

Geotechnical Investigation Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario

Client:

Sun Life Assurance Company of Canda c/o BentallGreenOak (Canada) LP 1875 Buckhorn Gate, Suite 601 Mississauga, Ontario L4W 5P1

Type of Document: FINAL REPORT Revision 1

Project Number:

OTT-23002538-B0

Prepared By:

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada

Date Submitted:

October 3, 2024

Table of Contents

Executi	ve Sumr	nary1					
1.	Introduction						
2.	Site Description 4						
3.	Surficial Geology						
	3.1	Surficial Geology Maps5					
	3.2	Bedrock Geology Maps5					
4.	Proced	ure6					
	4.1	Fieldwork6					
	4.2	Laboratory Testing Program6					
	4.3	Multi-channel Analysis of Surface Waves (MASW) Survey7					
5.	Subsurf	ace Conditions and Groundwater Levels					
	5.1	Asphaltic Concrete Pavement					
	5.2	Concrete8					
	5.3	Fill					
	5.4	Glacial Till9					
	5.5	Highly Weathered Glacial Till9					
	5.6	Auger Refusal and Shale Bedrock9					
	5.7	Groundwater Level Measurements12					
6.	Site Cla	ssification for Seismic Site Response and Liquefaction Potential of Soils					
	6.1	Site Classification for Seismic Site Response14					
	6.2	Liquefaction Potential of Soils14					
7.	Grade F	Raise Restrictions					
8.	Site Grading1						
9.	Foundation Considerations1						
10.	Floor Sl	ab and Drainage Requirements					
	10.1	Lowest Floor Level as a Concrete Surface					
	10.2	Lowest Floor Level as a Paved Surface					
11.	Lateral	Earth Pressure Against Subsurface Walls 20					

12.	Excavation and De-Watering Requirements						
	12.1 Excess Soil Management2						
	12.2	Excavation	.22				
	12.3	Dewatering Requirements	.24				
13.	Pipe Be	dding Requirements	25				
14.	Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes						
15.	Tree Planting Restrictions						
16.	Access Roadways						
17.	Corrosion Potential						
18.	Additional Comments						
19.	Genera	l Comments	31				

List of Tables

Table I: Summary of Laboratory Testing Program	. 7
Table II: Summary of Results from Grain-Size Analysis - Fill Samples	. 8
Table III: Summary of Results from Grain-Size and Atterberg Limit Analysis - Weathered Shale	. 9
Table IV: Summary of Inferred Bedrock, Auger Refusal and Cored Bedrock Depths (Elevations)	10
Table V: Summary of Unconfined Compressive Strength Test Results – Bedrock Cores	11
Table VI: Groundwater Level Measurements	12
Table VII: Recommended Pavement Structure Thicknesses	28
Table VIII: Corrosion Test Results on Shale Bedrock Samples	29

List of Figures

Figure 1	-	Site Location Plan
Figures 2	-	Borehole Location Plan
Figures 3a and 3b	-	Cross Sections
Figures 4 to 26	-	Borehole logs
Figures 27 to 34	-	Grain Size Analysis

List of Appendices

Appendix A	-	Rock Core Photographs
Appendix B	_	Shear Wave Velocity Sounding for the Site Class Determination
Appendix C	_	Corrosion Laboratory Certificate of Analysis Report – AGAT Laboratories
Legal Notification		
List of Distribution		

Executive Summary

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed re-development of the parcel of property referred to as Walkley Centre, located at 1822-1846 Bank Street, Ottawa, Ontario (Figure 1). Terms and conditions of this assignment were outlined in EXP Services Inc. (EXP) proposal number: OTT-23002538-B0 dated August 1, 2023, and a subsequent proposal dated September 28, 2023. This report supersedes the final report submitted on August 28, 2024.

Based on the Hobin Architecture (Hobin) drawing, titled "Concept Site Plan Revision 3", dated September 18, 2024, the proposed development will consist of one (1) rental apartment building (Building 1) and three (3) mixed use rental buildings (Buildings 2 to 4). The building will range in height from twenty-four (24) storeys to thirty-nine (39) storeys and will have four (4) to five (5) storey podiums. Building 4 will also have an eight (8) storey podium. It is understood that three (3) levels of underground parking are proposed. The buildings will be located around the edges of the site in a U-shaped configuration with a park area in the center. An internal roadway named Bentall GreenOak Private is proposed and would encircle the park.

The lowest floor elevations of the proposed buildings and invert elevations of proposed utilities were not available at the time of this report. However, since the elevation of the current ground surface of the site is near the elevation of the adjacent roads and that the site is located in a well-established developed area of Ottawa, it is expected that the final site grades will generally match the existing grades and a minimum grade raise will be required at the site as part of the proposed development.

Drawing No. A0.00, titled "Row Comparison", dated November 13, 2023, by Hobin, showing existing elevations, was also provided to EXP and used as reference for this report.

The fieldwork for the geotechnical investigation was undertaken in three (3) stages. The first stage was completed between October 26 and November 3, 2023, and consisted of fifteen (15) boreholes (Borehole Nos. 1, 2 and 6 to 18) advanced to termination/auger refusal depths ranging from 2.1 m to 14.9 m below the existing grade. Borehole No. 5 was cancelled due to a potential underground utility conflict. The second stage was completed on December 14 and 15, 2023, and consisted of two (2) interior boreholes (Borehole Nos. 3 and 4) drilled to a termination depth of 5.4 m below existing grade within the existing building. The third stage was completed on June 16, 2024, and consisted of six (6) probeholes (Probehole Nos. 1 to 6), advanced without sampling to auger refusal depths of 1.7 m to 6.0 m below existing grade. The fieldwork for all the phases were supervised on a full-time basis by a representative from EXP.

The borehole information indicates the subsurface conditions at the site consist of asphaltic concrete, concrete and fill underlain by either glacial till or highly weathered (soil like) shale fragments. Auger refusal was met at 1.3 m to 6.0 m depths (Elevation 92.0 m to Elevation 86.2 m) in all the boreholes and probeholes. In Borehole Nos. 1 to 7 and 11 to 18 the boreholes were extended past the depth of refusal through rock coring. The presence of shale bedrock of the Carlsbad formation was confirmed at 1.3 m to 2.8 m depths (Elevation 92.0 m to Elevation 92.0 m to Elevation 88.2 m). The coring terminated at 2.6 m to 14.9 m depths (Elevation 91.7 m to Elevation 76.2 m). The groundwater level in the glacial till and highly weathered shale were found to range from 0.6 m to 2.3 m (Elevation 91.9 m to Elevation 89.5 m) below the existing ground surface. The groundwater within the shale bedrock was found to range from 2.9 m to 14.1 m (Elevation 87.5 m to Elevation 77.5 m).

A multichannel Analysis of Surface Waves (MASW) was conducted at the site revealed an average seismic shear wave velocity is 1531.6 m/s for footings founded on the sound shale bedrock and this will result in a Class A site class for seismic site response in accordance with Table 4.1.8.4.A of the 2012 Ontario Building Code (OBC), as amended January 1, 2022.

The site is underlain by shale bedrock of the Carlsbad Formation which is prone to swelling under certain conditions of heat and humidity. It is also prone to rapid deterioration especially for the portion of the shale bedrock below the groundwater table that is exposed to the elements. Therefore, the base and sides of the exposed shale bedrock in all footing and floor slab excavations should be cleaned of any soil or deleterious material, examined by a geotechnical engineer and the approved shale subgrade should be covered with 50 mm of concrete or gunnite within the same day of its first exposure. Similarly, the exposed shale bedrock surface along all excavation walls should be covered with shotcreted within the same day of exposure to protect the rock face from rapid deterioration due to exposure to the elements. Alternatively, the surface of the shale bedrock may be kept wet at all times.

Spread and strip footings founded on the sound shale bedrock, competent and free of soil filled seams may be designed for a factored geotechnical resistance at Ultimate Limit State (ULS) of 1,000 kPa. The factored ULS values includes a resistance factor of 0.5. The Serviceability Limit State (SLS) bearing pressure of the bedrock, required to produce 25 mm settlement of the structure will be much larger than the recommended value for factored geotechnical resistance at ULS. Therefore, the factored geotechnical resistance at ULS

will govern the design. All footing beds should be examined by a geotechnical engineer to ensure that the founding material is capable of supporting the bearing pressure at SLS and that the footings have been properly prepared.

The lowest floor level for the parking garage is anticipated to be located below the groundwater level. Therefore, underfloor and perimeter drainage systems will be required for the proposed below grade parking garage. The lowest floor slab of the buildings will be founded on sound shale bedrock and may be constructed as a concrete slab-on-grade or as a paved surface.

Excavations within the soils and soil like highly weathered shale may be undertaken using heavy equipment capable of removing cobbles, boulders and possible large slabs of shale bedrock. All excavations must be undertaken in accordance with the Occupational Health and Safety Act (OHSA), Ontario Reg. 213/91.

It is anticipated that due to the significant depth of the excavation for the proposed buildings and the proximity of the excavation to existing infrastructure (roadways and underground municipal services), the excavations will need to be supported by a shoring system. This system may consist of steel H soldier pile and timber lagging system, interlocking sheeting system and/or secant pile shoring system. A hydrogeological assessment has been completed for the site and provides initial estimates to the quantity of water to be removed from the site for water taking permit requirements as well as to determine the potential impact on the neighboring properties from the dewatering activities. The hydrogeological assessment should be consulted in determining the appropriate shoring type and method of dewatering for the proposed excavation.

Excavations for the construction of the proposed buildings are expected to extend to 9.6 m below the existing ground surface. These excavations will extend through the fill, glacial till/highly weathered shale and into the sound shale bedrock. The excavations are anticipated to be significantly below the groundwater level. The excavation of the shale bedrock to extensive depths below the bedrock surface may require line drilling and blasting techniques. Contractors bidding on this project should decide on their own the most preferred rock removal method; hoe ramming or line drilling and blasting. The excavation side slopes in the sound shale bedrock may be undertaken with near vertical sides subject to examination by a geotechnical engineer. The exposed face of the bedrock in the excavation may require scaling and rock stabilization measures such a rock bolts and/or a wire mesh system. The need for stabilization measures will have to be assessed once excavation depths into the bedrock are finalized.

The invert depths of the underground services are not known at the time of this geotechnical investigation. It is anticipated that the subgrade for the proposed municipal services will be shale bedrock. The pipe bedding for the municipal services should be in accordance with City of Ottawa specifications, drawings and special provisions. The bedding and cover material should be compacted to a minimum of 98 percent standard Proctor maximum dry density (SPMDD).

The Hobin design concept plan indicate the new trees will be planted throughout the development. No sensitive clays were encountered and therefore there are no tree planting restrictions from a sensitive marine clay perspective for this project.

It is anticipated that the majority of the material required for backfilling purposes would have to be imported and should preferably conform to Ontario Provincial Standard Specification (OPSS) for Granular B Type II and OPSS Select Subgrade Material (SSM).

The pavement structure for surficial internal roadways should consist of 65 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 300 mm thick OPSS Granular B Type II subbase. Pavement structure for heavy duty traffic areas should consist of 900 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 450 mm thick OPSS Granular B Type II subbase.

The results of the resistivity tests indicate that the bedrock is mildly corrosive to bare steel as per the National Association of Corrosion Engineers (NACE). Appropriate measures should be taken to protect the buried bare steel from corrosion.

The above and other related considerations are discussed in greater detail in the main body of the attached geotechnical report.

[»]exp

1. Introduction

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed re-development of the parcel of property referred to as Walkley Centre, located at 1822-1846 Bank Street, Ottawa, Ontario (Figure 1). Terms and conditions of this assignment were outlined in EXP Services Inc. (EXP) proposal number: OTT-23002538-B0 dated August 1, 2023, and a subsequent proposal dated September 28, 2023. This report supersedes the final report submitted on August 28, 2024.

Based on the Hobin Architecture (Hobin) drawing, titled "Concept Site Plan Revision 3", dated September 18, 2024, the proposed development will consist of one (1) rental apartment building (Building 1) and three (3) mixed use rental buildings (Buildings 2 to 4). The building will range in height from twenty-four (24) storeys to thirty-nine (39) storeys and will have four (4) to five (5) storey podiums. Building 4 will also have an eight (8) storey podium. It is understood that three (3) levels of underground parking are proposed. The buildings will be located around the edges of the site in a U-shaped configuration with a park area in the center. An internal roadway named Bentall GreenOak Private is proposed and would encircle the park.

The lowest floor elevations of the proposed buildings and invert elevations of proposed utilities were not available at the time of this report. However, since the elevation of the current ground surface of the site is near the elevation of the adjacent roads and that the site is located in a well-established developed area of Ottawa, it is expected that the final site grades will generally match the existing grades and a minimum grade raise will be required at the site as part of the proposed development.

Drawing No. A0.00, titled "Row Comparison", dated November 13, 2023, by Hobin, showing existing elevations, was also provided to EXP and used as reference for this report.

The geotechnical investigation was undertaken to:

- a) Establish the subsurface soil and groundwater conditions at eighteen (18) boreholes and six (6) probeholes located on the site,
- b) Classify the site for seismic site response in accordance with the requirements of the 2012 Ontario Building Code (as amended January 1, 2022) and assess the potential for liquefaction of the subsurface soils during a seismic event,
- c) Comment on grade-raise restrictions and provide site grading requirements,
- d) Make recommendations regarding the most suitable type of foundations, founding depth and bearing pressure at serviceability limit state (SLS) and factored geotechnical resistance at ultimate limit state (ULS) of the founding strata and comment on the anticipated total and differential settlements of the recommended foundation type,
- e) Slab on grade construction,
- f) Static and seismic earth forces on subsurface walls,
- g) Comment on excavation conditions and de-watering requirements during construction,
- h) Discuss backfilling requirements and suitability of on-site soils for backfilling purposes,
- i) Recommend pavement structure thicknesses for access roads and parking lot,
- j) Static and seismic earth forces on basement walls; and
- k) Comment on the corrosion potential of subsurface soils buried concrete and steel structures/members;

The comments and recommendations given in this report are based on the assumption that the above-described design concepts will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

[%]exµ.

2. Site Description

The subject site has the municipal addresses of 1822 to 1846 Bank Street in Ottawa, Ontario and is located on the northwest corner of the intersection of Bank Street and Walkley Road. The combined lots of the subject site have an irregular in shape with an approximate total area of 17,400 m².

The subject site is currently occupied on the west side by a single storey, slab on grade commercial building containing multiple units. The building has an approximately footprint of 3,925 m². The east side of the site is an asphaltic concrete parking lot.

The site is bound to the south by south by Walkley Road and to the east by Bank Street. Residential dwellings are to the west and to the north are further commercial spaces, the latter separated by a retaining wall. The Row Comparison drawing by Hobin indicates that the elevation of Walkley Road ranges from 90.36 m to 93.39 m, sloping upwards from East to West and the elevation of Bank Street ranges from 94.09 m to 94.94 m, sloping upwards from South to North at the site.

The elevations of the boreholes at the site range from Elevation 94.00 m to Elevation 90.35 m. The existing parking lot is approximately at the same elevation as Bank Street and Walkley Street.

3. Surficial Geology

3.1 Surficial Geology Map

The surficial geology was reviewed via the Google Earth applications published by the Ontario Ministry of Energy, Northern Development and Mines available le via www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/surficial-geology and was last modified on May 23, 2017. The map indicates the Site is underlain by fine-textured glaciomarine deposits consisting of silt and clay with minor sand and gravel. The surficial deposits are shown in Image 1 below.

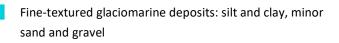


Image 1 – Surficial Geology

3.2 Bedrock Geology Map

Based on a review of the bedrock geology map (Map P. 2716, Paleozoic Geology of the Ottawa Area, Southern Ontario 1984), the bedrock at the site consists of the Carlsbad formation that consists of a shale and limestone. The shale of the Carlsbad formation is an expansive type of shale. East of the site shale of the Billings formation is present which is also an expansive type of shale. Special procedures will have to be followed during the excavation of the Carlsbad shale. A fault line is noted approximately 230 m east of the site. The bedrock geology is show in Image 2 below.

Image 2 – Bedrock Geology

4. Procedure

4.1 Fieldwork

The fieldwork for the geotechnical investigation was undertaken in three (3) stages. The first stage was completed between October 26 and November 3, 2023, and consisted of fifteen (15) boreholes (Borehole Nos. 1, 2 and 6 to 18) advanced to termination/auger refusal depths ranging from 2.1 m to 14.9 m below existing grade. Borehole No. 5 was cancelled due to a potential underground utility conflict. The second stage was completed on December 14 and 15, 2023 and consisted of two (2) interior boreholes (Borehole Nos. 3 and 4) drilled to a termination depth of 5.4 m below existing grade within the existing building. The third stage was completed on June 16, 2024, and consisted of six (6) probeholes (Probehole Nos. 1 to 6), advanced without sampling to auger refusal depths of 1.7 m to 6.0 m below existing grade. The fieldwork for all the phases were supervised on a full-time basis by a representative from EXP.

The locations and geodetic elevations of the boreholes were established on site by EXP and are shown on the Testhole Location Plan, Figure 2. The testhole (borehole and probehole) locations were cleared of private and public underground services, prior to the start of drilling operations.

The exterior boreholes and probeholes were drilled using a CME-55 truck-mounted drill rig equipped with continuous flight hollow-stem auger equipment and bedrock coring capabilities operated by a drilling contractor subcontracted to EXP. Standard penetration tests (SPTs) were performed in the boreholes at depth intervals of 0.6 m to 0.75 m with soil samples retrieved by the split-barrel sampler. Grab samples were collected between 0.1 m and 0.2 m depths in selected boreholes. The presence of the bedrock was proven in twelve (12) boreholes by conventional rock coring techniques using the N or H-size core barrels. A field record of wash water return, colour of wash water and any sudden drops of the core barrel were kept during rock coring operations. Photographs of the recovered rock core are included in Appendix A.

The interior boreholes were drilled using a Geoprobe model 450 using direct push sampling for the overburden soils. The bedrock was cored using a Hilti drill using an N-size core barrel. A field record of wash water return, colour of wash water and any sudden drops of the core barrel were kept during rock coring operations.

All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified accordingly. Similarly, the rock cores were visually examined and the rock cores from the exterior boreholes were placed in core boxes, identified and logged. Due to the presence of the Carlsbad shale, the rock core was also immediately wrapped in plastic wrap to keep the rock core wet and thereby protecting from any deterioration resulting from exposure to oxygen.

Monitoring wells with diameters of thirty-two (32) mm, thirty-eight (38) mm or fifty (50) mm were installed in Borehole Nos. 1,2, 7 to 12 and 15 for long-term monitoring of the groundwater levels as well as groundwater sampling as part of the Phase Two ESA and the hydrogeological assessment. The wells were installed in accordance with EXP standard practice, and the installation configuration is documented on the respective borehole log. The boreholes were backfilled upon completion of drilling.

4.2 Laboratory Testing Program

On completion of the fieldwork, the soil samples and rock cores from the boreholes were transported to the EXP laboratory in Ottawa, Ontario where they were visually examined in the laboratory by a geotechnical engineer. All soil and rock samples were classified in accordance with the Unified Soil Classification System (USCS) and the modified Burmister System (2006 Fourth Edition of the Canadian Foundation Engineering Manual (CFEM)).

The geotechnical engineer also assigned the laboratory testing program which is summarized in Table I.

EXP Services Inc.

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev. 1 October 3, 2024

Table I: Summary of Laboratory Testing Program							
Type of Test	Number of Tests Completed						
Soil Samples							
Moisture Content Determination	40						
Unit Weight Determination	3						
Grain Size Analysis	8						
Atterberg Limits	5						
Rock Samples							
Unconfined Compressive Strength and Unit Weight Determination	42						
Corrosion Analysis (pH, sulphate, chloride and resistivity)	3						

4.3 Multi-channel Analysis of Surface Waves (MASW) Survey

A seismic shear wave velocity sounding survey was conducted at the site on December 21,2023 by Geophysics GPR International Inc. (GPR). The survey was undertaken using the multi-channel analysis of surface waves (MASW), spatial auto correlation (SPAC) and seismic refraction methods. The seismic shear wave velocity sounding survey report dated January 8,2024 and prepared by GPR is shown in Appendix B.

5. Subsurface Conditions and Groundwater Levels

A detailed description of the subsurface conditions and groundwater levels from the boreholes are given on the attached Borehole and Probehole Logs, Figure Nos. 4 to 26. The borehole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted.

The boreholes were drilled to provide representation of subsurface conditions as part of a geotechnical investigation. The Phase Two ESA should be consulted regarding the environmental conditions.

It should be noted that the soil and rock boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling operations. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Descriptions" preceding the borehole logs form an integral part of this report and should be read in conjunction with this report.

A review of the borehole logs indicates the following subsurface conditions with depth and groundwater level measurements.

5.1 Asphaltic Concrete Pavement

A 50 mm to 150 mm thick asphaltic concrete layer was contacted in all the exterior the testholes, with the exception of Borehole No. 16.

5.2 Concrete

A concrete slab was encountered at the surface of Borehole Nos. 3 and 4. The concrete slab was 165 mm and 200 mm thick in Borehole Nos. 3 and 4, respectively.

5.3 Fill

A layer of fill was contacted underlying the surface in Borehole No. 16 and underlying the asphaltic concrete or concrete in the remainder of the testholes. The fill extends to 0.3 m to 1.8 m depths (Elevation 92.8 m to Elevation 89.5 m). The fill generally consists of sand and gravel. The fill is in a loose to dense state based on standard penetration test (SPT) N-values ranging from 7 to 42. The moisture content of the fill ranged from 2 percent to 15 percent. The natural unit weight was 22.9 kN/m³.

The results from the grain-size analysis conducted on three (3) samples of the fill are summarized in Table II. The grain-size distribution curves are shown in Figures 27 to 29.

Table II: Summary of Results from Grain-Size Analysis - Fill Samples							
Borehole No. (BH)–	Depth (m)	Grain-Size Analysis (%)					
Sample No. (SS)		Gravel	Sand	Fines	Soil Classification (USCS)		
BH12-GS1	0.1 - 0.2	46	44	10	Well Graded Gravel with Silt and Sand (GW-GM)		
BH17-GS1	0.1 - 0.2	54 38 8 Poorly Graded Gravel with Silt and Sand (GP-GM)					
BH18-GS1	0.1 - 0.2	27	27 56 17 Silty sand with gravel (SM)				

Based on a review of the results of the grain-size analysis, the fill ranged from well graded gravel with silt and sand (GW-GM) to poorly graded gravel with silt and sand (GP-GM) to silty sand with gravel (SM) in accordance with the USCS.

5.4 Glacial Till

A layer of glacial till was encountered underlying the fill at 0.3 m depth (Elevation 92.4 m) in Borehole No. 9. The glacial till contains varying amounts of gravel, sand, silt and clay within the soil matrix as well as cobbles and boulders. The SPT N-values of the glacial till was 17 indicating the glacial till is in a compact state. Higher N values with low sampler penetration such as N equal to 50 for 25 mm sampler penetration into the glacial till are likely a result of the split spoon sampler making contact with a cobble, boulder or a shale fragment.

The natural moisture content of the glacial till ranged from 6 percent to 12 percent.

5.5 Highly Weathered Shale Bedrock

A layer of highly weathered (soil like) shale bedrock was contacted underlying the fill or the glacial till at 0.7 m to 2.1 m depths (Elevation 92.3 m to Elevation 89.5 m) in all of the boreholes and probeholes except Boreholes No. 14 and 16 and Probehole Nos. 5 and 6. The highly weathered shale contains shale fragments which range in size from gravel to clay. Cobble and boulder sized shale fragments may be present. The SPT N-values of the highly weathered glacial till range from 7 to 57 indicating the highly weathered shale is in a loose to very dense state. Higher N values with low sampler penetration such as N equal to 50 for 100 mm sampler penetration into the highly weathered shale are likely a result of the split spoon sampler making contact with a cobble or boulder sized shale fragments.

The natural moisture content of the highly weathered shale ranged from 5 percent to 18 percent. The natural unit weight was 22.0 kN/m^3 .

The results from the grain-size analysis conducted on five (5) samples of the highly weathered shale are summarized in Table III. The grain-size distribution curves are shown in Figures Nos. 30 to 34.

Table III: Summary of Results from Grain-Size and Atterberg Limit Analysis - Weathered Shale Samples								
Borehole No. (BH)– Sample No. (SS)	Depth (m)	Grain-Size Analysis (%)						
		Gravel	Sand	Silt	Clay	Plasticity Index	Soil Classification (USCS)	
BH1-SS3	1.5 - 2.1	19	46	27	8	N.P.	Silty Sand and Gravel (SM)	
BH10-SS3	1.5 - 2.1	20	52	21	7	N.P.	Silty Sand and Gravel (SM)	
BH12-SS2	0.8 - 1.4	13	62	19	6	N.P.	Silty Sand (SM)	
BH13-SS2	0.8 - 1.4	7	63	20	10	N.P.	Silty Sand (SM)	
BH18-SS2	0.8 - 1.4	3	73	18	6	N.P.	Silty Sand (SM)	

*N.P.= Non-plastic

Based on a review of the results of the grain-size analysis, the highly weathered shale may be classified as ranging from a silty sand (SM) to a silty sand and gravel (SM) in accordance with the USCS.

5.6 Auger Refusal and Shale Bedrock

Auger refusal was met at 1.3 m to 6.0 m depths (Elevation 92.0 m to Elevation 86.2 m) in all the boreholes and probeholes. In Borehole Nos. 1 to 7 and 11 to 18 the boreholes were extended past the depth of refusal through rock coring. The presence of shale bedrock of the Carlsbad formation was confirmed at 1.3 m to 2.8 m depths (Elevation 92.0 m to Elevation 88.2 m). The coring terminated at 2.6 m to 14.9 m depths (Elevation 91.7 m to Elevation 76.2 m). A summary of the depth where weathered bedrock was encountered, auger refusal depths as well as the depth of bedrock confirmed by coring is shown in Table IV.

Table IV: Summary of Inferred Bedrock, Auger Refusal and Cored Bedrock Depths (Elevations) in Boreholes								
Borehole (BH) No.	Ground Surface Elevation (m)	Weathered Shale Bedrock Depth (Elevation), m	Depth (Elevation) of Cored Sound Bedrock (m)	Comment w.r.t. to Depth of Bedrock Surface				
BH-1	91.67	1.4 (90.3)	2.7 (89.0)	Weathered shale encountered at 1.4 m depth. 3.2 m of bedrock cored below 2.7 m depth				
BH-2	92.59	0.9 (91.7)	2.7 (89.9)	Weathered shale encountered at 0.9 m depth. 11.4 m of bedrock cored below 2.7 m depth				
BH-3	92.06	1.3 (90.8)	2.1 (90.0)	Weathered shale encountered at 1.3 m depth. 3.3 m of bedrock cored below 2.1 m depth				
BH-4	92.06	1.3 (90.8)	2.0 (90.1)	Weathered shale encountered at 1.3 m depth. 3.4 m of bedrock cored below 2.0 m depth				
BH-6	92.02	0.9 (91.1)	1.3 (90.7)	Weathered shale encountered at 0.9 m depth. 1.3 m of bedrock cored below 1.3 m depth				
BH-7	92.51	0.9 (91.6)	1.8 (90.7)	Weathered shale encountered at 0.9 m depth. 11.9 m of bedrock cored below 1.8 m depth				
BH-8	92.50	1.4 (91.1)		Weathered shale encountered at 1.4 m depth. Auger refusal encountered at 2.1 m depth				
BH-9	92.71	1.4 (91.3)		Weathered shale encountered at 1.4 m depth. Auger refusal encountered at 2.2 m depth				
BH-10	91.66	0.7 (91.0)		Weathered shale encountered at 0.7 m depth. Auger refusal encountered at 2.5 m depth				
BH-11	90.35	0.7 (89.7)	2.2 (88.2)	Weathered shale encountered at 0.7 m depth. 12.0 m of bedrock cored below 2.2 m depth				
BH-12	91.53	0.7 (90.8)	2.8 (88.7)	Weathered shale encountered at 0.7 m depth. 11.2 m of bedrock cored below 2.8 m depth				
BH-13	94.00	1.7 (92.3)	2.0 (92.0)	Weathered shale encountered at 1.7 m depth. 12.2 m of bedrock cored below 2.0 m depth				
BH-14	92.58		1.3 (91.3)	Weathered shale was not encountered. 12.8 m of bedrock cored below 1.3 m depth				
BH-15	92.18	0.7 (91.5)	1.4 (90.8)	Weathered shale encountered at 0.7 m depth. 12.3 m of bedrock cored below 1.4 m depth				
BH-16	92.05		1.5 (90.6)	Weathered shale was not encountered. 13.4 m of bedrock cored below 1.5 m depth				
BH-17	92.38	0.7 (91.7)	2.1 (90.3)	Weathered shale encountered at 0.7 m depth. 12.7 m of bedrock cored below 2.1 m depth				
BH-18	91.30	1.8 (89.5)	1.9 (89.4)	Weathered shale encountered at 1.8 m depth. 12.8 m of bedrock cored below 1.9 m depth				
PH-1	92.19	2.1 (90.1)		Weathered shale encountered at 2.1 m depth. Auger refusal encountered at 6.0 m depth				
PH-2	93.59	2.1 (91.5)		Weathered shale encountered at 2.1 m depth. Auger refusal encountered at 3.8 m depth				
PH-3	92.12	1.2 (90.9)		Weathered shale encountered at 1.2 m depth. Auger refusal encountered at 5.2 m depth				
PH-4	92.47	1.5 (91.0)		Weathered shale encountered at 1.5 m depth. Auger refusal encountered at 4.9 m depth				
PH-5	92.49			Weathered shale was not encountered Auger refusal encountered at 1.8 m depth				
PH-6	92.26			Weathered shale was not encountered Auger refusal encountered at 1.7 m depth				

A review of the initial coring runs in all the boreholes and as well as the second coring run in Borehole Nos. 14 and 15 indicates that from the depth of refusal to 2.5 m to 4.4 m depth (Elevation 91.4 m to Elevation 87.8 m) the total core recovery (TCR) ranges between 60 percent and 100 percent and the rock quality designation (RQD) ranges between 0 percent to 47 percent indicating the bedrock is of a very poor to poor quality.

Below 2.5 m to 4.4 m depths (Elevation 91.4 m to Elevation 87.8 m) the total core recovery (TCR) ranges between 73 percent and 100 percent and the rock quality designation (RQD) generally ranges between 50 and 100 indicating the bedrock is of a fair to excellent quality. In Borehole Nos. 14 and 17 the final run, 13.3 m to 14.1 m depth (Elevation 79.3 m to Elevation 78.5 m) and 13.3 m to 14.8 m depth (Elevation 79.1 m to Elevation 77.6 m) in Borehole Nos. 14 and 17, respectively, the RQD decreases to 48 percent and 27 percent indicating the bedrock is of a poor quality. Photographs of the bedrock cores are included in Appendix A.

Unit weight determination and unconfined compressive strength tests were conducted on forty-six (46) rock core sections. Three (3) of the samples were broken during the preparation process and were not tested. The test results are summarized in Table V.

