

The Power of Commitment

Author(s):

Nidhi Gupta

Joseph Drader, P. Eng.

Project name Nokia Property/Colliers/300 March Road										
Documen	t title	Phase Two Enviro	onmental Site Asse	essment 600 Ma	arch Road, Kanata	(Ottawa), Ontario				
Project nu	umber	12566614								
File name		12566614-RPT-3	12566614-RPT-3-Draft-Phase Two ESA							
Status	Revision	Author	Reviewer		Approved for issue					
Code			Name	Signature	Name	Signature	Date			
S3	00	Nidhi Gupta	Kevin Emenau, P.Geo.	*On File	Joseph Drader, P.Eng.	*On File	July 05-2022			
S4	01	Nidhi Gupta	Kevin Emenau, P.Geo.	Leun Emerau	Joseph Drader, P.Eng.	begh R Drade	July 19- 2022			

GHD

179 Colonnade Road South, Suite 400

Ottawa, Ontario K2E 7J4, Canada

T +1 613 727 0510 | F +1 613 727 0704 | E info-northamerica@ghd.com | ghd.com

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Executive summary								
2.	Introduction								
	2.1	2.1 Site Description							
	2.2	2.2 Property Ownership							
	2.3	Currer	nt and Proposed Future Uses	3					
	2.4	Applica	able Site Condition Standards	3					
	2.5	Limitat	tions	2					
3.	Background Information								
	3.1	Physic	cal Setting	2					
	3.2	Past Ir	nvestigations	Ę					
4.	Scope	of the li	nvestigation	(
	4.1 Media Investigated								
	4.2	Phase	One Conceptual Site Model	7					
	4.3	Deviat	tions from the Sampling and Analysis Plan	{					
	4.4	Impediments							
5.	Investigation Methods								
	5.1 General								
	5.2	Drilling and Boring Activities							
	5.3	Soil Sampling							
	5.4	4 Field Screening Measurements							
	5.5	Groun	dwater: Monitoring Well Installation	10					
	5.6	Groundwater Field Measurements of Water Quality Parameters							
	5.7	Groun	Groundwater Sampling						
	5.8	Sedim	ent Sampling	11					
	5.9	Analyt	ical Testing	11					
	5.10	Residu	ue Management Procedures	11					
	5.11	Elevat	ion Surveying	12					
	5.12	Quality	y Assurance and Quality Control Measures	12					
6.	Revie	w and Ev	valuation	12					
	6.1	Geolog	gy	12					
		6.1.1	Surface Material	13					
		6.1.2	Silty Clay to Clay	13					
		6.1.3 6.1.4	Sandy Silt to Clayey Silt Bedrock	13					
	6.2	-	dwater Elevations and Flow Direction	13 13					
	6.3		dwater Elevations and Flow Direction dwater Hydraulic Gradients	14					
	6.4		•	12					
	6.5	Soil: Field Screening Soil Quality							
	6.6		dwater Quality	14 14					
	0.0		UNIALDI SAUGILIA	1-					

	6.7	Sediment Quality	15
	6.8	Phase Two Conceptual Site Model	15
		Introduction	15
		Potential Contaminant Distribution and Transport Pathways	16
		Physical Setting	16
		Applicable Site Condition Standards	16
		Nature and Extent of Impact	16
		Potential Migration Pathways	17
		Climatic and Meteorological Conditions	17
		Vapour Intrusion	17
7.	Concl	lusions	17

Table index (following text)

Table 1	Sample Key
Table 2	Groundwater Elevations
Table 3	Summary of Soil Analysis
Table 4	Maximum Soil Parameter Concentrations
Table 5	Summary of Groundwater Analysis
Table 6	Maximum Groundwater Parameter Concentrations

Figure index (following text)

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Phase One Conceptual Site Model
Figure 4	Borehole Location Plan
Figure 5	Bedrock Groundwater Elevations and Flow Directions

Appendices

Appendix A	Borehole Logs
Appendix B	Laboratory Certificates of Analysis
Appendix C	Data Quality Assessment and Verification

1. Executive summary

GHD was retained by Nokia Canada Inc. (Nokia) to conduct a Phase Two Environmental Site Assessment (ESA) of the commercial/industrial property located at 600 March Road in Kanata (Ottawa), Ontario; the property will be hereinafter referred to as the Site or Phase Two Property. GHD previously prepared a Phase One ESA dated April 20, 2022 at the Site. The Phase One ESA and Phase Two ESA were undertaken for due diligence purposes, as well as in support of future local municipal planning department requirements associated with the proposed redevelopment of the Site. The Phase One ESA and Phase Two ESA may also be used to support the preparation of a Record of Site Condition (RSC) in accordance with Ontario Regulation (O. Reg) 153/04, as applicable.

Based on the results of the Phase One ESA (GHD, 2022), the following areas of potential environmental concerns (APECs) were identified:

- APEC #1 Adjacent Manufacturing Operations
- APEC #2 Surrounding Dry Cleaning Operations
- APEC #3 Surrounding Historic Landfill
- APEC #4 Surrounding Manufacturing Operations
- APEC #5 Site Diesel Generator/Tank Operations

The Phase Two ESA was recommended based on the APECs identified in the Phase One ESA, in order to assess the soil and groundwater quality at the Site. The Phase Two ESA field activities were completed in May 2022, and included the advancement of advancement of boreholes into the overburden and bedrock stratigraphy, installation of overburden and bedrock monitoring wells, soil field screening and groundwater monitoring, and the collection and laboratory analysis of soil and groundwater samples for testing of contaminants of potential concern (CPCs) based upon visual and olfactory observations. CPCs included metals and inorganic compounds, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and/or general chemistry parameters.

A summary of the analytical results of the soil and groundwater quality are presented below:

- Soil Quality | Based on a review of the soil analytical results, all analyzed parameters had concentrations below the Ministry of the Environment, Conservation and Parks (MECP) Table 7 Standards. No associated impacts were noted for APEC #5 (Site Diesel Generator/Tank Operations).
- Groundwater Quality | Based on a review of the groundwater analytical results, all analyzed parameters had concentrations below the MECP Table 7 Standards with the exception of a chloride exceedance at BH17-22 (northwest corner of the Site), assumed to be associated with snow plowing and road salt operations near the intersection of March Road and Terry Fox Drive. No associated impacts were noted for APEC #1 (Adjacent Manufacturing Operations), APEC #2 (Surrounding Dry Cleaning Operations), APEC #3 (Surrounding Historic Landfill), APEC #4 (Surrounding Manufacturing Operations), and APEC #5 (Site Diesel Generator/Tank Operations).
- There was no evidence of measurable NAPL during the drilling or groundwater sampling activities.

The Phase Two ESA results indicate that there are no potential impacts to soil and groundwater associated with the APECs.

Based on the May 2022 results, it is recommended that monitoring wells (including the wells deemed dry during the May 2022 investigation) in the northern half of the Property be resampled during future residential planning and when applying for a Record of Site Condition with the MECP. This recommendation is to ensure groundwater monitoring and quality data are up to date.

2. Introduction

GHD was retained by Nokia Canada Inc. (Nokia) to conduct a Phase Two Environmental Site Assessment (ESA) of the commercial/industrial property located at 600 March Road in Kanata (Ottawa), Ontario; the property will be hereinafter referred to as the Site or Phase Two Property. A Site Location Map and a Site Plan are provided on **Figure 1 and Figure 2**, respectively.

The Phase Two ESA was undertaken for due diligence purposes, as well as in support of future local municipal planning department requirements associated with the proposed redevelopment of the Site. The Phase Two ESA may also be used to support the preparation of a Record of Site Condition (RSC) in accordance with O. Reg. 153/04 – RSC, as applicable.

The objective of the Phase Two ESA was to undertake a preliminary investigation of the general soil and groundwater quality on Site and in the Areas of Potential Environmental Concern (APECs) that were identified to be associated with the Site based on the findings of the 2022 Phase One ESA completed by GHD.

2.1 Site Description

The Phase Two Property is located east of March Road, south Terry Fox Drive, and west of Legget Drive. The Phase Two Property is approximately 10.39 hectares (ha) (25.67 acres) in size and includes multiple interlinked building/tower structures (approximately 50,000 square metres [m²] of office and computer lab space), car parking (approximately 1,900 surface parking stalls), access roads and landscaped areas. The Phase Two Property is currently used for office and research/development activities. Prior to the current development, the Phase Two Property was vacant and/or used for agricultural purposes.

The Site is legally described as Part of Block 1 and Block 6 under Registered Plan 4M-642 and Part of Lots 8 and 9 under Concession 4, Geographic Township of March, City of Ottawa. The Site contains five parcels with the following property identification numbers (PINs) and descriptions:

- 04517-0813 (LT) | Block 1, Plan 4M-642, Save and Except 1, 2, and 16 on Plan 4R-12735, Kanata.
- 04517-0699 (LT) | Southeast Half of Lot 9, Concession 4, Designated as Part 4 on 4R-5753, Save and Except Parts 1, 2, and 3 on Plan 4R-11611, Kanata.
- 04517-0474 (LT) | PCL 6-1, Sec 4M-642, Block 6, PL 4M-642, Kanata.
- 04517-0467 (LT) (parking lot) | PCL 8-3, Sec March-4, PT LT 8, Con 4, Part 1, 4R10610, Kanata.
- 04517-0809 (LT) (parking lot) | Part of Lot 8 Concession 4, being Part 1 on Plan 4R-7809 except Parts 1 and 8 on Plan 4R10610 and Part 1 on Plan 4R12588, Kanata.

2.2 Property Ownership

The Site is currently owned by Nokia Canada Inc. Contact information for the client representative is listed below:

Mr. Aaron Clodd, Director, Development Management Strategy & Consulting Group Colliers181 Bay Street, Suite 1400Toronto, Ontario M5J 2V1

Phone | (905) 960-4506 Email | aaron.clodd@colliers.com

2.3 Current and Proposed Future Uses

The Site is currently used for office and research/development activities. Prior to the current development, the Phase Two Property was vacant and/or used for agricultural purposes.

GHD's understanding that Nokia intends to amend the zoning of the Phase Two Property to add additional density and uses into an integrated live/work/play community. This includes the addition of two high rise buildings for labs and offices with at least one level of parking for each building in the southern portion of the Site, with the potential to add more underground basement levels subject to the bedrock depth, along with residential towers in the central and northern portions of the Site (up to ten buildings based on current concept plans).

2.4 Applicable Site Condition Standards

Generic site condition standards are provided in the Ontario MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," dated April 15, 2011. The 2011 standards are referenced in O. Reg. 153/04 – Records of Site Condition, as amended by O. Reg. 511/09 (hereafter referred to as the 2011 MECP Standards).

The Standard provides site condition standards for certain chemicals, based on combinations of six different site-specific conditions, as follows:

- Property use type agricultural, residential/parkland/institutional, or industrial/commercial/community. The
 Property had been used for commercial/industrial land uses. The Property is planned to be redeveloped for
 further residential /parkland and commercia/industrial land use. As such, the standards for both
 residential/parkland/institutional property use and industrial/commercial/community property use were applied to
 the Site.
- Restoration of groundwater quality potable/non-potable. The Property, and all other properties located, in whole or in part, within 250 metres (m) of the boundaries of the property, are supplied by a municipal drinking water system. The Site is not in an area designated on the City of Ottawa official plan as an intake protection zone. The Site is not in an area designated on the City of Ottawa official plan as a well-head protection area (WHPA). As such, the standards for a non-potable groundwater condition are considered applicable to the Site.
- Restoration depth full depth and stratified depth. For comparative purposes, the full depth standards were applied to the Site.
- Soil texture coarse or medium to fine. Based on the results of the Phase Two ESA (presented herein), the
 predominant soil type on Site is considered to be coarse textured. As such, the standards for coarse textured
 soils were applied to the Site.
- Shallow soil property. The Site is considered to be a shallow soil property, due to less than 2 m of overburden above bedrock existing for a majority of the Site.
- Within 30 m of a water body. There are no water bodies or water courses located on the Site.

The generic 2011 MECP Standards are not applicable if the Site is considered to be an environmentally sensitive area based on the conditions presented in Section 41 of O. Reg. 153/04, as amended. Based on GHD's review, there are no Areas of Natural Scientific Interest (ANSI) or Provincially Significant Wetlands (PSW) identified by the Ministry of Natural Resources and Forestry (MNRF) within the 250 m Study Area. There are no areas designated by the municipality in its current official plan (Bylaw 2008-250-Zoning) as Environmentally Protected zoning ('EP') within the Study Area. As the Site does not contain an area of natural significance as defined by O. Reg. 153/04, and properties within 250 m of the Site limits do not contain areas of natural significance, the Site is not classified as an environmentally sensitive property (O. Reg. 153/04, s41).

Based upon the above-described assessments, the O. Reg. 153/04 Table 7: General Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition (residential/parkland/institutional and industrial/commercial/community property use; coarse-grained soil texture) is considered the applicable Site comparison.

2.5 Limitations

This report has been prepared by GHD for Nokia Canada Inc. and may only be used and relied on by Nokia Canada Inc. for the purpose agreed between GHD and Client.

GHD otherwise disclaims responsibility to any person other than Client arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

3. Background Information

3.1 Physical Setting

The Site is currently used for office and research/development activities. Prior to the current development, the Phase Two Property was vacant and/or used for agricultural purposes. The Site is approximately 10.39 ha (25.67 acres) in size and includes multiple interlinked building/tower structures (approximately 50,000 m² of office and computer lab space), car parking (approximately 1,900 surface parking stalls), access roads and landscaped areas.

Information regarding adjacent/surrounding properties within the Phase Two Study Area are noted below:

North

The Site is bound to the north by Terry Fox Drive, beyond which are the following properties:

- Wooded area (north) and strip mall property (northeast) at 700 March Road with offices (Scotia Bank, dental, optometry, and physio), stores (convenience market, barber, video games, and cleaners [no dry cleaning observed]) and restaurants (Burger King, Subway, Chinese Food, Barley Mow) to the north.
- Residential development to the north (off McKinley Drive) and to the northwest beyond intersection of March Road and Terry Fox Drive.
- Beyond the commercial property to the north is a vacant, wooded property, followed by a Shell gas station with car wash building at 720 March Road.
- Beyond wooded area to the northeast are office buildings at 360 and 362 Terry Fox Drive (Artaflex [integrated electronics services] and B.J. Kane Electric Ltd. [commercial and industrial electrical services], respectively).

West

The Site is bound to the west by March Road, beyond which are the following properties (north to south):

- Office buildings at 603 March Road and 375 Terry Fox Drive (Renesas [microcontrollers, analogue, and power devices] and TalentLab [IT Recruiters]).
- Vacant, wooded property.
- Commercial strip mall property at 591 March Road; includes following businesses: insurance, veterinary hospital, restaurants, pet grooming and supplies, spa.
- Power Muscle & Fitness (Gym) property at 555 March Road.

- Commercial property (insurance company and medicine wellness centre) at 525 March Road.
- Office building at 88 Hines Road (Telemus [electric warfare systems] and CCI Antennas [wireless equipment]).
- Office buildings at 80 and 84 Hines Road (multiple businesses at both buildings).
- Royal Canadian Legion at 70 Hines Road.
- Office buildings at 505 March Road and 50 Hines Road (multiple businesses at both buildings).

South

The Site is bound to the south by the following properties:

- Office and possible manufacturing (Sanmina Corporation Optical, RF/Microwave products) at 500 March Road (adjacent).
- Vacant, wooded property with evidence of a creek running through it at 490 March Road.
- Office building at 3001 Solandt Road (flex [electronics services]).
- Office building at 40 Hines Road (Trend Micro [cybersecurity]; across March Road to the southwest).
- Office building at 495 March Road (multiple businesses; across March Road to the southwest).

East

The Site is bound to the east by Legget Drive, beyond which are the following properties (south to north):

- Office building at 425 Legget Drive (Innovapost, Avaya, Renaissance).
- Office building at 515 Legget Drive (multiple businesses).
- Brookstreet Hotel and Conference Center at 525 Legget Drive, beyond which is a golf course and stormwater ponds.
- Office building at 535 Legget Drive (multiple businesses).
- Office buildings at 555 Legget Drive (multiple businesses).
- Office building at 359 Terry Fox Drive (multiple businesses).

Based on the 2022 GHD Phase One ESA (refer to Section 3.2):

- There are no water bodies or water courses located on the Site. Surface water ponds are located to the east of the Site (associated with a golf course), and portions of Shirley's Brook are observed in the southern portion and east-northeast boundaries of the Phase Two Study Area. The closest significant surface water body is the Ottawa River located approximately 3.2 kilometres (km) northeast of the Site.
- Based on the definition of area of natural significance provided in O. Reg. 153/04, the Site is not considered to be an area of natural significance.
- The Site is currently serviced with municipal water, sanitary sewer, and storm sewer services. A stormwater retention pond is located to the east of the Site (off-Site at golf course) that does capture Site storm water via catch basins in parking lot and driveways, as well as from other surrounding properties.
- The Property, and all other properties located, in whole or in part, within 250 m of the boundaries of the property, are supplied by a municipal drinking water system. The Site is not in an area designated on the City of Ottawa official plan as an intake protection zone. The Site is not in an area designated on the City of Ottawa official plan as a WHPA.
- GHD is not aware of any historical utility and/or water services. GHD did not observe any evidence of active or abandoned water supply wells or septic systems on the Site.

3.2 Past Investigations

The following investigations have been completed at the Site:

- "Phase One Environmental Site Assessment 600 March Road, Ottawa, Ontario", prepared by GHD, dated April 20, 2022
- "Preliminary Geotechnical Investigation and Hydrogeological Assessment", prepared by GHD, dated April 7, 2022

Information from the 2022 Phase One ESA report is referenced in Section 4.2 (Phase One Conceptual Site Model), as well as included in other sections of this report, as applicable. The Phase One Conceptual Site Model with the location of applicable APECs and potentially contaminating activities (PCAs) is presented on **Figure 3**.

Applicable information from the 2022 GHD Preliminary Geotechnical Investigation and Hydrogeological Assessment report is refericed in Section 6.

4. Scope of the Investigation

The Phase Two ESA included assessments of the soil and groundwater quality on Site. The Phase Two ESA field activities included the advancement of boreholes and installation of monitoring wells, field screening, and the collection and laboratory analysis of soil and groundwater samples as described in detail below. The data generated within GHD's investigative activities has been presented herein.

4.1 Media Investigated

Based on the APECs identified at the Site, the investigation of the soil and groundwater quality on Site included the following:

Media Type	Date	Borehole/Well, Test Hole, & Test Pit	Sample Location	Analytical Parameters	APEC Info
Soil	April 2022	S-001, S-002, S-003, S-004	Shallow Overburden	BTEX, PHC F1-F4	Exterior diesel above ground storage tank (AST) and Generator (PCA #28; APEC #5) within fenced in area surrounding generator at the Site
Groundwater	May 2022	BH01-22 BH02-22, BH11-22, BH12-22	Overburden Bedrock	Metals/Inorganics, PAHs, PHC F1-F4, VOCs	Southern Property Boundary adjacent to electronic manufacturing operations (PCA #19; APEC #1) at 500 March Road
		BH13-22, BH14-22, BH15-22, BH16-22, BH17-22	Bedrock	VOCs Metals/Inorganics, PAHs, PHC F1-F4, VOCs	Northwest Property Boundary – Operation of former dry cleaners (PCA #37; APEC #2) at 591 March Road; Historic March Landfill with associated adjacent groundwater contamination plume (PCA #58; APEC #3); and electronic manufacturing operations (PCA #19; APEC #4) at 603 March Road
		BH10-22	Bedrock	BTEX, PHC F1-F4	Exterior diesel above ground storage tank (AST) and Generator (PCA #28; APEC #5) within fenced in area surrounding generator at the Site

Notes:

BTEX - Benzene, toluene, ethylbenzene, and xylene

PAHs - Polycyclic Aromatic Hydrocarbons

PHC F1-F4 - Petroleum Hydrocarbon Fractions F1 to F4

VOCs - Volatile Organic Compounds

The borehole, monitoring well, and sampling locations are shown on Figure 4.

There are no water bodies located on the Site; therefore, surface water and sediment were not sampled during the Phase Two ESA. Soil vapour sampling was not completed as part of the Phase Two ESA.

4.2 Phase One Conceptual Site Model

The Site is located at 600 March Road in Kanata (Ottawa), Ontario, east of March Road, south of Terry Fox Drive, and west of Legget Drive. The Site is legally described as Part of Block 1 and Block 6 under Registered Plan 4M-642 and Part of Lots 8 and 9 under Concession 4, Geographic Township of March, City of Ottawa.

The Site is approximately 10.39 ha (25.67 acres) in size and includes multiple interlinked building/tower structures (approximately 50,000 m² of office and computer lab space), car parking (approximately 1,900 surface parking stalls), access roads, and landscaped areas.

The Site is currently owned by Nokia Canada Inc., and is currently used for office and research/development activities. Prior to Nokia owning/operating the Site, the following companies conducted similar operations/activities: Newbridge Networks; Alcatel; and Alcatel-Lucent. Prior to the current development, the Site was vacant and/or used for agricultural purposes.

The general topography at the Site and surrounding area is noted to be relatively flat and/or sloping east/south towards creeks associated with Shirley's Brook. There are no water bodies or water courses located on the Site. Surface water ponds are located to the east of the Site (associated with a golf course), and portions of Shirley's Brook are observed in the southern portion and east-northeast boundaries of the Site. The Ottawa River is located approximately 3.2 km northeast from the Site limits.

Based on GHD's "Preliminary Geotechnical and Hydrogeological Investigation" report (dated April 7, 2022) a Site investigation was carried out between January 28 and February 6, 2022, to provide understanding of the soil/bedrock stratigraphy and groundwater conditions at the Site. A summary of the applicable subsurface conditions is noted below:

- Topsoil (organic material with rootlets), and asphalt surfaces with granular base/subbase were observed from the surface to approximately 0.9 metres below ground surface (mBGS). Silty clay to clay deposit was encountered below topsoil or subbase material.
- Auger refusal (presumed bedrock) was encountered at depths ranging from 0.4 to 3.6 mBGS in all boreholes.
- Groundwater was not encountered in the overburden stratigraphy.
- Groundwater static water elevations in the bedrock stratigraphy ranged from 75.84 to 77.24 metres above mean sea level (mAMSL) on February 9, 2022. The estimated groundwater flow direction is likely to the south and/or east towards Shirley's Brook (actual direction could not be confirmed based on well locations and dry well conditions). It should be noted that the position of the groundwater table is subject to seasonal fluctuations and is responsive to precipitation and snowmelt events.

Based on the information reviewed and the definition of area of natural significance provided in O. Reg. 153/04, the Site is not considered an area of natural significance.

The Site is serviced with electricity provided by Hydro Ottawa, including three Hydro Ottawa rooms/vaults for main transformers (owned by Nokia). The Site is serviced with natural gas provided by Enbridge for various building operations/appliances. The Site is currently serviced with municipal water, sanitary sewer, and storm sewer services. GHD did not observe any evidence of active or abandoned water supply wells or septic systems on the Site.

Based on the results of the Phase One ESA, including the Site inspection, information provided by Site representatives and regulatory agencies, documents reviewed, and the review of Site history, the following APECs were identified to be associated with the Site.

