy for the subject property, located within the Jock River subwatershed, under the jurisdiction of the RVCA, will focus on utilizing on-site wet ponds for quantity and quality control of runoff. Runoff will be collected through a storm sewer network and treated in these ponds before being discharged into the O'Keefe Drain, which is classified as a Municipal Drain under the Drainage Act.

The treatment criteria will adhere to City of Ottawa guidelines, the Jock River Reach 1 Subwatershed Study, and relevant environmental policies. Since the Jock River does not require quantity control but mandates an Enhanced Treatment level for quality control, the preliminary stormwater management design will confirm the capacity constraints of the O'Keefe Drain. Furthermore, an engineer's report, as required under the Drainage Act, will be prepared to address land use changes and modifications to the O'Keefe Drain.

The subject property, situated in the Jock River subwatershed, will manage stormwater runoff through a dedicated storm sewer network and on-site wet ponds. These ponds will provide treatment for both quantity and quality before the runoff is released into the O'Keefe Drain.

At the time of functional servicing design, treatment criteria will be established to adhere to Official Plan policies, City of Ottawa and MECP design guidelines, and the Jock River Reach 1 Subwatershed Study.

Assessment of Adequacy of Public Services Report 4497 O'Keefe Court Mattamy Homes 14-746

6.0 UTILITIES

Utility services extending to the site may require connections to multiple existing infrastructure points: consultation with Enbridge gas, Hydro One, Rogers, and Bell is required as part of the functional servicing design process to confirm the servicing plan for the subject lands.

In October 2023, Hydro One was consulted to gather information about the existing utility equipment in the vicinity of the development. This consultation also aided in determining the future requirements for any access or proposed uses within the Hydro One corridor lands within the development area. Correspondence with Hydro One can be found in *Appendix A*.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate, and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Before topsoil stripping, earthworks, or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

A silt fence will be installed around the perimeter of the active part of the site and will be cleaned and maintained throughout construction. The silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have catch basin inserts installed during construction to protect from silt entering the storm sewer system.

An erosion and sediment control plan will be prepared as part of the functional servicing design package, and the following specific recommendations to the contractor will be included:

- Limit the extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from leaving the site and entering existing ditches.
- Install mud mat to prevent mud tracking onto adjacent roads.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install catch basin inserts.
- Plan construction at the proper time to avoid flooding.

Prepared by, **David Schaeffer Engineering Ltd.**

David Schaeffer Engineering Ltd.

Per: Braden Kaminski, P.Eng. Per: Matt Wingate, P.Eng.

 $Z: \Pojects $14-746_800_Cedarview $$B_Design $83-2_Servicing (DSEL) $$2024-08-12_Assessment_of_Adequacy_of_Public_Services $$14-746_800_Cedarview $$B_Design $$B_1$. The projects $$14-746_800_Cedarview $$B_1$. The projects $$14-746_800_Cedarview $$B_1$. The projects $$14-746_800_Cedarview $$B_2$. The projects $$B_1$. The projects $$B_1$. The projects $$B_2$. The projects $$B_1$. The projects $$B_2$. The project $$B_1$. The project $$B_2$. The$

Appendix A

- City of Ottawa Development Servicing Study Checklist
- Cedarview Community Masterplan Concept, prepared by Urbantypology, dated August 17, 2023
- Cedarview Concept Employment Block, prepared by Urbantypology, dated August 4, 2023
- Pre-consultation correspondence with Hydro One (October 2023)

DEVELOPMENT SERVICING STUDY CHECKLIST

4.1 General Content	
Executive Summary (for larger reports only).	N/A
Date and revision number of the report.	Title Page
Location map and plan showing municipal address, boundary, and layout of proposed development.	Appendix A & Figure 1
Plan showing the site and location of all existing services.	Drawing 1
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0 (intended to support rezoning)
Summary of Pre-consultation Meetings with City and other approval agencies.	Appendix A
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	To be provided as part of the functional servicing design stage.
Statement of objectives and servicing criteria.	To be provided as part of the functional servicing design stage.
Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, Section 4.1, and Section 5.1
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Section 1.0
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Drawing 1. Further details to be provided as part of the functional servicing design stage.
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation	N/A
Proposed phasing of the development, if applicable.	To be provided as part of the functional servicing design stage.
Reference to geotechnical studies and recommendations concerning servicing.	Section 1.0
All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way	To be provided as part of the functional servicing design stage.
	Date and revision number of the report. Location map and plan showing municipal address, boundary, and layout of proposed development. Plan showing the site and location of all existing services. Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere. Summary of Pre-consultation Meetings with City and other approval agencies. Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria. Statement of objectives and servicing criteria. Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available). Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths. Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts of proposed phasing of the development, if applicable. Reference to geotechnical studies and recommendations concerning servicing. All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bea

DSEL© i

	4.2 Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
	Availability of public infrastructure to service proposed development	Section 3.2
	Identification of system constraints	Section 3.2
	identification of system constraints	To be provided as part of the
	Identify boundary conditions	functional servicing design
	tachtily boundary conditions	stage.
\boxtimes	Confirmation of adequate domestic supply and pressure	Appendix B
	Confirmation of adequate fire flow protection and confirmation that fire flow is	To be provided as part of the
	calculated as per the Fire Underwriter's Survey. Output should show available	functional servicing design
	fire flow at locations throughout the development.	stage.
\boxtimes	Provide a check of high pressures. If pressure is found to be high, an assessment	Appendix B
	is required to confirm the application of pressure reducing valves.	Аррепих в
	Definition of phasing constraints. Hydraulic modeling is required to confirm	To be provided as part of the
	servicing for all defined phases of the project including the ultimate design	functional servicing design
	servicing for an actinear phases of the project molating the attinuate acsign	stage.
		To be provided as part of the
	Address reliability requirements such as appropriate location of shut-off valves	functional servicing design
		stage.
\boxtimes	Check on the necessity of a pressure zone boundary modification Reference to water supply analysis to show that major infrastructure is capable	Appendix B
	of delivering sufficient water for the proposed land use. This includes data that	
	shows that the expected demands under average day, peak hour and fire flow	Section 3.2 & Appendix B
	conditions provide water within the required pressure range	
	Description of the proposed water distribution network, including locations of	
	proposed connections to the existing system, provisions for necessary looping,	Section 3.2, Appendix B &
\boxtimes	and appurtenances (valves, pressure reducing valves, valve chambers, and fire	Drawing 1
	hydrants) including special metering provisions.	
	Description of off-site required feedermains, booster pumping stations, and	To be provided as part of the
	other water infrastructure that will be ultimately required to service proposed	functional servicing design
_	development, including financing, interim facilities, and timing of	stage.
	implementation.	
\boxtimes	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2 & Appendix B
	Provision of a model schematic showing the boundary conditions locations,	
\boxtimes	streets, parcels, and building locations for reference.	Appendix B
	constant paragraphs and same a	
	4.3 Development Servicing Report: Wastewater	r
	Summary of proposed design criteria (Note: Wet-weather flow criteria should	
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	To be provided as part of the
	data from relatively new infrastructure cannot be used to justify capacity	functional servicing design
	requirements for proposed infrastructure).	stage.
	Confirm consistency with Master Servicing Study and/or justifications for	To be provided as part of the
	deviations.	functional servicing design
		stage.
	Consideration of local conditions that may contribute to extraneous flows that	NI / 2
Ш	are higher than the recommended flows in the guidelines. This includes	N/A
	groundwater and soil conditions, and age and condition of sewers.	
\boxtimes	Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 4.2
	nom proposed development.	

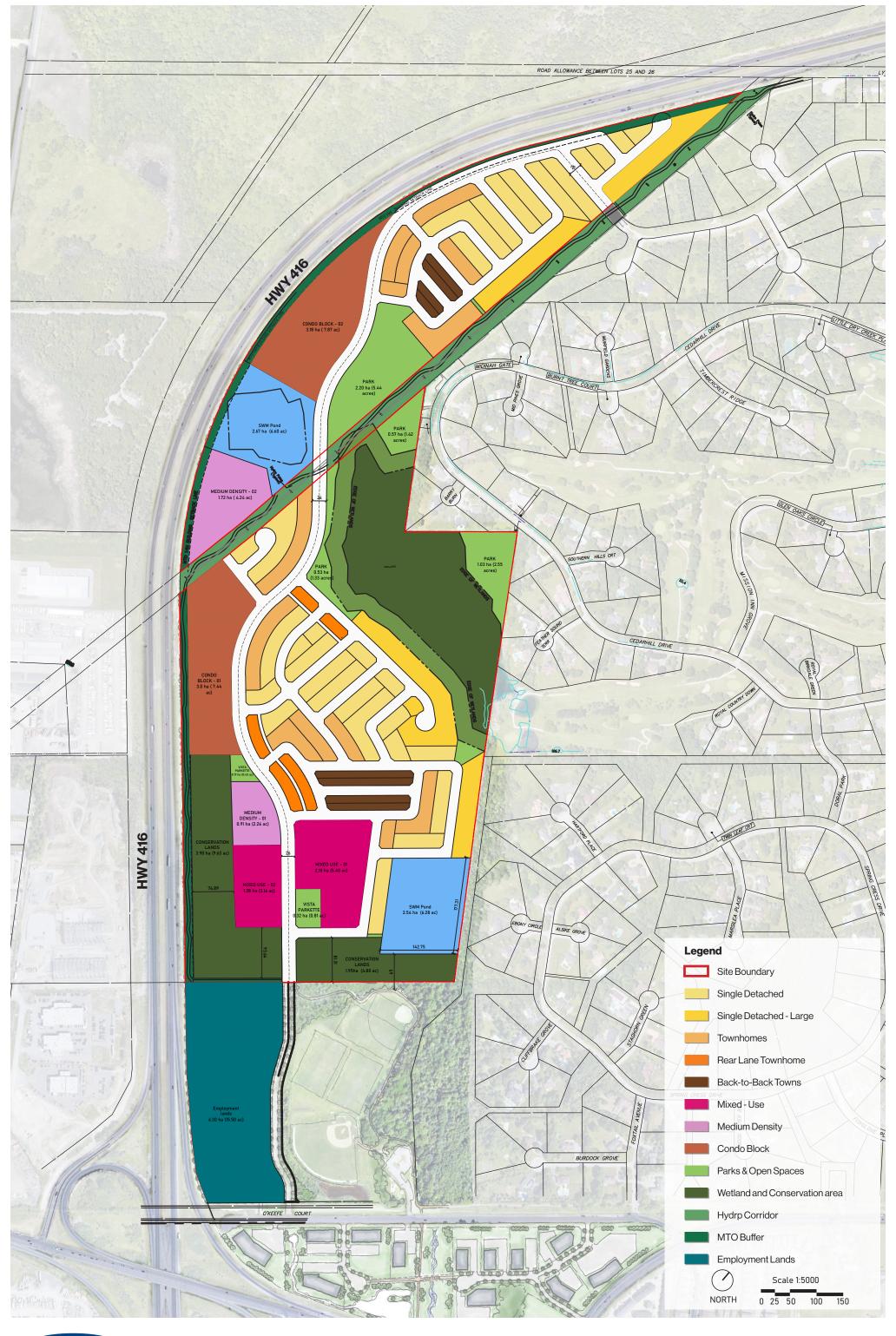
ii DSEL©

 $[\]hbox{*Extracted from the City of Ottawa-Servicing Study Guidelines for Development Applications}$

Verify available capacity in downstream sanitary sewer and/or identification of

\boxtimes	upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Section 4.2, Appendix C
\boxtimes	Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Appendix C
\boxtimes	Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 4.2 & Appendix C
	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	To be provided as part of the functional servicing design stage.
	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
	4.4 Development Servicing Report: Stormwater Che	anklist
\boxtimes	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 1.0 & Section 5.2
\boxtimes	Analysis of available capacity in existing public infrastructure.	Section 5.2
\boxtimes	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawing 1
	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2. Further details to be provided as part of the functional servicing design stage.
	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2. Further details to be provided as part of the functional servicing design stage.
\boxtimes	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3 & Drawing 1
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	To be provided as part of the functional servicing design stage.
	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	To be provided as part of the functional servicing design stage.
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	To be provided as part of the functional servicing design stage.

DSEL© iii


	Storage requirements (complete with calculations) and conveyance capacity for	To be provided as part of the
	minor events (1:5 year return period) and major events (1:100 year return period).	functional servicing design stage.
\boxtimes	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	Section 1.0, Section 5.2, Section 7.0
	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	To be provided as part of the functional servicing design stage.
	Any proposed diversion of drainage catchment areas from one outlet to another.	To be provided as part of the functional servicing design stage.
\boxtimes	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Drawing 1
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	N/A
	Identification of potential impacts to receiving watercourses	To be provided as part of the functional servicing design stage.
\boxtimes	Identification of municipal drains and related approval requirements.	Section 1.0 & Section 5.2
	Descriptions of how the conveyance and storage capacity will be achieved for the development.	To be provided as part of the functional servicing design stage.
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	To be provided as part of the functional servicing design stage.
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	To be provided as part of the functional servicing design stage.
\boxtimes	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 7.0
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	To be provided as part of the functional servicing design stage.
	4.5 Approval and Permit Requirements: Checkl	ic+
		ist
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement ct. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	To be provided as part of the functional servicing design stage.
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A

iv DSEL©

DEVELOPMENT SERVICING STUDY CHECKLIST

	Changes to Municipal Drains.	To be provided as part of the functional servicing design stage.
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	To be provided as part of the functional servicing design stage.
	4.6 Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	To be provided as part of the functional servicing design stage.
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	N/A
\boxtimes	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	Pg. 15

SEL® V

Mattamy Cedarview: Concept v6

Date: August 17th 2023 Client: Mattamy Ottawa

Urbantypology

Statistics Summary На % Acres Site Area 71.99 177.89 100% NHS & Buffer 8.91 22.02 12.38% **Conservation Lands** 5.84 14.43 8.11% MTO Building Setback Buffer 6.92 3.89% 2.80 **Developable Area*** 54.43 134.51 75.61%

Developable Area	54.43	134.51	100%
SWM Pond	5.213	12.88	9.58%
Park	4.990	12.33	9.17%
Medium Density Block	2.632	6.50	4.84%
Mixed-Use and Condo Block	9.670	23.89	17.76%
Condo Blocks	6.200	15.32	11.39%
Net Developable Area*	25.73	63.58	35.74%

^{*} Percentage out of total site area

Low Denisty Residential Summary								
Frontage & Unit Summary	Meter	Units	%					
Single Detached	3645.15	327	48.44%					
Townhomes	1425.15	184	27.26%					
Rear Lane Towns	380.22	118	17.48%					
Back-to-Back Towns	897.90	46	6.81%					
Low density Units Total	6348.42	675	100.00%					

Den	sity 10.6	UPA
Road Summary	Meter	%
26m Collector Road	1960.11	28.90%
18m Local Road	4363.93	64.35%
15m Window Street	50.00	0.74%
6m Lane	407.42	6.01%
Total Roc	ads 6781.47	100.00%

Frontage to Road Ration 1.00

Medium Density Summary										
	Area (ac)	Commercial (sqm)	Mixed-use Units	Stacked Units	Back-to-Back Towns	Rear Lane Towns	Total Units	Parking Required*	Parking Provided	Density (UPA)
Mixed Use Block - 01	5.39	2299.01	68	84			152	316	311	28.2
Mixed Use Block - 02	3.16	1358.44	32	48			80	175	175	25.3
Condo Block - 01	7.44			132	54		186	186	221	25.0
Condo Block - 02	7.88			132	56	15	203	186	203	25.8
Sub Total	23.86	3657.45	100	396	110	15	621	863	910	

 $[\]hbox{* Parking is provided for Stacked, mixed use unit and Commercial}$

	Area (Ha)	Area (Ac)	Target UPH	Units**
Medium Density Block - 01	0.91	2.25	75	68
Medium Density Block - 01	1.72	4.25	75	129
Sub Total	2.63	6.50		197

^{**} Unit Count based on Target UPH

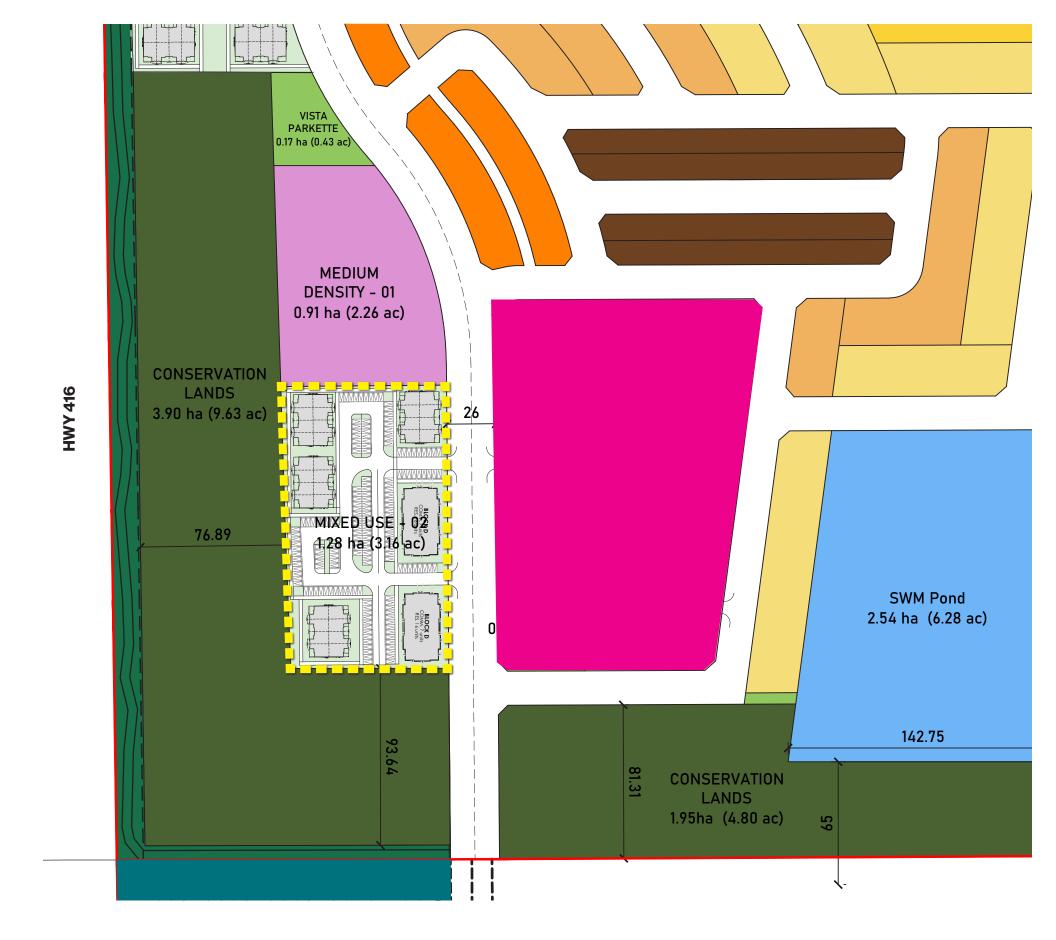
Cedarview Grand Total units 1493

Type of Lot	Depth (m)	Width (m)	Units	%	Product %
Single Detached					
30' Single	27	9.14	115	48%	
30' Corner Single	27	12	42	4070	48.44%
36' Single	27	11	80	24%	
43' Single	27	13.10	90	28%	
		Sub Total	327	100%	
21' Front-Lane Townh	ome 2 Storey				
Corner Units	25	10.65	20	11%	
Interior Units	25	6.5	100	54%	27.26%
End Unit/ Lane Lot	25	8.2	64	35%	
		Sub Total	184	100%	
21' Back-to-Back Town	nhome				
Corner Units	14	10.2	16	14%	
Interior Units	14	6.4	62	53%	17.48%
End Unit/ Lane Lot	14	8.05	40	34%	
		Sub Total	118	100%	
20' Rear Lane towns					
Corner Units	20	9.5	10	22%	
Interior Units	20	6.0	26	57%	6.81%
End Unit/ Lane Lot	20	7.65	10	22%	
		Sub Total	46	100%	
	Low Dens	ity Residential Total Units:	675		100%

Mixed-Use Block- 01

Statistics Summary					
	На	Acres	%		
Site Area	2.18	5.39	100%		

Parking Ratio						
	Residential	Visitors	Retail (stalls / 100m2)			
Mixed-Use Residential	1	0.2				
Stacked	1.2	0.2				
Back-to-Back						
Retail			5.05			


	Retail (sqm)	Res Units	Parking Required	Visitors Parking Required	Total Parking Required	Total Parking Provided
Commecial	2299.0		116			
Mixed Use Ressidential		68	68	14	198	311
Stacked		84	101	17	119	
	Total	152	285	30	316	1

Density	28.22	UPA	

Mixed-Use Block - 02

Statistics Summary					
	На	Acres	%		
Site Area	1.28	3.16	100%		

Parking Ratio						
	Residential	Visitors	Retail (stalls / 100m2)			
Mixed-Use Residential	1	0.2				
Stacked	1.2	0.2				
Back-to-Back						
Retail			5.05			

	Retail (sqm)	Res Units	Parking Required	Visitors Parking Required	Total Parking Required	Total Parking Provided
Commecial	1358.4		69			
Mixed Use Ressidential		32	32	6	107	175
Stacked		48	58	10	68	
	Total	80	158	16	175	

Density

UPA

25.29

Condo Block - 01

Statistics Summary			
	На	Acres	%
Site Area	3.01	7.44	100%

Parking Ratio						
	Residential	Visitors	Retail (stalls / 100m2)			
Mixed-Use Residential	1	0.2				
Stacked	1.2	0.2				
Back-to-Back						
Retail			5.05			

	Retail (sqm)	Res Units	Parking Required	Visitors Parking Required	Total Parking Required	Total Parking Provided
Stacked Back-to-back Towns Rear lane Towns		132 54	158	26	186	221
	Total	186	158	26	186	

Density

25.01

UPA

Condo Block - 02

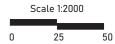
Statistics Summary					
	На	Acres	%		
Site Area	3.19	7.88	100%		

Parking Ratio			
	Residential	Visitors	Retail (stalls / 100m2)
Mixed-Use Residential	1	0.2	
Stacked	1.2	0.2	
Back-to-Back			
Retail			5.05

	Retail (sqm)	Res Units	Parking Required	Visitors Parking Required	Total Parking Required	Total Parking Provided
Stacked		132	158	26	186]
Back-to-back Towns		56				203
Rear lane Towns		15				
	Total	203	158	26	186	

Density	25.78	UPA	

Employment Land


Statistics Summary			
	На	Acres	%
Site Area	6.30	15.57	100%

Parking Ratio								
	Residential	Visitors	Retail (stalls / 100m2)					
Mixed-Use Residential	1	0.2						
Stacked	1.2	0.2						
Back-to-Back								
Retail			5.05					

	Retail (sqm)	Res Units	Parking Required	Visitors Parking Required	Total Parking Required	Total Parking Provided
	1				≣	
Commecial	915.1		46			
Mixed Use		20	20		80	
Ressidential		28	28	6		
Stacked		228	274	46	320	409
Back-to-Back		110			**************************************	
Rear lane Towns		18]
_	Total	384	348	51	400	

Density 24	.67 UPA
------------	---------

Urbantypology


Employment Land

Statistics Summary				
	На	Acres	%	
Site Area	6.30	15.57	100%	_

Parking Ratio								
	Residential	Visitors	Retail (stalls / 100m2)					
Mixed-Use Residential	1	0.2						
Stacked	1.2	0.2						
Back-to-Back								
Retail			5.05					

	Retail (sqm)	Res Units	Parking Required	Visitors Parking Required	Total Parking Required	Total Parking Provided
	1		1		1	r
Commecial	915.1		46			
Mixed Use		20	20	-	80	
Ressidential		28	28	6		
Stacked		228	274	46	320	409
Back-to-Back		110				
Rear lane Towns		18]
	Total	384	348	51	400	1

Density

24.67

Hannah Bulmer

From: DORFMAN Roman < Roman.Dorfman@hydroone.com>

Sent: October 24, 2023 9:39 AM

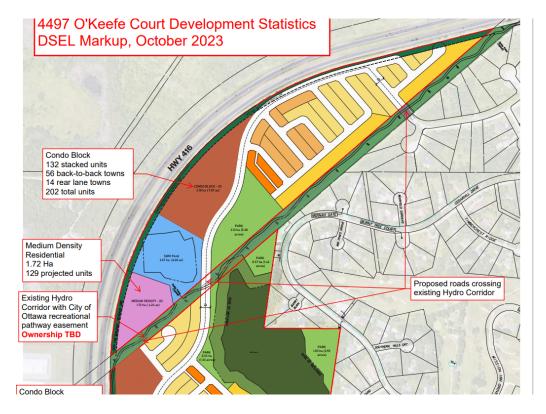
To: Hannah Bulmer

Cc: ZUFELT Deb; Anthony Temelini; Braden Kaminski; connor.gallagher@mattamycorp.com;

kevin.murphy@mattamycorp.com; DE RANGO Dennis

Subject: FW: 4497 O'Keefe Court - Utility Servicing Kickoff (DSEL Job 746)

Attachments: DSEL Disclaimer.pdf; 2023-08-02 - Cedarview Community Design v4.dwg; 2023-10-20


4497O'KeefeCourt_Markup_ajt.pdf; Hydro One Technical Review Form_Version-2022.pdf; PSLUP - Planning Information Form - Mar 2022 (Fillable).pdf; EFT Payment Information (IO)v2-Licences.pdf;

EFT Payment Information (IO)v2-Sale and Easement.pdf

EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hannah, the subject Hydro One (HONI) corridor lands described in the attachments as well as in your email below are incorrectly identified as easement lands. These lands (PIN 046310409) are owned by the Province of Ontario and are subject to a Statutory right for HONI.

Any access or proposed uses within the subject lands require appropriate approvals and documentation. There are a number of proposed uses shown on the drawing below that will impact HONIs ROW that may require purchase (road crossings) as well as easements (ie sewers, watermains, swales, etc.) from the Province where each will require a formal submission to HONI for review and documentation

As well, I am not sure if you had submitted any circulations to HONIs Planning (abutting use review), but I have cc'd HONIs Planning Coordinator (Dennis Derango) for input

Please review the attached Technical Requirements that should be followed when submitting any and all proposals for utilizing the HONI corridor lands. When submitting proposal, please ensure to complete the attached Planning Form as well as submitting a non refundable Engineering and Review fee as per the attached instructions. The non refundable Engineering and Review Fees for submissions are as follows:

Licensing: \$1500+HSTEasements: \$2500+HSTSales: \$2500+HST

When submitting any fees, please let me know so that I can ensure that they are applied to your submissions accordingly

If you would like to discuss the process or any other requirements for this project, please let me know and I will arrange for a meeting

Thank you

Roman Dorfman Hydro One Real Estate Representative Canacre Ltd.

(416) 433-8777 roman.dorfman@HydroOne.com

From: Hannah Bulmer < HBulmer@dsel.ca> Sent: Monday, October 23, 2023 11:57 AM

To: Kevin Perez-Lau < kevinperez-lau@hydroottawa.com >; Subdivision Project Management

<subdivision_pm@hydroone.com>; PROV LINE SUBDIVISION <ProvLineSubDivision@HydroOne.com>; BEAUDETTE Ryan

<Ryan.Beaudette@HydroOne.com>; ZUFELT Deb <Deb.Zufelt@HydroOne.com>; Pozo Dickson, Julio

<julio.dickson@bell.ca>; Jocelyn Bercier <Jocelyn.Bercier@rci.rogers.com>; Suzanne Renaud

<<u>Suzanne.Renaud@enbridge.com</u>>; <u>mark-ups@enbridge.com</u>

Cc: Anthony Temelini < ATemelini@dsel.ca; Braden Kaminski < BKaminski@dsel.ca;

connor.gallagher@mattamycorp.com; kevin.murphy@mattamycorp.com

Subject: 4497 O'Keefe Court - Utility Servicing Kickoff (DSEL Job 746)

Hello,

I hope this email finds you well. I am writing on behalf of Mattamy Homes, to inform you about the upcoming development at 4497 O'Keefe Court – see the concept plan attached. The site is located north of Fallowfield Road/Lytle Park, between Highway 416 and the existing Cedarhill Estates development. It should be noted that there is an existing Hydro corridor, including a City of Ottawa recreational pathway easement, that currently bisects the site – can you please confirm the ownership of the corridor?

The project is currently in the early stages and we are looking to gather information about the existing utility equipment in the vicinity of the development, including any cables/ducts/gas mains and the location of existing major structures (transformers, pedestals, etc.).

Can you please confirm the location of your existing equipment and if you foresee any issues with the current capacity of your respective networks? If so, please let us know the scope of potential network upgrades that would be required to service the proposed development.

Please let us know if you have any questions or if you would prefer that we set up a virtual meeting to discuss.

Thanks,

Hannah Bulmer

Project Coordinator HBulmer@dsel.ca 613-898-4266

Toronto

600 Alden Road, Suite 700 Markham, ON L3R 0E7 905-475-3080

Ottawa

120 Iber Road, Suite 103 Stittsville, ON K2S 1E9 613-836-0856

This email, including any attachments or links to DSEL work product, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, modification, distribution, or retention is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded or shared with you, please contact the sender by reply email and destroy all copies of the original.

This email and any attached files are privileged and may contain confidential information intended only for the person or persons named above. Any other distribution, reproduction, copying, disclosure, or other dissemination is strictly prohibited. If you have received this email in error, please notify the sender immediately by reply email and delete the transmission received by you. This statement applies to the initial email as well as any and all copies (replies and/or forwards) of the initial email

Appendix B

• Mattamy Cedarview Water Servicing Analysis, prepared by Stantec, dated February 8, 2024

MATTAMY CEDARVIEW WATER SERVICING ANALYSIS Final Report

February 8, 2024

Prepared for: Mattamy Homes

Prepared by: Stantec Consulting Ltd.

Project Number: 163401876

Mattamy Cedarview Water Servicing Analysis

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date
V01	DRAFT	MN	20240123	AMG	20240123	AP	20240125
V02	FINAL	MN	20240207	AMG	20240207	AP	20240208

(

Project Number: 163401876

The conclusions in the Report titled **Mattamy Cedarview Water Servicing Analysis** are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Mattamy (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by:	Mulison Pelson
	Signature
_	Melissa Nelson, EIT
	Printed Name
Reviewed by:	Alexandre Mineault
-	Signature
	Alexandre Mineault-Guitard, P.Eng.
-	Printed Name
Approved by:	AMMOROZ
	Signature
_	Ana Paerez, P.Eng.
	Printed Name

(

Project Number: 163401876

Table of Contents

1 1.1 1.2	INTRODUCTIONBackground and Study AreaData Collection	1
2 2.1 2.2	DESIGN CRITERIASystem PressuresFire Flow Requirements	4
3 3.1 3.2	GROWTH AND DEMAND PROJECTIONS Growth Projections Demand Projections	6
4 4.1 4.2	MODEL DEVELOPMENT Boundary Conditions Proposed Watermain Sizing & Layout	8
5 5.1 5.2	HYDRAULIC ASSESSMENT Normal Operating Conditions Maximum Day Plus Fire Flow	14
6 6.1 6.2	RELIABILITY ANALYSISPhase 1Phase 2	16
7	OFFSITE ASSESSMENT	20
8	CONCLUSIONS AND RECOMMENDATIONS	21
9	REFERENCES	23

LIST OF APPENDICES

APPENDIX A BOUNDARY CONDITION ESTIMATION

APPENDIX B DETAILED MODEL RESULTS

Project Number: 163401876

Mattamy Cedarview Water Servicing Analysis

LIST OF TABLES

Table 1-1: Data Sources	3
Table 3-1: Estimated Unit Counts and Residential Population	6
Table 3-2: Estimated Commercial Population	
Table 3-3: Estimated Water Demands	
Table 4-1: Hazen-Williams Coefficients by Watermain Size	8
Table 4-2: HGL Boundary Conditions	9
Table 6-1: Reliability Analysis Results – Phase 1	
Table 6-2: Reliability Analysis Results – Phase 2	18
LIST OF FIGURES Figure 1-1: Study Area	2
Figure 2-1: Junction Elevation	5
Figure 4-1: Moodie Drive Elevated Tank Schematic (adapted from the City's 2013 WMP)	
Figure 4-2: Hydraulic Model Configuration	10
Figure 4-3: Proposed Watermain Sizing – Phase 1 (Cedarview Lands)	
Figure 4-4: Proposed Watermain Sizing – Phase 2 (Cedarview and Employment Lands)	
Figure 6-1: Reliability Analysis Watermain Break Locations (Phase 1)	
. Igui e e i i i tendidinity i i idily cie i i diterimani i i cant i e cataloni e (i i idae i / iniminiminimini	17

Project Number: 163401876

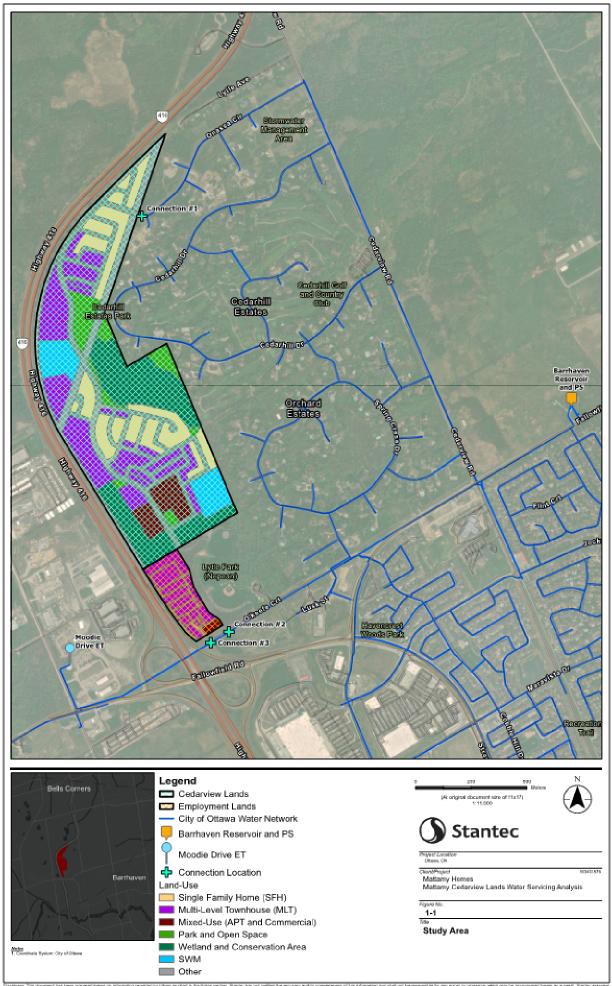
ii

1 Introduction

Stantec Consulting Ltd (Stantec) was retained by Mattamy Homes Limited (herein Mattamy) to complete a conceptual potable water hydraulic analysis for the envisioned Cedarview development lands. The purpose of the conceptual potable water hydraulic analysis is to confirm serviceability of the proposed lands and to identify the associated watermain sizing and infrastructure requirements, based on the conceptual draft site plan (i.e., street layouts and unit densities).