Borehole (BH) No. – Run No.	Depth (m)	Unit Weight (kN/m³)	Unconfined Compressive Strength (MPa)	Classification of Rock with respect to Strength
BH1 Run2	4.3 - 4.5	25.8	34.0	Medium Strong (R3)
BH1 Run3	5.6 - 5.8	26.0	34.6	Medium Strong (R3)
BH2 Run2	4.6 - 4.7	26.0	46.9	Medium Strong (R3)
BH2 Run4	7.5 - 7.6	26.7	48.2	Medium Strong (R3)
BH2 Run6	11.5 - 11.6	25.8	40.6	Medium Strong (R3)
BH7 Run2	2.7 - 2.9	25.3	17.4	Weak (R2)
BH7 Run4	6.1 - 6.3	25.9	36.1	Medium Strong (R3)
BH7 Run6	9.9 - 10.1	25.9	35.5	Medium Strong (R3)
BH7 Run8	12.8 - 13.0	25.6	31.5	Medium Strong (R3)
BH11 Run2	4.6 - 4.7	26.1	41.8	Medium Strong (R3)
BH11 Run4	7.5 - 7.6	26.0	42.9	Medium Strong (R3)
BH11 Run6	11.5 - 11.6	26.0	40.6	Medium Strong (R3)
BH11 Run8	13.5 - 13.6	26.0	50.4	Strong (R4)
BH12 Run2	3.0 - 3.2	25.9	34.9	Medium Strong (R3)
BH12 Run4	5.9 - 6.0	25.9	26.3	Medium Strong (R3)
BH12 Run6	9.8 - 10.0	25.8	41.2	Medium Strong (R3)
BH12 Run8	12.9 - 13.1	26.8	46.2	Medium Strong (R3)
BH13 Run3	4.3 - 4.5	25.9	36.0	Medium Strong (R3)
BH13 Run5	7.6 - 7.8	26.0	39.0	Medium Strong (R3)
BH13 Run7	11.5 - 11.6	26.0	29.2	Medium Strong (R3)
BH13 Run9	13.3 - 13.4	25.9	32.6	Medium Strong (R3)
BH14 Run2	3.9 - 4.0	26.2	42.9	Medium Strong (R3)
BH14 Run4	6.9 - 7.0	26.2	27.4	Medium Strong (R3)
BH14 Run6	9.1 - 10.1	26.1	10.8	Weak (R2)
BH14 Run8	13.1 - 13.3	26.0	34.2	Medium Strong (R3)
BH15 Run2	3.1 - 3.2	25.9	33.5	Medium Strong (R3)
BH15 Run4	7.0 - 7.2	26.0	45.8	Medium Strong (R3)
BH15 Run6	10.3 - 10.5	26.1	55.0	Strong (R4)
BH15 Run8	12.7 - 12.9	26.1	30.8	Medium Strong (R3)
BH16 Run2	3.5 - 3.7	25.6	32.1	Medium Strong (R3)
BH16 Run5	7.6 - 7.8	26.0	29.3	Medium Strong (R3)
BH16 Run7	10.8 - 10.9	25.7	27.4	Medium Strong (R3)
BH16 Run9	13.8 - 13.9	25.8	33.9	Medium Strong (R3)
BH17 Run2	3.0 - 3.1	25.9	35.0	Medium Strong (R3)
BH17 Run4	6.1 - 6.3	26.5	51.9	Strong (R4)
BH17 Run8	12.2 - 12.3	26.1	52.3	Strong (R4)
BH18 Run4	6.5 - 6.6	26.0	38.8	Medium Strong (R3)
BH18 Run6	10.1 - 10.2	26.1	43.4	Medium Strong (R3)
BH18 Run8	12.9 - 13.1	25.9	41.7	Medium Strong (R3)

A review of the test results in Table VI indicates the strength of the rock may be classified as weak (R2) to strong (R4) in accordance with the Canadian Foundation Engineering Manual (CFEM), Fourth Edition, 2006.

The bedrock at the site is shale bedrock of the Carlsbad formation which is a type of shale that is prone to deterioration when exposed to the elements. It also heaves due to a complex mechanism caused in part from the bio-oxidation of the sulphides in the rock, which then react with calcite seams to form expanding gypsum. This occurs when oxygen is permitted to enter the rock, usually by exposure or lowering of the water table and is accelerated by the presence of heat.

5.7 Groundwater Level Measurements

A summary of the groundwater level measurements taken in the monitoring wells are shown in Table VI.

Table VI: Groundwater Level Measurements						
Borehole (BH)	Ground Surface Elevation (m)	Screened Material	Date of Measurement (Elapsed Time in Days from Date of Installation)	Groundwater Depth Below Ground Surface (Elevation), (m)		
			November 23, 2023 (28)	1.8 (89.9)		
		HIGHLY WEATHERED	December 6, 2023 (41)	2.2 (89.5)		
BH1	91.67	SHALE & SHALE BEDROCK	March 15, 2023 (140)	2.1 (89.6)		
			June 19, 2024 (237)	2.1 (89.6)		
			November 23, 2023 (24)	10.9 (81.7)		
			December 6, 2023 (41)	8.9 (83.7)		
BH2	92.59	SHALE BEDROCK	March 14, 2024 (136)	8.2 (84.4)		
			December 21, 2023 (7)	2.3 (89.8)		
BH3	92.06	HIGHLY WEATHERED SHALE & SHALE BEDROCK	March 14, 2024 (91)	2.3 (89.8)		
			June 14, 2024 (188)	2.3 (89.8)		
	92.06	HIGHLY WEATHERED SHALE & SHALE BEDROCK	December 21, 2023 (7)	1.8 (90.3)		
BH4			March 14, 2024 (91)	1.9 (90.2)		
			June 14, 2024 (188)	2.0 (90.1)		
	92.51		November 23, 2023 (28)	5.8 (86.7)		
			December 3, 2023 (41)	8.6 (83.9)		
BH7		SHALE BEDROCK	March 14, 2024 (140)	6.2 (86.3)		
			June 19, 2024 (237)	5.5 (87.0)		
			November 23, 2023 (28)	1.4 (91.1)		
		HIGHLY WEATHERED	December 6, 2023 (41)	1.3 (91.2)		
BH8	92.5	SHALE	March 14, 2024 (140)	0.6 (91.9)		
			June 19, 2024 (237)	1.2 (91.3)		
			November 23, 2023 (28)	1.4 (91.3)		
		GLACIAL TILL AND	December 6, 2023 (33)	1.3 (91.4)		
BH9	92.71	HIGHLY WEATHERED SHALE	March 14, 2024 (132)	1.1 (91.6)		
			June 19, 2024 (229)	1.3 (91.4)		
			November 23, 2023 (24)	1.5 (90.2)		
		HIGHLY WEATHERED	December 6, 2023 (37)	1.4 (90.3)		
BH10	91.66	SHALE	March 14, 2024 (136)	1.3 (90.4)		
			June 19, 2024 (233)	1.4 (90.3)		

*ехр.

EXP Services Inc.

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev. 1 October 3, 2024

Table VI: Groundwater Level Measurements							
Borehole (BH)	Ground Surface Elevation (m)	Screened Material	Date of Measurement (Elapsed Time in Days from Date of Installation)	Groundwater Depth Below Ground Surface (Elevation), (m)			
			November 23, 2023 (22)	10.8 (79.6)			
BH11	90.35	SHALE BEDROCK	December 6, 2023 (35)	10.2 (80.2)			
DUII	90.35		March 9, 2023 (134)	4.0 (86.4)			
			June 19, 2024 (231)	2.9 (87.5)			
	91.6	SHALE BEDROCK					
01112			December 6, 2023 (33)	11.6 (80.0)			
BH12			March 14, 2024 (132)	14.1 (77.5)			
			June 19, 2024 (229)	13.7 (77.9)			
	92.2	SHALE BEDROCK	November 23, 2023 (21)	10.1 (82.1)			
DUITE			December 6, 2023 (34)	6.9 (85.3)			
BH15			March 14, 2024 (133)	6.2 (86.0)			
			June 19, 2024 (230)	6.1 (86.1)			

The groundwater level in the glacial till and highly weathered shale were found to range from 0.6 m to 2.3 m (Elevation 91.9 m to Elevation 89.5 m) below the existing ground surface. The groundwater within the shale bedrock was found to range from 2.9 m to 14.1 m (Elevation 87.5 m to Elevation 77.5 m).

Water levels were determined in the boreholes and monitoring wells at the times and under the conditions noted above. Note that fluctuations in the level of groundwater may occur due to a seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

6. Site Classification for Seismic Site Response and Liquefaction Potential of Soils

6.1 Site Classification for Seismic Site Response

A seismic shear wave velocity sounding survey was conducted at the site on December 21,2023 by Geophysics GPR International Inc. (GPR). The survey was undertaken using the multi-channel analysis of surface waves (MASW), spatial auto correlation (SPAC) and seismic refraction methods. The seismic shear wave velocity sounding survey report dated January 8,2024 and prepared by GPR is shown in Appendix B.

The results of the survey indicate that the average seismic shear wave velocity is 1531.6 m/s for footings founded on the sound shale bedrock will result in a Class A site class for seismic site response in accordance with Table 4.1.8.4.A of the 2012 Ontario Building Code (OBC), as amended January 1, 2022.

6.2 Liquefaction Potential of Soils

Since the construction of the three (3) level underground parking garage below the proposed buildings would require the excavation and removal of all soils down to the bedrock, the presence of liquefiable soils at the site is not an issue for the proposed redevelopment.

7. Grade Raise Restrictions

The site is located in a well-established and developed area of the City of Ottawa and the current grades of the site are near those of the adjacent roadways. Therefore, a major grade raise is not anticipated to be required at the site as part of the proposed development. Since compressible cohesive soils were not encountered at the site, there are no restrictions to raising the grades at the site from a geotechnical point of view. However, for design purposes a grade raise of 1.0 m can be used at the site.

8. Site Grading

Site grading within the **proposed building footprint** area should consist of the removal of all existing fill and overburden soils down to the design depth of the footings or the base of the lowest floor slab within the sound shale bedrock surface. The native shale bedrock subgrade should be examined by a geotechnician. Any loose/soft or degraded areas identified during the subgrade examination should be excavated, removed and replaced with 20 MPa lean mix concrete to the underside of footing elevation or to strength specified by the structural engineer. As indicated in Section 3 of this report, the shale bedrock is prone to swelling under certain conditions of heat and humidity. It is also prone to rapid deterioration especially for the portion of the shale bedrock in all footing or lowest floor slab excavations should be cleaned of any soil or deleterious material, examined by a geotechnical engineer and the approved shale subgrade should be covered with a skim coat of concrete or shotcrete within the same day of its first exposure. The exposed shale bedrock could also be sealed by spraying gunnite. Alternatively, the surface of the shale bedrock may be kept wet at all times.

In areas where the overburden soils are not removed, site grading for **local roadways** should consist of the removal of any soil containing organics or organic stained soils down to the approved fill or native overburden soil subgrade. The subgrade should be proofrolled in the presence of a geotechnician. Any loose/soft areas identified during the proofrolling process should be excavated, removed and replaced with Ontario Provincial Standard Specification (OPSS) Granular B Type II or OPSS Select Subgrade Material (SSM) compacted to 95 percent standard Proctor maximum dry density (SPMDD). Alternatively, portions of the excavated and removed existing fill that is free of debris, cobbles, boulders and topsoil (organic soils), may be reused to raise the site grades to the design subgrade level. The suitability of re-using the existing fill to raise the grades will have to be further assessed at time of construction by examining the fill material and conducting additional tests on the material. For budgeting purposes, it should be assumed that all fill will require removal and disposal.

In place density tests should be performed on each lift of placed material to ensure that it has been compacted to the project specifications.

9. Foundation Considerations

For the proposed multi-storey buildings, it has understood that three (3) storeys of underground parking are proposed, and the lowest floor slab will be at approximately 9.0 m depth below existing grade. Footings are typically placed at 0.6 m below the lowest floor slab and therefore footings have been assumed to be founded at approximately 9.6 m below the existing grade. Based on the borehole information footings founded at 9.6 m will be founded on sound shale bedrock. It is considered feasible to support the proposed building by spread and strip footings founded on sound shale bedrock.

Spread and strip footings founded on the sound shale bedrock, competent and free of soil filled seams may be designed for a factored geotechnical resistance at Ultimate Limit State (ULS) of 1,000 kPa. The factored ULS values includes a resistance factor of 0.5. The Serviceability Limit State (SLS) bearing pressure of the bedrock, required to produce 25 mm settlement of the structure will be much larger than the recommended value for factored geotechnical resistance at ULS. Therefore, the factored geotechnical resistance at ULS will govern the design.

The factored sliding resistance at ULS between the underside of concrete and the top of the unweathered sound bedrock is 0.56 and includes a resistance factor of 0.8.

The shale bedrock subgrade should be examined by a geotechnician. Any loose/soft areas identified during the footing base evaluation should be excavated, removed and replaced with lean 20MPa lean mix concrete to the underside of footing elevation or to strength specified by the structural engineer.

As indicated in Section 8 of this report, the shale bedrock is prone to swelling under certain conditions of heat and humidity. It is also prone to rapid deterioration especially for the portion of the shale bedrock below the groundwater table that is exposed to the elements. For footings, the base and sides of the exposed shale bedrock in all footing excavations should be cleaned of any soil or deleterious material, examined by a geotechnical engineer and the approved shale subgrade of the footing and the sides of the footing trench should be covered with a skim coat of concrete within the same day of its first exposure. Alternatively, the shale bedrock exposed in the sides of the footing trenches may be sealed by spraying gunnite.

A minimum of 1.5 m of earth cover should be provided to the footings to protect them from damage due to frost penetration. The frost cover should be increased to 2.1 m for unheated structures if snow will not be removed from their vicinity. If snow will be removed from the vicinity of the unheated structures, the frost cover should be increased to 2.4 m. Rigid insulation thermally equivalent to the required soil cover may be used instead of the soil cover. Alternatively, a combination of rigid insulation and soil cover may be used to achieve the required frost protection for the footings.

The recommended factored geotechnical resistance at ULS and bearing pressure at SLS have been calculated by EXP from the borehole information for the design stage only. The investigation and comments are necessarily on-going as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field monitoring provided by an experienced geotechnical engineer to validate the information for use during the construction stage.

10. Floor Slab and Drainage Requirements

It has understood that three (3) storeys of underground parking are proposed, and the lowest floor slab will be at approximately 9.0 m depth below existing grade depending on the number of underground parking levels. Based on the borehole information, bedrock was encountered at 1.3 m to 2.8 m (Elevation 92.0 m to Elevation 88.2 m) below the existing grade and lowest floor slab of the buildings will be founded on sound shale bedrock and may be constructed as a concrete slab-on-grade or as a paved surface. The concrete and asphalt pavement structures indicated below are for light duty traffic only (cars). EXP can provide concrete and asphalt pavement structures for heavy duty traffic (cars and trucks), if required.

The lowest floor level for the parking garage is anticipated to be located below the groundwater level. Therefore, underfloor and perimeter drainage systems will be required for the proposed below grade parking garage.

The underfloor drainage system may consist of 100 mm diameter perforated pipe or equivalent placed in parallel rows at 5 m to 6 m centres and at least 300 mm below the underside of the floor slab. The drains should be set on 150 mm thick bed of 19 mm sized clear stone covered on top and sides with 150 mm thick clear stone that is fully wrapped with an approved porous geotextile membrane, such as Terrafix 270R or equivalent. The perimeter drains may also consist of 100 mm diameter perforated pipe set on the footings and surrounded with 150 mm thick clear stone fully wrapped with a geotextile membrane. The perimeter and underfloor drains should be connected to separate sumps equipped with backup pumps and generators in case of mechanical failure and/or power outage, so that at least one system would be operational should the other fail.

For floor slabs founded on the shale bedrock, special procedures will be required during slab construction. The shale bedrock of the Carlsbad formation is known to heave due to a complex mechanism caused in part by the bio-oxidation of sulphides in the rock which then react with the calcite seams to form expanding gypsum. This occurs when oxygen is permitted to enter the rock, usually by lowering the water table. It is therefore recommended that the water table at the site should be maintained above the shale surface. The invert of the drains should be set at least 150 mm above the shale bedrock surface. In addition, a 50 mm thick concrete mud slab should be placed on the surface of the shale as a seal prior to placement of the granular fill. Weep holes should be provided in the concrete mud slab to facilitate drainage. Any granular fill to be placed under the floor slab should be compacted to at least 98 percent of the SPMDD. Any elevator pits and sumps should be constructed as water-tight structures instead of trying to locally depress the groundwater table around them which may result in dewatering of the shale.

The finished exterior grade around the buildings should be sloped away from the buildings to prevent ponding of surface water close to the exterior walls of the buildings.

10.1 Lowest Floor Level as a Concrete Surface

The subgrade is anticipated to be sound shale bedrock. The subgrade should be examined by a geotechnical engineer and any loose/soft zones of the bedrock should be excavated, removed and replaced with lean mix concrete. Upon approval, the bedrock subgrade should be prepared as noted above.

Following approval and preparation of the bedrock subgrade, the concrete slab for light duty traffic (cars only) may be constructed as follows:

- 150 mm thick concrete with 32 MPa compressive strength and air content of 5 percent to 8 percent; over
- 150 mm thick layer of OPSS 1010 Granular A compacted to 100 percent standard Proctor maximum dry density (SPMDD); over
- 300 mm minimum thick layer of OPSS 1010 Granular B Type II compacted to 100 percent SMPDD.

The concrete slab should be reinforced, and adequate saw cuts should be provided in the floor slab to control cracking. Additional recommendations can be provided once the final design of the lower floor level has been determined.

10.2 Lowest Floor Level as a Paved Surface

The subgrade is anticipated to be sound shale bedrock. The subgrade should be examined by a geotechnical engineer and any loose/soft zones of the bedrock should be excavated, removed and replaced with lean mix concrete. Upon approval, the bedrock subgrade should be prepared as noted above.

Following approval and preparation of the bedrock subgrade, the asphalt pavement structure for light duty traffic (cars only) may be constructed on the bedrock subgrade as follow:

- 65 mm thick layer of asphaltic concrete consisting of HL3/SP12.5 The asphaltic concrete should be placed and compacted as per OPSS 310 and 313 and should be designed in accordance with OPSS 1150/1151; over
- 150 mm thick layer of OPSS Granular A compacted to 100 percent SPMDD; over
- 450 mm thick layer of OPSS Granular B Type II compacted to 100 percent SPMDD.

11. Lateral Earth Pressure Against Subsurface Walls

Subsurface basement walls for buildings with multiple levels of underground parking are typically designed not to support hydrostatic pressure behind the wall. In this case, the subsurface basement walls should be backfilled with free draining material, such as OPSS Granular B Type II compacted to 95 percent SPMDD and equipped with a perimeter drainage system to prevent the buildup of hydrostatic pressure behind the walls. The walls will be subjected to lateral static and dynamic (seismic) earth forces. The expressions below assume free draining backfill material, a perimeter drainage system, level backfill surface behind the wall and vertical face on the back side of the wall.

Equation (i) will be applicable to the portion of the subsurface wall in the overburden (soil). Equation (ii) will be applicable to the portion of the subsurface wall in the bedrock where the earth pressure will be considerably reduced due to the narrow backfill between the subsurface wall and the rock face resulting in an arching effect (Spangler & Handy, 1984). The weight of the overburden (soil) and any surcharge applied at the ground surface should be considered as surcharge when computing lateral pressure using equation (ii).

Lateral static earth pressure, p, for subsurface basement wall in overburden soil:

 $p = k (\gamma h + q)$ ----- (i)

where:

k = lateral earth pressure coefficient for 'at rest' condition = 0.50

 γ = unit weight of backfill = 22 kN/m³

h = depth of interest below ground surface (m)

q = any surcharge acting at ground surface (kPa)

Lateral static earth pressure, σ_n , for subsurface basement wall in bedrock due to narrow earth backfill between subsurface wall and bedrock face:

$$\sigma_n = \frac{\gamma B}{2 \tan \delta} \left(1 - e^{-2k \frac{Z}{B} \tan \delta} \right) + \text{kq} - \dots$$
(ii)

where:

 γ = unit weight of backfill = 22 kN/m³

- B = backfill width (m)
- z = depth from top of wall (m)
- δ = friction angle between the backfill and wall and backfill and rock (assumed to be equal) = 17 degrees
- k = lateral earth pressure coefficient for 'at rest' condition = 0.50
- q = surcharge pressure including pressures from overburden (soil), traffic at ground surface and foundations from existing adjacent buildings (kPa)

*exp

The lateral dynamic earth force (dynamic thrust) due to seismic loading may be computed from the equation given below:

 $\Delta_{\rm Pe} = \gamma h^2 \frac{a_h}{g} F_{\rm b} ------(iii)$

where Δ_{Pe} = dynamic thrust in kN/m of wall

h = height of basement wall against soil above the bedrock surface (m)

 γ = unit weight of soil = 22 kN/m³

 $\frac{a_h}{g}$ = seismic coefficient = 0.36 (Earthquakes Canada value for Site)

F_b = thrust factor = 1.0

The dynamic thrust does not take into account the surcharge load. The resultant force acts approximately at 0.63H above the base of the wall.

For basement walls cast directly against bedrock, a vertical drainage membrane or board such as Terradrain 200 or equivalent should be installed on the face of the bedrock that leads to a solid discharge pipe connecting to a sump. The top of the drainage board should be covered with a fabric filter to prevent the loss of overlying soil into the drainage board.

All subsurface walls should be waterproofed.

12. Excavation and De-Watering Requirements

12.1 Excess Soil Management

Ontario Regulation 406/19 specifies protocols that are required for the management and disposal of excess soils. As set forth in the regulation, specific analytical testing protocols need to be implemented and followed based on the volume of soil to be managed and the requirements of the receiving site. The testing protocols are specific as to whether the soils are stockpiled or in situ. In either scenario, the testing protocols are far more onerous than have been historically carried out as part of standard industry practices. These decisions should be factored in and accounted for prior to the initiation of the project-defined scope of work.

Reference is made to the Phase II ESA completed by exp for management of any excess soils that will be generated from the site as part of the proposed development.

12.2 Excavation

Excavations for the construction of the proposed buildings are expected to extend to 9.6 m below the existing ground surface. These excavations will extend through the fill, glacial till/highly weathered shale and into the sound shale bedrock. The excavations are anticipated to be significantly below the groundwater level.

Overburden Soil

Excavations within the overburden soils may be undertaken using heavy equipment capable of removing cobbles, boulders and possible large slabs of shale bedrock.

All excavations in the overburden must be undertaken in accordance with the Occupational Health and Safety Act (OHSA), Ontario Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils and highly weathered bedrock on site are considered to be Type 3 and as such must be cut back at 1H:1V from the bottom of the excavation above the groundwater level. Within zones of persistent seepage and below the groundwater level, the excavation side slopes are expected to slough and eventually stabilize at a slope of 2H:1V to 3H:1V.

It is anticipated that due to the significant depth of the excavation for the proposed buildings and the proximity of the excavation to existing infrastructure (roadways and underground municipal services), the excavations side will have to be supported by shoring which may consist of steel H soldier pile and timber lagging system. If a secant pile shoring system is being considered, further recommendations can be provided.

A hydrogeological assessment has been completed to provide estimates to the quantity of water to be removed from the site for water taking permit requirements as well as to determine the potential impact on the neighboring properties from the dewatering activities. The hydrogeological assessment should be consulted in determining the appropriate shoring type and method of dewatering for the proposed excavation.

The type of shoring system required would depend on a number of factors including:

- Proximity of the excavation to existing structures and infrastructure,
- Type of foundations of the existing adjacent buildings and the difference in founding levels between the foundations of new buildings and existing adjacent buildings,
- Type and invert depth of existing underground municipal services (infrastructure); and
- The subsurface soil, bedrock and groundwater conditions.

The shoring system will require lateral restraint provided by tiebacks consisting of rock anchors. Due to the potential cobble and boulder size shale fragments pre-drilling may be required for the installation of the soldier piles. The presence of cobble and boulder size shale fragments in the subsurface soils should also be taken into consideration for other contemplated shoring systems.

The need for a shoring system, the most appropriate type of shoring system and the design and installation of the shoring system should be determined by the contractors bidding on this project. The design of the shoring system should be undertaken by a professional engineer experienced in shoring design and the installation of the shoring system should be undertaken by a contractor experienced in the installation of shoring systems. The shoring system should be designed and installed in accordance with latest edition of Ontario Regulation 213/91 under the OHSA and the 2006 Fourth Edition of the Canadian Foundation Engineering Manual (CFEM). The shoring system as well as adjacent settlement sensitive structures (buildings) and infrastructure should be monitored for movement (deflection) on a periodic basis during construction operations.

A pre-construction condition survey of buildings and infrastructure within the influence zone of the construction should be undertaken prior to start of construction activities.

It is recommended that vibration monitoring be conducted at the site and at adjacent existing buildings and infrastructure during the installation of the shoring system and during construction of the new building addition to ensure the existing structures and infrastructure are not damaged as a result of the construction activities.

Soldier Pile and Timber Lagging System

A conventional steel H soldier pile and timber lagging shoring system must be designed to support the lateral earth pressure given by the expression below:

 $P = k (\gamma h + q)$

where

– K(yii+q)

P = the pressure, at any depth, h, below the ground surface

- k = applicable earth pressure coefficient; active lateral earth pressure coefficient = 0.33
 - 'at rest' lateral earth pressure coefficient = 0.50
- γ = unit weight of soil to be retained, estimated at 22 kN/m³
- h = the depth, in metres, at which pressure, P, is being computed
- q = the equivalent surcharge acting on the ground surface adjacent to the shoring system

The pressure distribution assumes that drainage is permitted between the lagging boards and that no build-up of hydrostatic pressure may occur.

The shoring should be designed using appropriate 'k' values depending on the location of any settlement-sensitive infrastructure (roadways and underground services) and building structures. The traffic loads on the streets should be considered as surcharge. Soldier piles will need to extend into the sound rock below the soils. For guidance, if there is room to permit at least a 1.0 m of rock ledge around the perimeter of the excavation, the soldier piles could be toed into the upper levels of the rock provided that a rock bolt and plate arrangement is installed on the rock face to support the toe. The rock bolt should be designed to take the full toe pressure.

The shoring system as well as adjacent settlement sensitive structures and infrastructure should be monitored for movement (deflection) on a periodic basis during construction operations.

The shoring system should be evaluated for the need of lateral restraint by tiebacks in the form of grouted rock anchors.

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

[»]exp.

Rock Excavation

The excavations are anticipated to extend within the shale bedrock, to 9.6 m below the existing ground surface. The shale bedrock may be excavated using a hoe ram for removal of small quantities of the bedrock; however, this process is expected to be very slow. The excavation sideslopes in the upper depths of the weathered zones of the shale bedrock may be cut back at a 1H:1V gradient. The excavation side slopes in the sound shale bedrock may be undertaken with near vertical sides subject to examination by a geotechnical engineer.

The excavation of the shale bedrock to extensive depths below the bedrock surface may require line drilling and blasting techniques. Contractors bidding on this project should decide on their own the most preferred rock removal method; hoe ramming or line drilling and blasting.

The exposed shale bedrock surface along all excavation walls should be covered with shotcreted within the same day of exposure to protect the rock face from rapid deterioration due to exposure to the elements, as previously discussed.

Rock Support

The exposed face of the bedrock in the excavation may require scaling. The exposed bedrock face in the excavation may also require rock stabilization measures such a rock bolts and/or a wire mesh system to stabilize the walls of the rock excavation. The need for stabilization measures will have to be assessed once excavation depths into the bedrock are finalized.

Vibration Control

The vibration limits for blasting should be in accordance with City of Ottawa Special Provisions (SP No. 1201).

Vibration monitors should be installed in critical areas adjacent building and infrastructure located within the construction zone of influence to monitor the vibration levels and set up to provide automated "alert" and "stop work" notifications if the permissible vibration levels are exceeded.

It is recommended that a pre-construction condition survey of the adjacent building and infrastructure located within the construction zone of influence be undertaken prior to the start of any earth (soil) and rock excavation and construction operations. Should blasting be considered for the removal of the bedrock, then, additional vibration monitoring should also be undertaken during blasting operations. Prior to the commencement of blasting, a detailed blast methodology should be submitted by the Contractor.

12.3 Dewatering Requirements

A hydrogeological assessment has been carried out and submitted under a separate cover. This report should be consulted for recommendations on dewatering and management of the proposed excavations.

13. Pipe Bedding Requirements

The invert depths of the underground services are not known at the time of this geotechnical investigation. It is anticipated that the subgrade for the proposed municipal services will be the shale bedrock.

The pipe bedding for the municipal services should be in accordance with City of Ottawa specifications, drawings and special provisions. The bedding and cover material should be compacted to a minimum of 98 percent standard Proctor maximum dry density (SPMDD).

It is recommended that the pipe bedding be 150 mm thick and consist of OPSS Granular A. The bedding material should be placed along the sides and on top of the pipe to provide a minimum cover of 300 mm. The bedding should be compacted to at least 98 percent of the standard Proctor maximum dry density (SPMDD).

If the subgrade for the underground service pipes will be the expansive shale bedrock, special procedures for the installation of the underground services, as previously discussed for footing and slab-on-grade construction on the shale bedrock, may be required. EXP can provide additional comments and recommendations regarding the installation of the service pipes on the shale bedrock subgrade, once pipe invert elevations are known.

The municipal services should be installed in short open trench sections that are excavated and backfilled the same day.

14. Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes

It is anticipated that the majority of the material required for backfilling purposes for the proposed building and for roadway/parking lot backfill would have to be imported and should preferably conform to the following specifications:

- Engineered fill under the lowest floor slab OPSS 1010 Granular B Type II placed in 300 mm thick lifts and each lift compacted to 98 percent SPMDD, and
- Backfill material against foundation walls located outside the proposed building OPSS 1010 Granular B Type II
 placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD.

15. Tree Planting Restrictions

The Hobin design concept plan indicates the new trees will be planted throughout the development. No sensitive clays were encountered and therefore there are no tree planting restrictions from a sensitive marine clay perspective for this project.

16. Surface Parking and Access Roadways

The subgrade for the pavement structures for surface parking and access roadways is anticipated to consist of OPSS Granular B Type II material where the overburden soils have been removed and suitable fill, glacial till as well as OPSS Granular B Type II where the overburden has not been removed. Pavement structure thicknesses required for the access roads set on the anticipated approved subgrade materials were computed and are shown in Table VII. The pavement structures assume a functional design life of 15 to 20 years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out.

Table VII: Recommended Pavement Structure Thicknesses								
Pavement Layer	Compaction Requirements	Computed Pavement Structure						
		Light Duty Traffic (Cars Only)	Heavy Duty Traffic (Buses and Trucks)					
Asphaltic Concrete	92 percent-97 percent MRD	65 mm HL3/SP12.5 mm/ Cat. B (PG 58-34)	40 mm HL3/SP12.5 Cat. B (PG 58-34) 50 mm HL8/SP 19 Cat. B (PG 58-34)					
OPSS 1010 Granular A Base (crushed limestone)	100% percent SPMDD	150 mm	150 mm					
OPSS 1010 Granular B Type II Sub-base	100% percent SPMDD	300 mm	450 mm					

Notes:

- 1. SPMDD denotes standard Proctor maximum dry density, ASTM, D-698-12e2.
- 2. MRD denotes Maximum Relative Density, ASTM D2041.
- 3. The upper 300 mm of the subgrade fill must be compacted to 98 percent SPMDD.
- 4. The approved subgrade should be covered with a woven geotextile prior to placement of granular sub-base of the pavement structure.

The foregoing design assumes that construction is carried out during dry periods and that the subgrade is stable under the load of construction equipment. If construction is carried out during wet weather and, heaving or rolling of the subgrade is experienced, additional thickness of granular material may be required in addition to the woven geotextile indicated in Table VII.

Additional comments on the construction of the parking lot and access roads are as follows:

- In areas where the overburden soil has not been removed as part of the building excavation, the subgrade preparation for the areas to be paved, the proposed new pavement areas should be stripped of topsoil, organic stained soil and other obviously unsuitable material. The subgrade should be properly shaped, crowned, then proofrolled with a nonvibratory roller in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with suitable OPSS 1010 Granular B Type II compacted to 95 percent SPMDD (ASTM D698).
- The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catchbasins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 3. The granular materials used for pavement construction should conform to OPSS 1010 for Granular A and Granular B Type II and should be compacted to 100 percent of the SPMDD (ASTM D698). The asphaltic concrete and its placement should meet OPSS requirements. It should be compacted to a minimum of 92 percent of the maximum relative density in accordance with ASTM D2041.

It is recommended that a geotechnical consultant be retained to review the final pavement structure design and drainage plans prior to construction to ensure that they are consistent with the recommendations of this report.