1. **Adjacent Manufacturing Operations** | Based on review of historical documentation and Site inspection, the electronic manufacturing operations of the Sanmina Corporation on the adjacent property to the south at

- 500 March Road is identified as a PCA (#19 Electronic and Computer Equipment Manufacturing) in accordance with O. Reg. 153.04, and the southern property boundary is identified as **APEC #1**.
- 2. **Surrounding Dry Cleaning Operations** | The operation of various dry cleaners at 591 March Road to the west of the Site (across March Road) is identified as a PCA (#37 Operation of Dry Cleaning Equipment) in accordance with O. Reg. 153/04, and the northwest portion of the property boundary is identified as **APEC #2**.
- 3. Surrounding Historic Landfill | The historic March Landfill (operated from 1963 to 1974) and associated groundwater contamination (chlorinated solvents that extend approximately 1.5 km from the former landfill) located northwest and west of the Site are identified as a PCA (#58 Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners) in accordance with O. Reg. 153.04, and the northwest portion of the property boundary is identified as APEC #3.
- 4. **Surrounding Manufacturing Operations** | Newbridge Networks Corp at 603 March Road located west of the Site (across March Road) was identified in the CA database with approved/cancelled Industrial Air certificates around 1990-1991 for Exhaust Systems No. 1-5. In addition, Tundra Semiconductor Corp was identified with operations noted as "semiconductor and other electronic component manufacturing". The operations at 603 March Road are identified as a PCA (#19 Electronic and Computer Equipment Manufacturing) in accordance with O. Reg. 153.04, and the northwest property boundary is identified as **APEC #4.**
- 5. Site Diesel Generator/Tank Operations | Although no reported spills were identified by the Site Representative, due to snow covered exterior containment area and evidence of drips/staining from generator within the outbuilding (on top of flat tank), the operation of the exterior 4,540 litre AST is identified as a PCA (#28 Gasoline and Associated Products Storage in Fixed Tanks) in accordance with O. Reg. 153/04, and the fenced in area containing the generator and AST is identified as APEC #5.

The Phase One ESA Conceptual Site Model, including the location of PCAs and APECs, is depicted on **Figure 3**. Based on the results, the contaminants of concern were identified as metals/inorganics, PAHs, PHCs, VOCs, and/or BTEX.

4.3 Deviations from the Sampling and Analysis Plan

Deviations from the sampling and analysis plan occurred during the field program due to several dry wells and lack of groundwater exhibited in a few of the monitoring wells installed in May 2022. A summary of the deviations are described below:

- Monitoring wells BH13-22, BH15-22, and BH16-22 could not be sampled due to wells being dry and/or extremely limited recharge of groundwater observed at these wells.
- Metals/Inorganics and PAH parameters were removed from analysis from sample collected at BH11-22 due to limited recharge of groundwater observed at this well.

4.4 Impediments

There were no impediments encountered during the investigation.

5. Investigation Methods

5.1 General

The following investigative activities were undertaken between April 28 and May 26, 2022, and are described in detail in the following subsections:

Advancement of boreholes.

- Installation of groundwater monitoring wells.
- Collection of field screening measurements and observations.
- Collection and laboratory analysis of soil and groundwater samples.
- Groundwater field measurements of water quality parameters.
- Collection of groundwater level measurements.
- Residue management.
- Quality assurance and quality control measures.
- Elevation surveying.

The field investigation activities were completed in accordance with MECP protocols, GHD's standard operating procedures (SOPs), and standard industry practice.

Prior to completing the investigation activities undertaken by GHD, a Site-specific Health and Safety Plan (HASP) was prepared to provide specific guidelines and established procedures for the protection of personnel performing the Site investigation activities. In addition, the appropriate public utility notifications were completed and a private utility locator was retained to assist with on-Site utility clearances. Private utility locate services were completed prior to undertaking subsurface investigative activities.

5.2 Drilling and Boring Activities

As part of the Preliminary Geotechnical Investigation and Hydrogeological Assessment (GHD, April 2022) conducted at the Site between January 28 and February 2, 2022, ten boreholes BH01-22 to BH10-22 were drilled to refusal or within bedrock. Borehole BH01-22 (overburden) and boreholes BH-02-22, BH03-22, BH06-22, and BH10-22 (bedrock) were originally installed with monitor wells for groundwater level measurements and hydrogeological assessment purposes, but were later used to investigate groundwater quality conditions associated with APEC #1 and APEC #5.

On April 28, 2022, hand shoveling was used to collect soil samples (S-001 to S-004) at the existing exterior diesel AST and Generator (APEC #5) located on the Site. Soil was sampled at a depth of approximately 0.3 mBGS.

On May 11 and 12, 2022, seven boreholes (BH11-22 to BH17-22) were advanced on Site using a track-mounted drill rig, and each of the boreholes was instrumented as a monitoring well to investigate groundwater quality conditions associated with APEC #1 to #4. GHD retained Aardvark Drilling Inc. (Aardvark), a MECP licensed driller of Carleton Place, Ontario, to complete the drilling activities.

The location of the boreholes and monitoring wells are shown on **Figure 4**. Borehole and monitoring well installation details, including geological descriptions of the soil encountered, are provided in borehole logs presented in **Appendix A**. Borehole logs were not created for the four shallow soil samples (S-001 to S-004).

Prior to use and between each borehole, the drilling and sampling equipment was thoroughly cleaned using Alconox® soap and potable water rinse.

5.3 Soil Sampling

Soil samples S-001 to S-004 were collected near and around the existing exterior diesel AST and Generator (APEC #5) on Site. Soil sample collection was facilitated through the use of a stainless steel shovel. Soil samples were collected at a depth of approximately 0.3 mBGS, directly from the shallow boring. Soil samples were not collected from the drilled borehole locations

Soil samples obtained from each borehole were qualitatively and quantitatively screened for the presence of impact. Qualitative screening was based on visual and olfactory observations, while quantitative screening was based on the presence of undifferentiated VOCs in the headspace of soil samples collected as measured in the field (refer to Section 5.4 for further screening details).

Select soil samples were submitted for laboratory analysis of VOCs and PHCs. Soil samples were collected in laboratory supplied glass containers which were placed in a cooler containing ice for sample preservation. Undisturbed samples for VOC analysis were placed directly in sample containers provided by the laboratory. All soil samples were collected using the required sampling techniques in accordance with O. Reg. 153/04, including the methanol field preservation method for those soil samples being submitted for analysis of PHC F1 and VOCs. Samples were submitted to the laboratory for analysis under chain-of-custody protocol. A sample key for the submitted soil samples is presented in **Table 1**.

5.4 Field Screening Measurements

As discussed in Section 5.3, soil samples of the overburden were taken and placed into a sealable plastic bag for headspace screening. The headspace soil samples were screened for undifferentiated VOC vapour readings using a photo-ionization detector (PID). Prior to screening, the field screening equipment was inspected and calibrated according to the manufacturer's recommendations by GHD personnel.

The results of the field screening for all collected soil samples are presented in **Table 3**. PID screening results ranged from 0.0 to 0.2 parts per million (ppm) for VOC headspace readings.

5.5 Groundwater: Monitoring Well Installation

Between January and May 2022, groundwater monitoring wells were installed in twelve of the seventeen on-Site boreholes advanced as part of the geotechnical, hydrogeological, and environmental investigations. The locations of the monitoring wells are presented on **Figure 4**.

The monitoring well at BH01-22 was installed in the overburden stratigraphy, originally for geotechnical and hydrogeological assessment purposes in February 2022 (Note: BH01-22 was observed to be dry in February 2022), but later used for collection of groundwater samples for laboratory analysis in May 2022. The remaining 11 monitoring wells (BH02-22, BH03-22, BH6-22, and BH10-22 to BH17-22) were all installed/sealed in the deeper bedrock to facilitate the hydrogeological assessment in February 2022 (only BH02-22, BH03-22, BH06-22 and BH10-22; Note: BH03-22 was observed to be dry in February 2022) and collection of groundwater samples for laboratory analysis in May 2022.

The monitoring wells were constructed with a 2-inch (") (50 millimetre [mm]) diameter, Schedule 40 polyvinyl chloride (PVC) riser and No. 10 slot size well screens (either 1.5 or 3 m screen length). A silica sand pack was placed in the annular space between the PVC screen/riser pipe and the borehole to a height of at least 0.3 m above the top of the screen. A bentonite seal was placed directly above the sand pack and extended to within 0.3 m of the ground surface. To complete the installation, an expandable J-plug or a 2" PVC cap was placed on the riser pipe to protect against debris falling and/or surface runoff infiltrating into the well and a protective aboveground steel casing (flush-mount construction) with a concrete collar was placed around each well to cover the top of the riser pipe. The groundwater monitoring well construction and installation details are shown on the stratigraphic and instrumentation logs provided in **Appendix A** Monitoring wells BH01-22 to BH03-22, BH06-22, and BH10-22 were developed on February 3, 2022, and monitoring wells BH11-22 to BH17-22 were developed on May 16th to May 18th, 2022, in order to remove all residual drilling fluids and/or remove as much silt from the wells as possible. A minimum of three to five well volumes were attempted for each well, although development of BH11-22 to BH17-22 took over 3-days to complete due to the slow recharge and lack of groundwater in several of the monitoring wells. The monitoring wells were allowed to stabilize for at least 1-week prior to the completion of groundwater sampling activities.

5.6 Groundwater Field Measurements of Water Quality Parameters

In order to ensure that samples representative of on-Site groundwater conditions was obtained, each monitoring well was purged prior to groundwater sample collection using dedicated WaterraTM valves and tubing. The following protocol was generally followed at each monitoring well location during well purging activities:

- Groundwater level measurements were collected prior and subsequent to well development activities using a
 calibrated oil/water interface probe. The depth to water was measured relative to a specific reference point in the
 monitoring well. Reference and groundwater levels and elevations are presented in Table 2.
- Where WaterraTM sampling techniques were used, a minimum of three well volumes of water were purged from the monitoring well. In the event that slow groundwater recharge conditions were encountered, the well was purged until dry and then allowed to recover prior to sample collection. Field measurements of temperature, pH, turbidity, and electrical conductivity were taken using a water quality meter after each purged well volume was removed until consistent field measurements were recorded indicating that water in the well was representative of the actual groundwater conditions.
- Groundwater in the monitoring well was allowed to recover and settle prior to sample collection to reduce sediment agitation and mobilization in volatile and semi-volatile samples.

5.7 Groundwater Sampling

Groundwater samples were collected from a total of seven monitoring wells (BH01-22, BH02-22, BH10-22, BH11-22, BH12-22, BH14-22, and BH17-22) on May 17, May 25, and May 26. Refer to Section 5.6 for details on the sampling method.

Groundwater samples were collected and placed directly into laboratory-supplied sample containers specific to the analytical parameters. Groundwater samples were submitted for laboratory analysis of one or more of the following parameters: O. Reg. 153/04 metals/inorganics, PHC F₁ to F₄, VOCs, BTEX, and/or PAHs. Groundwater samples collected for metals analysis were field filtered using a 0.45 micron filter prior to sample collection. Samples were stored in coolers chilled with ice for sample preservation and submitted to the laboratory for analysis under chain-of-custody protocol. The chain-of-custody forms document the condition and handling of the samples throughout the collection, transportation, and final analysis of the samples. A sample key for the submitted groundwater samples is presented in **Table 1**.

5.8 Sediment Sampling

Sediment sampling was not completed during the Phase Two ESA as sediment was not identified as a potentially contaminated media.

5.9 Analytical Testing

Soil and groundwater samples collected during GHD's investigation were submitted to ALS Global (ALS) in Ottawa, Ontario. ALS is a member of the Standards Council of Canada (SCC) and Canadian Association of Environmental Analytical Laboratories (CAEAL). Copies of the analytical laboratory reports are provided in **Appendix B.**

5.10 Residue Management Procedures

Soil cuttings, equipment decontamination wash water and purge/well development water for GHD's investigative activities were containerized in 205-litre drums for off-Site disposal. Soil cuttings and wash water/purge/development waters are being temporarily stored on Site.

5.11 Elevation Surveying

The elevations of the boreholes were surveyed using a survey grade GPS equipment referenced to the NAD 83 UTM Zone 18 and geodetic datum, for boreholes BH01-22 to BH10-22 in February 2022. Boreholes BH11-22 to BH17-22 were surveyed in May 2022 using GPS and laser level equipment, and tying in elevations initially collected in February 2022.

5.12 Quality Assurance and Quality Control Measures

A Quality Assurance/Quality Control (QA/QC) program was implemented during the program to ensure quality data was generated. This program involved both field and laboratory QA/QC measures.

Samples were collected in laboratory supplied sampling containers with the appropriate preservative in accordance with O. Reg. 153/04, including the methanol field preservation method for those soil samples being submitted for analysis of PHC F₁ and VOCs.

Samples were submitted under chain-of-custody protocol to an analytical laboratory for chemical analysis. For quality assurance, the following was undertaken:

- Between collection of each soil and groundwater sample, GHD field personnel donned a new pair of disposable nitrile gloves.
- Prior to use and between each borehole location, the drilling and non-dedicated sampling equipment was thoroughly cleaned using Alconox® soap and potable water rinse.
- Stainless steel sampling equipment was used and cleaned using Alconox® soap and potable water rinse between each sample collection event.
- Wherever possible, dedicated sampling equipment (e.g., LDPE tubing, fittings, Ziploc® bags, etc.) was used to reduce the potential for cross contamination.
- The groundwater monitoring wells were equipped with a dedicated Waterra[™] foot valve and polyethylene tubing for well development activities.

To validate the field analysis, QA/QC trip blanks were also submitted (generally one per laboratory submission) for soil and groundwater where analysis of volatile parameters were required QC samples were also analysed by the laboratory as required by their analytical methods. A Data Quality Assessment and Verification memorandum is presented in **Appendix C**.

6. Review and Evaluation

The results of the Site investigation activities are described in the following sections.

6.1 Geology

In general, soils encountered at the borehole locations consisted of a surface layer of topsoil or asphalt pavement, overlying a fill material and discontinuous layer of native silty clay to clay, overlying sandstone bedrock with dolomite interbeds. Shallow bedrock ranging in depths of 0.4 to 1.37 mBGS was encountered in the northern and central portions of the Site and gradually increased to depths of up to 1.4 to 4.7 mBGS in the southern portion of the site boundary.

General descriptions of the subsurface conditions are summarized in the following sections, with a graphical representation of each borehole presented on borehole logs attached in **Appendix A**.

6.1.1 Surface Material

Topsoil was encountered in at boreholes BH07-22, BH09-22, and BH11-22 to BH17-22 to depths ranging from 0.6 to 0.9 mBGS and generally constituted of organic material with rootlets.

An asphalt layer with thickness of 100 mm was encountered at the ground surface at the location of boreholes BH02-22, BH03-22, BH04-22, BH05-22, BH06-22, BH08-22, and BH10-22. Granular base/subbase (fill material) encountered below the asphalt consisted of sandy silt, sandy gravel to gravelly sand, and extends to depths ranging from 0.4 to 0.9 mBGS. Fill material was also encountered at the surface in borehole BH01-22 and extends to depth of 0.6 mBGS.

6.1.2 Silty Clay to Clay

Silty clay to clay deposits were encountered below the fill or topsoil in boreholes BH01-22 to BH05-22, BH07-22, BH11-22, and BH12-22 at depth of 0.6 to 4.7 mBGS.

6.1.3 Sandy Silt to Clayey Silt

Sandy silt to clayey silt deposits were encountered below topsoil in boreholes BH13-22, BH14-22, and BH15-22 directly above bedrock. The silt deposit extended to depths ranging from 0.6 to 1.4 mBGS.

6.1.4 Bedrock

Bedrock (including presumed due to auger refusal) was encountered at depths ranging from 0.4 to 4.7 mBGS. Upon refusal on the presumed possible bedrock, boreholes BH02-22, BH03-22, BH06-22, BH07-22, and BH10-22 were extended an additional 1.6 m to 6.4 m below the refusal using HQ diamond coring methods to confirm the presence, type, and quality of bedrock. Bedrock at boreholes BH11-22 to BH17-22 were drilled an additional 3.2 to 5.2 m below refusal using air hammer methods.

Based on retrieved rock core and rock exposures, bedrock at the site consists of slightly weathered to fresh, thinly to medium bedded, light grey with yellow bands dolomitic sandstone of the Beekmantown Group per the published Paleozoic geology map.

Rock Quality Designation (RQD) values measured on the bedrock core samples generally range from 63 to 100 percent, indicating fair to excellent quality rock, except for bedrock at borehole BH10-22 where RQD value of 36 percent indicating poor quality rock is noted at depths of 3.5 to 4.0 mBGS. This low RQD value measured was due to mechanical break that occurred during the last core run of borehole BH10-22 drilling operations, resulting in loss of some of the drilled core sample.

6.2 Groundwater Elevations and Flow Direction

Groundwater level measurements were collected from the on-Site monitoring wells using a calibrated electronic oil/water interface probe (i.e., Solinst) or a Solinst water level tape. The depth to water was measured relative to a specific reference point in the monitoring well (i.e., the top of the monitoring well riser pipe). Based on the survey information of the top of riser pipe elevation, the groundwater elevation was calculated by subtracting the water level measurement from the reference point elevation. Groundwater level measurements and elevations collected on May 26, 2022 are provided in **Table 2**, with groundwater elevations, contours, and flow direction depicted on **Figure 5**.

Based on the water level measurements recorded on May 26, 2022, the direction of groundwater flow across the Site in the bedrock aquifer appears to be highly variable and heading in multiple directions. Due to lack of groundwater in portions of the overburden stratigraphy and multiple dry bedrock wells, groundwater flow may be affected by differential pathways in the bedrock aquifer. It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be

perched within fill materials or the poor bedrock. Future monitoring would determine if the flow patterns were accurate throughout the year.

There was no evidence of measurable NAPL during the drilling or groundwater sampling activities.

6.3 Groundwater Hydraulic Gradients

The hydraulic gradient would be calculated by dividing the difference in hydraulic head by the lateral distance between monitoring locations. As noted in Section 6.2, the May 26, 2022 direction of bedrock groundwater flow across the Site appeared to be highly variable and heading in multiple directions, as well as observations of limited groundwater in portions of the overburden stratigraphy and multiple dry bedrock wells. Hydraulic gradients would also be highly variable at this time, and affected by differential pathways in the bedrock aquifer and seasonal fluctuations. Future monitoring would determine if an accurate hydraulic gradient could be calculated.

Based on the hydrogeological assessment conducted in February 2022 (GHD, April 2022) and the results from single well response tests, the horizontal hydraulic conductivity (K_h) of the Beekmantown Group Formation at the Site ranges from $2.073 \times 10_{-6}$ (BH10-22) to $3.849 \times 10_{-5}$ centimetre per second (cm/sec) ($2.073 \times 10_{-4}$ to $3.849 \times 10_{-3}$ [metres per day] m/day) (geometric mean $8.93 \times 10_{-6}$ cm/sec [$8.93 \times 10_{-4}$ m/day]).

6.4 Soil: Field Screening

During the investigation, field screening of collected soil samples was undertaken for organic vapours using a MiniRAE photo-ionization detector (PID). Any visual or olfactory evidence of potential impacts was also documented. The results of the soil field screening and corresponding sample depth intervals are provided on **Table 3**.

During the drilling and groundwater sampling activities, there was no field evidence of impact identified nor evidence of light or dense non-aqueous phase liquids on the Site.

6.5 Soil Quality

Soil samples were selected for laboratory analysis around the exterior AST and diesel generator building (APEC #5) located on the Site. Surface soil samples were taken in four locations, S-001, S-002, S-003, and S-004. Five samples total were taken, comprised of four samples and one duplicate sample. All samples were taken from a depth of approximately 0.3 mBGS.

No parameters were found above MECP Table 7 Standards. During the drilling activities, there was no field evidence of impact identified nor evidence of light or dense non-aqueous phase liquids on the Site.

Laboratory analytical reports are provided in **Appendix B**. All soil analytical results are presented on **Table 3**. A summary of the maximum detected soil concentrations is presented in **Table 4**.

6.6 Groundwater Quality

Groundwater samples were collected for laboratory analysis from BH01-22, BH02-22, BH10-22, BH11-22, BH12-22, BH14-22, and BH17-22. Laboratory analytical reports are provided in **Appendix B**. All groundwater analytical results are presented on **Table 5**. A summary of the maximum detected groundwater concentrations is presented in **Table 6**. No parameters were found above MECP Table 7 Standards, with the exception of chloride concentrations in bedrock monitoring well BH17-22. This exceedance is assumed to be associated with snow plowing and road salt operations near the March Road and Terry Fox intersection.

During the groundwater sampling activities, there was no field evidence of impact identified nor evidence of light or dense non-aqueous phase liquids on the Site.

6.7 Sediment Quality

Sediment associated with water bodies was not identified as Potentially Contaminated Media on Site; therefore, sediment was not sampled during the Phase Two ESA.

6.8 Phase Two Conceptual Site Model

Introduction

The Site is located east of March Road, south of Terry Fox Drive, and west of Legget Drive. The Site is approximately 10.39 ha (25.67 acres) in size and includes multiple interlinked building/tower structures (approximately 50,000 m² of office and computer lab space), car parking (approximately 1,900 surface parking stalls), access roads, and landscaped areas.

The Site is legally described as Part of Block 1 and Block 6 under Registered Plan 4M-642 and Part of Lots 8 and 9 under Concession 4, Geographic Township of March, City of Ottawa.

The Site contains five parcels with the following property identification numbers (PINs) and descriptions:

- 04517-0813 (LT) | Block 1, Plan 4M-642, Save and Except 1, 2, and 16 on Plan 4R-12735, Kanata.
- 04517-0699 (LT) | Southeast Half of Lot 9, Concession 4, Designated as Part 4 on 4R-5753, Save and Except Parts 1, 2, and 3 on Plan 4R-11611, Kanata.
- 04517-0474 (LT) | PCL 6-1, Sec 4M-642, Block 6, PL 4M-642, Kanata.
- 04517-0467 (LT) (parking lot) | PCL 8-3, Sec March-4, PT LT 8, Con 4, Part 1, 4R10610, Kanata.
- 04517-0809 (LT) (parking lot) | Part of Lot 8 Concession 4, being Part 1 on Plan 4R-7809 except Parts 1 and 8 on Plan 4R10610 and Part 1 on Plan 4R12588, Kanata.

The Site is currently used for office and research/development activities. Prior to the current development, the Site was vacant and/or used for agricultural purposes.

It is GHD's understanding that Nokia intends to amend the zoning of the Site to add additional density and uses into an integrated live/work/play community. This includes the addition of two high rise buildings for labs and offices with at least one level of parking for each building in the southern portion of the Site, with the potential to add more underground basement levels subject to the bedrock depth, along with residential towers in the central and northern portions of the Site (up to ten buildings based on current concept plans).

The Phase Two ESA was undertaken for due diligence purposes, as well as in support of future local municipal planning department requirements associated with the proposed redevelopment of the Site. The Phase One ESA may also be used to support the preparation of a Record of Site Condition (RSC) in accordance with O. Reg. 153/04 - RSC, as applicable.

The objective of the Phase Two ESA was to undertake a preliminary investigation of the general soil and groundwater quality on Site and in the APECs that were identified to be associated with the Site based on the findings of the 2022 Phase One ESA completed by GHD.

Based on the results of the Phase One ESA (GHD, 2022), the following APECs were identified:

- APEC #1 Adjacent Manufacturing Operations
- APEC #2 Surrounding Dry Cleaning Operations
- APEC #3 Surrounding Historic Landfill
- APEC #4 Surrounding Manufacturing Operations
- APEC #5 Site Diesel Generator/Tank Operations

The Phase Two ESA activities included the advancement of boreholes, installation of monitoring wells, field screening, and the collection and laboratory analysis of soil and groundwater samples.