1.1 Background and Study Area

The study area, referred to as the Cedarview lands, is located in the city of Ottawa's (herein the City) southwestern suburban neighbourhood of Barrhaven. The study area is presented in **Figure 1-1**. The lands are situated between Highway 416 to the north and west, O'Keefe Crescent to the South, and Cedarhill and Orchard Estates to the east. Mattamy is interested in developing this area, which is currently zoned as 1-acre rural estate lots and rezoning it to urban mixed-use as shown in **Figure 1-1**. Mattamy is exploring the acquisition of the adjacent vacant parcel of land to the south, west of Lytle Park (see **Figure 1-1**), which has been referred to as "Employment Lands" and has also been considered in this potable water serviceability analysis.


For this assignment, Stantec's scope of work include the following tasks:

- 1. Reviewing background information and establishing water demands for the Cedarview and Employment Lands, based on the most current draft plan;
- 2. Estimating hydraulic boundary conditions at the envisioned connections to the City's water distribution network;
- 3. Developing a stand-alone hydraulic model for the proposed development;
- 4. Setting up and running model simulations for average day (AVDY), peak hour (PKHR), and maximum day (MXDY) plus fire flow demands to identify watermain sizing and redundancy needs required for the water distribution system within the development lands to meet the City's design criteria; and,
- 5. Documenting the approach used, findings and recommendations.

Project Number: 163401876

1

Mattamy Cedarview Water Servicing Analysis 1 Introduction

Two (2) phases will be considered in the serviceability analysis, as follows:

- Phase 1: Cedarview Lands only; and
- Phase 2: Cedarview and Employment Lands.

Based on the latest draft plan provided by Mattamy (dated August 2nd, 2023), the proposed Cedarview development lands will comprise a total 342 single family home (SFH) units, 1,050 townhouse (MLT) units (consisting of a combination of standard, stacked, back-to-back and rear-lane townhouse units), as well as mixed-used areas comprising 100 apartment (APT) units, and a total of 0.37 ha of commercial lands. The proposed draft plan (i.e., road alignment, land-use, etc.) is presented in **Figure 1-1**. For the proposed Employment Lands (latest draft plan dated August 2nd, 2023), 356 MLT units, 28 APT units, and 0.09 ha of commercial areas are envisioned. Further details on population estimates are provided in **Section 3**.

The proposed development lands will be serviced from Pressure Zone 3SW (previously known as Zone BARR). The hydraulic grade line (HGL) within PZ 3SW is governed by the water levels in the Moodie Drive Elevated Tank (herein Moodie Dr ET), located immediately west of the study area, as shown in **Figure 1-1**. As such, the proposed development could be serviced from connections to the existing distribution, as shown in **Figure 1-1** and described below.

- Connection #1: The existing 305 mm stub along Onassa Circle;
- Connection #2: The existing 610 mm watermain along O'Keefe Crescent; and
- Connection #3: The existing 610 mm watermain along O'Keefe Crescent (Phase 2 only).

1.2 Data Collection

A summary of the data available to Stantec for this conceptual hydraulic analysis is detailed in Table 1-1.

Table 1-1: Data Sources

Type & Use	Title	Source	Date
Site Layout and Unit Counts (Cedarview Lands)	Cedarview Community – Masterplan concept v4	Mattamy Homes	2023/08/02
Site Layout and Unit Counts (Employment Lands)	Cedarview Concept – Employment Block – 01	Mattamy Homes	2023/08/04
Water Master Plan / Water Boundary Conditions	City of Ottawa 2013 Water Master Plan	City of Ottawa	2013/09/20

2 Design Criteria

The City of Ottawa Water Design Guidelines (City of Ottawa, 2010) and criteria outlined in the 2013 Water Master Plan (WMP) were used to establish water demands, level of service and pressure objectives during normal and emergency conditions.

2.1 System Pressures

As per the Ottawa Water Design Guidelines, the desired range of pressure under average day (AVDY) and maximum day (MXDY) demands is 345 to 552 kPa (50 to 80 psi), and no less than 276 kPa (40 psi) at ground elevation (i.e., at street level). The maximum pressure at any point in the water distribution system should not exceed 552 kPa (80 psi); pressure reducing measures are required to service areas where pressures greater than 552 kPa (80 psi) are anticipated.

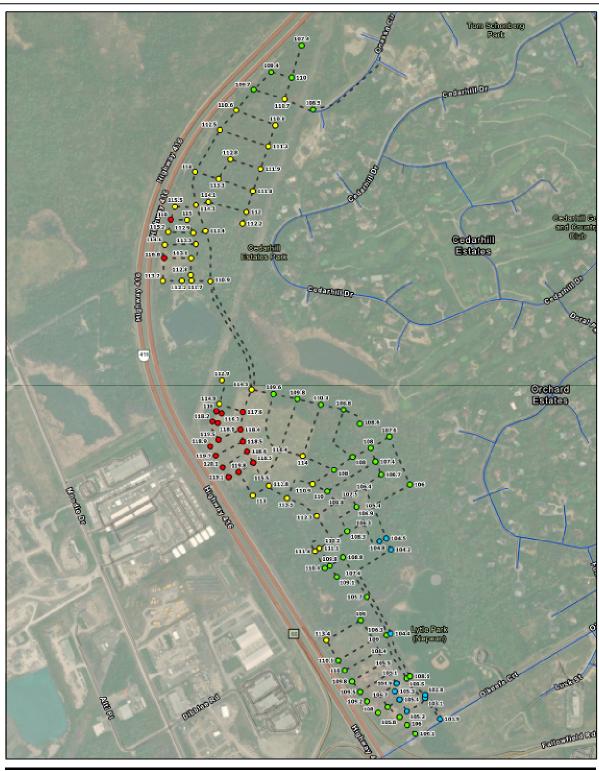
Under emergency fire conditions, the system must be able to supply appropriate fire flows while maintaining a residual pressure of at least 138 kPa (20 psi).

Figure 2-1 shows the elevation of each model junction within the Cedarview Lands and Employment Lands. It should be noted that the latest grading data available for the conceptual lands (dated November 2021 by David Schaeffer Engineering Ltd.) does not align with the proposed road alignment in the latest draft plan concept and were thus not considered. Elevations were extracted from recent LIDAR data. Ground elevations range from 103.0 m to 120.0 m.

As such, the elevations considered in the conceptual hydraulic analysis might differ from the ultimate grading in the area. Model junction elevations should be updated, as needed, at later design stages.

2.2 Fire Flow Requirements

The City requires a fire flow assessment be completed based on the calculation method published by the Fire Underwriters Survey (FUS) to demonstrate that local watermains can provide the objective fire flows. However, information regarding unit sizes and unit separation is not available at this time and as such, FUS calculations have not been completed.


As a result, an assumed required fire flow (RFF) of 13,000 L/min (or 216.67 L/s) has been used for this conceptual analysis, as recommended in the City's 2013 WMP, to ensure that the local watermains can provide this minimum fire flow at a residual pressure of 20 psi. If a lower RFF is identified at the detailed design stage, adjustment to the proposed watermain network could be explored.

It is recommended that FUS calculations and RFF requirements for the Cedarview and Employment lands be reviewed at the detailed design stage to ensure that fire flow requirements are met across the site.

Project Number: 163401876

4

Legend

- - Proposed Water Network
- City of Ottawa Water Network

Ground Elevation (m)

- 100-105
- 105-110
- o 110-115
- 115-120

Ottoms/Noyled testeros Televisive Mattamy Homes Mattamy Cedarview Lands Water Servicing Analysis

Figure No.
2-1

Junction Elevation

Modes 1. Coordinate System: City of Ottawa

3 Growth and Demand Projections

3.1 Growth Projections

The estimated residential population for Cedarview Lands (Phase 1) and the Employment Lands (Phase 2) were estimated based on projected household sizes as per population densities (or persons per unit, PPU) specified in the City's 2013 WMP. As per the 2013 WMP, the zone/system-level criteria for water demands have been used for populations that exceed 3,000 persons.

Table 3-1 shows the estimated number of units and the projected populations based on the distribution of residential types for both phases of development. For Phase 1, the total number of units is estimated to be 1,492, with a residential population of 4,178 persons. For Phase 2, the additional unit number is estimated to be 384, with a residential population of 1,011. The total unit number for both Phase 1 and Phase 2 is therefore 1,876, with a total residential population of 5,189 persons.

Table 3-1: Estimated Unit Counts and Residential Population

Unit Type	Units	PPU	Population
Phase 1 (Cedarview Lands)			
SFH	342	3.4	1,163
MTL	1050	2.7	2,835
APT	100	1.8	180
Sub-total	1,492		4,178
Phase 2 (Employment Lands)			
MTL	356	2.7	961
APT	28	1.8	50
Sub-total	384		1,011
Total (Cedarview and Employment Lands)	1,876		5,189

Table 3-2 shows the proposed commercial area within each phase. Without information on employment density at this time, a density of 80 employees per hectare was assumed. As such, the estimated population for Phase 1 and Phase 2 is 29 and 7, respectively. Expected employment density should be confirmed at later stages of design, and water demands updated accordingly.

Table 3-2: Estimated Commercial Population

Unit Type		Area (ha)	Employee/ha	Population
Phase 1 - Commercial		0.37	80	29
Phase 2 - Commercial		0.09	80	7
То	tal	0.46		36

3.2 Demand Projections

The criteria outlined in the 2013 WMP has been followed to establish water demands. The demand rates from the WMP are applied to the population projections presented in **Table 3-1** based on land use. For residential land use, single-family were classified as "single-family houses" (SFH) that have a unit consumption rate of 180 L/cap/d. All townhouses are classified as "multi-level townhouses" (MLT) with a unit consumption rate of 198 L/cap/d. All apartments (APT) have a unit consumption rate of 219 L/c/day. For the commercial (COM) lands (see **Table 3-2**), a demand rate of 137 L/employee/d is applied to establish AVDY demands. To establish MXDY demands, an outdoor water demand (OWD) of 1,049 L/SFH/d was taken, as per the 2013 WMP, and allocated to all SFH units. This outdoor water demand was added to AVDY demands to obtain the MXDY demand. The estimated water demands are summarized in **Table 3-3**.

Table 3-3: Estimated Water Demands

Huit Toma	Domilation		Water Demands	
Unit Type	Population	AVDY (L/s)	OWD (L/s)	MXDY (L/s)
	Phase	1 (Cedarview Lands)	1	
SFH	2,237	2.42	4.15	6.57
MLT	991	6.50	-	6.50
APT	180	0.46	-	0.46
COM	29	0.05	-	0.05
Sub-Total	4,207	9.42	4.15	13.57
	Phase 2	2 (Employment Lands	s)	
SFH	-	-	-	-
MLT	961	2.20	-	2.20
APT	50	0.13	-	0.13
СОМ	7	0.01	-	0.01
Sub-Total	1,019	2.34	-	2.34
Total (Cedarview and Employment Lands)	5,226	11.76	4.15	15.92

The projected AVDY and MXDY demands were distributed to the model nodes for the corresponding demand scenario and phase (i.e., winter/AVDY, summer/MXDY). Demand patterns developed by the City were applied to the demands.

Peak hour (PKHR) demands were established by applying diurnal patterns developed by the City of Ottawa to the maximum day demands. The diurnal patterns are different for each unit type and vary with time of day. The overall maximum observed demand, with patterns applied, is the PKHR demand. The PKHR demand for Mattamy Cedarview is 26.95 L/s, and the PKHR demand for the employment land is 3.47 L/s.

4 Model Development

Innovyze's InfoWater Pro (Version 3.5, Update #1) was used as a hydraulic modelling platform for the water distribution system analysis of the proposed development lands. The model was developed to reflect the most current site plan layout, including the proposed watermain layout (based on proposed road alignment) and water demands.

The watermains in the model were assigned Hazen-Williams coefficients ("C-Factors") in accordance with the City's Water Design Guidelines (City of Ottawa, 2010). These factors are listed in **Table 4-1** below.

Table 4-1: Hazen-Williams Coeffic	cients by Watermain Size
-----------------------------------	--------------------------

Watermain Diameter (mm)	Coefficient
150	100
200 - 300	110
350 - 600	120
> 600	130

4.1 **Boundary Conditions**

Boundary conditions (HGL) at the envisioned connections to the City's water distribution network were estimated from the typical HGL of the Moodie Dr ET. As per the City's 2013 WMP and shown in **Figure 4-1**, the top water level (TWL) of the Moodie ET is 155 m. Furthermore, the tank's bottom elevation is approximately 145 m.

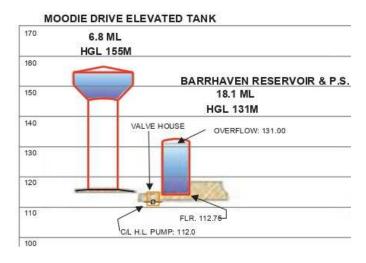


Figure 4-1: Moodie Drive Elevated Tank Schematic (adapted from the City's 2013 WMP)

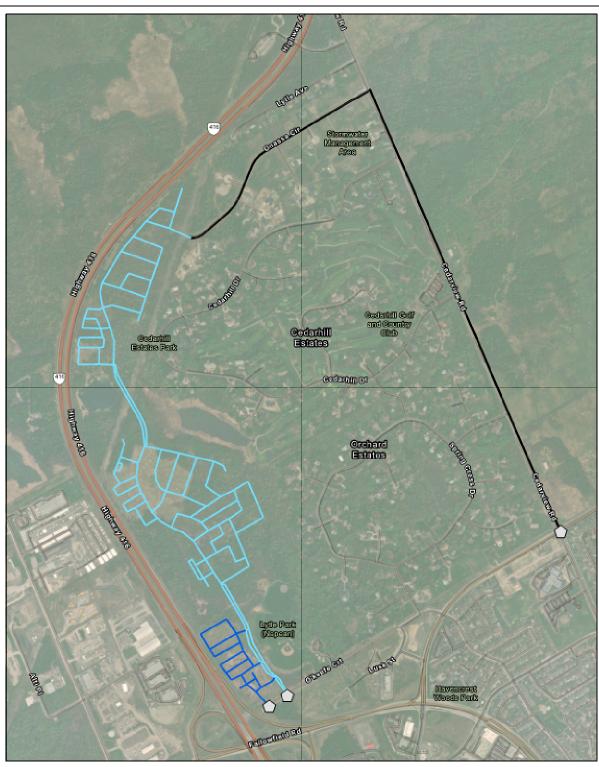
Mattamy Cedarview Water Servicing Analysis 4 Model Development

Given that this tank is located about 1 kilometre west of the proposed development, it is anticipated that limited headlosses would occur along the existing 610 mm watermain linking the Moodie Dr ET and the proposed site. As a result, the typical operating levels of the tank could be used to estimate the hydraulic conditions at the proposed site connections. Considering the expected variation in the tank's water levels, an assumed HGL of 153 m was used for this analysis, such that the analysis is not completed under full tank conditions.

The expected boundary conditions at the proposed connections were estimated using the tank's HGL listed above, as well as considering headlosses along the 610 mm diameter watermain, based on the calculated water demands described in **Section 3.2**. For this analysis, it was assumed that all connections would occur along the 610 mm diameter watermain along O'Keefe Crt, as depicted in **Figure 4-2**. As a result, Connection #1 to the watermain on Onassa Cir was extended along Cedarview Rd to the intersection with O'Keefe Crt and the existing City's watermain infrastructure along Onassa Cir and Cedarview Rd were added to the hydraulic model (see **Figure 4-2**). Given the proximity of all connections, a common boundary condition was assumed at all connections, for each water demand scenario, given the limited headlosses that would occur between the proposed connections, along the 610 mm diameter watermain. Boundary conditions used for this study are summarized in **Table 4-2**. Detailed calculations can be found in **Appendix A**.

Table 4-2: HGL Boundary Conditions

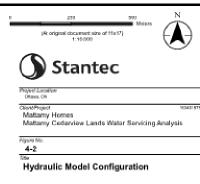
Demand Scenario	Phase 1 ¹ HGL (m)	Phase 2 ² HGL (m)
AVDY	153.00	153.00
PKHR	152.98	152.97
AVDY+FF ³	151.83	151.80
MXDY+FF ³	151.79	151.76


¹ Cedarview Lands only.

It should be noted that the above boundary conditions represent an approximation of the anticipated hydraulic conditions at the proposed connections to the City's network. Water boundary conditions should be requested from the City at later stages of design to ensure that appropriate hydraulic conditions are assessed, and recommendations are adjusted accordingly.

² Cedarview and Employment Lands.

³ 13,000 L/min or 217 L/s.


Modes 1. Coordinate System: City of Ottawa

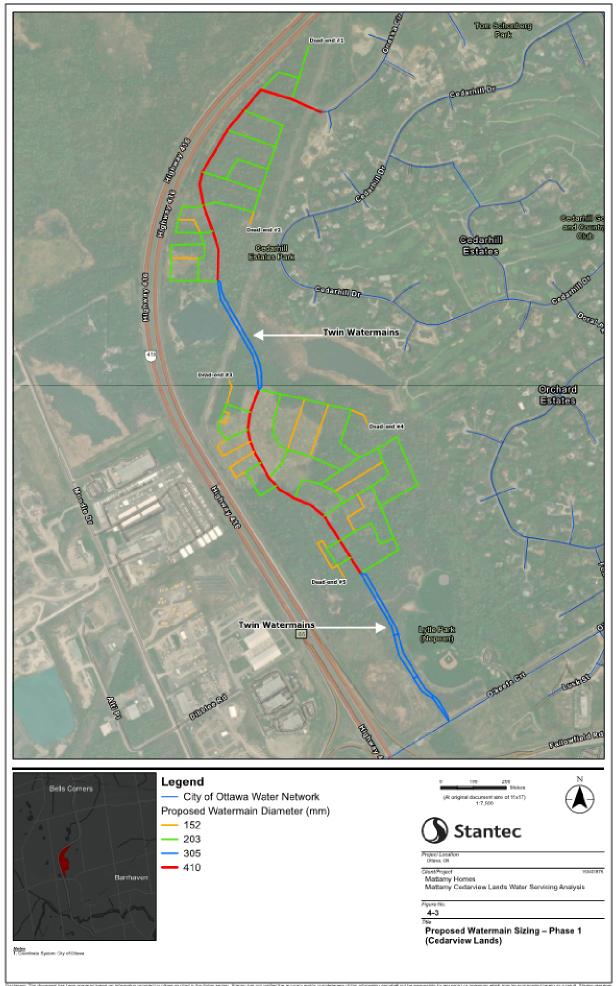
Legend

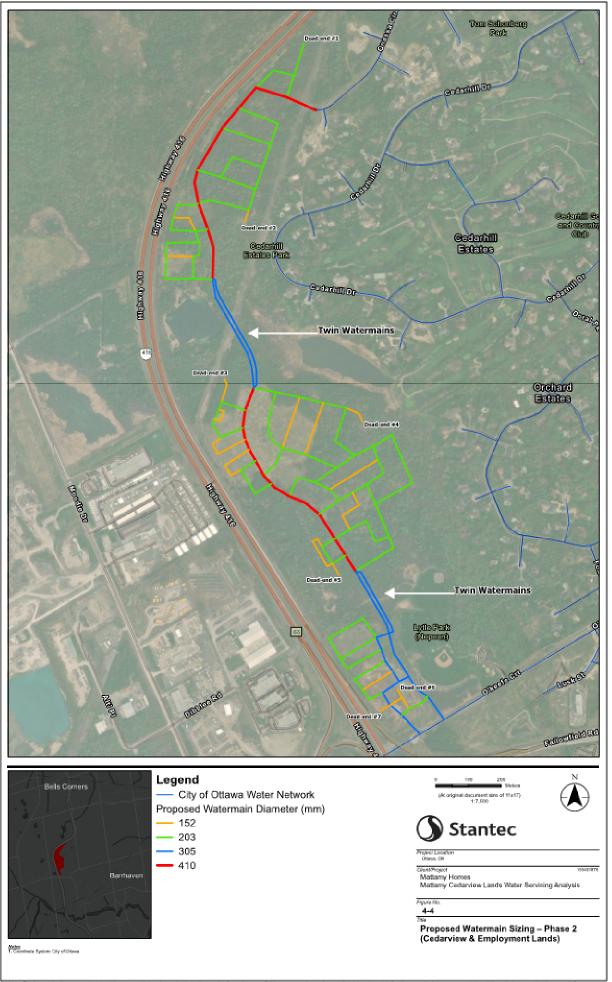
- Hydraulic Model Boundary Condition
- City Watermain Considered in the Hydraulic Model

Proposed Water Network

- Phase 1
- Phase 2

4.2 Proposed Watermain Sizing & Layout


Watermain sizing and layout proposed as part of Phase 1 (Cedarview Lands only), is shown in **Figure 4-3**. Proposed watermain layout and sizing for Phase 2 (Cedarview and Employment Lands) is shown in **Figure 4-4**. The proposed network within the Cedarview and Employment Lands consists of 152 mm, 203 mm, 305 mm, and 406 mm diameter watermains. It should be noted that the addition of the Employment Lands in Phase 2 results in different watermain configuration and sizing recommendations in the southern portion of the proposed network.


The watermain layouts presented in **Figure 4-3** and **Figure 4-4** were identified to meet design criteria under normal and emergency conditions (including watermain break scenarios), as described in **Section 5** and **Section 6**. In various parts of the network, watermains were twinned to ensure appropriate servicing in case of major failure (i.e., watermain break). Most notably, along the backbone watermain connecting the northern and southern portions of the Cedarview Lands, as well as along the backbone watermain south of the Cedarview Lands, towards O'Keefe Crt. Of note, the twin watermain were sized at 305 mm diameter each, in comparison to the larger 406 mm diameter along the network's backbone, given that appropriate level of service was achieved in all reliability scenarios, when one of the two twin watermains would be out of service (i.e., watermain break).

As per the City of Ottawa Water Distribution Design Guidelines (Section 4.3.1), mitigation measures may be required on a case-by-case basis for new dead-ends to overcome stagnation and provide adequate chlorine residual. The proposed watermain layout contains five (5) dead-ends under Phase 1, and seven (7) under ultimate development conditions (i.e., Phase 1 and Phase 2). The dead-ends are identified on both **Figure 4-3** and **Figure 4-4**.

As per the City of Ottawa Water Distribution Design Guidelines, dead ends should be avoided as much as possible to limit potential water quality issues. Where dead-end watermains cannot be avoided, the guidelines specify a maximum watermain size of 152 mm unless a larger size is needed for supply reasons. All dead ends are proposed to be serviced by a 152 mm diameter watermain, except dead-end #1 (203 mm). These pipe sizes are recommended to meet demands under fire flow conditions. The configuration of the dead-end watermains will be as per the City's standard details. Furthermore, the maximum number of single-family units along a dead-end watermain should not exceed 49 to avoid the creation of a vulnerable service area. This shall be confirmed at the detailed design stage.

5 Hydraulic Assessment

Hydraulic modelling was completed for the conceptual design to verify how the proposed network would respond. The following sub-sections present the modelling results under normal operating conditions (i.e., AVDY and PKHR), as well as under MXDY demands plus fire flow conditions.

5.1 Normal Operating Conditions

Under Phase 1 and Phase 2 AVDY conditions, model results show that the maximum modelled pressure is 71 psi for both phases. The maximum pressure is less than the City's maximum pressure objective of 80 psi and is thus considered acceptable.

Under PKHR demands for Phase 1 and Phase 2, the minimum modelled pressure is 47 psi for both phases. While this pressure falls outside of the desired pressure range of 50 to 80 psi, it is more than the minimum pressure objective of 40 psi. As such, it is considered acceptable.

Detailed modelling results are provided in **Appendix B**. Note that **Figure B-1** provides the model system map.

5.2 Maximum Day Plus Fire Flow

Available fire flows across the proposed study area must meet or exceed the required fire flow (RFF). As described in **Section 2.2**, the water network was assessed under an RFF of 13,000 L/min (217 L/s). Under MXDY+FF conditions, model results show that fire flows greater than 13,000 L/min are achievable, with a residual pressure of 138 kPa (20 psi), in most locations under both Phase 1 and Phase 2 conditions. Detailed modelling results are provided in **Appendix B.** However, there are a few locations where the residual pressures during fire flow conditions are below 138 kPa (20 psi), summarized below:

- Under Phase 1 conditions, nodes J10, J44, J56, J84, J128, J156, J158, J166, J168, J174, J176, J206, and J210 are below 138 kPa (20 psi). These results are outlined in **Table B-3** of **Appendix B**.
- Under Phase 2 conditions, nodes J10, J44, J56, J84, J128, J156, J158, J166, J168, J174, J176, J206, J210, J250, and J252 are below 138 kPa (20 psi). These results are outlined in Table B-6 of Appendix B.

The worst-case scenario occurs at node J56, in both Phase 1 and Phase 2, where a maximum fire flow of 5,734 L/min and 5,724 L/min is available at a residual pressure of 138 kPa (20 psi), respectively. Most of these locations are located at dead-ends, where lower fire flow capacity is expected. Hydrant coverage (as per Ottawa's Design Guidelines ISTB-2018-02, Appendix I) should be reviewed at these locations at later design stages once boundary conditions have been obtained from the City and hydraulic conditions have been confirmed.

Mattamy Cedarview Water Servicing Analysis 5 Hydraulic Assessment

However, the fire flow requirements for the Cedarview and Employment Lands are to be confirmed at the detail design stage and fire control measures are to be included, as required. These fire control measures may include adding ordinary construction units, the addition of firewalls and/or using the alternative hydrant place procedure outlined in Appendix I of ISTB-2018-02 to avoid oversizing local pipes as described above.

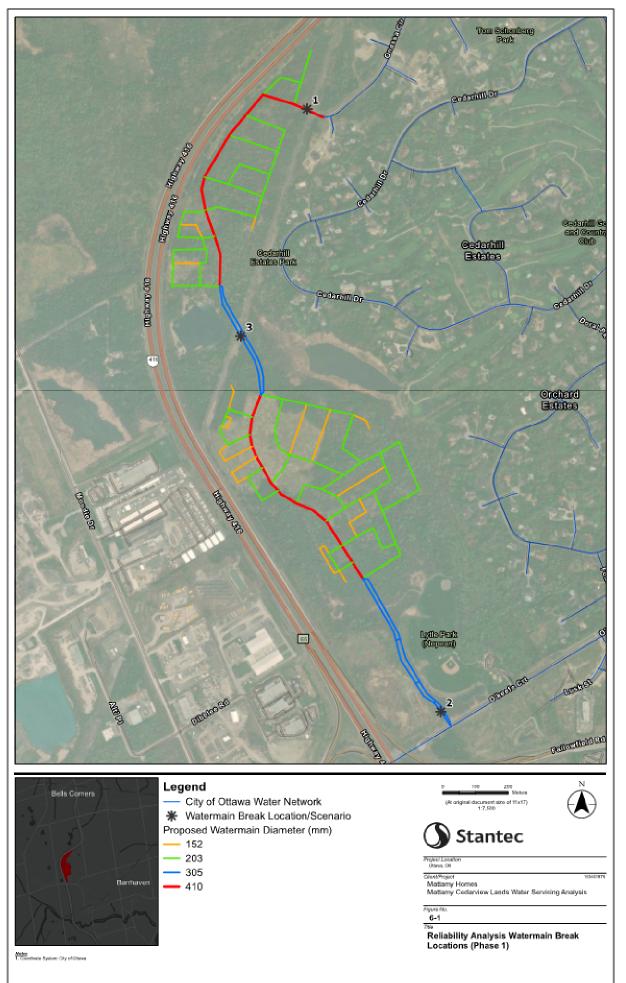
6 Reliability Analysis

As per the City of Ottawa Design Guidelines, the system must be able to provide AVDY+FF while meeting serviceability requirements during major failure (i.e., watermain break). To assess reliability and resiliency against major failures, three (3) reliability scenarios were completed to confirm sufficient pressure and flow can be achieved during a major failure. These scenarios include the following and are shown in **Figure 6-1** (Phase 1) and **Figure 6-2** (Phase 2):

- Break Scenario 1: Break in the backbone watermain from Connection 1;
- Break Scenario 2: Break in the backbone watermain from Connection 2;
- **Break Scenario 3**: Break in the backbone watermain between the north and the south of the Cedarview Lands.

Note that the break scenarios were assessed under both Phase 1 and Phase 2 conditions, to confirm serviceability under all scenarios (demands, proposed watermain networks, etc.). Upon analysis of the reliability scenarios, the necessity of twin watermains was identified in some parts of the proposed network, to ensure appropriate servicing in case of major failure (i.e., watermain break). Most notably, along the backbone watermain connecting the northern and southern portions of the Cedarview Lands, as well as along the backbone watermain south of the Cedarview Lands, towards O'Keefe Crt.

6.1 Phase 1

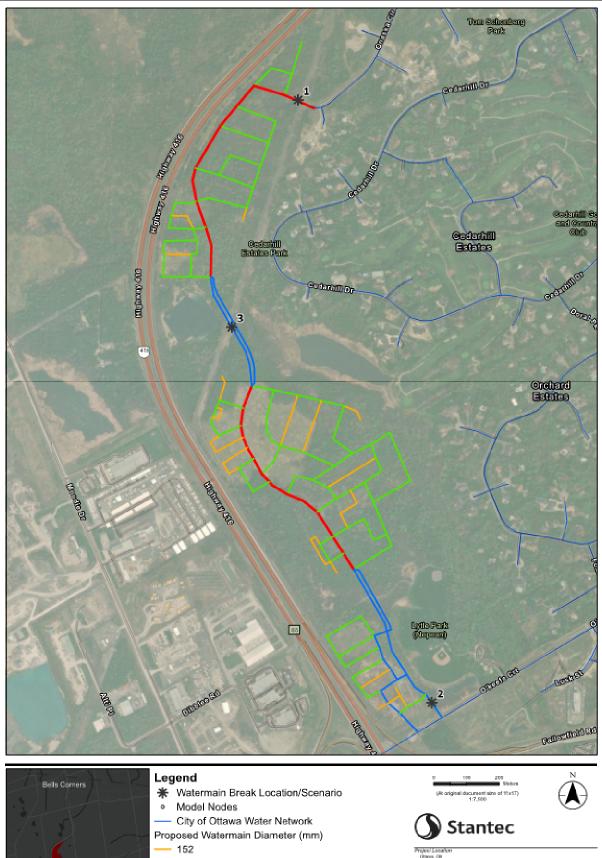

Modelling results shows that the targeted 13,000 L/min can be met at most junctions under all break scenarios and Phase 1 conditions. However, there are a few junctions that do not meet the criteria under each break scenario as listed in **Table 6-1**. Note that **Figure B-1** provides the model system map.