17. Corrosion Potential

Chemical tests limited to pH, sulphate, chloride and resistivity were undertaken on three (3) shale bedrock samples. A summary of the results is shown in Table VIII. The laboratory certificate of analysis is shown in Appendix B.

Table VIII: Corrosion Test Results on Shale Bedrock Samples								
Borehole – Sample No.	Depth (m)	Bedrock Type	рН	Sulphate (%)	Chloride (%)	Resistivity (ohm-cm)		
BH 17 Run 2	3.9 – 4.0	Shale	9.75	0.001	0.001	3090		
BH 12 Run 6	10.3 - 10.4	Shale	9.96	0.006	0.002	2520		
BH 14 Run 4	6.1 - 6.2	Shale	9.92	0.001	0.001	3320		

The results indicate the bedrock has a negligible sulphate and chloride attack on subsurface concrete. The concrete should be designed in accordance with CSA A.23.1-14.

The results of the resistivity tests indicate that the bedrock is mildly corrosive to bare steel as per the National Association of Corrosion Engineers (NACE). Appropriate measures should be taken to protect the buried bare steel from corrosion.

18. Additional Comments

All earthwork activities from subgrade preparation to placement and compaction of engineered fill, placement and compaction of granular materials and asphaltic concrete, should be inspected by qualified geotechnicians to ensure that construction proceeds according to the project specifications.

All the footing beds should be examined by a geotechnical engineer to ensure that the founding surfaces are capable of supporting the design bearing pressure and that the footing beds have been properly prepared.

19. General Comments

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for the design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

The environmental aspects of the soils are discussed in the EXP Phase Two ESA report.

We trust that the information contained in this report will be satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

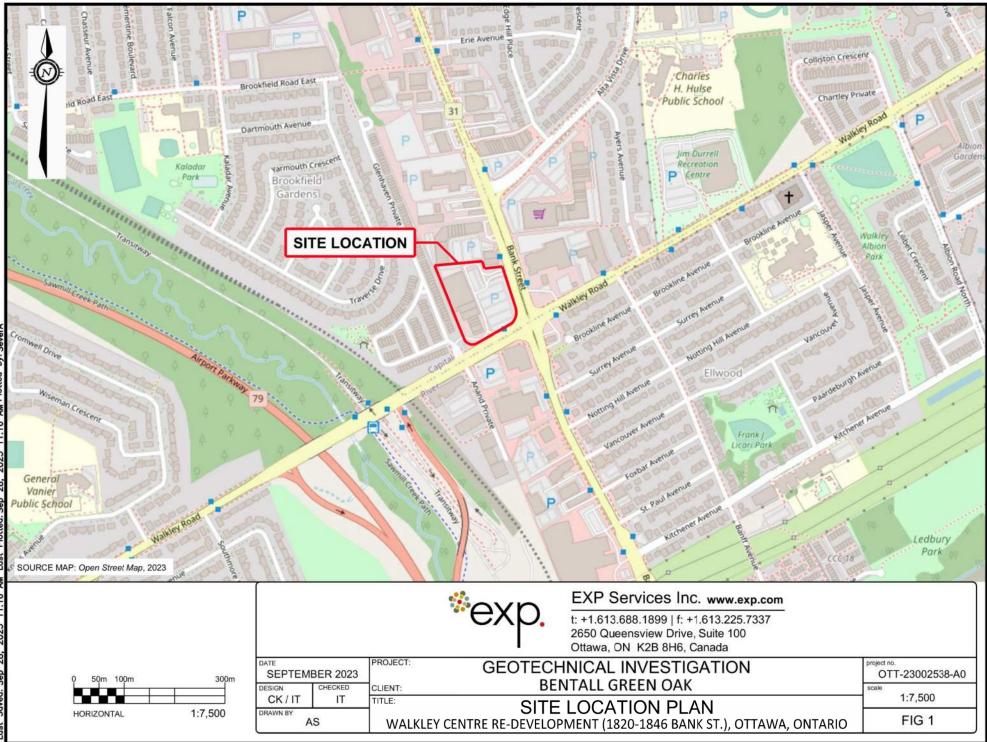
Sincerely

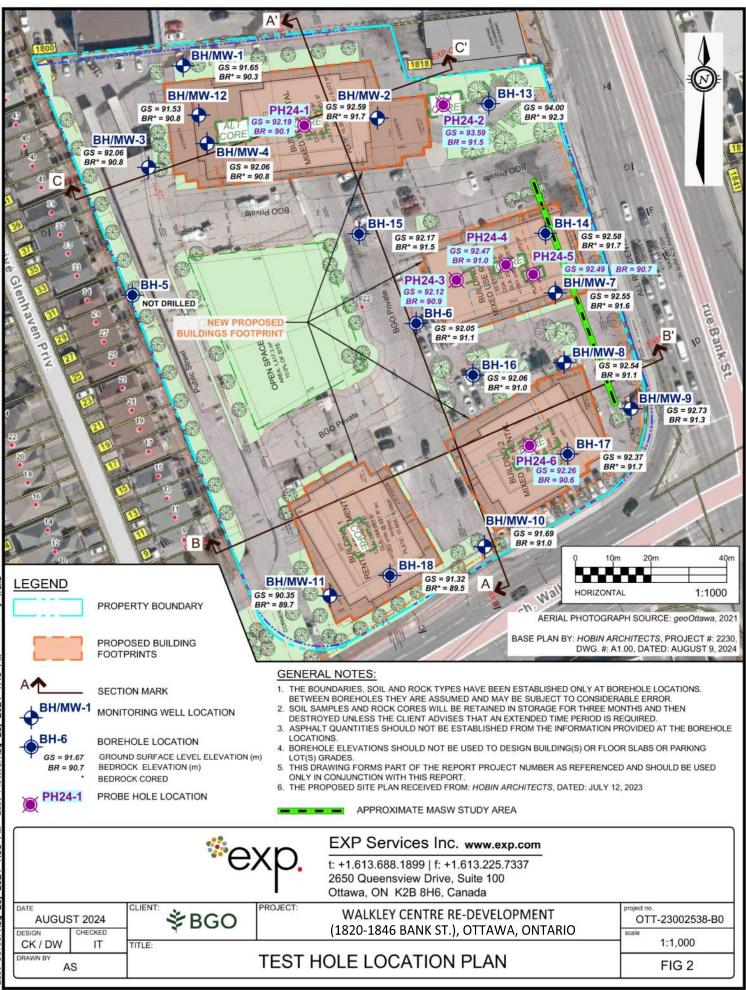
1 2/11

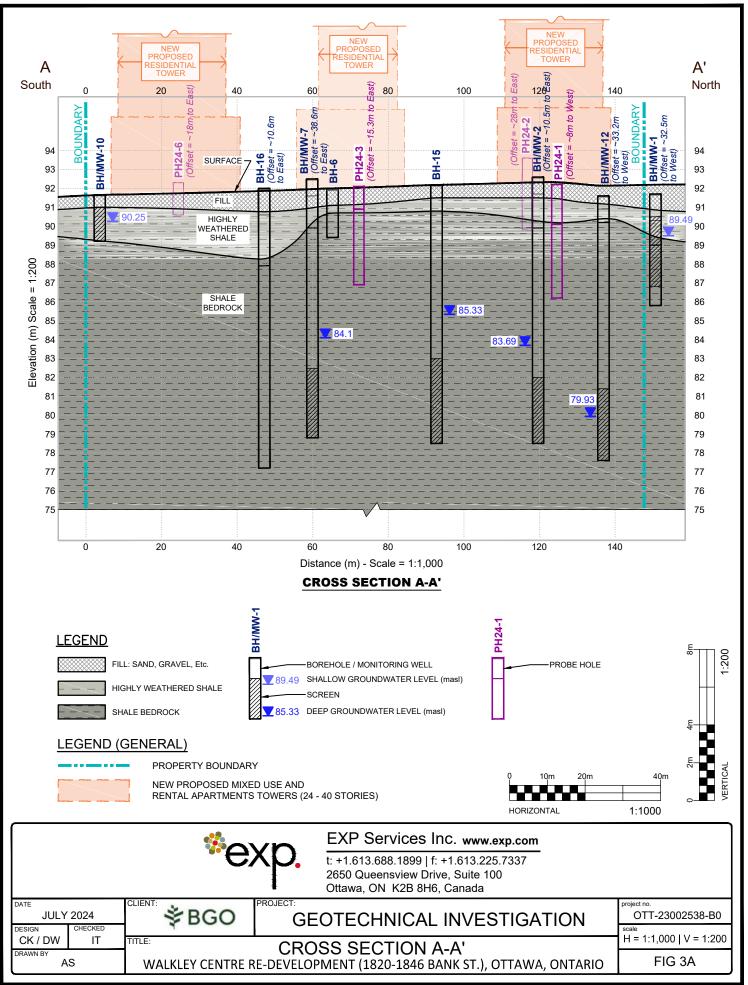
Daniel Wall, M. Eng., P.Eng. Geotechnical Engineer Earth & Environment

adull

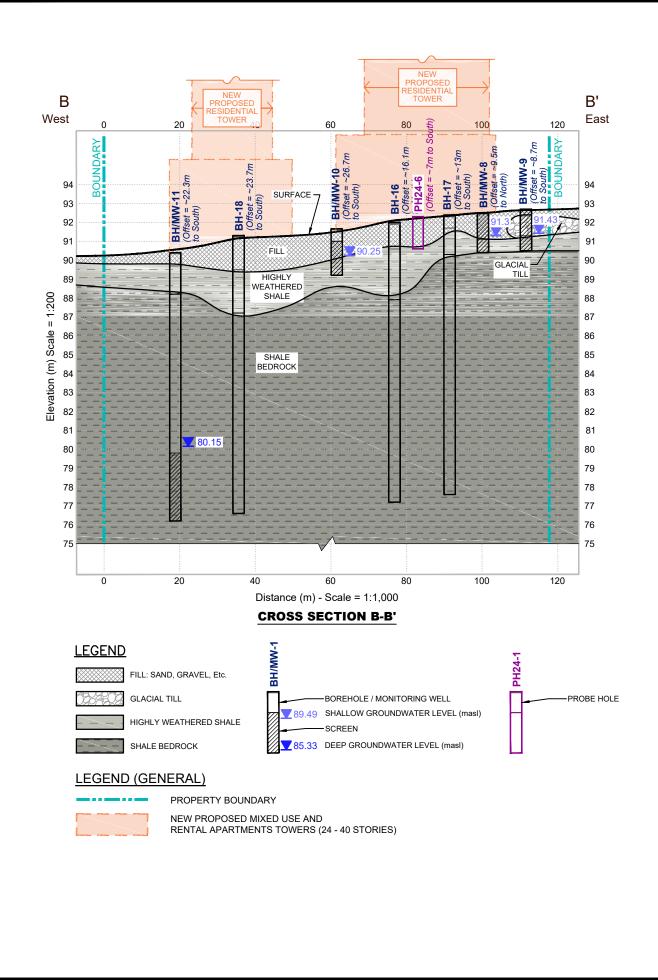
Ismail Taki, M. Eng., P.Eng. Senior Manager, Eastern Region Earth & Environment

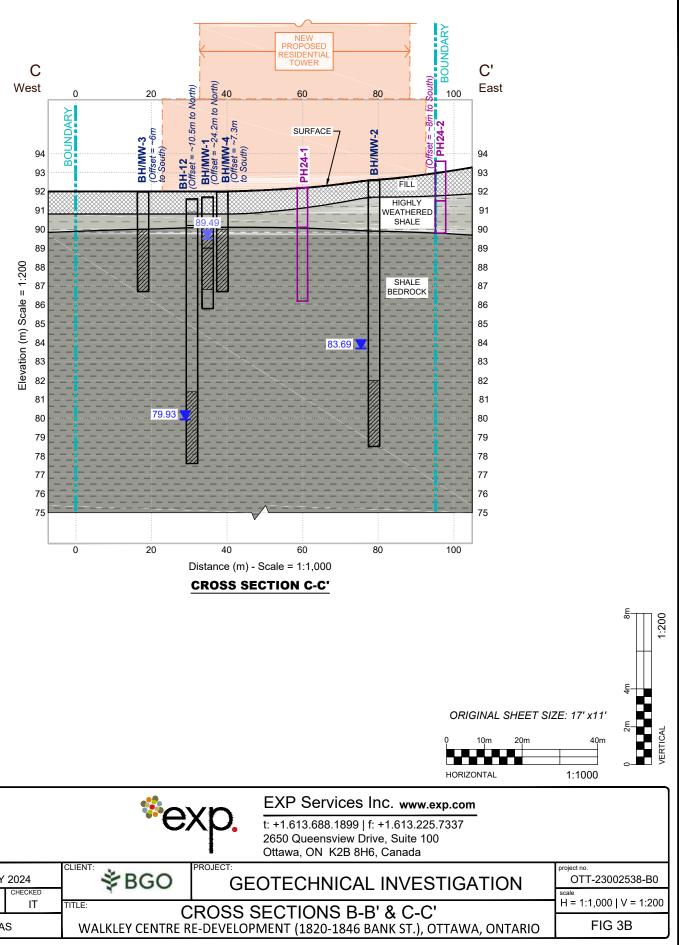


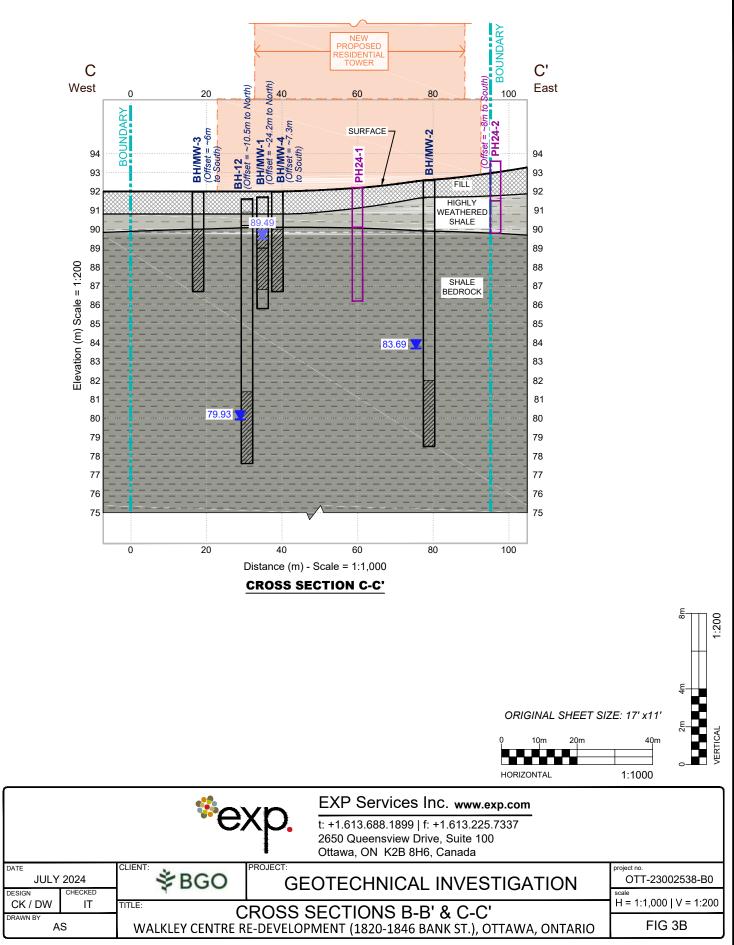

EXP Services Inc.


Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev.1 October 3, 2024

Figures


[%]exp.





Filename: E:\OTT\OTT-23002538-B0\60 Execution\65 Drawings\23002538-B0_Geo_July-2024.dwg Last Saved: Jul 26, 2024 10:11 AM Last Plotted: Jul 26, 2024 10:13 AM Plotted by: SeverA

[%]exp.

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by exp Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

-		SET	7	-	SAND			GRAVEL		COBBLES	BOULDER
FINE	INE D	MEDIUM	COARSE	FNE	MEDUIM	COARSE	FINE	MEDIUM	COARSE	0 0	
2	0,0	06 0	07	0.06	0.2	0.6	2.0	6.0	23 60	2	0
2	12	06 0	02	0.06	02	1	1	*0 1	23 60		0

CLAY (PLASTIC) TO	FEAC	MEDRUM	CRS	FINE	COARSE
SILT (NONPLASTIC)		SAND	35-10-		ORAVEL
	UNIFIED	SOIL CLASS	FICATI	ON	

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites, unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Project No:	<u>отт-23008400-во</u>	f Bo) r	er)(ole	• <u> </u>	<u>BH-</u>				4	*	e	exp
Project:	Geotechnical Investigation - Walkley	Centre De	eve	lopme	en	t			F	Figure N		4	-		I
Location:	1822-1846 Bank Street, Ottawa, Onta	ario								Pa	ge1	of	_1_		
Date Drilled:	October 26, 2023			Split Sp	рос	on Sample	е		3	Combus	tible Vapo	ur Readi	ng		
Drill Type:	CME-55 Truck-Mounted Drill Rig		-	Auger	Sa	mple]	Natural I	Moisture C		5		×
Datum:	Geodetic Elevation		-	SPT (N Dynam	·	/alue Cone Tes	st	C) -		- ed Triaxial		l		
_ogged by:	M.Z. Checked by: D.W.		-		Str	ength by		∎ + S	-	Shear S	at Failure trength by neter Test				▲
			-1	Vane T		t ndard Per	otrotion				stible Vapo		ng (nnm		
G Y W B L O	SOIL DESCRIPTION	Geodetic Elevation	D e p		20				80	2	50 50	0 7	50	M P	Natural Unit Wt.
Ĕ		m 91.7	h h	Shea	ar S 50	trength 0 10)0 ·	150	kPa 200		ural Moistu erg Limits 20 4		Veight) 50	LES	kN/m ³
	HALTIC CONCRETE ~ 100 mm thick	∕ 91.60 ∕ 91.44			16									500	001
San	d and crushed gravel, grey, moist				0					××					GS1 SS1
Sano	d and gravel, brown, moist, (loose to	_	1	7		· · · · · · · · · · · · · · · · · · ·								÷	
	pact)	90.30		:0						×				X	SS2
Silty	HLY WEATHERED SHALE sand and gravel, black, moist, (very														
dens	se)	89.6	2		····	• • • • • • • • • •	5	7		×				ЧX	SS3
														1	
SHA	LE BEDROCK	89.00 88.80			· · · ·										CORE
Blac	k, Very Poor Rock Quality	4	3												
Blac	k, Fair to Good Rock Quality, Medium	_			·: ·	• • • • • • • • •				· · · · · · · ·				:::: :::::::::::::::::::::::::::::::::	
Stroi	ing														CORE
			4		:::									÷	25.8
		_												· · ·	
			5												26.0
					· ·										CORE
		_												<u></u>	
B	Borehole Terminated at 5.9 m Depth	85.80													
					:									:	
					:										
					:									:	
					:										
					:										
					:										
					:										
					:										
					:										

GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT	OG OF BOREHOLE GINT LOGS 11

NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS		CORE DR	RILLING RECOR	RD
use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2.50 mm monitoring well installed upon completion	11/23/2023	1.8		1	2.7 - 2.9	60	0
3. Field work was supervised by an EXP representative.	12/06/2023	2.2		2	2.9 - 4.5	97	69
4. See Notes on Sample Descriptions	3/14/2024 6/19/2024	2.1 2.1		3	4.5 - 5.9	100	82
5.Log to be read with EXP Report OTT-23008400-B0	0/19/2024	2.1					

Project No:	ОТТ-23008400-В0	g of Bo	or	eh	ole	e <u>E</u>	<u>BH</u>		Figure N		5		е	xp
Project:	Geotechnical Investigation -	Walkley Centre De	evel	opmen	ıt				Ũ	_	1 of	- 2		
Location:	1822-1846 Bank Street, Ottav	wa, Ontario							Fa	je	<u> </u>			
Date Drilled:	'October 30, 2023		_ 5	Split Spo	on Samp	ble	D	3	Combus	tible Vap	oour Readi	ng		
Drill Type:	CME-55 Truck-Mounted Drill F	Rig		Auger Sa SPT (N) \					Natural I Atterberg		Content	Ļ		× ⊸
Datum:	Geodetic Elevation		0	Dynamic	Cone Te	est		_	Undraine	ed Triaxia		1		⊕
_ogged by:	M.Z. Checked by:	D.W.		Shelby Tu Shear Str		v	-	■ + 3	% Strain Shear St	trength b	у			
				/ane Tes			ę	8	Penetror	neter Te	est			_
S Y M B O L		Geodetic				enetration			2	50		50	SAM	Natural
G M W B L O L	SOIL DESCRIPTION	Elevation m 92.6	ĥ	Shear S	Strength		60 50	80 kPa 200			sture Conte ts (% Dry V 40 6	ent % Veight) 30		Unit Wt. kN/m ³
	HALTIC CONCRETE ~ 100 mm NULAR FILL	thick 92.50	0					200						
Silty	sand with gravel, brown, moist,	_											X	SS1
	pact)	91.70											\mathbb{H}	
Silty	sand with gravel, black, moist					hen 50/10	0 mm						X	SS2
		_							X					
		_	2		10	then 50/0	mm						N	SS3
													μ	
Black	LE BEDROCK <, Good to Excellent Rock Qual	ity, –	3										_	
	um Strong													CORE
														CONL
		_	4											
		_												
														CORE
		_	5											CORL
		_											_	
			6											
		_		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·							-	CORE
		_	7											
													H	
		-												
			4 8											
		04.4	*	·····										26.7
													H	
		-	9											
				•••••••										CORE
IOTES:	Continued Next Page		_10L			.1	<u></u>	<u> </u>		<u></u>		FCC=		
	equires interpretation by EXP before			VEL RE Water		S Hole Op	en	Run	CO Dep		ILLING R % Re			QD %
	ng well installed upon completion	Date 11/23/2023		<u>evel (m)</u> 10.9		To (m		<u>No.</u> 1	(m 2.7 -)	84			80
	supervised by an EXP representative.	3/14/2024		8.2				2	4.2 - 5.6 -		100 100			96 81
	Cample Descriptions with EXP Report OTT-23008400-B0							4	7.2 -	8.7	100			97
S. LOY ID DE TEAU								5	8.7 - 1		100 98			100 77

7.2 - 8.7 8.7 - 10.3 10.3 - 11.8 11.8 - 13.1 5 6 100 98 100 77 13.1 - 14.1

Log of Borehole <u>BH-02</u>

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

Figure No.

7

8

11.8 - 13.1

13.1 - 14.1

100

100

100

											age.		_ of		
S		Geodetic	D		Sta	ndard P	enetration 1	Fest N Va	lue		ustible 250	Vapou 500		ling (ppm) 750	S A Natu
M M B O	SOIL DESCRIPTION	Elevation		Sh	2 ear S	0 Strength	40 6	60 8	80 kPa	N Atte	atural N	loistur	e Contr	ent % Weight)	S A Natur P Unit V E KN/n
Ľ			h			-	100 1	50 2	200		20	40		<u>60</u>	E kN/n
	SHALE BEDROCK Black, Good to Excellent Rock Quali														Ľ
	– Medium Strong (continued)											<u></u>	<u></u>		
	_	_	11	1								<u></u>	<u></u>		COR
i E															25.
	_	-													
															<u>.</u>
	_	_	12	2											:
12	_														COR
	_														
	_	_	13	3									· · · · · · ·		
															:
1	_	_					· · · · · · · · · · ·						······		COR
			14	۱ <u>۲۰۰۰</u>			+		+					+	<u> </u>
	Borehole Terminated at 14.1 m D	epui													
					::										
					::										
					::										
					::										
					::										
					÷										
					::										
					::										
					::										
					::										
OTES:		WATE	RI	F\/F		COR	s)RII I		RECORD	
UTES.	le data requires interpretation by EXP before others			Wat	ter		Hole Op	en	Run		pth		% Re		RQD %
1.Boreho		Date	L	<u>evel.</u> 10.	(m)		To (m)		<u>No.</u>	(r	<u>n)</u> - 4.2	+	84		80
1.Boreho use by	monitoring well installed upon completion	1 11/23/2023						1			7.4				
1.Boreho use by 2.31 mm	monitoring well installed upon completion rork was supervised by an EXP representative.	11/23/2023 3/14/2024		8.2					2		- 5.6		100		96
1.Boreho use by 2.31mm 3.Field w	monitoring well installed upon completion ork was supervised by an EXP representative. otes on Sample Descriptions								3	4.2 5.6	- 5.6 - 7.2		100 100	2 2	96 81
1.Boreho use by 2.31 mm 3.Field w 4.See No	ork was supervised by an EXP representative.									4.2 5.6 7.2	- 5.6		100	0 0 0	96

Project:	Geotechnical Investigation - W	alkley Centre De	γVe	lopment				F	igure N	No	6	_		1
ocation:	1822-1846 Bank Street, Ottaw	-							Pa	ge	<u>1</u> of	_1_		
ate Drilled:									Quarter	41.1. \ /	D			_
rill Type:	Hilti / Geoprobe		-	Split Spoon S Auger Sampl							oour Read Content	ing		□ ×
atum:	Geodetic Elevation		-	SPT (N) Valu Dynamic Cor			0		Atterberg	-	al at	I		-О Ф
ogged by:	MR Checked by: I	\ M /	-	Shelby Tube	4h h				% Strain Shear S	at Failu	re			⊕ ▲
ogged by.				Shear Streng Vane Test	un by		+ s		Penetro					
S Y B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h		-	60	80	kPa	2	50	pour Read 500 7 sture Conte ts (% Dry \	750	SAZPLES	Natura Unit Wt kN/m ³
	CRETE ~ 165 mm thick	92.1 91.94	0	50	100	150	200		2	20	40	60	S	
Sand	I, trace gravel, brown-grey, mois	t –												SS1
		90.80	1											000
	ILY WEATHERED SHALE sand with gravel, black, moist	_					· · · · · · · · · · · · · · · · · · ·	· · · · · ·						SS2
		4	2				· · · · · · · · · · · · · · · · · · ·						· · · · · ·	CORE
		89.8 89.60	3										 	
Black	LE BEDROCK <, Poor to Fair Rock Quality												· · · ·	
		-	3										· · 	CORE
		_						· · · · · · · · · · · · · · · · · · ·						
			4										· · · · · ·	CORE
														JUNE
		-												
		4	5											CORE
	orehole Terminated at 5.4 m De	86.70						:::::: -::::						
OTES:		WATE	RL	EVEL RECO	RDS				со	RE DR	ILLING F	RECORI)	
use by others	equires interpretation by EXP before	Date		Water evel (m)	Hole	Open (m)		Run No.	Dep (m	th	% Re			QD %
completion.	nonitoring well was installed upon supervised by an EXP representative.	12/21/2023 3/14/2024 6/19/2024		2.3 2.3 2.3 2.3		<u>,</u>		1 2 3	1.5 - 2.5 - 3.5 -	2.5 3.5	40 100 100			0 43 50

Project No: Project:	Geotechnical Investigation - W	/alkley Centre De	eve	lopmer	nt					F	igure						
ocation:	1822-1846 Bank Street, Ottaw	-		•							Pa	ge.	1	of	1		
ate Drilled:		,		Split Spo	00.0	ampl					Combu	etible V	apour	Poodir			
rill Type:	Hilti / Geoprobe		-	Auger Sa	ampl	e					Natural	Moistur	e Cor		ig		×
atum:	Geodetic Elevation		-	SPT (N) Dynamic			t	_	0		Atterbe Undrair	-				-	
ogged by:	MR Checked by: I	W	-	Shelby T Shear St		th by			—		% Strai Shear S						•
-99).				Vane Tes		urby			+ s		Penetro	meter	「est				
S Y B O		Geodetic	De				etratio				:	istible V 250	500	7	50	- A	Natura
M B O L	SOIL DESCRIPTION	Elevation m	p t h	Shear S	20 Strer 50	4 gth 1(60 150	20	0 kPa		tural Mo berg Lir 20	oisture nits (% 40		nt % /eight) 0	PLES	
XXX -	CRETE ~ 200 mm thick	92.1 91.90	0										40				
Sanc	d, trace gravel, brown-grey, mois	t –															SS1
			1													<u> </u>	
		90.80															SS2
Silty	ILY WEATHERED SHALE sand with gravel, black, moist	-															
		90.7	1 2	··· ···					··· · · · · ·					· · · · · · · ·			
	LE BEDROCK	89.70															
Black	k, Fair to Excellent Rock Quality															· · · · · · · ·	
		-	3						··· · · · · ·	• • • • • • • •							CORE
		_							······					• • • • • •		··· ·	
			4													····	CORE
		_							······································					· · · · · · · · · · · · · · · · · · ·		·	
			5														CORE
		86.70															
В	orehole Terminated at 5.4 m De	pth															
																:	
			_					: :					: []				
DTES: .Borehole data r	requires interpretation by EXP before	WATE	RL		ECC					'		DRE DI					
use by others	nonitoring well was installed upon	Date 12/21/2023	L	Water evel (m))		lole C To (r		-	Run No.	Dej (n	ı)		% Re	D.	F	RQD %
completion.	supervised by an EXP representative.	3/14/2024		1.8 1.9						1 2	1.5 - 2.4 -	3.4		42 43			65
		6/19/2024		2.0						3	3.4 -			100			95

Project No:	<u>отт-23008400-во</u>					e	B	<u>8H-</u>		-igure	e No	D.	8		е	xp
Project:	Geotechnical Investigation - Walkley C		ve	lopmer	nt					P	age	э.	1 of	1		•
Location:	1822-1846 Bank Street, Ottawa, Ontari	0														
Date Drilled:	<u>'October 27, 2023</u>		-	Split Spo		nple							our Readi	ing		
Drill Type:	CME-55 Truck-Mounted Drill Rig			Auger Sa SPT (N)	•					Natur Atterb			Content	ł		×
Datum:	Geodetic Elevation		-	Dynamic Shelby T		Test						Triaxia t Failur				\oplus
Logged by:	M.Z. Checked by: D.W.			Shear St Vane Tes	rength I	by		+ s		Shear	r Stre	ength b eter Te	y			A
SY MB U	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h		20	40		Fest N Va	lue 30 kPa		250) 5	our Readi 600 7 ture Conte s (% Dry V	50	SAMP LES	Natural Unit Wt. kN/m ³
FILL Silty	sand with gravel, brown, moist, —	92 91.92	0	16 0	50	100	1	50 2	00	×	20	, , , , , , , , , , , , , , , , , , , ,	40 (60	Š	GS1 SS1
HIGI	npact) HLY WEATHERED SHALE – sand with gravel, black, moist, (loose) LE BEDROCK	91.10 90.70	1	7 ©						>	¢					SS2
	k, Very Poor Rock Quality		2													CORE1
		89.40														
E	Borehole Terminated at 2.6 m Depth															

9/10/24	
3.GPJ TROW OTTAWA.GDT 9/10/2	
1.15.202;	
GINT LOGS 1	
OREHOLE	

~ 1								
ŝ								
-	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	RILLING RECOR	RD
GINT	1.Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OF BOREHOLE	2. Borehole was backfilled with soil cuttings upon completion.				1	1.3 - 2.6	100	0
BR	3. Field work was supervised by an EXP representative.							
GF B	4. See Notes on Sample Descriptions							
POG	5.Log to be read with EXP Report OTT-23008400-B0							

Project No: <u>OTT-23008400-B0</u> Project: Geotechnical Investigation - W	Valklev Ce	entre Da		lonmen	nt				F	igure N	lo	9	-	
·	-		Jve	opinen					-	Pag	ge	1_ of	2	
	va, Untario	J							_					
Date Drilled: <u>'October 27, 2023</u>			-	Split Spoo Auger Sa		ple				Combust Natural M		our Readi	ng	×
Drill Type: <u>CME-55 Truck-Mounted Drill R</u>	lig		-	SPT (N) \				0		Atterberg		Someric	⊢	— 0
Datum: Geodetic Elevation			-	Dynamic Shelby Tu		est				Undraine % Strain				\oplus
.ogged by: <u>M.Z.</u> Checked by:	D.W.	_		Shear Str Vane Tes	ength b	у		+ s		Shear St Penetror				
SOIL DESCRIPTION		Geodetic Elevation m 92.5	D e p t h		0 Strength		Test N 60 150	Value 80 200	kPa	25	50 5 ural Moist erg Limits	ure Conte s (% Dry V	50	S M P Unit Wt. kN/m ³
ASPHALTIC CONCRETE ~ 70 mm th GRANULAR FILL		92.43 92.35	0							X				$\overline{\nabla}$
Sand and crushed gravel, grey, mois		01.60								×				SS1
Silty sand with gravel, brown, moist,	Æ	91.60	28	then 50/1	00 mm			· ; ·	:					
HIGHLY WEATHERED SHALE Silty sand with gravel, black, moist, (0:										SS2
dense)	-	90.70				50/0 mn								× SS3
Black, Very Poor Rock Quality	_		2											
	8	89.90							(-)-(-) (-)-(-) (-)-(-)					CORE
Black, Poor to Excellent Rock Quality	V.													
Weak to Medium Strong			3											
	_													CORE
			4											25.3
	_													
	_		5						· · · · · · · · ·					CORES
		0	_		• • • • • • •									
		87	(
	_		6						······					
														CORE₄
				-> -> -> -> ->										25.9
	_		7						<u></u>					
	_								·····					
	_		8											CORE
	_								······					
			9											
	_								·····					CORE
Continued Next Page			_											25.9
NOTES:		WATE	RL	EVEL RE	ECORE	DS] [CO	RE DRII	LING R	ECORD	
1.Borehole data requires interpretation by EXP before use by others	Date		L	Water .evel (m)		Hole Op To (m		1	Run No.	Dep (m)		% Re	C.	RQD %
2.31 mm monitoring well installed upon completion3.Field work was supervised by an EXP representative.	11/23/20			5.8 8.6					1 2	1.8 - 2	2.7	76 100		47 78
4. See Notes on Sample Descriptions	3/14/20	24		6.2					3	4.2 -	5.7	100		100
5.Log to be read with EXP Report OTT-23008400-B0	6/19/20)24		5.5					4 5	5.7 - 1 7.2 - 8		100 100		58 80
									6	8.8 - 1 10.3 - 1		100 100		85 71
									8	11.8 -		100		71

Log of Borehole <u>BH-07</u>

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

LOG OF BOREHOLE GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24

3. Field work was supervised by an EXP representative.

5. Log to be read with EXP Report OTT-23008400-B0

4. See Notes on Sample Descriptions

12/06/2023

3/14/2024

6/19/2024

8.6

6.2

5.5

2

3

4

5

6

7

8 9 2.7 - 4.2

4.2 - 5.7

5.7 - 7.2

7.2 - 8.8

8.8 - 10.3

10.3 - 11.8

11.8 - 13.4

13.4 - 13.7

100

100

100

100

100

100

100

100

78

100

58

80

85

71

71

92

Figure No.