Potential Contaminant Distribution and Transport Pathways

GHD did not observe any evidence of active or abandoned water supply wells or septic systems on the Site. A stormwater retention pond is located to the east of the Site (off-Site at golf course) that does capture Site storm water via catchbasins in parking lot and driveways, as well as from other surrounding properties. The Site is serviced with electricity provided by Hydro Ottawa, including three Hydro Ottawa rooms/vaults for main transformers (owned by Nokia). The buildings are heated by electric forced air, radiant, and baseboard heaters. The Site is serviced with natural gas provided by Enbridge for humidification units, kitchen appliances, and water heaters.

Based on the historical information reviewed, subsurface structures and utilities that may affect contaminant distribution and transport on Site included the following (which date back to the early development of the Site): utility backfill trenches, and abandoned utility conduits.

Physical Setting

The general topography in the Phase Two Study area is noted to be relatively flat and/or sloping east/south towards creeks associated with Shirley's Brook. The Ottawa River is located approximately 3.2 km northeast from the Site limits.

Geology | In general, soils encountered at the borehole locations consisted of a surface layer of topsoil or asphalt pavement, overlying a fill material and discontinuous layer of native silty clay to clay, overlying sandstone bedrock with dolomite interbeds.

Hydrogeology | Based on the water level measurements recorded on May 26, 2022, the direction of groundwater flow across the Site in the bedrock aquifer appears to be highly variable and heading in multiple directions. Due to lack of groundwater in portions of the overburden stratigraphy and multiple dry bedrock wells, groundwater flow may be affected by differential pathways in the bedrock aquifer. It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within fill materials or the poor bedrock. Future monitoring would determine if the flow patterns were accurate throughout the year.

Applicable Site Condition Standards

The soil and groundwater analytical results were assessed to the MECP Table 7 Standards for Residential/Parkland/Institutional and Industrial/Commercial/Community property uses for a non-potable groundwater for coarse textured soils.

Nature and Extent of Impact

The soil and groundwater quality investigations included the advancement of boreholes and the instrumentation of the boreholes as groundwater monitoring wells. The investigative locations are shown on **Figure 4**. A summary of the analytical results is presented below.

Soil Quality | Based on a review of the soil analytical results, all analyzed parameters had concentrations below the MECP Table 7 Standards. No associated impacts were noted for APEC #5 (Site Diesel Generator/Tank Operations).

Groundwater Quality | Based on a review of the groundwater analytical results, all analyzed parameters had concentrations below the MECP Table 7 Standards with the exception of a chloride exceedance at BH17-22 (northwest corner of the Site), assumed to be associated with snow plowing and road salt operations near the intersection of March Road and Terry Fox Drive. No associated impacts were noted for APEC #1 (Adjacent Manufacturing Operations), APEC #2 (Surrounding Dry Cleaning Operations), APEC #3 (Surrounding Historic Landfill), APEC #4 (Surrounding Manufacturing Operations), and APEC #5 (Site Diesel Generator/Tank Operations).

There was no evidence of measurable NAPL during the drilling or groundwater sampling activities.

As described in the Phase One ESA, five APECs were identified for the Site. The Phase Two ESA results indicate that there are no potential impacts to soil and groundwater associated with the APECs.

Potential Migration Pathways

No preferential migration pathways were identified associated with the results observed.

Climatic and Meteorological Conditions

The effect of climatic or meteorological conditions (such as the fluctuation of the groundwater table) on the distribution and migration of the contaminants on Site is not considered to be significant.

Vapour Intrusion

There are no vapour intrusion concerns associated with the Site.

7. Conclusions

The objective of the Phase Two ESA activities were to undertake investigations of the general soil and groundwater quality on Site and in the APECs that were identified to be associated with the Site. The Phase Two ESAs included the advancement of boreholes, installation of monitoring wells, field screening, and the collection and laboratory analysis of soil and groundwater samples. Based on the findings of the Phase Two ESA, the following conclusions are provided:

- All analyzed soil parameters had concentrations below the MECP Table 7 Standards. No associated impacts were noted for APEC #5 (Site Diesel Generator/Tank Operations).
- All analyzed groundwater parameters had concentrations below the MECP Table 7 Standards with the exception of a chloride exceedance at BH17-22 (northwest corner of the Site), assumed to be associated with snow plowing and road salt operations near the intersection of March Road and Terry Fox Drive. No associated impacts were noted for APEC #1 (Adjacent Manufacturing Operations), APEC #2 (Surrounding Dry Cleaning Operations), APEC #3 (Surrounding Historic Landfill), APEC #4 (Surrounding Manufacturing Operations), and APEC #5 (Site Diesel Generator/Tank Operations).
- There was no evidence of measurable NAPL during the drilling or groundwater sampling activities.

The Phase Two ESA results indicate that there are no potential impacts to soil and groundwater associated with the APECs.

Based on the May 2022 results, it is recommended that monitoring wells (including the wells deemed dry during the May 2022 investigation) in the northern half of the Property be resampled during future residential planning and when applying for a Record of Site Condition with the MECP. This recommendation is to ensure groundwater monitoring and quality data are up to date.

Tables

Table 1 Page 1 of 1

Sample Key Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Sample Identification	Monitoring Location	Sampling Date	Sample Parameters
Soil Samples			
S-12566614-042822-DA-001	SS-001	April 28, 2022	BTEX, PHCs
S-12566614-042822-DA-002	SS-002	April 28, 2022	BTEX, PHCs
S-12566614-042822-DA-003	SS-003	April 28, 2022	BTEX, PHCs
S-12566614-042822-DA-004	SS-003 (duplicate)	April 28, 2022	BTEX, PHCs
S-12566614-042822-DA-005	SS-004	April 28, 2022	BTEX, PHCs
Groundwater Samples			
GW-12566614-051722-NG-001	BH01-22	May 17, 2022	Metals/Inorganics, PAHs, PHCs, VOCs
GW-12566614-051722-NG-002	BH02-22	May 17, 2022	Metals/Inorganics, PAHs, PHCs, VOCs
GW-12566614-051722-NG-003	BH10-22	May 17, 2022	PHCs/BTEX
GW-12566614-051722-NG-004	BH02-22 (duplicate)	May 17, 2022	Metals/Inorganics, PAHs, PHCs, VOCs
GW-12566614-052522-NG-005	BH12-22	May 25, 2022	Metals/Inorganics, PAHs, PHCs, VOCs
GW-12566614-052622-NG-006	BH17-22	May 26, 2022	Metals/Inorganics, PAHs, PHCs, VOCs
GW-12566614-052622-NG-007	BH14-22	May 26, 2022	VOCs
GW-12566614-052622-NG-008	BH11-22	May 26, 2022	Metals/Inorganics, PHCs, VOCs

Notes:

BTEX - Benzene, toluene, ethylbenzene, and xylene

PAHs – Polycyclic Aromatic Hydrocarbons

PHC – Petroleum Hydrocarbon Fractions F1 to F4

VOCs – Volatile Organic Compounds

Table 2 Page 1 of 1

Groundwater Elevations Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Well Identification	Grade Elevation (mAMSL)	Well Riser Elevation (mAMSL)	Well Bottom Depth (mBGS)	Well Bottom Elevation (mAMSL)	Static Water Level May 26, 2022 (mBTOR)	Static Water Elevation May 26, 2022 (mAMSL)
BH01-22 (Overburden)	80.18	80.06	3.42	76.75	2.45	77.61
BH02-22	79.72	79.65	8.38	71.33	3.14	76.51
BH03-22	80.71	80.61	2.82	77.88	0.92	79.68
BH06-22	79.61	79.51	3.39	76.22	2.74	76.78
BH10-22	80.43	80.39	3.85	76.58	2.53	77.86
BH11-22	80.21	80.12	8.17	72.04	5.93	74.19
BH12-22	79.60	79.49	7.70	71.90	2.05	77.44
BH13-22	81.95	81.83	6.01	75.94	NA (dry)	NA (dry)
BH14-22	82.19	82.12	6.00	76.20	3.57	78.55
BH15-22	81.94	81.88	6.05	75.89	NA (dry)	NA (dry)
BH16-22	81.49	81.44	6.35	75.14	NA (dry)	NA (dry)
BH17-22	81.48	81.41	5.71	75.77	5.36	76.05

Notes:

mAMSL - metres above mean sea level

mBGS - metres below ground surface

mBTOR - metres below top of riser

NA - not applicable

Summary of Soil Analysis Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Sample Location: Sample ID: Sample Date: Sample Depth: Sample Type: PID Readings (ppm):		MECP Table 7		SS-001 S-12566614-0428-DA-001 4/28/2022 0.30 mbgs Original 0.0	SS-002 S-12566614-0428-DA-002 4/28/2022 0.30 mbgs Original 0.1	SS-003 S-12566614-0428-DA-003 4/28/2022 0.30 mbgs Original 0.2	SS-003 S-12566614-0428-DA-004 4/28/2022 0.30 mbgs Duplicate of SS-003 0.2	SS-004 S-12566614-0428-DA-005 4/28/2022 0.30 mbgs Original 0.1
Parameters	Units	Residential	Industrial/ Commercial					
Volatile Organic Compounds								
Benzene	ug/g	0.21	0.32	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Ethylbenzene	ug/g	2	9.5	<0.018	<0.018	<0.018	<0.018	<0.018
Toluene	ug/g	2.3	68	<0.080	<0.080	<0.080	<0.080	<0.080
Xylenes (Total)	ug/g	3.1	26	<0.050	<0.19	<0.050	<0.050	<0.050
Petroleum Hydrocarbons Fractions								
PHC F1 (C6-C10)	ug/g	55	55	<5.0	<5.0	<5.0	<5.0	<5.0
PHC F2 (C10-C16)	ug/g	98	230	<10.0	<10.0	<10.0	<10.0	<10.0
PHC F3 (C16-C34)	ug/g	300	1700	<50.0	<50.0	<50.0	<50.0	<50.0
PHC F4 (C34-C50)	ug/g	2800	3300	<50.0	<50.0	<50.0	<50.0	<50.0

Notes:

m bgs - metres below ground surface

PID - Photoionization Detector (parts per million (PPM))

μg/g - microgram per gram

< 0.0068 - Not detected at the associated detection limit

Bold/Border - Detected concentration exceeds the associated MECP Table 7 Standard

⁽¹⁾ MECP Table 7: Full Depth Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition (coarse textured soil).

Table 4 Page 1 of 1

Maximum Soil Parameter Concentrations Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Parameters	Units	MECP Table 7 Residential	MECP Table 7 Industrial/ Commercial	Maximum Soil Concentration	Sample Identification	Sample Depth (mBGS)
Volatile Organic Compounds						
Benzene	ug/g	0.21	0.32	ND(0.0068)	ALL	0.3
Ethylbenzene	ug/g	2	9.5	ND(0.018)	ALL	0.3
Toluene	ug/g	2.3	68	ND(0.080)	ALL	0.3
Xylenes (Total)	ug/g	3.1	26	ND(0.05)	ALL	0.3
Petroleum Hydrocarbons Fractions						
PHC F1 (C6-C10)	ug/g	55	55	ND(5.0)	ALL	0.3
PHC F2 (C10-C16)	ug/g	98	230	ND(10.0)	ALL	0.3
PHC F3 (C16-C34)	ug/g	300	1700	ND(50.0)	ALL	0.3
PHC F4 (C34-C50)	ug/g	2800	3300	ND(50.0)	ALL	0.3

Notes:

mBGS - metres below ground surface

μg/g - microgram per gram

ND (0.020) - Not detected at the associated method detection limit

Bold/Border - Detected concentration exceeds the associated MECP Table 7 Standard

⁽¹⁾ MECP Table 7: Full Depth Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition (coarse textured soil).

Summary of Groundwater Analysis Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Sample Location: Sample ID: Sample Date: Sample Type: Stratigraphy		MECP	BH01-22 GW-12566614-051722-NG-001 5/17/2022 Original Overburden	BH02-22 GW-12566614-051722-NG-002 5/17/2022 Original Bedrock	BH10-22 GW-12566614-051722-NG-003 5/17/2022 Original Bedrock	BH02-22 GW-12566614-051722-NG-004 5/17/2022 Duplicate Bedrock	BH12-22 GW-12566614-052522-NG-005 5/25/2022 Original Bedrock	BH17-22 GW-12566614-052622-NG-006 5/26/2022 Original Bedrock	BH14-22 GW-12566614-052622-NG-007 5/25/2022 Original Bedrock	BH11-22 GW-12566614-052622-NG-008 5/26/2022 Original Bedrock
Parameters	Units	Table 7 All Property Types								
Physical Tests										
Conductivity	mS/cm		2.3	3.42		3.39	2.9	7.76		
pН	-		8.11	7.76	-	7.75	7.54	7.84		
Aniono and Nutrienta										
Anions and Nutrients Chloride	ug/L	1800000	620000	896000		858000	749000	2820000		
Chloride	ug/L	1000000	020000	890000	_	838666	749000	2020000	-	-
Cyanides										
Cyanide	ug/L	52	<2.0	<2.0		<2.0	<2.0	<2.0		<2.0
Dissolved Metals		40000	14.00	-14.00		-14.00	44.00	-1.00		44.00
Antimony Arsenic	ug/L	16000 1500	<1.00 <1.00	<1.00 <1.00	- 	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00		<1.00 <1.00
Barium	ug/L ug/L	23000	244	216	 	209	129	573	 	473
Beryllium	ug/L	53	<0.200	<0.200		<0.200	<0.200	<0.200		<0.200
Boron	ug/L	36000	<100	<100	_	<100	<100	<100		<100
Cadmium	ug/L	2.1	<0.0500	<0.0500		<0.0500	<0.0500	0.0799		<0.0500
Chromium	ug/L	640	<5.00	<5.00	-	<5.00	<5.00	<5.00		<5.00
Cobalt	ug/L	52	<1.00	<1.00		<1.00	1.46	1.23		2.78
Copper	ug/L	69	<2.00	<2.00	-	<2.00	<2.00	3.75		<2.00
Lead Mercury	ug/L ug/L	20 0.1	<0.500 <0.0050	<0.500 <0.0050	- 	<0.500 <0.0050	<0.500 <0.0050	<0.500 <0.0050	 	<0.500 <0.0050
Molybdenum	ug/L	7300	2.39	1.47	-	1.49	7.98	6.93	 	17.4
Nickel	ug/L	390	<5.00	<5.00	-	<5.00	5.87	<5.00		9.96
Selenium	ug/L	50	<0.500	<0.500	-	<0.500	0.914	0.745		0.701
Silver	ug/L	1.2	<0.100	<0.100	-	<0.100	<0.100	<0.100		<0.100
Sodium	ug/L	1800000	236000	405000	-	415000	336000	1570000		381000
Thallium	ug/L	400	<0.100	<0.100	-	<0.100	<0.100	<0.100		<0.100
Uranium Vanadium	ug/L	330 200	4.53 <5.00	2.18 <5.00	-	2.2 <5.00	10.4 <5.00	10.3 <5.00		5.51 <5.00
Zinc	ug/L ug/L	890	<10.0	<10.0	- -	<10.0	<10.0	<10.0		<10.0
Hexavalent Chromium	ug/L	110	<0.50	<0.50	-	<0.50	<0.50	<0.50		<0.50
	Ü									
Volatile Organic Compounds										
Acetone	ug/L	100000	<20	<20		<20	<20	<20	<20	<20
Benzene	ug/L	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane Bromoform	ug/L ug/L	67000 5	<0.50 <0.50	<0.50 <0.50	- -	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50
Bromomethane	ug/L	0.89	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	_	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/L	140	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Chloroform	ug/L	2	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Dibromochloromethane	ug/L	65000	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dibromoethane	ug/L	0.2	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/L	150 7600	<0.50 <0.50	<0.50 <0.50	-	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50
1,4-Dichlorobenzene	ug/L ug/L	0.5	<0.50 <0.50	<0.50	_ _	<0.50	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	ug/L ug/L	3500	<0.50	<0.50	 	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethane	ug/L	11	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichloroethane	ug/L	0.5	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/L	0.5	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50

Summary of Groundwater Analysis Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Sample Location: Sample ID: Sample Date: Sample Type: Stratigraphy		MEOD	BH01-22 GW-12566614-051722-NG-001 5/17/2022 Original Overburden	BH02-22 GW-12566614-051722-NG-002 5/17/2022 Original Bedrock	BH10-22 GW-12566614-051722-NG-003 5/17/2022 Original Bedrock	BH02-22 GW-12566614-051722-NG-004 5/17/2022 Duplicate Bedrock	BH12-22 GW-12566614-052522-NG-005 5/25/2022 Original Bedrock	BH17-22 GW-12566614-052622-NG-006 5/26/2022 Original Bedrock	BH14-22 GW-12566614-052622-NG-007 5/25/2022 Original Bedrock	BH11-22 GW-12566614-052622-NG-008 5/26/2022 Original Bedrock
Parameters	Units	MECP Table 7 All Property Types								
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Dichloromethane	ug/L		<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	ug/L	0.58	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
cis+trans-1,3-Dichloropropylene cis-1,3-Dichloropropylene	ug/L	0.5 	<0.50 <0.30	<0.50 <0.30	 	<0.50 <0.30	<0.50 <0.30	<0.50 <0.30	<0.50 <0.30	<0.50 <0.30
trans-1,3-Dichloropropylene	ug/L ug/L	 	<0.30	<0.30		<0.30	<0.30	<0.30	<0.30	<0.30
Ethylbenzene	ug/L	54	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Hexane (n)	ug/L	5	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Ethyl Ketone [MEK]	ug/L	21000	<20	<20		<20	<20	<20	<20	<20
Methyl Isobutyl Ketone [MIBK]	ug/L	5200	<20	<20		<20	<20	<20	<20	<20
Methyl-Tert-Butyl Ether [MTBE]	ug/L	15	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	ug/L	43	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene Toluene	ug/L ug/L	0.5 320	<0.50 <0.50	<0.50 <0.50	 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50
1,1,1-Trichloroethane	ug/L ug/L	23	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	ug/L	0.5	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	ug/L	2000	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Vinyl Chloride	ug/L	0.5	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
m+p-Xylene	ug/L		<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
o-Xylene	ug/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Total Xylenes	ug/L	72	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Hydrocarbons										
F1 (C6-C10)	ug/L	420	<25	<25	<25	<25	<25	<25		<25
F1-BTEX	ug/L	420	<25	<25	<25	<25	<25	<25		<u></u>
F2 (C10-C16)	ug/L	150	<100	<100	<100	<100	<100	<100		
F2-naphthalene	ug/L		<100	<100		<100				
F3 (C16-C34)	ug/L	500	<250	<250	280	<250	<250	<250		
F3-PAH	ug/L		<250	<250		<250				
F4 (C34-C50)	ug/L	500	<250 <370	<250 <370	<250 <370	<250 <370	<250 <370	<250 <370		
Total Hydrocarbons (C6-C50)	ug/L		<370	<370	<370	<370	<370	<370		
Polycyclic Aromatic Hydrocarb	ons									
Acenaphthene	ug/L	17	<0.010	<0.010		<0.010	0.013	0.045		
Acenaphthylene	ug/L	1	<0.010	<0.010		<0.010	<0.010	<0.010		
Anthracene	ug/L	1	<0.010	<0.010		<0.010	0.04	0.018		
Benz(a)anthracene	ug/L	1.8	<0.010	<0.010		<0.010	<0.010	<0.010		
Benzo(a)pyrene	ug/L	0.81	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050		
Benzo(b+j)fluoranthene	ug/L	0.75	<0.010	<0.010		<0.010	<0.010	<0.010		
Benzo(g,h,i)perylene	ug/L	0.2 0.4	<0.010 <0.010	<0.010 <0.010	-	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010		-
Benzo(k)fluoranthene Chrysene	ug/L ug/L	0.4 0.7	<0.010 0.016	<0.010	 	<0.010	<0.010 0.012	<0.010 <0.010	 	
Dibenz(a,h)anthracene	ug/L ug/L	0.7	<0.0050	<0.010	 	<0.0050	<0.0050	<0.010	 	
Fluoranthene	ug/L	44	0.034	<0.010	 	<0.010	0.117	0.048		
Fluorene	ug/L	290	<0.010	<0.010		<0.010	0.043	0.074		
Indeno(1,2,3-c,d)pyrene	ug/L	0.2	<0.010	<0.010		<0.010	<0.010	<0.010		
1+2-Methylnaphthalene	ug/L	1500	0.015	<0.015		<0.015	0.064	0.224		
1-Methylnaphthalene	ug/L	1500	<0.010	<0.010		<0.010	0.024	0.144		
2-Methylnaphthalene	ug/L	1500	0.015	<0.010		<0.010	0.04	0.08		

Page 3 of 3

Summary of Groundwater Analysis Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Table 5

Sample Location: Sample ID: Sample Date: Sample Type: Stratigraphy Parameters	Units	MECP Table 7 All Property Types	BH01-22 GW-12566614-051722-NG-001 5/17/2022 Original Overburden	BH02-22 GW-12566614-051722-NG-002 5/17/2022 Original Bedrock	BH10-22 GW-12566614-051722-NG-003 5/17/2022 Original Bedrock	BH02-22 GW-12566614-051722-NG-004 5/17/2022 Duplicate Bedrock	BH12-22 GW-12566614-052522-NG-005 5/25/2022 Original Bedrock	BH17-22 GW-12566614-052622-NG-006 5/26/2022 Original Bedrock	BH14-22 GW-12566614-052622-NG-007 5/25/2022 Original Bedrock	BH11-22 GW-12566614-052622-NG-008 5/26/2022 Original Bedrock
Naphthalene	ug/L	7	<0.050	<0.050		<0.050	<0.050	<0.050		
Phenanthrene	ug/L	380	<0.020	<0.020		<0.020	0.486	0.638		
Pyrene	ug/L	5.7	0.019	<0.010		<0.010	0.108	0.1		

Notes:

μg/L - microgram per litre

<0.0068 - Not detected at the associated detection limit

Bold/Border - Detected concentration exceeds the associated MECP Table 7 Standard

⁽¹⁾ MECP Table 7: Full Depth Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition.