Fire flow requirements across the site are to be confirmed at later design stages and the required fire flow measures to meet City criteria under all watermain break scenarios are to be determined. These fire control measures may include adding ordinary construction units, the addition of firewalls and/or using the alternative hydrant placing procedure outlined in Appendix I of ISDTB-2018-02 to avoid oversizing local pipes.

Table 6-1: Reliability Analysis Results - Phase 1

Break Scenario	Model Nodes Not Meeting RFF of 13,000 L/min	Minimum Available Fire Flow at 20 psi (L/min)
1	J10, J30, J44, J56, J84, J128, J136, J138, J144, J156, J158, J166, J168, J174, J176, J196, J206, and J210	5,660
2	J10, J44, J56, J84, J128, J156, J158, J166, J168, J174, J176, J196, J206, and J210	5,711
3	J10, J44, J56, J84, J128, J136, J138, J156, J158, J166, J168, J174, J176, J206, and J210	5,749

6.2 Phase 2


Modelling results shows that the RFF of 13,000 L/min can be met at most junctions under all break scenarios and Phase 2 conditions. However, there are a few junctions that do not meet the criteria under each break scenario, as listed in **Table 6-2**. Note that **Figure B-1** provides the model system map.

Fire flow requirements across the site are to be confirmed at later design stages and the required fire flow measures to meet City criteria under all watermain break scenarios are to be determined. These fire control measures may include adding ordinary construction units, the addition of firewalls and/or using the alternative hydrant placing procedure outlined in Appendix I of ISDTB-2018-02 to avoid oversizing local pipes.

Table 6-2: Reliability Analysis Results - Phase 2

Break Scenario	Model Nodes Not Meeting RFF of 13,000 L/min	Minimum Available Fire Flow at 20 psi (L/min)
1	J10, J30, J44, J56, J84, J128, J136, J138, J144, J156, J158, J166, J168, J174, J176, J196, J206, J210, J250, and J252	5,646
2	J10, J44, J56, J84, J128, J156, J158, J166, J168, J174, J176, J196, J206, J210, J250, and J252	5,685
3	J10, J44, J56, J84, J128, J136, J138, J158, J166, J168, J174, J176, J206, J210, J250, and J252	5,740

- 203
- 305
- **-** 410

CrientProject to Mattamy Homes Mattamy Homes Mattamy Cedarview Lands Water Servicing Analysis

Figure M 6-2

789 Reliability Analysis Watermain Break Locations (Phase 2)

7 Offsite Assessment

Results from the conceptual hydraulic assessment suggest that the existing City's watermain infrastructure would be able to provide an adequate level of service for the proposed development. To provide further context on the serviceability of the study area, available information regarding the City's potable water distribution system was reviewed. The latest iteration of the City's master planning study completed in 2013 was reviewed and the following data was extracted:

- Zone BARR (as known in the City's 2013 WMP) is serviced from two pump stations: Barrhaven Reservoir (herein Barr Res PS) and Barrhaven (herein Barr PS). The pumps at both PSs are controlled by the level of the Moodie Drive ET.
- From Table 2-2, the 2013 firm capacity (with the largest pump out of service) of the Barr PS is 57 MLD or 660 L/s, whereas the Barr Res PS does not have any redundancy (i.e., 0 MLD).
- As part of a previous study (2009 IMP update), a pressure zone reconfiguration was recommended
 to service the South Urban Community (herein SUC). This implies modification to the Ottawa South
 and Barrhaven pumping stations which will supply the new and reconfigured Zone 3C (now referred
 to as Zone SUC). The Barr PS will be modified to include pumps for Zone BARR, and for the new
 Zone 3C. As part of this pressure zone reconfiguration, modifications to the Barr Res PS are also
 required.
- From Table 3-2, the projected maximum day demands (MXDY) for zone BARR are as follows:
 - o 2012 (i.e., pre-reconfiguration): 22.45 MLD or 260 L/s.
 - o 2015 (i.e., post-reconfiguration¹): 11.47 MLD or 133 L/s.
 - o 2031: 12.8 MLD or 148 L/s.
 - o 2060: 12.9 MLD or 149 L/s.
- The proposed upgrades at both PSs, in relation to the proposed pressure zone recommendation, are as follows:
 - Barr Res PS: Add a new 7 MLD (81 L/s) pump to bring the firm capacity to 7 MLD (81 L/s), and add a new standby generator (scheduled to be completed in 2014). Upgrade the Reservoir's discharge along Fallowfield (up to Cedarview) to a 406 mm diameter pipe (scheduled to be completed in 2015).
 - Barr PS (servicing zone BARR): Add a new 7 MLD (81 L/s) pump to bring the firm capacity to 7 MLD or 81 L/s (schedule to be completed in 2015).
- The firm pumping capacity of the new Zone BARR would be 14.0 MLD (162 L/s), which is greater than the projected 2060 MXDY demand (12.9 MLD or 149 L/s).

The projected 2031 MXDY (148 L/s) represents about 92% of the pressure zone's firm pumping capacity. The buildout MXDY demand for the Mattamy Cedarview Development is 16 L/s (including the Employment Lands). If the study area is fully developed by 2031, the pressure zone's firm pumping capacity (162 L/s), as described in the 2013 WMP, would be exceeded. Available data suggests that pumping upgrades would be required. Such conclusions are to be validated with the City, given that current growth projections and pumping capacities might differ from what was presented in the 2013 WMP.

¹ The pressure zone reconfiguration is now targeted to be completed by mid-2025.

Project Number: 163401876

8 Conclusions and Recommendations

A distribution system capacity analysis was completed for the conceptual plan for the Cedarview and Employment Lands in the City's southwestern suburban neighbourhood of Barrhaven. The purpose of the analysis is to assess serviceability of the proposed development lands, as well as to identify preliminary watermain sizing and redundancy needs to achieve an acceptable level of service. Based on the hydraulic analysis the following conclusions were made:

- Based on the most current draft plan for the Cedarview Lands, the estimated AVDY, MXDY, and PKHR demands are 9.42 L/s, 13.57 L/s, and 26.95 L/s respectively. The estimated AVDY, MXDY, and PKHR demand for the Employment Lands are 2.34 L/s, 2.34 L/s, and 3.47 L/s respectively. The total estimated AVDY, MXDY, and PKHR demands for the entire development are 11.76 L/s, 15.92 L/s, and 30.41 L/s respectively.
- Information regarding proposed unit sizes and unit spacing is not available at this time, therefore FUS calculations have not been completed. A fire flow objective of 13,000 L/min was used for this analysis, as recommended by the City's 2013 WMP. It is recommended that the FUS calculations be reviewed at later stages of design to ensure that fire flow requirements are met across the site.
- Boundary conditions used as part of this analysis represent an approximation of the anticipated hydraulic conditions at the proposed connections to the City's network. Water boundary conditions were estimated from the typical HGL of the Moodie Dr ET, and the headlosses along the existing 610 mm diameter watermain (O'Keefe Crt) up to the proposed development. Water boundary conditions should be requested from the City at later stages of design to ensure that appropriate hydraulic conditions are assessed, and recommendations are confirmed or revised accordingly.
- Within the Cedarview and Employment Lands study area, the network proposed consists of 152 mm, 203 mm, 305 mm and 410 mm pipes. The proposed water network connects at two (2) different locations to the existing City network under Phase 1 (Cedarview lands only), and three (3) locations under Phase 2 (Cedarview and Employment Lands).
- Under AVDY demand conditions, model results suggest that the maximum pressure is below the allowable maximum pressure of 80 psi in accordance with the City of Ottawa design guidelines.
 Under PKHR demand conditions, the minimum pressures are in accordance with the City's system pressure requirements.
- Under MXDY + FF demand conditions, the assumed RFF of 13,000 L/min can be achieved across most of the proposed network under Phase 1, with the exception of a few locations, where the worst-case scenario results in a maximum available fire flow of 5,734 L/min. Similar observations are made under Phase 2 conditions, where the worst-case scenario results in a maximum available fire flow of 5,724 L/min. However, it should be noted that most of these locations are located at dead-ends, where lower fire flow capacity is expected. Hydrant coverage (as per Ottawa's Design Guidelines ISTB-2018-02, Appendix I) should be reviewed at these locations at later design stages once boundary conditions have been obtained from the City and hydraulic conditions have been confirmed.

Mattamy Cedarview Water Servicing Analysis 8 Conclusions and Recommendations

- Fire flow requirements for Cedarview and Employment Lands are to be confirmed at later stages of design and fire control measures are to be included as required. These fire control measures may include adding ordinary construction units, the addition of firewalls and/or using the alternative hydrant place procedure outlined in Appendix I of ISTB-2018-02 to avoid oversizing local pipes.
- To assess reliability against major failures, three (3) reliability scenarios were completed under AVDY+FF demand conditions to confirm sufficient pressure and flow can be achieved during a major failure (i.e., watermain break). The necessity of twin watermains was identified in parts of the proposed network, to ensure appropriate servicing in case of major failure. Under all reliability scenarios, some locations are below the RFF of 13,000 L/min. Fire flow requirements across the site are to be confirmed at later design stages and the required fire flow measures to meet City criteria under all watermain break scenarios are to be determined. These fire control measures may include adding ordinary construction units, the addition of firewalls and/or using the alternative hydrant placing procedure outlined in Appendix I of ISDTB-2018-02 to avoid oversizing local pipes.
- Based on data extracted from the City's 2013 WMP, the envisioned firm pumping capacity of zone BARR (now known as Zone 3SW) would be 162 L/s (14.0 MLD), following the pressure zone reconfiguration to create the new Zone 3C (now known as Zone SUC).
- The projected 2031 MXDY (148 L/s) demand represents about 92% of the pressure zone's firm pumping capacity. The buildout MXDY demand for the proposed development is 16 L/s (including the Employment Lands). If the study area is fully developed by 2031, the pressure zone's firm pumping capacity (162 L/s), as described in the 2013 WMP, would be exceeded. This suggests that pumping upgrades would be required. Such conclusions are to be validated with the City, given that current growth projections and pumping capacities might differ from what was presented in the 2013 WMP.

(

9 References

City of Ottawa. (2010). Ottawa Design Guidelines - Water Distribution. Ottawa

City of Ottawa. (2018). Technical Bulletin. ISTB-2018-02. Ottawa.

Stantec Consulting Ltd. (2013) City of Ottawa 2013 Water Master Plan. Ottawa.

Project Number: 163401876

Appendix A Boundary Condition Estimation

Project Number: 163401876

163401876 - Mattamy Cedarview - Boundary Condition Estimations Head Loss Calculations - Boundary Conditions Estimations - Phase 1 (Cedarview Lands) ESTIMATING HEAD LOSS ACROSS ALIGNMENT Length (m) Hazen-Williams Roughness Constant Flow (m³/s) Diameter (mm) Flow (m³/s) Diameter (mm) where: Hazen-Williams Equation: $h_f = \frac{10.67q^{1.85}}{\left(c^{1.85}d_h^{-4.8685}\right)}$ Scenario: **Boundary Conditions** Velocity (m/s) Head loss per unit pipe ($m_{\rm H2O}/m$ pipe) Head loss per unit pipe ($m_{\rm H2O}/km$ pipe) Diameter (m) Head loss per unit pipe (m_{H2O}/m pipe) Head loss per unit pipe (m_{H2O}/km pipe) Diameter (m) Friction Losses: Length (m) Hazen-Williams Roughness Constant Scenario: Equations Assumed HGL Moodie Drive Max ET Total Friction Head Loss (m) Friction Losses: Velocity (m/s) Total Friction Head Loss (m) Scenario ADD PKHR MDD+FF ADD+FF h_i = head loss per unit pipe (m_{i20}/m pipe) C = Hazen-Williams roughness coefficient based on pipe material q = flow rate ($m^3 e$) d_h = inside hydraulic diameter (m) ADD Boundary Condition 153.00 152.98 151.79 151.83 MDD+FF 155 m 153 m < **,** = **,** = | | | | | | < **,** = **,** = **⇒** = 0.0012 m_{H20}/m pipe 1.2 m_{H20}/km pipe 1,013 m 120 0.230 m³/s 600 mm 0.6 m 0.0000 m_{H20}/m pipe 0.0 m_{H20}/km pipe 1,013 m 120 0.009 m³/s 600 mm 0.6 m 0.00 m 0.0 m/s 1.21 m 0.8 m/s Flow (m³/s) Diameter (mm) Diameter (m) Diameter (mm) Diameter (m) Scenario: Flow (m³/s) Scenario Flow (L/s) Scenario: Velocity (m/s) Head loss per unit pipe (m_{H2O}/m pipe) Head loss per unit pipe (m_{H2O}/km pipe) Flow (m³/s) Length (m) Hazen-Williams Roughness Constant Velocity (m/s) Head loss per unit pipe (m_{H2O}/m pipe) Head loss per unit pipe (m_{H2O}/km pipe) Length (m) Hazen-Williams Roughness Constant Total Friction Head Loss (m) Friction Losses: Total Friction Head Loss (m) Friction Losses: Establishing Flow Scenario ADD+FF PKHR Q = Q = 0.009 ADD 9.42 0.027 PKHR 26.95 MDD+FF 230.24 0.230 < 1) | |-ADD+FF 226.09 0.226 0.0012 m_{H20}/m pipe 1.2 m_{H20}/km pipe 0.0000 m_{H2O}/m pipe 0.0 m_{H2O}/km pipe 1,013 m 120 0.226 m³/s 600 mm 0.6 m 1,013 m 120 0.027 m³/s 600 mm 0.6 m 0.02 m 0.1 m/s 1.17 m 0.8 m/s m³/s ۲s

163401876 - Mattamy Cedarview - Boundary Condition Estimations Head Loss Calculations - Boundary Conditions Estimations - Phase 2 (Cedarview & Employment Lands) ESTIMATING HEAD LOSS ACROSS ALIGNMENT Flow (m³/s) Diameter (mm) Flow (m³/s) Diameter (mm) where: Hazen-Williams Equation: $h_f = \frac{10.67 q^{1.85}}{\left(c^{1.85} d_h^{-4.8655}\right)}$ **Boundary Conditions** Velocity (m/s) Head loss per unit pipe ($m_{\rm H2O}/m$ pipe) Head loss per unit pipe ($m_{\rm H2O}/km$ pipe) Diameter (m) Length (m) Hazen-Williams Roughness Constant Scenario: Head loss per unit pipe (m_{H2O}/m pipe) Head loss per unit pipe (m_{H2O}/km pipe) Diameter (m) Friction Losses: Length (m) Hazen-Williams Roughness Constant Scenario: Equations Assumed HGL Moodie Drive Max ET Total Friction Head Loss (m) Friction Losses: Velocity (m/s) Total Friction Head Loss (m) Scenario ADD PKHR MDD+FF ADD+FF h_i = head loss per unit pipe (m_{i20}/m pipe) C = Hazen-Williams roughness coefficient based on pipe material q = flow rate ($m^3 e$) d_h = inside hydraulic diameter (m) ADD Boundary Condition 153.00 152.97 151.76 151.80 MDD+FF 155 m 153 m < **,** = **,** = | | | | | | < **,** = **,** = **⇒** = 0.0012 m_{H20}/m pipe 1.2 m_{H20}/km pipe 1,013 m 120 0.233 m³/s 600 mm 0.6 m 0.0000 m_{H20}/m pipe 0.0 m_{H20}/km pipe 1,013 m 120 0.012 m³/s 600 mm 0.6 m 0.00 m 0.0 m/s 1.24 m 0.8 m/s Flow (m³/s) Diameter (mm) Diameter (m) Diameter (mm) Diameter (m) Flow (m³/s) Scenario Flow (L/s) Scenario: Velocity (m/s) Head loss per unit pipe (m_{H2O}/m pipe) Head loss per unit pipe (m_{H2O}/km pipe) Flow (m³/s) Length (m) Hazen-Williams Roughness Constant Velocity (m/s) Head loss per unit pipe (m_{H2O}/m pipe) Head loss per unit pipe (m_{H2O}/km pipe) Length (m) Hazen-Williams Roughness Constant Scenario: Total Friction Head Loss (m) Friction Losses: Total Friction Head Loss (m) Friction Losses: Establishing Flow Scenario ADD+FF PKHR Q = Q = 0.012 ADD 11.76 0.030 90.41 MDD+FF 232.58 0.233 < 1))) . → → ADD+FF 228.43 0.228 0.0012 m_{H20}/m pipe 1.2 m_{H20}/km pipe 0.0000 m_{H2O}/m pipe 0.0 m_{H2O}/km pipe 1,013 m 120 0.228 m³/s 600 mm 0.6 m 1,013 m 120 0.030 m³/s 600 mm 0.6 m 0.03 m 0.1 m/s 1.20 m 0.8 m/s m³/s ۲s

Appendix B Detailed Model Results

Table B-1: Model Results - AVDY (Phase 1)

Junction ID	Demand (L/s)	Head (m)	Pressure (psi)
Maximum	0.11	153.00	71.00
Minimum	0.10	152.99	46.78
J10	0.10	152.99	64.86
J104 J106	0.10	152.99 152.99	61.13 67.60
J110	0.10	152.99	57.86
J112 J114	0.11	152.99	69.33
J114 J116	0.11	152.99 152.99	64.75 67.25
J12	0.10	152.99	61.07
J122 J124	0.10 0.10	152.99 152.99	66.28 56.94
J126	0.10	152.99	53.75
J128	0.10	152.99	53.96
J130 J132	0.10 0.10	152.99 152.99	52.55 53.34
J134	0.10	152.99	56.40
J136 J138	0.10 0.10	152.99 152.99	54.59 51.44
J136	0.10	152.99	61.92
J140	0.10	152.99	56.75
J142 J144	0.10 0.10	152.99 152.99	58.64 56.52
J146	0.10	152.99	57.96
J148	0.10	152.99	57.15
J150 J152	0.10 0.10	152.99 152.99	56.26 59.84
J154	0.10	152.99	52.53
J156	0.10	152.99	52.21
J158 J16	0.10 0.10	152.99 152.99	48.52 61.55
J160	0.10	152.99	49.51
J162 J164	0.10 0.10	152.99	49.19 47.55
J164 J166	0.10	152.99 152.99	47.55
J168	0.10	152.99	47.30
J170 J172	0.10 0.10	152.99 152.99	49.09 48.94
J174	0.10	152.99	46.78
J176	0.10	152.99	48.11
J178 J18	0.10 0.10	152.99 152.99	47.13 60.07
J180	0.10	152.99	49.03
J182 J184	0.10 0.10	152.99 152.99	56.88 57.09
J186	0.10	152.99	64.69
J188	0.10	152.99	60.81
J190 J192	0.10 0.10	152.99 152.99	68.99 68.46
J194	0.10	152.99	66.39
J196	0.10	152.99	65.54
J198 J20	0.11 0.10	152.99 152.99	63.58 60.00
J202	0.11	152.99	59.54
J204	0.11	152.99	61.39 62.37
J206 J208	0.10 0.11	152.99 152.99	62.77
J210	0.10	152.99	59.13
J212 J22	0.10 0.10	152.99 152.99	60.49 60.32
J222	0.10	152.99	66.39
J224	0.10	153.00	63.28
J226 J24	0.10	153.00 152.99	71.00 57.54
J26	0.10	152.99	59.31
J28	0.10 0.10	152.99 152.99	58.38 57.11
J30 J32	0.10	152.99	57.11 56.36
J34	0.10	152.99	58.53
J36 J38	0.10 0.10	152.99 152.99	58.20 55.29
J40	0.10	152.99	55.36
J44	0.10	152.99	57.97 54.95
J46 J50	0.10 0.10	152.99 152.99	54.95 54.21
J52	0.10	152.99	61.35
J56 J58	0.10	152.99	56.98 54.93
J60	0.10 0.10	152.99 152.99	54.93 64.00
J62	0.10	152.99	63.94
J64 J66	0.10 0.10	152.99 152.99	50.34 61.63
J68	0.10	152.99	61.38
J70	0.10	152.99	51.98
J72 J74	0.10 0.10	152.99 152.99	53.34 56.11
J76	0.10	152.99	59.77
J78	0.10	152.99	55.41
J80 J82	0.10 0.10	152.99 152.99	60.64 62.86
J84	0.10	152.99	63.17
J86	0.10	152.99	63.97
J88 J90	0.10 0.10	152.99 152.99	64.51 66.74
J96	0.10	152.99	65.79
J98	0.10	152.99	64.83

Table B-2: Model Results - PKHR (Phase 1)

Junction ID	Demand (L/s)	Head (m)	Pressure (psi)
Maximum Minimum	0.30 0.29	152.97 152.88	70.96 46.64
viiriiriurii	0.29	132.00	40.04
J10	0.29	152.88	64.7
J104	0.29	152.89	60.9
J106	0.29	152.89	67.4
J110	0.29	152.90	57.7
J112	0.30	152.90	69.2
J114	0.30	152.91	64.6
J116	0.29	152.92	67.1
J12	0.29	152.88	60.9
J122	0.29	152.89	66.1
J124	0.29	152.88	56.7
J126	0.29	152.88	53.6
J128	0.29	152.88	53.8
J130 J132	0.29 0.29	152.88	52.4
J134	0.29	152.88 152.88	53.1 56.2
J136	0.29	152.88	54.4
J138	0.29	152.88	51.2
J14	0.29	152.88	61.7
J140	0.29	152.88	56.6
J142	0.29	152.88	58.4
J144	0.29	152.88	56.3
J146	0.29	152.88	57.8
J148	0.29	152.88	57.0
J150	0.29	152.88	56.1
J152	0.29	152.88	59.6
J154	0.29	152.89	52.3
J156	0.29	152.89	52.0
J158	0.29	152.89	48.3
J16	0.29	152.88	61.4
J160	0.29	152.89	49.3
J162	0.29	152.89	49.0
J164	0.29	152.89	47.4
J166	0.29	152.89	48.2
J168	0.29	152.89	47.1
J170	0.29	152.89	48.9
J172 J174	0.29	152.89	48.8
	0.29	152.89	46.6
J176 J178	0.29	152.89	47.9
J176 J18	0.29 0.29	152.89 152.88	46.9 59.9
J180	0.29	152.89	48.8
J182	0.29	152.89	56.7
J184	0.29	152.89	56.9
J186	0.29	152.89	64.5
J188	0.29	152.90	60.6
J190	0.29	152.90	68.8
J192	0.29	152.90	68.3
J194	0.29	152.90	66.2
J196	0.29	152.89	65.4
J198	0.30	152.90	63.4
J20	0.29	152.88	59.8
J202	0.30	152.90	59.4
J204	0.30	152.90	61.2
J206	0.29	152.90	62.2
J208	0.30	152.90	62.6
J210	0.29	152.90	59.0
J212	0.29	152.90	60.3
J22	0.29	152.88	60.1
J222	0.29	152.94	66.3
J224	0.29	152.96	63.2
J226	0.29	152.97	70.9
J24 J26	0.29 0.29	152.88	57.3 59.1
J26 J28	0.29	152.88 152.88	59.1 58.2
J30	0.29	152.88	56.9
J32	0.29	152.88	56.2
J34	0.29	152.88	58.3
J36	0.29	152.88	58.0
J38	0.29	152.88	55.1
J40	0.29	152.88	55.2
J44	0.29	152.88	57.8
J46	0.29	152.88	54.8
J50	0.29	152.89	54.0
J52	0.29	152.89	61.2
J56	0.29	152.89	56.8
J58	0.29	152.89	54.7
J60	0.29	152.89	63.8
J62	0.29	152.89	63.8
J64	0.29	152.89	50.2
J66	0.29	152.89	61.4
J68	0.29	152.89	61.2
J70	0.29	152.89	51.8
J72	0.29	152.89	53.2
J74	0.29	152.89 152.89	55.9 50.6
J76	0.29		59.6 55.2
J78	0.29	152.89	55.2 60.4
J80 J82	0.29 0.29	152.89 152.89	60.4 62.7
J82 J84	0.29	152.89	63.0
J86	0.29	152.89	63.8
J88	0.29	152.89	64.3
J90	0.29	152.89	66.6
		152.89	
J96	0.29		65.6

Table B-3: Model Results - MXDY+FF (Phase 1)

Junction ID Maximum Minimum	(L/s)	Required Fire Flow (L/s)	Residual Pressure (psi)	
	0.15	216.67	68.04	Residual 20 psi (L/s) 1659.2
	0.14	216.67	-104.41	95.5
J10	0.14	216.67	0.36	176.7
J104	0.14	216.67	45.23	381.1
J106	0.14	216.67	49.10	377.0
J110 J112	0.14 0.15	216.67 216.67	48.91 49.83	533.4 372.1
J114	0.15	216.67	56.93	645.6
J116	0.14	216.67	59.41	660.5
J12 J122	0.14 0.14	216.67 216.67	35.41 49.57	284.8 395.2
J124	0.14	216.67	39.12	334.4
J126	0.14	216.67	29.32	262.0
J128 J130	0.14 0.14	216.67 216.67	12.68 29.58	193.8 266.1
J132	0.14	216.67	30.58	271.4
J134	0.14	216.67	35.10	297.2
J136	0.14	216.67	24.54	235.2
J138 J14	0.14 0.14	216.67 216.67	22.48 35.93	227. ⁴ 286.0
J140	0.14	216.67	32.53	276.6
J142	0.14	216.67	37.27	307.0
J144 J146	0.14 0.14	216.67 216.67	25.96 31.58	240.3 267.9
J148	0.14	216.67	33.69	283.7
J150	0.14	216.67	42.28	385.8
J152 J154	0.14 0.14	216.67	46.46	419.0
J154 J156	0.14	216.67 216.67	30.11 16.92	269. 205.
J158	0.14	216.67	13.56	192.
J16	0.14	216.67	45.80	386.
J160 J162	0.14 0.14	216.67 216.67	26.96 38.68	254. 410.
J164	0.14	216.67	28.52	270.
J166	0.14	216.67	5.43	170,8
J168 J170	0.14 0.14	216.67 216.67	-4.77 38.72	149.i 413.:
J172	0.14	216.67	38.70	415.0
J174	0.14	216.67	-4.08	150.
J176	0.14	216.67	6.08	172.0
J178 J18	0.14 0.14	216.67 216.67	30.74 43.99	293.i 373.
J180	0.14	216.67	38.95	420.9
J182	0.14	216.67	38.78	330.0
J184 J186	0.14 0.14	216.67 216.67	47.34 48.35	497.i 392.i
J188	0.14	216.67	52.33	578.6
J190	0.14	216.67	51.67	398.9
J192 J194	0.14 0.14	216.67 216.67	48.93 45.49	368.3 344.
J194 J196	0.14	216.67	20.61	218.4
J198	0.15	216.67	47.63	392.
J20	0.14	216.67	32.96	272.
J202 J204	0.15 0.15	216.67 216.67	44.81 46.61	390. 400.
J206	0.14	216.67	-26.12	143.
J208	0.15	216.67	54.58	608.
J210 J212	0.14 0.14	216.67 216.67	8.55 28.65	187. 248.
J22	0.14	216.67	44.90	384.
J222	0.14	216.67	60.71	835.
J224 J226	0.14	216.67	59.29	1087.
J226 J24	0.14 0.14	216.67 216.67	68.04 42.36	1659. 373.
J26	0.14	216.67	36.81	300.
J28	0.14 0.14	216.67	35.01	289.
J30 J32	0.14	216.67 216.67	28.09 33.74	250. 286.
J34	0.14	216.67	34.51	285.
J36	0.14	216.67	29.73	257.
J38 J40	0.14 0.14	216.67 216.67	32.93 40.67	283. 368.
J44	0.14	216.67	-38.91	128.
J46	0.14	216.67	40.67	372.
J50 J52	0.14 0.14	216.67 216.67	32.73 47.51	285. 417.
J56	0.14	216.67	-104.41	95.
J58	0.14	216.67	44.07	445.
J60	0.14	216.67	47.46	386.
J62 J64	0.14 0.14	216.67 216.67	46.12 39.68	368. 415.
J66	0.14	216.67	44.87	371.
J68	0.14	216.67	39.80	317.
J70 J72	0.14 0.14	216.67 216.67	35.69 43.46	324. 463.
J74	0.14	216.67	46.68	500.
J76	0.14	216.67	44.84	389.
J78	0.14	216.67	35.67	305.
J80 J82	0.14 0.14	216.67 216.67	36.01 33.74	290. 270.
J84	0.14	216.67	-95.43	105.
J86	0.14	216.67	45.28	358.
J88 J90	0.14 0.14	216.67	36.40 34.33	282.
J90 J96	0.14	216.67 216.67	34.33 44.52	267. 338.