Project: Geotechnical Investigation -	Walkley Centre D	evel	opmer	nt				Dor		2_of	2	
Ş			Sta	ndard Pe	enetration T	est N Val	ue		stible Vap	our Readin	ng (ppm)	S
G SOIL DESCRIPTION	Geodetic Elevation m		2 Shear S	0 Strength	40 6	8 0	i0 kPa	2 Nati Atterb	50 5 ural Moist erg Limits	00 75 ure Conter s (% Dry W	50 nt % /eight)	Natural P Unit Wt. kN/m ³
SHALE BEDROCK	82.5	10	5	0		50 21	00	2	20 4	06	0	
Weak to Medium Strong (continued	_	11										CORE
		12-										
	_	13										CORE 25.6
Borehole Terminated at 13.7 m	Depth											
NOTES:					s			COI				<u> </u>
1. Borehole data requires interpretation by EXP before use by others	Date	1	Vater vel (m)		Hole Ope To (m)	en	Run No.	Dep (m	th	% Red		RQD %
2.31 mm monitoring well installed upon completion	11/23/2023		5.8 8.6				1	1.8 - 2	2.7	76 100		47 78

			Log of	f Bo	rehole <u>B</u>	1-08	÷.	ayn
Ρ	rojec	t No:	OTT-23008400-B0				•	SVD
Ρ	rojec	t:	Geotechnical Investigation - Walkley C	Centre Dev	velopment		Figure No. <u>10</u>	I
Ŀ	ocatio	on:	1822-1846 Bank Street, Ottawa, Onta	rio			Page. <u>1</u> of <u>1</u>	
D	ate D	rilled:	'October 26, 2023		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
D	rill Ty	/pe:	CME-55 Truck-Mounted Drill Rig		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	×
D	atum	:	Geodetic Elevation		Dynamic Cone Test — Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Lo	oggeo	d by:	M.Z. Checked by: D.W.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A
G W L	SY MBOL		SOIL DESCRIPTION	Geodetic Elevation m 92.5	D Standard Penetration Test P 20 40 60 Shear Strength 0 50 100 150	80 kPa 200	20 40 60	S A P Unit Wt. E S
		ACD	UNITIC CONCRETE = 00 mm thick	00.44	0		<u></u>	

	Ľ		92.5 92.41	h 0		50	1	100 1	50 2	200		20	40	60 E	KIN/III
K	\otimes	∧ ASPHALTIC CONCRETE ~ 90 mm thick FILL	92.41	ľ	1	0									
	\bigotimes	-Sand with crushed gravel, with silt and asphaltic concrete debris, brown, moist,	_								×			H A	SS1
:∐\$	\bigotimes	asphaltic concrete debris, brown, moist, (compact)									×				7
	\bigotimes		91.3	1	1						×			X	SS2
	××	- HIGHLY WEATHERED SHALE	91.10												
		Silty sand with gravel, black, moist						50/75 mm						\mathbb{N}	SS3
EE		_	- 90.40	2	· · · · ·	····	+ · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				<u></u>		
		Auger Refusal at 2.1 m Depth				::									
						::									
						::									
							::::								
							:::::								
						::	:::::								
						::	:::::								
						::									
						::									
					::										
	res:		WATEF	٦L	.EVEI	L RE	CORD	S			C	ORE DF		ECORD	
1.B	Boreho	le data requires interpretation by EXP before			Wat			Hole One	n	Run		onth	%Re		

L00	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOP	RD
GIN	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ľ	2.50 mm monitoring well installed upon completion	11/23/2023	1.4	· /				
H	3. Field work was supervised by an EXP representative.	12/06/2023	1.3					
BOR	4. See Notes on Sample Descriptions	3/14/2024 6/19/2024	0.6 1.2					
P P	5. Log to be read with EXP Report OTT-23008400-B0	0/10/2021	1.2					
PO								

	Log of	f Bo	r	ehole _	BH-0	9		۔ د	vn
Project No:	OTT-23008400-B0			—				C	·///
Project:	Geotechnical Investigation - Walkley C	entre De	vel	opment		F	Figure No. <u>11</u>		I
Location:	1822-1846 Bank Street, Ottawa, Ontar	io					Page. <u>1</u> of <u>1</u>	-	
Date Drilled:	'October 26, 2023		. 8	Split Spoon Sample	\boxtimes		Combustible Vapour Reading		
Drill Type:	CME-55 Truck-Mounted Drill Rig			Auger Sample SPT (N) Value			Natural Moisture Content Atterberg Limits	⊢	× ⊸⊖
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube			Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.Z. Checked by: D.W.		5	Shear Strength by /ane Test	+ s		Shear Strength by Penetrometer Test		▲
G Y W B U C L	SOIL DESCRIPTION	Geodetic Elevation m 92.7	D e p t h	Standard Penetrati 20 40 Shear Strength 50 100	on Test N Value 60 80 150 200	kPa	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight 20 40 60	M P	Natural Unit Wt. kN/m ³
GRA Sanc	HALTIC CONCRETE ~ 100 mm thick NULAR FILL I and crushed gravel, grey, moist CIAL TILL sand with gravel and shale fragments,	92.60 92.40		17			×	X	GS1 SS1
	n, moist, (compact)	1	1		50/25 mm		×	X	SS2

• • •

2

91.30^{91.4}

90.50

×

×

SS3

0

. 12 then 50/25 mm

....

HIGHLY WEATHERED SHALE Silty sand with gravel, black, moist

Auger Refusal at 2.2 m Depth

11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24								
ß	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
GINT LOGS	1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
BOREHOLE	2.50 mm monitoring well installed upon completion	11/23/2023	1.4					
ËH	3. Field work was supervised by an EXP representative.	12/06/2023	1.3					
BÖ	4. See Notes on Sample Descriptions	3/14/2024 6/19/2024	1.1 1.3					
LOG OF	5.Log to be read with EXP Report OTT-23008400-B0	0/19/2024	1.3					
ЧL								

	Loa of	f Bo	r	rehole <u>BH</u>	-10			vn
Project No:	ОТТ-23008400-В0					10	C	$\sim \rho$
Project:	Geotechnical Investigation - Walkley C	entre De	ve	elopment	F	Figure No. <u>12</u>		I
Location:	1822-1846 Bank Street, Ottawa, Ontar	io				Page. <u>1</u> of <u>1</u>		
Date Drilled:	October 26, 2023			Split Spoon Sample	1	Combustible Vapour Reading		
				Auger Sample	-	Natural Moisture Content		×
Drill Type:	CME-55 Truck-Mounted Drill Rig			SPT (N) Value)	Atterberg Limits		O
Datum:	Geodetic Elevation			Dynamic Cone Test	-	Undrained Triaxial at		\oplus
Logged by:	M.Z. Checked by: D.W.			Shelby TubeShear Strength byVane TestStrength Strength Stre	-	% Strain at Failure Shear Strength by Penetrometer Test		▲
G Y W B U O L	SOIL DESCRIPTION	Geodetic Elevation m 91.7	D e p t h	20 40 60 Shear Strength	alue 80 kPa 200	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60) SAMPLES	Natural Unit Wt. kN/m ³
REC	HALTIC CONCRETE ~ 120 mm thick YCLED ASPHALTIC CONCRETE ~	91.58 91.53 91.00	0	14 0		×	X	SS1
	sand with gravel and asphalt	91.00	1	1				
	HLY WEATHERED SHALE	90.3					Ň	SS2
	sand with gravel, black, moist, – npact to very dense)	1		12, 30 then 50/75 mm		×	N	SS3

12, 30 then 50/75 mm.

• • • • • •

50/75 mm ∷ :⊙: ::

89.20

Auger Refusal at 2.5 m Depth

2

÷ ; ;

×

X

SS3

SS4

8

11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24								
GINT LOGS	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	RILLING RECOF	RD
GINT	1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
끸	2.50 mm monitoring well installed upon completion	11/23/2023	1.5	· / /		. /		
뛰	3. Field work was supervised by an EXP representative.	12/06/2023	1.4					
ß	4. See Notes on Sample Descriptions	3/14/2024	1.3					
OF BOREHOLE	5. Log to be read with EXP Report OTT-23008400-B0	6/19/2024	1.4					
LOG O	S.Log to be read with LAP Report OT 1-23008400-BU							

	Log of	f Bo	r	eh	ole	B	β Η -΄	11				**		yn
Project No:	OTT-23008400-B0								iqure	No	13			
Project:	Geotechnical Investigation - Walkley C	Centre De	ve	lopmer	t			- '	U	age.		2		
Location:	1822-1846 Bank Street, Ottawa, Ontar	io						_			<u> </u>			
Date Drilled:	'October 30, 2023			Split Spo	on Samp	le	\boxtimes		Combu	istible Vap	our Readir	ıg		
Drill Type:	CME-55 Truck-Mounted Drill Rig			Auger Sa SPT (N) \	•					l Moisture (erg Limits	Content	F		× −⊖
Datum:	Geodetic Elevation			Dynamic	Cone Te	st			Undrai	ned Triaxia in at Failure		•		⊕
Logged by:	M.Z. Checked by: D.W.			Shelby Tu Shear Str Vane Tes	ength by	,	-+ s		Shear	Strength by ometer Tes	/			
G Y W B L O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	2 Shear S	0 4 trength	40 6	ēst N Valu) kPa		atural Moist rberg Limits	00 7: ure Conter s (% Dry W	50 nt % /eight)	SAMPLES	Natural Unit Wt. kN/m ³
	HALTIC CONCRETE ~ 90 mm thick	90.4 90.31	0	5	0 1	00 1	50 20	0		20 4	40 6	0	s	
	NULAR FILL I and crushed gravel, grey, moist	90.25				42		· (·) · : : (·					X	SS1
FILL Silty brow HIGH	sand with gravel and shale fragments, n, moist, (compact)	89.70	1											SS2
	sand with gravel, black, moist, (dense – ry dense) –		2		. 40 t	hen 50/75 O	mm		×					SS3
Black		88.20 87.80												CORE1
Black	L <u>E BEDROCK</u> <, Fair to Excellent Rock Quality, um Strong to Strong	87.5	3										•	CORE2
	-	-	4										• • • • •	
	-		5										•	CORE3
	-	_											• • • •	
	-	_	6										•	CORE4
	-	_	7		• • • • • • • •								· · · ·	
	-	-											•	CORE5

LOG OF BOREHOLE GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24

		10					
Continued Next Page		10					
NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2.31 mm monitoring well installed upon completion	11/23/2023	10.8		1	2.2 - 2.6	89	0
3. Field work was supervised by an EXP representative.	12/06/2023	10.2		2	2.6 - 4.1	100	68
4. See Notes on Sample Descriptions	3/14/2024	4.0		3	4.1 - 5.6	100	92
	6/19/2024	2.9		4	5.6 - 7.2	100	93
				5	7.2 - 8.6	100	89
				6	8.6 - 10.1	100	85
				7	10.1 - 11.7	100	97
				8	11.7 - 13.2	100	92

8

9

CORE5

CORE6

94

13.2 - 14.2

100

Log of Borehole BH-11

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

Figure No.

											age.		_ of		
S V		Geodetic	D		Star	ndard Pe	netration T	est N Va	ue		ustible 250	Vapou 500		ling (ppm) 750	S A Natur
S Y B O	SOIL DESCRIPTION	Elevation	e		20	0 4	40 6	i0 8	30	N	atural N	loistur	e Cont	750 ent % Weight)	S A Natur P Unit V L KN/m
Ē			h	She	ear S 50	trength 0 1	00 1	50 2	kPa 00	Atte	rberg L 20	imits (40	% Dry	Weight) 60	L kN/m
	SHALE BEDROCK		10) .:.::							<u> </u>				Ĥ
	Black, Fair to Excellent Rock Quality Medium Strong to Strong (continued	/, 0													:
		<i>"</i>		::::								<u></u>			
			11		: · · · · ·										COR
				::::	1121										
	_														
					::::										
	_		12	,											
	_														COR
															:
	_	_	13	3	: .: . : : : :	• • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		· .:. ; . ; . -:: : : :		; . ; . . : : : -	· · · · · · · ·	· · · · · · · · · · ·	
	_	_		··· ··	: · · · · · · · · · · · · · · · · · · ·							:-:- - :-:- -	(+) +) (+++++++++++++++++++++++++++++++++++++++	
															COR
e	_		14	1	: · : · :	• • • • • • •		· · · · · · · · · · · · · · · · · · ·				<u></u>	(- : - : - ; (- : - : - ;	· · · · · · · · · · · · · · · · · · ·	11
一	Borehole Terminated at 14.2 m D	76.20 Depth	+												
		•			:::										
					:::							::			
					::							::			
												::			
												::			
												::			
												::			
												::			
												::			
					::							::			
					::							::			
					:::							::			
					:::										
					:::							::			
					:::										
					:::							::			
				::	: :							::			
TES:]	14/4-					<u> </u>			~		י ייסו			
Boreho	le data requires interpretation by EXP before		K L	.EVEL		ECORD	S Hole Ope	an	- Run I			JUIN I	ING F		RQD %
use by	others	Date	L	evel	(m)		Hole Ope		Run No.	(r	pth n)				
	monitoring well installed upon completion	11/23/2023		10.8					1	2.2	- 2.6		89		0
.Field w	ork was supervised by an EXP representative.	12/06/2023 3/14/2024		10.2 4.0					2 3		- 4.1 - 5.6		100 100		68 92
		3/14/2024													
.See No	tes on Sample Descriptions	6/19/2024		29)				4 1	56	- 7.2		100)	93
	tes on Sample Descriptions be read with EXP Report OTT-23008400-B0	6/19/2024		2.9)				4 5		- 7.2 - 8.6		100 100		93 89

EVEL RECO	KD3		CORE DR	ALLING RECOR	
Water	Hole Open	Run	Depth	% Rec.	RQD %
.evel (m)	To (m)	No.	(m)		
10.8		1	2.2 - 2.6	89	0
10.2		2	2.6 - 4.1	100	68
4.0		3	4.1 - 5.6	100	92
2.9		4	5.6 - 7.2	100	93
		5	7.2 - 8.6	100	89
		6	8.6 - 10.1	100	85
		7	10.1 - 11.7	100	97
		8	11.7 - 13.2	100	92

13.2 - 14.2

100

94

Project No:							<u>3H-</u>	 I	-igure N	۱o.	14		
Project:	Geotechnical Investigation - Walkley	Centre De	eve	lopmer	nt				-		1 of		•
_ocation:	1822-1846 Bank Street, Ottawa, Onta	rio											
Date Drilled:	'November 1, 2023		-	Split Spo		е					our Readi	ng	
Drill Type:	CME-55 Truck-Mounted Drill Rig		_	Auger Sa SPT (N)					Natural I Atterberg	Voisture g Limits	Content	⊢	× —⊖
Datum:	Geodetic Elevation		_	Dynamic	Cone Tes	st				- ed Triaxia at Failun			\oplus
ogged by:	M.Z. Checked by: D.W.			Shelby To Shear Str Vane Tes	rength by		■ + s		Shear St	trength by meter Tes	у		
S Y		Geodetic	De		ndard Per	netration	Test N Va	ue			our Readi	ng (ppm) 50	S A M Natura
G Y M B L O	SOIL DESCRIPTION	Elevation m	p t h	Shear S	Strength			30 kPa	1		ture Conte s (% Dry V		Natura M Unit Wt KN/m ³
	HALTIC CONCRETE - 90 mm thick	91.6 91.51	0	5		00	150 2	00	× 2	20 4	<u>40 (</u>	30 	s
	<u>NULAR FILL</u> /el with silt and sand, well graded, grey,;	91.34			29 O				×				SS1
mois	t	90.90											\rightarrow
Silty	sand with gravel and shale fragments,	-	1		2 1								X ss2
HIGH	n, moist, (compact)	90.20											
Silty dens	sand and gravel, black, moist, (very se)												
	LE BEDROCK k, Very Poor Rock Quality		2										CORE
	, very i ooi i took quality	_											
	LE BEDROCK	88.80											-
	k, Good to Excellent Rock Quality,		3										
		_											CORE
			4										25.9
		-											
		_	5										
													CORE
		-											
		_	6										-
													CORE
		_	7										25.9
		_	8										
													CORE
				-> -> ->									
		-	9										
											1		CORE

10 Continued Next Page NOTES: WATER LEVEL RECORDS 1. Borehole data requires interpretation by EXP before use by others Water Level (m) 11.6 Date 2.31 mm monitoring well installed upon completion 12/06/2023 3. Field work was supervised by an EXP representative. 3/14/2024 14.1 6/19/2024 13.7 4. See Notes on Sample Descriptions 5.Log to be read with EXP Report OTT-23008400-B0

GINT LOGS

LOG OF BOREHOLE

DS		CORE DR	RILLING RECOF	RD
Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
	1	1.4 - 2.8	66	0
	2	2.8 - 4.4	100	79
	3	4.4 - 5.9	100	84
	4	5.9 - 7.4	100	96
	5	7.4 - 9	100	96
	6	9 - 10.5	100	98
	7	10.5 - 12	100	90
	8	12 - 13.3	100	50
	9	13.3 - 14	100	100

Log of Borehole <u>BH-12</u>

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

Figure No.

Projec	t: <u>Geotechnical Investigation</u> - V	valkiey Certilie De	eve	hol	mer	IL								Pag	re	2 c	of 2		
			1		Sto	nde	rd Pe	netratio	n To	st N V	alue			-			ading (pp	- m) [s	
S Y M		Geodetic	De											25	50 5	500	750	A	Natu
SY MB D L	SOIL DESCRIPTION	Elevation m	p t h	S	hear S		ngth	10	60		80	kPa	A				ntent % y Weight	m) SA PLES	Unit kN/i
L	SHALE BEDROCK	81.6	10) —	5	50 . : .	1	00	150)	200				0	40	60		25
	Black, Good to Excellent Rock Quali	ty,																	
	—Medium Strong (continued)	-								· · · · · ·									1
	_	_	11						÷										COF
	_								÷	2 - : · : · : - : : : : : :				: : :					COF
i	_	_	12	2						: : . :		· · · · · · · ·		:		+			-
						• • •	2 - 2 - 2 - 2 - 2 - 2 - 2 -) : -:				: : : :		· · · · · ·			
	—	_																	COF
																			26
	—	_	13	3															
	_																		1
		77.9	Э						ŝĿ										COF
	Borehole Terminated at 14 m De	77.60	-14	+	• • • •		: : : : : : : :		÷ ·	2 - : · : · :				3 - (+	<u></u>	· : · ·	I
						l													
									:					÷÷					
						l													
									:										
									:										
				:															
				:															
				:		:													
IOTES:							202	2	_					0.01					•
1.Boreho	ole data requires interpretation by EXP before	WATE	КL		EL RE iter	-00		S Hole C)per			Run		COI Dept			RECO Rec.		RQD %
-	others monitoring well installed upon completion	Date 12/06/2023	L	eve	l (m)					·		No.		(m))				
	vork was supervised by an EXP representative.	3/14/2024		11 14								1 2		4 - 2 8 - 4			66 00		0 79
	betes on Sample Descriptions	6/19/2024		13								3	4.	4 -	5.9	1	00		84
	be read with EXP Report OTT-23008400-B0											4 5		9 - 1 '.4 -			00 00		96 96
												6	9	- 10).5	1	00		98
												7	10).5 -	10	1	00		90

NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOR	RD
1.Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2.31 mm monitoring well installed upon completion	12/06/2023	11.6		1	1.4 - 2.8	66	0
3. Field work was supervised by an EXP representative.	3/14/2024	14.1		2	2.8 - 4.4	100	79
4. See Notes on Sample Descriptions	6/19/2024	13.7		3	4.4 - 5.9	100	84
				4	5.9 - 7.4	100	96
5 5.Log to be read with EXP Report OTT-23008400-B0				5	7.4 - 9	100	96
5				6	9 - 10.5	100	98
				7	10.5 - 12	100	90
				8	12 - 13.3	100	50
				9	13.3 - 14	100	100

Date Drilled: <u>Nov</u> Date Drilled: <u>Nov</u> Drill Type: <u>CME</u> Datum: <u>Geo</u> Logged by: <u>M.Z.</u> <u>ASPHALT</u> <u>GRANULA</u> Sand and <u>FILL</u> Silty sand brown, mc <u>Silty sand</u> ShALE BE		wa, Ontario	Geodetic Elevation m 04 03.95	- - - -	Split Sp Auger S SPT (N Dynami Shelby Shear S Vane To	ooon Sam I) Va ic Co Tub Strer est	ple lue one Tes e ngth by	etration ⁻		⊠ Ω O − S Value		Combust Natural M Atterberg Undraine % Strain Shear Sti Penetron	ible Vap loisture Limits d Triaxia at Failur rength b neter Te	alat re	 ng	F	× ⊕ ●
Date Drilled: ' <u>Nov</u> Drill Type: <u>CME</u> Datum: <u>Geo</u> Logged by: <u>M.Z.</u>	ember 3, 2023 -55 Truck-Mounted Drill I detic Elevation Checked by: SOIL DESCRIPTION IC CONCRETE ~ 50 mm t IR FILL crushed gravel, grey, moi with gravel and shale frag ist, (compact)	Rig : D.W. thick / 9 ist / 9	- Geodetic Elevation m 04 93.95	e p t	Auger S SPT (N Dynami Shelby Shear S Vane To S	Sam I) Va ic Co Tub Strer est	ple lue one Tes e ngth by ard Pen	etration ⁻		□ ○ □ □ + s		Natural M Atterberg Undraine % Strain Shear Str Penetron	loisture Limits d Triaxia at Failur rength b neter Te	Content al at re y st	-	ŀ	× ⊕
Drill Type: CME Datum: Geo Logged by: M.Z.		: D.W.	Elevation m 94 93.95	e p t	Auger S SPT (N Dynami Shelby Shear S Vane To S	Sam I) Va ic Co Tub Strer est	ple lue one Tes e ngth by ard Pen	etration ⁻		□ ○ □ □ + s		Natural M Atterberg Undraine % Strain Shear Str Penetron	loisture Limits d Triaxia at Failur rength b neter Te	Content al at re y st	-		× ⊕
Datum: Geo .ogged by: M.Z.	detic Elevation Checked by: SOIL DESCRIPTION IC CONCRETE ~ 50 mm t IR FILL crushed gravel, grey, moi with gravel and shale frag ist, (compact)	: D.W.	Elevation m 94 93.95	e p t	SPT (N Dynami Shelby Shear S Vane T	l) Va ic Co Tub Strer est	lue one Tes e ngth by ard Pen	etration ⁻		0 ■ +s		Atterberg Undraine % Strain Shear Sti Penetron	Limits d Triaxia at Failur rength b neter Te	al at re y st	ng (non		— 0
ASPHALT GRANULA Sand and FILL Silty sand brown, mc HIGHLY W Silty sand Silty sand Black, Ver	Checked by: SOIL DESCRIPTION CONCRETE ~ 50 mm t R FILL crushed gravel, grey, moi with gravel and shale frag ist, (compact)	thick 9 ist /	Elevation m 94 93.95	e p t	Shelby Shear S Vane T	Tub Strer est	e ngth by ard Pen	etration ⁻		S	9	% Strain Shear Sti Penetron	at Failur rength b neter Te	re vy st			⊕
ASPHALT GRANULA Sand and FILL Silty sand brown, mc HIGHLY W Silty sand SHALE BE Black, Ver	SOIL DESCRIPTION IC CONCRETE ~ 50 mm t IR FILL crushed gravel, grey, moi with gravel and shale frag- ist, (compact)	thick 9 ist /	Elevation m 94 93.95	e p t	Shear S Vane To	Strer est tand	ngth by ard Pen			S		Penetron	neter Te	st			
L ASPHALT GRANULA Sand and FILL Silty sand brown, mc HIGHLY W Silty sand SHALE BE Black, Ver	I <u>C CONCRETE</u> ~ 50 mm t <u>IR FILL</u> crushed gravel, grey, moi with gravel and shale frag ist, (compact)	thick 9 ist /	Elevation m 94 93.95	e p t					Fest N	Value		Combus	tihle Var	our Readi	na (nnr		
GRANULA Sand and FILL Silty sand brown, mc HIGHLY W Silty sand SHALE BE Black, Ver	R FILL crushed gravel, grey, moi with gravel and shale frag ist, (compact)	thick 9 ist /	93.95	0	1				50 50	80 ki 200	Pa	25	inal Mois erg Limit	500 7 ture Conte ts (% Dry V	50	Í	PUnit Wt.
Silty sand brown, mc	ist, (compact)	amente	93.60						50	200			U 	40			SS1
Silty sand SHALE BE Black, Ver		ginenio, _		1		19 O						×					SS2 21.7
Silty sand SHALE BE Black, Ver	EATHERED SHALE	9	92.30				8,3	7, 50/25	mm			×				5	ss3
Black, Ver	with gravel, black, moist	79	92.00	2								X					
SHALE BE	y Poor Rock Quality	_															CORE
SHALE BE		_		3												·····	CORE
SHALE BE		-8	39.90	4												····	
	od to Excellent Rock Qua	lity,											·····				-
		_		5													CORE
		_		6													-
		_															CORE₄
		_		7													-
		_		8													26.0 CORE
													· · · · · · · · · · · · · · · · · · ·				
		_		9													
		_															CORE
IOTES:	Continued Next Page		\ <u>\</u> /\\	-'10 	L				• • • • •] [- I	ECO		
	interpretation by EXP before	Date	WATE		Water			lole Op		Rur		Dept	h	LLING R % Re			RQD %
2.Borehole was backfille completion.	d with soil cuttings upon	Date		L	<u>evel (n</u>	n)		<u>To (m</u>)	<u>No</u>	+	<u>(m)</u> 2 - 2		77			0
•	sed by an EXP representative.									2		2.6 - 4 4.1 - 5		100 100			7 95
4. See Notes on Sample	Descriptions									4		5.7 - 7		100			

3 2.6 - 4.1 4.1 - 5.7 5.7 - 7.1 100 5 6 7.1 - 8.7 8.7 - 10.3 10.3 - 11.8 11.8 - 13.3 13.3 - 14.2

Log of Borehole <u>BH-13</u>

Geotechnical Investigation - Walkley Centre Development

Figure No.

Proje	ct: Geotechnical Investigation - V	Valkley Centre D	Development					•
			Standar	d Penetration Test N V	(alua	Page.	2 of 2 apour Reading (ppr	
G Y		Geodeti	c D e oo			250	500 750	M A Natural
GW BOL	SOIL DESCRIPTION	Elevation m	t Shear Streng		80 kPa		isture Content % nits (% Dry Weight)	n) S M M P Unit Wt. E kN/m ³
	SHALE BEDROCK Black, Good to Excellent Rock Quali – Medium Strong <i>(continued)</i>	84 ty,			200	20	40 60	
								CORE7 26.0
		-	13					CORE8
			14					CORE9 25.9
NOTES:	Borehole Terminated at 14.2 m D							
	nole data requires interpretation by EXP before y others		ER LEVEL RECO Water	RDS Hole Open	Run	Depth	RILLING RECOF	RD RQD %
2.Boreł	nole was backfilled with soil cuttings upon	Date	Level (m)	To (m)	No.	(m) 2 - 2.6	77	0
comp 3.Field	work was supervised by an EXP representative.				1 2 3 4 5	2 - 2.6 2.6 - 4.1 4.1 - 5.7 5.7 - 7.1 7 1 - 8 7	100 100 100 100	0 7 95 95 100

LOG OF BOREHOLE GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24 5.Log to be read with EXP Report OTT-23008400-B0

VEL RECO	RDS		CORE DR	RILLING RECOR	RD
Water evel (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD 9
		1	2 - 2.6	77	0
		2	2.6 - 4.1	100	7
		3	4.1 - 5.7	100	95
		4	5.7 - 7.1	100	95
		5	7.1 - 8.7	100	100
		6	8.7 - 10.3	100	91
		7	10.3 - 11.8	100	100
		8	11.8 - 13.3	100	90
		9	13.3 - 14.2	100	101

Project No: OTT-23008400-B0

Project No:	ОТТ-23008400-В0_	g of Bo) r	reh	ol	e _	B	<u>H-</u>					10	•e	exp.
Project:	Geotechnical Investigation - V	Valkley Centre D	eve	lopmer	nt					Figure		-	16	_	I
Location:	1822-1846 Bank Street, Ottav	va, Ontario								P	age.	_1	of _	2_	
Date Drilled:	'October 31, 2023			Split Spo	on Sa	nple]	Comb	ustible \	Vapour	Reading		
Drill Type:	CME-55 Truck-Mounted Drill R	Rig	_	Auger Sa	ample			Π]	Natura	al Moistu	ure Con	-		×
Datum:	Geodetic Elevation	0	_	SPT (N) Dynamic		Test	-	0	, -	Undra		axial at			—O ⊕
Logged by:	M.Z. Checked by:	D.W.	-	Shelby T Shear St		by		-		Shear	ain at Fa Strengt	th by			•
55 ,				Vane Tes		~)		+ s		Penet	rometer	Test			-
G S Y M B O L O L	SOIL DESCRIPTION	Geodetic Elevation m		2 Shear \$	20 Strengt		60	1	80 kPa		250	500 Aoisture imits (%	Reading 750 Content Dry Wei	í í	Natural Unit Wt. KN/m ³
	HALTIC CONCRETE ~ 90 mm th		0	55	50	100 37	150		200	×	20	40	60		3
	<u>NULAR FILL</u> d and crushed gravel, grey, mois	92.23				3 ′				×					SS1
Silty	sand with gravel and shale frag concrete fragments, brown, mois	ments ^{91.70} st,	1				0 mm O								ss2
SHA	LE BEDROCK k, Very Poor Rock Quality	/				· · · · · · · · · ·									CORE1
		90.00	2												
Black	LE BEDROCK k, Poor to Excellent Rock Qualit k to Medium Strong	у,	3												
		_				· · · · · · · · · · · · · · · · · · ·									CORE2 26.2
		_	4												20.2
		_	5												CORE3
		_	6												-
		_				• • • • • • • •									26.2 CORE4
54		_	7									· · · · · · · · · · · · · · · · · · ·			-
GDT 9/10/24			8												CORE5
		_	0												
GPJ TRO		_	9							1 1 1 1 1 1					
11.15.2023.GPJ TROW OTTAWA.GDT		_													CORE6 26.1
NOTES:	Continued Next Page	WATF	RI	EVEL RI	ECOF	RDS				C	ORF		NG REO		
NOTES: 1.Borehole data r use by others	requires interpretation by EXP before	Date		Water		Hole	e Oper	n	Run	De	epth		% Rec.		RQD %
	packfilled with soil cuttings upon		L	<u>evel (m).</u>		10	<u>o (m)</u>		<u>No.</u>	1.3	<u>m)</u> - 2.6		90		8
U 2. Borehole was b completion. 3. Field work was 3. Field work was 4. See Notes on S	supervised by an EXP representative.								2 3	4.2	- 4.2 - 5.7		100 100		85 94
4. See Notes on S	Sample Descriptions								4 5		- 7.2 - 8.7		100 100		95 93
0 5. Log to be read	with EXP Report OTT-23008400-B0								6		- 10.3		100		98

١	ER LEVEL RECO	RDS		CORE DR	RILLING RE
	Water	Hole Open	Run	Depth	% Rec
	Level (m)	To (m)	No.	(m)	
			1	1.3 - 2.6	90
			2	2.6 - 4.2	100
			3	4.2 - 5.7	100
			4	5.7 - 7.2	100
			5	7.2 - 8.7	100
			6	8.7 - 10.3	100
			7	10.3 - 11.8	100
			8	11.8 - 13.3	100

13.3 - 14.1

Log of Borehole BH-14

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

Figure No.