Table 6 Page 1 of 2

Maximum Groundwater Parameter Concentrations Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Parameters	Units	MECP Table 7 All Property Types	Maximum GW Concentration	Sample Identification
Physical Tests				
Conductivity	mS/cm		7.76	BH17-22
рН	-		8.11	BH01-22
Anions and Nutrients				
Chloride	ug/L	1800000	2820000	BH17-22
Cyanides				
Cyanide	ug/L	52	<2.0	ALL
- Cyamac	ug/ L	02	2.0	,
Dissolved Metals				
Antimony	ug/L	16000	ND(1.0)	ALL
Arsenic	ug/L	1500	ND(1.0)	ALL
Barium	ug/L	23000	573	BH17-22
Beryllium	ug/L	53	ND(0.200)	ALL
Boron	ug/L	36000	ND(100)	ALL
Cadmium	ug/L	2.1	0.799	BH17-22
Chromium	ug/L	640	ND(5.0)	ALL
Cobalt	ug/L	52	2.78	BH11-22
Copper	ug/L	69	3.75	BH17-22
Lead	ug/L	20	ND(0.500)	ALL
Mercury	ug/L	0.1	ND(0.0050)	ALL
Molybdenum	ug/L	7300	17.4	BH11-22
Nickel	ug/L	390	9.96	BH11-22
Selenium	ug/L	50	0.914 ND(0.400)	BH12-22
Silver	ug/L	1.2	ND(0.100)	ALL
Sodium Thallium	ug/L	1800000	1570000 ND(0.100)	BH17-22 ALL
Uranium	ug/L	400 330	ND(0.100) 10.4	BH12-22
Vanadium	ug/L ug/L	200	ND(5.0)	ALL
Zinc	ug/L ug/L	890	ND(10.0)	ALL
Hexavalent Chromium	ug/L	110	ND(0.50)	ALL
ricxavaicht omomium	ug/L	110	140(0.00)	ALL
Volatile Organic Compounds				
Acetone	ug/L	100000	ND(0.20)	ALL
Benzene	ug/L	0.5	ND(0.50)	ALL
Bromodichloromethane	ug/L	67000	ND(0.50)	ALL
Bromoform	ug/L	5	ND(0.50)	ALL
Bromomethane	ug/L	0.89	ND(0.50)	ALL
Carbon Tetrachloride	ug/L	0.2	ND(0.20)	ALL
Chlorobenzene	ug/L	140	ND(0.50)	ALL
Chloroform	ug/L	2	ND(0.50)	ALL
Dibromochloromethane	ug/L	65000	ND(0.50)	ALL
1,2-Dibromoethane	ug/L	0.2	ND(0.20)	ALL
1,2-Dichlorobenzene	ug/L	150	ND(0.50)	ALL
1,3-Dichlorobenzene	ug/L	7600	ND(0.50)	ALL
1,4-Dichlorobenzene	ug/L	0.5	ND(0.50)	ALL
Dichlorodifluoromethane	ug/L	3500	ND(0.50)	ALL
1,1-Dichloroethane	ug/L	11	ND(0.50)	ALL
1,2-Dichloroethane 1,1-Dichloroethylene	ug/L	0.5 0.5	ND(0.50) ND(0.50)	ALL ALL
cis-1,2-Dichloroethylene	ug/L ug/L	1.6	ND(0.50) ND(0.50)	ALL
trans-1,2-Dichloroethylene	ug/L ug/L	1.6	ND(0.50) ND(0.50)	ALL
Dichloromethane	ug/L ug/L	1.0	ND(1.0)	ALL
1,2-Dichloropropane	ug/L ug/L	0.58	ND(0.50)	ALL
cis+trans-1,3-Dichloropropylene	ug/L	0.5	ND(0.50)	ALL
cis-1,3-Dichloropropylene	ug/L		ND(0.30)	ALL
trans-1,3-Dichloropropylene	ug/L		ND(0.30)	ALL
Ethylbenzene	ug/L	54	ND(0.50)	ALL
,,	g-	٠.	(3.00)	

Table 6 Page 2 of 2

Maximum Groundwater Parameter Concentrations Phase Two Environmental Site Assessment 600 March Road, Ottawa, Ontario

Parameters	Units	MECP Table 7 All Property Types	Maximum GW Concentration	Sample Identification
Hexane (n)	ug/L	5	ND(0.50)	ALL
Methyl Ethyl Ketone [MEK]	ug/L	21000	ND(20)	ALL
Methyl Isobutyl Ketone [MIBK]	ug/L	5200	ND(20)	ALL
Methyl-Tert-Butyl Ether [MTBE]	ug/L	15	ND(0.50)	ALL
Styrene	ug/L	43	ND(0.50)	ALL
1,1,1,2-Tetrachloroethane	ug/L	1.1	ND(0.50)	ALL
1,1,2,2-Tetrachloroethane	ug/L	0.5	ND(0.50)	ALL
Tetrachloroethylene	ug/L	0.5	ND(0.50)	ALL
Toluene	ug/L	320	ND(0.50)	ALL
1,1,1-Trichloroethane	ug/L	23	ND(0.50)	ALL
1,1,2-Trichloroethane	ug/L	0.5	ND(0.50)	ALL
Trichloroethylene	ug/L	0.5	ND(0.50)	ALL
Trichlorofluoromethane	ug/L	2000	ND(0.50)	ALL
Vinyl Chloride	ug/L	0.5	ND(0.50)	ALL
m+p-Xylene	ug/L		ND(0.40)	ALL
o-Xylene	ug/L		ND(0.30)	ALL
Total Xylenes	ug/L	72	ND(0.50)	ALL
Total BTEX	ug/L		ND(1.0)	ALL
Hydrocarbons				
F1 (C6-C10)	ug/L	420	ND(25)	ALL
F1-BTEX	ug/L	420	ND(25)	ALL
F2 (C10-C16)	ug/L	150	ND(100)	ALL
F2-naphthalene	ug/L		ND(100)	ALL
F3 (C16-C34)	ug/L	500	280	BH10-22
F3-PAH	ug/L		ND(250)	ALL
F4 (C34-C50)	ug/L	500	ND(250)	ALL
Total Hydrocarbons (C6-C50)	ug/L		ND(370)	ALL
Polycyclic Aromatic Hydrocarbons		47	0.045	DI 14.7.00
Acenaphthylene	ug/L	17	0.045	BH17-22
Acenaphthylene Anthracene	ug/L	1 1	ND(0.010) 0.04	ALL BH12-22
	ug/L	1.8	ND(0.010)	ALL
Benz(a)anthracene Benzo(a)pyrene	ug/L ug/L	0.81	ND(0.010)	ALL
Benzo(b+j)fluoranthene	ug/L ug/L	0.75	ND(0.0030)	ALL
Benzo(g,h,i)perylene	ug/L ug/L	0.73	ND(0.010)	ALL
Benzo(k)fluoranthene	ug/L	0.4	ND(0.010)	ALL
Chrysene	ug/L ug/L	0.7	0.016	BH01-22
Dibenz(a,h)anthracene	ug/L	0.4	ND(0.0050)	ALL
Fluoranthene	ug/L	44	0.117	BH12-22
Fluorene	ug/L	290	0.074	BH17-22
Indeno(1,2,3-c,d)pyrene	ug/L	0.2	ND(0.010)	ALL
1+2-Methylnaphthalene	ug/L	1500	0.224	BH17-22
1-Methylnaphthalene	ug/L	1500	0.144	BH17-22
2-Methylnaphthalene	ug/L	1500	0.08	BH17-22
Naphthalene	ug/L	7	ND(0.050)	ALL
Phenanthrene	ug/L	380	0.638	BH17-22
Pyrene	ug/L	5.7	0.108	BH12-22
•	•			

Notes:

μg/L - microgram per litre

ND (0.020) - Not detected at the associated method detection limit

Bold/Border - Detected concentration exceeds the associated MECP Table 7 Standard

⁽¹⁾ MECP Table 7: Full Depth Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition.

Figures

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 18N

GHD

NOKIA CANADA INC. 600 MARCH ROAD, KANATA (OTTAWA), ONTARIO PHASE TWO ENVIRONMENTAL SITE ASSESSMENT Project No. 12566614
Revision No. -

Date Jun 20, 2022

SITE LOCATION MAP

FIGURE 1

Appendices

Appendix A Borehole Logs

Notes on Borehole and Test Pit Reports

Soil description:

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	n (Unified sys	stem)
Clay	< 0.002 mm		
Silt	0.002 to 0.075 mm		
Sand	0.075 to 4.75 mm	fine medium coarse	0.075 to 4.25 mm 0.425 to 2.0 mm 2.0 to 4.75 mm
Gravel	4.75 to 75 mm	fine coarse	4.75 to 19 mm 19 to 75 mm
Cobbles Boulders	75 to 300 mm >300 mm		

Relative density of granular soils	Standard penetration index "N" value
	(BLOWS/ft – 300 mm)
Very loose	0-4
Loose	4-10
Compact	10-30
Dense	30-50
Very dense	>50

Rock qu	ıality designation
"RQD" (%) Value	Quality
<25	Very poor
25-50	Poor
50-75	Fair
75-90	Good
>90	Excellent

Terminology		
"trace" "some"	1-10% 10-20%	
adjective (silty, sandy) "and"	20-35% 35-50%	

Consistency of cohesive soils	Undrained strength	
	(P.S.F)	(kPa)
Very soft	<250	<12
Soft	250-500	12-25
Firm	500-1000	25-50
Stiff	1000-2000	50-100
Very stiff	2000-4000	100-200
Hard	>4000	>200

Samples:

Type and Number

The type of sample recovered is shown on the log by the abbreviation listed hereafter. The numbering of samples is sequential for each type of sample.

SS: Split spoon ST: Shelby tube AG: Auger SSE, GSE, AGE: Environmental sampling PS: Piston sample (Osterberg) RC: Rock core GS: Grab sample

Recovery

The recovery, shown as a percentage, is the ratio of length of the sample obtained to the distance the sampler was driven/pushed into the soil

RQL

The "Rock Quality Designation" or "RQD" value, expressed as percentage, is the ratio of the total length of all core fragments of 4 inches (10 cm) or more to the total length of the run.

IN-SITU TESTS:

N: Standard penetration index
R: Refusal to penetration
Cu: Undrained shear strength
Pr: Pressure meter

R: Permeability
ABS: Absorption (Packer test)

LABORATORY TESTS:

H: Hydrometer analysis A: Atterberg limits C: Consolidation vapor

I_p: Plasticity index
 W_i: Liquid limit
 W_i: Canalysis
 W_i: Water content
 W_i: Unit weight
 C: Consolidation
 CS: Swedish fall cone
 CS: Swedish fall cone
 CHEM: Chemical analysis

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

REFERENCE No.: BOREHOLE No.: BH01-22 **BOREHOLE REPORT** ELEVATION: _ 80.2 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 28 January 2022 DATE (START): 28 January 2022 - WATER LEVEL NORTHING: 5021740.104 428002.481 **ELEVATION:** 80.2 EASTING: △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) Feet Metres **GROUND SURFACE** % % % 10 20 30 40 50 60 70 80 90 % MPa FIIe: \\GHDNET\\GHD\CA\OTTAWA\PROJECTS\\661/12566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: FILL - Gravelly silty SAND, some clay, greyish brown, moist, dense Sand and Concre GS1 29-37-22-12 13 0 0.3 0.5 0.6 79.6 CLAY, greyish brown, moist, very stiff to stiff Rentonite 3 1.0 SS1 0 100.0 36 2-4-5-5 9 4 1.5 grey, moist to wet, stiff ф 6 2.0 7 2.5 SS2 100.0 54 2-2-2-2 9 3.0 10 11 3.5 76.6 END OF BOREHOLE 12 (Auger Refusal) NOTE: 13 1. Borehole dry upon completion of 4.0 drilling. 2. Borehole dry on February 3, 2022. 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: BH02-22 **BOREHOLE REPORT** ELEVATION: ____ 79.7 m (GEODETIC) Page 1 of 2 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 1 February 2022 DATE (START): 31 January 2022 - WATER LEVEL NORTHING: 5021805.708 428046.309 **ELEVATION:** EASTING: 797 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Depth Recovery TCR(%) Moisture Content Blows per 15cm/ **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL RQD(%) Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) **GROUND SURFACE** Feet Metres % % % 10 20 30 40 50 60 70 80 90 % MPa **ASPHALT** Sand and Concrete 79.6 FILL - GRAVEL, some sand and silt. 0.2 m grey, moist, dense GS1 0.5 0.6 79.1 CLAY, some silt, trace sand and gravel, greyish brown, moist, stiff 3 1.0 2-5-48-45 SS1 83.3 29 9-6-7-7 H 13 4 1.5 Δ 6 2.0 7 SS2 0.0 50/102mm 50/102 2.4 77.3 DOLOMITIC SANDSTONE, grey, 2.5 slightly weathered, excellent to fair Bentonite qullity 9 Run1 100 91 100 3.0 10 Run2 100 --68 89 joint, perpendicular to core axis 3.5 12 2/3/2022 13 4.0 joint, perpendicular to core axis Run3 95 92 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: ____ BH02-22 **BOREHOLE REPORT** 79.7 m (GEODETIC) **ELEVATION:** Page 2 of 2 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: _ Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR **■** AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 1 February 2022 DATE (START): 31 January 2022 - WATER LEVEL NORTHING: 5021805.708 428046.309 **ELEVATION:** EASTING: 79.7 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) FIIe: \(GHDNET\GHD\CA\OTTAWA\PROJECTS\\661\112566614\TECH\G\NT\LOGS\12566614\LOG.GPJ\LIbrary\FIIe: 12566614\GHD_GEOTECH_V10.GLB\Report: 12566614\SOIL\LOG\BABE: 24/3/22 "N" Value (blows / 12 in.-30 cm) **GROUND SURFACE** Feet Metres % % % % 10 20 30 40 50 60 70 80 90 MPa 17 18 5.5 Run4 100 73 94 19 6.0 20 joint, approximately 30 degrees to core axis 21 6.5 22 7.0 23 Run5 122.5 100 63 98 24 7.5 25 26 8.0 27 Run6 83 76 83 8.5 28 8.5 8.6 71.1 **END OF BOREHOLE** 29 1. Water level at a depth of 3.88 m 9.0 (Elev. 75.84 m) below ground surface on February 3, 2022. 30 31 9.5 32

REFERENCE No.: 12566614 BOREHOLE No.: BH03-22 **BOREHOLE REPORT** ELEVATION: _ 80.7 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 31 January 2022 DATE (START): 28 January 2022 - WATER LEVEL NORTHING: 5021800.342 427921.429 **ELEVATION:** EASTING: 80.7 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Depth Moisture Content Blows per 15cm/ **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL RQD(%) Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) **GROUND SURFACE** Feet Metres % % % 10 20 30 40 50 60 70 80 90 % MPa **ASHPHALT** Sand and Concret 80.6 0.1 FILL - Sandy GRAVEL, some silt, 0.2 m trace clay, greyish brown, moist, GS1 45-29-18-8 10 0.5 0.6 80.1 Silty CLAY, some sand, trace gravel, greyish brown, moist, stiff 3 1.0 1-28-(71) SS1 95.8 30 10 4-5-5-5 4 1.4 79.3 DOLOMITIC SANDSTONE, light grey 1.5 with yellow bands, slightly weathered, Ţ excellent quality Run1 100 100 100 6 2.0 7 2.5 100 100 Run2 91.1 100 9 3.0 77.7 10 **END OF BOREHOLE** NOTE: 1. Water level at a depth of 1.55 m (Elev. 79.15 m) below ground surface on February 3, 2022. 3.5 12 13 4.0 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: BH04-22 **BOREHOLE REPORT** ELEVATION: _ 79.8 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** ⊠ ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 28 January 2022 DATE (START): 28 January 2022 - WATER LEVEL NORTHING: 5021867.201 427996.294 **ELEVATION:** EASTING: 79.8 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) Feet Metres **GROUND SURFACE** % % % 10 20 30 40 50 60 70 80 90 % MPa FIIe: \\GHDNET\\GHD\CA\OTTAWA\PROJECTS\\661/12566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: **ASPHALT** 79.7 0.1 FILL - Gravelly SAND, some silt and clay, grey, moist, dense GS1 23-58-(19) 0.5 0.6 79.2 Silty CLAY, some sand, greyish brown, moist, stiff 3 1.0 0-10-44-46 SS1 77.0 29 5-6-7-7 13 4 1.5 1.7 78.1 **END OF BOREHOLE** 6 (Auger Refusal) 2.0 7 2.5 9 3.0 10 3.5 12 13 -4.0 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: BH05-22 **BOREHOLE REPORT** ELEVATION: ____ 81.1 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** ⊠ ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 1 February 2022 DATE (START): 1 February 2022 - WATER LEVEL NORTHING: 5021890.495 427830.004 **ELEVATION:** EASTING: 81.1 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) Feet Metres **GROUND SURFACE** % % % 10 20 30 40 50 60 70 80 90 % MPa FIIe: \\GHDNET\\GHD\CA\OTTAWA\PROJECTS\\661/12566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: **ASPHALT** 81.0 0.1 FILL - Sandy SILT, some gravel, greyish brown, moist, dense GS1 0.5 0.6 80.5 CLAY, some silt and sand, trace gravel, greyish brown, moist, firm to SS1 1-15-50-34 100.0 23 13-50/76mm 50/76 HO 0.9 80.2 END OF BOREHOLE 1.0 (Auger Refusal) 1.5 6 2.0 7 2.5 9 3.0 10 3.5 12 13 -4.0 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: ____ BH06-22 **BOREHOLE REPORT** 79.6 m (GEODETIC) ELEVATION: _ Page 1 of 1 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: _ Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR **■** AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 2 February 2022 DATE (START): 2 February 2022 - WATER LEVEL NORTHING: 5021952.611 427924.443 **ELEVATION:** EASTING: 79.6 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL RQD(%) Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) **GROUND SURFACE** Feet Metres % % % 10 20 30 40 50 60 70 80 90 % MPa FIIe: \\GHDNET\\GHD\CA\OTTAWA\PROJECTS\\661/12566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: **ASPHALT** Sand and Concret 79.5 0.1 FILL - Sandy SILT, some gravel, 0.2 m GS1 brown, moist, dense 0.4 79.2 DOLOMITIC SANDSTONE, light grey 0.5 with yellow bands, fresh, good quality 3 1.0 97 97 Run1 87 4 1.5 m 1.5 6 2.0 2.1 7 2.5 9 Run2 94.2 90 75 90 Screen 022 3.0 10 11 3.5 3.6 76.0 12 **END OF BOREHOLE** 1. Water level at a depth of 2.86 m 13 4.0 (Elev. 79.15 m) below ground surface on February 3, 2022. 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: BH07-22 **BOREHOLE REPORT** ELEVATION: _ 82.5 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 31 January 2022 DATE (START): 31 January 2022 - WATER LEVEL NORTHING: 5022030.466 427695.319 **ELEVATION:** EASTING: 82.5 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Depth Moisture Content Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) Feet Metres **GROUND SURFACE** % % % 10 20 30 40 50 60 70 80 90 % MPa TOPSOIL - Clayey SILT, contains rootlets and organic matter, dark brown, moist GS1 0.5 0.6 81.9 Silty CLAY to Clayey SILT, some sand and gravel, dark brown, moist, soft, organics matter SS1 41.7 3-5-50/0 >50 1.0 81.5 DOLOMITIC SANDSTONE, slightly weathered, light grey to grey with yellow bands, fair to good quality Run1 100 100 --66 1.5 6 2.0 7 2.5 Run2 96 96 89 9 3.0 10 3.5 12 111.8 100 Run3 88 88 13 4.9 78.4 **END OF BOREHOLE** 14 4.5 15 16

REFERENCE No.: 12566614 BOREHOLE No.: BH08-22 **BOREHOLE REPORT** ELEVATION: _ 79.8 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** ⊠ ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE CHECKED BY: Sahar Soleimani DESCRIBED BY: Dathon Ash - GRAB SAMPLE GS DATE (START): 2 February 2022 DATE (FINISH): 2 February 2022 - WATER LEVEL NORTHING: 5022071.843 427843.613 **ELEVATION:** EASTING: 79.8 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) FIIe: \\GHDNET\GHD\CA\OTTAWA\PROJECTS\\66112566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: 24/3/22 "N" Value (blows / 12 in.-30 cm) Feet Metres **GROUND SURFACE** % % % % 10 20 30 40 50 60 70 80 90 MPa **ASPHALT** 79.7 0.1 FILL - Sandy SILT, trace gravel, greyish brown, moist, dense GS1 0.5 0.6 79.2 END OF BOREHOLE (Auger Refusal) 3 1.0 4 1.5 6 2.0 7 2.5 9 3.0 10 3.5 12 13 -4.0 14 4.5 15 16

REFERENCE No.: 12566614 BOREHOLE No.: BH09-22 **BOREHOLE REPORT** ELEVATION: ____ 82.1 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** ⊠ ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 31 January 2022 DATE (START): 31 January 2022 - WATER LEVEL NORTHING: 5022131.544 427632.69 **ELEVATION:** EASTING: 82.1 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Moisture Content Depth Blows per 15cm/ RQD(%) **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL Gravel Sand Silt Clay Atterberg limits (%) FIIe: \\GHDNET\GHD\CA\OTTAWA\PROJECTS\\66112566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: 24/3/22 "N" Value (blows / 12 in.-30 cm) Feet Metres **GROUND SURFACE** % % % % 10 20 30 40 50 60 70 80 90 MPa TOPSOIL- SILT, trace sand and gravel, contains rootlets and organic matter, dark brown, moist GS1 0.5 SS1 2-50/0mm 25.0 >50 0.9 81.2 END OF BOREHOLE 1.0 (Auger Refusal) 1.5 6 2.0 7 2.5 9 3.0 10 3.5 12 13 4.0 14 4.5 15 16

REFERENCE No.: BOREHOLE No.: BH10-22 **BOREHOLE REPORT** ELEVATION: ____ 80.4 m (GEODETIC) Page 1 of 1 CLIENT: **LEGEND** \boxtimes ss - SPLIT SPOON PROJECT: Geotechnical Investigation-Nokia Campus Rezoning ST - SHELBY TUBE 570 and 600 March Road, Ottawa, Ontario LOCATION: _ 🔟 VA - VANE SHEAR ■ AU - AUGER PROBE DESCRIBED BY: Dathon Ash CHECKED BY: Sahar Soleimani - GRAB SAMPLE GS DATE (FINISH): 2 February 2022 DATE (START): 2 February 2022 - WATER LEVEL NORTHING: 5022166.631 **ELEVATION:** EASTING: 427726.321 80.4 △ Undisturbed Vane Value (kPa) Stratigraphy Elevation (m) BGS ☐ Remoulded Field Vane Value (kPa) Type and Number 'N' Value SCR(%) Recovery/ TCR(%) Depth Moisture Content Blows per 15cm/ **DESCRIPTION OF** State △ Number refer to Sensitivity Water content (%) SOIL RQD(%) Gravel Sand Silt Clay Atterberg limits (%) 24/3/22 "N" Value (blows / 12 in.-30 cm) **GROUND SURFACE** Feet Metres % % % 10 20 30 40 50 60 70 80 90 % MPa FIIe: \\GHDNET\\GHD\CA\OTTAWA\PROJECTS\\661/12566614\TECH\G\NT LOGS\12566614 LOG.GPJ LIbrary FIIe: 12566614 GHD GEOTECH V10.GLB Report: 12566614 SOIL LOG Date: **ASPHALT** Sand and Concret 80.3 0.1 FILL - Sandy SILT, some gravel, 0.2 m brown, moist, dense GS1 0.5 SS1 50/152mm 50/152 0.0 0.9 79.5 DOLOMITIC SANDSTONE, slightly 1.0 weathered, excellent to fair quality Bentonite 113.3 100 joint, perpendicular to core axis Run1 81 100 1.5 6 1.9 2.0 7 Sand 2.5 2.5 m 9 Run2 100 100 3.0 10 Scree 3.5 12 Run3 50 50 36 13 4.9 76.3 **END OF BOREHOLE** 14 NOTE: 1. Water level at a depth of 3.00 m (Elev. 77.43 m) below ground surface 4.5 on February 3, 2022. 15 16

Page 1 of 2

PROJECT NAME:

HOLE DESIGNATION: BH11-22
DATE COMPLETED: 11 May 2022

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc.

DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

Page 2 of 2

PROJECT NAME:

HOLE DESIGNATION: BH11-22
DATE COMPLETED: 11 May 2022

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc.

DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION			SAMF	PLE	
III BGS		IIIAIVISL	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	
7.5		72.28						
8.0	END OF BOREHOLE @ 7.92m BGS	72.28	WELL DETAILS Screened interval: 75.33 to 72.28mAMSL					
8.5			4.88 to 7.92m BGS Length: 3.05m Diameter: 51mm Slot Size: #10					
9.0			Material: PVC Sand Pack: 75.94 to 72.28mAMSL 4.27 to 7.92m BGS					
9.5			Material: Silica					
10.0								
10.5								
11.0								
11.5								
12.0								
12.5								
13.0								
13.5								
	NTEO. MEACHBING DOINT ELEVATIONS MAY OUT SE	FEED TO	OUDDENT ELEVATION TAS: 5					
<u>NO</u>	<u>DTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; F STATIC WATER L							

Page 1 of 2

PROJECT NAME:

HOLE DESIGNATION: BH12-22
DATE COMPLETED: 12 May 2022

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc.

DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

Page 2 of 2

PROJECT NAME:

HOLE DESIGNATION: BH12-22

PROJECT NUMBER: 12566614

CLIENT: Nokia Canada Inc.

DATE COMPLETED: 12 May 2022
DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION			SAME	PLE	
III BGS		MANISL	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	
-7.5		71.67						
-8.0	END OF BOREHOLE @ 7.92m BGS	71.07	WELL DETAILS Screened interval: 74.72 to 71.67mAMSL 4.88 to 7.92m BGS					
-8.5			Length: 3.05m Diameter: 51mm Slot Size: #10 Material: PVC Sand Pack: 75.33 to 71.67mAMSL					
- 9.5			4.27 to 7.92m BGS Material: Silica					
10.0								
10.5								
- 11.0								
- 11.5								
- 12.0								
- 12.5								
- 13.0								
- 13.5								
			CURRENT ELEVATION TABLE					

Page 1 of 2

PROJECT NAME:

PROJECT NUMBER: 12566614

CLIENT: Nokia Canada Inc.

HOLE DESIGNATION: BH13-22
DATE COMPLETED: 11 May 2022
DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

Page 2 of 2

PROJECT NAME:

HOLE DESIGNATION: BH13-22

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc. DATE COMPLETED: 11 May 2022 DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION			SAMF	PLE	
111 111 1111		MANUSE	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	
7.5 8.0 8.5 9.0 9.5 10.0 11.5 12.0 12.5 13.0 13.5			Length: 3.05m Diameter: 51mm Slot Size: #10 Material: PVC Sand Pack: 79.21 to 75.55mAMSL 2.74 to 6.40m BGS					
8.0			Material: Silica					
8.5								
9.0								
9.5								
10.0								
10.5								
11.0								
11.5								
12.0								
12.5								
13.0								
13.5								

Page 1 of 1

PROJECT NAME:

HOLE DESIGNATION: BH14-22

PROJECT NUMBER: 12566614

CLIENT: Nokia Canada Inc.

DATE COMPLETED: 12 May 2022
DRILLING METHOD: Auger/Air hammer

LOCATION: 600 March Road, Ottawa, Ontario

Page 1 of 1

PROJECT NAME:

HOLE DESIGNATION: BH15-22

DATE COMPLETED: 12 May 2022

DRILLING METHOD: Auger/Air hammer

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc.

LOCATION: 600 March Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION		1	SAMF	PLE	_
	GROUND SURFAC TOP OF RISE	81.94		NUMBER	INTERVAL	REC (%)	'N' Value	
	TOPSOIL, well graded, brown, organics, very little recovery	· .\ · .\	Sand		_			
0.5	3							
1.0	SANDY SILT, topsoil, well graded, trace clay, dark brown	81.33						
_	BEDROCK	80.72						
1.5			Bentonite					
2.0								
2.5								
3.0								
3.5								
4.0								
4.5			Sand Pack Well Screen					
5.0								
5.5			Sand Pack Well Screen					
6.0	END OF BOREHOLE @ 6.10m BGS	75.84						
6.5	Note: Borehole dry upon completion of drilling		WELL DETAILS Screened interval: 78.89 to 75.84mAMSL					
			3.05 to 6.10m BGS Length: 3.05m Diameter: 51mm					
7.0			Slot Size: #10 Material: PVC Sand Pack:					
7.5			79.20 to 75.84mAMSL 2.74 to 6.10m BGS Material: Silica					
 NC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE					<u></u>

Page 1 of 2

PROJECT NAME:

HOLE DESIGNATION: BH16-22
DATE COMPLETED: 12 May 2022
DRILLING METHOD: Auger/Air hammer

CLIENT: Nokia Canada Inc.
LOCATION: 600 March Road, Ottawa, Ontario

PROJECT NUMBER: 12566614

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION	<u>~</u>		SAMF		
	GROUND SURFA TOP OF RIS			NUMBER	INTERVAL	REC (%)	'N' Value	
	TOPSOIL, trace sand, loose, brown, organics	1/2.	Sand					
		<u> </u>						
0.5		<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>						
		<u>''</u>						
1.0	BEDROCK	80.57						
1.5								
1.5			Bentonite					
2.0								
2.5								
3.0								
3.0								
			Sand Pack Well Screen					
3.5								
4.0								
4.5			Sand Pack					
4.5								
5.0								
5.5								
6.0								
0.0	END OF BOREHOLE @ 6.10m BGS	75.39	WELL DETAILS					
	Note: Borehole dry upon completion of drilling		Screened interval:					
6.5	Note: Boronole dry apon completion of drilling		78.44 to 75.39mAMSL 3.05 to 6.10m BGS					
			Length: 3.05m Diameter: 51mm					
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE		Slot Size: #10					

Page 2 of 2

PROJECT NAME:

HOLE DESIGNATION: BH16-22

DATE COMPLETED: 12 May 2022

DRILLING METHOD: Auger/Air hammer

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc.

FIELD PERSONNEL: N. Gupta

LOCATION: 600 March Road, Ottawa, Ontario FIELD PERSO

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION		T .	SAMF	PLE	
500		MANUE	INOTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	
7.5			Material: PVC Sand Pack: 78.75 to 75.39mAMSL 2.74 to 6.10m BGS Material: Silica					
8.0								
8.5								
- 9.0								
- 9.5								
- 10.0								
- 10.5								
- 11.0								
-11.5								
- 12.0								
- 12.5								
- 13.0								
- 13.5								

Page 1 of 2

PROJECT NAME:

HOLE DESIGNATION: BH17-22

DATE COMPLETED: 12 May 2022

DRILLING METHOD: Auger/Air hammer

CLIENT: Nokia Canada Inc.

LOCATION: 600 March Road, Ottawa, Ontario

PROJECT NUMBER: 12566614

Page 2 of 2

PROJECT NAME:

HOLE DESIGNATION: BH17-22

DATE COMPLETED: 12 May 2022

DRILLING METHOD: Auger/Air hammer

PROJECT NUMBER: 12566614 CLIENT: Nokia Canada Inc.

LOCATION: 600 March Road, Ottawa, Ontario FIELD PERSONNEL: N. Gupta

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. mAMSL	MONITOR INSTALLATION			SAMF	PLE	
III BGS		MAWSL	INSTALLATION	NUMBER	INTERVAL	REC (%)	'N' Value	
-7.5			Material: PVC Sand Pack: 78.74 to 75.38mAMSL 2.74 to 6.10m BGS Material: Silica					
8.0								
8.5								
9.0								
9.5								
10.0								
10.5								
11.0								
11.5								
12.0								
12.5								
13.0								
- 13.5								

Appendix B

Laboratory Certificates of Analysis

GHD Limited (Waterloo)
ATTN: Pascal Renella
455 PHILLIP STREET

WATERLOO ON N2L 3X2

Date Received: 28-APR-22

Report Date: 03-MAY-22 13:17 (MT)

Version: FINAL

Client Phone: 519-884-0510

Certificate of Analysis

Lab Work Order #: L2702132

Project P.O. #: NOT SUBMITTED

Job Reference: 12566614 C of C Numbers: 20-1009502

Legal Site Desc:

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2702132 CONTD.... PAGE 2 of 6

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2702132-1 S-12566614-042822-DA-001 Sampled By: CLIENT on 28-APR-22 @ 10:00 Matrix: SOIL							
Physical Tests							
% Moisture	34.4		0.25	%	30-APR-22	01-MAY-22	R5770108
Volatile Organic Compounds							
Benzene	<0.0068		0.0068	ug/g	02-MAY-22	03-MAY-22	R5770503
Ethylbenzene	<0.018		0.018	ug/g	02-MAY-22	03-MAY-22	R5770503
Toluene	<0.080		0.080	ug/g	02-MAY-22	03-MAY-22	R5770503
o-Xylene	<0.020		0.020	ug/g	02-MAY-22	03-MAY-22	R5770503
m+p-Xylenes	<0.030		0.030	ug/g	02-MAY-22	03-MAY-22	R5770503
Xylenes (Total)	<0.050		0.050	ug/g		02-MAY-22	
Surrogate: 4-Bromofluorobenzene	97.1		50-140	%	02-MAY-22	03-MAY-22	R5770503
Surrogate: 1,4-Difluorobenzene	102.1		50-140	%	02-MAY-22	03-MAY-22	R5770503
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	02-MAY-22	03-MAY-22	R5770503
F1-BTEX	<5.0		5.0	ug/g		02-MAY-22	
F2 (C10-C16)	<10		10	ug/g	29-APR-22	02-MAY-22	R5770400
F3 (C16-C34)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
F4 (C34-C50)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
Total Hydrocarbons (C6-C50)	<72		72	ug/g		02-MAY-22	
Chrom. to baseline at nC50	YES				29-APR-22	02-MAY-22	R5770400
Surrogate: 2-Bromobenzotrifluoride	89.4		60-140	%	29-APR-22	02-MAY-22	R5770400
Surrogate: 3,4-Dichlorotoluene	82.5		60-140	%	02-MAY-22	03-MAY-22	R5770503
L2702132-2 S-12566614-042822-DA-002 Sampled By: CLIENT on 28-APR-22 @ 10:15 Matrix: SOIL							
Physical Tests							
% Moisture	26.5		0.25	%	30-APR-22	01-MAY-22	R5770108
Volatile Organic Compounds							
Benzene	<0.0068		0.0068	ug/g	02-MAY-22	03-MAY-22	R5770503
Ethylbenzene	<0.018		0.018	ug/g	02-MAY-22	03-MAY-22	R5770503
Toluene	<0.080		0.080	ug/g	02-MAY-22	03-MAY-22	R5770503
o-Xylene	<0.19	DLQ	0.19	ug/g	02-MAY-22	03-MAY-22	R5770503
m+p-Xylenes	<0.030		0.030	ug/g	02-MAY-22	03-MAY-22	R5770503
Xylenes (Total)	<0.19		0.19	ug/g		03-MAY-22	
Surrogate: 4-Bromofluorobenzene	106.2		50-140	%	02-MAY-22	03-MAY-22	R5770503
Surrogate: 1,4-Difluorobenzene	103.8		50-140	%	02-MAY-22	03-MAY-22	R5770503
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	02-MAY-22	03-MAY-22	R5770503
F1-BTEX	<5.0		5.0	ug/g		03-MAY-22	
F2 (C10-C16)	<10		10	ug/g	29-APR-22	02-MAY-22	R5770400
F3 (C16-C34)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
F4 (C34-C50)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
Total Hydrocarbons (C6-C50)	<72		72	ug/g		03-MAY-22	
Chrom. to baseline at nC50	YES				29-APR-22	02-MAY-22	R5770400

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2702132 CONTD....

PAGE 3 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2702132-2 S-12566614-042822-DA-002 Sampled By: CLIENT on 28-APR-22 @ 10:15 Matrix: SOIL							
Hydrocarbons							
Surrogate: 2-Bromobenzotrifluoride	88.5		60-140	%	29-APR-22	02-MAY-22	R5770400
Surrogate: 3,4-Dichlorotoluene	91.4		60-140	%	02-MAY-22	03-MAY-22	R5770503
L2702132-3 S-12566614-042822-DA-003 Sampled By: CLIENT on 28-APR-22 @ 10:30 Matrix: SOIL							
Physical Tests							
% Moisture	21.4		0.25	%	30-APR-22	01-MAY-22	R5770108
Volatile Organic Compounds							
Benzene	<0.0068		0.0068	ug/g	02-MAY-22	03-MAY-22	R5770503
Ethylbenzene	<0.018		0.018	ug/g	02-MAY-22	03-MAY-22	R5770503
Toluene	<0.080		0.080	ug/g	02-MAY-22	03-MAY-22	R5770503
o-Xylene	<0.020		0.020	ug/g	02-MAY-22	03-MAY-22	R5770503
m+p-Xylenes	< 0.030		0.030	ug/g	02-MAY-22	03-MAY-22	R5770503
Xylenes (Total)	< 0.050		0.050	ug/g		02-MAY-22	
Surrogate: 4-Bromofluorobenzene	105.0		50-140	%	02-MAY-22	03-MAY-22	R5770503
Surrogate: 1,4-Difluorobenzene	111.4		50-140	%	02-MAY-22	03-MAY-22	R5770503
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	02-MAY-22	03-MAY-22	R5770503
F1-BTEX	<5.0		5.0	ug/g		02-MAY-22	
F2 (C10-C16)	<10		10	ug/g	29-APR-22	02-MAY-22	R5770400
F3 (C16-C34)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
F4 (C34-C50)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
Total Hydrocarbons (C6-C50)	<72		72	ug/g		02-MAY-22	
Chrom. to baseline at nC50	YES				29-APR-22	02-MAY-22	R5770400
Surrogate: 2-Bromobenzotrifluoride	86.2		60-140	%	29-APR-22	02-MAY-22	R5770400
Surrogate: 3,4-Dichlorotoluene	94.3		60-140	%	02-MAY-22	03-MAY-22	R5770503
L2702132-4 S-12566614-042822-DA-004 Sampled By: CLIENT on 28-APR-22 @ 10:40 Matrix: SOIL							
Physical Tests							
% Moisture Volatile Organic Compounds	19.3		0.25	%	30-APR-22	01-MAY-22	R5770108
Benzene	<0.0068		0.0068	ug/g	02-MAY-22	03-MAY-22	R5770503
Ethylbenzene	<0.018		0.018	ug/g	02-MAY-22	03-MAY-22	R5770503
Toluene	<0.080		0.080	ug/g	02-MAY-22	03-MAY-22	R5770503
o-Xylene	<0.020		0.020	ug/g	02-MAY-22	03-MAY-22	R5770503
m+p-Xylenes	<0.030		0.030	ug/g	02-MAY-22	03-MAY-22	R5770503
Xylenes (Total)	<0.050		0.050	ug/g		02-MAY-22	
Surrogate: 4-Bromofluorobenzene	104.6		50-140	%	02-MAY-22	03-MAY-22	R5770503
Surrogate: 1,4-Difluorobenzene Hydrocarbons	107.3		50-140	%	02-MAY-22	03-MAY-22	R5770503
F1 (C6-C10)	<5.0		5.0	ug/g	02-MAY-22	03-MAY-22	R5770503
F1-BTEX	<5.0		5.0	ug/g		02-MAY-22	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2702132 CONTD....

PAGE 4 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2702132-4 S-12566614-042822-DA-004 Sampled By: CLIENT on 28-APR-22 @ 10:40 Matrix: SOIL							
Hydrocarbons							
F2 (C10-C16)	<10		10	ug/g	29-APR-22	02-MAY-22	R5770400
F3 (C16-C34)	<50		50	ug/g	29-APR-22	02-MAY-22	
F4 (C34-C50)	<50		50	ug/g	29-APR-22	02-MAY-22	
Total Hydrocarbons (C6-C50)	<72		72	ug/g		02-MAY-22	
Chrom. to baseline at nC50	YES			3.3	29-APR-22	02-MAY-22	R5770400
Surrogate: 2-Bromobenzotrifluoride	89.5		60-140	%	29-APR-22	02-MAY-22	
Surrogate: 3,4-Dichlorotoluene	79.0		60-140	%	02-MAY-22	03-MAY-22	R5770503
L2702132-5 S-12566614-042822-DA-005 Sampled By: CLIENT on 28-APR-22 @ 10:50 Matrix: SOIL							
Physical Tests							
% Moisture	28.4		0.25	%	30-APR-22	01-MAY-22	R5770108
Volatile Organic Compounds							
Benzene	<0.0068		0.0068	ug/g	02-MAY-22	03-MAY-22	R5770503
Ethylbenzene	<0.018		0.018	ug/g	02-MAY-22	03-MAY-22	R5770503
Toluene	<0.080		0.080	ug/g	02-MAY-22	03-MAY-22	R5770503
o-Xylene	<0.020		0.020	ug/g	02-MAY-22	03-MAY-22	R5770503
m+p-Xylenes	<0.030		0.030	ug/g	02-MAY-22	03-MAY-22	R5770503
Xylenes (Total)	<0.050		0.050	ug/g		02-MAY-22	
Surrogate: 4-Bromofluorobenzene	101.4		50-140	%	02-MAY-22	03-MAY-22	R5770503
Surrogate: 1,4-Difluorobenzene	104.5		50-140	%	02-MAY-22	03-MAY-22	R5770503
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	02-MAY-22	03-MAY-22	R5770503
F1-BTEX	<5.0		5.0	ug/g		02-MAY-22	
F2 (C10-C16)	<10		10	ug/g	29-APR-22	02-MAY-22	R5770400
F3 (C16-C34)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
F4 (C34-C50)	<50		50	ug/g	29-APR-22	02-MAY-22	R5770400
Total Hydrocarbons (C6-C50)	<72		72	ug/g		02-MAY-22	
Chrom. to baseline at nC50	YES				29-APR-22	02-MAY-22	R5770400
Surrogate: 2-Bromobenzotrifluoride	86.6		60-140	%	29-APR-22	02-MAY-22	R5770400
Surrogate: 3,4-Dichlorotoluene	81.8		60-140	%	02-MAY-22	03-MAY-22	R5770503

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2702132 CONTD....

PAGE 5 of 6 Version: FINAL

Reference Information

Sample Parameter Qualifier key listed:

 Qualifier
 Description

 DLQ
 Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Soil F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2702132 CONTD.... PAGE 6 of 6

Version: FINAL

Reference Information

XYLENES-SUM-CALC-WT Soil

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

20-1009502

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L2702132 Report Date: 03-MAY-22 Page 1 of 3

Client: GHD Limited (Waterloo)

455 PHILLIP STREET WATERLOO ON N2L 3X2

Contact: Pascal Renella

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5	770503							
WG3722340-4 Benzene	DUP	WG3722340-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	03-MAY-22
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	03-MAY-22
m+p-Xylenes		< 0.030	< 0.030	RPD-NA	ug/g	N/A	40	03-MAY-22
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	03-MAY-22
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	03-MAY-22
WG3722340-2 Benzene	LCS		100.0		%		70-130	02-MAY-22
Ethylbenzene			92.0		%		70-130	02-MAY-22
m+p-Xylenes			96.5		%		70-130	02-MAY-22
o-Xylene			93.1		%		70-130	02-MAY-22
Toluene			96.8		%		70-130	02-MAY-22
WG3722340-1	МВ						. 5 . 60	<i></i>
Benzene			<0.0068		ug/g		0.0068	02-MAY-22
Ethylbenzene			<0.018		ug/g		0.018	02-MAY-22
m+p-Xylenes			<0.030		ug/g		0.03	02-MAY-22
o-Xylene			<0.020		ug/g		0.02	02-MAY-22
Toluene			<0.080		ug/g		0.08	02-MAY-22
Surrogate: 1,4-D	Difluorobenzene		115.1		%		50-140	02-MAY-22
Surrogate: 4-Bro	omofluorobenzene		111.8		%		50-140	02-MAY-22
WG3722340-5	MS	WG3722340-3						
Benzene			109.4		%		60-140	03-MAY-22
Ethylbenzene			98.3		%		60-140	03-MAY-22
m+p-Xylenes			103.3		%		60-140	03-MAY-22
o-Xylene ·			100.3		%		60-140	03-MAY-22
Toluene			105.2		%		60-140	03-MAY-22
F1-HS-511-WT	Soil							
	770503							
WG3722340-4 F1 (C6-C10)	DUP	WG3722340-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	03-MAY-22
WG3722340-2 F1 (C6-C10)	LCS		95.5		%		80-120	02-MAY-22
WG3722340-1 F1 (C6-C10)	MB		<5.0		ug/g		5	02-MAY-22
Surrogate: 3,4-D	Dichlorotoluene		101.7		%		60-140	02-MAY-22
WG3722340-5	MS	WG3722340-3						

Quality Control Report

Workorder: L2702132 Report Date: 03-MAY-22 Page 2 of 3

Client: GHD Limited (Waterloo)

455 PHILLIP STREET WATERLOO ON N2L 3X2

Contact: Pascal Renella

Test	M	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	S	oil							
Batch R	770503								
WG3722340-5 F1 (C6-C10)	MS		WG3722340-3	99.8		%		60-140	03-MAY-22
F2-F4-511-WT	S	oil							
Batch R	770400								
WG3722066-3 F2 (C10-C16)	DUP		WG3722066-5 <10	<10	RPD-NA	ug/g	N/A	40	02-MAY-22
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	40	02-MAY-22
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	40	02-MAY-22
WG3722066-2 F2 (C10-C16)	LCS			98.0		%		70-130	02-MAY-22
F3 (C16-C34)				96.4		%		70-130	02-MAY-22
F4 (C34-C50)				104.5		%		70-130	02-MAY-22
WG3722066-1 F2 (C10-C16)	MB			<10		ug/g		10	02-MAY-22
F3 (C16-C34)				<50		ug/g		50	02-MAY-22
F4 (C34-C50)				<50		ug/g		50	02-MAY-22
Surrogate: 2-Bi	omobenzotri	ifluoride		93.3		%		60-140	02-MAY-22
WG3722066-4 F2 (C10-C16)	MS		WG3722066-5	96.2		%		60-140	02-MAY-22
F3 (C16-C34)				96.5		%		60-140	02-MAY-22
F4 (C34-C50)				105.6		%		60-140	02-MAY-22
MOISTURE-WT	S	oil							
Batch R	770108								
WG3722197-4 % Moisture	DUP		L2702449-22 19.8	20.6		%	4.1	20	01-MAY-22
WG3722197-2 % Moisture	LCS			100.4		%		90-110	01-MAY-22
WG3722197-1 % Moisture	MB			<0.25		%		0.25	01-MAY-22

Quality Control Report

Workorder: L2702132 Report Date: 03-MAY-22

Client: GHD Limited (Waterloo)
455 PHILLIP STREET
Page 3 of 3

WATERLOO ON N2L 3X2

Contact: Pascal Renella

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2702132-1

Client Sample ID: S-12566614-042822-DA-001

← F2-	→←	—F3 —→← —F4−	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mo	otor Oils/Lube Oils/Grease————	-		
← Diesel/Jet Fuels→						

Printed on 5/2/2022 2:23:00 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

Printed on 5/2/2022 2:23:00 PM Page 2 of 2

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2702132-2

Client Sample ID: S-12566614-042822-DA-002

← F2-	→←	—F3 —→← —F4−	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mo	otor Oils/Lube Oils/Grease————	-		
← Diesel/Jet Fuels→						

Printed on 5/2/2022 2:18:47 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

Printed on 5/2/2022 2:18:47 PM Page 2 of 2

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2702132-3

Client Sample ID: S-12566614-042822-DA-003

← F2-	→←	—F3 —→← —F4−	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mo	otor Oils/Lube Oils/Grease————	-		
← Diesel/Jet Fuels→						