Table B-4: Model Results - AVDY+FF (Reliability Analysis Scenarios 1 to 3, Phase 1)

Junction ID	Base Demand (L/s)	Scenario 1 (Connection 1 B Required Fire Flow (L/s)	Available Fire Flow @ Residual 20 psi (L/s)	Base Demand (L/s)	Scenario 2 (Connection 2 B Required Fire Flow (L/s)	reak) Available Fire Flow @ Residual 20 psi (L/s)	Base Demand (Us)	k Scenario 3 (Connection 3 B Required Fire Flow (L/s)	Available Fire Flow @
Maximum Minimum	69.34 45.11	216.67 216.67	1559.25 94.33	69.33 45.12	216.67 216.67	842.54 95.18	69.34 45.12	216.67 216.67	Residual 20 psi (L/s) 1659.85 95.82
J10	63.18 59.45	216.67	161.70	63.19	216.67 216.67	175.15	63.20 59.46	216.67	170.19
J104 J106 J110	65.93	216.67 216.67	343.93 347.92	59.46 65.93	216,67	356.26 355.67	65.94	216.67 216.67	382.04 377.87
J110 J112	56.19 67.66	216.67 216.67	440.46 347.76	56.19 67.66	216.67 216.67	467.50 351.75	56.19 67.67	216.67 216.67	533.76 372.93
J114 J116	63.08 65.58	216.67 216.67	542.77 576.30	63.08 65.58	216.67 216.67	548.74 558.62	63.08 65.59	216.67 216.67	645.63 660.89
J12 J122	59.39 64.61	216.67 216.67	230.82 360.19	59.40 64.61	216.67 216.67	277.39 370.47	59.40	216.67 216.67	258.26 396.13
J124	55.26	216.67	267.90	55.27	216.67	319.56	64.62 55.27	216.67	286.10
J126 J128	52.07 52.28	216.67 216.67	221.95 175.45	52.08 52.29	216.67 216.67	254.03 190.62	52.09 52.29	216.67 216.67	234.19 181.55
J130 J132	50.88 51.66	216.67 216.67	222.95 226.43	50.88 51.67	216.67 216.67	257.48 262.47	50.89 51.67	216.67 216.67	236.24 240.69
J134 J136	54.72 52.91	216.67 216.67	247.56 206.53	54.73 52.92	216.67 216.67	286.47 229.53	54.73 52.92	216.67 216.67	260.84 214.61
J138 J14	49.76 60.25	216.67 216.67	198.81 232.75	49.77 60.26	216.67 216.67	221.74 278.57	49.77 60.26	216.67 216.67	206.83
J140	55.08	216.67	235.74	55.08	216.67	267.97	55.09	216.67	259.56 246.64
J142 J144	56.97 54.84	216.67 216.67 216.67	256.72 211.58	56.97 54.85	216.67 216.67 216.67	295.77 234.58	56.98 54.85	216.67 216.67	269.28 219.55 241.08 251.91
J146 J148	56.28 55.47	216.67 216.67	231.40 240.80	56.29 55.48	216.67	260.24 274.44	56.29 55.48	216.67 216.67	241.08 251.91
J150 J152	54.58 58.16	216,67 216,67	290,12 318,37	54,59 58,17	216.67 216.67	363,27 392,38	54.59 58.17	216,67 216,67	316,28 338.67
J154 J156	50.86 50.53	216.67 216.67	244.39 193.26	50.86 50.54	216.67 216.67	258.96 200.66	50.87 50.54	216.67 216.67	270.87
J158	50.53 46.84 59.88	216.67	180.97	50.54 46.85 59.89	216.67	187.99	50.54 46.85 59.89	216.67 216.67 216.67	206.45 193.50
J16 J160	47.84	216.67 216.67	280.34 230.32	47.84	216.67 216.67	368.38 243.94	47.85	216.67	328.16 255.14
J162 J164	47.51 45.87	216.67 216.67	330.23 240.74	47.52 45.88	216.67 216.67	371.22 257.36	47.52 45.88	216.67 216.67	411.07 271.56
J166 J168	46.76 45.63	216.67 216.67	162.58 143.85	46.77 45.63	216.67 216.67	167.58 147.50	46.77 45.64	216.67	171.59 150.44
J170	47.42 47.26	216.67 216.67	333.33 336.14	47.42 47.27	216.67 216.67	372.86 374.16	47.43 47.27	216.67 216.67	413.86 416.33
J174	45.11	216.67	144.53	45.12	216.67	147.67	45.12	216.67	150.77
J176 J178	46.44 45.46	216.67 216.67	164.26 260.34	46.44 45.46	216.67 216.67	168.44 276.37	46.45 45.47	216.67 216.67	172.69 294.93
J18 J180	58.39 47.36	216.67 216.67	269.11 341.38	58.40 47.36	216.67 216.67	356.76 377.84	58.41 47.37	216.67 216.67	319.05 421.65
J182 J184	55.21 55.41	216,67 216,67	296,83 404,97	55,21 55,42	216.67 216.67	312.38 442.91	55.22 55.42	216.67 216.67	331.16 497.17
J186 J188	63.02 59.14	216.67 216.67	356.95 481.37	63.02 59.14	216.67 216.67	367.70 501.09	63.03	216.67 216.67	393.74
J190	67.31	216.67	368.38	67.32	216.67	374.25	59.14 67.32	216.67	578.80 399.74
J192 J194	66.79 64.72	216.67 216.67	343.24 322.57	66.79 64.72	216.67 216.67	348.25 327.41	66.80 64.73	216.67 216.67	369.05 345.53
J196 J198	63.87 61.91	216.67 216.67	211.71 358.93	63.87 61.91	216.67 216.67	213.70 366.46	63.88 61.92	216.67 216.67	219.02 393.58
J20 J202	58.32 57.86	216.67 216.67	227.69 355.30	58.33 57.87	216.67 216.67	264.97	58.33	216.67 216.67	246.93
J204 J206	59.72 60.70	216.67 216.67	364.53 141.69	59.72 60.70	216.67 216.67	361.90 370.71	57.87 59.73 60.71	216.67 216.67	391.48 400.95
J208	61.10	216.67	509.00	61.10	216.67	142.13 523.07	61.11	216.67	144.00 608.85
J210 J212	57.46 58.82	216.67 216.67	182.83 238.88	57.46 58.82	216.67 216.67	183.83 240.86	57.46 58.83	216.67 216.67	188.01 249.56
J22 J222	58.64 64.72	216.67 216.67	281.21 734.33	58.65 64.72	216.67 216.67	366.29 645.03	58.65 64.72	216.67 216.67	325.00 835.48
J224 J226	61.61 69.34	216.67 216.67	993.29 1559.25	61.61 69.33	216.67 216.67	713.44 842.54	61.62 69.34	216.67 216.67	1088.33 1659.85
J24 J26	55.86 57.63	216.67 216.67	274.24 244.29	55.87 57.64	216.67 216.67	354.59 290.82	55.87	216.67 216.67	
J28	56.70	216.67	238.65	56.71	216.67	280.78	57.64 56.71	216.67	267.18 258.59 228.23
J30 J32	55.43 54.69	216.67 216.67	213.60 234.78	55.44 54.69	216.67 216.67	243.97 277.19	55.44 54.70	216.67 216.67	254.61
J34 J36	56.86 56.52	216.67 216.67	237.12 219.86	56.86 56.53	216.67 216.67	277.08 250.69	56.87 56.53 53.62	216.67 216.67	255.66 234.12 251.33
J38 J40	53.61 53.68	216.67 216.67	233.69 273.24	53.62 53.69	216.67 216.67	274.12 348.67	53.62 53.70	216 67	251.33 306.51
J44 J46	56.29 53.27	216.67 216.67	122.28 278.29	56.30 53.28	216.67 216.67	127.56	56.30 #2.20	216.67 216.67	124.99
J50	52,53	216.67 216.67 216.67	256.89 371.50	52.54	216,67	272.94 385.79	53.70 56.30 53.29 52.55 59.68	216.67	307.49 286.04
J52 J56	59.67 55.30	216.67	94.33	59.68 55.31	216.67 216.67	95.18	55.31	216.67	418.54 95.82
J58 J60	53.26 62.33	216.67 216.67	354.80 348.40	53.27 62.33	216.67 216.67	405.30 362.66	53.27 62.34	216.67 216.67	445.66 387.48
J62 J64	62,27 48.66	216.67 216.67	335,58 333,21	62,28 48.67	216.67 216.67	347.58 376.99	62.28 48.68	216,67 216,67	369 61
J66 J68	59.95 59.71	216.67 216.67	333.21 329.02 290.56	59.96 59.71	216.67 216.67	349.65 302.80	59.96 59.72	216.67 216.67	416.26 372.24 317.97
J70 J72	50.31	216.67	289.13	50.31	216.67 216.67 216.67	304.98	59.72 50.32 51.67	216.67	325.81 463.41
J74	51.66 54.44	216.67 216.67	376.62 410.04	51.67 54.44	216.67	413.77 443.27	54.45	216.67 216.67	500.77
J76 J78	58.10 53.74	216.67 216.67	347.41 279.35	58.10 53.74	216.67 216.67	361.99 290.66	58.11 53.75	216.67 216.67	389.89 306.93
J80 J82	58.96	216.67 216.67	269.48 255.08	58.97	216.67	278.61 261.93	58.97	216.67 216.67	290.87
J82 J84 J86	61.19 61.49 62.30	216.67 216.67	104.29 328.95	61.20 61.50 62.30	216.67 216.67 216.67	104.86 338.60	61.20 61.50 62.31	216.67 216.67 216.67	271.66 105.61 359.22
J88	62.84 65.07	216.67	267.52 255.38	62.84	216.67 216.67 216.67	272.46	62.85 65.08	216.67	359.22 283.27 268.00
J90 J96	64.12	216.67 216.67	315.10	65.07 64.12	216.67	259.09 322.50	64.12	216.67 216.67	339.66
J98	63.16 Sufficient hydrant coverage to	216.67	322.35	63,16	216.67	330.83	63.17	216.67	349.72

Table B-4: Model Results - AVDY (Phase 2)

Junction ID	Demand (L/s)	Head (m)	Pressure (psi)
Maximum Minimum	0.13 0.10	153.00 152.98	46.78
J10	0.10	152.98	64.86
J104 J106	0.10 0.10	152.99 152.99	61.12 67.60
J110	0.10	152.99 152.99	57.85
J112 J114	0.11 0.11	152.99 152.99	69.33 64.74
J116	0.10	152.99	67.2
J12 J122	0.10 0.10	152.98 152.99	61.06 66.28
J124	0.10	152.98	56.94 53.75
J126 J128	0.10 0.10	152.98 152.98	53.96
J130 J132	0.10 0.10	152.98 152.98	52.55 53.33
J134	0.10	152.98 152.98	56.40
J136 J138	0.10 0.10	152.98 152.98	54.58 51.43
J14	0.10	152.98	61.92
J140 J142	0.10 0.10	152.98 152.98	56.75 58.64
J144	0.10	152.98	56.52
J146 J148	0.10 0.10	152.98 152.98	57.95 57.14
J150 J152	0.10	152.98 152.98	56.25 59.84
J152 J154	0.10 0.10	152.98	52.50
J156 J158	0.10	152.98 152.98	52.20 48.5
J16	0.10 0.10	152.98	61.5
J160 J162	0.10 0.10	152.98 152.99	49.5 49.18
J164	0.10	152.98	47.5
J166 J168	0.10 0.10	152.98 152.98	48.4 47.3
J170	0.10	152.99	49.0
J172 J174	0.10 0.10	152.99 152.99	48.9 46.7
J176	0.10	152.99 152.99	48.1
J178 J18	0.10 0.10	152.99 152.98	47.1 60.0
J180	0.10	152.99	49.0
J182 J184	0.10 0.10	152.99 152.99	56.8 57.0
J186	0.10	152.99	64.6
J188 J190	0.10 0.10	152.99 152.99	60.8
J192	0.10	152.99	68.4
J194 J196	0.10 0.10	152.99 152.99	66.3 65.5
J198	0.11	152.99 152.98	63.5
J20 J202	0.10 0.11	152.99	59.9 59.5
J204 J206	0.11	152.99 152.99	61.3
J208	0.10 0.11	152.99	62.3 62.7
J210 J212	0.10	152.99 152.99	59.1: 60.4:
J214	0.10 0.12	152.99	62.4
J216 J218	0.12 0.12	152.99 152.99	66.8 56.2
J22	0.10	152.98	60.3
J220 J222	0.12 0.10	152.99 152.99	60.4 66.3
J224	0.10	153.00	63.2
J226 J228	0.10 0.12	153.00 152.99	71.0 61.0
J230	0.12	152.99	63.3
J232 J234	0.12 0.12	152.99 152.99	67.4 61.3
J236 J238	0.12 0.12	152.99	61.8
J24	0.10	152.99 152.98	68.1 57.5
J240 J242	0.12	153.00 153.00	68.3 65.8
J244	0.12 0.12	153.00	66.3
J246 J248	0.12 0.12	153.00 153.00	67.7 67.0
J250	0.12	153.00	63.9
J252 J254	0.12 0.12	153.00 153.00	67.8 67.9
J256	0.13	153.00	66.8
J258 J26	0.12 0.10	153.00 152.98	62.3 59.3
J28 J30	0.10 0.10 0.10	152.98 152.98	59.3 58.3 57.1
J32	0.10	152.98	57.1 56.3
J34 J36	0.10 0.10	152.98 152.98	58.5 58.1
138	0.10	152.98	55.2
40 44	0.10 0.10	152.98 152.98	55.3 57.9
46	0.10	152.98	54.9
50 52	0.10 0.10	152.98 152.99	54.2 61.3
156	0.10	152.98	56.9
158 160	0.10 0.10	152.99 152.99	54.9 64.0
J62	0.10	152.99	63.9
J64 J66	0.10 0.10	152.99 152.99	50.3 61.6
168	0.10	152.99	61.3
J70 J72	0.10 0.10	152.99 152.99	51.9 53.3
J74	0.10	152.99	56.1
J76 J78	0.10 0.10	152.99 152.99	59.7 55.4
J80	0.10	152.99	60.6
J82 J84	0.10 0.10	152.99 152.99	62.8 63.1
J86	0.10	152.99	63.9
J88 J90	0.10 0.10	152.99 152.99	64.5 66.7
196	0.10	152.99 152.99	65.7 64.8

Table B-5: Model Results - PKHR (Phase 2)

	0.17	152.86	46.62
J10	0.29	152.87 152.87	64.69
J104	0.29	152.87	60.96
J106 J110	0.29 0.29	152.87 152.88	67.4 57.7
J112	0.30	152.88	69.1
J114	0.30	152.89	64.6 67.1
J116 J12	0.29 0.29	152.90 152.87	60.9
J122	0.29	152.87	66.1
J124	0.29	152.86	56.7
J126 J128	0.29 0.29	152.86 152.86	53.5 53.7
J130	0.29	152.86	52.3
J132	0.29 0.29	152.86	53.1 56.2
J134 J136	0.29 0.29	152.86 152.86	56.2 54.4
J138	0.29	152.86	54.4 51.2
J14	0.29	152.87 152.86	61.7
J140	0.29	152.86	56.5
J142 J144	0.29 0.29	152.86 152.86	58.4 56.3
J146	0.29	152.86	57.7
J148	0.29	152.86	56.9
J150	0.29 0.29	152.86 152.87	56.0
J152 J154	0.29	152.87	59.6 52.3
J156	0.29	152.87	52.0
J158	0.29	152.87	48.3
J16 J160	0.29 0.29	152.87 152.87	61.3 49.3
J160 J162	0.29	152.87	49.0
J164	0.29 0.29	152.87	49.0 47.3
J166	0.29	152.87	48.2
J168 J170	0.29 0.29	152.87 152.87	47.1
J172	0.29	152.87 152.87	47.1 48.9 48.7
J174	0.29	152.87	46.6
J176	0.29	152.87	47.9
J178 J18	0.29 0.29	152.87 152.87	46.9 59.9
J180	0.29	152.87	48.8
J182	0.29	152.87	56.7
J184	0.29	152.87	56.9
J186 J188	0.29 0.29	152.87 152.88	64.5 60.6
J190	0.29	152.88	68.8
J192	0.29	152.88	68.3
J194 J196	0.29 0.29	152.88 152.87	66.2 65.3
J198	0.30	152.88	63.4
J20	0.30 0.29	152.86	59.8
J202	0.30 0.30	152.88 152.88	59.3 61.2
J204 J206	0.30	152.88 152.88	61.2
J208	0.30	152.88	62.6
J210	0.29	152.88	58.9
J212 J214	0.29 0.17	152.88 152.92	60.3
J214 J216	0.17	152.92	62.3 66.7
J218	0.17	152.92	56.1
J22	0.29	152.87	60.1
J220 J222	0.17 0.29	152.92 152.92	60.3 66.2
J224	0.29	152.94	63.2
J226	0.29	152.96	70.9
J228	0.17	152.92	60.9
J230 J232	0.17 0.17	152.93 152.93	63.2 67.3
J234	0.17	152.94	61.2
J234 J236	0.17	152.94 152.94	61.2 61.7
J238	0.17	152.94	68.0
J24 J240	0.29 0.17	152.87 152.94	57.3 68.2
J242	0.17	152.94	65.7
J244	0.17	152.95	66.3
J246 J248	0.17	152.95 152.96	67.6
J248 J250	0.17 0.17	152.95	67.0 63.8
J252	0.17	152.95	67.7
J254	0.17	152.96	67.8
J256 J258	0.19 0.17	152.96 152.94	66.8 62.2
J26	0.17 0.29	152.86	62.2 59.1
J28	0.29	152.86	58.2
J30	0.29 0.29	152.86	56.9 56.1
J32 J34	0.29	152.86 152.86	56.1 58.3
J36	0.29	152.86	58.0
J38	0.29	152.86	55.1
J40 J44	0.29 0.29	152.86 152.86	55.1 57.7
J44 J46	0.29	152.86	54.7
J50	0.29	152.87	54.0
J52	0.29	152.87	61.1
J56 J58	0.29 0.29	152.87 152.87	56.8 54.7
J60	0.29	152.87	63.8
J62	0.29	152.87	63.7
J64	0.29 0.29	152.87	50.1
J66 J68	0.29 0.29	152.87 152.87	61.4 61.2
J70	0.29	152.87	51.8
J72	0.29	152.87	53.1
J74	0.29	152.87 152.87	55.9
J76	0.29	152.87	59.6
J78 J80	0.29 0.29	152.87 152.87	55.2 60.4
J82	0.29	152.87	62.6
J84	0.29	152.87	63.0
		152.87	63.8
J86	0.29		
J86 J88 J90	0.29 0.29 0.29	152.87 152.87	64.3 66.5

163401876 - Cedarview Mattamy: Water Distribution System Analysis

Table B-6: Model Results - MXDY+FF (Phase 2)

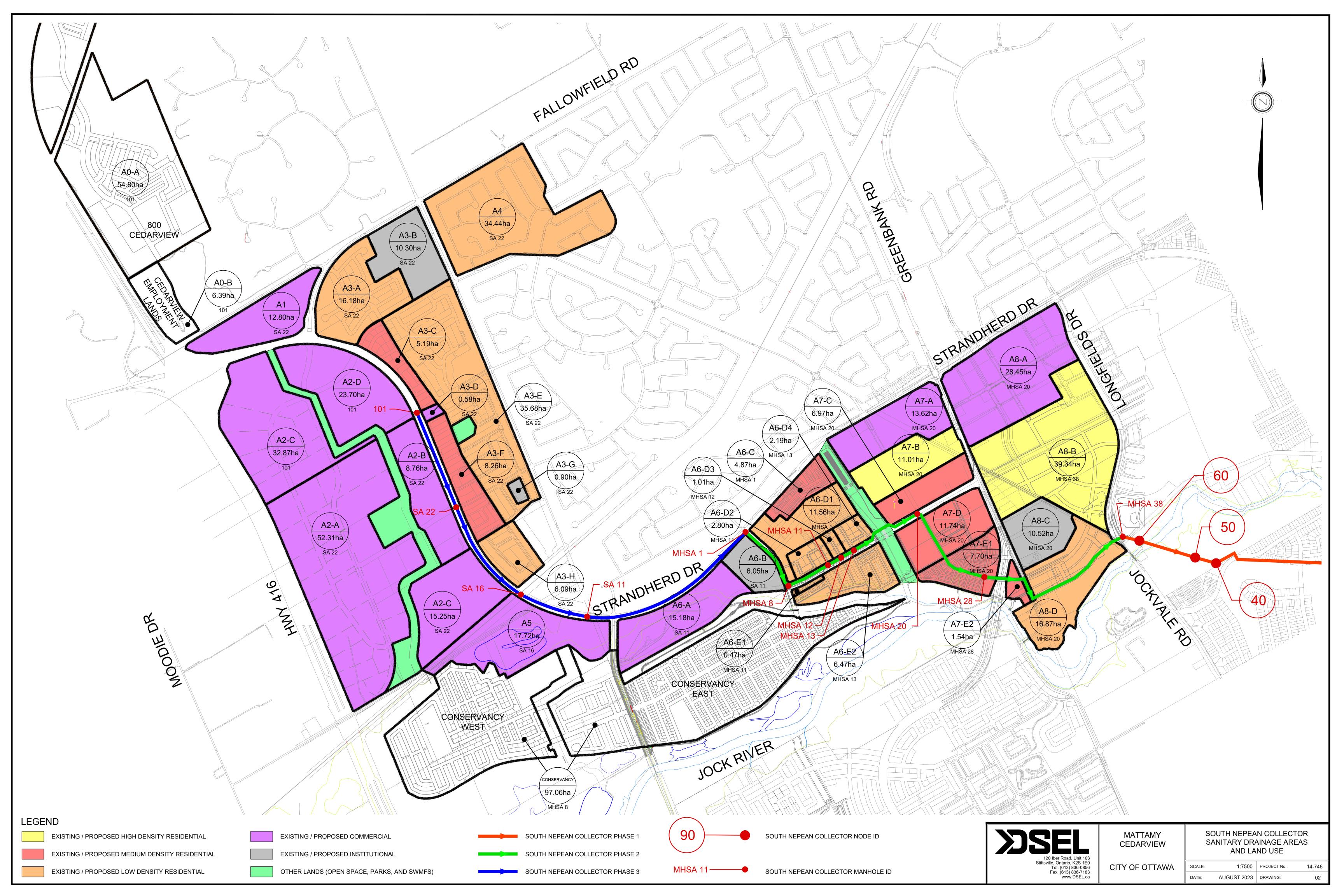

Maximum Minimum J10 J104 J106 J110 J1110 J1112	(L/s) 0.15 0.12	216.67 216.67	67.60 -104.67	1687.72
J104 J106 J110 J112	0.44		-104.67	95.41
J106 J110 J112	0.14	216.67	0.15	176.38
J112	0.14	216.67	44.95	377.72
	0.14	216.67	48.82	374.10
	0.14	216.67	48.63	524.46
	0.15	216.67	49.54	369.39
J114	0.15	216.67	56.63	632.45
J116	0.14	216.67	59.13	648.35
J12	0.14	216.67	35.19	283.65
J122	0.14	216.67	49.29	391.88
J124	0.14	216.67	38.89	332.21
J126	0.14	216.67	29.09	260.70
J128	0.14	216.67	12.45	193.19
J130	0.14	216.67	29.34	264.72
J132	0.14	216.67	30.35	269.94
J134	0.14	216.67	34.87	295.58
J136	0.14	216.67	24.31	234.24
J138	0.14	216.67	22.25	226.41
J14	0.14	216.67	35.71	284.81
J140	0.14	216.67	32.30	275.27
J142	0.14	216.67	37.03	305.29
J144	0.14	216.67	25.72	239.35
J146	0.14	216.67	31.34	266.66
J148	0.14	216.67	33.45	282.26
J150	0.14	216.67	42.05	382.60
J152	0.14	216.67	46.22	415.35
J154	0.14	216.67	29.84	268.21
J156	0.14	216.67	16.66	204.77
J158	0.14	216.67	13.30	191.78
J16	0.14	216.67	45.58	383.80 252.48
J160	0.14	216.67	26.69	404.94
J162	0.14	216.67	38.41	
J164	0.14	216.67	28.25	268.41
J166	0.14	216.67	5.16	170.21
J168	0.14	216.67	-5.04	149.29
J170	0.14	216.67	38.45	407.52
J172	0.14	216.67	38.43	409.77
J174	0.14	216.67	-4.35	149.59
J176	0.14	216.67	5.80	171.28
J178	0.14	216.67	30.46	291.15
J18	0.14	216.67	43.77	370.98
J180	0.14	216.67	38.68	414.83
J182	0.14	216.67	38.51	327.76
J184	0.14	216.67	47.07	489.60
J186	0.14	216.67	48.07	389.44
J188	0.14	216.67	52.05	568.08
J190	0.14	216.67	51.38	395.61
J192	0.14	216.67	48.64	365.52
J194	0.14	216.67	45.20	342.34
J196	0.14	216.67	20.32	217.69
J198	0.15	216.67	47.34	389.16
J20	0.14	216.67	32.73	270.88
J202	0.15	216.67	44.52	386.63
J204	0.15	216.67	46.32	396.06
J206	0.14	216.67	-26.41	143.34
J208	0.15	216.67	54.29	597.12
J210	0.14	216.67	8.26	186.84
J212	0.14	216.67	28.36	247.63
J214	0.12	216.67	56.53	768.11
J216	0.12	216.67	49.44	386.47
J218	0.12	216.67	38.80	333.03
J22	0.14	216.67	44.68	382.30
J220	0.12	216.67	40.16	323.64
J222	0.14	216.67	60.50	819.51
J224	0.14	216.67	58.99	1029.23
J226	0.14	216.67	67.60	1416.27
J228	0.12	216.67	40.90	327 <u>.</u> 72
J230	0.12	216.67	57.52	789.12
J232	0.12	216.67	62.03	878.92
J234	0.12	216.67	46.90	402.56
J236	0.12	216.67	49.77	454.52
J238	0.12	216.67	63.04	937.18
J24	0.14	216.67	42.14	370.53
J240	0.12	216.67	63.99	1072.69
J242	0.12	216.67	61.48	1043.67
J244	0.12	216.67	62.43	1138.35
J246	0.12	216.67	42.56	312.43
J248	0.12	216.67	63.77	1384.51
J250	0.12	216.67	-2.82	171.58
J252	0.12	216.67	-10.79	164.39
J254	0.12	216.67	61.62	767.61
J256	0.13	216.67	64.03	1687.72
J258	0.12	216.67	51.32	485.94
J26	0.14	216.67	36.58	298.99
J28	0.14	216.67	34.78	288.35
J30	0.14	216.67	27.86	248.97
J32	0.14 0.14 0.14	216.67 216.67 216.67	33.51	284.92
J34 J36	0.14	216.67	34.29 29.51	284.33 256.02
J38	0.14	216.67	32.70	281.98
J40	0.14	216.67	40.44	365.36
J44	0.14	216.67	-39.14	128.04
J46	0.14	216.67	40.44	369.43
J50	0.14	216.67	32.46	283.27
J52	0.14	216.67	47.23	413.34
J56	0.14	216.67	-104.67	95.41
J58	0.14	216.67	43.80	440.17
J60	0.14	216.67	47.18	383.36
J62	0.14	216.67	45.83	365.80
J64	0.14	216.67	39.41	410.38
J66	0.14	216.67	44.59	368.50
J68	0.14	216.67	39.53	315.08
J70	0.14	216.67	35.42	321.89
J72	0.14	216.67	43.19	456.16
J74	0.14	216.67	46.40	492.61
J76	0.14	216.67	44.56	385.28
J78	0.14	216.67	35.39	303.73
J80	0.14	216.67	35.74	288.34
J82	0.14	216.67	33.47	269.53
J84	0.14	216.67	-95.71	105.19
J86	0.14	216.67	45.00	355,55
	0.14	216.67	36.11	280.99
J88	0.14	216.67	34.04	266.06 336.52

Table B-8: Model Results - AVDY+FF (Reliability Analysis Scenarios 1 to 3, Phase 2)

lumatic :: er	Base Demand	Scenario 1 (Connection 1 B	Available Fire Flow @	Brea Base Demand	k Scenario 2 (Connection 2 B	Available Fire Flow @	Base Demand	k Scenario 3 (Connection 3 E	Available Fire Flow @
Junction ID faximum	(L/s) 69.29	Required Fire Flow (L/s) 216,67	Residual 20 psi (L/s) 1651,91	(L/s) 69.28	Required Fire Flow (L/s)	Residual 20 psi (L/s) 1298.82	(L/s) 69.29	Required Fire Flow (L/s) 216.67	Residual 20 psi (L/s)
inimum	45.06	216.67	94.11	45.06	216.67	94.75	45.08	216.67	1689.33 95.60
10 104	63.14 59.41	216.67 216.67	161.11 339.64	63.14 59.41	216.67 216.67	173.88 344.53	63.15 59.42	216.67 216.67	169.8
106	65.88 56.14	216.67 216.67	344.12 431.47	65,88 56,14	216.67	345.46 441.30	65.89	216.67	378.6 374.9 524.7
112	67.61	216.67	344.10 529.59	67.61	216.67 216.67	342.03	56.15 67.62	216.67 216.67 216.67	524.7 370.1 632.4
116	63.03 65.54	216.67 216.67	563.08	63.03 65.53	216.67 216.67	513.49 523.15	63.04 65.54	216.67	648.6
12 122	59.34 64.56	216.67 216.67	229.27 355.91	59.35 64.56	216.67 216.67	272.85 358.83	59.36 64.57	216.67 216.67	257.4 392.7
124 126	55.22 52.03	216.67 216.67	265.37 220.23	55.22 52.03	216.67 216.67	311.48 249.19	55.23 52.04 52.25	216.67 216.67	284.8 233.3
128	52.24 50.83	216.67 216.67	174.49 221.13	52.24 50.83	216.67 216.67	188.33 252.28 257.16	50.84	216.67	181.0 235.3 239.7
1132 1134	51.61 54.68	216.67 216.67	224.59 245.46	51.62 54.68	216.67 216.67	257.16 280.28	51.63 54.69	216.67 216.67	239.7 259.8
1136 1138	52.86 49.71	216.67 216.67	205.12 197.39	52.87 49.72	216.67 216.67	225.86 218.04	52.88 49.73	216.67 216.67	213.9 206.1
114	60.20 55.03	216.67 216.67	231.20 233.91	60.21 55.03	216.67 216.67	274.07 262.81	60.22 55.04	216.67 216.67	258.7 245.7
1142	56.92	216.67	254.56	56.92	216.67	289.41	56.93	216.67	268.2 218.8
1146	54.80 56.23	216.67 216.67	210.17 229.70	54.80 56.24	216.67 216.67	230.91 255.61	54.81 56.25	216.67 216.67	240.2
1148 1150	55.42 54.53 58.12	216.67 216.67	238.89 286.95	55.43 54.54	216.67 216.67	269.00 351.79	55.44 54.55 58.13	216.67 216.67	251.0 314.6 336.9
1152 1154	50.81	216.67 216.67	314.72 242.11	58.12 50.81	216.67 216.67	379.27 252.88	50.82	216.67	269.1
1156 1158	50.49 46.80	216.67 216.67	191.97 179.72	50.49 46.80	216.67 216.67	197.50 184.95	50.50 46.81	216.67 216.67	205.5- 192.6
116 1160	59.83 47.79	216.67 216.67	277.83 228.14	59.84 47.79	216.67 216.67	358.83 238.19	59.85 47.80	216.67 216.67	326.7- 253.4
1162 1164	47.46 45.83	216.67 216.67	324.68 238.12	47.47 45.83	216.67 216.67	353.70 250.25	47.48 45.84	216.67 216.67	405.4 269.4
1166	46.72 45.58	216.67 216.67	161.62 143.09	46.72 45.58	216.67 216.67	165.30 145.77	46.73 45.59	216.67	170.9 149.9
1170	47.37 47.22	216.67 216.67 216.67	327.62 330.28	47.37 47.22	216.67 216.67 216.67	354.99 355.92	47.38 47.23	216.67 216.67 216.67	408.1 410.4
1174	45.06 46.39	216.67 216.67 216.67	143.75	45.06 46.39	216.67 216.67 216.67	145.87	45.08 46.40	216.67 216.67 216.67	150.2
178	45.41	216.67 216.67 216.67	163.25 257.09 266.76	45.41	216.67 216.67 216.67	166.06 267.47	45.42	216.67	171.9 292.2 317.6
118 1180	58.35 47.31	216.67	335.30	58.35 47.31	216.67	347.80 359.08	58.36 47.32	216.67 216.67	415.5
1182 1184	55.16 55.37	216.67 216.67	293.55 397.61	55.16 55.37	216.67 216.67	303.40 420.36	55.17 55.38 62.98	216.67 216.67	328.5 489.7
1186 1188	62.97 59.09	216.67 216.67	352.61 470.85	62.97 59.09	216.67 216.67	355.89 471.39	59.10	216.67	390.3 568.2
1190 1192	67.27 66.74	216.67 216.67	364.10 339.65	67.26 66.74	216.67 216.67	362.75 338.67	67.28 66.75	216.67 216.67	396.4 366.3
1194 1196	64.67 63.82	216.67 216.67	319.37 210.59	64.67 63.82	216.67 216.67	318.94 210.92	64.68 63.83	216.67 216.67	343.1- 218.2-
1198	61.86 58.27	216.67 216.67	354.42 226.15	61.86 58.28	216.67 216.67	354.32 260.66	61.87 58.29	216.67 216.67	390.0 246.1
202 1204	57.82 59.67	216.67 216.67	350.44 359.57	57.81 59.67	216.67 216.67	348.85 357.41	57.83 59.68	216.67 216.67	387.56 396.91
206	60.65	216.67	141.23 497.37	60.65	216.67	141.06 490.98	60.66	216.67	143.68
208 210	61.05 57.41	216.67 216.67	181.92	61.05 57.41	216.67 216.67	181.60	61.06 57.42	216.67 216.67	597.1: 187.3
212 214	58.77 60.77	216.67 216.67	237.18 687.55	58.77 60.77	216.67 216.67	236.51 557.97	58.78 60.78	216.67 216.67	248.34 768.79
216 218	65.11 54.57	216.67 216.67	375.22 323.49	65.11 54.57	216.67 216.67	349.44 301.26	65.12 54.58	216.67 216.67	387.18 333.83
22 220	58.60 58.77	216.67 216.67	278.60 316.48	58.60 58.76	216.67 216.67	356.43 296.83	58.61 58.77	216.67 216.67	323.5 324.3
222 224	64.67 61.57	216.67 216.67	715.55 939.95	64.66 61.56	216.67 216.67	593.62 615.65	64.68 61.57	216.67 216.67	819.5 1029.9
226 228	69.29 59.37	216.67 216.67	1350.79 320.45	69.28 59.36	216.67 216.67	598.69 300.39	69.29 59.38	216.67 216.67	1417.29 328.4
230	61.63 65.74	216.67 216.67	715.20 804.08	61.62 65.74	216.67 216.67	567.73 614.57	61.63 65.75	216.67 216.67	789.89 879.60
234 236	59.66 60.14	216.67 216.67	395.56 445.39	59.66 60.13	216.67 216.67	358.75 396.28	59.67 60.14	216.67 216.67	403.30 455.30
1238 124	66.39 55.81	216.67 216.67 216.67	862.36 271.60	66.38 55.82	216.67 216.67 216.67	635.21 344.73	66.39 55.83	216.67	937.88 312.2
1240	66.66	216.67	983,55	66,65	216,67	675.72	66.66	216.67	1073.2
242 1244	64.10 64.69	216.67 216.67	978.46 1084.84	64.09 64.68	216.67 216.67	696.46 776.17	64.10 64.69	216.67 216.67	1044.6 1139.5
246 248	66.01 65.38	216.67 216.67	311.73 1336.57	66.01 65.38	216.67 216.67	296.81 941.00	66.02 65.38	216.67 216.67	312.7 1385.8
250 252	62.23 66.14	216.67 216.67	171,44 164.37	62.22 66.13	216.67 216.67	168.48 161.70	62.23 66.14	216.67 216.67	171.73 164.5
254 256	66.20 65.16	216.67 216.67	757.69 1651.91	66.20 65.15	216.67 216.67	611.38 1298.82	66.21 65.16	216.67 216.67	768.5 1689.3
258 26 28	60.61 57.58	216.67 216.67	475.75 242.42	60.60 57.59	216.67	418.51 285.18 275.47	60.62 57.60 56.67	216.67 216.67	486.7
128	56.66 55.38	216.67 216.67	236.84 212.18	56.66 55.39	216.67 216.67 216.67	275.47 240.15	56.67 55.40	216.67 216.67	266.2 257.6 227.5 253.6
132 134	54.64 56.81	216.67 216.67	232.94 235.34	54.64 56.81	216.67 216.67	271.75 271.94	54.65 56.82	216.67 216.67	
36	56.47 53.56	216.67 216.67	218.38 231.81	56.48 53.57	216.67 216.67	246.69 268.60	56.49 53.58	216.67	233.3 250.3 305.0 124.7
140 144	53.64 56.24	216.67 216.67	270.45 121.91	53.64 56.25	216.67	338.42 126.83	53.65 58.26	216.67	305.0
146	53.23	216.67	275.34	53.23	216.67 216.67	340.85	53.24	216.67	305.9
150 152	52.49 59.63	216.67 216.67	254.44 366.27	52.49 59.63	216.67 216.67	266.32 371.34	52.50 59.64	216.67 216.67	284.1ı 414.2ı
156 158	55.25 53.21	216.67 216.67	94.11 349.26	55.26 53.21	216.67 216.67	94.75 387.23 351.27	55.27 53.23	216.67 216.67	95.6 440.0 384.1
60 62 64	62.28 62.22	216.67 216.67	344.26 331.82	62.28 62.22	216.67 216.67	337.36	62.29 62.24	216.67 216.67	366.6
166	48.62 59.91	216.67 216.67	327.76 325.24	48.62 59.91	216.67 216.67	359.58 339.01	48.63 59.92	216.67 216.67	410.7 369.2
168	59.66 50.26	216.67 216.67	287.81	59.66 50.26	216.67 216.67	295.41 295.17	59.67	216.67	315.8
172 174	51.62 54.39	216.67 216.67	285.56 369.82 402.22	51.62 54.39	216.67 216.67	392.89 419.79	50.27 51.63 54.40	216.67 216.67	322.9 456.5 492.9
176 178	58.05 53.69	216.67 216.67 216.67	342.84 276.42	58.05 53.69	216.67 216.67 216.67	349.39 282.82	58.06 53.70	216.67	386.1 304.6
180	58.92 58.14	216.67	267.17	58.92	216.67	272.53 272.53 257.02	58.93	216.67	289.1
182 184	61,45	216.67 216.67	253.18 104.06	61.14 61.45	216.67 216.67	104,37	61.16 61.46	216.67	270.3 105.4
186 188	62.25 62.79	216.67 216.67	325.39 265.45	62.25 62.79	216.67 216.67	329.00 267.12	62.26 62.80	216.67	356.48 281.78
190 196	65.02 64.07	216.67 216.67	253.64 312.04	65.02 64.07	216.67 216.67	254.62 314.38	65.03 64.08	216.67	266.77 337.38
98	63.11	216.67 meet the RFF.	319.04	63.11	216.67	321.96	63.12	216.67	347.2