Projec	ct: Geotechnical Investigation - W	Valkley Centre De	eve	lopmer	it					Pag	ne	2 of	2		
GW L O-		Geodetic	D e	Sta	ndard Pe					Combus 25	tible Vap	our Readi	 ng (ppm) 50	S A M	Natura
GWL BOL	SOIL DESCRIPTION	Elevation m 82.6	D e p t h	1 5	Strength	10 00	60 150	80 200	kPa			ture Conte s (% Dry V 40 6	nt % Veight) 50	SAMPLES	Unit W kN/m
	SHALE BEDROCK Black, Poor to Excellent Rock Quality	v.	10											Н	
	—Weak to Medium Strong (continued)													-	
		-	11											-	COR
		_													
		_	12	2										·	l
	-	_													26. COR
		_	13	3										· · ·	
		_													
	1 3 4 4	- 78.50	14												COR
	Borehole Terminated at 14.1 m De	epth													
															l
															l
															1
															l
															l
															l
															l
															1
															l
															l
															l
															l
															l
															1
															l
OTES:								· · · ·							
1.Boreho	ole data requires interpretation by EXP before y others	Date		EVEL RE Water		Hole O			un	Dept	th	LLING R % Re			QD %
2.Boreho comple	ole was backfilled with soil cuttings upon etion.		L	<u>.evel (m)</u>		To (n	1 <u>)</u>		<u>o.</u> 1 2	<u>(m)</u> 1.3 - 2 2.6 - 4	2.6	90 100			8 85
	EVD service at the service of the se														
	work was supervised by an EXP representative. lotes on Sample Descriptions									4.2 - 5.7 - 1		100 100			94 95

7

8 9

10.3 - 11.8

11.8 - 13.3

13.3 - 14.1

100

100

100

100

100

Project No:	ОТТ-23008400-В0	g of Bo) ľ	eh	C	le	<u> </u>	<u>H</u>	-1				47		e	жр
Project:	Geotechnical Investigation - V	Valkley Centre De	eve	elopmei	nt					F		_	17			
Location:	1822-1846 Bank Street, Ottaw	va, Ontario									Paę	ge	<u>1</u> of	2		
Date Drilled:	'November 1, 2023			Split Spo	oon	Sample	e	1	\bowtie		Combus	tible Va	pour Read	ing		
Drill Type:	CME-55 Truck-Mounted Drill R	lig	-	Auger Sa	amp	ole		[I		Natural M	Moisture	e Content	0		×
Datum:	Geodetic Elevation		-	SPT (N) Dynamic			t		0 _		Atterberg Undraine	- ed Triax			1	
Logged by:	M.Z. Checked by:	D.W.	-	Shelby T Shear St				I	■ +-		% Strain Shear St	trength I	by			•
00 7				Vane Te		3			+ s		Penetror	neter Te	est			-
GW L GW L	SOIL DESCRIPTION	Geodetic Elevation m	De p t h	Shear	20 Stre	4 ength		i0	80 k	(Pa	2: Nati Atterb	50 ural Moi erg Lim	sture Conte its (% Dry V	750 ent % Weight)) SAMPLEO	Natural Unit Wt. kN/m ³
	HALTIC CONCRETE - 50 mm th	92.2 ick92.10	0		50	10		50	200		2	20	40	60		GS1
	<u>NULAR FILL</u> I and crushed gravel, grey, mois	st, – 91.50				28 O				3 () 	×				<u> </u>	SS1
HIGH	pact) ILY WEATHERED SHALE	91.50				16	50/125 n						;			7
Silty	sand with gravel, black, moist	90.80	ľ				0				×				X	SS2
Black	LE BEDROCK <, Very Poor to Poor Rock Quali um Strong	_														
	-		2													CORE1
		_				· · · · · · · · · · · · · · · · · · ·							1		<u></u>	
			3												···	
									• • • • • •						·:	25.9
		-													÷	25.9 CORE2
		_	4			·: : : : : : : : : : : : : : : : : : :										001.22
		87.80														
Black	LE BEDROCK <, Fair to Excellent Rock Quality	,													÷	
Medi	um Strong to Strong	_	5		· · · ·											CORE
																CORE
													i			
<u>-</u>		- 86.1	6													
		_								****					<u></u>	
			7													CORE4
			ľ													26.0
		-														
		_	8							<u></u>						
																CORE
															· · · ·	
		-	9													
														+		
																CORE
	Continued Next Page		-110)				<u></u>	······				<u></u>			
	equires interpretation by EXP before	Date	۲L	EVEL R Water	EC		3 Hole Ope	en	Ru	in	CO Dep		RILLING F % Re			QD %
•	ng well installed upon completion	11/23/2023	L	<u>evel (m</u> 10.1)	+	<u>To (m)</u>		<u>No</u>		<u>(m</u> 1.4 -		71			0
	supervised by an EXP representative.	12/06/2023 3/14/2024		6.9 6.2					2		3 - 4 4.4 -		100 100	I		34 64
	Sample Descriptions with EXP Report OTT-23008400-B0	6/19/2024		6.1					4	.	6 - 7	.5	100)		74
									5		7.5 - 9 9.1 - 1		100 100	I		72 92

11/23/2023 10.1 1.4 - 3 71 0 1 12/06/2023 2 3 - 4.4 34 6.9 100 4.4 - 6 3/14/2024 3 64 6.2 100 4 5 6/19/2024 6.1 6 - 7.5 100 74 7.5 - 9.1 100 72 6 9.1 - 10.6 100 92 7 10.6 - 12.2 100 66

8 12.2 - 13.7 100

Log of Borehole <u>BH-15</u>

100

100

100

100

100

100

100

2

3

4

5

6

7

8

3 - 4.4

4.4 - 6

6 - 7.5

7.5 - 9.1

9.1 - 10.6

10.6 - 12.2

12.2 - 13.7

34

64

74

72

92

66

84

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

LOG OF BOREHOLE GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24

4. See Notes on Sample Descriptions

3. Field work was supervised by an EXP representative.

5. Log to be read with EXP Report OTT-23008400-B0

Figure No.

roject: <u>Geotechnical Investigation</u> - Wa	alkley Centre De	eve	lopmer	nt					Pa	ge.	2	of	2		
s			Sta	andard	Penetra	ation T	est N Val	ue	Combus	stible \	Vapo	ur Readir	ng (ppm)	S	
SOIL DESCRIPTION	Geodetic Elevation		2	20	40	6	0 ε	0	2	50	50	0 7	50	S A M P	Natura Unit W
	m	ĥ	Shear \$	Streng	h	45		kPa				re Conter (% Dry W		L E S	Unit W kN/m
SHALE BEDROCK	82.2	10		50 	100	15	<u>0 2</u>	00 - : - : - : - : - : - : -	2 	20	40) 6 	0		
Black, Fair to Excellent Rock Quality,														-	26.1
Medium Strong to Strong (continued)	_			<u> </u>							; ; ,	· · · · · ·		-	20.1
	_	11										· · · · · ·		-	
														:	CORI
		12										::::::::::::::::::::::::::::::::::::::		:	
		12												:	
	_											<u></u>		-	
														:	26.1
	_	13	· · · · · · · · · · · · · · · · · · ·	· · · · · ·			· ; .: ; . ; . ; . ; . ; . ; . ; . ; . ;	· · · · · · · · · ·			; . ; . . ; . ; .	· · · · · · · · · · · · · · · · · · ·	·:·:·:	-	COR
														-	
				+ + + + + + + + + + + + + + + + + + + +							····	· · · · · · · · · · · · · · · · · · ·		-	
Borehole Terminated at 13.7 m Dep	78.50														
											::	:::::			
											::				
											::				
											::				
											::				
											::				
											::				
											::				
											::				
											::				
											::				
											::				
											::				
											::				
		_		1::	:1::	: : :		1::::		1::	::1		1::::		
TES: Borehole data requires interpretation by EXP before use by others	WATE		EVEL R	ECOF		_					RILI		ECORD		_
	Date		Water evel (m))		e Ope o (m)		Run No.	Dep (m)		% Re	C.		QD %
31 mm monitoring well installed upon completion	11/23/2023		10.1					1	1.4 - 3 - 4			71 100			0 34

12/06/2023

3/14/2024

6/19/2024

6.9

6.2

6.1

Project:	Geotechnical Investigation - W	alkley Centre	Dev	elo	pme	nt					Fi	gure		_	18	-		I
Location:	1822-1846 Bank Street, Ottaw	a, Ontario										Pa	ge.	_1	of	2		
Date Drilled:	'November 2, 2023			S	olit Spo	oon Sa	mple	•				Combu	stible	√apo	ur Readi	ng		
Drill Type:	CME-55 Truck-Mounted Drill R	g			-	ample Value						Natural Atterbe			Content	- -		× –
	Geodetic Elevation			D	ynamio	c Cone		t		0		Undrair	ed Tri	axial				
ogged by:	M.Z. Checked by:	D.W		SI	nelby 1 near S ane Te	trength	ו by			+ s		% Strai Shear S Penetro	Strengt	th by				
G Y W B L O	SOIL DESCRIPTION	Geod Eleva m	etic tion	D e p t		andard 20 Streng	4	etration 1 D 6	Test N	80	kPa -	2	250	50		ng (ppm) 50 ent % Veight)	SA∑P_1ES	Natural Unit Wt. kN/m ³
	IULAR FILL	92.1		0	14	50	10	0 1	50	200		×	20	4	0 (50	ES ES	GS1
FILL	and crushed gravel, grey, mois				ō							×		: :			X	SS1 22.9
	and with gravel and wood/brick ents, brown, moist, (compact)	-91.00		1		 	5,6. f	nen 50/7	 5 mm									
Black	<u>E BEDROCK</u> , Very Poor to Fair Rock Quality ım Strong							0				×						SS2
	J.			2			::::: ::::::::::::::::::::::::::::::::					÷		() ()			•	
														(.). (.). (.).			•	CORE
		_															-	
		_		3													-	
		_					·····	·····		····					· · · · · · · · · ·		•	CORE
																		25.6
SHAL	E BEDROCK	87.90		4														
Black Strong	, Excellent Rock Quality, Mediu g	m —															•	
		_		5										:.;. :.;.			•	CORE
							· · · ·					······		(· · · · · · · · · · · · · · · · · · ·				
																	H	
				6										: :				
		-				<u></u>		*****				****		(•) • (•) •				CORE
		_		7										(+) + (+) + (+) +				
																	İ	
		-		8														CORE 26.0
		4																
				9										:.;.			H	
						112				::: : :::				<u>:::</u> :				
													+	:.;. ::;:				CORE
	Continued Next Page			10		+ : - :	· · ·	· · · · · · · ·	1 · · · ·	····	: : : :	·····	1000	<· : ·	• • • • • • •	0.000		

<u>"</u>	2. Borenole was backfilled with soll cuttings upon
ōI	 Borenole was backfilled with soil cuttings upon completion. Field work was supervised by an EXP representative
τI	
ШΙ	2 Field work was supervised by an EVB representative
Ľ I	3. FIELD WOLK WAS SUPERVISED BY ALL EAF TEPTESETLALIVE

LOG OF BOR 4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-23008400-B0

R LEVEL RECC	ORDS		CORE DR	RILLING RECOR	RD
Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Lever(III)	10 (11)	1	1.5 - 2.7	100	0
		2	2.7 - 4.2	100	73
		3	4.2 - 5.7	100	92
		4	5.7 - 7.2	100	100
		5	7.2 - 8.8	100	92
		6	8.8 - 10.3	100	100
		7	10.3 - 11.8	100	92
		8	11.8 - 13.3	100	93

9

13.3 - 14.9

100

Log of Borehole BH-16

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

Figure No.

10.3 - 11.8

11.8 - 13.3

13.3 - 14.9

100

100

100

92

93

100

7

- <u> </u>		1			<u> </u>	- de 17					age.	-		<u>2</u>	
S Y B O		Geodetic	De				netration 1				250	5	00	iding (ppm) 750	S A M P Unit \
M B O	SOIL DESCRIPTION	Elevation m	D e p t h	Sh	2 ear S	20 Strength	40 6	0	80 kPa	Na Atte	atural I rberg I	Moisti Limits	ure Cor (% Dry	ntent % / Weight)	PUnit \ L kN/r
	SHALE BEDROCK	82.1	10		5	50 	00 1	50 2	200 		20	4	10 - : - : - :-	60 	
	Black, Excellent Rock Quality, Medium			133											<u>-</u>
	-Strong (continued)	_													
	_	_	11	1											
															COR
	_	_													-
															: :
	-	_	12	2											
	_	_						3333							
	-	_	13	3								· · · · ·			: :
	-	_												<u>.</u>	
	_		14	4											
															COR 25.
	-	_							+ 1 - 2 - 2 - 1 - + 1 - 2 - 2 - 2 - 1			· · · · · ·		<u></u>	
	Denshole Termineted at 44.0 m Denth	77.20													
	Borehole Terminated at 14.9 m Depth														
					::							::			
					::							:::			
												::			
												::			
OTES:		1		<u> </u>		• • • • •		·i	· · · · ·	• • • • •			•		<u>.</u>
I.Boreho	le data requires interpretation by EXP before		RL	EVE. Wat		ECORD	S Hole Op	an	Run		DRE pth	DRIL	LING. % F	RECORE) RQD %
use by		Date	L	_evel			To (m)		No.	(r	n)				
comple	le was backfilled with soil cuttings upon tion.								1 2		- 2.7 - 4.2			00	0 73
	ork was supervised by an EXP representative.								3	4.2	- 5.7		1(00	92
	tes on Sample Descriptions								4 5		- 7.2 - 8.8			00	100 92
	be read with EXP Report OTT-23008400-B0	1				1			, ~	· · -	2.0			· · · ·	~-

-	OTT-23008400-B0	of Bo			le	<u>B</u>	H.		Figure N	lo	19	*(Э	xp
Project:	Geotechnical Investigation - Walk	ley Centre De	eve	elopment					Pag	je.	1 of	2		•
Location:	1822-1846 Bank Street, Ottawa, 0	Ontario												
Date Drilled	: <u>'October 31, 2023</u>		-	Split Spoon		le			Combust			ing		
Drill Type:	CME-55 Truck-Mounted Drill Rig		_	Auger Samp SPT (N) Valu				-	Natural M Atterberg		Content	⊢		× ⊕
Datum:	Geodetic Elevation		_	Dynamic Co	ne Te	st		-	Undraine % Strain	d Triaxia		•		⊕ ⊕
Logged by:	M.Z. Checked by: D.V	V.		Shelby Tube Shear Stren			+	-	Shear Str	rength by	/			•
				Vane Test			S		Penetron	neter i es	st			
GWL GWL	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	20 Shear Stre	ngth	netration T <u>40 6</u> 00 15	0	alue <u>80</u> kPa 200	25	io 5 Iral Moist erg Limits	ure Conte s (% Dry V	50		Natural Unit Wt. kN/m ³
	PHALTIC CONCRETE ~ 80 mm thick	92.4 92.32 92.04	0											
Grav	ANULAR FILL vel with silt and sand, poorly graded, /, moist			Ĉ	5				×				X	SS1
	= v sand with gravel, brown, moist HLY WEATHERED SHALE		1		2 8 O				×					SS2
	v sand with gravel, black, moist, (very	/ -			20, t	hen 50/10) mm		×				Ħ	22.0
	,	-90.30	2			• • • •			×				M	SS3
	ALE BEDROCK k, Very Poor to Fair Rock Quality,												:	CORE1
Med	lium Strong												- - -	
		-	3										•	
		_												CORE2 25.9
													•	23.9
SHA	ALE BEDROCK	88.20	4										- - -	
	k, Good to Excellent Rock Quality,	_												
		_	5							·····				CORES
													•	
		_											-	
		_	6		· · · · · ·		· · · · · · ·			•••••••			•	
		_												CORE4
														26.5
		-	7										-	
		_											•	
			8											CORES
		-												
		_	9											
													: : -	CORE6
													•	
NOTES:	Continued Next Page		- 10											
	requires interpretation by EXP before	Date		EVEL REC Water		Hole Ope	en	Run	Dept	h	LING R % Re	ECORD		D %
•	backfilled with soil cuttings upon	Daie	L	<u>evel (m)</u>		<u>To (m)</u>		<u>No.</u> 1	(m) 2.1 - 2		81			0
	s supervised by an EXP representative.							2	2.6 - 4 4.2 - 5		100 100			73 93
	Sample Descriptions							4	5.7 - 7	7.2	100		1	100
5.Log to be read	with EXP Report OTT-23008400-B0							5 6	7.2 - 8 8.7 - 1		100 100			83 100
								7	10.3 - 1 11.8 - 1		100 100			100 95
								9	13.3 - 1		100			95 27

Log of Borehole <u>BH-17</u>

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

LOG OF BOREHOLE GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24

5.Log to be read with EXP Report OTT-23008400-B0

Figure No.

Proje	ct: <u>Geotechnical Investigation</u> - V	Valkley Centre D	eve	lopmer	nt				Iguic I	-		of 2		
6				Sta	ndard	Penetration	Test N Va	alue		ge.		CI Z	_	8
GWL SYMBOL	SOIL DESCRIPTION	Geodetic		2				80	2	250	500	750	6	Natural Unit Wt.
Ϊβ		m	' t h	Shear S				kPa 200		berg Lin 20	nits (% [40	Content % Dry Weigh	t) L	kN/m ³
	SHALE BEDROCK	82.4	10		50 - : - : - :		150	<u>200</u>			40	60	· · · · ·	
	Black, Good to Excellent Rock Qualit — Strong (continued)	ty,												-
			11										• • • • •	CORE
														CORE
		_											· · · · · ·	
													· ; ·: · · · : ·: · · -	
		-	12	2									· · · · ·	
		-											· · · · · ·	CORE
			13											26.1
		79.10												
	<u>SHALE BEDROCK</u> Black, Poor Rock Quality	_						+				·····		
		4	14	-2 -2 -2 -2 - -2 -2 - 2 -2 -2 -2 - 2 - 2				+ + + + + + + + + + + + + + + + + + +	14444 1444		* • ? • • • • • • • • • • • •		• • • • •	CORE
	Borehole Terminated at 14.8 m D	77.60												
		-												
													::	
													::	
													::	
													::	
													::	
											: :			
													::	
														1
														1
														1
														1
	<u> </u>					: : : :	<u> :::</u>				: : :		::	1
	: hole data requires interpretation by EXP before by others	WATE Date		EVEL RE Water		Hole O	pen	Run	CORE DRILLING RECORD Depth % Rec.					RQD %
2.Bore	hole was backfilled with soil cuttings upon		L	.evel (m)		To (n	ו)	<u>No.</u>		(m) 2.1 - 2.6 81				0
comp	bletion.							2	2.6 -			100		73
	work was supervised by an EXP representative.							3	4.2 -			100		93
4.See	Notes on Sample Descriptions							4	5.7 - 7.2 -			100 100		100 83

5

6

7

8 9 7.2 - 8.7

8.7 - 10.3

10.3 - 11.8

11.8 - 13.3

13.3 - 14.8

100

100

100

100

100

83

100

100

95

Project No:		g of Bo	/1	CI	1				- 10		igure N	lo.	20		E	X
Project:	Geotechnical Investigation - V	Valkley Centre De	eve	lopme	ent						-	_	1 of	_		•
Location:	1822-1846 Bank Street, Ottav	va, Ontario									i ag	je	<u> </u>			
Date Drilled	: <u>'November 2, 2023</u>		_	Split Sp	ooon	n Sample	e	I	\mathbf{X}		Combust	ible Vap	our Read	ing		
Drill Type:	CME-55 Truck-Mounted Drill R	lig	_	Auger SPT (N		•		-			Natural M Atterberg		Content		⊢	× −⊖
Datum:	Geodetic Elevation		_	•		one Tes	st		_		Undraine % Strain	d Triaxia			-	⊕
ogged by:	M.Z. Checked by:	D.W		Shelby Shear S Vane T	Strer est	ngth by			+ s		Shear Sti Penetron	rength b neter Te	ey est			
GN BOL	SOIL DESCRIPTION	Geodetic Elevation m 91.3	ť	Shea	20	4 ength		Fest N \ 60 50	/alue <u>80</u> kF 200	^v a	25	50 s ural Mois erg Limit	sture Conte ts (% Dry	750	N N	Natural Unit Wt. kN/m ³
	PHALTIC CONCRETE - 100 mm t ANULAR FILL ind with silt and gravel, well grade	hick91.20 90.94	0													
		// (loose)	1	9 O												SS2
	HLY WEATHERED SHALE					38 0				· · · · ·						SS3
Silty den SH	y sand with gravel, black, moist, (ise) ALE BEDROCK		2													CORE1
	ck, Very Poor to Fair Rock Qualit	y _	3							· · · · ·					·····	CORE
			4		· · · · · · · · · · · · · · · · · · ·											
Bla	ALE BEDROCK ck, Good to Excellent Rock Quali dium Strong	87.20								· · · · ·						
		_	5							· · · · ·						CORE
		_	6							· · · · ·						
		_								· · · · ·						CORE4 26.0
		_	7													
		_	8													CORE
			9													
		_								· · · · · ·						CORE6 26.1
	Continued Next Page		1								÷	••••••			-1 -1	_0
OTES:		WATE	RL	EVEL F	REC	CORDS	6				COF	RE DRI	ILLING F	RECOF	RD	
use by others		Date	L	Water _evel (n		ŀ	Hole Op To (m		Rur No.	1	Dept (m)		% Re	ec.	F	RQD %
completion. 3. Field work wa	backfilled with soil cuttings upon as supervised by an EXP representative.								1 2 3		1.9 - 2 2.5 - 4 4.1 - 5	2.5 4.1 5.6	77 100 100)		0 68 81
	Sample Descriptions d with EXP Report OTT-23008400-B0								4 5 6		5.6 - 7 7.2 - 8 8.7 - 1	3.7	100 100 100)		90 90 95

10.2 - 11.8

11.8 - 13.3

13.3 - 14.7

Log of Borehole <u>BH-18</u>

Project: Geotechnical Investigation - Walkley Centre Development

Project No: OTT-23008400-B0

LOG OF BOREHOLE GINT LOGS 11.15.2023.GPJ TROW OTTAWA.GDT 9/10/24

4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-23008400-B0

Figure No.

4

5

6

7

8 9 5.6 - 7.2

7.2 - 8.7

8.7 - 10.2

10.2 - 11.8

11.8 - 13.3

13.3 - 14.7

100

100

100

100

100

100

90

90

95 100

100

Pr	ojec	t: <u>Geotechnical Investigation</u> - V	Valkley Centre D	eve	elopmen	t				iguic	_	20	-		
	9				Star	ndard P	enetration ⁻	Fest N Va	lue			2 of		s	
G W L	ΎΜ	SOIL DESCRIPTION	Geodetic		20				30		250	500 7	50	AN	Natural Init Wt.
Ľ	S≻MBOL		m	' P t	Shear S	trength			kPa 00		berg Limi	sture Conte ts (% Dry V 40	Veight) 60		kN/m ³
		SHALE BEDROCK Black, Good to Excellent Rock Qual	81.3	10		· : · : ::		50 2				40			
		Black, Good to Excellent Rock Quali — Medium Strong (continued)	ity,												
		_	_	1.	1									С	ORE7
		_	_												
														: -	
		_	_	12	2	• • • • •									
		—													ORE8
		_		1:	3										25.9
		_	_			· · · · · · ·									
		_	_	14	4	· : · : · : · ·							1.5 (11.5	С	ORE9
		—	76.60											:	
		Borehole Terminated at 14.7 m D	epth												
						::::									
						::::									
5															
						::::									
5															
						:::			::::		1:::		::::		
1	TES:		WAT	ERL	EVEL RE	COR	os			CC	DRE DR	ILLING R	ECORD		
1.	Boreho use by	ole data requires interpretation by EXP before others	Date		Water		Hole Op		Run	De	pth	% Re		RQI	D %
	Boreho	ble was backfilled with soil cuttings upon			Level (m)		To (m)	No. 1	<u>(n</u> 1.9 -	n) • 2.5	77		0	2
2	comple	etion.							2	2.5 -	4.1	100			8
21		vork was supervised by an EXP representative.							3	4.1 -		100 100			1

rojoot:	OTT-23002538-B0	Contro De		lonmo	 t	-			-igure	No.	21			
roject: ocation:	Geotechnical Investigation - Walkley		eve	lopme	nı				Pa	age.	_1_ of	_1_		
	1822-1846 Bank Street, Ottawa, On	lano					_							_
	'June 17, 2024		-	Split Sp Auger S	oon Samp ample	le					apour Reac re Content	ling		×
rill Type:	CME-55 Truck-Mounted Drill Rig		-	SPT (N)	Value c Cone Te	et	0		Atterbe Undrair	-		F		Ð
atum:	Geodetic Elevation		-	Shelby		51			% Strai	in at Fai	lure			\oplus
ogged by:	M.Z. Checked by: I.T.			Shear S Vane Te	trength by	'	+ s		Shear S Penetro					
S Y		Geodetic	D		andard Pe	netration	Test N Va	lue		ustible \ 250	apour Read	ling (ppm) 750	S A	Vatural
S Y B O	SOIL DESCRIPTION	Elevation	e p t		20 - Strength	40	60 8	80 kPa			pisture Cont mits (% Dry		ΪΡ̈́Ιι	Jnit Wt. kN/m ³
	HALTIC CONCRETE ~ 80 mm thick	92.19 92.1	0		50 1	00	150 2	00		20	40	60	Ŝ	
GRA Sand	<u>NULAR FILL</u> d and crushed gravel, grey, moist													
	RBURDEN	91.5	.											
	Sampled	1	1											
		-										· · · · · · · · · · · · · · · · · · ·		
		-90.1	2											
HIGH Blac	ILY WEATHERED SHALE													
		_												
		_	3											
		_	4											
		_												
		_	5											
		-				• • • • • •					· · · · · · · · · · · · · · · · · · ·			
		86.2	6											
	Auger Refusal at 6.0 m Depth													
								1::::						
1 1					1:::::	1 1 1 1 1		1	1::::			1::::		

BAN	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WA	TER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
1822	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
СE	2.Borehole was backfilled upon completion.		<u>, , , , , , , , , , , , , , , , , , , </u>	· /		\		
BOREHO	3. Field work was supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
OG OF	5.Log to be read with EXP Report OTT-23002538-B0							

Project No	: <u>отт-23002538-во</u>	f Pr	0	be	ho	le _	PH-		Figure N	0	22	*(exp
Project:	Geotechnical Investigation - Walkley	Centre De	eve	lopmer	nt			'	•		of	1	'
Location:	1822-1846 Bank Street, Ottawa, Onta	ario							i ag	U		<u> </u>	
Date Drilleo	d: <u>'June 17, 2024</u>		-	Split Spc	on Samp	le	\boxtimes		Combusti	ble Vapo	ur Readir	ng	
Drill Type:	CME-55 Truck-Mounted Drill Rig		_	Auger Sa SPT (N)					Natural M Atterberg		Content	F	× ────
Datum:	Geodetic Elevation			Dynamic	Cone Te	st			Undrained	d Triaxial		I	Ð
Logged by:	Logged by: M.Z. Checked by: I.T.			Shelby T Shear St	ube rength by		■ +		% Strain a Shear Str	ength by			↓
·				Vane Te			+ s		Penetrom	eter Test	t		-
G Y		Geodetic	De				est N Value		25	0 50	our Readin 00 75	50	S M M Natural P Unit Wt.
G M W B L O	SOIL DESCRIPTION	Elevation m	p t h	Shear	Strength	40 6		kPa			ire Conter (% Dry W		Unit Wt.
	PHALTIC CONCRETE ~ 150 mm thick	93.59 93.4	0		50 1	00 15	50 200	;;;;;	20	,	06		
	ANULAR FILL nd and crushed gravel, grey, moist	_						<u>.</u>					-
	/ERBURDEN	92.8											•
	t Sampled												-
		-)			· · · · · · · · · · · ·		-
		-91.5	2										• • •
	GHLY WEATHERED SHALE												-
		-						1					-
		_	3					1					-
													- - -
		89.8						;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					-
	Auger Refusal at 3.8 m Depth	89.8											

8/27/24	
TROW OTTAWA.GDT	
(GINT LOGS 06.21.2024.GPJ	
1822 BANK	İ
SOREHOLE	

U.										
¥										
2 BAN	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD					
182	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %		
BOREHOLE	2. Borehole was backfilled upon completion.									
REH	3. Field work was supervised by an EXP representative.									
	4. See Notes on Sample Descriptions									
LOG OF	5.Log to be read with EXP Report OTT-23002538-B0									
		L					L	J		

Project No:	OTT-23002538-B0	-			ho					lo	23			
Project:	Valkley Centre De	alkley Centre Development								Figure No. <u>23</u> Page. <u>1</u> of <u>1</u>				
_ocation:	1822-1846 Bank Street, Ottav	wa, Ontario							га	je		<u> </u>		
Date Drilled:	'June 17, 2024		_	Split Spo	oon Samp	ble	۵	3	Combus	tible Vapo	our Readi	ng		
Drill Type:	CME-55 Truck-Mounted Drill F	Rig		Auger S SPT (N)				0	Natural M Atterberg	Aoisture C g Limits	Content	F	× —⊖	
Datum:	tum: Geodetic Elevation			Dynamio Shelby 1	Cone Te	est		- -		ed Triaxial at Failure			\oplus	
ogged by:	M.Z. Checked by:	I.T.			trength by	y	:	+ s	Shear St	rength by neter Tes	,		•	
SY MBO-	SOIL DESCRIPTION	Geodetic Elevation m		Shear	20 Strength	40	n Test N V 60	80 kPa	2	ural Moist erg Limits	00 7 ure Conte s (% Dry V	50 nt % Veight)	S M P Unit Wt E S	
	HALTIC CONCRETE ~ 120 mm NULAR FILL	92.12 thick 92.0	0		50	100	150	200	2	0 4	06	50 	<u>Š</u>	
Sand	l and crushed gravel, grey, mois	st — 91.4												
Not S	RBURDEN Sampled	90.9	1										-	
HIGH Black	ILY WEATHERED SHALE	_		······································									- - -	
		_	2										- - -	
		_	3										+ - - -	
		_												
		_	4											
		_												
			5											
	Auger Refusal at 5.2 m Depth	86.9 h	5											
DTES:]		_		ECORD	<u> </u>	<u>. </u>	<u>: I : : : :</u>				FCOPD		
	equires interpretation by EXP before	**/\IL	_,,						00					