Printed on 5/2/2022 2:23:02 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

Printed on 5/2/2022 2:23:02 PM Page 2 of 2

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2702132-4

Client Sample ID: S-12566614-042822-DA-004

← F2-	→←	—F3 —→← —F4−	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mo	otor Oils/Lube Oils/Grease————	-		
← Diesel/Jet Fuels→						

Printed on 5/2/2022 2:18:51 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2702132-5

Client Sample ID: S-12566614-042822-DA-005

← F2-	→←	—F3 —→← —F4−	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mo	otor Oils/Lube Oils/Grease————	-		
← Diesel/Jet Fuels→						

Printed on 5/2/2022 2:23:04 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

Printed on 5/2/2022 2:23:04 PM Page 2 of 2

in of Custody (COC) / Analytical Request Form

COC Number: 20 - 1009502

Canada Toll Free: 1 800 668 9878

	L27021	•

					, , ,				Percentage administrative to the	HARROS INFORMACIONA	X100X21003	
Report To Contact and company name below will appear on the final report	Reports F					·	(TAT) Reque		Harris and			derion, estab
Company: 6HD Ltd.	Select Report Format:	EDD (DI	GITAL)					apply 45ee	2000	* E		9,500
Contact: Joseph Drader	Merge QC/QCI Reports with COA							arge minimum 1/15€	79	LS BARCOI	DE LAR	FI HERE
Phone: 1+1+613-218-3463	Compare Results to Criteria on Report - ;		necked				 25% rush sure 50% rush sure 		A., 1	(ALS use		
Company address below will appear on the final report	Select Distribution: EMAIL	☐ MAIL ☐ FAX					100% rush stard			5000	izi (c.	23 o (c. 7 °)
Street: 400-179 Colonnade Road	Email 1 or Fax Toggan Dra	der@ghorco	\sim					urcharge. Additional fe lays and non-routine to	es - 0 - 0 - 0	ugh same sy	887090	ile de la la
City/Province: O++ama, Ontaris	Email 2	J		□ may apply	to rush re	quests on weeker	ids, statutory holic	ays and non-routine to	ests		16. 4 9.81	301897534
Postal Code: K2E 754	Email 3			Date :	ınd Time F	equired for all	E&P TATs:		dd anarc -yy	Shirim ari	:91	
Invoice To Same as Report To 🔲 YES 😿 NO	Invoice R	eciplents				For all tests w	ith rush TATs req	iested, please contact	your AM to confirm	availability.		
Copy of Invoice with Report 🗹 YES 🗌 NO	Select Invoice Distribution:	AAIL MAIL FAX				•	ρ	nalysis Reques	t			
Company: GHD Ltd.	Email 1 or Fax Dasca Tone	Pahdicam		ERS	!	ndicate Filtered	(F), Preserved (P) or Filtered and Pres	erved (F/P) below			G (8
Contact: Pascal Renella	Email 2	3		L]	REQUIRED (see notes)
Project Information	Oil and Gas Require	d Fields (client use)										g ±
ALS Account # / Quote #.	AFE/Cost Center:	PO#		ĔΙ	5	-						2 S
Job#: 12566614	Majo/Minor Code:	Routing Code:		CONTAIN	11						[일	일물
PO / AFE:	Requisitioner:							1			ON HOLD	STORAGE HAZARD
LSD:	Location:			비 X	14-	1 1						K ±
Table 1 Carlotte Carlotte					1. 1						I SI	
ALS Lab Work Order # (ALS use only); 2762/32	ALS Contact:	Sampler:			12]			급	
ALS Sample # Sample Identification and/or Coordinates	Date	Time		NUMBER RTE	H			1 1 1			SAMPLES	EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes)
(ALS use only) (This description will appear on the report)	VA _(dd-mmm-yy)	(hh:mm) Sa	ample Type	ž							ें	집물
5-12566614-042822-DA-001	8478-047	2 10:00	70î	3 X	IXI							
5-12565614-0428 ZZ-DA-002	28-04-22		20:	3 8	X							
			χο. [3 X	 \frac{1}{\frac{1}{2}} 	++	- 			 	1	
					121		 	 			+-	\vdash
5-12566614-042822-DA-00	4 28-04-22	10:40 0	50ř(3 ×							╨	
S-12566H-00+ PA -												
5-12566614-042822-DA-	005 28-04-22	10:50 5	oi (3 X	X							
Triplolank-901	79-04-27		0.1	ÍV	X							
TPA DIOVIN SOL	23,100	11.100	4,1	1	1			 		ļ — —	+	
				 		+					+	
					↓					1	<u> </u>	↓
reer contact.											'	$oldsymbol{oldsymbol{oldsymbol{eta}}}$
										<u>{</u>		<u>L</u> l
Notes / Spec	ify Limits for result evaluation by selecting	a from drop-down belov	V				AMPLE REC	EIPT DETAILS (ALS use only)		200	
Drinking Water (DW) Samples ¹ (client use)	(Excel COC only)			Cooling M	ethod:	☐ NONE	1CE] ICE PACKS	FROZEN	COOLIN	IG INITIV	ATED
Are samples taken from a Regulated DW System?	1 . AA 11+h 7	007		Submissio	n Comm	ents identifie	i on Sample F	leceipt Notificatio	n: 🗆	YES [] WO	S-161-1911
□ YE 12/10 NESULTS	by May 4th, 21	026		Cooler Cu	stody Se	als Intact:	YES	_ N/A Sample	Custody Seals	intact:	☐ YE	B 🔲 N/A
Are samples for human consumption/ use?	()				122 CARRESTON	OOLER TEMPE	RATURES °C		FINAL COOLE	R TEMPERA	FURES °C	<u>o</u>
□ YES 151 NO				6	+			X.	61			
SHIPMENT RELEASE (client use)	INITIAL SHIPMEN	TRECEPTION (ALS u	se only)	ga at kapan sa	Esta (FINAL S	IPMENT RECEF	TION (ALS us			
Released by: Darthon Ash Date: Apr. 28, 2022 Time:	Received by	المعاور المحاول	?./≥	Time:	Recei	red by:	II.	Daty (7.1	102	10.00	Time:	シワハ
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	WIL	ITE - LABORATORY COP	V VELLO	V - CLIENT	OPV		/(1 00		7 / Sec. (AUG 2020 FRO

CERTIFICATE OF ANALYSIS

Page Work Order : WT2204113 : 1 of 11

Waterloo ON Canada N2L 3X2

Client : GHD Limited Laboratory : Waterloo - Environmental Contact

Account Manager : Pascal Renella : Rick Hawthorne Address Address : 455 Phillip Street

: 60 Northland Road, Unit 1

Waterloo ON Canada N2V 2B8

Telephone : +1 519 886 6910 **Date Samples Received** : 17-May-2022 15:45

Date Analysis : 19-May-2022

Commenced

Issue Date : 31-May-2022 13:10

Project : 12566614 РО : 735-002942

Telephone

C-O-C number

Sampler : CLIENT Site : ----

: 12566614-SSOW-735-002942 Quote number

: 519 725 3313

No. of samples received : 4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario

 Page
 : 2 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit Description

- No Unit

µg/L micrograms per litre

mg/L milligrams per litre

mS/cm millisiemens per centimetre

pH units pH units

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

>: greater than.

<: less than.

 Page
 : 3 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-001

Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-001 Client sampling date / time: 17-May-2022 10:20

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Physical Tests							Date	
conductivity		2.30	0.0010	mS/cm	E100	20-May-2022	21-May-2022	494874
pH		8.11	0.10	pH units	E108	20-May-2022	21-May-2022	494873
Anions and Nutrients								
chloride	16887-00-6	620 DLDS,	2.50	mg/L	E235.CI	20-May-2022	24-May-2022	494894
Cyanides							,	
cyanide, weak acid dissociable		<2.0	2.0	μg/L	E336	19-May-2022	19-May-2022	493552
Dissolved Metals								
antimony, dissolved	7440-36-0	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
arsenic, dissolved	7440-38-2	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
barium, dissolved	7440-39-3	244 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
beryllium, dissolved	7440-41-7	<0.200 DLHC,	0.200	μg/L	E421	20-May-2022	24-May-2022	495359
boron, dissolved	7440-42-8	<100 DLHC,	100	μg/L	E421	20-May-2022	24-May-2022	495359
cadmium, dissolved	7440-43-9	<0.0500 DLHC,	0.0500	μg/L	E421	20-May-2022	24-May-2022	495359
chromium, dissolved	7440-47-3	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
cobalt, dissolved	7440-48-4	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
copper, dissolved	7440-50-8	<2.00 DLHC,	2.00	μg/L	E421	20-May-2022	24-May-2022	495359
lead, dissolved	7439-92-1	<0.500 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
mercury, dissolved	7439-97-6	<0.0050	0.0050	μg/L	E509	20-May-2022	20-May-2022	494459
molybdenum, dissolved	7439-98-7	2.39 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
nickel, dissolved	7440-02-0	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
selenium, dissolved	7782-49-2	<0.500 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
silver, dissolved	7440-22-4	<0.100 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
sodium, dissolved	7440-23-5	236000 DLHC,	500	μg/L	E421	20-May-2022	24-May-2022	495359
thallium, dissolved	7440-28-0	<0.100 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
uranium, dissolved	7440-61-1	4.53 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
vanadium, dissolved	7440-62-2	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
zinc, dissolved	7440-66-6	<10.0 DLHC,	10.0	μg/L	E421	20-May-2022	24-May-2022	495359
dissolved mercury filtration location	7440-00-0	Field	-	-	EP509		20-May-2022	494459
dissolved metals filtration location		Field	_	_	EP421	_	20-May-2022 20-May-2022	495359
Speciated Metals		Tiolu			E1 12 1		20-Way-2022	490009
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.50	0.50	μg/L	E532A	-	19-May-2022	493593
Volatile Organic Compounds	10040-20-3			P-9' -			10 Way 2022	430000
acetone	67-64-1	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
benzene	71-43-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
dichloroethane, 1,1-		<0.50	0.50		E611D	20-May-2022 20-May-2022	-	494387
· ·						_		
dichloroethane, 1,2-	75-34-3 107-06-2	<0.50 <0.50	0.50	μg/L μg/L	E611D	20-May-2022 20-May-2022	20-May-2022 20-May-2022	4943 4943

 Page
 : 4 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-001 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-001 Client sampling date / time: 17-May-2022 10:20

					1	1		
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds							Date	
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, trans-1,3-	10061-02-6	< 0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
styrene	100-42-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
toluene	108-88-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
BTEX, total	1330-20-7	<1.0	1.0	μg/L	E611D	20-May-2022	20-May-2022 20-May-2022	494387
Volatile Organic Compounds Surrogates		11.0	1.0	P9/ L	20118	20 May 2022	20-Way-2022	454507
bromofluorobenzene, 4-	460-00-4	120	1.0	%	E611D	20-May-2022	20-May-2022	494387
difluorobenzene, 1,4-	540-36-3	95.7	1.0	%	E611D	20-May-2022	20-May-2022	494387
Hydrocarbons	340-30-3			7.5	20112	20 11111) 2022	20-Way-2022	434307
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	20-May-2022	20-May-2022	494388
F2 (C10-C16)		<100	100	μg/L	E601.SG	20-May-2022	26-May-2022	494854
F2-naphthalene		<100	100	μg/L	EC600SG	-	25-May-2022	-
F3 (C16-C34)		<250	250	μg/L	E601.SG	20-May-2022	26-May-2022	494854
F3-PAH	n/a	<250	250	μg/L	EC600SG	-	25-May-2022	-
F4 (C34-C50)	11/4	<250	250	μg/L	E601.SG	20-May-2022	26-May-2022	494854
F1-BTEX		<25	25	μg/L	EC580	-	24-May-2022	-0-100 1
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	_	24-May-2022	-
chromatogram to baseline at nC50	n/a	YES	-	- 49/-	E601.SG	20-May-2022	26-May-2022	494854
Hydrocarbons Surrogates	11/4	120			2001.00	Zo May ZoZZ	20-Way-2022	434004
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	85.5	1.0	%	E601.SG	20-May-2022	26-May-2022	494854
dichlorotoluene, 3,4-	97-75-0	92.3	1.0	%	E581.F1-L	20-May-2022 20-May-2022	20-May-2022 20-May-2022	494388
Polycyclic Aromatic Hydrocarbons	91-13-0	32.0	1.0	70	2007.1 1-2	20 May 2022	20-iviay-2022	434300
acenaphthene	83-32-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
acenaphthylene	208-96-8	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
anthracene		<0.010	0.010		E641A	20-May-2022 20-May-2022		
	120-12-7	<0.010	0.010	μg/L μg/l	E641A	20-May-2022 20-May-2022	24-May-2022	494856
benz(a)anthracene	56-55-3	~0.010	0.010	μg/L	LU41A	20-iviay-2022	24-May-2022	494856

 Page
 : 5 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-001 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-001 Client sampling date / time: 17-May-2022 10:20

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Polycyclic Aromatic Hydrocarbons								
benzo(a)pyrene	50-32-8	<0.0050	0.0050	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(b+j)fluoranthene	n/a	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(g,h,i)perylene	191-24-2	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(k)fluoranthene	207-08-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
chrysene	218-01-9	0.016	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
dibenz(a,h)anthracene	53-70-3	<0.0050	0.0050	μg/L	E641A	20-May-2022	24-May-2022	494856
fluoranthene	206-44-0	0.034	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
fluorene	86-73-7	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
indeno(1,2,3-c,d)pyrene	193-39-5	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 1-	90-12-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 1+2-		0.015	0.015	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 2-	91-57-6	0.015	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
naphthalene	91-20-3	<0.050	0.050	μg/L	E641A	20-May-2022	24-May-2022	494856
phenanthrene	85-01-8	<0.020	0.020	μg/L	E641A	20-May-2022	24-May-2022	494856
pyrene	129-00-0	0.019	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
Polycyclic Aromatic Hydrocarbons Surrogates								
chrysene-d12	1719-03-5	105	0.1	%	E641A	20-May-2022	24-May-2022	494856
naphthalene-d8	1146-65-2	102	0.1	%	E641A	20-May-2022	24-May-2022	494856
phenanthrene-d10	1517-22-2	106	0.1	%	E641A	20-May-2022	24-May-2022	494856

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2204113-002

Sub-Matrix:Water
(Matrix: Water)

Client sample ID: GW-12566614-051722-NG-002 Client sampling date / time: 17-May-2022 11:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity		3.42	0.0010	mS/cm	E100	20-May-2022	21-May-2022	494874
рН		7.76	0.10	pH units	E108	20-May-2022	21-May-2022	494873
Anions and Nutrients								
chloride	16887-00-6	896 DLDS,	2.50	mg/L	E235.CI	20-May-2022	24-May-2022	494894
Cyanides								
cyanide, weak acid dissociable		<2.0	2.0	μg/L	E336	19-May-2022	19-May-2022	493552
Dissolved Metals								
antimony, dissolved	7440-36-0	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
arsenic, dissolved	7440-38-2	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
barium, dissolved	7440-39-3	216 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
beryllium, dissolved	7440-41-7	<0.200 DLHC,	0.200	μg/L	E421	20-May-2022	24-May-2022	495359
boron, dissolved	7440-42-8	<100 DLHC,	100	μg/L	E421	20-May-2022	24-May-2022	495359
cadmium, dissolved	7440-43-9	<0.0500 DLHC,	0.0500	μg/L	E421	20-May-2022	24-May-2022	495359
chromium, dissolved	7440-47-3	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
cobalt, dissolved	7440-48-4	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
copper, dissolved	7440-50-8	<2.00 DLHC,	2.00	μg/L	E421	20-May-2022	24-May-2022	495359
lead, dissolved	7439-92-1	<0.500 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
mercury, dissolved	7439-97-6	<0.0050	0.0050	μg/L	E509	20-May-2022	20-May-2022	494459

 Page
 : 6 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-002 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-002 Client sampling date / time: 17-May-2022 11:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Dissolved Metals							Date	
molybdenum, dissolved	7439-98-7	1.47 DLHC.	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
nickel, dissolved	7440-02-0	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
selenium, dissolved	7782-49-2	<0.500 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
silver, dissolved	7440-22-4	<0.100 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
sodium, dissolved	7440-23-5	405000 DLHC,	500	μg/L	E421	20-May-2022	24-May-2022	495359
thallium, dissolved	7440-28-0	<0.100 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
uranium, dissolved	7440-61-1	2.18 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
vanadium, dissolved	7440-62-2	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
zinc, dissolved	7440-66-6	<10.0 DLHC,	10.0	μg/L	E421	20-May-2022	24-May-2022	495359
dissolved mercury filtration location		Field	-	_	EP509	-	20-May-2022	494459
dissolved metals filtration location		Field	-	_	EP421	-	20-May-2022	495359
Speciated Metals								
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.50	0.50	μg/L	E532A	-	19-May-2022	493593
Volatile Organic Compounds								
acetone	67-64-1	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
benzene	71-43-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	20-May-2022	20-May-2022	494387
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
styrene	100-42-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
toluene	108-88-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387

 Page
 : 7 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-002 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-002 Client sampling date / time: 17-May-2022 11:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds							Date	
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	20-May-2022	20-May-2022	494387
xylene, o-	95-47-6	< 0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
BTEX, total		<1.0	1.0	μg/L	E611D	20-May-2022	20-May-2022	494387
Volatile Organic Compounds Surrogates							, ,	
bromofluorobenzene, 4-	460-00-4	117	1.0	%	E611D	20-May-2022	20-May-2022	494387
difluorobenzene, 1,4-	540-36-3	96.3	1.0	%	E611D	20-May-2022	20-May-2022	494387
Hydrocarbons	0.000						20 may 2022	.0.00.
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	20-May-2022	20-May-2022	494388
F2 (C10-C16)		<100	100	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F2-naphthalene		<100	100	μg/L	EC600SG	-	25-May-2022	-5-1004
F3 (C16-C34)		<250	250	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F3-PAH		<250	250	μg/L μg/L	EC600SG	20-Way-2022	,	494004
	n/a	<250	250		E601.SG	20 May 2022	25-May-2022	404054
F4 (C34-C50) F1-BTEX		<25 <25	250	μg/L	EC580	20-May-2022	27-May-2022	494854
				μg/L		-	24-May-2022	-
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	- - - -	24-May-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	20-May-2022	27-May-2022	494854
Hydrocarbons Surrogates	000.00.0	02.2	1.0	0/.	E601 SC	20 May 2022	07.140000	40.405.4
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	83.3 89.3	1.0 1.0	% %	E601.SG	20-May-2022	27-May-2022	494854
dichlorotoluene, 3,4-	97-75-0	09.3	1.0	70	E581.F1-L	20-May-2022	20-May-2022	494388
Polycyclic Aromatic Hydrocarbons	22.22.2	40.040	0.040	//	EC44.A	20 M 2000	04.14	40.4050
acenaphthene	83-32-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
acenaphthylene	208-96-8	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
anthracene	120-12-7	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benz(a)anthracene	56-55-3	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(a)pyrene	50-32-8	<0.0050	0.0050	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(b+j)fluoranthene	n/a	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(g,h,i)perylene	191-24-2	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(k)fluoranthene	207-08-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
chrysene	218-01-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
dibenz(a,h)anthracene	53-70-3	<0.0050	0.0050	μg/L	E641A	20-May-2022	24-May-2022	494856
fluoranthene	206-44-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
fluorene	86-73-7	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
indeno(1,2,3-c,d)pyrene	193-39-5	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 1-	90-12-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 1+2-		<0.015	0.015	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 2-	91-57-6	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
naphthalene	91-20-3	<0.050	0.050	μg/L	E641A	20-May-2022	24-May-2022	494856
phenanthrene	85-01-8	<0.020	0.020	μg/L	E641A	20-May-2022	24-May-2022	494856
pyrene	129-00-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
Polycyclic Aromatic Hydrocarbons Surrogates								
chrysene-d12	1719-03-5	105	0.1	%	E641A	20-May-2022	24-May-2022	494856
naphthalene-d8		105	0.1	%	E641A	20-May-2022	-	494856
	1719-03-5 1146-65-2					-	24-May-2022 24-May-2022	

 Page
 : 8 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-002 Sub-Matrix:Water

Client sample ID: GW-12566614-051722-NG-002 Client sampling date / time: 17-May-2022 11:30

(Matrix: Water)

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Polycyclic Aromatic Hydrocarbons Surrogates								
phenanthrene-d10	1517-22-2	106	0.1	%	E641A	20-May-2022	24-May-2022	494856

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2204113-003

Sub-Matrix:Water
(Matrix: Water)

Client sample ID: GW-12566614-051722-NG-003
Client sampling date / time: 17-May-2022 14:10

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds								
benzene	71-43-2	<0.50	0.50	μg/L	E611A	20-May-2022	20-May-2022	494592
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611A	20-May-2022	20-May-2022	494592
toluene	108-88-3	<0.50	0.50	μg/L	E611A	20-May-2022	20-May-2022	494592
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611A	20-May-2022	20-May-2022	494592
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611A	20-May-2022	20-May-2022	494592
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611A	20-May-2022	20-May-2022	494592
BTEX, total		<1.0	1.0	μg/L	E611A	20-May-2022	20-May-2022	494592
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	108	1.0	%	E611A	20-May-2022	20-May-2022	494592
difluorobenzene, 1,4-	540-36-3	101	1.0	%	E611A	20-May-2022	20-May-2022	494592
Hydrocarbons								
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	20-May-2022	20-May-2022	494591
F2 (C10-C16)		<100	100	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F3 (C16-C34)		280	250	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F4 (C34-C50)		<250	250	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F1-BTEX		<25	25	μg/L	EC580	-	21-May-2022	-
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	-	21-May-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	20-May-2022	27-May-2022	494854
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	83.4	1.0	%	E601.SG	20-May-2022	27-May-2022	494854
dichlorotoluene, 3,4-	97-75-0	102	1.0	%	E581.F1-L	20-May-2022	20-May-2022	494591

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2204113-004

Sub-Matrix: Water Client sample ID: GW-12566614-051722-NG-004

(Matrix: Water) Client sampling date / time: 17-May-2022 11:30

Result LOR Method QCLot Analyte Unit Prep Date CAS Number Analysis Date **Physical Tests** conductivity 3.39 0.0010 mS/cm E100 20-May-2022 21-May-2022 494874 7.75 0.10 E108 20-May-2022 pH units 21-May-2022 494873 Anions and Nutrients 858 DLDS, 2.50 E235.CI 20-May-2022 chloride 16887-00-6 mg/L 24-May-2022 494894