Appendix C

- Sanitary Drainage, prepared by DSEL, dated August 2023
- Sanitary Design Sheet Existing (Design Sewers), prepared by DSEL, dated August 2023
- Sanitary Design Sheet Existing (As-Built Sewers), prepared by DSEL, dated August 2023
- Sanitary Design Sheet Conservancy, prepared by DSEL, dated August 2023
- Sanitary Design Sheet Option 1, prepared by DSEL, dated August 2023
- Sanitary Design Sheet Option 2, prepared by DSEL, dated August 2023
- Mattamy Cedarview Development Sanitary HGL Analysis, prepared by JFSA, dated October 6, 2023

Ottawa	
JUUNNU	

SYSTEMPOUSE STREET Contribution from Grapte Drive, Pipe 211-213 Co	Manning's n=0	0.013																						<i>lllly</i>	VU						
STATE 19							RESIDENTI		POPULATION					COI		IN						INFILTRATIO	N					PIPE			
PRISENCE STREET 10 10 10 10 10 10 10 1	_	STREET	FROM	TO	AREA	UNITS	UNITS		POP.			PEAK		AREA		AREA		AREA			TOTAL	ACCU.	INFILT.		DIST	DIA	SLOPE	CAP.	RATIO	VI	EL.
PSTREMONE SINET			M.H.	M.H.	(ha)		Singles	Townhouse			POP.	FACT.		(ha)		(ha)		(ha)							(m)	(mm)	(%)		Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
Second State Proc. Compare State Proc.					(ria)		1			(Hu)			(1/3)	(Hu)	(na)	(na)	(ria)	(Ha)	(Ha)	(1/3)	(Ha)	(na)	(1/3)	(1/3)	(111)	(111111)	(70)	(1/3)		(111/3)	(111/3)
Complement from Cingate Price Pic																															
173			L																												
March Marc	Contribution Fro	om Citigate Drive, Pipe 2		401			1			0.00	0						0.00		0.00	17.45			11 95	20.20	26.4	300	0.25	50.44	0.59	0.71	0.74
MO							1				0																			0.71	0.74
## 1																														0.71	0.74
1																															
			405	407																					81.2	375	0.14	68.44	0.46	0.62	0.61
100 100			1				1									+									-						1
TO STRANDIFFED DATE - SOUTH MERCA SOUTH ME			407	409												1									115.8	375	0.25	91.46	0.50	0.83	0.83
STRAIDHERD DRIVE. SOUTH NETWARD COLLECTOR (PHASE 9) 000 0 0657 0.00 0.00 2750 0.00 8557 1867 46.18 1151 252 0.11 148.60 0.31 0.00 0.0				101						0.00	0			0.16	56.57		0.00											91.46		0.83	0.83
Combitation From Systemstous Start Pye 469-101	To STRANDHE	RD DRIVE, Pipe 101 - S	A 23							0.00	0				56.57		0.00		0.00			56.57									
Combitation From Systemstous Start Pye 469-101	STDANDUEDD	DDIVE - SOUTH MEDE	ANCOLLECT	UB (BHV6E 3	1		1	 				1	-	-	 	1					1	1	-	-	-	1	-	-		-	
101 103 105					1		1			0.00	0	†	-	<u> </u>	56.57	1	0.00		0.00		0.00	56.57	-	-	<u> </u>	1	1			 	
165 107		,	101	103	<u> </u>					0.00	0			<u> </u>	56.57		0.00		0.00		0.00	56.57								0.69	0.60
107 SA 23 0,00 0 9,667 0,00 0,00 27,00 0,00 9,67 18,67 46,16 119,6 92,8 0,11 148,80 0,31 0,00 0,00 27,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00 27,00 0,00																														0.69	0.60
NODE 100 SA 22 SA 22 105.64 10974 253 90.03 89.77 10.00 10.00 27.50 27.50 28.57 18.67 46.16 54.9 600 0.46 42970 0.11 11.00 10.00 74.73 26.974 25.23 18.68 26.26 131.9 750 0.10 367.27 0.69 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70 0.10 367.27 0.70							<u> </u>				_																			0.69	0.60
NOCE 128 SA 22					 		1	1				1	 	1		1														0.69 1.52	0.60
SA 20 SA 19		NODE 120			105.84				10974			2.53	90.03	89.70		11.20														0.83	0.89
SA 19 SA 18 10584 10974 253 90.03 148.27 11.20 0.00 74.73 0.00 263.31 86.89 251.68 72.1 750 0.10 397.27 0.69 0.1																														0.83	0.89
SA 18 SA 17 10584 10974 253 90.03 146.27 11.20 0.00 74.73 0.00 283.31 68.89 251.68 71.9 750 0.10 367.27 0.08 0.09 0.																														0.83	0.89
SA17 SA16							1									-														0.83	0.89
NOCE 110 SA 16 SA 15 105 64 10974 253 90.03 17.72 163.99 11.20 0.00 83.35 17.72 261.03 92.74 266.12 73.2 75.0 0.10 367.27 0.72 0.10 367.2							1									+														0.83	0.89
SA 14 SA 13		NODE 110												17.72																0.83	0.91
SA12 SA12 SA14 SA15																														0.83	0.91
SA12 SA11 SA10 SA11 SA10 SA11 SA10 SA16 SA17 SA10 SA16 SA17 SA10							<u> </u>																							0.83	0.91
NOE 100 SA 11 SA 10							<u> </u>																							0.83	0.91
SA 10 SA 9 SA 8 SA 7 SA 6 SA 8 SA 8 SA 7 SA 6 SA 8 SA 8 SA 7 SA 6 SA 8 SA 8 SA 8 SA 7 SA 6 SA 8 SA 8 SA 7 SA 6 SA 8		NODE 100					1							15.18		6.05														0.83	0.92
SA 8 SA 7														10.10		0.00														0.83	0.92
SA7 SA6 105.84 10974 2.53 90.03 179.17 17.25 0.00 92.69 0.00 30.26 99.75 282.47 84.9 75.0 0.10 367.27 0.77 0.10 0.10																														0.83	0.92
SA 6																														0.83	0.92
SA5 SA4 105.84 10974 25.3 90.03 179.17 17.25 0.00 92.69 0.00 302.26 99.75 282.47 78.9 75.0 0.10 367.27 0.77 0.10 0.00	-					1	1									1														0.83	0.92
SA 4 SA 3 105.84 10974 2.53 90.03 179.17 17.25 0.00 92.69 0.00 302.26 99.75 282.47 180.5 750 0.10 367.27 0.77 0.1 0.00							1									1														0.83	0.92
SA 2 SA 1										105.84	10974		90.03		179.17						0.00				80.5		0.10			0.83	0.92
SA1 EX 80 105.84 10974 2.53 90.03 179.17 17.25 0.00 92.69 0.00 302.26 99.75 282.47 12.4 750 0.10 367.27 0.77 0.17																														0.83	0.92
To SOUTH NEPEAN COLLECTOR PHÁSE 2, Pipe MHSA 1 - MHSA 2							1																							0.83	0.92
DESIGN PARAMETERS	To SOUTH NEF	PEAN COLLECTOR PHA			2		1					2.55	90.03							92.09	0.00		99.73	202.41	12.4	730	0.10	307.27	0.77	0.63	0.92
Park Flow = 9300 L/ha/da 0.10764 I/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 2800 L/ha/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:																															
Park Flow = 9300 L/ha/da 0.10764 I/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 2800 L/ha/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:																															
Park Flow = 9300 L/hal/da 0.10764 I/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 V/p/day Industrial Peak Factor = as per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 28000 L/hal/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:			1		1		1	-				1	1	1	1	1					-	1	1	1	1	1	1		1	1	1
Park Flow = 9300 L/ha/da 0.10764 I/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 2800 L/ha/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:			 		1	1	1	 			1	1	1	1	1	1					1	1	1	1	1	+	1	1	1	1	1
Park Flow = 9300 L/hal/da 0.10764 I/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 V/p/day Industrial Peak Factor = as per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 28000 L/hal/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:			1												1	1										1					1
Park Flow = 9300 L/ha/da 0.10764 l/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 l/p/day l/p/day Industrial Peak Factor = a per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:																															
Park Flow = 9300 L/ha/da 0.10764 l/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 l/p/day l/p/day Industrial Peak Factor = a per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:							ļ								<u> </u>						ļ			<u> </u>		ļ					<u> </u>
Park Flow = 9300 L/ha/da 0.10764 l/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 l/p/day l/p/day Industrial Peak Factor = a per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:			 		 	 	1				 	1		 	 	+	-		 		 	1	-	 	 	+	1	 	1	1	
Park Flow = 9300 L/ha/da 0.10764 l/s/Ha Institutional Peak Factor = 1.00 BNC SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS Average Daily Flow = 280 l/p/day l/p/day Industrial Peak Factor = a per MOE Graph EXISTING (DESIGN SEWERS) Comm/Inst Flow = 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:			1			DESIGN	PARAME	TERS				1				1	Designed	d:			-	PROJEC	<u>.</u> Г:	1		-	1		l	L	
Comm/Inst Flow = 28000 L/ha/da 0.3241 I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:				L/ha/da	0.10764												1 3.100				BNC			SOL						SIS	
	,											or = as p														EXISTING	(DESIGI	SEWERS	3)		
		=															Checked	:			CLM	LOCATIO	N:				City	Ottawa			
Max Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013		actor =		L/na/da	0.40509		i/s/na								0.013						SLM						City O	Ottawa			
Max Nes. Pear Factor = 4.00 Mailting s n = (Cotic) 0.013 (PVC) 0.013												(COIIC)			0.013		Dwg. Ref	ference:			02	File Ref:				Date:			Shee	No.	1
Institutional = 0.32 I/s/Ha Single house coeff= 3.4 16-746 23 Aug 2023				l/s/Ha]								16-746	1	23 Aug 202	3	155	of	2

Manning's n=0.013																											luzyy	Л	
LOCA	TION				RESIDENTIA	AL AREA AND	POPULATION					COM	/M	IN:	STIT	PA	RK	C+I+I		INFILTRATIO	N					PIPE			
STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VEI	L.
	M.H.	M.H.	(1)		Singles	Townhouse		AREA	POP.	FACT.	FLOW	(h)	AREA	(h)	AREA	(1)	AREA	FLOW	AREA	AREA	FLOW	FLOW	()	()	(0/)	(FULL)	Q act/Q cap	(FULL)	(ACT.)
		1	(ha)					(ha)		1	(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
SOUTH NEPEAN COLLECTOR (I	PHASE 2)									1									1							+		++	
Contribution From Strandherd Driv		N COLLECTO	R PHASE	3 Pine SA	1 - FX 80		1	105.84	10974	1			179.17		17.25		0.00		0.00	302.26		1				+	 	+	
NODE 90	MHSA 1	MHSA 2	16.43	Tpo o, .			1890	122.27		2 48	103.23		179.17		17.25		0.00	92.69	16.43	318.69	105.17	301.09	57.3	900	0.10	597.22	0.50	0.94	0.94
	MHSA 2	MHSA 3	10.10						12864				179.17		17.25		0.00	92.69	0.00	318.69	105.17		57.3	900	0.10	597.22	0.50	0.94	0.94
	MHSA 3	MHSA 4						122.27	12864	2.48	103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	73.9	900	0.10	597.22	0.50	0.94	0.94
	MHSA 4	MHSA 5		Ĭ .				122.27	12864	2.48	103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	34.6	900	0.10	597.22	0.50	0.94	0.94
	MHSA 5	MHSA 6						122.27	12864	2.48	103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	42.8	900	0.10	597.22	0.50	0.94	0.94
	MHSA 6	MHSA 7						122.27	12864	2.48	103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	84.4	900	0.10	597.22	0.50	0.94	0.94
	MHSA 7	MHSA 8							12864		103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17		16.5	900	0.10	597.22	0.50	0.94	0.94
	MHSA 8	MHSA 9						122.27	12864	2.48			179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	85.4	900	0.10	597.22	0.50	0.94	0.94
	MHSA 9	MHSA 10						122.27	12864	2.48			179.17		17.25		0.00	92.69	0.00	318.69	105.17		70.6	900	0.10	597.22	0.50	0.94	0.94
	MHSA 10	MHSA 11						122.27	12864	2.48			179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	70.6	900	0.10	597.22	0.50	0.94	0.94
	MHSA 11	MHSA 12	3.27				311	125.54			105.38		179.17		17.25		0.00	92.69	3.27	321.96	106.25		77.8	900	0.10	597.22	0.51	0.94	0.94
	MHSA 12	MHSA 13	1.01	ļ	1		96		13272				179.17		17.25	<u> </u>	0.00	92.69	1.01	322.97	106.58		77.8	900	0.10	597.22	0.51	0.94	0.94
	MHSA 13	MHSA 14	8.66	<u> </u>			824		14096		111.66		179.17		17.25		0.00	92.69	8.66	331.63	109.44		77.8	900	0.10	597.22	0.53	0.94	0.95
	MHSA 14	MHSA 15		<u> </u>				135.21	14096	2.44			179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	25.4	900	0.10	597.22	0.53	0.94	0.95
	MHSA 15	MHSA 16	<u> </u>		-				14096		111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	34.2	900	0.10	597.22	0.53	0.94	0.95
-	MHSA 16	MHSA 17		<u> </u>	+			135.21	14096 14096		111.66		179.17 179.17		17.25 17.25		0.00	92.69	0.00	331.63 331.63	109.44 109.44	313.79	86.7	900	0.10	597.22	0.53 0.53	0.94 0.94	0.95
	MHSA 17 MHSA 18	MHSA 18 MHSA 19	-	 				135.21	14096	2.44	111.66 111.66	-	179.17		17.25		0.00	92.69 92.69	0.00	331.63	109.44	313.79 313.79	34.3 68.6	900	0.10	597.22 597.22	0.53	0.94	0.95
-	MHSA 18	MHSA 20		1			ļ	135.21	14096	2.44			179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	65.5	900	0.10	597.22	0.53	0.94	0.95
NODE 80	MHSA 20	MHSA 21	54.29	1	+		7805		21901		162.56	42.07	221.24	10.52	27.77		0.00	116.55	106.88	438.51	144.71	423.81	18.2	1050	0.10	900.87	0.33	1.04	1.02
140BE 80	MHSA 21	MHSA 22	34.29	 			7003	189.50	21901	2.29		42.07	221.24	10.32	27.77		0.00	116.55	0.00	438.51	144.71	423.81	81.9	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 22	MHSA 23								2.29			221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	84.7	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 23	MHSA 24		1				189.50	21901	2.29	162.56		221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	77.4	1050	0.10	900.87	0.47	1.04	1.02
<u> </u>	MHSA 24	MHSA 25	+	 				189.50	21901	2.29	162.56		221.24	-	27.77		0.00	116.55	0.00	438.51	144.71	423.81	45.5	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 25	MHSA 26						189.50	21901	2.29			221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	35.8	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 26	MHSA 27	-	 				189.50	21901		162.56	-	221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	83.3	1050	0.10	900.87	0.47	1.04	1.02
-				<u> </u>				189.50																	0.10				
-	MHSA 27 MHSA 28	MHSA 28 MHSA 29	1.54	<u> </u>			249		21901 22150	2.29			221.24		27.77		0.00	116.55	0.00 1.54	438.51 440.05	144.71	423.81	74.4	1050	0.10	900.87	0.47 0.47	1.04 1.04	1.02
	MHSA 28	MHSA 30	1.54	<u> </u>	+		249	191.04 191.04	22150		164.12 164.12		221.24		27.77		0.00	116.55 116.55	0.00	440.05	145.22 145.22	425.89 425.89	77.3 83.8	1050 1050	0.10	900.87 900.87	0.47	1.04	1.02
-	MHSA 30	MHSA 31		1	+		1	191.04	22150				221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	42.3	1050	0.10	900.87	0.47	1.04	1.02
+	MHSA 31	MHSA 32		1	+		1		22150				221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	100.6	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 32	MHSA 33						191.04	22150				221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	13.9	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 33	MHSA 34	1	1			 	191.04	22150			1	221.24		27.77	1	0.00	116.55	0.00	440.05	145.22	425.89	99.9	1050	0.10	900.87	0.47	1.04	1.02
 	MHSA 34	MHSA 35	†	1	1		<u> </u>	191.04			164.12	1	221.24		27.77	l	0.00	116.55	0.00	440.05	145.22	425.89	99.9	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 35	MHSA 36						191.04	22150				221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	88.7	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 36	MHSA 37						191.04	22150				221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	88.8	1050	0.10	900.87	0.47	1.04	1.02
	MHSA 37	MHSA 38						191.04	22150	2.29			221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	90.3	1050	0.10	900.87	0.47	1.04	1.02
NODE 70	MHSA 38	MHSA 39	53.68				5311	244.72	27461	2.21			221.24		27.77		0.00	116.55	53.68	493.73	162.93	476.34	87.5	1050	0.10	900.87	0.53	1.04	1.05
To SOUTH NEPEAN COLLECTOR	R PHASE 1							244.72	27461				221.24		27.77		0.00			493.73									
				DESIGN	I PARAME	TERS									Designe	d:				PROJEC1	Γ:				. = = = =				
Park Flow =	9300	L/ha/da	0.10764		l/s/Ha				al Peak Fa		1.00				İ				BNC	1		SOL					RY ANALYS	315	
Average Daily Flow =	280	I/p/day								or = as p	er MOE G				L					L				EXISTING	(DESIGN	N SEWERS	(ز		
Comm/Inst Flow =	28000	L/ha/da	0.3241		l/s/Ha			Extraneou				L/s/ha			Checked	1:				LOCATIO	N:				City - f	044			
Industrial Flow =	35000	L/ha/da	0.40509		l/s/Ha			Minimum	,		0.600		0.040		l				SLM						City of	Ottawa			
Max Res. Peak Factor =	4.00							Manning's		(Conc)		(LAC)	0.013		L	·			00	Elle Def				In.t.			- 01	· Ni	_
Commercial/Park Peak Factor =	1.50	I/o/Ho						Townhous			2.7				Dwg. Re	rerence:			02	File Ref:			40.740	Date:	00 4 600		Sheet	. NO.	2
Institutional =	0.32	l/s/Ha						Single hor	use coeff=		3.4												16-746	1	23 Aug 202	.3	<u> </u>	of	2

Ottaw	n
JULIAN	U

Manning's n=0	.013																										<i>'lllay</i>	VU		
Ŭ	LOCATION					RESIDENTI	AL AREA AND I	POPULATION					CON	им	INS	STIT	PAF	RK	C+I+I		NFILTRATIO	N					PIPE			
	STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.	CUMUI		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	EL.
		M.H.	M.H.			Singles	Townhouse		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
				(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
		-																												
SYSTEMHOUS	F STREET																						1							
	m Citigate Drive, Pipe 2	11 - 213											35.83	35.83						35.83	35.83									
	· · · · ·	213	401						0.00	0			0.07	35.90		0.00		0.00	17.45	0.07	35.90	11.85	29.30	26.4	300	0.25	50.44	0.58	0.71	0.74
		401	403						0.00	0			0.21	36.11		0.00		0.00	17.55	0.21	36.11	11.92	29.47	87.7	300	0.25	50.44	0.58	0.71	0.74
		403	405						0.00	0			0.29	36.39		0.00		0.00	17.69	0.29	36.39	12.01	29.70	118.4	300	0.25	50.44	0.59	0.71	0.74
		405	407						0.00	0			2.29 0.20	38.69		0.00		0.00	18.81 18.90	2.29 0.20	38.69	12.77 12.83	31.57 31.73	81.2	375	0.14	68.44	0.46	0.62	0.61
		405	407						0.00	0			11.95	50.83		0.00		0.00	24.71	11.95	50.83	16.77	41.48	01.2	3/3	0.14	00.44	0.46	0.02	0.61
									0.00	0			5.28	56.11		0.00		0.00	27.27		56.11	18.51	45.79							
		407	409						0.00	0			0.30	56.40		0.00		0.00	27.42	0.30	56.40	18.61	46.03	115.8	375	0.25	91.46	0.50	0.83	0.83
		409	101						0.00	0			0.16	56.57		0.00		0.00	27.50	0.16	56.57	18.67	46.16	53.5	375	0.25	91.46	0.50	0.83	0.83
To STRANDHE	RD DRIVE, Pipe 101 - S	A 23							0.00	0				56.57		0.00		0.00			56.57									
CTDANDUESS	DDIVE COUTUREDS	ANICOLLECT	OD (DUAGE O	<u> </u>		1					1			 	1					 	ļ		ļ	 	 	1	ļ	1	 	ļ
	m Systemhouse Street,		UK (PHASE 3)		-				0.00	0	1			56.57	1	0.00		0.00		0.00	56.57			}	1	1	 		}	}
Contribution FIO	in oyaleninduse alleet,	101	103						0.00	0	 			56.57		0.00		0.00	27.50	0.00	56.57	18.67	46.16	110.1	525	0.11	148.80	0.31	0.69	0.60
		103	105						0.00	0				56.57		0.00		0.00	27.50	0.00	56.57	18.67	46.16	120.0	525	0.10	141.88	0.33	0.66	0.58
		105	107						0.00	0				56.57		0.00		0.00	27.50	0.00	56.57	18.67	46.16	120.0	525	0.12	155.42	0.30	0.72	0.62
		107	SA 23						0.00	0				56.57		0.00		0.00	27.50	0.00	56.57	18.67	46.16	119.6	525	0.09	134.60	0.34	0.62	0.56
ļ	NODE 120	SA 23	SA 22	405.04		ļ		40074	0.00	0	0.50	00.00	00.70	56.57	44.00	0.00		0.00	27.50	0.00	56.57	18.67	46.16	54.9	600	0.45	429.70	0.11	1.52	0.99
-	NODE 120	SA 22 SA 21	SA 21 SA 20	105.84				10974	105.84	10974 10974		90.03	89.70	146.27 146.27	11.20	11.20 11.20		0.00	74.73 74.73	0.00	263.31	86.89 86.89	251.66 251.66	121.8 90.6	750 750	0.12	402.33 402.33	0.63	0.91	0.96
		SA 20	SA 20						105.84	10974		90.03		146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	90.0	750	0.12	402.33	0.63	0.91	0.96
		SA 19	SA 18						105.84	10974		90.03		146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	66.8	750	0.11	385.20	0.65	0.87	0.93
		SA 18	SA 17						105.84	10974	2.53	90.03		146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	76.9	750	0.12	402.33	0.63	0.91	0.96
		SA 17	SA 16							10974		90.03		146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	68.7	750	0.12	402.33	0.63	0.91	0.96
	NODE 110	SA 16	SA 15						105.84	10974		90.03	17.72	163.99		11.20		0.00	83.35	17.72	281.03	92.74	266.12	84.1	750	0.12	402.33	0.66	0.91	0.97
		SA 15 SA 14	SA 14 SA 13						105.84 105.84	10974 10974		90.03		163.99 163.99		11.20 11.20		0.00	83.35 83.35	0.00	281.03 281.03	92.74 92.74	266.12 266.12	59.7 56.6	750 750	0.13	418.75 402.33	0.64 0.66	0.95	1.00 0.97
		SA 13	SA 13						105.84	10974		90.03		163.99		11.20		0.00	83.35	0.00	281.03	92.74	266.12	144.6	750	0.12	367.27	0.72	0.83	0.91
†		SA 12	SA 11						105.84	10974		90.03		163.99		11.20		0.00	83.35	0.00	281.03	92.74	266.12	150.0	750	0.10	367.27	0.72	0.83	0.91
	NODE 100	SA 11	SA 10						105.84	10974	2.53	90.03	15.18	179.17	6.05	17.25		0.00	92.69	21.23	302.26	99.75	282.47	46.4	750	0.10	367.27	0.77	0.83	0.92
		SA 10	SA 9						105.84			90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	117.0	750	0.10	367.27	0.77	0.83	0.92
		SA 9 SA 8	SA 8						105.84	10974		90.03		179.17 179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	79.7	750	0.10	367.27	0.77	0.83	0.92
+		SA 8	SA 7 SA 6						105.84 105.84	10974 10974		90.03		179.17		17.25 17.25		0.00	92.69 92.69	0.00	302.26 302.26	99.75 99.75	282.47 282.47	69.3 91.0	750 750	0.10	367.27 367.27	0.77	0.83	0.92
		SA 7	SA 5						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	77.1	750	0.10	367.27	0.77	0.83	0.92
		SA 5	SA 4						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	78.9	750	0.10	367.27	0.77	0.83	0.92
		SA 4	SA 3						105.84	10974	2.53	90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	80.5	750	0.10	367.27	0.77	0.83	0.92
		SA 3	SA 2						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	150.0	750	0.10	367.27	0.77	0.83	0.92
		SA 2	SA 1						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	100.6	750	0.10	367.27	0.77	0.83	0.92
To SOUTH NED	PEAN COLLECTOR PHA	SA 1	EX 80	2					105.84 105.84	10974	2.53	90.03		179.17 179.17		17.25 17.25		0.00	92.69	0.00	302.26 302.26	99.75	282.47	24.5	750	0.10	367.27	0.77	0.83	0.92
TO SOOTH TIVE	LAN COLLECTOR I IIA	AOL Z, I IDE IVII	IOA I - IVII IOA						100.04	10374				173.17		17.20		0.00			302.20									
											ļ			ļ	ļ					ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ
		 				-					 			<u> </u>	1					 	 		1	 	 	 	 	 	 	
											1			 	l					 			1		 		<u> </u>			
			_																											
Park Flow =		9300	L/ha/da	0.10764	DESIGN	PARAME I/s/Ha	TERS		Institutiona	l Deak Fa	ector =	1.00				Designed	i:			BNC	PROJECT	:	901	ITH NED	EAN CO	LECTOR	SANITAE	RY ANALYS	eie.	
Park Flow = Average Daily Flo	ow =	280	I/p/day	0.10704		1/5/FId						er MOE Gr	aph							DINC			300				T SEWER		,,,,	
Comm/Inst Flow =		0.3241		I/s/Ha			Extraneou		. сор		L/s/ha			Checked:	:				LOCATIO	N:				,		-,				
Industrial Flow =		28000 35000	0.40509		l/s/Ha			Minimum \			0.600								SLM						City of	Ottawa				
Max Res. Peak F								Manning's		(Conc)		(Pvc)	0.013							ļ										
Commercial/Park	Peak Factor =	1/- // 1 -						Townhous			2.7				Dwg. Ref	erence:			02	File Ref:				Date:		_	Shee	_	1	
Institutional =		l/s/Ha						Single hou	se coeff=		3.4												16-746	l	23 Aug 202	3	1	of	2	