Щ	2. Borehole was backfilled upon completion.
BOREHOLE	3. Field work was supervised by an EXP representative.
BOR	4. See Notes on Sample Descriptions
OG OF	5. Log to be read with EXP Report OTT-23002538-B0

••••				00.12 0.		
Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %

Ρ	rojeo	ct No:	<u>отт-23002538-во</u>	f Pr	0	b	e	h	ol	e	_	Pŀ		−igu	re N	No	24	*(Э	xp.
	rojeo		Geotechnical Investigation - Walkley (Centre De	eve	opr	ner	nt						-		_	1 of	_		
Ł	ocati	on:	1822-1846 Bank Street, Ottawa, Onta	rio												<u> </u>				
D	ate [Drilled:	'June 17, 2024		-		•	on Sa		е			_				our Read	ing		
D	rill T	ype:	CME-55 Truck-Mounted Drill Rig			-		ample Value								Moisture g Limits	Content	F		× ⊕
D	atum	n:	Geodetic Elevation					Cone	e Tes	st			-			ed Triaxia at Failui				\oplus
Logged by: M.Z. Checked by: I.T.				 Shelby Tube Shear Strength by + Vane Test 					- 3	Shear Strength by Penetrometer Test										
G	S Y			Geodetic	D e							est N V			2	50		50	S A M	Natural
G W L	BOL			Elevation m	p t h	20 40 Shear Strength 50 100			60 80 kPa		1			ture Conte ts (% Dry \ 40	ent % Veight) 60		Unit Wt. kN/m ³			
	\sim		HALTIC CONCRETE ~ 90 mm thick	92.47 92.4	0				:::			150 200		20 40			40			3
		- Sand	OVERBURDEN	_					<u></u>											
				91.7							÷								•	
		Not	Sampled		'															
			ILY WEATHERED SHALE	91.0			1 · · · ·													
		Blac	к -	_	2				÷.;.		÷				• • • •					
			-	-															-	
			-	_	3										· · · · · ·					
																			-	
			-																	
			-	_	4				<u></u>						· · · · · ·					
				87.6																
			Auger Refusal at 4.9 m Depth	87.6															-	

8/27/24	
TROW OTTAWA.GDT 8	
GINT LOGS 06.21.2024.GPJ	
822 BANK	
OREHOLE 1	

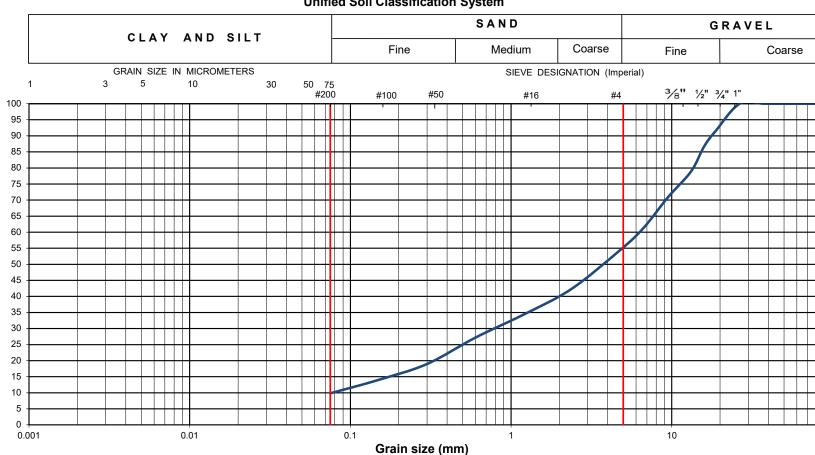
Y											
2 BAN	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD						
1822	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %			
BOREHOLE	2. Borehole was backfilled upon completion.										
R	3. Field work was supervised by an EXP representative.										
OF BC	4. See Notes on Sample Descriptions										
D DOL	5.Log to be read with EXP Report OTT-23002538-B0										

roject:	Geotechnical Investigation - Walkley	y Centre De	eve	lopn	nent	t					Figu	ure N	_		25	-		
ocation:	1822-1846 Bank Street, Ottawa, On	tario										Pag	ge	1	_ of	_1_		
ate Drilled:	'June 17, 2024			Split	Spoo	n Sam	ple		D	3	Co	mbust	tible Va	poui	r Read	ing		
rill Type:	CME-55 Truck-Mounted Drill Rig		-	Auge		•			٥	0	Na	atural N	Aoisture Limits	e Co		- -		×
atum:	Geodetic Elevation		-		mic (Cone T	est		(-	Un	ndraine	, ed Triax	ial a	ıt	F		-€ ⊕
ogged by:	M.Z. Checked by: I.T.		-	Shelt Shea Vane	r Stre	ength b	у			3	Sh	iear St	at Failu rength l neter Te	by				
S Y B O	SOIL DESCRIPTION	Geodetic Elevation m	ť		20		40	ation Te 60		alue 80 kPa		25	stible Va 50 ural Moi erg Lim	500) 7	ng (ppm) '50 ent % Veight)	SAMPLES	Natura Unit Wt kN/m ³
	HALTIC CONCRETE ~ 80 mm thick	92.49 / 92.4	h 0		50	-	100	15	0	200	×	2	0	40		60	ES ES	GS1
Sand	NULAR FILL I and crushed gravel, grey, moist	91.8			16 O												X	SS1
	RBURDEN Sampled	_	1	7								×					$\overline{\nabla}$	SS2
																	:/\ :	002
×	Auger Refusal at 1.8 m Depth	90.7							· · · · · · · · · · · · · · · · · · ·								•	CORE

2 BAN	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WA	TER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
		Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
빙	2. Borehole was backfilled upon completion.				1	1.3 - 2.6	100	0
BOREHO	3. Field work was supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
-OG OF	5.Log to be read with EXP Report OTT-23002538-B0							

	Log of	⁻ Pro	o	behole	PH	I-6		F	vn
Project No:	OTT-23002538-B0								mp
Project:	Geotechnical Investigation - Walkley Ce	entre De	evelo	opment		F	Figure No. <u>26</u>		I
Location:	1822-1846 Bank Street, Ottawa, Ontari	0				_	Page. <u>1</u> of <u>1</u>		
Date Drilled:	'June 17, 2024		_ 5	Split Spoon Sample			Combustible Vapour Reading		
Drill Type:	CME-55 Truck-Mounted Drill Rig			Auger Sample SPT (N) Value	I 0		Natural Moisture Content Atterberg Limits	<u> </u>	× ⊸⊖
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube			Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.Z. Checked by: I.T.			Shear Strength by /ane Test	+ s		Shear Strength by Penetrometer Test		A
GWL SYMBO	SOIL DESCRIPTION	Geodetic Elevation m	D e p t	Standard Penetratio		ue 30 kPa	Combustible Vapour Reading (ppn 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	Â	Natural Unit Wt.

	Ľ	B O L	SOIL DESCRIPTION	Elevatio	- li	t Shea	r Stren	gth -	0 0	0	kPa	Atter	berg Lim	its (% Dry V	nt % Veight)	LES	kN/m ³
		Ĺ		92.26	ł		50	10	0 1	50 2	200		20	40 6	50	Š	
		$\times\!\!\times\!\!\times$	ASPHALTIC CONCRETE ~ 90 mm thick	92.2													
		XXX	GRANULAR FILL	92.0		1331	3113	2.1.		13233	11111		1333		1333	:	
	F	XXX	\neg Sand and crushed gravel, grey, moist	-			:::::	<u></u>	<u></u>					* * * * * *		÷.	
		\otimes	OVERBURDEN			221	2 1 1 2	÷:::			11111	:		: <u>:</u> : : : : : : : : : : : : : : : : :	221	÷	
	ŀ	\times	Not Sampled			1	· · · · · · ·					• • • • • • • •)	0.000	·:-	
		\otimes				1223		÷.;.			1		1:22		1253	÷	
		\otimes														÷	
	ŀ	XXX															
	ŀ	xxxq	Auger Refusal at 1.7 m Depth	90.6	_		++++				+		1			÷	
			Auger Refusal at 1.7 III Deptit				: : : :	÷ ÷			1::::		1 : : :		1:::	:	
							: : :	::			1::::		1:::		1:::	:	
								::									
																-	
							: : : :	::	::::			1::::	1:::	: : : : :	1:::	:	
							: : : :	÷ ÷					1 : : :	: : : : :	1:::	:	
							: : : :	÷ ÷					1 : : :		1:::	:	
							: : : :	÷ ÷					1 : : :		1:::	:	
							: : :	÷ ÷					1 : : :		1:::	:	
							: : : :	÷ :					1 : : :	: : : : :	1 : : :	:	
							: : : :	÷ ÷					1 : : :		1 : : :	:	
							: : : :	÷ ÷					1 : : :		1 : : :	:	
							: : :	÷ ÷					1 : : :	: : : : : :	1 : : :	:	
							: : :	÷ ÷			1 : : : :		1 : : :	: : : : : :	1 : : :	:	
							: : : :	÷ ÷	::::		1 : : : :		1 : : :	: : : : : :	1 : : :	:	
							: : :	÷ ÷			1::::	1 : : : :	1 : : :	: : : : :	1:::	:	
							: : : :	÷ ÷			1::::		1 : : :	: : : : : :	1:::	:	
							: : : :	÷ ÷			1::::		1 : : :	: : : : :	1:::	:	
							: : : :	÷ ÷			1::::		1 : : :	: : : : :	1:::	:	
						1	: : :	÷ :					1 : : :	: : : : : :	1:::	:	
							: : :	÷ ÷			1::::	: : : :	1 : : :	: : : : : :	1:::	:	
							: : :	÷ ÷					1 : : :	: : : : : :	1:::	:	
54							: : :	÷ ÷					1 : : :	: : : : : :	1:::	:	
8/27/24						1	: : :	÷ ÷			1::::	: : : :	1 : : :	: : : : : :	1:::	:	
						1 : : :	: : :	::			1::::		1:::	: : : : : :	1:::	:	
Ы						1	: : :	::			1::::		1:::	: : : : : :	1:::	:	
OTTAWA.GDT																-	
Ā								÷ ;									
El								÷ ;									
ĭ≤							: : :									:	
2								÷÷								:	
21.2024.GPJ TROW							: : :	÷ ÷		: : : :				: : : : :	1:::	:	
ĞГ							: : :	÷ :		: : : :	1::::	1 : : : :	1:::	: : : : :	1 : : :	:	
54.							: : :	÷ ÷	::::	: : : :	1::::	: : : :	1:::	: : : : :	1 : : :	:	
2							: : :	÷ :		1 : : : :	1::::		:::	: : : : : :	1:::	:	
5							: : :	÷ ÷			1::::	::::	1:::	: : : : :	1:::	:	
GS 06.								÷÷									
ğ																:	
ᅴ님																:	
GINT LO							: : :									:	
₹.					!	L				· · · · · ·			• • • •		· · · ·		
BAN	NO	TES:		WAT	ERI	LEVEL	RECC		3			CC		ILLING R	ECOR	D	
822	1.I เ	TES: Boreho use by	others Defense			Wate	r		Hole Op	en	Run	Dep	oth	% Re			QD %
—́ щ		-)		116		Level (r	n)		<u>To (m</u>))	No.	(m	1)				
	2.1	Boreho	ble was backfilled upon completion.														
휜	2.1	Boreho	ole was backfilled upon completion.														
BOREHOLE	2.1 3.1	Boreho Field w	ver was backfilled upon completion. vork was supervised by an EXP representative. btes on Sample Descriptions														


LOG OF E 5. Log to be read with EXP Report OTT-23002538-B0

Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate **ASTM C-136**

100-2650 Queensview Drive Ottawa, ON K2B 8H6

3"

100

Unified Soil Classification System

EXP Project No.:	OTT-23002538-A0	Project Name :		Geotechnical Ir	vestigat	ion - Walkey Cen	tre Red	evelopment	
Client :	Sun Life Assurance Company	Project Location	n :	1822-1846 Bank	<pre>Street</pre>				
Date Sampled :	November 1, 2023	Borehole No:		BH12	Sample	G G	S1	Depth (m) :	0.1-0.2
Sample Composition :		Gravel (%)	46	Sand (%)	44	Silt & Clay (%)	10	Figure :	27
Sample Description :	FILL: V	Vell Graded Gra	vel wit	h Silt & Sand (GW-GM)			rigure .	21


*e>

100-2650 Queensview Drive

Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate **ASTM C-136**

Ottawa, ON K2B 8H6

Unified Soil Classification System

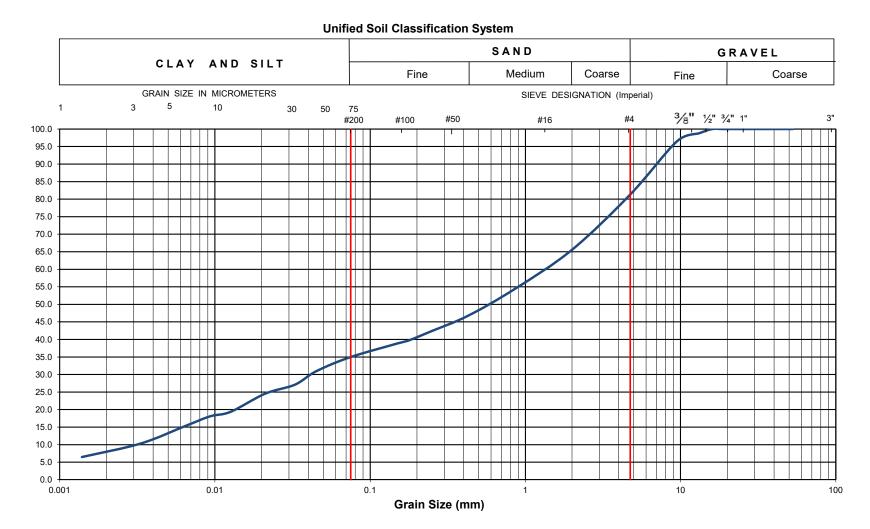
EXP Project No.:	OTT-23002538-A0	Project Name :		Geotechnical In	ivestigat	ion - Walkey Cer	tre Red	evelopment	
Client :	Sun Life Assurance Company	Project Location	n :	1822-1846 Bank	Street				
Date Sampled :	October 31, 2023	Borehole No:		BH17	Sample	G	S1	Depth (m) :	0.1-0.2
Sample Composition :		Gravel (%)	54	Sand (%)	38	Silt & Clay (%)	8	Figure :	28
Sample Description :	FILL: Poo	orly Graded Gra	ly Graded Gravel with Silt and Sand (GP-GM)						

[%]e≻

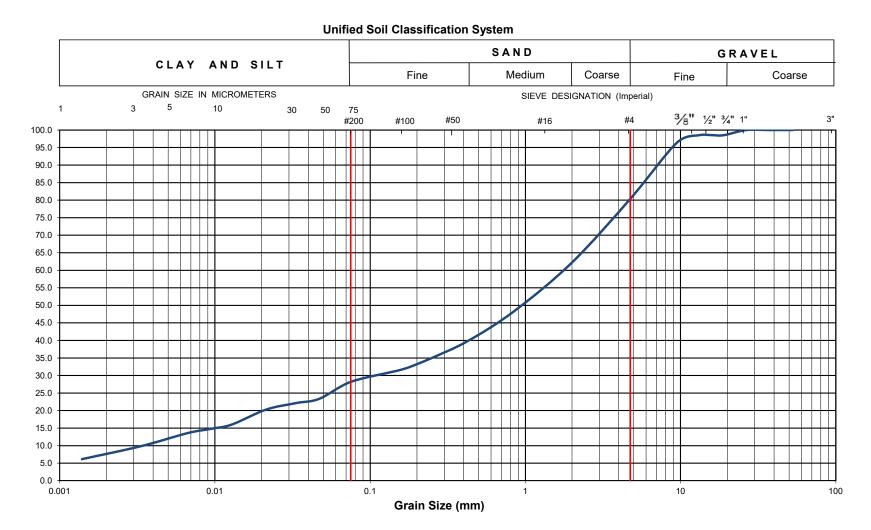
100-2650 Queensview Drive

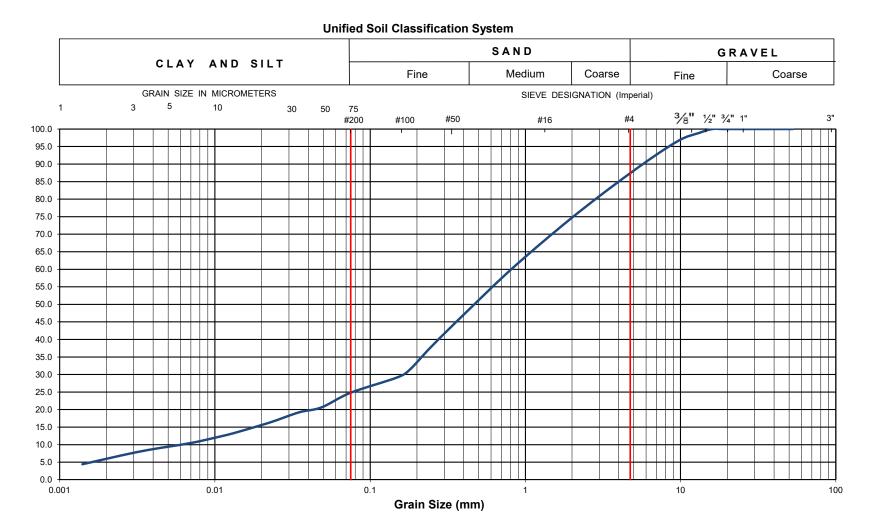
Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate **ASTM C-136**

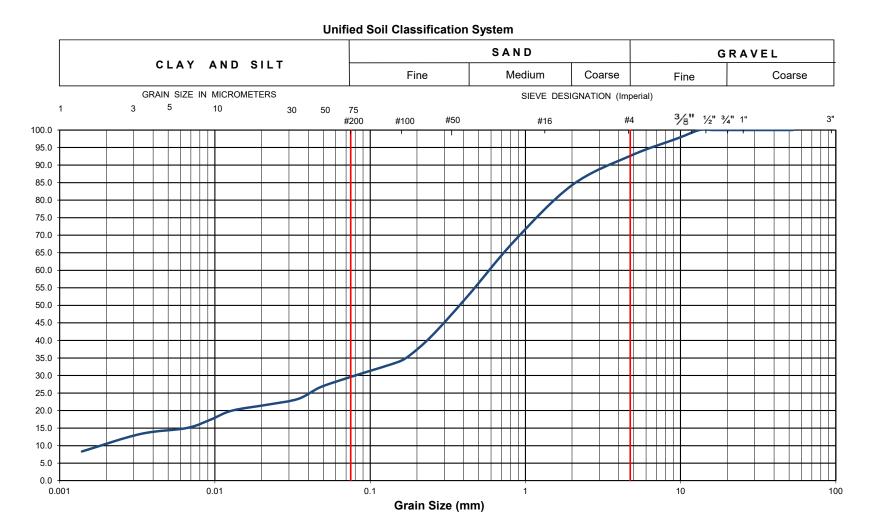
Ottawa, ON K2B 8H6

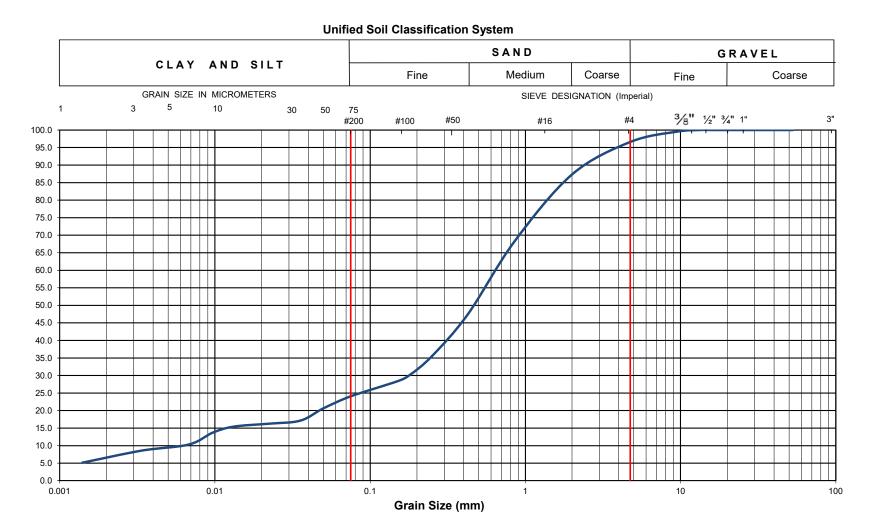

*e>

Unified Soil Classification System


EXP Project No.:	OTT-23002538-A0	Project Name :		Geotechnical In	ivestigat	ion - Walkey Cen	tre Red	evelopment	
Client :	Sun Life Assurance Company	Project Location	1 :	1822-1846 Bank	Street				
Date Sampled :	November 2, 2023	Borehole No:		BH18	Sample	: GS	S1	Depth (m) :	0.1-0.2
Sample Composition :		Gravel (%)	27	Sand (%)	56	Silt & Clay (%)	17	Eiguro I	29
Sample Description :	FILL: We	ell Graded Sand	d with S	Silt and Gravel	(GW-GN	1)		Figure :	29


EXP Project	No.: OTT-23002538-A0	Project Name :		Geotechnical Inv	vestigati	on - Walkley	Cen	tre Re-d	evelopment	
Client :	Sun Life Assurance Company of Canada	Project Location	:	1840-1846 Walki	ey Road	, Ottawa				
Date Sampled	d : October 26, 2023	Borehole No:		BH1	Sam	ple No.:	S	S3	Depth (m) :	1.5-2.1
Sample Desc	ription :	% Silt and Clay	35	% Sand	46	% Gravel		19	Figure	30
Sample Desc	ription :	Silty Sand	d and G	ravel (SM)					Figure :	30


EXP Project	No.: OTT-23002538-A0	Project Name :		Geotechnical Inv	vestigat	ion - Walkley	Cent	re Re-d	levelopment	
Client :	Sun Life Assurance Company of Canada	Project Location	:	1840-1846 Walki	ley Road	l, Ottawa				
Date Sample	d : October 26, 2023	Borehole No:		BH10	San	nple No.:	SS	3	Depth (m) :	1.5-2.1
Sample Desc	ription :	% Silt and Clay	28	% Sand	52	% Gravel		20	Figure :	31
Sample Desc	ription :	Silty Sar	nd and C	Gravel (SM)					Figure :	31


EXP Project N	lo.: OTT-23002538-A0	Project Name :		Geotechnical In	vestigati	on - Walkley	Cen	tre Re-d	evelopment	
Client :	Sun Life Assurance Company of Canada	Project Location	:	1840-1846 Walk	ley Road	, Ottawa				
Date Sampled	: November 1, 2023	Borehole No:		BH12	Sam	ple No.:	S	S2	Depth (m) :	0.8-1.4
Sample Descri	iption :	% Silt and Clay	25	% Sand	62	% Gravel		13	Figure	32
Sample Descri	iption :	Silty	/ Sand ((SM)					Figure :	32

EXP Project	No.: OTT-23002538-A0	Project Name :		Geotechnical In	vestigat	ion - Walkley	Cen	tre Re-d	levelopment	
Client :	Sun Life Assurance Company of Canada	Project Location	:	1840-1846 Walk	ley Road	l, Ottawa				
Date Sample	d : November 3, 2023	Borehole No:		BH13	San	nple No.:	SS	62	Depth (m) :	0.8-1.4
Sample Desc	cription :	% Silt and Clay	30	% Sand	63	% Gravel		7	Eiguro I	33
Sample Desc	cription :	Sil	ty Sand	(SM)					Figure :	33

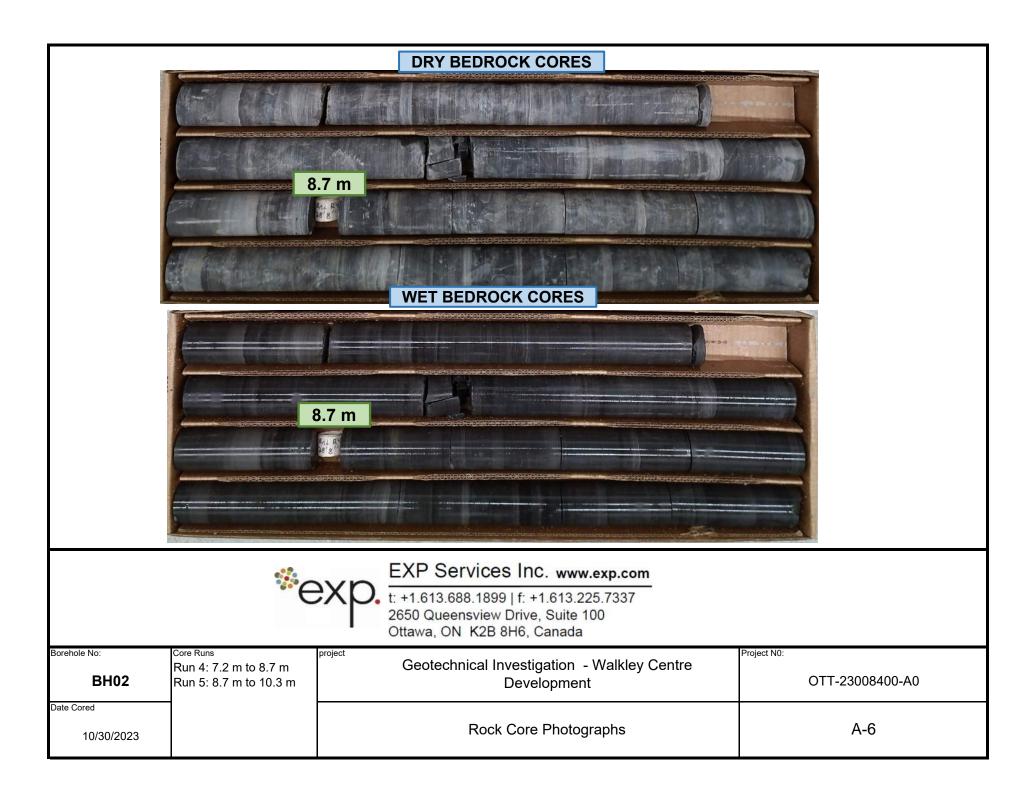
EXP Project	Project Name : Geotechnical Investigation - Walkley Centre Re-development									
Client :	Sun Life Assurance Company of Canada	Project Location	:	1840-1846 Walki	ey Road	, Ottawa				
Date Sampled	: November 2, 2023	Borehole No:		BH18	Sam	ple No.:	SS	2	Depth (m) :	0.8-1.4
Sample Descr	iption :	% Silt and Clay	24	% Sand	73	% Gravel		3	Eigung i	34
Sample Descr	S	ilty San	d (SM)					Figure :	34	

EXP Services Inc.

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev.1 October 3, 2024

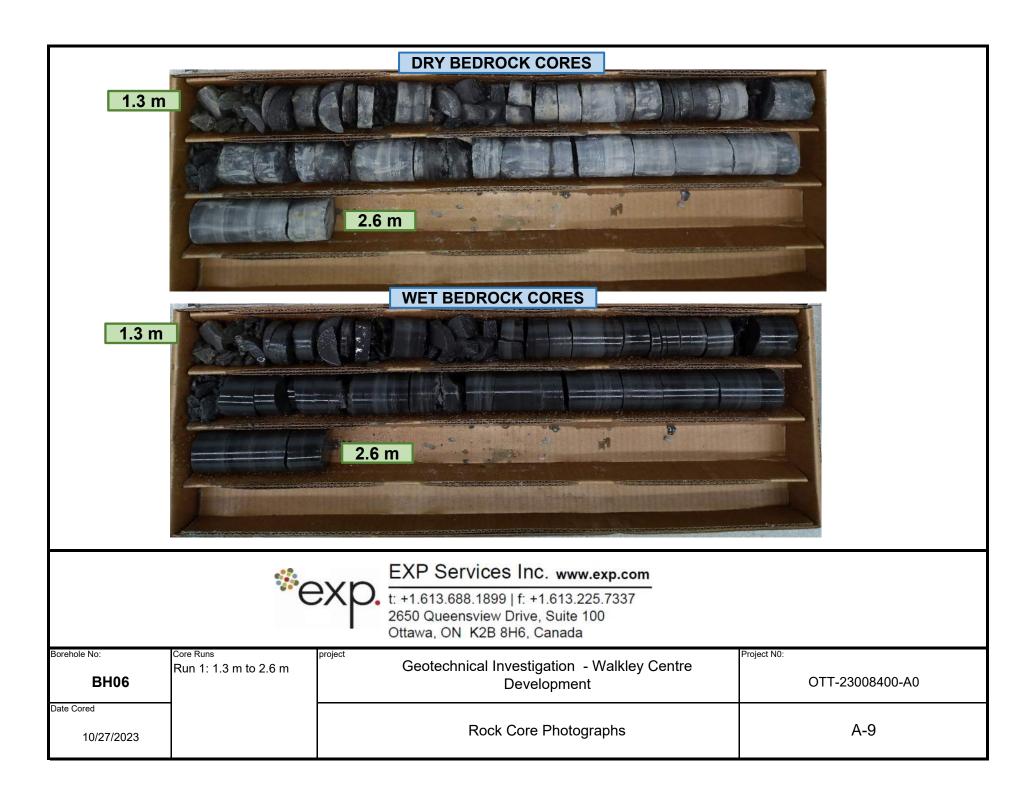
Appendix A – Rock Core Photographs

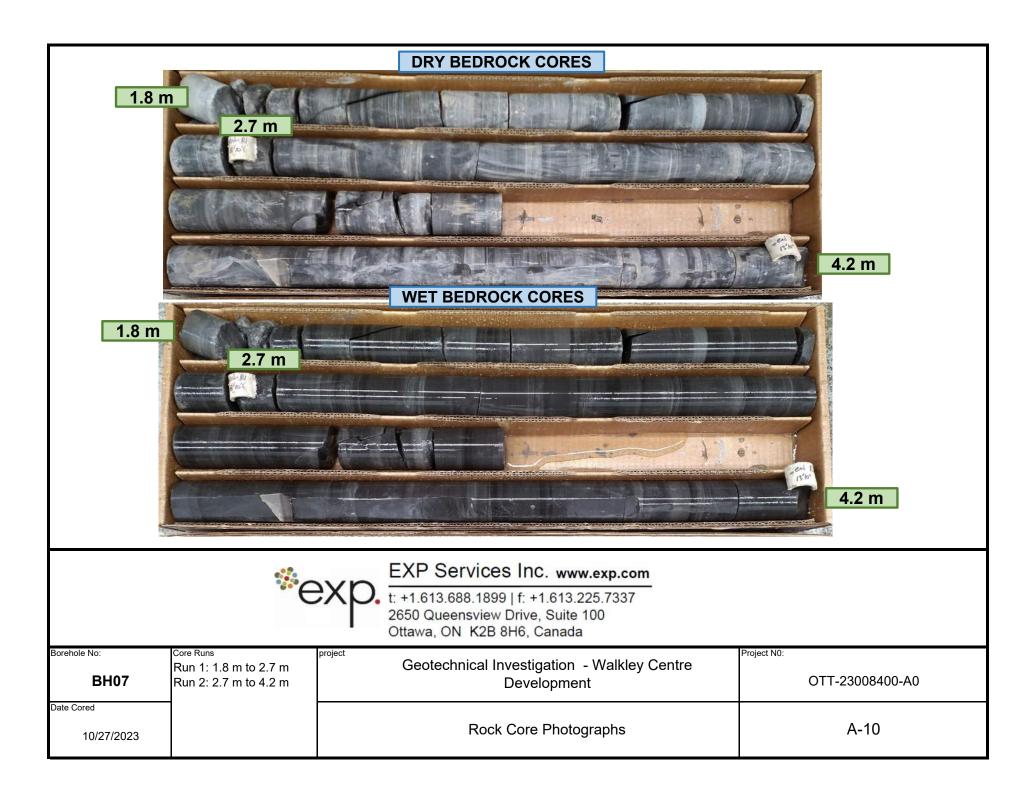
[%]exp.