 Page
 : 9 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-004 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-004 Client sampling date / time: 17-May-2022 11:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Cyanides								
cyanide, weak acid dissociable		<2.0	2.0	μg/L	E336	19-May-2022	19-May-2022	493552
Dissolved Metals								
antimony, dissolved	7440-36-0	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
arsenic, dissolved	7440-38-2	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
barium, dissolved	7440-39-3	209 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
beryllium, dissolved	7440-41-7	<0.200 DLHC,	0.200	μg/L	E421	20-May-2022	24-May-2022	495359
boron, dissolved	7440-42-8	<100 DLHC,	100	μg/L	E421	20-May-2022	24-May-2022	495359
cadmium, dissolved	7440-43-9	<0.0500 DLHC,	0.0500	μg/L	E421	20-May-2022	24-May-2022	495359
chromium, dissolved	7440-47-3	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
cobalt, dissolved	7440-48-4	<1.00 DLHC,	1.00	μg/L	E421	20-May-2022	24-May-2022	495359
copper, dissolved	7440-50-8	<2.00 DLHC,	2.00	μg/L	E421	20-May-2022	24-May-2022	495359
lead, dissolved	7439-92-1	<0.500 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
mercury, dissolved	7439-97-6	<0.0050	0.0050	μg/L	E509	20-May-2022	20-May-2022	494459
molybdenum, dissolved	7439-98-7	1.49 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
nickel, dissolved	7440-02-0	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
selenium, dissolved	7782-49-2	<0.500 DLHC,	0.500	μg/L	E421	20-May-2022	24-May-2022	495359
silver, dissolved	7440-22-4	<0.100 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
sodium, dissolved	7440-23-5	415000 DLHC,	500	μg/L	E421	20-May-2022	24-May-2022	495359
thallium, dissolved	7440-28-0	<0.100 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
uranium, dissolved	7440-61-1	2.20 DLHC,	0.100	μg/L	E421	20-May-2022	24-May-2022	495359
vanadium, dissolved	7440-62-2	<5.00 DLHC,	5.00	μg/L	E421	20-May-2022	24-May-2022	495359
zinc, dissolved	7440-66-6	<10.0 DLHC,	10.0	μg/L	E421	20-May-2022	24-May-2022	495359
dissolved mercury filtration location		Field	-	-	EP509	-	20-May-2022	494459
dissolved metals filtration location		Field	-	-	EP421	-	20-May-2022	495359
Speciated Metals								
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.50	0.50	μg/L	E532A	-	19-May-2022	493593
Volatile Organic Compounds								
acetone	67-64-1	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
benzene	71-43-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	20-May-2022	20-May-2022	494387
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	20-May-2022	20-May-2022	494387
		<0.50	0.50	μg/L	E611D	20-May-2022		

 Page
 : 10 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-004 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-004 Client sampling date / time: 17-May-2022 11:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds								
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	20-May-2022	20-May-2022	494387
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
styrene	100-42-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
toluene	108-88-3	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichloroethylene	79-01-6	< 0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	20-May-2022	20-May-2022	494387
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	20-May-2022	20-May-2022	494387
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	20-May-2022	20-May-2022	494387
BTEX, total		<1.0	1.0	μg/L	E611D	20-May-2022	20-May-2022	494387
Volatile Organic Compounds Surrogates							,	
bromofluorobenzene, 4-	460-00-4	119	1.0	%	E611D	20-May-2022	20-May-2022	494387
difluorobenzene, 1,4-	540-36-3	95.2	1.0	%	E611D	20-May-2022	20-May-2022	494387
Hydrocarbons								
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	20-May-2022	20-May-2022	494388
F2 (C10-C16)		<100	100	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F2-naphthalene		<100	100	μg/L	EC600SG	-	25-May-2022	-
F3 (C16-C34)		<250	250	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F3-PAH	n/a	<250	250	μg/L	EC600SG	-	25-May-2022	-
F4 (C34-C50)		<250	250	μg/L	E601.SG	20-May-2022	27-May-2022	494854
F1-BTEX		<25	25	μg/L	EC580	-	24-May-2022	-
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	-	24-May-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	20-May-2022	27-May-2022	494854
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	82.4	1.0	%	E601.SG	20-May-2022	27-May-2022	494854
dichlorotoluene, 3,4-	97-75-0	90.6	1.0	%	E581.F1-L	20-May-2022	20-May-2022	494388
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
acenaphthylene	208-96-8	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
anthracene	120-12-7	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benz(a)anthracene	56-55-3	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(a)pyrene	50-32-8	<0.0050	0.0050	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(b+j)fluoranthene	n/a	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(g,h,i)perylene	191-24-2	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
benzo(k)fluoranthene	207-08-9	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
• •	218-01-9	<0.010	0.010	μg/L	E641A	20-May-2022	,	494856

 Page
 : 11 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204113-004 Sub-Matrix: Water (Matrix: Water)

Client sample ID: GW-12566614-051722-NG-004
Client sampling date / time: 17-May-2022 11:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Polycyclic Aromatic Hydrocarbons								
dibenz(a,h)anthracene	53-70-3	<0.0050	0.0050	μg/L	E641A	20-May-2022	24-May-2022	494856
fluoranthene	206-44-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
fluorene	86-73-7	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
indeno(1,2,3-c,d)pyrene	193-39-5	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 1-	90-12-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 1+2-		<0.015	0.015	μg/L	E641A	20-May-2022	24-May-2022	494856
methylnaphthalene, 2-	91-57-6	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
naphthalene	91-20-3	<0.050	0.050	μg/L	E641A	20-May-2022	24-May-2022	494856
phenanthrene	85-01-8	<0.020	0.020	μg/L	E641A	20-May-2022	24-May-2022	494856
pyrene	129-00-0	<0.010	0.010	μg/L	E641A	20-May-2022	24-May-2022	494856
Polycyclic Aromatic Hydrocarbons Surrogates								
chrysene-d12	1719-03-5	105	0.1	%	E641A	20-May-2022	24-May-2022	494856
naphthalene-d8	1146-65-2	104	0.1	%	E641A	20-May-2022	24-May-2022	494856
phenanthrene-d10	1517-22-2	105	0.1	%	E641A	20-May-2022	24-May-2022	494856

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order :WT2204113 Page : 1 of 11

Client GHD Limited Laboratory : Waterloo - Environmental

Contact : Pascal Renella Account Manager · Rick Hawthorne Address

: 455 Phillip Street Address : 60 Northland Road, Unit 1 Waterloo ON Canada N2L 3X2

Waterloo, Ontario Canada N2V 2B8

Telephone : 519 725 3313 Telephone : +1 519 886 6910 **Project** : 12566614 **Date Samples Received** : 17-May-2022 15:45 PO Issue Date : 735-002942 : 31-May-2022 13:11

C-O-C number Sampler : CLIENT

Site

Quote number : 12566614-SSOW-735-002942

No. of samples received : 4 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 : 3 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Rec Actual Date Anions and Nutrients : Chloride in Water by IC HDPE [ON MECP] E235.CI 17-May-2022 24-May-2022 1 GW-12566614-051722-NG-001 28 days 7 days Anions and Nutrients : Chloride in Water by IC HDPE [ON MECP] GW-12566614-051722-NG-002 E235.CI 17-May-2022 24-May-2022 28 days 7 days ✓ ----Anions and Nutrients : Chloride in Water by IC HDPE [ON MECP] GW-12566614-051722-NG-004 E235.CI 17-May-2022 24-May-2022 28 days 7 days Cyanides: WAD Cyanide HDPE - total (sodium hydroxide) 14 days 2 days GW-12566614-051722-NG-001 E336 17-May-2022 19-May-2022 Cyanides: WAD Cyanide HDPE - total (sodium hydroxide) GW-12566614-051722-NG-002 E336 17-May-2022 19-May-2022 14 days 2 days Cyanides: WAD Cyanide HDPE - total (sodium hydroxide) GW-12566614-051722-NG-004 E336 17-May-2022 19-May-2022 14 days 2 days --------Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) GW-12566614-051722-NG-001 E509 17-May-2022 20-May-2022 20-May-2022 28 days 3 days ✓

 Page
 : 4 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viatrix; water						a.aa	Holding time exce	- uu		
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
GW-12566614-051722-NG-002	E509	17-May-2022	20-May-2022				20-May-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
GW-12566614-051722-NG-004	E509	17-May-2022	20-May-2022				20-May-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12566614-051722-NG-001	E421	17-May-2022	20-May-2022				24-May-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12566614-051722-NG-002	E421	17-May-2022	20-May-2022				24-May-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12566614-051722-NG-004	E421	17-May-2022	20-May-2022				24-May-2022	180	7 days	✓
								days		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
GW-12566614-051722-NG-001	E581.F1-L	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
GW-12566614-051722-NG-002	E581.F1-L	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
GW-12566614-051722-NG-003	E581.F1-L	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓
										<u></u>
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)							20-May-2022	14 days		√
GW-12566614-051722-NG-004	E581.F1-L	17-May-2022	20-May-2022							

 Page
 : 5 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wattis. Water					_	aldation. • –	riolaling time exce	cuarioc ,	- vvicini	riolaling in
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		1	Rec	Actual	
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12566614-051722-NG-001	E601.SG	17-May-2022	20-May-2022	14	3 days	✓	26-May-2022	40 days	6 days	✓
				days						
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12566614-051722-NG-002	E601.SG	17-May-2022	20-May-2022	14	3 days	✓	27-May-2022	40 days	7 days	✓
				days						
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID				-						
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12566614-051722-NG-003	E601.SG	17-May-2022	20-May-2022	14	3 days	✓	27-May-2022	40 days	7 days	✓
			·	days						
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID				,						
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12566614-051722-NG-004	E601.SG	17-May-2022	20-May-2022	14	3 days	✓	27-May-2022	40 days	7 davs	✓
		, ,	, ,	days			, ,		,	
Physical Tests : Conductivity in Water				,-						
HDPE [ON MECP]							1			
GW-12566614-051722-NG-001	E100	17-May-2022					21-May-2022	28 days	4 days	√
OW-12300014-031/22-NO-001	2100	Tr May 2022					21-Way-2022	20 days	+ days	
Physical Tests : Conductivity in Water										
HDPE [ON MECP]							1			
GW-12566614-051722-NG-002	E100	17-May-2022					21-May-2022	28 days	4 days	✓
ON 12000011 001122 110 002	2.00						2 :		· aayo	
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
GW-12566614-051722-NG-004	E100	17-May-2022					21-May-2022	28 days	4 days	✓
GW-12300014-031722-NG-004	2100	17 May 2022					21-Way-2022	20 days	+ days	
Physical Tests: pH by Meter										
HDPE [ON MECP] GW-12566614-051722-NG-001	E108	17-May-2022					21-May-2022	4 days	4 days	1
GW-12000014-001/22-NG-001	E106	17-May-2022					21-iviay-2022	4 uays	4 uays	•
Dhysical Tests val by Mater										
Physical Tests : pH by Meter HDPE [ON MECP]							I			
GW-12566614-051722-NG-002	E108	17-May-2022					21-May-2022	4 days	4 days	1
O11-12000017-001122-110-002	2100	17-Way-2022					21-Way-2022	+ days	radys	,

 Page
 : 6 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Watti. Water						raidation.	riolaring time exce	oudilloo ,	***************************************	riolaning rii
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE [ON MECP]										
GW-12566614-051722-NG-004	E108	17-May-2022					21-May-2022	4 days	4 days	✓
		-								
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12566614-051722-NG-001	E641A	17-May-2022	20-May-2022	14	3 days	✓	24-May-2022	40 days	4 days	✓
GW-12000014-00172211G-001	20		20 May 2022	days	o dayo		Z i way zozz	10 dayo	ladyo	
				uays						
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)	E044A	47.140000	00.140000		0.1		04.140000	40 1	4 .1	√
GW-12566614-051722-NG-002	E641A	17-May-2022	20-May-2022	14	3 days	✓	24-May-2022	40 days	4 days	▼
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12566614-051722-NG-004	E641A	17-May-2022	20-May-2022	14	3 days	✓	24-May-2022	40 days	4 days	✓
				days						
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))										
GW-12566614-051722-NG-001	E532A	17-May-2022					19-May-2022	28 days	2 days	✓
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))										
GW-12566614-051722-NG-002	E532A	17-May-2022					19-May-2022	28 days	2 davs	✓
		,							,	
Consisted Metals : Dissalved Haveyslant Chramium (Cr.VII) by IC										
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))							I			
GW-12566614-051722-NG-004	E532A	17-May-2022					19-May-2022	28 days	2 days	1
GW-12300014-031722-NG-004	2002/1	17-Way-2022					13-Way-2022	20 days	2 days	,
Volatile Organic Compounds : BTEX by Headspace GC-MS				1	I	I			I	
Glass vial (sodium bisulfate)	F0444	47 May 2002	00 M 0000				00 May 2000	44.1	0 4	
GW-12566614-051722-NG-003	E611A	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12566614-051722-NG-001	E611D	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓

 Page
 : 7 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Extraction / Preparation		Analysis					
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12566614-051722-NG-002	E611D	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12566614-051722-NG-004	E611D	17-May-2022	20-May-2022				20-May-2022	14 days	3 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

 Page
 : 8 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC freque		ecitication; ✓ =			
Quality Control Sample Type				Count		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
BTEX by Headspace GC-MS	E611A	494592	1	2	50.0	5.0	✓	
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	494388	2	6	33.3	5.0	✓	
Chloride in Water by IC	E235.CI	494894	1	13	7.6	5.0	✓	
Conductivity in Water	E100	494874	1	10	10.0	5.0	✓	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	493593	1	11	9.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	494459	1	4	25.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	495359	1	19	5.2	5.0	✓	
pH by Meter	E108	494873	1	15	6.6	5.0	✓	
VOCs (ON List) by Headspace GC-MS	E611D	494387	1	20	5.0	5.0	✓	
WAD Cyanide	E336	493552	1	3	33.3	5.0	✓	
Laboratory Control Samples (LCS)								
BTEX by Headspace GC-MS	E611A	494592	1	2	50.0	5.0	✓	
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	494388	2	6	33.3	5.0	✓	
Chloride in Water by IC	E235.CI	494894	1	13	7.6	5.0	✓	
Conductivity in Water	E100	494874	1	10	10.0	5.0	✓	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	493593	1	11	9.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	494459	1	4	25.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	495359	1	19	5.2	5.0	✓	
PAHs by Hexane LVI GC-MS	E641A	494856	1	3	33.3	5.0	✓	
pH by Meter	E108	494873	1	15	6.6	5.0	✓	
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	494854	1	5	20.0	5.0	✓	
VOCs (ON List) by Headspace GC-MS	E611D	494387	1	20	5.0	5.0	✓	
WAD Cyanide	E336	493552	1	3	33.3	5.0	✓	
Method Blanks (MB)								
BTEX by Headspace GC-MS	E611A	494592	1	2	50.0	5.0	✓	
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	494388	2	6	33.3	5.0	√	
Chloride in Water by IC	E235.CI	494894	1	13	7.6	5.0	√	
Conductivity in Water	E100	494874	1	10	10.0	5.0	<u>-</u>	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	493593	1	11	9.0	5.0	<u>√</u>	
Dissolved Mercury in Water by CVAAS	E509	494459	1	4	25.0	5.0	<u>√</u>	
Dissolved Metals in Water by CRC ICPMS	E421	495359	1	19	5.2	5.0	<u> </u>	
PAHs by Hexane LVI GC-MS	E641A	494856	1	3	33.3	5.0		
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	494854	1	5	20.0	5.0		
VOCs (ON List) by Headspace GC-MS	E611D	494387	1	20	5.0	5.0		
WAD Cyanide	E336	493552	1	3	33.3	5.0	<u> </u>	
Matrix Spikes (MS)							<u> </u>	
BTEX by Headspace GC-MS	E611A	494592	1	2	50.0	5.0	√	

 Page
 : 9 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type		Co	ount	Frequency (%)					
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS) - Continued									
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	494388	2	6	33.3	5.0	✓		
Chloride in Water by IC	E235.CI	494894	1	13	7.6	5.0	✓		
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	493593	1	11	9.0	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	494459	1	4	25.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	495359	1	19	5.2	5.0	✓		
VOCs (ON List) by Headspace GC-MS	E611D	494387	1	20	5.0	5.0	✓		
WAD Cyanide	E336	493552	1	3	33.3	5.0	✓		

 Page
 : 10 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Waterloo - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Waterloo - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Chloride in Water by IC	E235.Cl Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
WAD Cyanide	E336 Waterloo - Environmental	Water	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
Dissolved Metals in Water by CRC ICPMS	E421 Waterloo - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Mercury in Water by CVAAS	E509 Waterloo - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A Waterloo - Environmental	Water	APHA 3500-Cr C (Ion Chromatography)	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV detection. sample pretreatment involved field or lab filtration following by sample preservation.
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L Waterloo - Environmental	Water	CCME PHC in Soil - Tier 1	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG Waterloo - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Waterloo - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.

 Page
 : 11 of 11

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs (ON List) by Headspace GC-MS	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
				Samples are prepared in headspace vials and are heated and agitated on the
	Waterloo -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS	E641A	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	Waterloo -			
	Environmental			
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	Waterloo -			
	Environmental			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sq
	Waterloo -			is not used within this calculation due to overlap with other fractions.
	Environmental			is not used within this calculation due to overlap with other fractions.
F2-F4 (sg) minus PAH	EC600SG	Water	CCME PHC in Soil - Tier	F2-F4 (sg) minus PAH is calculated as follows: F2-F4 minus PAH = Sum of CCME Fraction 2 (C10-C16), CCME Fraction 3 (C16-C34), and CCME Fraction 4 (C34-C50),
	Waterloo -		'	minus select Polycyclic Aromatic Hydrocarbons (PAH).
	Environmental			Tilling Scient Glydyclio Albinatio Flydroddisons (i 741).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Waterloo -			
	Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Waterland			
	Waterloo -			
VOCs Preparation for Headspace Analysis	Environmental	10/-4	EDA 5004A (
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Waterloo -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : WT2204113

Client : GHD Limited
Contact : Pascal Renella
Address : 455 Phillip Street

:455 Phillip Street

Waterloo ON Canada N2L 3X2

Telephone :519 725 3313

Project :12566614

PO :735-002942

C-O-C number : ---Sampler : CLIENT

Site :----

Quote number : 12566614-SSOW-735-002942

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 16

Laboratory : Waterloo - Environmental

Account Manager : Rick Hawthorne

Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910
Date Samples Received :17-May-2022 15:45

Date Analysis Commenced : 19-May-2022

Issue Date : 31-May-2022 13:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Waterloo Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario

 Page
 : 2 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (QC	Lot: 494873)										
VT2204109-005	Anonymous	pH		E108	0.10	pH units	8.19	8.14	0.05	Diff <2x LOR	
hysical Tests (QC	Lot: 494874)										
VT2204109-005	Anonymous	conductivity		E100	2.0	μS/cm	194	196	0.871%	10%	
nions and Nutrien	ts (QC Lot: 494894)										
VT2204109-005	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	7.92	7.96	0.436%	20%	
yanides (QC Lot:	493552)										
VT2204113-001	GW-12566614-051722-NG- 001	cyanide, weak acid dissociable		E336	0.0020	mg/L	<2.0 µg/L	<0.0020	0	Diff <2x LOR	
issolved Metals (QC Lot: 494459)										
VT2204113-001	GW-12566614-051722-NG- 001	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
issolved Metals (0	QC Lot: 495359)										
/T2204009-001	Anonymous	antimony, dissolved	7440-36-0	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00100	mg/L	32.9 µg/L	0.0336	1.90%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000200	mg/L	<0.200 µg/L	<0.000200	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.100	mg/L	355 μg/L	0.336	0.018	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000500	mg/L	0.0649 μg/L	0.0000678	0.0000029	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00500	mg/L	<5.00 μg/L	<0.00500	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00200	mg/L	<2.00 µg/L	<0.00200	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000500	mg/L	<0.500 µg/L	<0.000500	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000500	mg/L	12.5 μg/L	0.0133	6.29%	20%	
		nickel, dissolved	7440-02-0	E421	0.00500	mg/L	16.6 µg/L	0.0171	0.00057	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000500	mg/L	1.03 µg/L	0.000992	0.000040	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.500	mg/L	201000 μg/L	207	3.17%	20%	
		thallium, dissolved	7440-28-0	E421	0.000100	mg/L	0.356 μg/L	0.000342	0.000013	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000100	mg/L	10.2 μg/L	0.0103	0.733%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00500	mg/L	<5.00 μg/L	<0.00500	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0100	mg/L	34.0 µg/L	0.0331	0.0010	Diff <2x LOR	

 Page
 : 4 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
•	QC Lot: 493593) - contin	ued									
CG2205921-008	Anonymous	chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 4943										
WT2204113-001	GW-12566614-051722-NG-	acetone	67-64-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
	001		71-43-2	E611D	0.50	/1	<0.50	<0.50	0	Diff <2x LOR	
		benzene	71-43-2 75-27-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromodichloromethane		E611D		μg/L					
		bromoform	75-25-2 74-83-9	E611D	0.50 0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromomethane				μg/L	<0.50	<0.50		Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR	
		chlorobenzene	108-90-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromochloromethane	124-48-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromoethane, 1,2-	106-93-4	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,3-	541-73-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorodifluoromethane	75-71-8	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethane, 1,1-	75-34-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethane, 1,2-	107-06-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, 1,1-	75-35-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		,	78-93-3	E611D	20	µg/∟ µg/L	<20	<20	0	Diff <2x LOR	
		methyl ethyl ketone [MEK]	108-10-1	E611D	20		<20	<20	0	Diff <2x LOR	
		methyl isobutyl ketone [MIBK]				μg/L					
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611D	0.50	μg/L 	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	

 Page
 : 5 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 4943	87) - continued									
WT2204113-001	GW-12566614-051722-NG- 001	trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethane, 1,1,2-	79-00-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 4945	92)									
WT2203988-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 494388)										
WT2204113-001	GW-12566614-051722-NG- 001	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 494591)										
WT2203988-001	Anonymous	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	
			_								

 Page
 : 6 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 494874)						
conductivity		E100	1	μS/cm	1.1	
Anions and Nutrients (QCLot: 494894)						
chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Cyanides (QCLot: 493552)						
cyanide, weak acid dissociable		E336	0.002	mg/L	<0.0020	
Dissolved Metals (QCLot: 494459)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 495359)						
intimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
oron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
hromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
obalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
ickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
ilver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
odium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
nallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
ıranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
ranadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
inc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Speciated Metals (QCLot: 493593)						
rhromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	<0.00050	
/olatile Organic Compounds (QCLot: 4	194387)					
acetone	67-64-1	E611D	20	μg/L	<20	
penzene	71-43-2	E611D	0.5	μg/L	<0.50	
promodichloromethane	75-27-4	E611D	0.5	μg/L	<0.50	