lanning's n=0.013																											taw	Л	
LOCATION					RESIDENTIA	AL AREA AND	POPULATION					COMM		INS	TIT	PAR	K	C+I+I		INFILTRATIO	N					PIPE			
STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.		LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO		EL.
	M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(AC ¹ (m/:
DUTH NEPEAN COLLECTOR (PHA	SE 2)																												
ontribution From Strandherd Drive - S		LCOLLECTOR	D DLIVEE 4	2 Dina CA	1 EV 00		ļ	105.84	10974			H .	179.17		17.25	-	0.00		0.00	302.26		 		-				1	1
NODE 90	MHSA 1	MHSA 2	16.43	3, PIPE 3A	I - EX 60		1890	122.27		2.40	103.23		179.17		17.25		0.00	92.69	16.43	318.69	105.17	301.09	58.4	900	0.12	654.22	0.46	1.03	1.0
NODE 90	MHSA 2	MHSA 3	10.43				1090	122.27			103.23		179.17		17.25	-	0.00	92.69	0.00	318.69			47.7	900	0.12	534.17	0.46	0.84	0.8
	MHSA 3	MHSA 4	1				ļ	122.27			103.23		179.17		17.25	-	0.00	92.69	0.00	318.69	105.17		76.2	900	0.06	462.61	0.65	0.64	0.7
	MHSA 4	MHSA 5		-				122.27	12864		103.23		179.17	-	17.25		0.00	92.69	0.00	318.69	105.17	301.09	32.3	900	0.06	706.64	0.65	1.11	1.0
	MHSA 5	MHSA 6		-				122.27	12864		103.23		179.17	-	17.25		0.00	92.69	0.00	318.69	105.17	301.09	42.6	900	0.14	566.58	0.43	0.89	0.9
	MHSA 6	MHSA 7		-				122.27			103.23		179.17	-	17.25		0.00	92.69	0.00	318.69		301.09	74.1	900	0.09	626.37	0.53	0.89	
	MHSA 7	MHSA 7		-				122.27	12864		103.23		179.17	-	17.25		0.00	92.69	0.00	318.69	105.17 105.17		26.0	900	0.11	654.22	0.46	1.03	0.9
				-										-															
	MHSA 8	MHSA 9						122.27			103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17		85.8	900	0.08	534.17	0.56	0.84	3.0
	MHSA 9	MHSA 10	1	1	1		1	122.27			103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17		70.8	900	0.05	422.30	0.71	0.66	0.7
	MHSA 10	MHSA 11	0.07	1	1		044	122.27			103.23		179.17		17.25		0.00	92.69	0.00		105.17		70.8	900	0.07	499.67	0.60	0.79	8.0
	MHSA 11	MHSA 12	3.27		1		311	125.54	13175		105.38		179.17		17.25		0.00	92.69	3.27	321.96	106.25	304.31	78.2	900	0.11	626.37	0.49	0.98	0.9
	MHSA 12	MHSA 13	1.01				96	126.55	13272		106.04		179.17		17.25		0.00	92.69	1.01	322.97	106.58	305.30	74.4	900	0.13	680.94	0.45	1.07	1.0
	MHSA 13	MHSA 14	8.66				824	135.21	14096		111.66		179.17		17.25		0.00	92.69	8.66	331.63	109.44	313.79	81.3	900	0.11	626.37	0.50	0.98	0.9
	MHSA 14	MHSA 15						135.21			111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	25.9	900	0.07	499.67	0.63	0.79	0.8
	MHSA 15	MHSA 16						135.21			111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	34.5	900	0.08	534.17	0.59	0.84	9.0
	MHSA 16	MHSA 17						135.21	14096		111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	86.9	900	0.13	680.94	0.46	1.07	1.0
	MHSA 17	MHSA 18						135.21			111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	34.6	900	0.51	1348.72	0.23	2.12	1.7
	MHSA 18	MHSA 19						135.21			111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	68.7	900	0.08	534.17	0.59	0.84	0.8
	MHSA 19	MHSA 20						135.21	14096		111.66		179.17		17.25		0.00	92.69	0.00	331.63	109.44	313.79	63.1	900	0.08	534.17	0.59	0.84	3.0
NODE 80	MHSA 20	MHSA 21	54.29				7805	189.50			162.56		221.24		27.77		0.00	116.55	106.88	438.51	144.71	423.81	18.1	1050	0.36	1709.28	0.25	1.97	1.6
	MHSA 21	MHSA 22						189.50	21901		162.56		221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	82.4	1050	0.10	900.87	0.47	1.04	1.0
	MHSA 22	MHSA 23						189.50			162.56		221.24		27.77		0.00	116.55	0.00		144.71		85.0	1050	0.09	854.64	0.50	0.99	0.9
	MHSA 23	MHSA 24						189.50	21901	2.29	162.56		221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	77.3	1050	0.15	1103.33	0.38	1.27	1.1
	MHSA 24	MHSA 25						189.50	21901	2.29	162.56		221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	45.5	1050	0.09	854.64	0.50	0.99	0.9
	MHSA 25	MHSA 26						189.50	21901	2.29	162.56	1	221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	35.9	1050	0.09	854.64	0.50	0.99	0.9
	MHSA 26	MHSA 27						189.50	21901	2.29	162.56		221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	83.1	1050	0.12	986.85	0.43	1.14	1.0
	MHSA 27	MHSA 28						189.50	21901	2.29	162.56		221.24		27.77		0.00	116.55	0.00	438.51	144.71	423.81	74.3	1050	0.04	569.76	0.74	0.66	0.7
	MHSA 28	MHSA 29	1.54	1			249	191.04			164.12		221.24		27.77		0.00	116.55	1.54		145.22		60.7	1050	0.08	805.76	0.53	0.93	0.9
	MHSA 29	MHSA 30						191.04			164.12		221.24		27.77		0.00	116.55	0.00	440.05		425.89	99.8	1050	0.10	900.87	0.47	1.04	1.0
	MHSA 30	MHSA 31		1				191.04	22150		164.12		221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	42.6	1050	0.27	1480.28	0.29	1.71	1.4
	MHSA 31	MHSA 32						191.04			164.12		221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	111.3	1050	0.09	854.64	0.50	0.99	0.9
	MHSA 32	MHSA 33						191.04	22150		164.12		221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	118.7	1050	0.09	854.64	0.50	0.99	0.9
	MHSA 33	MHSA 34						191.04			164.12		221.24		27.77		0.00	116.55	0.00	440.05		425.89	119.7	1050	0.09	854.64	0.50	0.99	0.9
	MHSA 34	MHSA 35	1	1				191.04			164.12		221.24		27.77		0.00	116.55	0.00	440.05		425.89	86.2	1050	0.07	753.72	0.57	0.87	0.8
	MHSA 35	MHSA 36						191.04			164.12		221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	58.9	1050	0.05	637.01	0.67	0.74	0.7
	MHSA 36	MHSA 37	1	1				191.04			164.12		221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	110.8	1050	0.11	944.84	0.45	1.09	1.0
	MHSA 37	MHSA 38	1				1	191.04	22150		164.12		221.24		27.77		0.00	116.55	0.00	440.05	145.22	425.89	72.3	1050	0.15	1103.33	0.39	1.27	1.1
NODE 70	MHSA 38	MHSA 39	53.68		1		5311	244.72	27461		196.86		221.24		27.77		0.00	116.55	53.68	493.73	162.93	476.34	87.5	1050	0.10	900.87	0.53	1.04	1.0
OUTH NEPEAN COLLECTOR PH		.711 107 (00	00.00	-			0011	244.72		2.21	.00.00		221.24		27.77		0.00	. 10.00	50.00	493.73	102.00	470.04	07.0	1000	0.10	300.01	0.00	1.07	
ZO								244.12	21701				1.2-7				3.00			100.70									
												L T											1						
·	1		l	DESIGN	PARAME	TERS	1	1	1		1				Designed:	J				PROJEC	Γ:	1	1	1	1	1		l	
Flow =	9300	L/ha/da	0.10764		l/s/Ha			Institution	al Peak Fa	ctor =	1.00								BNC	l		SOL					Y ANALYS	SIS	
age Daily Flow =	280	I/p/day						Industrial	Peak Facto	or = as pe	er MOE Gr	aph								l			E	XISTING	AS-BUIL	T SEWER	S)		
m/Inst Flow =	28000	L/ha/da	0.3241		I/s/Ha			Extraneou	ıs Flow =	-	0.330	L/s/ha		Į.	Checked:					LOCATIO	N:								
strial Flow =	35000	L/ha/da	0.40509		l/s/Ha			Minimum	Velocity =		0.600	m/s							SLM	l					City of	Ottawa			
Res. Peak Factor =	4.00							Manning's		(Conc)	0.013	(Pvc)	0.013												•				
										. ,		. ,																	_
nmercial/Park Peak Factor =	1.50							Townhous	se coeff=		2.7				Dwa. Refe	rence:			02	File Ref:				Date:			Sheet	t No.	2

Manning's n=0	0.013																					<i>'llMy</i>	VU							
	LOCATION					RESIDENTI	AL AREA AND F	OPULATION					COI	MM	INS	STIT	PA	RK	C+I+I		INFILTRATIO	N					PIPE			
	STREET	FROM	ТО	AREA	UNITS	UNITS	UNITS	POP.	CUMUI		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	L.
		M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
				(IId)					(IIa)			(1/5)	(IIa)	(IIa)	(IIa)	(IIa)	(IIa)	(IIa)	(1/5)	(IIa)	(IIa)	(1/5)	(1/5)	(111)	(111111)	(70)	(1/5)		(111/5)	(111/5)
															1													1		
SYSTEMHOUS	SE STREET																													
Contribution Fr	om Citigate Drive, Pipe 21												35.83	35.83						35.83	35.83									
		213 401	401 403						0.00	0			0.07	35.90 36.11	1	0.00		0.00	17.45 17.55	0.07	35.90 36.11	11.85 11.92	29.30 29.47	26.4 87.7	300 300	0.25	50.44 50.44	0.58 0.58	0.71	0.74
		403	405						0.00	0		1	0.21	36.39		0.00		0.00	17.55		36.39	12.01	29.47	118.4	300	0.25	50.44	0.58	0.71	0.74
		400	400						0.00	0			2.29	38.69	1	0.00		0.00	18.81	2.29	38.69	12.77	31.57	110.4	000	0.20	00.44	0.00	0.7 1	0.14
		405	407						0.00	0			0.20	38.88		0.00		0.00	18.90	0.20	38.88	12.83	31.73	81.2	375	0.14	68.44	0.46	0.62	0.61
									0.00	0			11.95	50.83		0.00		0.00	24.71	11.95	50.83	16.77	41.48							
		407	400						0.00	0			5.28	56.11		0.00		0.00	27.27	5.28	56.11	18.51	45.79	445.0	275	0.05	04.40	0.50	0.00	0.00
		407 409	409 101	-		1			0.00	0	-	<u> </u>	0.30	56.40 56.57	-	0.00		0.00	27.42 27.50	0.30	56.40 56.57	18.61 18.67	46.03 46.16	115.8 53.5	375 375	0.25 0.25	91.46 91.46	0.50 0.50	0.83	0.83
To STRANDHE	ERD DRIVE, Pipe 101 - SA		101						0.00	0			0.10	56.57		0.00		0.00	21.30	0.10	56.57	10.07	40.10	33.3	3/3	0.23	31.40	0.30	0.03	0.03
10 0110 11011	1	120							0.00					00.01		0.00		0.00			00.01									
	D DRIVE - SOUTH NEPE)																										
Contribution Fr	om Systemhouse Street, I			ļ	ļ				0.00	0	1	 	ļ	56.57	ļ	0.00		0.00	07.50	0.00	56.57	40.0=	40.46	110 1	505	0.44	440.00	0.04	0.00	0.00
-		101 103	103 105	 	 	-	-		0.00	0	1	 	 	56.57 56.57	1	0.00	-	0.00	27.50 27.50	0.00	56.57 56.57	18.67 18.67	46.16 46.16	110.1 120.0	525 525	0.11	148.80 141.88	0.31 0.33	0.69	0.60
		103	105	 	<u> </u>				0.00	0	1	 	1	56.57	1	0.00		0.00	27.50		56.57	18.67	46.16	120.0	525	0.10	155.42	0.33	0.66	0.58
		107	SA 23						0.00	0	<u> </u>	†	†	56.57	1	0.00		0.00	27.50	0.00	56.57	18.67	46.16	119.6	525	0.09	134.60	0.34	0.62	0.56
		SA 23	SA 22						0.00	0				56.57		0.00		0.00	27.50	0.00	56.57	18.67	46.16	54.9	600	0.45	429.70	0.11	1.52	0.99
	NODE 120	SA 22	SA 21	105.84				10974	105.84	10974		90.03	89.70	146.27	11.20	11.20		0.00	74.73	206.74	263.31	86.89	251.66	121.8	750	0.12	402.33	0.63	0.91	0.96
		SA 21 SA 20	SA 20 SA 19		ļ				105.84 105.84	10974 10974		90.03	<u> </u>	146.27 146.27	 	11.20 11.20		0.00	74.73 74.73	0.00	263.31 263.31	86.89 86.89	251.66 251.66	90.6 90.0	750 750	0.12	402.33 402.33	0.63 0.63	0.91	0.96
		SA 20 SA 19	SA 19 SA 18	 		 			105.84	10974			1	146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	66.8	750	0.12	385.20	0.63	0.91	0.96
		SA 18	SA 17						105.84	10974		90.03		146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	76.9	750	0.11	402.33	0.63	0.07	0.96
		SA 17	SA 16						105.84	10974		90.03		146.27		11.20		0.00	74.73	0.00	263.31	86.89	251.66	68.7	750	0.12	402.33	0.63	0.91	0.96
	NODE 110	SA 16	SA 15						105.84	10974		90.03	17.72	163.99		11.20		0.00	83.35	17.72	281.03	92.74	266.12	84.1	750	0.12	402.33	0.66	0.91	0.97
		SA 15	SA 14						105.84	10974	2.53	90.03		163.99		11.20		0.00	83.35	0.00	281.03	92.74	266.12	59.7	750	0.13	418.75	0.64	0.95	1.00
-		SA 14 SA 13	SA 13 SA 12						105.84 105.84	10974 10974		90.03		163.99 163.99		11.20 11.20		0.00	83.35 83.35	0.00	281.03 281.03	92.74 92.74	266.12 266.12	56.6 144.6	750 750	0.12	402.33 367.27	0.66 0.72	0.91	0.97
		SA 12	SA 11						105.84	10974		90.03	1	163.99		11.20		0.00	83.35	0.00	281.03	92.74	266.12	150.0	750	0.10	367.27	0.72	0.83	0.91
	NODE 100	SA 11	SA 10						105.84	10974		90.03	15.18	179.17	6.05	17.25		0.00	92.69	21.23	302.26	99.75	282.47	46.4	750	0.10	367.27	0.77	0.83	0.92
		SA 10	SA 9						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	117.0	750	0.10	367.27	0.77	0.83	0.92
		SA 9	SA 8						105.84					179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	79.7	750	0.10	367.27	0.77	0.83	0.92
		SA 8 SA 7	SA 7 SA 6	-		1			105.84 105.84					179.17 179.17		17.25 17.25		0.00	92.69 92.69	0.00	302.26 302.26	99.75 99.75	282.47 282.47	69.3 91.0	750 750	0.10	367.27 367.27	0.77 0.77	0.83	0.92
		SA 6	SA 5						105.84	10974		90.03	1	179.17	1	17.25		0.00	92.69	0.00	302.26	99.75	282.47	77.1	750	0.10	367.27	0.77	0.83	0.92
		SA 5	SA 4						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	78.9	750	0.10	367.27	0.77	0.83	0.92
		SA 4	SA 3						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	80.5	750	0.10	367.27	0.77	0.83	0.92
		SA 3	SA 2						105.84	10974		90.03		179.17		17.25		0.00	92.69	0.00	302.26	99.75	282.47	150.0	750	0.10	367.27	0.77	0.83	0.92
		SA 2 SA 1	SA 1 EX 80	-		1			105.84 105.84	10974		90.03		179.17 179.17		17.25 17.25		0.00	92.69 92.69	0.00	302.26 302.26	99.75 99.75	282.47 282.47	100.6 24.5	750 750	0.10	367.27 367.27	0.77 0.77	0.83	0.92
To SOUTH NE	PEAN COLLECTOR PHA			2					105.84		2.33	90.03		179.17		17.25		0.00	92.09	0.00	302.26	99.73	202.41	24.3	730	0.10	301.21	0.77	0.03	0.92
10 000111112		.o. 2, 1 ipo iiii		Ī					100.01	10011				110.11		11.20		0.00			002.20									
0011055			ļ	<u> </u>	<u> </u>	<u> </u>						<u> </u>	<u> </u>	<u> </u>	1	ļ		<u> </u>		<u> </u>	<u> </u>		<u> </u>				1			
CONSERVANO		NSEB\/ANOV	MHSA 8	80.00	 	-	-	8123	88.28	8122	1	 	4.21	4.21	1	0.00	4.57	1 57	-	97.06	97.06	-	 		1		+	-	1	
To SOUTH NE	PEAN COLLECTOR PHA				 	1		0123	88.28		t -	1	4.21	4.21	+	0.00	4.37	4.57		97.00	97.06				1	 	1			
					1				30.20	0.20	1		1	1		0.00				1	000				1					
*NOTE:	Conservancy info derived fr																										<u> </u>			
	13.7Ha of commercial area	indicated in lat	est Conservanc	y Sanitary I	Design Sheet	t has been	subtracted a	s it has alrea	dy been ac	counted f	or in the	Novatech	SNC sewer	drainage	area.	ļ		ļ	ļ	!			ļ	ļ		ļ				
 			l	<u> </u>	DESIGN	PARAME	TEDS				1	<u> </u>	1	<u> </u>	1	Designe	d·		<u> </u>	<u> </u>	PROJEC	<u> </u> Г·	<u> </u>	<u> </u>		<u> </u>	1	<u> </u>		
Park Flow =		9300	L/ha/da	0.10764	DESIGN	I/s/Ha	ILINO		Institutiona	al Peak Fa	actor =	1.00				Designed	u.			BNC	I NOJEC		sou	JTH NEP	EAN CO	LECTOR	SANITAR	RY ANALYS	SIS	
Average Daily Fl	low =	280	I/p/day									er MOE G				L									cc	NSERVA	NCY			
Comm/Inst Flow									Extraneou				L/s/ha			Checked	i:				LOCATIO	N:				<u> </u>				
Industrial Flow =									Minimum \	,		0.600								SLM						City of	Ottawa			
	ax Res. Peak Factor = 4.00 mmercial/Park Peak Factor = 1.50								Manning's Townhous		(Conc)	0.013 2.7		0.013		Dwc Da	forence:			02	File Ref:				Date:			Shee	No	-1
Institutional =	N FERN FREIDI =		l/s/Ha						Single hou			3.4				Dwg. Re	rerence:			02	rile Ref:			16-746	Date:	23 Aug 202	23	Silee	. INU. Of	2
		5.52	271104						9.0 1100			0.4				1					1			.00		_0ay 202	-		JI	

Manning's n=0	0.013																						luzyy	/L						
Ŭ	LOCATION					RESIDENTIA	AL AREA AND	POPULATION					COI	ММ	INSTIT	Т	PAR	K	C+I+I		NFILTRATIO	N					PIPE			
	STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA A	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	EL.
		M.H.	M.H.			Singles	Townhouse		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
				(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
																												 '	<u> </u>	
	AN COLLECTOR (PHAS		N COLLECTO	DUACE	2 Din - CA	4 EV 00			405.04	40074	-	-		470.47		17.05	-	0.00		0.00	200.00							 '		
Contribution Fr	om Strandherd Drive - S NODE 90		MHSA 2	16.43	3, Pipe SA	1 - EX 80		1890	105.84	10974	0.40	402.02		179.17 179.17		17.25 17.25		0.00	92.69	0.00 16.43	302.26 318.69	105.17	301.09	58.4	900	0.40	054.00	0.46	1.03	1.01
	NODE 90	MHSA 1 MHSA 2	MHSA 3	10.43	-	+		1890	122.27		2.48			179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	47.7	900	0.12	654.22 534.17	0.46	0.84	0.86
		MHSA 3	MHSA 4		 	+ +			122.27		2.48			179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	76.2	900	0.06	462.61	0.65	0.73	0.80
		MHSA 4	MHSA 5		 	+ +			122.27	12864				179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	32.3	900	0.14	706.64	0.03	1.11	1.07
		MHSA 5	MHSA 6		+	1			122.27	12864				179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	42.6	900	0.09	566.58	0.53	0.89	0.90
		MHSA 6	MHSA 7		1	1			122.27		2.48			179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	74.1	900	0.11	626.37	0.48	0.98	0.97
		MHSA 7	MHSA 8		1	1						103.23		179.17		17.25		0.00	92.69	0.00	318.69	105.17	301.09	26.0	900	0.12	654.22	0.46	1.03	1.01
Contribution Fr	om CONSERVANCY								88.28	8123				4.21		0.00		4.57		0.00	97.06									
		MHSA 8	MHSA 9		1				210.55	20987	2.31	156.78		183.38		17.25		4.57	95.47	0.00	415.75	137.20	389.45	85.8	900	0.08	534.17	0.73	0.84	0.91
		MHSA 9	MHSA 10		1				210.55	20987	2.31	156.78		183.38	1	17.25		4.57	95.47	0.00	415.75	137.20	389.45	70.8	900	0.05	422.30	0.92	0.66	0.75
		MHSA 10	MHSA 11						210.55	20987	2.31	156.78		183.38	1	17.25		4.57	95.47	0.00	415.75	137.20	389.45	70.8	900	0.07	499.67	0.78	0.79	0.87
		MHSA 11	MHSA 12	3.27				311	213.82	21298	2.30	158.76		183.38		17.25		4.57	95.47	3.27	419.02	138.28	392.50	78.2	900	0.11	626.37	0.63	0.98	1.04
		MHSA 12	MHSA 13	1.01				96	214.83	21395	2.30	159.36		183.38	1	17.25		4.57	95.47	1.01	420.03	138.61	393.44	74.4	900	0.13	680.94	0.58	1.07	1.11
		MHSA 13	MHSA 14	8.66				824	223.49	22219	2.29	164.56		183.38	1	17.25		4.57	95.47	8.66	428.69	141.47	401.50	81.3	900	0.11	626.37	0.64	0.98	1.04
		MHSA 14	MHSA 15						223.49		2.29			183.38		17.25		4.57	95.47	0.00	428.69		401.50	25.9	900	0.07	499.67	0.80	0.79	0.87
		MHSA 15	MHSA 16						223.49	22219		164.56		183.38		17.25		4.57	95.47	0.00	428.69	141.47	401.50	34.5	900	0.08	534.17	0.75	0.84	0.92
		MHSA 16	MHSA 17						223.49	22219		164.56		183.38		17.25		4.57	95.47	0.00	428.69	141.47	401.50	86.9	900	0.13	680.94	0.59	1.07	1.11
		MHSA 17	MHSA 18						223.49		2.29			183.38		17.25		4.57	95.47	0.00	428.69	141.47	401.50	34.6	900	0.51	1348.72	0.30	2.12	1.84
		MHSA 18	MHSA 19						223.49	22219		164.56		183.38		17.25		4.57	95.47	0.00	428.69	141.47	401.50	68.7	900	0.08	534.17	0.75	0.84	0.92
	NODE OF	MHSA 19	MHSA 20	= 1.00		 			223.49		2.29		40.00	183.38		17.25		4.57	95.47	0.00		141.47	401.50	63.1	900	0.08	534.17	0.75	0.84	0.92
	NODE 80	MHSA 20	MHSA 21	54.29	1	1		7805	277.78	30024		212.26	42.07	225.45		27.77		4.57 4.57	119.33 119.33	0.00	535.57	176.74	508.33 508.33	18.1	1050	0.36	1709.28 900.87	0.30 0.56	1.97	1.71
		MHSA 21 MHSA 22	MHSA 22 MHSA 23		-	+			277.78	30024		212.26 212.26		225.45		27.77		4.57	119.33	0.00	535.57 535.57	176.74 176.74	508.33	82.4 85.0	1050 1050	0.10	854.64	0.59	1.04 0.99	1.07
-		MHSA 22	MHSA 24		1	+ +			277.78	30024		212.26		225.45		27.77		4.57	119.33	0.00	535.57	176.74	508.33	77.3	1050	0.09	1103.33	0.59	1.27	1.03
					-	+					_					27.77		4.57										0.46	0.99	
		MHSA 24	MHSA 25		<u> </u>	1			277.78	30024		212.26		225.45	_				119.33	0.00	535.57	176.74	508.33	45.5	1050	0.09	854.64			1.03
		MHSA 25	MHSA 26						277.78	30024		212.26		225.45		27.77		4.57	119.33	0.00	535.57	176.74	508.33	35.9	1050	0.09	854.64	0.59	0.99	1.03
		MHSA 26	MHSA 27						277.78	30024				225.45		27.77		4.57	119.33	0.00	535.57	176.74	508.33	83.1	1050	0.12	986.85	0.52	1.14	1.14
		MHSA 27	MHSA 28						277.78	30024				225.45		27.77		4.57	119.33	0.00	535.57	176.74	508.33	74.3	1050	0.04	569.76	0.89	0.66	0.74
		MHSA 28	MHSA 29	1.54	1	1		249	279.32	30273				225.45		27.77		4.57	119.33	1.54	537.11	177.25	510.32	60.7	1050	0.08	805.76	0.63	0.93	0.98
		MHSA 29 MHSA 30	MHSA 30 MHSA 31		<u> </u>	1			279.32	30273 30273		213.74		225.45		27.77 27.77		4.57 4.57	119.33 119.33	0.00	537.11 537.11	177.25	510.32 510.32	99.8 42.6	1050 1050	0.10 0.27	900.87 1480.28	0.57 0.34	1.04	1.07 1.55
		MHSA 31	MHSA 32		1	1			279.32	30273				225.45		27.77		4.57	119.33	0.00	537.11	177.25	510.32	111.3	1050	0.27	854.64	0.60	0.99	1.03
		MHSA 31	MHSA 32		+	+			279.32		2.18			225.45		27.77		4.57	119.33	0.00		177.25	510.32	111.3	1050	0.09	854.64	0.60	0.99	1.03
		MHSA 33	MHSA 34	 	+	+ +			279.32		2.18	213.74		225.45		27.77		4.57	119.33	0.00	537.11	177.25	510.32	119.7	1050	0.09	854.64	0.60	0.99	1.03
		MHSA 34	MHSA 35	†	1	1 1			279.32	30273				225.45		27.77		4.57	119.33	0.00	537.11	177.25	510.32	86.2	1050	0.09	753.72	0.68	0.87	0.93
		MHSA 35	MHSA 36		1	1			279.32	30273		213.74		225.45		27.77		4.57	119.33	0.00	537.11	177.25	510.32	58.9	1050	0.05	637.01	0.80	0.74	0.82
		MHSA 36	MHSA 37		1				279.32			213.74		225.45		27.77		4.57	119.33	0.00	537.11	177.25	510.32	110.8	1050	0.11	944.84	0.54	1.09	1.11
		MHSA 37	MHSA 38			1			279.32		2.18	213.74		225.45		27.77		4.57	119.33	0.00	537.11	177.25	510.32	72.3	1050	0.15	1103.33	0.46	1.27	1.25
	NODE 70	MHSA 38	MHSA 39	53.68		1 1		5311	333.00	35584				225.45		27.77		4.57	119.33	53.68	590.79	194.96	559.22	87.5	1050	0.10	900.87	0.62	1.04	1.10
To SOUTH NE	PEAN COLLECTOR PH	ASE 1							333.00					225.45		27.77		4.57			590.79									
					DESIGN	PARAMET	ERS								De	esigned:					PROJECT	:								
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha			Institution			1.00								BNC			SOL	JTH NEP				RY ANALYS	ilS	
Average Daily F		280	l/p/day								tor = as p	oer MOE Gr			<u></u>										CO	NSERVA	NCY			
Comm/Inst Flow		28000	L/ha/da	0.3241		I/s/Ha			Extraneou			0.330			Ch	hecked:					LOCATIO	N:					•			
Industrial Flow =		35000	L/ha/da	0.40509		l/s/Ha			Minimum	,		0.600								SLM						City of	Ottawa			
Max Res. Peak		4.00							Manning's		(Conc)		(Pvc)	0.013	_						E1 5 :				In .					_
Commercial/Par	к Реак Factor =	1.50	1/- 0.1-						Townhous			2.7			Dv	wg. Refer	ence:			02	File Ref:				Date:		_	Sheet	No.	2
Institutional =		0.32	l/s/Ha						Single ho	use coeff=	:	3.4									<u> </u>			16-746		23 Aug 202	3		of	2

Manning's n=	0.013																											UUN	VU	
	LOCATION					RESIDENTI	AL AREA AND	POPULATION					COI	ММ	INS	TIT	PAI	RK	C+I+I		NFILTRATION						PIPE			
	STREET	FROM M.H.	TO M.H.	AREA	UNITS	UNITS	UNITS Townhouse	POP.	AREA	POP.	FACT.	PEAK FLOW	AREA	ACCU.	AREA	ACCU. ARFA	AREA	ACCU. ARFA	PEAK FLOW	TOTAL AREA	ACCU. ARFA	INFILT. FLOW	TOTAL FLOW	DIST	DIA	SLOPE	CAP. (FULL)	RATIO Q act/Q cap	(FULL)	L. (ACT.)
		Wi.Fi.	Wi.Fi.	(ha)		Sirigles	Townhouse		(ha)	FOF.	FACT.	(I/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(I/s)	Q actiQ cap	(m/s)	(m/s)
800 CEDARV		CEDARVIEW	101	49.50		1		4269	49 50	4269	-	1	0.37	0.37		0.00	4.93	4 93		54.80	54.80									
To Strandherd	Drive, Pipe 101 - SA 23	CEDARVIEW	101	49.50				4209	49.50				0.37	0.37	1	0.00	4.93	4.93		34.60	54.80									
									10.00	1200				0.01		0.00		1.00			01.00									
CEDARVIEW	EMPLOYMENT LANDS																													
	CEDARVIEW EMPLOYN	MENT LANDS	101	6.30				1038	6.30	1038			0.09	0.09		0.00		0.00		6.39	6.39									
10 Strandnerd	Drive, Pipe 101 - SA 23								6.30	1038				0.09	+	0.00		0.00			6.39									
															1															
SYSTEMHOU	SE STREET																													
Contribution F	rom Citigate Drive, Pipe 2	11 - 213											35.83	35.83						35.83	35.83									
		213	401						0.00	0			0.07	35.90		0.00		0.00	17.45	0.07	35.90	11.85	29.30	26.4	300	0.25	50.44	0.58	0.71	0.74
-		401 403	403 405						0.00	0			0.21	36.11 36.39	+	0.00		0.00	17.55 17.69	0.21	36.11 36.39	11.92 12.01	29.47 29.70	87.7 118.4	300 300	0.25 0.25	50.44 50.44	0.58 0.59	0.71 0.71	0.74 0.74
		403	403						0.00	0			2.29	38.69		0.00		0.00	18.81	2.29	38.69		31.57	110.4	300	0.20	30.44	0.00	0.71	0.74
		405	407						0.00	0			0.20	38.88		0.00		0.00	18.90	0.20	38.88		31.73	81.2	375	0.14	68.44	0.46	0.62	0.61
									0.00	0			11.95	50.83		0.00		0.00	24.71	11.95	50.83	16.77	41.48							
1		407	400	 	1				0.00	0	1	 	5.28	56.11	+	0.00		0.00	27.27	5.28	56.11	18.51	45.79	115.0	275	0.05	01.40	0.50	0.00	0.00
1		407 409	409 101	1	1				0.00	0	1	1	0.30	56.40 56.57	+ +	0.00		0.00	27.42 27.50	0.30	56.40 56.57	18.61 18.67	46.03 46.16	115.8 53.5	375 375	0.25 0.25	91.46 91.46	0.50 0.50	0.83	0.83
To STRANDH	ERD DRIVE, Pipe 101 - SA		101	1	1				0.00	0	1	1	0.10	56.57	1 1	0.00		0.00	21.00	0.10	56.57	10.01	70.10	55.5	0/0	0.20	01.40	0.00	0.00	0.00
	D DRIVE - SOUTH NEPE	AN COLLECT	OR (PHASE 3)	1				40.50	4000	1	1	1	0.00	+	0.00		4.00		F4 00	F4.00									
	rom 800 CEDARVIEW rom CEDARVIEW EMPLO	VMENT I ANI	200	-		-			49.50 6.30	4269 1038	-			0.37	-	0.00		4.93 0.00		54.80 6.39	54.80 6.39									
	rom Systemhouse Street,								0.00	0				56.57	1	0.00		0.00		0.00	56.57									
O O I I I I I I I I I I I I I I I I I I	l a de la constante de la cons	101	103						55.80	5307	2.78	47.76		57.02		0.00		4.93	28.52	0.00	117.75	38.86	115.13	110.1	525	0.11	148.80	0.77	0.69	0.76
		103	105						55.80	5307	2.78			57.02		0.00		4.93	28.52	0.00	117.75	38.86	115.13	120.0	525	0.10	141.88	0.81	0.66	0.73
		105	107						55.80	5307		47.76		57.02		0.00		4.93	28.52	0.00	117.75		115.13	120.0		0.12	155.42	0.74	0.72	0.79
-	NODE 130	107 SA 23	SA 23 SA 22	-		-			55.80 55.80	5307 5307	2.78	47.76 47.76		57.02 57.02	-	0.00		4.93 4.93	28.52 28.52	0.00	117.75 117.75	38.86 38.86	115.13 115.13	119.6 54.9	525 600	0.09 0.45	134.60 429.70	0.86 0.27	0.62 1.52	0.70 1.28
-	NODE 120	SA 22	SA 21	105.84				10974	161.64	16281		126.31	89.70	146.72	11.20	11.20		4.93	75.75	206.74	324.49	107.08	309.14	121.8	750	0.43	402.33	0.27	0.91	1.00
		SA 21	SA 20	100.01				10011	161.64	16281		126.31	00.70	146.72		11.20		4.93	75.75	0.00	324.49		309.14	90.6	750	0.12	402.33	0.77	0.91	1.00
		SA 20	SA 19						161.64			126.31		146.72		11.20		4.93	75.75	0.00	324.49		309.14	90.0	750	0.12	402.33	0.77	0.91	1.00
		SA 19	SA 18						161.64	16281		126.31		146.72		11.20		4.93	75.75	0.00	324.49	107.08	309.14	66.8	750	0.11	385.20	0.80	0.87	0.97
-		SA 18 SA 17	SA 17 SA 16	-		-			161.64 161.64			126.31 126.31		146.72 146.72		11.20 11.20		4.93	75.75 75.75	0.00	324.49 324.49	107.08 107.08	309.14 309.14	76.9 68.7	750 750	0.12 0.12	402.33 402.33	0.77 0.77	0.91	1.00
	NODE 110	SA 17	SA 15						161.64				17 72	164.44	1	11.20		4.93	84.36	17.72	342.21		323.60	84.1	750	0.12	402.33	0.80	0.91	1.01
		SA 15	SA 14						161.64			126.31		164.44		11.20		4.93	84.36	0.00	342.21		323.60	59.7	750	0.13	418.75	0.77	0.95	1.04
		SA 14	SA 13						161.64			126.31		164.44		11.20		4.93	84.36	0.00	342.21		323.60	56.6	750	0.12	402.33	0.80	0.91	1.01
		SA 13 SA 12	SA 12						161.64 161.64	16281		126.31		164.44 164.44		11.20		4.93	84.36 84.36	0.00	342.21	112.93	323.60	144.6 150.0	750	0.10 0.10	367.27	0.88	0.83	0.94
	NODE 100	SA 12	SA 11 SA 10						161.64	16281	2.00	126.31	15.18	179.62		11.20 17.25		4.93	93.70	21.23	363.44	119.93	323.60 339.95	46.4	750 750	0.10	367.27 367.27	0.88	0.83	0.94
	NOBE 100	SA 10	SA 9						161.64	16281	2.39	126.31	13.10	179.62	0.00	17.25		4.93	93.70	0.00	363.44	119.94	339.95	117.0	750	0.10	367.27	0.93	0.83	0.94
		SA 9	SA 8						161.64	16281		126.31		179.62		17.25		4.93	93.70	0.00	363.44	119.94	339.95	79.7	750	0.10	367.27	0.93	0.83	0.94
1		SA 8	SA 7	1	1				161.64			126.31	1	179.62		17.25		4.93	93.70	0.00	363.44	119.94	339.95	69.3	750	0.10	367.27	0.93	0.83	0.94
-		SA 7 SA 6	SA 6 SA 5	 		1			161.64 161.64	16281 16281	2.39	126.31 126.31		179.62 179.62		17.25 17.25		4.93	93.70 93.70	0.00	363.44 363.44	119.94 119.94	339.95 339.95	91.0 77.1	750 750	0.10	367.27 367.27	0.93	0.83	0.94 0.94
—		SA 5	SA 5 SA 4	 	+	1			161.64		2.39	126.31	1	179.62		17.25		4.93	93.70	0.00	363.44	119.94	339.95	78.9	750	0.10	367.27	0.93	0.83	0.94
	<u> </u>	SA 4	SA 3						161.64			126.31		179.62		17.25		4.93	93.70	0.00	363.44	1 10.0 1	339.95	80.5	750	0.10	367.27	0.93	0.83	0.94
		SA 3	SA 2						161.64			126.31		179.62		17.25		4.93	93.70	0.00	363.44		339.95	150.0		0.10	367.27	0.93	0.83	0.94
1		SA 2	SA 1	 	1				161.64			126.31	ļ	179.62	1	17.25		4.93	93.70	0.00	363.44		339.95	100.6		0.10	367.27	0.93	0.83	0.94
To SOLITH NE	LEPEAN COLLECTOR PHA	SA 1 SE 2 Pine M	EX 80	2	+	1			161.64 161.64	16281 16281	2.39	126.31	-	179.62 179.62	1	17.25 17.25		4.93	93.70	0.00	363.44 363.44	119.94	339.95	24.5	750	0.10	367.27	0.93	0.83	0.94
10 00011110	. LAN GOLLEGION PHA	CL Z, FIPE IVI	INA I - IVII INA	Ĺ	1				101.04	10201	1	1	1	113.02	1 1	11.23		7.53			303.44					1		$\overline{}$		
			<u> </u>								<u>L</u>																			
CONSERVAN																														
To SOUTH ME	PEAN COLLECTOR PHA	NSERVANCY	MHSA 8	88.28	1	1		8123	88.28 88.28	8123 8123	1	1	4.21	4.21	+	0.00	4.57	4.57 4.57		97.06	97.06 97.06				-	1	-			
10 SOUTH NE	FEAN COLLECTOR PHA	oc∠, ripe M	ISA 0 - IVITSA	. .	+	1			00.∠ŏ	0123	1	1	1	4.21	1 1	0.00		4.57			91.00									
*NOTE:	Conservancy info derived f	rom DSEL job#	20-1180: 2023-	04-18_Rev	/11 design sh	neet.																						i		
	13.7Ha of commercial area						subtracted a	as it has alrea	idy been ac	counted t	or in the	Novatech S	SNC sewer	drainage	area.															
			l	l	DEGICK	PARAME:	TEDE				1	1	1	l	1	Dooiser								l		l .				
Park Flow =		9300	L/ha/da	0.10764	DESIGN	I/s/Ha	IERO		Institutiona	al Peak Fa	actor =	1.00				Designed				BNC	PROJECT		SOL	ITH NEPI	EAN COI	LECTOR	SANITAR	Y ANALYS	SIS	
Average Daily F	Flow =	280	I/p/day	207		// 104			Industrial I				raph															- OPTION		
Comm/Inst Flov	v =	28000	L/ha/da	0.3241		I/s/Ha			Extraneou	s Flow =		0.330	L/s/ha		İ	Checked:					LOCATION	N:								
Industrial Flow		35000	L/ha/da	0.40509		l/s/Ha			Minimum \			0.600								SLM						City of	Ottawa			
Max Res. Peak		4.00								n =	(Conc)	0.013	(Pvc)	0.013		Dun Def	orones:			02	Eilo Def				Data:			Sheet	No	1
Commercial/Pa Institutional =	rk Peak Factor =	1.50 0.32	l/s/Ha						Townhous Single hou			2.7 3.4				Dwg. Ref	erence:			02	File Ref:			16-746	Date:	23 Aug 202	3	Sneet	. INO.	2
outadonai -		U.UL	5/1 10						g.c 1100	0 00011-		0.4												.00		_0ug 202	-		JI.	_