2.7 m		DRY BEDROCK CORES
		WET BEDROCK CORES
2.7 m		2.9 m
	*e	XP. <u>EXP Services Inc. www.exp.com</u> t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada
Borehole No: BH01	^{Core Runs} Run 1: 2.7 m to 2.9 m Run 2: 2.9 m to 4.5 m	Geotechnical Investigation - Walkley Centre Development OTT-23008400-A0
Date Cored 10/26/2023		Rock Core Photographs A-1

		DRY BEDROCK CORES	
	4.5 m		
		WET BEDROCK CORES	
		THE FEEDER	
	4.5 m		
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
orehole No: BH01	^{Core Runs} Run 2: 2.9 m to 4.5 m Run 3: 4.5 m to 5.9 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
ate Cored 10/26/2023		Rock Core Photographs	A-2

	The	DRY BEDROCK CORES	
			5.9 m
	J.C. T. T.	WET BEDROCK CORES	Contraction of the local division of the loc
			a for the second
			5.9 m
		EVD Services Inc.	Alter and anterior sector
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH01	^{Core Runs} Run 2: 2.9 m to 4.5 m Run 3: 4.5 m to 5.9 m	^{project} Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/26/2023		Rock Core Photographs	A-3


		DRY BEDROCK CORES	
2.7	m		
4.2 r	n	11 Pikkel	
		WET BEDROCK CORES	
2.7 n	n		
4.2 m			
	BALL .		
	*€	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH02	^{Core Runs} Run 1: 2.7 m to 4.2 m Run 2: 4.2 m to 5.6 m	Geotechnical Investigation - Walkley Ce Development	entre OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-4


		DRY BEDROCK CORES	
		5.6 m	
		TANK NOT BELEVICE TO BE	
		THE THERE HE HERE	
		7.2 m WET BEDROCK CORES	
		5.6 m	
		7.2 m	
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
BH02	Core Runs Run 2: 4.2 m to 5.6 m Run 3: 5.6 m to 7.2 m Run 4: 7.2 m to 8.7 m	Geotechnical Investigation - Walkley Centre Development OTT-23008400-A0	
ate Cored 10/30/2023		Rock Core Photographs A-5	

		DRY BEDROCK CORES	
		10.3 m	17/2
		KAN ALANGED	
		11.8 m	
		WET BEDROCK CORES	
	e if in	10.3 m	1/1.
	delenset in all		
	a shut is a and		
		11.8 m	
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH02	^{Core Runs} Run 5: 8.7 m to 10.3 m Run 6: 10.3 m to 11.8 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-7

		DRY BEDROCK CORES	
			13.1 m
		The ALEXP	
		WET BEDROCK CORES	14.1 m
			13.1 m
			0
			14.1 m
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH02	^{Core Runs} Run 7: 11.8 m to 13.1 m Run 8: 13.1 m to 14.1 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-8

	Terror and the second	DRY BEDROCK CORES	
4.2 m			
			- e
			5.7 m
		WET BEDROCK CORES	
4.2 m			
			- B
			5.7 m
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH07	^{Core Runs} Run 3: 4.2 m to 5.7 m Run 4: 5.7 m to 7.2 m	^{project} Geotechnical Investigation - Walkley Cent Development	tre OTT-23008400-A0
Date Cored 10/27/2023		Rock Core Photographs	A-11

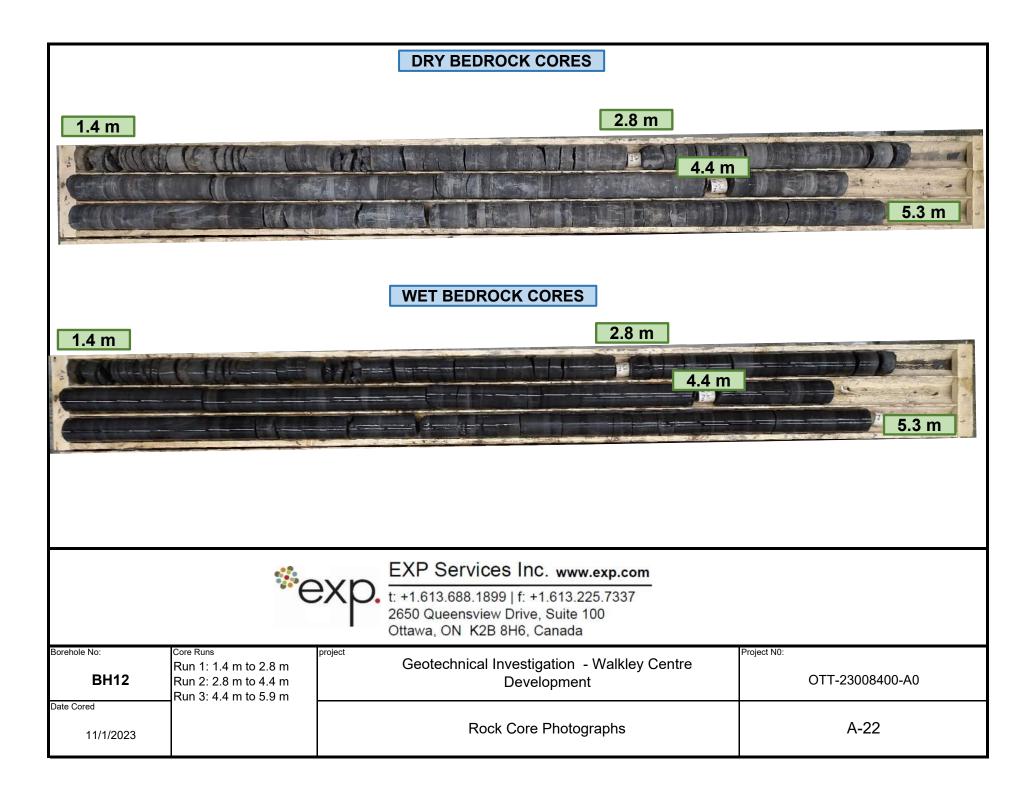
DRY BEDROCK CORES

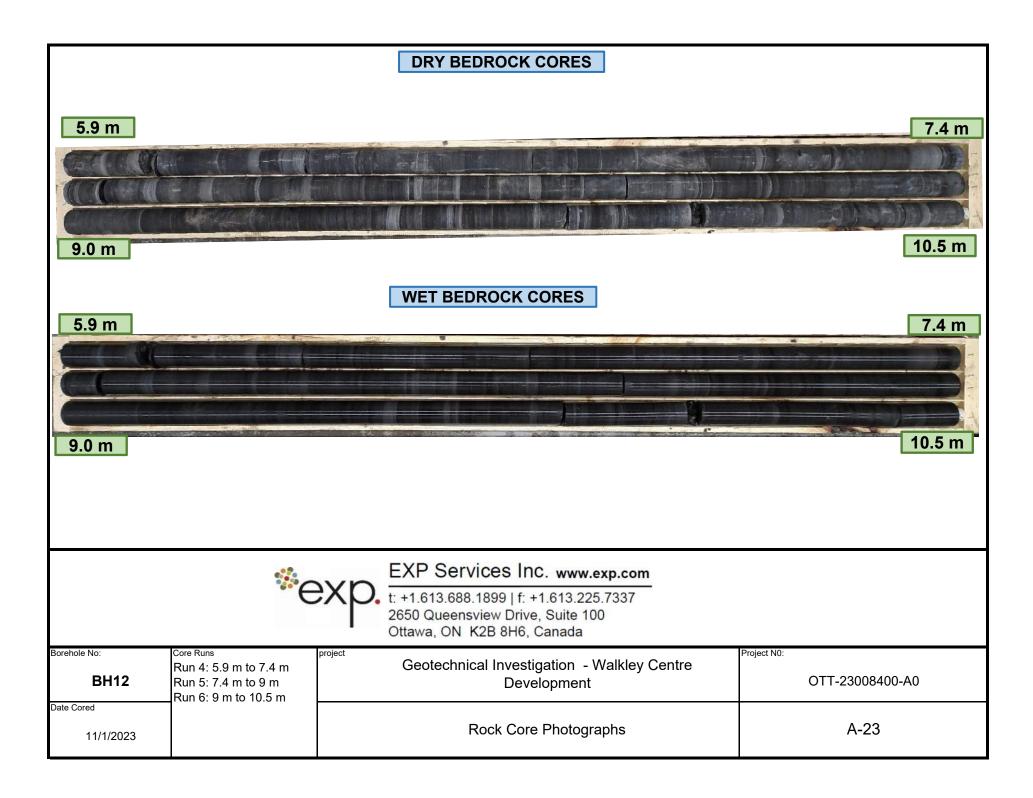
		8.8 m
	E TENTE MAL	
		WET BEDROCK CORES
	Les He	
		10.3 m
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada
Borehole No: BH07	^{Core Runs} Run 5: 7.2 m to 8.8 m Run 6: 8.8 m to 10.3 m	Geotechnical Investigation - Walkley Centre Development OTT-23008400-A0
Date Cored 10/27/2023		Rock Core Photographs A-13

		DRY BEDROCK CORES		
	TA		A	
			+	
			11.8 m	
		WET BEDROCK CORES		
	AT ST		A ·	
	FILIS (CO		11.8 m	
		The first AB		
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada		
ehole No: BH07	^{Core Runs} Run 7: 10.3 m to 11.8 m Run 8: 11.8 m to 13.4 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0	
e Cored 10/27/2023		Rock Core Photographs	A-14	

		DRY BEDROCK CORES	Macada and a second second second second second second second second second second second second second second
	COMPLETE SUL		^{F8} 13.4 m
	La la la la la la la la la la la la la la	13.7 m	
		WET BEDROCK CORES	
			13.4 m
		(13.7 m	
	Je .: 1		
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH07	^{Core Runs} Run 8: 11.8 m to 13.4 m Run 9: 13.4 m to 13.7 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/27/2023		Rock Core Photographs	A-15

		DRY BEDROCK CORES	
2.2 n	n	2.6 m	
		4.1 m	
	20000000000000000000000000000000000000	WET BEDROCK CORES	
2.2 m	DERES	2.6 m	
			70DL
		4.1 m	
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH11 Date Cored	Core Runs Run 1: 2.2 m to 2.6 m Run 2: 2.6 m to 4.1 m Run 3: 4.1 m to 5.6 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
10/30/2023		Rock Core Photographs	A-16

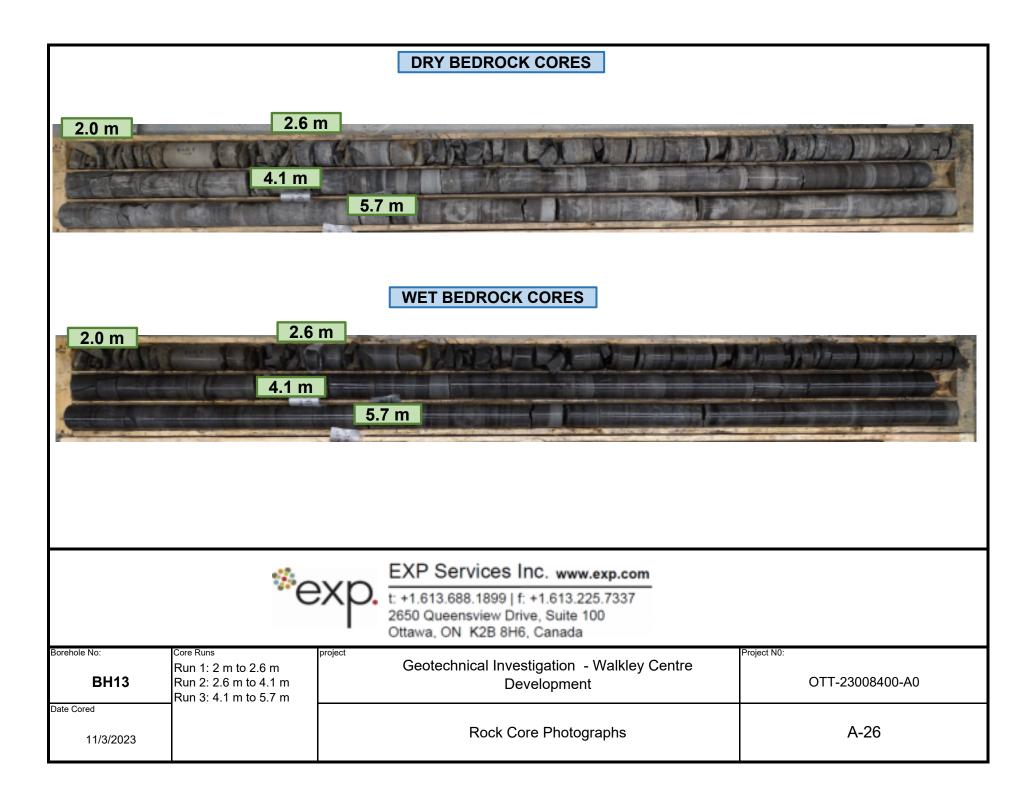

		DRY BEDROCK CORES	Namedatana 1
	CSELL	A DE LE	
	Stall Rom	AND AND AND AND AND AND AND AND AND AND	
E	5.6 m	MALE AND THE PARTY AND THE	
	E C		
		WET BEDROCK CORES	
0			
5.6			
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH11	^{Core Runs} Run 3: 4.1 m to 5.6 m Run 4: 5.6 m to 7.2 m	Geotechnical Investigation - Walkley Centre Development	NO: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-17


		DRY BEDROCK CORES	
		7.2 m	
	COM-LA		
	(12 date	8.6 m	
		WET BEDROCK CORES	
		7.2 m	
		8.6 m	
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH11	^{Core Runs} Run 5: 7.2 m to 8.6 m Run 6: 8.6 m to 10.1 m	^{project} Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-18

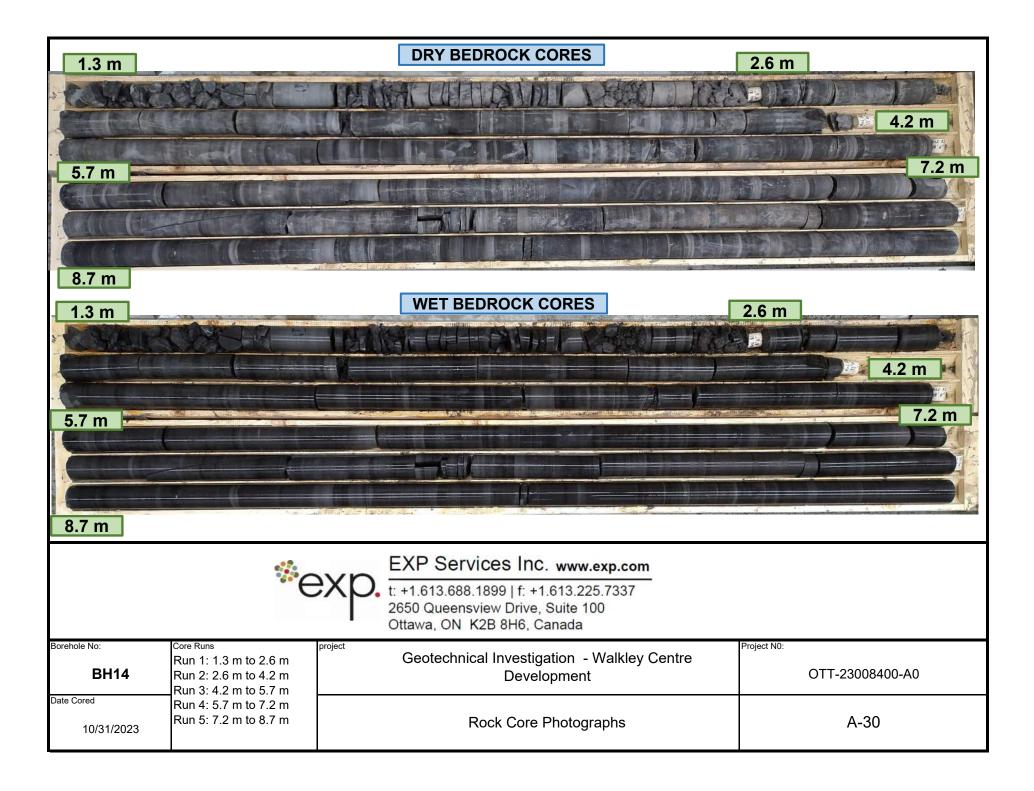
	The second second second second second second second second second second second second second second second s	DRY BEDROCK CORES	
			10.1 m
	KHEN DESKTER		
		WET BEDROCK CORES	
			10.1 m
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH11	^{Core Runs} Run 6: 8.6 m to 10.1 m Run 7: 10.1 m to 11.7 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-19

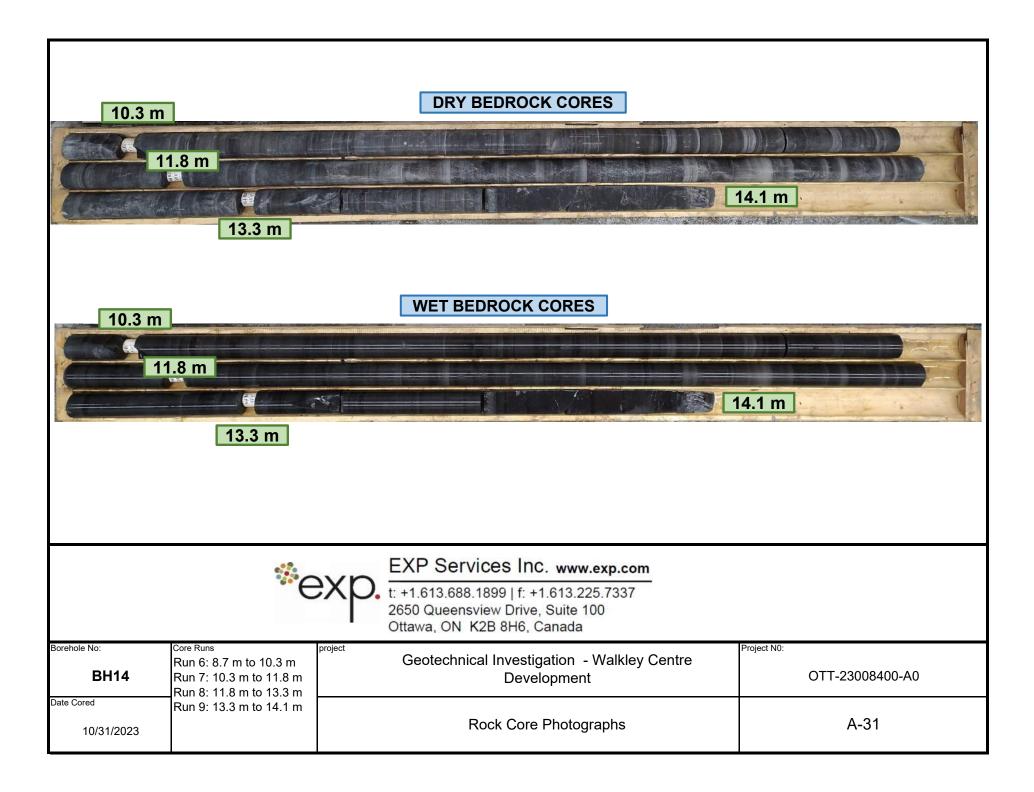
		DRY BEDROCK CORES	
		13.2 m	
		WET BEDROCK CORES	
		13.2 m	
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH11	^{Core Runs} Run 7: 10.1 m to 11.7 m Run 8: 11.7 m to 13.2 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-20

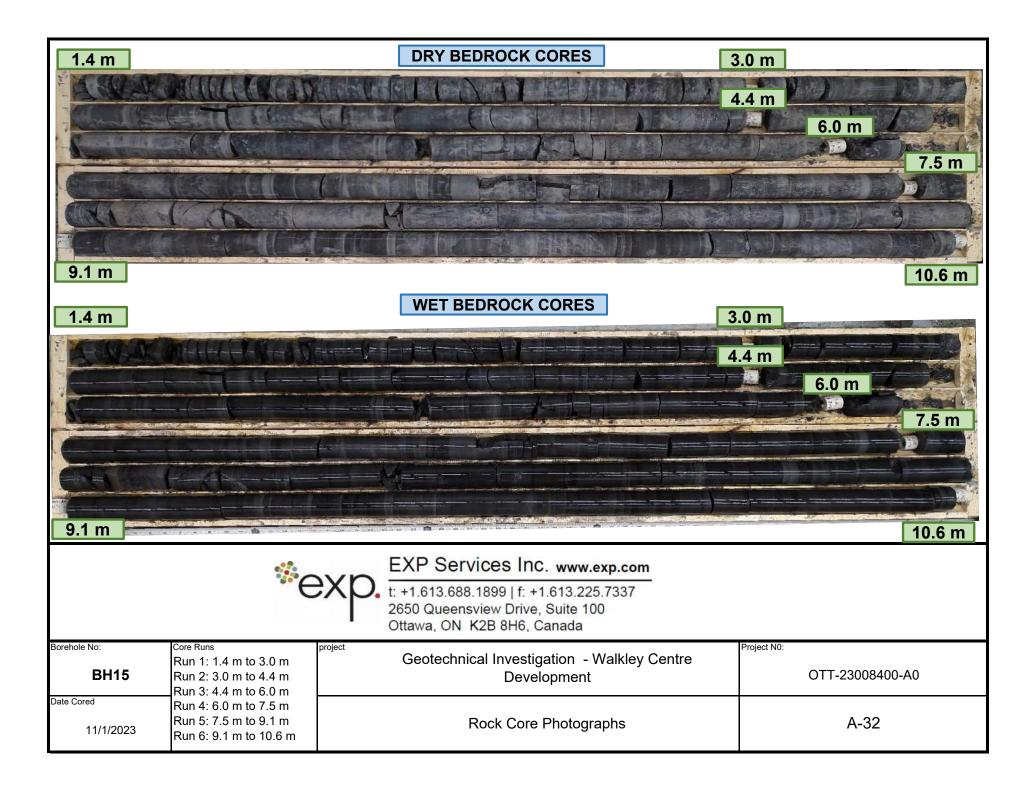
		DRY BEDROCK CORES	
13.2 m			
		14.2 m	
		No. No. <th>5 5 7 8 9 601 E 2</th>	5 5 7 8 9 601 E 2
13.2 m			
			- THE SET
		14.2 m	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH11	^{Core Runs} Run 9: 13.2 m to 14.2 m	^{project} Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 10/30/2023		Rock Core Photographs	A-21

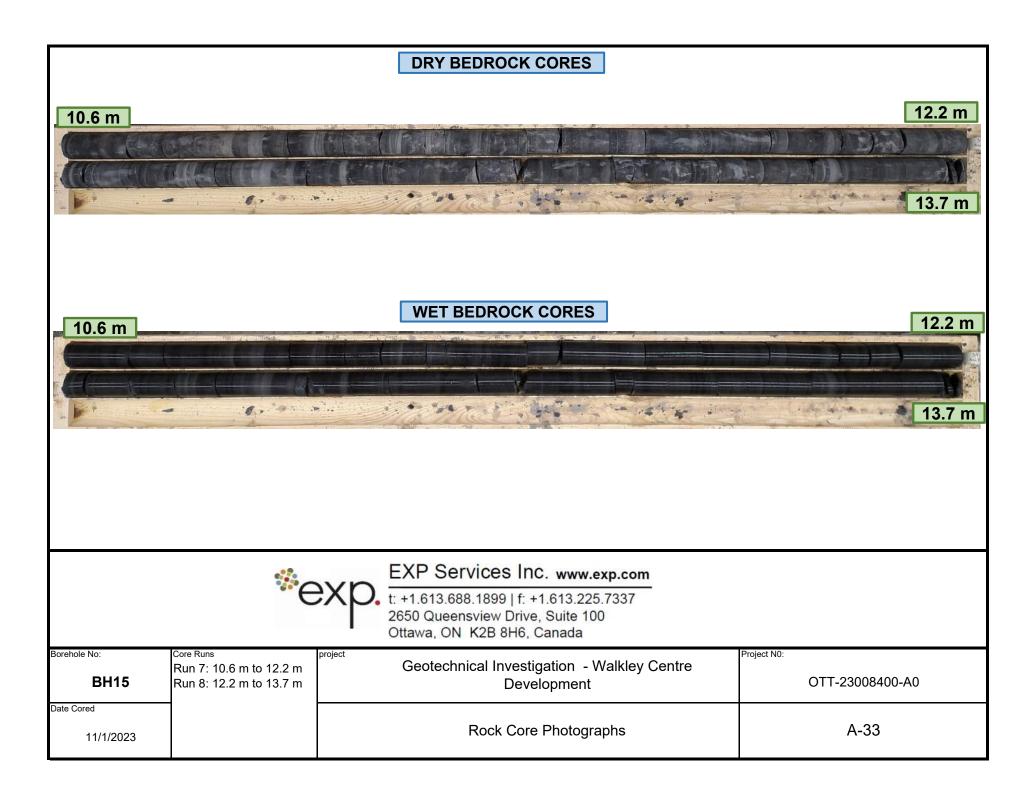


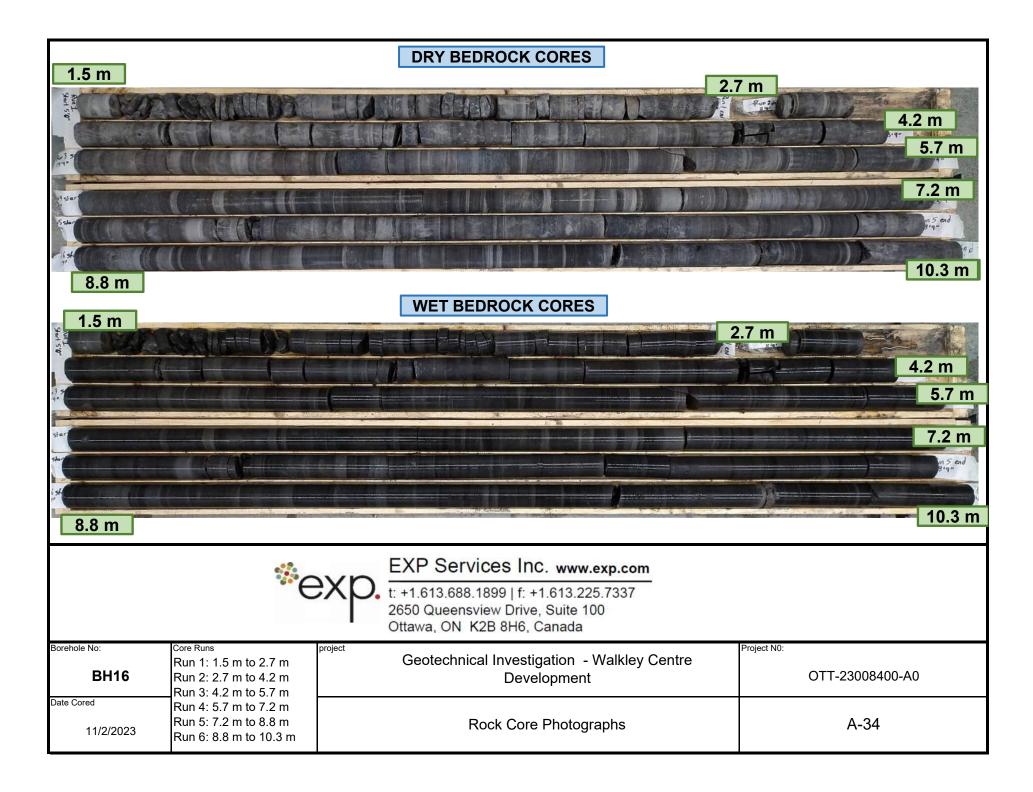
		DRY BEDROCK CORES	
		DRY BEDROCK CORES	
	LORX		
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH12	^{Core Runs} Run 7: 10.5 m to 12.0 m Run 8: 12.0 m to 13.3 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 11/1/2023		Rock Core Photographs	A-24

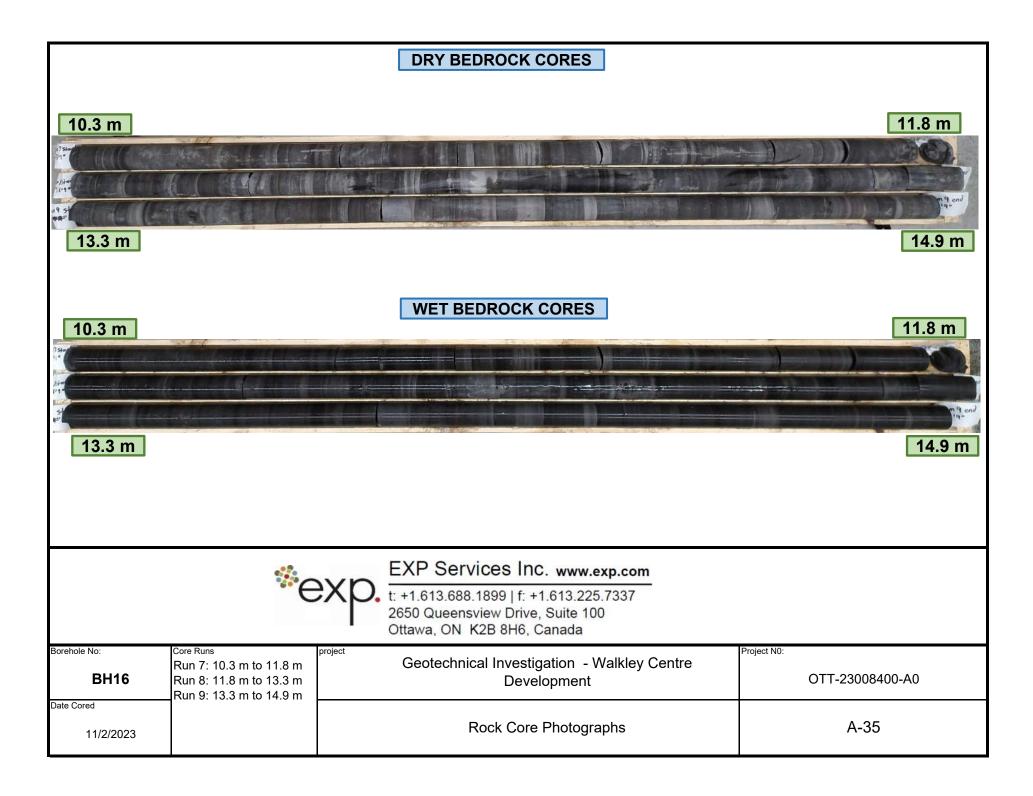

		DRY BEDROCK CORES		
		13.3 m		
			14.0 m	
		а 7 а а 10 11 17 13 11 18 11		
		WET BEDROCK CORES		
	13.3 m			
			14.0 m	
		6 7 8 9 10 11 17 13 14 16 18 18 17 17 18 18 20 1 6 7 8 8 20 1 2 3 4 5 5 7 8 8 30 1 2 3 4 5 5 7 8 9 40 1 2 3 4 5 5 7 8 9 50 1 2 3	4 5 5 7 5 5 501 2	
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada		
Borehole No: BH12	^{Core Runs} Run 8: 12 m to 13.3 m Run 9: 13.3 m to 14.0 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0	
Date Cored 11/1/2023		Rock Core Photographs	A-25	

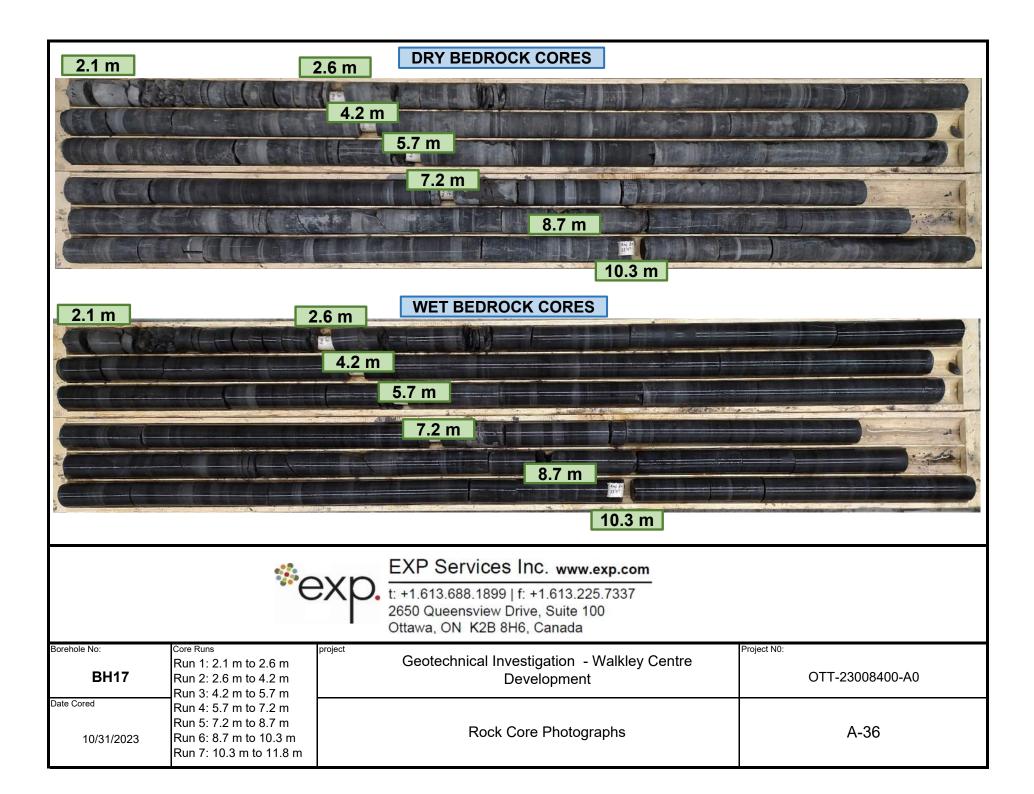

	000000000000000000000000000000000000000	DRY BEDROCK CORES	
		1.8 m	
	CTIMF.		
			13.3 m
		WET BEDROCK CORES	
	11.8		
			13.3 m
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
Borehole No: BH13	^{Core Runs} Run 7: 10.3 m to 11.8 m Run 8: 11.8 m to 13.3 m	^{project} Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 11/3/2023		Rock Core Photographs	A-28

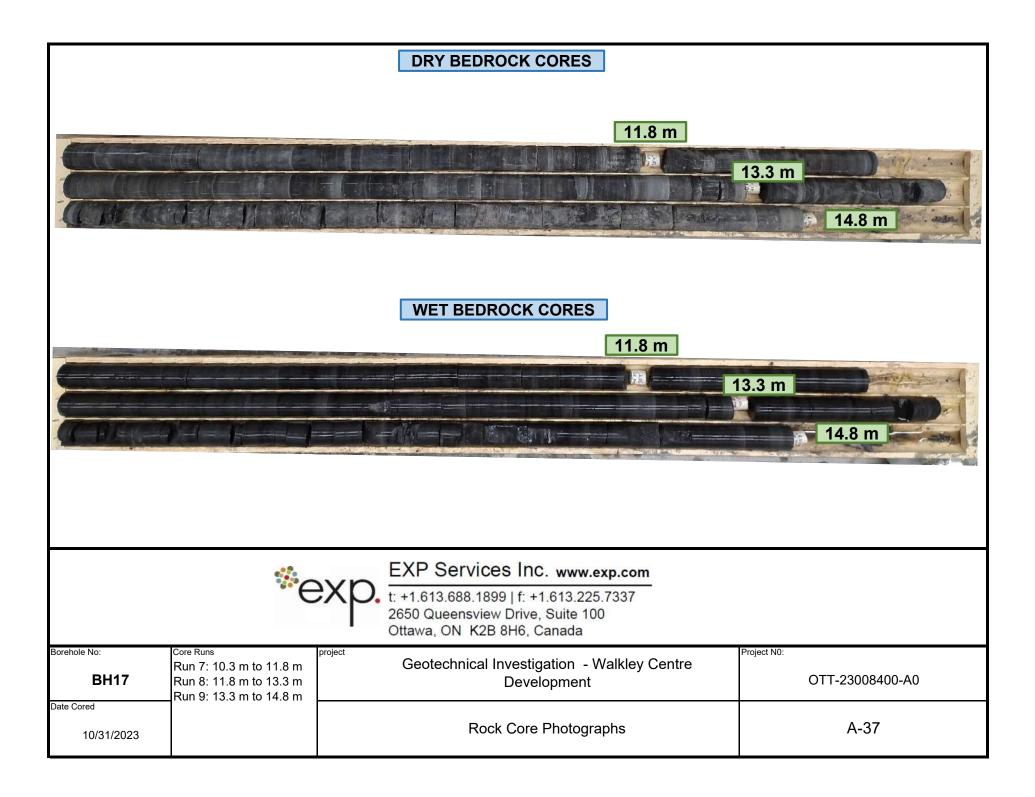


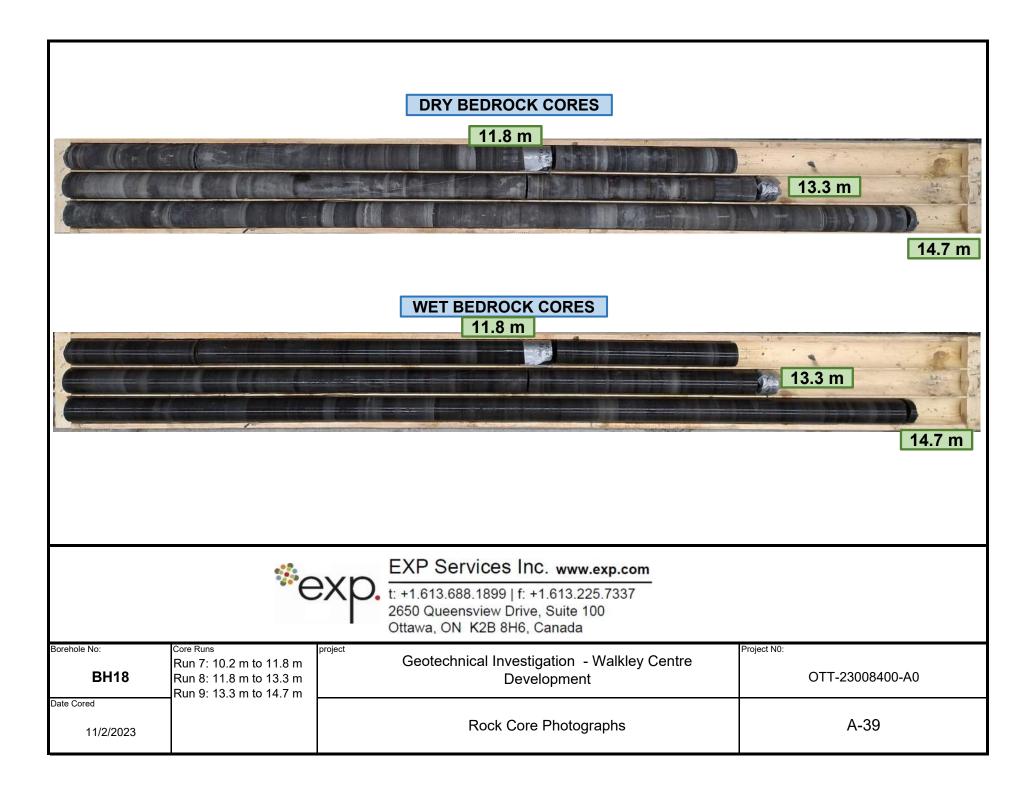

		DRY BEDROCK CORES	
		7.1 m	10.3 m
		WET BEDROCK CORES	
		7.1 m	10.3 m
	*e	EXP. EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada	
BH13 Run Run	Runs 4: 5.7 m to 7.1 m 5: 7.1 m to 8.7 m 6: 8.7 m to 10.3 m	Geotechnical Investigation - Walkley Centre Development	Project N0: OTT-23008400-A0
Date Cored 11/3/2023		Rock Core Photographs	A-27











1.9 m	[DRY BEDROCK CORES
	4.1 m	5.6 m
		7.2 m 8.7 m
		10.2 m
1.9 m	4.1 m	2.5 m
		8.7 m 10.2 m
	*e	EXP Services Inc. www.exp.com t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada
Borehole No: BH18	Core Runs Run 1: 1.9 m to 2.5 m Run 2: 2.5 m to 4.1 m Run 3: 4.1 m to 5.6 m	oject Geotechnical Investigation - Walkley Centre Development OTT-23008400-A0
Date Cored 11/2/2023	Run 4: 5.6 m to 7.2 m Run 5: 7.2 m to 8.7 m Run 6: 8.7 m to 10.2 m	Rock Core Photographs A-38

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev.1 October 3, 2024

Appendix B – Shear Wave Velocity Sounding for the Site Class Determination

*exp.

January 8th, 2023

Transmited by email: <u>Daniel.Wall@exp.com</u> Our ref: GPR-23-05153

Mr. Daniel Wall, P.Eng. Intermediate Geotechnical Engineer **EXP** Services inc. 100 – 2650 Queensview Drive Ottawa ON K2B 8H6

Subject:Shear Wave Velocity Sounding for the Site Class Determination1822 Bank Street, Ottawa (ON)

Dear Mr. Wall,

Geophysics GPR International inc. has been mandated by EXP to carry out seismic surveys at 1822 Bank Street, in Ottawa (ON). The geophysical investigation used the Multi-channel Analysis of Surface Waves (MASW), the Spatial AutoCorrelation (SPAC), and the seismic refraction methods. From the subsequent results, the seismic shear wave velocity values were calculated for the soil and the rock, to determine the Site Class.

The surveys were conducted on December 21st, 2023, by Mr. Charles Trottier, M.Sc. phys. and Mrs. Karyne Faguy, graduate in geophysics. Figure 1 shows the regional location of the site and Figure 2 illustrates the location of the seismic spreads. Both figures are presented in the Appendix.

The following paragraphs briefly describe the survey design, the principles of the testing methods, and the results presented in table and graph.

MASW PRINCIPLE

The *Multi-channel Analysis of Surface Waves* (MASW) and the *SPatial AutoCorrelation* (SPAC or MAM for *Microtremors Array Method*) are seismic methods used to evaluate the shear wave velocities of subsurface materials through the analysis of the dispersion properties of the Rayleigh surface wave. The MASW is considered an "active" method, as the seismic signal is induced at known location and time in the geophones' spread axis. Conversely, the SPAC is considered a "passive" method, using the low frequency "signals" produced far away. The method can also be used with "active" seismic source records. The SPAC method generally allows deeper Vs soundings. Its dispersion curve can then be merged with the one of higher frequency from the MASW to calculate a more complete inversion. The dispersion properties are expressed as a change of velocities with respect to frequencies. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. The inversion of the Rayleigh wave dispersion curve yields a shear wave (V_S) velocity depth profile (sounding).

Figure 3 schematically outlines the basic operating procedure for the MASW method. Figure 4 illustrates an example of one of the MASW/SPAC records, the corresponding spectrogram analysis and resulting 1D V_s model.

INTERPRETATION

The main processing sequence involved data inspection and edition when required; spectral analysis ("phase shift" for MASW, and "cross-correlation" for SPAC); picking the fundamental mode; and 1D inversion of the MASW and SPAC shot records using the SeisImagerSW[™] software. The data inversions used a nonlinear least squares algorithm.

In theory, all the shot records for a given seismic spread should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation, local surface seismic velocities variations, and/or dipping of overburden layers or rock. In general, the precision of the calculated seismic shear wave velocities (V_s) is around 15% or better. More detailed descriptions of these methods are presented in *Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock*, Hunter, J.A., Crow, H.L., et al., Geological Surveys of Canada, General Information Product 110, 2015.

SURVEY DESIGN

The seismic spreads were installed in front of the building, parallel to Bank Street (Figure 2), near the boreholes BH-7, BH-8 and BH-9. The geophone spacing was 3.0 metres for the main spread, using 24 geophones. One shorter seismic spread, with geophone spacings of 1.0 metre, was dedicated to the near surface materials. The seismic records were produced with a seismograph Terraloc Pro (from ABEM Instrument), and the geophones were 4.5 Hz.

The seismic records counted 4096 data, sampled at 1000 μ s for the MASW surveys, and at 40 μ s for the seismic refraction. The records included a pre-trigged portion of 10 ms. An 8 kg sledgehammer was used as the energy source, with impacts being recorded off both ends of the seismic spreads. A stacking procedure was also used to improve the Signal / Noise ratio for the seismic records. The shear wave depth sounding can be considered as the average of the bulk area within the geophone spread, especially for its central half-length.

RESULTS

The MASW calculated V_s results are illustrated at Figure 5.

The \overline{V}_{S30} value results from the harmonic mean of the shear wave velocities, from the surface to 30 metres deep. It is calculated by dividing the total depth of interest (30 metres) by the sum of the time spent in each velocity layer from the surface down to 30 metres, as:

$$\overline{V}_{S30} = \frac{\sum_{i=1}^{N} H_i}{\sum_{i=1}^{N} H_i/V_i} | \sum_{i=1}^{N} H_i = 30 \text{ m}$$
(N: number of layers; H_i : thickness of layer "*i*"; V_i : V_s of layer "*i*")

Thus, the \overline{V}_{S30} value represents the seismic shear wave velocity of an equivalent homogeneous single layer response, between the surface and 30 metres deep.

The calculated \overline{V}_{S30} value of the actual site is 1428.0 m/s (Table 1), corresponding to the Site Class "B". However, the Site Classes A and B are not to be used if there is 3 metres or more of soils between the rock and the bottom of the spread footing, pile cap or mat foundation. In the case the bottom of the foundation would be 1.2 metre or less from the rock, the \overline{V}_{S30} * value would be greater than 1500 m/s, corresponding to the Site Class "A" (Table 2).

CONCLUSION

Geophysical surveys were carried out to identify the Site Class at 1822 Bank Street, in Ottawa (ON). The seismic surveys used the MASW and the SPAC analysis, and the seismic refraction to calculate the \overline{V}_{S30} value. Its calculation is presented at Table 1.

The \overline{V}_{S30} value of the actual site is 1428 m/s, corresponding to the Site Class "B" (760 < $\overline{V}_{S30} \leq$ 1500 m/s), as determined through the MASW and SPAC methods, Table 4.1.8.4.-A of the NBC (2015), and the Building Code, O. Reg. 332/12. It must be noted that the Site Classes A and B are not to be used if there is 3 metres or more of soils between the rock and the bottom of the spread footing, pile cap or mat foundation.

In the case the bottom of the foundation would be 1.2 metre or less from the rock, the \overline{V}_{S30} * value would be greater than 1500 m/s, corresponding to the Site Class "A" (\overline{V}_{S30} > 1500 m/s).

It must also be noted that other geotechnical information gleaned on site; including the presence of liquefiable soils, very soft clays, high moisture content etc. (cf. Table 4.1.8.4.-A of the NBC 2015) can supersede the Site classification provided in this report based on the \overline{V}_{S30} value.

The V_s values calculated are representative of the in situ materials and are not corrected for the total and effective stresses.

Hoping the whole to your satisfaction, we remain yours truly,

Karyne Faguy, B.Sc. Geoph. Project Manager

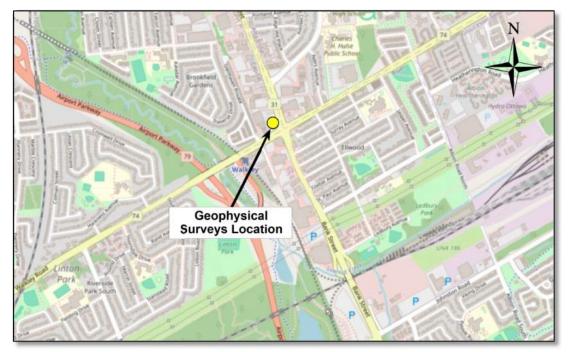


FIGURE 1 General Survey Location (Source: OpenStreetMap©)

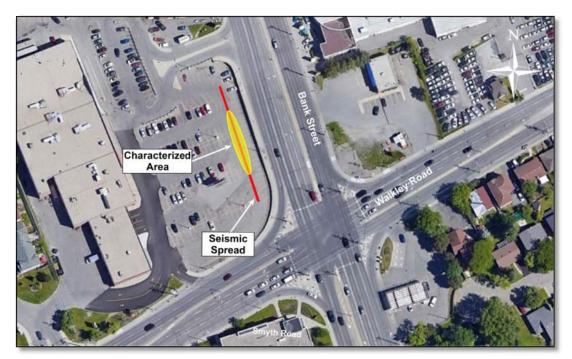


FIGURE 2 Location of borehole 23-01 (Source: Google Earth™)

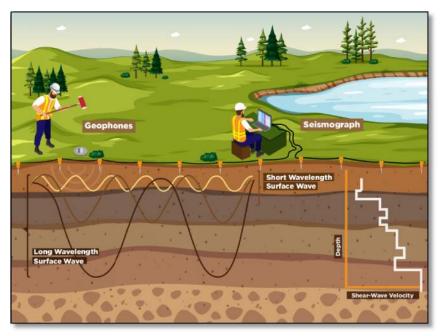


FIGURE 3 MASW Operating Principle

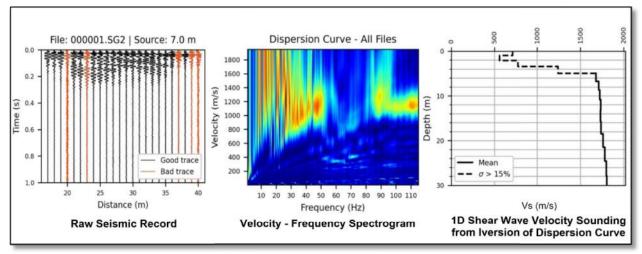


FIGURE 4 Example of a MASW/SPAC record, Phase Velocity - Frequency curve of the Rayleigh wave and resulting 1D Shear Wave Velocity Model

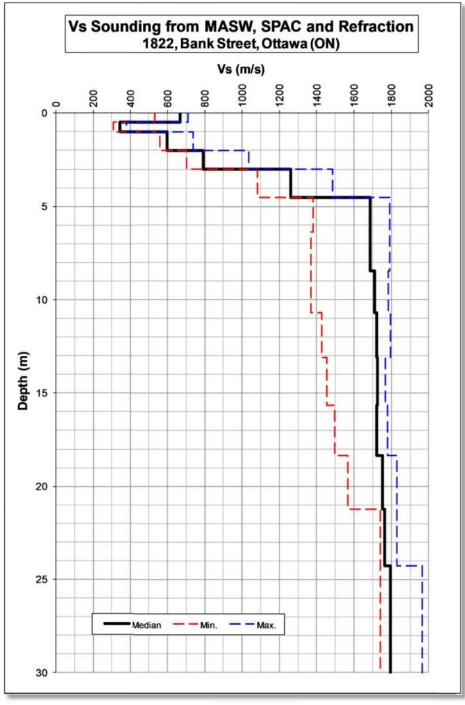


FIGURE 5 MASW Shear-Wave Velocity Sounding

Douth		Vs		Thickness	Cumulative	Cumulative	Vs at given	
Depth	Min.	Median	Max.	Thickness	Thickness	med. Vs	Delay	Depth
(m)	(m/s)	(m/s)	(m/s)	(m)	(m)	(s)	(s)	(m/s)
0	532.3	666.7	711.0		Grade L	evel (Decem	ber 21st, 2023)	
0.50	306.8	342.6	378.4	0.50	0.50	0.000750	0.000750	666.7
1.00	559.2	596.7	738.4	0.50	1.00	0.001459	0.002209	452.6
2.00	703.2	790.6	1036.7	1.00	2.00 0.002		0.003885	514.8
3.00	1080.9	1260.3	1483.8	1.00	3.00	0.001265	0.005150	582.5
4.50	1151.9	1680.0	1821.1	1.50	4.50	0.001190	0.006340	709.7
6.40	1184.1	1665.4	1825.4	1.90	6.40	0.001128	0.007469	856.3
8.46	1275.1	1696.3	1784.8	2.06	8.46	0.001237	0.008706	971.3
10.68	1386.5	1712.7	1794.6	2.23	10.68	0.001312	0.010018	1066.2
13.07	1454.5	1719.3	1767.2	2.39	13.07	0.001396	0.011413	1145.3
15.63	1496.5	1705.0	1778.3	2.55	15.63	0.001486	0.012899	1211.4
18.35	1567.7	1740.8	1829.5	2.72	18.35	0.001595	0.014494	1265.7
21.23	1706.6	1762.2	1829.5	2.88	21.23	0.001657	0.016152	1314.5
24.28	1740.8	1829.5	1967.2	3.05	24.28	0.001731	0.017882	1357.8
30				5.72	30.00	0.003126	0.021008	1428.0
							V _{S30} (m/s)	1428.0
							Class	B ⁽¹⁾

TABLE 1Vs30 Calculation for the Site Class (actual site)

(1) The Site Classes A and B are not to be used if there is 3 metres or more of soils between the rock and the bottom of the spread footing, pile cap or mat foundation.

TABLE 2 Limit for the Site Class A

Donth		Vs		Thickness	Cumulative	Delay for	Cumulative	Vs at given				
Depth	Min.	Median	Max.	Thickness	Thickness	med. Vs	Delay	Depth				
(m)	(m/s)	(m/s)	(m/s)	(m)	(m)	(s)	(s)	(m/s)				
0.0	532.3	666.7	711.0		Limit for the	Site Class A	(1.2 metres of	aail)				
0.8	306.8	342.6	378.4		Limit for the	Sile Cidss A	(1.2 metres of	5011)				
1.0	559.2	596.7	738.4	0.20	0.20	0.000584	0.000584	342.6				
2.0	703.2	790.6	1036.7	1.00	1.20	0.001676	0.002260	531.1				
3.0	1080.9	1260.3	1483.8	1.00	2.20	0.001265	0.003524	624.2				
4.5	1151.9	1680.0	1821.1	1.50	3.70	3.70 0.001190		784.8				
6.4	1184.1	1665.4	1825.4	1.90	5.60	0.001128	0.005843	957.7				
8.5	1275.1	1696.3	1784.8	2.06	7.66	0.001237	0.007080	1081.3				
10.7	1386.5	1712.7	1794.6	2.23	9.88	0.001312	0.008392	1177.5				
13.1	1454.5	1719.3	1767.2	2.39	12.27	0.001396	0.009788	1253.8				
15.6	1496.5	1705.0	1778.3	2.55	14.83	0.001486	0.011274	1315.1				
18.3	1567.7	1740.8	1829.5	2.72	17.55	0.001595	0.012869	1363.5				
21.2	1706.6	1762.2	1829.5	2.88	20.43	0.001657	0.014526	1406.5				
24.3	1740.8	1829.5	1967.2	3.05	23.48	0.001731	0.016256	1444.4				
30.8				6.52	30.00	0.003564	0.019820	1513.6				
								4540.0				

V _{S30} (m/s)	1513.6
Class	Α

EXP Services Inc.

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev.1 October 3, 2024

Appendix C – Laboratory Certificate of Analysis Report

[%]exp.

CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899 ATTENTION TO: Daniel Wall PROJECT: OTT-23002538-AO AGAT WORK ORDER: 23Z104773 SOIL ANALYSIS REVIEWED BY: Chuandi Zhang, Inorganic Supervisor DATE REPORTED: Dec 22, 2023 PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes			

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Mostorn Envire Agricultural Laboratory Appagiation (M/EALA)

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 5

Certificate of Analysis

AGAT WORK ORDER: 23Z104773 PROJECT: OTT-23002538-AO

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:Bank Street

ATTENTION TO: Daniel Wall

SAMPLED BY:

(Soil) Inorganic Chemistry												
DATE RECEIVED: 2023-12-15						DATE REPORTED: 2023-12-22						
	:	SAMPLE DESCRIPTION	BH 17 R2	BH 12 R6	BH 14 R4							
		SAMPLE TYPE	Soil	Soil	Soil							
		DATE SAMPLED	2023-10-31	2023-10-31	2023-10-31							
Parameter	Unit	G/S RDL	5549286	5549287	5549288							
Chloride (2:1)	µg/g	2	11	20	11							
Sulphate (2:1)	µg/g	2	13	55	13							
pH (2:1)	pH Units	NA	9.75	9.96	9.92							
Electrical Conductivity (2:1)	mS/cm	0.005	0.324	0.397	0.301							
Resistivity (2:1) (Calculated)	ohm.cm	1	3090	2520	3320							
Redox Potential 1	mV	NA	338	384	366							
Redox Potential 2	mV	NA	346	389	369							
Redox Potential 3	mV	NA	349	392	373							

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard

5549286-5549288 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from field measured results.

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Analysis performed at AGAT Toronto (unless marked by *)

Chund Shan

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-23002538-AO

SAMPLING SITE:Bank Street

AGAT WORK ORDER: 23Z104773

ATTENTION TO: Daniel Wall

SAMPLED BY:

Soil Analysis

RPT Date: Dec 22, 2023	RPT Date: Dec 22, 2023			UPLICAT	E		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable nits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper	
(Soil) Inorganic Chemistry																
Chloride (2:1)	5549286	5549286	11	10	11.6%	< 2	95%	70%	130%	99%	80%	120%	100%	70%	130%	
Sulphate (2:1)	5549286	5549286	13	13	3.0%	< 2	94%	70%	130%	100%	80%	120%	100%	70%	130%	
pH (2:1)	5549286	5549286	9.75	9.71	0.4%		93%	80%	120%							
Electrical Conductivity (2:1)	5549286	5549286	0.324	0.286	12.2%	< 0.005	90%	80%	120%							
Redox Potential 1	5549286		NA	NA	NA		100%	90%	110%							

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Chuand Shan

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-23002538-AO

AGAT WORK ORDER: 23Z104773

ATTENTION TO: Daniel Wall

SAMPLING SITE:Bank Street		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	1		
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
рН (2:1)	INOR 93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential 1	INOR-93-6066	modified from G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 2	INOR-93-6066	modified from G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 3	INOR-93-6066	modified from G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE

hain of Custody Reco	f d If this is a l	Drinking Water	sample, plea		10 10 10	f Custody Form (potable	e water	consum	ed by hur	nans)			Arrival Te	emperat	tures:	<u>H</u>		19. 6.4	The second second	1.
Report Information: EXP					sulatory Requered to the second secon								Custody		tact:	Yes	s		0	2
Contact: DANIEL	JALL			Rε	egulation 153/04	Regulation 406	Ĩ		ver Use				-						_	=
Address: 2650 Q+E	ens way	1 DRIV	٤	- Tat	ble	Table		∐s	anitary	Stor	m				Time	(TAT)) Req	uired		
		_		_ ']Ind/Com]Res/Park			ties.	Region				egular				to 7 Bus	iness D	ays	
Phone: Reports to be sent to: 1. Email: DANIEL. W	Fax:	e ve ci	m		Agriculture	Regulation 558	-		Water ectives (R	ush TA	T (Rush S	Surcharges	Apply)				
1. Email: DANIEL. W	ALLOY		<u> </u>	- 11	exture (Check One) Coarse	ССМЕ	-	🗌 Oth	er			-		Busine avs	SS	2 I Da	Busines ays	s [t Bus
2. Email:	and the second second				Fine				Indicate O	100		-			Require	50	-		Duj	
Project Information:	1. S. Mr. 19			Is	this submissio	on for a	R	eport	Gulde	ilne o	n						c Zi	_		
roject: 0TT - 2300		AO	1.15	Rec	cord of Site Co	Thursday reads	Ce	rtifica	te of /	Analys	sis		*7		se provid clusive c					
ite Location: BANK STRE	51			_ 0] Yes	No] Yes			0	*TAT is exclusive of weekends and statutory holiday For 'Same Day' analysis, please contact your AGAT CF								
ampled By:	P0:			-	Printer .		Q	0.	Reg 153	1			0. Reg 558		eg 406					T
Please note: If quotation number		be billed full price for	analysis.		ple Matrix Leg	gend	CrVI, DOC	1		10-1			- CBc	-F	Package	0)		- 1	15	
nvoice Information:	Bi	ill To Same: Ye	s No E		Ground Water Oil		Hg, Cr		8	19		1	In TCLI	r Lead	n Pacl	Sulphide	1			- 211
Company:	_	18 ⁻¹ 4		P	Paint	T y Stinday	Metals, I	1700	C HWSB	West .	1.74		Characterization TCLP: Cs □ABNs □B(a)P□PCB	nwater Le	Characterization Is, BTEX, F1-F4	D SL				1
Address:	E2AC T			S SD	Soil Sediment		1	ß	Ηĝ	81			aracte	SPLP Rai	aracter BTEX, F	ture	53	0 1	5	11
Email:					Surface Water		Filtered	Inorganics	V, D	Soul	_		al Chi vocs		6 Cha tals, B	□ Moisture	9		1/11	
	- CT .64				0.0000.00		Field F	& Ino		+ L-T -		oclors	III Dispoe	ulation 406 P: Metals	gulation 406 Ch ICPMS Metals,	54.1	THUR CHLOR	ULPHID	N N	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample		ments/	¥/N	etals	etal	i g	AHs	BS: A	2 4	00	- 00	orrosiv	たい	20	2	
BH 17 RZ	0 et 31/2	0.5.4	and the second sec	Rock		13'2"		-	2 0	9. 2	a 0	L E	a b	00 S	æ æ	2	X	5	N	
BH 12 RG	4	AM PM		1	33'10"	- 34 2'		2.94		1. 10		aj		- 60.		1	16.		7	
BH 14 R4	V	AM PM		V	201"-	204						-					, / ,	2	5	10.0
		AM PM		-	71 -							100								
		AM PM AM PM		-		and the second		100	_											
		PM AM PM		commentati				196	-			-			_	_	9112			
		AM PM		-		1	1.0							OCC.						
81		AM					-	N Harri										-	8	-
		AM PM				1941 C								100.						1
	a la se set	AM										0.8.		211					1	
Des Reliaguished By (Print Name and Sign):	when	Dute	IS Time	NOON	Samples Received By (Pr	int Name and Sign):					Date /2 /	10-10	Q I	21.10		_				
oles Relinquisted By (Print Name and Sign):	00-1	Date 111	20 Time	1 7 2	Samples Received By (Pr	int Name and Sign):	_		-		Date	15/2	Time	nu	2	_	Page _		of	201
		17.1151	15115	naci	locked						177/	16/23):15	4M		age -	("	-
Iples Relinquished By (Print Mame and Sign):		Date	Time	100	Samples Received By (Pri	int Name and Sign):					Oate	0/	Time	1.15	1.0	Nº:	Т	1 /	70	0

_

*exp.

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev.1 October 3, 2024

Legal Notification

This report was prepared by EXP Services for the account of Sun Life Assurance Company of Canda c/o BentallGreenOak.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc.

Project Name: Proposed Walkley Centre Development 1820-1846 Bank Street, Ottawa, Ontario OTT-23002538-B0 Final Report Rev.1 October 3, 2024

List of Distribution

Report Distributed To:

Dylan Gillingham Dylan.Gillingham@gentallgreenoak.com

Griffin Brockman Griffin.Brockman@bgo.com

[%]exp.