Manning's n=0.013																									ttaw	\mathcal{I}	
Ŭ	LOCATION				RESIDENTI	IAL AREA AND PO	PULATION					COMM	INSTIT	P.A	ARK .	C+I+I		INFILTRATIO	N					PIPE			
STREET		FROM	TO	AREA UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA ACCU	. AREA ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VEI	Ĺ.
		M.H.	M.H.		Singles	Townhouse		AREA	POP.	FACT.	FLOW	AREA			AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.
,				(ha)				(ha)		1	(l/s)	(ha) (ha)	(ha) (ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)	└	(m/s)	(m/s)
SOUTH NEPEAN COL	LECTOR (BUACE 1	2)						1		1		-	+				<u> </u>								├──	++	
Contribution From Strai			LCOLLECTO	D DUASE 2 Dina SA	1 EV 90	+		161.64	16281			179.6	2 17.25		4.93		0.00	363.44							├	++	
		MHSA 1	MHSA 2	16.43	1 - EX 60	-	1890	178.07	18171	2.36	138.71	179.6			0.00	92.91	16.43	379.87	125.36	356.97	58.4	900	0.12	654.22	0.55	1.03	1.05
		MHSA 2	MHSA 3	10.43		-	1090	178.07	18171	2.36		179.6			0.00	92.91	0.00	379.87	125.36	356.97	47.7	900	0.12	534.17	0.55	0.84	0.90
		MHSA 3	MHSA 4					178.07	18171	2.36		179.6			0.00	92.91	0.00	379.87	125.36	356.97	76.2	900	0.06	462.61	0.77	0.73	0.80
		MHSA 4	MHSA 5					178.07	18171	2.36		179.6			0.00	92.91	0.00	379.87	125.36	356.97	32.3	900	0.14	706.64	0.51	1.11	1.11
		MHSA 5	MHSA 6					178.07	18171	2.36	138.71	179.6	2 17.25		0.00	92.91	0.00	379.87	125.36	356.97	42.6	900	0.09	566.58	0.63	0.89	0.94
		MHSA 6	MHSA 7					178.07	18171	2.36		179.6			0.00	92.91	0.00	379.87	125.36	356.97	74.1	900	0.11	626.37	0.57	0.98	1.02
		MHSA 7	MHSA 8					178.07	18171	2.36	138.71	179.6	2 17.25		0.00	92.91	0.00	379.87	125.36	356.97	26.0	900	0.12	654.22	0.55	1.03	1.05
Contribution From CON	NSERVANCY							88.28	8123			4.21	0.00		4.57		0.00	97.06									
		MHSA 8	MHSA 9					266.35	26294	2.23	189.77	183.8	3 17.25		4.57	95.69	0.00	476.93	157.39	442.85	85.8	900	0.08	534.17	0.83	0.84	0.94
		MHSA 9	MHSA 10					266.35	26294	2.23		183.8			4.57	95.69	0.00	476.93	157.39	442.85	70.8	900	0.05	422.30	1.05	0.66	0.75
		MHSA 10	MHSA 11				-	266.35	26294	2.23		183.8			4.57	95.69	0.00	476.93	157.39	442.85	70.8	900	0.07	499.67	0.89	0.79	0.89
		MHSA 11	MHSA 12	3.27			311	269.62		2.22		183.8			4.57	95.69	3.27	480.20		445.83	78.2	900	0.11	626.37	0.71	0.98	1.07
		MHSA 12	MHSA 13	1.01			96	270.63	26702	2.22		183.8			4.57	95.69	1.01		158.80	446.74	74.4	900	0.13	680.94	0.66	1.07	1.14
		MHSA 13	MHSA 14	8.66			824	279.29		2.21		183.8			4.57	95.69	8.66	489.87		454.61	81.3	900	0.11	626.37	0.73	0.98	1.07
		MHSA 14	MHSA 15					279.29			197.26	183.8			4.57	95.69	0.00		161.66	454.61	25.9	900	0.07	499.67	0.91	0.79	0.89
		MHSA 15	MHSA 16					279.29	27526	2.21		183.8			4.57	95.69	0.00	489.87	161.66	454.61	34.5	900	0.08	534.17	0.85	0.84	0.94
		MHSA 16	MHSA 17			-		279.29			197.26	183.8			4.57	95.69	0.00	489.87	161.66	454.61	86.9	900	0.13	680.94	0.67	1.07	1.14
		MHSA 17	MHSA 18			-		279.29		2.21		183.8			4.57	95.69	0.00	489.87	161.66	454.61	34.6	900	0.51	1348.72	0.34	2.12	1.91
		MHSA 18	MHSA 19		_	-		279.29	-:		197.26	183.8			4.57	95.69	0.00	489.87		454.61	68.7	900	80.0	534.17	0.85	0.84	0.94
		MHSA 19	MHSA 20	54.00	_	-	7005	279.29 333.58	27526 35331		197.26	183.8			4.57	95.69 119.55	0.00	489.87 596.75		454.61 559.94	63.1	900	80.0	534.17	0.85	0.84	0.94
		MHSA 20 MHSA 21	MHSA 21 MHSA 22	54.29	_	-	7805	333.58		2.13	243.46 243.46	42.07 225.9 225.9			4.57 4.57	119.55		596.75		559.94	18.1 82.4	1050 1050	0.36	1709.28 900.87	0.33 0.62	1.97 1.04	1.76
		MHSA 21	MHSA 23	+ +	-	+		333.58	35331		243.46	225.9			4.57	119.55		596.75		559.94	85.0	1050	0.10	854.64	0.62	0.99	1.10
		MHSA 22	MHSA 24	+ +	-	+		333.58	35331		243.46	225.9			4.57	119.55		596.75	196.93	559.94	77.3	1050	0.09	1103.33	0.51	1.27	1.05
		MHSA 24	MHSA 25					333.58	35331	_	243.46	225.9			4.57	119.55	0.00	596.75		559.94	45.5	1050	0.09	854.64	0.66	0.99	1.05
		MHSA 25	MHSA 26					333.58	35331	2.13		225.9			4.57	119.55	0.00	596.75		559.94	35.9	1050	0.09	854.64	0.66	0.99	1.05
		MHSA 26	MHSA 27					333.58	35331	2.13		225.9			4.57	119.55	0.00	596.75	196.93	559.94	83.1	1050	0.12	986.85	0.57	1.14	1.17
		MHSA 27	MHSA 28				0.10	333.58	35331		243.46	225.9			4.57	119.55		596.75		559.94	74.3	1050	0.04	569.76	0.98	0.66	0.75
		MHSA 28	MHSA 29	1.54	_	-	249	335.12	35580		244.90	225.9			4.57	119.55	1.54	598.29	197.44	561.89	60.7	1050	0.08	805.76	0.70	0.93	1.00
		MHSA 29	MHSA 30	<u> </u>	_	-		335.12	35580	2.12		225.9			4.57	119.55	0.00	598.29		561.89	99.8	1050	0.10	900.87	0.62	1.04	1.10
		MHSA 30 MHSA 31	MHSA 31 MHSA 32		_	-		335.12 335.12	35580 35580	_	244.90	225.9 225.9			4.57	119.55		598.29	197.44 197.44	561.89	42.6 111.3	1050	0.27	1480.28 854.64	0.38	1.71 0.99	1.59
		MHSA 31	MHSA 32					335.12	35580	2.12		225.9			4.57	119.55 119.55	0.00	598.29	197.44	561.89 561.89	111.3	1050 1050	0.09	854.64	0.66 0.66	0.99	1.05
		MHSA 33	MHSA 34	+ + -	+	+		335.12	35580	2.12		225.9		1	4.57	119.55	0.00	598.29	197.44	561.89	119.7	1050	0.09	854.64	0.66	0.99	1.05
 		MHSA 34	MHSA 35	+ + +	+	 		335.12			244.90	225.9		 	4.57	119.55		598.29	197.44	561.89	86.2	1050	0.09	753.72	0.66	0.87	0.95
		MHSA 35	MHSA 36		_	-			35580		244.90	225.9			4.57	119.55		598.29		561.89	58.9	1050	0.07	637.01	0.73	0.74	0.83
		MHSA 36	MHSA 37		+	 		335.12			244.90	225.9			4.57	119.55		598.29	197.44	561.89	110.8	1050	0.03	944.84	0.59	1.09	1.14
		MHSA 37	MHSA 38		+	 		335.12	35580		244.90	225.9			4.57	119.55		598.29	197.44	561.89	72.3	1050	0.15	1103.33	0.55	1.09	1.28
		MHSA 38	MHSA 39	53.68	1		5311	388.80	40891		275.30	225.9			4.57	119.55		651.97	215.15	610.00	87.5	1050	0.10	900.87	0.68	1.04	1.12
To SOUTH NEPEAN C				-5.00		i i	30	388.80	40891		2.0.00	225.9			4.57	1.0.00	55.55	651.97		0.0.00	<u> </u>		0.10		0.00		
													1 1												1	1 1	-
				DESIG	N PARAME	TERS							Designe	d:				PROJEC	Г:								
Park Flow = Average Daily Flow =		9300 280	L/ha/da l/p/day	0.10764	l/s/Ha				al Peak Fa Peak Fact		1.00 per MOE G	raph					BNC								RY ANALYS 5 - OPTION		
Comm/Inst Flow =		28000	L/ha/da	0.3241	l/s/Ha			Extraneou	ıs Flow =		0.330	L/s/ha	Checked	d:				LOCATIO	N:				014	044			
Industrial Flow =		35000	L/ha/da	0.40509	l/s/Ha				Velocity =		0.600		_				SLM						City of	Ottawa			
Max Res. Peak Factor =		4.00						Manning's		(Conc)		(Pvc) 0.01					00	Ellis Dod				District			0	4 N	
Commercial/Park Peak F	actor =	1.50 0.32	I/a/IIIa					Townhous			2.7		Dwg. Re	rerence:			02	File Ref:			10.710	Date:	00 4 000	•	Sheet		2
nstitutional =		0.32	l/s/Ha					Single ho	use coeff=		3.4		1					1			16-746	1	23 Aug 2023	3	1	of	2

Manning's n=	0.013																											WW	VU	
	LOCATION	5001	T0	1051			AL AREA AND I	POPULATION		170/5	BEAU		CO		IN	STIT	PAI	RK	C+I+I	I	NFILTRATIO	N	TOTAL	PIPE DIST DIA SLOPE CAP RATIO VEI						
	STREET	FROM M.H.	TO M.H.	AREA	UNITS	UNITS Singles	Townhouse	POP.	AREA	POP.	FACT.	PEAK FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	PEAK FLOW	AREA	ACCU. AREA	FLOW	FLOW	DIST	DIA	SLOPE	(FULL)	Q act/Q cap	(FULL)	(ACT.)
				(ha)		9			(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
000 055 451//																														
800 CEDARVI		CEDARVIEW	101	49.50				4269	49.50	4269	1		0.37	0.37	-	0.00	4.93	4.93		54.80	54.80									
To Strandherd	Drive, Pipe 101 - SA 23	OLD/WWILW	101	40.00				7200	49.50	4269			0.01	0.37		0.00	4.00	4.93		04.00	54.80									
	EMPLOYMENT LANDS CEDARVIEW EMPLOY	MENT I ANDS	101	6.30				1038	6.30	1038	-	ļ	0.09	0.09	-	0.00		0.00		6.39	6.39									
	Drive, Pipe 101 - SA 23	VIENT LANDS	101	0.30				1036	6.30	1038	1		0.09	0.09	+	0.00		0.00		0.39	6.39									
														1																
SYSTEMHOUS Contribution Fr	SE STREET rom 800 CEDARVIEW					_			49.50	4269	-			0.37	-	0.00		4.93		54.80	54.80									
	rom CEDARVIEW EMPLO	DYMENT LAN	DS						6.30	1038				0.09		0.00		0.00		6.39	6.39									
	rom Citigate Drive, Pipe 2	11 - 213											35.83	35.83						35.83	35.83									
		213	401						55.80 55.80	5307	2.78	47.76 47.76	0.07	36.36		0.00		4.93	18.47	0.07	97.09		98.26	26.4	450	0.25	148.72	0.66	0.94	1.00
		401 403	403 405						55.80	5307 5307	2.70	47.76	0.21	36.56 36.85		0.00		4.93	18.57 18.71	0.21	97.29 97.58		98.43 98.67	87.7 118.4	450 450	0.25 0.25	148.72 148.72	0.66 0.66	0.94 0.94	1.00
		.00							55.80	5307		47.76	2.29	39.14		0.00		4.93	19.82	2.29	99.87		100.54		.50	5.20	5.72		0.04	
		405	407						55.80	5307	2.78	47.76	0.20	39.34		0.00		4.93	19.92	0.20	100.07	33.02	100.70	81.2	450	0.14	111.29	0.90	0.70	0.79
<u> </u>			1	1	1	1			55.80 55.80	5307 5307	2.78	47.76 47.76	11.95 5.28	51.29 56.56	-	0.00		4.93	25.73 28.29	11.95 5.28	112.02 117.29	36.97 38.71	110.45 114.75		-					
		407	409	<u> </u>	+				55.80	5307	2.78	47.76	0.30	56.86	1	0.00		4.93	28.29	0.30	117.59	38.71	114.75	115.8	450	0.25	148.72	0.77	0.94	1.03
		409	101						55.80	5307		47.76	0.16	57.02		0.00		4.93	28.52	0.16	117.75		115.13	53.5	450	0.25	148.72	0.77	0.94	1.03
To STRANDHE	ERD DRIVE, Pipe 101 - S.	A 23							55.80	5307				57.02		0.00		4.93			117.75									
STRANDHED	D DRIVE - SOUTH NEPE	AN COLLECT	OR (PHASE 2	1							-	-	-	1	-						-				-					
	rom Systemhouse Street,			'					55.80	5307				57.02		0.00		4.93		0.00	117.75									
		101	103						55.80	5307		47.76		57.02		0.00		4.93	28.52	0.00	117.75		115.13	110.1		0.11	148.80	0.77	0.69	0.76
		103	105						55.80	5307		47.76		57.02		0.00		4.93	28.52	0.00	117.75		115.13	120.0		0.10	141.88	0.81	0.66	0.73
		105 107	107 SA 23						55.80 55.80	5307 5307		47.76 47.76	1	57.02 57.02	-	0.00		4.93	28.52	0.00	117.75	38.86 38.86	115.13 115.13	120.0 119.6	525 525	0.12	155.42 134.60	0.74 0.86	0.72	0.79
		SA 23	SA 22						55.80	5307		47.76		57.02		0.00		4.93	28.52	0.00	117.75	38.86	115.13	54.9	600	0.45	429.70	0.27	1.52	1.28
	NODE 120	SA 22	SA 21	105.84				10974	161.64	16281		126.31	89.70	146.72	11.20	11.20		4.93	75.75	206.74	324.49	107.08	309.14	121.8	750	0.12	402.33	0.77	0.91	1.00
		SA 21 SA 20	SA 20 SA 19						161.64 161.64	16281		126.31 126.31		146.72 146.72		11.20 11.20		4.93	75.75 75.75	0.00	324.49	107.08 107.08	309.14 309.14	90.6 90.0	750 750	0.12 0.12	402.33 402.33	0.77 0.77	0.91	1.00
-		SA 20	SA 19	1					161.64	16281		126.31		146.72		11.20		4.93	75.75	0.00	324.49	107.08	309.14	66.8	750	0.12	385.20	0.77	0.91	0.97
		SA 18	SA 17						161.64	16281	2.39	126.31		146.72		11.20		4.93	75.75	0.00	324.49	107.08	309.14	76.9	750	0.12	402.33	0.77	0.91	1.00
	11005.440	SA 17	SA 16						161.64			126.31		146.72		11.20		4.93	75.75	0.00	324.49	107.08	309.14	68.7	750	0.12	402.33	0.77	0.91	1.00
-	NODE 110	SA 16 SA 15	SA 15 SA 14			-			161.64 161.64			126.31 126.31	17.72	164.44 164.44		11.20 11.20		4.93	84.36 84.36	17.72		112.93 112.93	323.60 323.60	84.1 59.7	750 750	0.12 0.13	402.33 418.75	0.80	0.91 0.95	1.01
		SA 14	SA 13						161.64	16281		126.31		164.44		11.20		4.93	84.36	0.00	342.21	112.93	323.60	56.6	750	0.13	402.33	0.80	0.91	1.01
		SA 13	SA 12						161.64	16281				164.44		11.20		4.93	84.36	0.00	342.21	112.93	323.60	144.6	750	0.10	367.27	0.88	0.83	0.94
	NODE 400	SA 12	SA 11						161.64	16281	2.39	126.31	45.40	164.44	0.05	11.20		4.93	84.36	0.00 21 23	342.21	112.93	323.60	150.0	750	0.10	367.27	0.88	0.83	0.94
	NODE 100	SA 11 SA 10	SA 10 SA 9						161.64 161.64	16281 16281	2.00	126.31 126.31	15.18	179.62	0.05	17.25 17.25		4.93	93.70 93.70	0.00	363.44 363.44	119.94 119.94	339.95 339.95	46.4 117.0	750 750	0.10 0.10	367.27 367.27	0.93	0.83	0.94
		SA 9	SA 8						161.64	16281	2.39	126.31		179.62		17.25		4.93	93.70	0.00	363.44	119.94	339.95	79.7	750	0.10	367.27	0.93	0.83	0.94
		SA 8	SA 7						161.64			126.31		179.62		17.25		4.93	93.70	0.00	363.44	119.94	339.95	69.3	750	0.10	367.27	0.93	0.83	0.94
		SA 7 SA 6	SA 6 SA 5	<u> </u>	-				161.64 161.64		2.39	126.31 126.31	-	179.62 179.62		17.25 17.25		4.93	93.70 93.70	0.00	363.44	119.94 119.94	339.95 339.95	91.0 77.1	750 750	0.10 0.10	367.27 367.27	0.93	0.83	0.94
		SA 5	SA 4						161.64			126.31		179.62		17.25		4.93	93.70	0.00		119.94	339.95	78.9	750	0.10	367.27	0.93	0.83	0.94
		SA 4	SA 3						161.64	16281	2.39	126.31		179.62		17.25		4.93	93.70	0.00	363.44	119.94	339.95	80.5	750	0.10	367.27	0.93	0.83	0.94
		SA 3 SA 2	SA 2 SA 1		-				161.64 161.64			126.31		179.62 179.62	1	17.25		4.93 4.93	93.70 93.70	0.00	363.44 363.44	119.94	339.95 339.95	150.0 100.6	750 750	0.10 0.10	367.27 367.27	0.93	0.83	0.94
		SA 2 SA 1	EX 80	 	+				161.64	16281 16281		126.31	 	179.62		17.25 17.25		4.93	93.70	0.00	363.44	119.94	339.95	24.5	750	0.10	367.27	0.93	0.83	0.94
To SOUTH NE	PEAN COLLECTOR PHA			2					101.01	16281	00	.20.01		179.62		17.25		4.93	55.76	0.00	363.44		555.55	1.0	. 50	5.10	55 <u>L</u> 1	- 0.00	0.00	0.04
														1																
CONSERVAN	CV		1	 	1				-		 	-	-	1	1				-		 				 					
CONSERVAN		NSERVANCY	MHSA 8	88.28	1			8123	88.28	8123	 	 	4.21	4.21	 	0.00	4.57	4.57	1	97.06	97.06			1	1	1				
To SOUTH NE	PEAN COLLECTOR PHA	ASE 2, Pipe M	HSA 8 - MHSA	9				. =-	88.28	8123				4.21		0.00		4.57			97.06									
********	Conservancy info derived f	rom DSEL ichi	120.1180.2022	04-19 B	/11 decign =	L					 	-	-	 	 						 			1	-					
*NOTE:	13.7Ha of commercial area						subtracted a	as it has alrea	adv been ac	counted t	or in the	Novatech 5	SNC sewer	r drainage	area	 			1					1	-	1				
		Jioatoa iii la	concorvano	January				rido dilot	,	- 30.11.00				amage																
Davids El		0000	1.0- 23	0.40=0	DESIGN	PARAME	TERS		In . 49 . 11	1 B						Designed	i:				PROJEC1	:	001	TU NES	EAN OC:	LECTOR	CANITAD	V ANIAL V	10	
Park Flow = Average Daily F	low =	9300 280	L/ha/da l/p/dav	0.10764		l/s/Ha			Institutional Industrial I			1.00 er MOE Gr	ranh							BNC								Y ANALYS - OPTION		
Comm/Inst Flow		28000	L/ha/da	0.3241		I/s/Ha			Extraneou		.σ. – ασ μ		L/s/ha			Checked	:				LOCATIO	N:	30				באווטט	3. 1.31		
Industrial Flow =	=	35000	L/ha/da	0.40509		l/s/Ha			Minimum \			0.600	m/s							SLM						City of	Ottawa			
Max Res. Peak		4.00							Manning's		(Conc)	0.013	(Pvc)	0.013		D E .				00	Elle Dec				Data		1	01: 1	NI.	
Commercial/Par Institutional =	rk Peak Factor =	1.50 0.32	l/s/Ha						Townhous Single hou			2.7 3.4				Dwg. Ref	erence:			02	File Ref:			16-746	Date:	23 Aug 202	3	Sheet	NO.	2
		0.02	. 51.10						Jgio 1100			0.4									<u> </u>			.00	!	_0ug £02	-		JI	740 -

Manning's n=0.013																											COLYYO	L	
LOCATION	N				RESIDENTI	AL AREA AND	POPULATION					COM	им	INS	STIT	PAI	RK	C+I+I		INFILTRATION						PIPE			
STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.		LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	
	M.H.	M.H.			Singles	Townhouse		AREA	POP.	FACT.	FLOW		AREA	l	AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
SOUTH NEPEAN COLLECTOR (PHA	(SE 3)													<u> </u>															
Contribution From Strandherd Drive -		N COLLECTOR	DHASE	3 Pine SA	1 - FY 80			161.64	16281				179.62		17.25		4.93		0.00	363.44									
NODE 90	MHSA 1	MHSA 2	16.43	J, I IPE OA	1 - LX 00		1889	178.07	18170	2.36	138.70		179.62		17.25		0.00	92.91	16.43		125.36	356.97	58.4	900	0.12	654.22	0.55	1.03	1.05
11052 00	MHSA 2	MHSA 3	10.40				1000	178.07			138.70		179.62		17.25		0.00	92.91	0.00		125.36	356.97	47.7	900	0.08	534.17	0.67	0.84	0.90
	MHSA 3	MHSA 4						178.07	18170		138.70		179.62		17.25		0.00	92.91	0.00	379.87	125.36	356.97	76.2	900	0.06	462.61	0.77	0.73	0.80
	MHSA 4	MHSA 5						178.07	18170		138.70		179.62		17.25		0.00	92.91	0.00	379.87	125.36	356.97	32.3	900	0.14	706.64	0.51	1.11	1.11
	MHSA 5	MHSA 6						178.07	18170	2.36	138.70		179.62		17.25		0.00	92.91	0.00	379.87	125.36	356.97	42.6	900	0.09	566.58	0.63	0.89	0.94
	MHSA 6	MHSA 7						178.07	18170	2.36	138.70		179.62		17.25		0.00	92.91	0.00	379.87	125.36	356.97	74.1	900	0.11	626.37	0.57	0.98	1.02
	MHSA 7	MHSA 8						178.07	18170	2.36	138.70		179.62		17.25		0.00	92.91	0.00	379.87	125.36	356.97	26.0	900	0.12	654.22	0.55	1.03	1.05
Contribution From CONSERVANCY								88.28	8123				4.21		0.00		4.57		0.00	97.06									
	MHSA 8	MHSA 9						266.35			189.76		183.83		17.25		4.57	95.69	0.00		157.39	442.84	85.8	900	0.08	534.17	0.83	0.84	0.94
	MHSA 9	MHSA 10						266.35	26293		189.76		183.83		17.25		4.57	95.69	0.00	476.93	157.39	442.84	70.8	900	0.05	422.30	1.05	0.66	0.75
	MHSA 10	MHSA 11						266.35	26293				183.83		17.25		4.57	95.69	0.00		157.39	442.84	70.8	900	0.07	499.67	0.89	0.79	0.89
	MHSA 11	MHSA 12	3.27	1	1		311	269.62			191.66		183.83		17.25		4.57	95.69	3.27	480.20		445.82	78.2	900	0.11	626.37	0.71	0.98	1.07
	MHSA 12	MHSA 13	1.01				96	270.63	26701		192.25		183.83		17.25		4.57	95.69	1.01		158.80	446.74	74.4	900	0.13	680.94	0.66	1.07	1.14
	MHSA 13	MHSA 14	8.66				824	279.29	27525		197.25		183.83		17.25		4.57	95.69	8.66	489.87	161.66	454.60	81.3	900	0.11	626.37	0.73	0.98	1.07
	MHSA 14	MHSA 15						279.29			197.25		183.83		17.25		4.57	95.69	0.00	489.87		454.60	25.9	900	0.07	499.67	0.91	0.79	0.89
	MHSA 15	MHSA 16						279.29			197.25		183.83		17.25		4.57	95.69	0.00		161.66	454.60	34.5	900	0.08	534.17	0.85	0.84	0.94
	MHSA 16 MHSA 17	MHSA 17 MHSA 18		-				279.29 279.29			197.25 197.25		183.83 183.83		17.25 17.25		4.57 4.57	95.69 95.69	0.00	489.87 489.87	161.66	454.60 454.60	86.9 34.6	900	0.13	680.94 1348.72	0.67	1.07 2.12	1.14 1.91
	MHSA 17	MHSA 18		-				279.29	27525 27525		197.25		183.83		17.25		4.57	95.69	0.00	489.87	161.66	454.60	68.7	900	0.08	534.17	0.85	0.84	0.94
+	MHSA 19	MHSA 20						279.29			197.25		183.83		17.25		4.57	95.69	0.00	489.87		454.60	63.1	900	0.08	534.17	0.85	0.84	0.94
NODE 80	MHSA 20	MHSA 21	54.29	1			7805	333.58	35330			42.07	225.90		27.77		4.57	119.55	106.88		196.93	559.93	18.1	1050	0.36	1709.28	0.33	1.97	1.76
NODE 60	MHSA 21	MHSA 22	34.23				7003	333.58	35330		243.45	42.07	225.90	10.32	27.77		4.57	119.55	0.00	596.75		559.93	82.4	1050	0.10	900.87	0.62	1.04	1.10
	MHSA 22	MHSA 23						333.58	35330		243.45		225.90	1	27.77		4.57	119.55	0.00	596.75	196.93	559.93	85.0	1050	0.09	854.64	0.66	0.99	1.05
	MHSA 23	MHSA 24		1				333.58	35330		243.45		225.90		27.77		4.57	119.55	0.00	596.75	196.93	559.93	77.3	1050	0.15	1103.33	0.51	1.27	1.27
	MHSA 24	MHSA 25		1				333.58	35330	_	243.45		225.90		27.77		4.57	119.55	0.00	596.75	196.93	559.93	45.5	1050	0.09	854.64	0.66	0.99	1.05
	MHSA 25	MHSA 26						333.58	35330		243.45		225.90	1	27.77		4.57	119.55	0.00	596.75	196.93	559.93	35.9	1050	0.09	854.64	0.66	0.99	1.05
	MHSA 26	MHSA 27		1				333.58	35330	_	243.45		225.90	+	27.77		4.57	119.55	0.00	596.75	196.93	559.93	83.1	1050	0.12	986.85	0.57	1.14	1.17
	MHSA 27	MHSA 28						333.58	35330		243.45		225.90	1	27.77		4.57	119.55	0.00	596.75	196.93	559.93	74.3	1050	0.12	569.76	0.98	0.66	0.75
	MHSA 28	MHSA 29	1.54	1			249	335.12					225.90	+	27.77		4.57	119.55	1.54		197.44	561.89	60.7	1050	0.04	805.76	0.70	0.93	1.00
	MHSA 29	MHSA 30	1.04				240	335.12			244.90		225.90		27.77		4.57	119.55	0.00		197.44	561.89	99.8	1050	0.10	900.87	0.62	1.04	1.10
	MHSA 30	MHSA 31						335.12			244.90		225.90		27.77		4.57	119.55	0.00		197.44	561.89	42.6	1050	0.27	1480.28	0.38	1.71	1.59
	MHSA 31	MHSA 32		1				335.12	35579		244.90		225.90		27.77		4.57	119.55	0.00	598.29	197.44	561.89	111.3	1050	0.09	854.64	0.66	0.99	1.05
	MHSA 32	MHSA 33	1	1				335.12	35579				225.90		27.77		4.57	119.55	0.00	0000	197.44	561.89	118.7	1050	0.09	854.64	0.66	0.99	1.05
	MHSA 33	MHSA 34						335.12					225.90		27.77		4.57	119.55	0.00		197.44	561.89	119.7	1050	0.09	854.64	0.66	0.99	1.05
	MHSA 34	MHSA 35						335.12			244.90		225.90		27.77		4.57	119.55	0.00		197.44	561.89	86.2	1050	0.07	753.72	0.75	0.87	0.95
	MHSA 35	MHSA 36						335.12	35579	2.12	244.90		225.90		27.77		4.57	119.55	0.00	598.29	197.44	561.89	58.9	1050	0.05	637.01	0.88	0.74	0.83
	MHSA 36	MHSA 37						335.12	35579	2.12	244.90		225.90		27.77		4.57	119.55	0.00	598.29	197.44	561.89	110.8	1050	0.11	944.84	0.59	1.09	1.14
	MHSA 37	MHSA 38						335.12	35579		244.90		225.90		27.77		4.57	119.55	0.00	598.29	197.44	561.89	72.3	1050	0.15	1103.33	0.51	1.27	1.28
NODE 70	MHSA 38	MHSA 39	53.68				5311	388.80	40890	2.08	275.30		225.90		27.77		4.57	119.55	53.68	651.97	215.15	610.00	87.5	1050	0.10	900.87	0.68	1.04	1.12
To SOUTH NEPEAN COLLECTOR PI	HASE 1							388.80	40890		ļ		225.90		27.77		4.57			651.97									
		l		DEGICE	DADALE	TEDO							<u> </u>	1	Decision 1					DDO IEST									
Pork Flow =	0200	I /bo/de	0.10764	DESIGN	PARAME	IERS		Institution	al Book Fr	otor =	1.00				Designed	i.			DNO	PROJECT		SOUTH NEPEAN COLLECTOR SANITARY ANALYSIS					ıe		
Park Flow = Average Daily Flow =	9300 280	L/ha/da I/p/day	0.10764		l/s/Ha						1.00 er MOE Gr	anh							BNC		CONSERVANCY + CEDARVIEW LANDS - OPTION 2								
Comm/Inst Flow =	28000	L/ha/da	0.3241		I/s/Ha			Extraneou		o. – uo p	0.330				Checked:					LOCATION	ı.	- 30					<u> </u>		
Industrial Flow =	35000	L/ha/da	0.40509		l/s/Ha			Minimum			0.600				OHECKEU.				SLM	LOUATION	•				City of	Ottawa			
Max Res. Peak Factor =	4.00	2,10,00	3. 10000		,, 0, 1.14			Manning's	,	(Conc)			0.013												J., 01				
Commercial/Park Peak Factor =	1.50							Townhous		,000)	2.7	,	0.0.0		Dwg. Refe	erence:			02	File Ref:				Date:			Sheet	No.	2
Institutional =	0.32	l/s/Ha						Single ho			3.4				3					1			16-746		23 Aug 202	3	1	of	2

J.F. Sabourin and Associates Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 T 613-836-3884 F 613-836-0332

Project Number: P386 October 06, 2023

David Schaeffer Engineering Ltd 120 Iber Road, Unit 103 Ottawa, Ontario K2S 1E9

Braden Kaminski, P.Eng Attention:

Mattamy Cedarview Development - Sanitary HGL Analysis Subject:

Introduction

The Mattamy Cedarview Development is located in Barrhaven, within the City of Ottawa, north of O'Keefe Crescent and east of Highway 416. The proposed developable area will be approximately 54.43 ha and will comprise residential housing, mixed-use condo blocks, parks and a SWM pond. The proposed development's sanitary system will connect to the existing sanitary network for Barrhaven. As requested by your office, the following outlines the existing sanitary system hydraulic grade line (HGL) as well as under proposed conditions once contributions from the Cedarview development are added. As such the following memo outlines the approach taken in assessing the existing and proposed sanitary HGL and summarises the findings of this analysis.

Background Data

The existing sanitary pipe data and flow contributions were taken from the following data sources:

- Existing Sanitary Flow Contributions "Strandherd Drive Widening Project South Nepean Collector Phase 3: Sanitary Flow Calculations", Novatech, May 30, 2019
- Sanitary Sewer Network Details As-built drawings provided by the City of Ottawa Complete (both existing and proposed) sanitary design sheets have been completed by DSEL and have been provided in Attachment A. Note that in both options, the wastewater flows from Barrhaven Conservancy and a potential future employment land south of the subject property have been considered, refer to Attachment C in DSEL's Servicing Memo for this site.

Analysis Approach

A hydraulic grade line analysis for the existing sanitary system was completed using PCSWMM modelling software. The existing sanity sewer infrastructure data was extracted from DSEL's compiled sanitary network spreadsheets and incorporated into a PCSWMM model, and the incremental flows derived by DSEL's calculations (Attachment A) were then applied to each Maintenance Hole (MH) in the model as steady flows (using the baseflow option). Exit losses were applied to all sanitary sewer pipes in the system based on the angle of the downstream connection. Figure 1 provides an overview of the model. Note that the Barrhaven sanitary network is quite an expansive system as such this analysis is limited to 6 km of network spanning from CitiGate Drive (upstream extent) to Longfield Drive (downstream extent). At the downstream extent of the model, a normal outfall has been assumed. The same analysis was completed again with the additional flow contributions from the Cedarview development added to the upstream extent of the model at MH 101 on Stranderherd Drive at the intersection with Systemhouse Street.

Results

The maximum HGL obtained at each MH has been extracted from the model, with the results from this analysis under existing and proposed conditions provided in **Tables 1 & 2**, respectively. From this analysis under existing conditions, no pipes in this network are surcharged with a minimum freeboard of **23cm** at **MH SA_9**, and an average freeboard of **40cm**. **Figure 2** presents the maximum HGL along the network under this condition.

Under proposed conditions no pipes in this network are surcharged with a minimum freeboard of **12cm** at **MH SA_11**, and an average freeboard of **30cm**. **Figure 3** presents the maximum HGL along the network under this condition. As no pipes will be surcharged under the proposed conditions it can be concluded that the proposed sanitary sewer infrastructure is sufficiently sized, to safely convey the additional sanitary flows from Cedarview development through the Barrhaven sanitary sewer network.

Conclusion

A sanitary HGL analysis for the Barrhaven sanitary network was completed using PCSWMM based on sanitary sewer as-built information and flow details provided by DSEL. From this analysis, it was found that under both existing and proposed conditions the sanitary sewer is not surcharged as such it can be concluded that the existing sanitary infrastructure is sufficiently sized, to safely convey sanitary flows from Cedarview development through the Barrhaven sanitary sewer network.

Yours truly,

J.F Sabourin and Associates Inc.

wills

Jonathon Burnett, B.Eng, P.Eng Water Resources Engineer

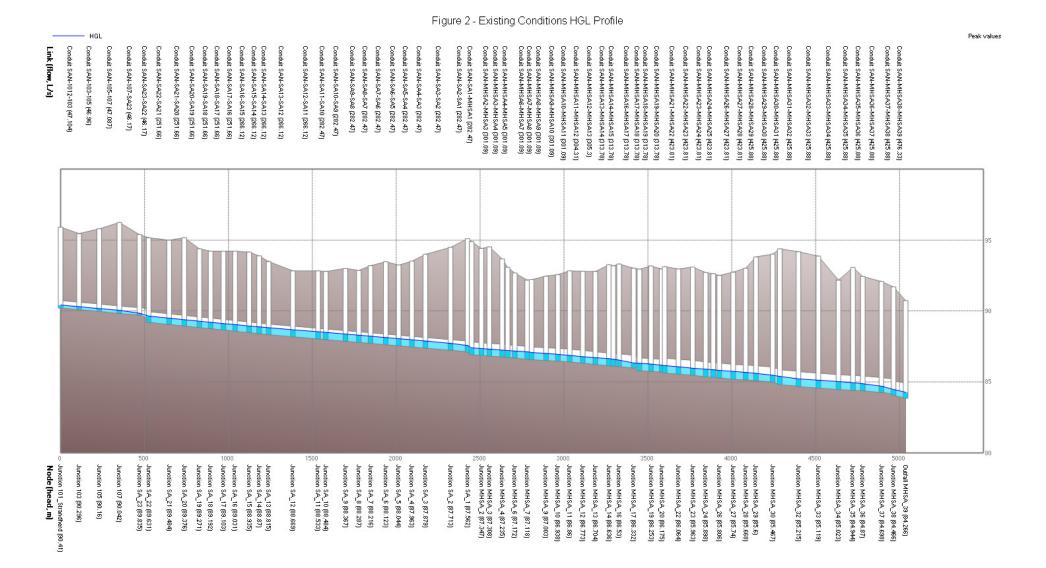
cc: J.F Sabourin, M.Eng, P.Eng Director of Water Resources Projects

Figures

Figure 1: Model Overview

Figure 2 Existing Conditions HGL Profile Figure 3 Proposed Conditions HGL profile

Tables


Table 1: Existing Conditions - Barrhaven Sanitary Analysis
Table 2: Proposed Conditions - Barrhaven Sanitary Analysis

Attachments

Attachment A: Sanitary Design Sheets (DSEL)

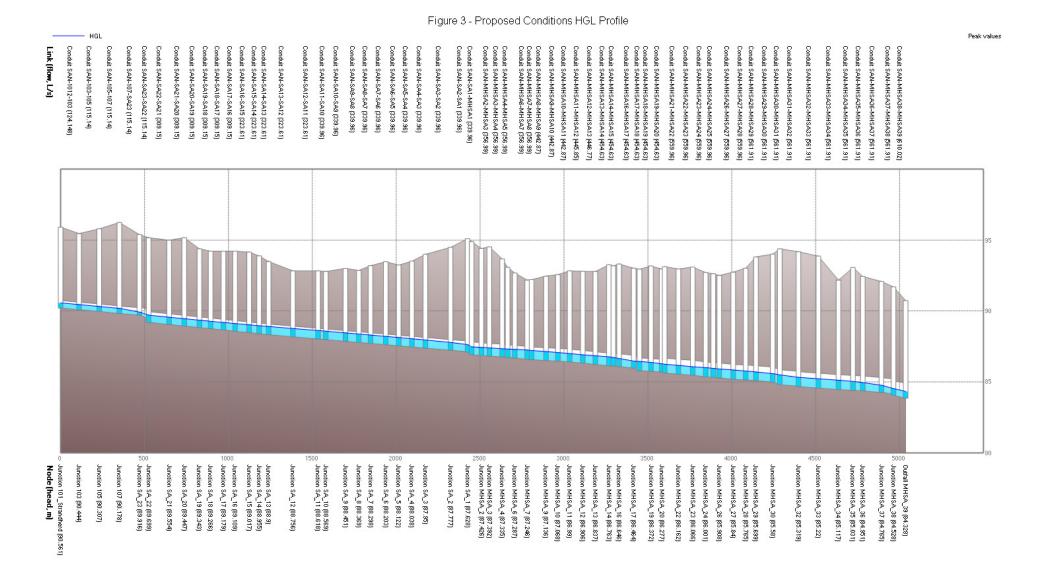


Table 1 - Existing Conditions - Barrhaven Sanitary Analysis

		та	g Conditions	- Barrnaven S	-	-	Freeboard From Obvert				
		Diameter	Upstream	B	Total Flores		IGL	Freeboard	From Obvert		
US MH	DS MH	Diameter (m)	Obvert	Downstrea m Obvert	Total Flows	Upstream	Downstream	Upstream	Downstream		
		(111)	(m)	(m)	(L/S)	(m)	(m)	(m)	(m)		
01 Strandher	103	0.53	90.73	90.61	46.2	90.41	90.29	0.32	0.31		
103	105	0.53	90.61	90.49	46.2	90.29	90.16	0.32	0.33		
105	107	0.53	90.49	90.34	46.2	90.16	90.04	0.33	0.30		
107	SA_23	0.53	90.34	90.23	46.2	90.04	89.83	0.30	0.40		
SA_23	SA_22	0.60	90.30	90.25	46.2	89.83	89.63	0.47	0.40		
SA_22	SA_21	0.75	89.94	89.79	251.7	89.63	89.48	0.31	0.42		
SA_21	SA_20	0.75	89.79	89.68	251.7	89.48	89.38	0.31	0.30		
SA_20	SA_20 SA_19	0.75	89.68	89.57	251.7	89.38	89.27	0.30	0.30		
SA_19	SA_18	0.75	89.57	89.50	251.7	89.27	89.19	0.30	0.31		
SA_18	SA_17	0.75	89.50	89.40	251.7	89.19	89.10	0.31	0.30		
SA_17	SA_17	0.75	89.40	89.32	251.7	89.10	89.03	0.30	0.28		
SA_16	SA_15	0.75	89.32	89.22	266.1	89.03	88.93	0.28	0.28		
SA_15	SA_14	0.75	89.22	89.14	266.1	88.93	88.87	0.28	0.27		
SA_14	SA_14	0.75	89.14	89.07	266.1	88.87	88.81	0.27	0.26		
SA_14 SA_13	SA_13	0.75	89.07	88.92	266.1	88.81	88.67	0.26	0.25		
SA_13	SA_12 SA_11	0.75	88.92	88.77	266.1	88.67	88.53	0.25	0.23		
SA_12	SA_11	0.75	88.77	88.73	282.5	88.53	88.48	0.23	0.24		
SA_11	SA_10 SA_9	0.75	88.73	88.61	282.5	88.48	88.37	0.24	0.24		
SA_10 SA_9	SA_9 SA_8	0.75	88.61	88.53	282.5	88.37	88.29	0.24	0.23		
SA_9 SA_8	SA_6 SA_7	0.75	88.53	88.46	282.5	88.29	88.22	0.23	0.23		
_	_	0.75	88.46		282.5		88.12	0.23			
SA_7	SA_6			88.37 88.29	282.5	88.22	88.04	0.23	0.24		
SA_6	SA_5	0.75 0.75	88.37 88.29	88.21	282.5	88.12	88.04 87.96	0.24	0.24 0.25		
SA_5	SA_4	0.75	88.29 88.21	88.13	282.5	88.04	87.96 87.88		0.25		
SA_4 SA_3	SA_3 SA_2	0.75	88.13	87.98	282.5	87.96 87.88	87.88 87.71	0.25 0.25	0.25		
_	SA_2 SA_1	0.75	87.98	87.88	282.5	87.88 87.71	87.56	0.23	0.27		
SA_2	_	0.75	87.98 87.85		282.5	87.71 87.56		0.27	0.31		
SA_1	MHSA_1	0.75	87.83 87.82	87.82	301.1	87.36 87.39	87.39	0.28	0.43		
MHSA_1 MHSA_2	MHSA_2	0.90	87.82 87.75	87.75 87.71	301.1	87.35	87.35 87.31				
MHSA 3	MHSA_3	0.90	87.75 87.71	87.71 87.66	301.1	87.33 87.31	87.31 87.24	0.40	0.40		
MHSA_4	MHSA_4 MHSA_5	0.90	87.71	87.61	301.1	87.24	87.24 87.21	0.40 0.42	0.42 0.40		
MHSA_5	MHSA_6	0.90	87.61	87.58	301.1	87.24 87.21	87.21	0.42	0.40		
MHSA_6	MHSA_7	0.90	87.58	87.38 87.49	301.1	87.21	87.17		0.41		
		0.90	87.38 87.49	87.49 87.46	301.1	87.17 87.12	87.12 87.07	0.41 0.37	0.37		
MHSA_7 MHSA_8	MHSA_8 MHSA_9	0.90	87.49 87.46	87.40	301.1	87.12 87.07	87.07	0.37	0.39		
MHSA_9	MHSA 10	0.90	87.40 87.40	87.46	301.1	87.00	86.94	0.39	0.40		
MHSA_10	_	0.90	87.40 87.36	87.31	301.1	86.94	86.86	0.40	0.42		
MHSA_10	MHSA_11 MHSA_12	0.90	87.30	87.22	304.3	86.86	86.77	0.42	0.45		
MHSA_11	MHSA_13	0.90	87.30	87.22	305.3	86.77	86.70	0.44	0.43		
MHSA_13	MHSA_14	0.90	87.22	87.12	313.8	86.70	86.64	0.43	0.42		
MHSA_13	MHSA_15	0.90	87.12	87.03	313.8	86.64	86.59	0.42	0.39		
MHSA_15	MHSA_16	0.90	87.03 87.01	86.98	313.8	86.59	86.53	0.39	0.42		
MHSA_16	_	0.90	86.98	86.87	313.8	86.53	86.33	0.42	0.43		
MHSA_16	MHSA_17	0.90	86.98 86.87	86.87 86.69	313.8	86.33	86.33 86.31	0.45	0.34		
MHSA_17	MHSA_18	0.90	86.69	86.64	313.8	86.31	86.25	0.34	0.38		
MHSA_18	MHSA_19	0.90	86.69 86.64	86.59	313.8	86.25	86.25 86.17	0.38	0.39		
MHSA_19	MHSA_20 MHSA_21	1.05	86.64 86.74	86.59 86.67	423.8	86.25 86.17	86.17	0.39	0.42		
MHSA_21	MHSA_22	1.05	86.67	86.59	423.8	86.15	86.06	0.57	0.52		
MHSA_21	MHSA_23	1.05	86.59	86.59 86.52	423.8 423.8	86.15	86.06 85.96	0.52	0.53		
MHSA_23	MHSA_24	1.05	86.52	86.40	423.8	85.96	85.90	0.56	0.50		
MHSA 24	MHSA_25	1.05	86.40	86.36	423.8	85.90	85.85	0.50	0.50		
WII 13A_24	WITISA_23	1.05	80.40	00.30	423.0	03.30	03.03	0.30	0.51		

Table 1 - Existing Conditions - Barrhaven Sanitary Analysis

				g conditions			IGL	Freeboard	From Obvert
US MH	DS MH	Diameter (m)	Upstream Obvert	Downstrea m Obvert	Total Flows (L/S)	Upstream	Downstream	Upstream	Downstream
			(m)	(m)		(m)	(m)	(m)	(m)
MHSA_25	MHSA_26	1.05	86.36	86.33	423.8	85.85	85.81	0.51	0.52
MHSA_26	MHSA_27	1.05	86.33	86.23	423.8	85.81	85.74	0.52	0.49
MHSA_27	MHSA_28	1.05	86.22	86.19	423.8	85.74	85.67	0.48	0.52
MHSA_28	MHSA_29	1.05	86.19	86.14	425.9	85.67	85.60	0.52	0.54
MHSA_29	MHSA_30	1.05	86.14	86.04	425.9	85.60	85.47	0.54	0.57
MHSA_30	MHSA_31	1.05	86.01	85.90	425.9	85.47	85.39	0.54	0.51
MHSA_31	MHSA_32	1.05	85.85	85.75	425.9	85.39	85.22	0.46	0.53
MHSA_32	MHSA_33	1.05	85.72	85.61	425.9	85.22	85.12	0.50	0.49
MHSA_33	MHSA_34	1.05	85.61	85.51	425.9	85.12	85.02	0.49	0.49
MHSA_34	MHSA_35	1.05	85.51	85.45	425.9	85.02	84.94	0.49	0.51
MHSA_35	MHSA_36	1.05	85.45	85.42	425.9	84.94	84.87	0.51	0.55
MHSA_36	MHSA_37	1.05	85.42	85.30	425.9	84.87	84.70	0.55	0.60
MHSA_37	MHSA_38	1.05	85.31	85.20	425.9	84.70	84.47	0.61	0.73
MHSA_38	MHSA_39	1.05	85.10	84.90	476.3	84.47	84.27	0.63	0.63
		•	•		•	•	Max	0.63	0.73
							Min	0.23	0.23
							Average	0	.40

Table 2 - Proposed Conditions - Barrhaven Sanitary Analysis

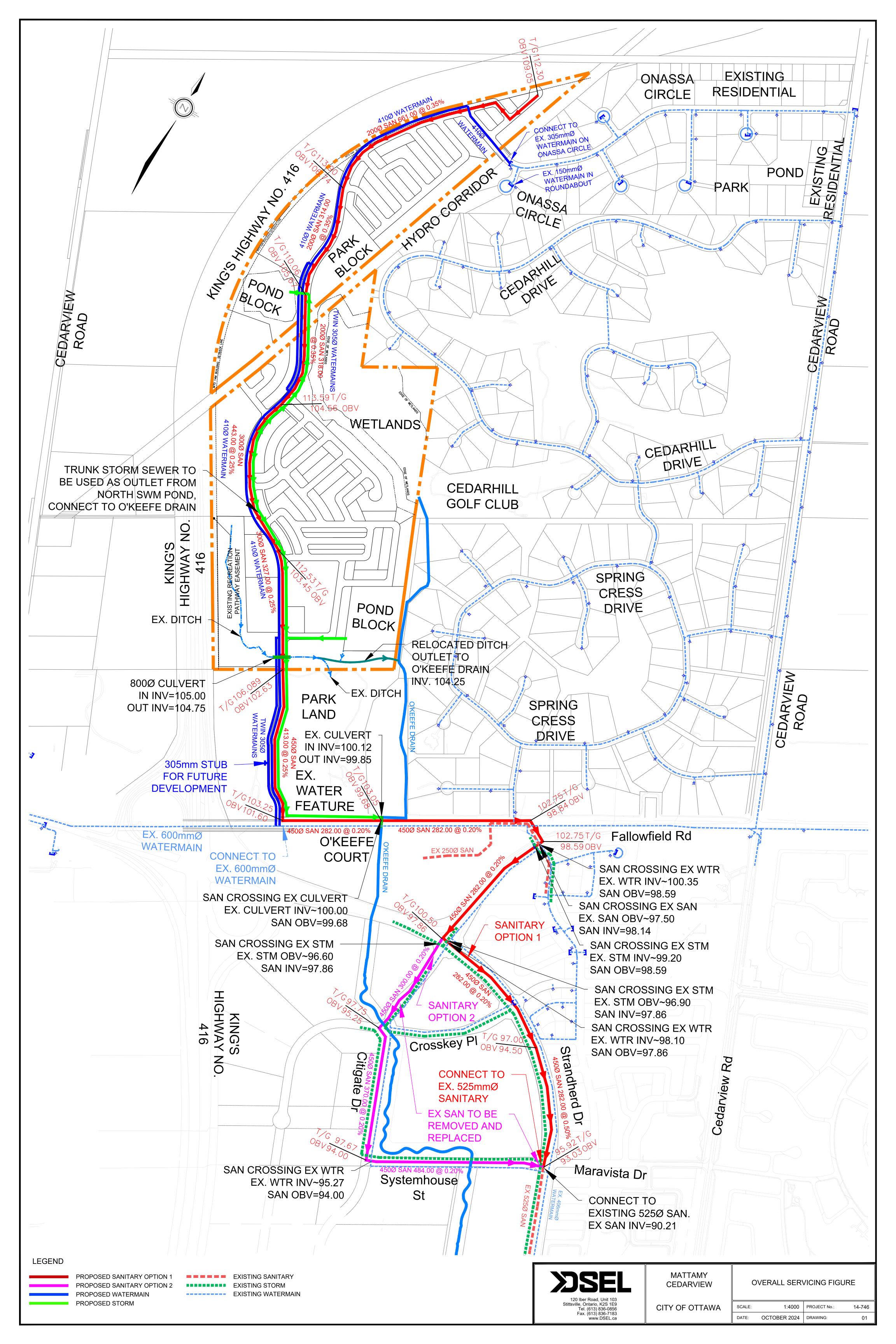

		Tabi	e z - Propose	a Conditions	- Barrnaven S		Freeboard From Obvert				
		Diameter	Upstream	Downstrea	Total Flows		IGL				
US MH	DS MH	(m)	Obvert	m Obvert	(L/S)	Upstream	Downstream	Upstream	Downstream		
			(m)	(m)		(m)	(m)	(m)	(m)		
01_Strandher	103	0.53	90.73	90.61	115.1	90.56	90.44	0.17	0.17		
103	105	0.53	90.61	90.49	115.1	90.44	90.31	0.17	0.17		
105	107	0.53	90.49	90.34	115.1	90.31	90.18	0.17	0.16		
107	SA_23	0.53	90.34	90.23	115.1	90.18	89.92	0.16	0.31		
SA_23	SA_22	0.60	90.30	90.05	115.1	89.92	89.70	0.38	0.35		
SA_22	SA_21	0.75	89.94	89.79	309.2	89.70	89.55	0.24	0.24		
SA_21	SA_20	0.75	89.79	89.68	309.2	89.55	89.45	0.24	0.23		
SA_20	SA_19	0.75	89.68	89.57	309.2	89.45	89.34	0.23	0.23		
SA_19	SA_18	0.75	89.57	89.50	309.2	89.34	89.27	0.23	0.23		
SA_18	SA_17	0.75	89.50	89.40	309.2	89.27	89.18	0.23	0.22		
SA_17	SA_16	0.75	89.40	89.32	309.2	89.18	89.11	0.22	0.20		
SA_16	SA_15	0.75	89.32	89.22	323.6	89.11	89.02	0.20	0.20		
SA_15	SA_14	0.75	89.22	89.14	323.6	89.02	88.95	0.20	0.19		
SA_14	SA_13	0.75	89.14	89.07	323.6	88.95	88.90	0.19	0.17		
SA_13	SA_12	0.75	89.07	88.92	323.6	88.90	88.76	0.17	0.16		
SA_12	SA_11	0.75	88.92	88.77	323.6	88.76	88.62	0.16	0.15		
SA_11	SA_10	0.75	88.77	88.73	340.0	88.62	88.57	0.15	0.16		
SA_10	SA_9	0.75	88.73	88.61	340.0	88.57	88.45	0.16	0.16		
SA_9	SA_8	0.75	88.61	88.53	340.0	88.45	88.37	0.16	0.16		
SA_8	SA_7	0.75	88.53	88.46	340.0	88.37	88.30	0.16	0.16		
SA_7	SA_6	0.75	88.46	88.37	340.0	88.30	88.20	0.16	0.16		
SA_6	SA_5	0.75	88.37	88.29	340.0	88.20	88.12	0.16	0.16		
SA_5	SA_4	0.75	88.29	88.21	340.0	88.12	88.04	0.16	0.16		
SA_4	SA_3	0.75	88.21	88.13	340.0	88.04	87.95	0.16	0.17		
SA_3	SA_2	0.75	88.13	87.98	340.0	87.95	87.78	0.17	0.19		
SA_2	SA_1	0.75	87.98	87.88	340.0	87.78	87.63	0.19	0.25		
SA_1	MHSA_1	0.75	87.85	87.82	340.0	87.63	87.47	0.22	0.35		
MHSA_1	MHSA_2	0.90	87.82	87.75	357.0	87.47	87.43	0.35	0.32		
MHSA_2	MHSA_3	0.90	87.75	87.71	357.0	87.43	87.39	0.32	0.32		
MHSA_3	MHSA_4	0.90	87.71	87.66	357.0	87.39	87.33	0.32	0.33		
MHSA_4	MHSA_5	0.90	87.66	87.61	357.0	87.33	87.31	0.33	0.30		
MHSA_5	MHSA_6	0.90	87.61	87.58	357.0	87.31	87.29	0.30	0.29		
MHSA_6	MHSA_7	0.90	87.58	87.49	357.0	87.29	87.25	0.29	0.24		
MHSA_7	MHSA_8	0.90	87.49	87.46	357.0	87.25	87.21	0.24	0.25		
MHSA_8	MHSA_9	0.90	87.46	87.40	442.9	87.21	87.14	0.25	0.26		
MHSA_9	MHSA_10	0.90	87.40	87.36	442.9	87.14	87.07	0.26	0.29		
MHSA_10	MHSA_11	0.90	87.36	87.31	442.9	87.07	86.99	0.29	0.32		
MHSA_11	MHSA_12	0.90	87.30	87.22	445.9	86.99	86.91	0.31	0.31		
MHSA_12	MHSA_13	0.90	87.22	87.12	446.8	86.91	86.84	0.31	0.28		
MHSA_13	MHSA_14	0.90	87.12	87.03	454.6	86.84	86.76	0.28	0.27		
MHSA_14	MHSA_15	0.90	87.03	87.01	454.6	86.76	86.71	0.27	0.30		
MHSA_15	MHSA_16	0.90	87.01	86.98	454.6	86.71	86.65	0.30	0.33		
MHSA_16	MHSA_17	0.90	86.98	86.87	454.6	86.65	86.46	0.33	0.41		
MHSA_17	MHSA_18	0.90	86.87	86.69	454.6	86.46	86.43	0.41	0.26		
MHSA_18	MHSA_19	0.90	86.69	86.64	454.6	86.43	86.37	0.26	0.27		
MHSA_19	MHSA_20	0.90	86.64	86.59	454.6	86.37	86.28	0.27	0.31		
MHSA_20	MHSA_21	1.05	86.74	86.67	560.0	86.28	86.24	0.46	0.43		
MHSA_21	MHSA_22	1.05	86.67	86.59	560.0	86.24	86.16	0.43	0.43		
MHSA_22	MHSA_23	1.05	86.59	86.52	560.0	86.16	86.07	0.43	0.45		
MHSA_23	MHSA_24	1.05	86.52	86.40	560.0	86.07	86.00	0.45	0.40		
MHSA_24	MHSA_25	1.05	86.40	86.36	560.0	86.00	85.95	0.40	0.41		
MHSA_25	MHSA_26	1.05	86.36	86.33	560.0	85.95	85.91	0.41	0.42		
MHSA_26	MHSA_27	1.05	86.33	86.23	560.0	85.91	85.84	0.42	0.39		

Table 2 - Proposed Conditions - Barrhaven Sanitary Analysis

			Upstream			F	IGL	Freeboard	From Obvert
US MH	DS MH	Diameter (m)	Obvert	Downstrea m Obvert	Total Flows (L/S)	Upstream	Downstream	Upstream	Downstream
			(m)	(m)		(m)	(m)	(m)	(m)
MHSA_27	MHSA_28	1.05	86.22	86.19	560.0	85.84	85.77	0.38	0.42
MHSA_28	MHSA_29	1.05	86.19	86.14	561.9	85.77	85.70	0.42	0.44
MHSA_29	MHSA_30	1.05	86.14	86.04	561.9	85.70	85.58	0.44	0.46
MHSA_30	MHSA_31	1.05	86.01	85.90	561.9	85.58	85.50	0.43	0.40
MHSA_31	MHSA_32	1.05	85.85	85.75	561.9	85.50	85.32	0.35	0.43
MHSA_32	MHSA_33	1.05	85.72	85.61	561.9	85.32	85.22	0.40	0.39
MHSA_33	MHSA_34	1.05	85.61	85.51	561.9	85.22	85.12	0.39	0.39
MHSA_34	MHSA_35	1.05	85.51	85.45	561.9	85.12	85.03	0.39	0.42
MHSA_35	MHSA_36	1.05	85.45	85.42	561.9	85.03	84.95	0.42	0.47
MHSA_36	MHSA_37	1.05	85.42	85.30	561.9	84.95	84.77	0.47	0.53
MHSA_37	MHSA_38	1.05	85.31	85.20	561.9	84.77	84.53	0.54	0.67
MHSA_38	MHSA_39	1.05	85.10	84.90	610.0	84.53	84.33	0.57	0.57
							Max	0.57	0.67
							Min	0.15	0.15
							Average	0	.30

Drawings

• Overall Servicing Figure, prepared by DSEL, dated October 2024