 Page
 : 7 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water

Analyte	CAS Number Met	hod	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLo	ot: 494387) - continued					
promoform	75-25-2 E61	1D	0.5	μg/L	<0.50	
promomethane	74-83-9 E61	1D	0.5	μg/L	<0.50	
arbon tetrachloride	56-23-5 E61	1D	0.2	μg/L	<0.20	
hlorobenzene	108-90-7 E61	1D	0.5	μg/L	<0.50	
chloroform	67-66-3 E61	1D	0.5	μg/L	<0.50	
libromochloromethane	124-48-1 E61	1D	0.5	μg/L	<0.50	
ibromoethane, 1,2-	106-93-4 E61	1D	0.2	μg/L	<0.20	
lichlorobenzene, 1,2-	95-50-1 E61	1D	0.5	μg/L	<0.50	
lichlorobenzene, 1,3-	541-73-1 E61	1D	0.5	μg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7 E61	1D	0.5	μg/L	<0.50	
lichlorodifluoromethane	75-71-8 E61	1D	0.5	μg/L	<0.50	
dichloroethane, 1,1-	75-34-3 E61	1D	0.5	μg/L	<0.50	
lichloroethane, 1,2-	107-06-2 E61	1D	0.5	μg/L	<0.50	
ichloroethylene, 1,1-	75-35-4 E61	1D	0.5	μg/L	<0.50	
ichloroethylene, cis-1,2-	156-59-2 E61	1D	0.5	μg/L	<0.50	
ichloroethylene, trans-1,2-	156-60-5 E61	1D	0.5	μg/L	<0.50	
ichloromethane	75-09-2 E61	1D	1	μg/L	<1.0	
ichloropropane, 1,2-	78-87-5 E61	1D	0.5	μg/L	<0.50	
ichloropropylene, cis-1,3-	10061-01-5 E61	1D	0.3	μg/L	<0.30	
lichloropropylene, trans-1,3-	10061-02-6 E61	1D	0.3	μg/L	<0.30	
ethylbenzene	100-41-4 E61	1D	0.5	μg/L	<0.50	
nexane, n-	110-54-3 E61	1D	0.5	μg/L	<0.50	
nethyl ethyl ketone [MEK]	78-93-3 E61	1D	20	μg/L	<20	
nethyl isobutyl ketone [MIBK]	108-10-1 E61	1D	20	μg/L	<20	
nethyl-tert-butyl ether [MTBE]	1634-04-4 E61	1D	0.5	μg/L	<0.50	
tyrene	100-42-5 E61	1D	0.5	μg/L	<0.50	
etrachloroethane, 1,1,1,2-	630-20-6 E61	1D	0.5	μg/L	<0.50	
etrachloroethane, 1,1,2,2-	79-34-5 E61	1D	0.5	μg/L	<0.50	
etrachloroethylene	127-18-4 E61	1D	0.5	μg/L	<0.50	
oluene	108-88-3 E61	1D	0.5	μg/L	<0.50	
ichloroethane, 1,1,1-	71-55-6 E61	1D	0.5	μg/L	<0.50	
richloroethane, 1,1,2-	79-00-5 E61	1D	0.5	μg/L	<0.50	
richloroethylene	79-01-6 E61	1D	0.5	μg/L	<0.50	
richlorofluoromethane	75-69-4 E61	1D	0.5	μg/L	<0.50	
vinyl chloride	75-01-4 E61	1D	0.5	μg/L	<0.50	
kylene, m+p-	179601-23-1 E61	1D	0.4	μg/L	<0.40	

 Page
 : 8 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (Q0						
cylene, o-	95-47-6	E611D	0.3	μg/L	<0.30	
Volatile Organic Compounds(Q0	CLot: 494592)					
benzene	71-43-2	E611A	0.5	μg/L	<0.50	
ethylbenzene	100-41-4	E611A	0.5	μg/L	<0.50	
oluene	108-88-3	E611A	0.5	μg/L	<0.50	
zylene, m+p-	179601-23-1	E611A	0.4	μg/L	<0.40	
cylene, o-	95-47-6	E611A	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 494388)						
=1 (C6-C10)		E581.F1-L	25	μg/L	<25	
Hydrocarbons (QCLot: 494591)						
-1 (C6-C10)		E581.F1-L	25	μg/L	<25	
Hydrocarbons (QCLot: 494854)						
² (C10-C16)		E601.SG	100	μg/L	<100	
F3 (C16-C34)		E601.SG	250	μg/L	<250	
F4 (C34-C50)		E601.SG	250	μg/L	<250	
Polycyclic Aromatic Hydrocarbor	ns (QCLot: 494856)					
acenaphthene	83-32-9	E641A	0.01	μg/L	<0.010	
acenaphthylene	208-96-8	E641A	0.01	μg/L	<0.010	
anthracene	120-12-7	E641A	0.01	μg/L	<0.010	
penz(a)anthracene	56-55-3	E641A	0.01	μg/L	<0.010	
penzo(a)pyrene	50-32-8	E641A	0.005	μg/L	<0.0050	
enzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	<0.010	
penzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	<0.010	
penzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	<0.010	
chrysene	218-01-9	E641A	0.01	μg/L	<0.010	
dibenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	<0.0050	
luoranthene	206-44-0	E641A	0.01	μg/L	<0.010	
luorene	86-73-7	E641A	0.01	μg/L	<0.010	
ndeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	<0.010	
nethylnaphthalene, 1-	90-12-0	E641A	0.01	μg/L	<0.010	
methylnaphthalene, 2-	91-57-6	E641A	0.01	μg/L	<0.010	
naphthalene	91-20-3	E641A	0.05	μg/L	<0.050	
phenanthrene	85-01-8	E641A	0.02	μg/L	<0.020	
pyrene	129-00-0	E641A	0.01	μg/L	<0.010	

 Page
 : 9 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

 Page
 : 10 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 494873)									
рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 494874)									
conductivity		E100	1	μS/cm	1409 μS/cm	98.6	90.0	110	
Anions and Nutrients (QCLot: 494894)						1			
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	104	90.0	110	
Cyanides (QCLot: 493552)									
cyanide, weak acid dissociable		E336	0.002	mg/L	0.125 mg/L	107	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	94.8	80.0	120	
Dissolved Metals (QCLot: 495359)									
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	0.05 mg/L	103	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	0.05 mg/L	102	80.0	120	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	0.0125 mg/L	106	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.005 mg/L	108	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	0.05 mg/L	105	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.005 mg/L	105	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.0125 mg/L	105	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.0125 mg/L	102	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.0125 mg/L	102	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.025 mg/L	101	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.0125 mg/L	102	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.025 mg/L	102	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	102	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.005 mg/L	96.2	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	2.5 mg/L	108	80.0	120	
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	0.05 mg/L	100	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.00025 mg/L	101	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.025 mg/L	105	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.025 mg/L	106	80.0	120	
Speciated Metals (QCLot: 493593)									
chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	0.025 mg/L	98.8	80.0	120	

 Page
 : 11 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot:									
acetone	67-64-1	E611D	20	μg/L	100 μg/L	114	70.0	130	
benzene	71-43-2	E611D	0.5	μg/L	100 μg/L	94.4	70.0	130	
bromodichloromethane	75-27-4	E611D	0.5	μg/L	100 μg/L	104	70.0	130	
bromoform	75-25-2	E611D	0.5	μg/L	100 μg/L	117	70.0	130	
bromomethane	74-83-9	E611D	0.5	μg/L	100 μg/L	97.9	70.0	130	
carbon tetrachloride	56-23-5	E611D	0.2	μg/L	100 μg/L	99.4	70.0	130	
chlorobenzene	108-90-7	E611D	0.5	μg/L	100 μg/L	100.0	70.0	130	
chloroform	67-66-3	E611D	0.5	μg/L	100 μg/L	101	70.0	130	
dibromochloromethane	124-48-1	E611D	0.5	μg/L	100 μg/L	96.2	70.0	130	
dibromoethane, 1,2-	106-93-4	E611D	0.2	μg/L	100 μg/L	95.6	70.0	130	
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	100 μg/L	113	70.0	130	
dichlorobenzene, 1,3-	541-73-1	E611D	0.5	μg/L	100 μg/L	111	70.0	130	
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	μg/L	100 μg/L	108	70.0	130	
lichlorodifluoromethane	75-71-8	E611D	0.5	μg/L	100 μg/L	106	70.0	130	
lichloroethane, 1,1-	75-34-3	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
lichloroethane, 1,2-	107-06-2	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
dichloroethylene, 1,1-	75-35-4	E611D	0.5	μg/L	100 μg/L	107	70.0	130	
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	μg/L	100 μg/L	96.2	70.0	130	
dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	μg/L	100 μg/L	106	70.0	130	
dichloromethane	75-09-2	E611D	1	μg/L	100 μg/L	101	70.0	130	
dichloropropane, 1,2-	78-87-5	E611D	0.5	μg/L	100 μg/L	99.7	70.0	130	
dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	μg/L	100 μg/L	102	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	μg/L	100 μg/L	88.1	70.0	130	
ethylbenzene	100-41-4	E611D	0.5	μg/L	100 μg/L	98.4	70.0	130	
nexane, n-	110-54-3	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	100 μg/L	110	70.0	130	
methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	100 μg/L	110	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	100 μg/L	106	70.0	130	
styrene	100-42-5	E611D	0.5	μg/L	100 μg/L	84.2	70.0	130	
tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	μg/L	100 μg/L	94.6	70.0	130	
etrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L	100 μg/L	101	70.0	130	
etrachloroethylene	127-18-4	E611D	0.5	μg/L	100 μg/L	99.7	70.0	130	
oluene	108-88-3	E611D	0.5	μg/L	100 μg/L	101	70.0	130	
richloroethane, 1,1,1-	71-55-6	E611D	0.5	μg/L	100 μg/L	100	70.0	130	
trichloroethane, 1,1,2-	79-00-5	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
richloroethylene	79-01-6	E611D	0.5	μg/L	100 μg/L	91.9	70.0	130	
richlorofluoromethane	75-69-4	E611D	0.5	μg/L	100 μg/L	102	70.0	130	

 Page
 : 12 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Volume Compounds QCLot: 494387 - continued volume Volume Compounds QCLot: 494387 - continued Volume Compounds QCLot: 494382 - continued Volume Compounds QCLot: 494383 - continued Volume Continued Volume Compounds Volume Continued Volume	Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
Volstite Organic Compounds (OCLot: 494387)						Spike	Recovery (%)	Recovery	Limits (%)	
Wind changes	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
	Volatile Organic Compounds (QCLot	: 494387) - continued								
Volatile Cryanic Compounds (QCLot: 494589) Volatile Cryanic Compounds (QCLot: 494591) Volatile Cryanic Compounds (QCLot: 494591) Volatile Cryanic Compounds (QCLot: 494591) Volatile Cryanic Cryan	vinyl chloride	75-01-4	E611D	0.5	μg/L	100 μg/L	92.9	70.0	130	
Volatile Organic Compounds (QCLot: 494892) Part	xylene, m+p-	179601-23-1	E611D	0.4	μg/L	200 μg/L	102	70.0	130	
Serizone 71-43-2 Ent 2.5 3	xylene, o-	95-47-6	E611D	0.3	μg/L	100 μg/L	96.6	70.0	130	
100 44-4 8811A 0.5 µgL 100 µgL 96.7 70.0 130	Volatile Organic Compounds (QCLot	: 494592)								
108.88-3 1011A 0.5 µg/L 100 µg/L 105 70.0 130	benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	108	70.0	130	
	ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	96.7	70.0	130	
Hydrocarbons (QCLot: 494388) F1 (26-C10) — E581 F1-L 25 µg/L 2000 µg/L 104 80.0 120 —	toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	105	70.0	130	
Hydrocarbons (QCLot: 494388) FI (CoC-10)	xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	105	70.0	130	
FI (CBC-10) — E581.F1-L 25 µg/L 2000 µg/L 104 80.0 120 —— Hydrocarbons (QCLot: 494851) FI (CBC-10)	xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	99.8	70.0	130	
FI (CBC-10) — E581.F1-L 25 µg/L 2000 µg/L 104 80.0 120 —— Hydrocarbons (QCLot: 494851) FI (CBC-10)										
FI (CBC-10) — E581.F1-L 25 µg/L 2000 µg/L 104 80.0 120 —— Hydrocarbons (QCLot: 494851) FI (CBC-10)	Hydrocarbons (QCLot: 494388)									
Fi (CG-C10)	F1 (C6-C10)		E581.F1-L	25	μg/L	2000 μg/L	104	80.0	120	
Fi (CG-C10)	Hvdrocarbons (QCLot: 494591)									
F2 (C10-C16)	F1 (C6-C10)		E581.F1-L	25	μg/L	2000 μg/L	91.3	80.0	120	
F2 (C10-C16)	Hydrocarbons (QCLot: 494854)									'
E601.SG 250 pg/L 6087 µg/L 79.1 70.0 130	F2 (C10-C16)		E601.SG	100	μg/L	5018 μg/L	104	70.0	130	
Polycyclic Aromatic Hydrocarbons (QCLot: 494856) acenaphthylene 83-32-9 E641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 acenaphthylene 208-968 E641A 0.01 µg/L 0.5263 µg/L 101 50.0 140 acenaphthylene 120-12-7 E641A 0.01 µg/L 0.5263 µg/L 102 50.0 140 benz(a)anthracene 56-55-3 E641A 0.01 µg/L 0.5263 µg/L 106 50.0 140 benz(a)pyrene 50-32-8 E641A 0.01 µg/L 0.5263 µg/L 97.4 50.0 140 benz(c)g/l)fluoranthene n/a E641A 0.01 µg/L 0.5263 µg/L 103 50.0 140 benz(c)g/l,i)perylene benz(c)g/l)fluoranthene 120-708-9 E641A 0.01 µg/L 0.5263 µg/L 103 50.0 140 benz(c)g/l,i)perylene benz(c)g/l)fluoranthene 207-08-9 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 benz(c)g/l,i)perylene 53-70-3 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 benz(c)g/l,i)perylene 191-24-3 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 benz(c)g/l,i)perylene 191-24-3 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 benz(c)g/l,i)perylene 191-24-3 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 benz(c)g/l,i)perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 benz(c)g/l,iii/perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 benz(c)g/l,iii/perylene 191-24-2 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 benz(c)g	F3 (C16-C34)		E601.SG	250	μg/L	6312 μg/L	122	70.0	130	
acenaphthene 83-32-9 E641A 0.01 μg/L 0.5263 μg/L 108 50.0 140	F4 (C34-C50)		E601.SG	250	μg/L	6087 μg/L	79.1	70.0	130	
acenaphthene 83-32-9 E641A 0.01 μg/L 0.5263 μg/L 108 50.0 140										
acenaphthylene 208-96-8 E641A 0.01 µg/L 0.5263 µg/L 101 50.0 140	Polycyclic Aromatic Hydrocarbons (
anthracene 120-12-7	acenaphthene	83-32-9	E641A	0.01	μg/L	0.5263 μg/L	108	50.0	140	
benz(a)anthracene 56-5-3	acenaphthylene	208-96-8	E641A	0.01	μg/L	0.5263 μg/L	101	50.0	140	
benzo(a)pyrene 50-32-8	anthracene	120-12-7	E641A	0.01	μg/L	0.5263 μg/L	102	50.0	140	
benzo(b+j)fluoranthene	benz(a)anthracene	56-55-3	E641A	0.01	μg/L	0.5263 μg/L	106	50.0	140	
benzo(g,h,i)perylene 191-24-2	benzo(a)pyrene	50-32-8	E641A	0.005	μg/L	0.5263 μg/L	97.4	50.0	140	
benzo(k)fluoranthene 207-08-9 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 dibenz(a,h)anthracene 53-70-3 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 dibenz(a,h)anthracene 53-70-3 E641A 0.005 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a,h)anthracene 641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 dibenz(a	benzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	0.5263 μg/L	103	50.0	140	
chrysene 218-01-9 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 dibenz(a,h)anthracene 53-70-3 E641A 0.005 µg/L 0.5263 µg/L 107 50.0 140 fluoranthene 86-73-7 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 fluorene 86-73-7 E641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 indeno(1,2,3-c,d)pyrene 193-39-5 E641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 methylnaphthalene, 1- methylnaphthalene, 2- naphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 mathylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 mathylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 97.7 50.0 140 mathylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 97.7 50.0 140 mathylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 98.4 50.0 140	benzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	0.5263 µg/L	104	50.0	140	
dibenz(a,h)anthracene 53-70-3	benzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	0.5263 μg/L	113	50.0	140	
fluoranthene 206-44-0 E641A 0.01 µg/L 0.5263 µg/L 113 50.0 140 fluorene 86-73-7 E641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 fluorene 193-39-5 E641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 methylnaphthalene, 1- methylnaphthalene, 2- methylnaphthalene, 2- 91-57-6 E641A 0.01 µg/L 0.5263 µg/L 0.5263 µg/L 104 50.0 140 maphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 97.7 50.0 140 maphthalene 91-20-3 E641A 0.05 µg/L 0.5263 µg/L 98.4 50.0 140 fluorene 140 fluorene 150.0 140 fluorene 150	chrysene	218-01-9	E641A	0.01	μg/L	0.5263 μg/L	110	50.0	140	
fluorene 86-73-7 E641A 0.01 µg/L 0.5263 µg/L 108 50.0 140 indeno(1,2,3-c,d)pyrene 193-39-5 E641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 methylnaphthalene, 1- methylnaphthalene, 2- methylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 maphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 97.7 50.0 140 maphthalene 91-20-3 E641A 0.05 µg/L 0.5263 µg/L 98.4 50.0 140	dibenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	0.5263 μg/L	107	50.0	140	
fluorene 86-73-7 E641A 0.01 μg/L 0.5263 μg/L 108 50.0 140 indeno(1,2,3-c,d)pyrene 193-39-5 E641A 0.01 μg/L 0.5263 μg/L 107 50.0 140 methylnaphthalene, 1- methylnaphthalene, 2- methylnaphthalene 91-20-3 E641A 0.01 μg/L 0.5263 μg/L 104 50.0 140 maphthalene 91-20-3 E641A 0.01 μg/L 0.5263 μg/L 97.7 50.0 140 maphthalene 91-20-3 E641A 0.05 μg/L 0.5263 μg/L 98.4 50.0 140	fluoranthene	206-44-0	E641A	0.01	μg/L	0.5263 μg/L	113	50.0	140	
indeno(1,2,3-c,d)pyrene 193-39-5 E641A 0.01 µg/L 0.5263 µg/L 107 50.0 140 methylnaphthalene, 1- methylnaphthalene, 2- methylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 methylnaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 97.7 50.0 140 maphthalene 91-20-3 E641A 0.05 µg/L 0.5263 µg/L 98.4 50.0 140	fluorene	86-73-7	E641A	0.01	μg/L		108	50.0	140	
methylnaphthalene, 1- 90-12-0 E641A 0.01 µg/L 0.5263 µg/L 104 50.0 140 methylnaphthalene, 2- 91-57-6 E641A 0.01 µg/L 0.5263 µg/L 97.7 50.0 140 naphthalene 91-20-3 E641A 0.05 µg/L 0.5263 µg/L 98.4 50.0 140	indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	0.5263 μg/L	107	50.0	140	
methylnaphthalene, 2- 91-57-6 E641A 0.01 μg/L 0.5263 μg/L 97.7 50.0 140 naphthalene 91-20-3 E641A 0.05 μg/L 0.5263 μg/L 98.4 50.0 140	methylnaphthalene, 1-	90-12-0	E641A	0.01		1.5		50.0	140	
naphthalene 91-20-3 E641A 0.05 μg/L 0.5263 μg/L 98.4 50.0 140	methylnaphthalene, 2-	91-57-6	E641A	0.01				50.0	140	
	naphthalene	91-20-3	E641A	0.05		, ,		50.0	140	
	phenanthrene	85-01-8	E641A	0.02		1.5		50.0	140	

 Page
 : 13 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water									
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polycyclic Aromatic Hydrocarbons (6	QCLot: 494856) - continue	d							
pyrene	129-00-0	E641A	0.01	μg/L	0.5263 μg/L	114	50.0	140	

 Page
 : 14 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ents (QCLot: 494894)									
WT2204109-005	Anonymous	chloride	16887-00-6	E235.CI	103 mg/L	100 mg/L	103	75.0	125	
yanides (QCLo	t: 493552)									
NT2204113-001	GW-12566614-051722-NG-0 01	cyanide, weak acid dissociable		E336	0.156 mg/L	0.125 mg/L	125	70.0	130	
issolved Metals	(QCLot: 494459)									
WT2204113-002	GW-12566614-051722-NG-0 02	mercury, dissolved	7439-97-6	E509	0.0000896 mg/L	0.0001 mg/L	89.6	70.0	130	
issolved Metals	(QCLot: 495359)									
WT2204009-002	Anonymous	antimony, dissolved	7440-36-0	E421	0.494 mg/L	0.5 mg/L	98.8	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.502 mg/L	0.5 mg/L	100	70.0	130	
		barium, dissolved	7440-39-3	E421	0.121 mg/L	0.125 mg/L	96.5	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0466 mg/L	0.05 mg/L	93.3	70.0	130	
		boron, dissolved	7440-42-8	E421	0.459 mg/L	0.5 mg/L	91.7	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0486 mg/L	0.05 mg/L	97.3	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.123 mg/L	0.125 mg/L	98.6	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.120 mg/L	0.125 mg/L	95.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.114 mg/L	0.125 mg/L	91.1	70.0	130	
		lead, dissolved	7439-92-1	E421	0.228 mg/L	0.25 mg/L	91.4	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.125 mg/L	0.125 mg/L	100	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.233 mg/L	0.25 mg/L	93.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.512 mg/L	0.5 mg/L	102	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0443 mg/L	0.05 mg/L	88.5	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	25 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.443 mg/L	0.5 mg/L	88.5	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.0025 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.258 mg/L	0.25 mg/L	103	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.222 mg/L	0.25 mg/L	88.7	70.0	130	
peciated Metals	(QCLot: 493593)									
CG2205921-008	Anonymous	chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0393 mg/L	0.04 mg/L	98.4	70.0	130	
olatile Organic (Compounds (QCLot: 49	4387)								
WT2204113-001	GW-12566614-051722-NG-0	acetone	67-64-1	E611D	94 μg/L	100 μg/L	93.5	60.0	140	
	01	benzene	71-43-2	E611D	89.5 μg/L	100 μg/L	89.5	60.0	140	

 Page
 : 15 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water							Matrix Spike	(MS) Report		
					Spil	re	Recovery (%)	Recovery	y Limits (%)	
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	Compounds (QCLot: 49	4387) - continued								
WT2204113-001	GW-12566614-051722-NG-0	bromodichloromethane	75-27-4	E611D	99.2 μg/L	100 μg/L	99.2	60.0	140	
	01	bromoform	75-25-2	E611D	102 μg/L	100 μg/L	102	60.0	140	
		bromomethane	74-83-9	E611D	91.1 μg/L	100 μg/L	91.1	60.0	140	
		carbon tetrachloride	56-23-5	E611D	97.3 μg/L	100 μg/L	97.3	60.0	140	
		chlorobenzene	108-90-7	E611D	93.3 μg/L	100 μg/L	93.3	60.0	140	
		chloroform	67-66-3	E611D	96.7 μg/L	100 μg/L	96.7	60.0	140	
		dibromochloromethane	124-48-1	E611D	85.4 μg/L	100 μg/L	85.4	60.0	140	
		dibromoethane, 1,2-	106-93-4	E611D	84.8 µg/L	100 μg/L	84.8	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	107 μg/L	100 μg/L	107	60.0	140	
		dichlorobenzene, 1,3-	541-73-1	E611D	110 μg/L	100 μg/L	110	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	107 μg/L	100 μg/L	107	60.0	140	
		dichlorodifluoromethane	75-71-8	E611D	93.5 μg/L	100 μg/L	93.5	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611D	65.0 μg/L	100 μg/L	65.0	60.0	140	
		dichloroethane, 1,2-	107-06-2	E611D	94.1 μg/L	100 μg/L	94.1	60.0	140	
		dichloroethylene, 1,1-	75-35-4	E611D	104 μg/L	100 μg/L	104	60.0	140	
		dichloroethylene, cis-1,2-	156-59-2	E611D	91.8 μg/L	100 μg/L	91.8	60.0	140	
		dichloroethylene, trans-1,2-	156-60-5	E611D	104 μg/L	100 μg/L	104	60.0	140	
		dichloromethane	75-09-2	E611D	94.6 μg/L	100 μg/L	94.6	60.0	140	
		dichloropropane, 1,2-	78-87-5	E611D	94.9 μg/L	100 μg/L	94.9	60.0	140	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	98.3 μg/L	100 μg/L	98.3	60.0	140	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	79.9 µg/L	100 μg/L	79.9	60.0	140	
		ethylbenzene	100-41-4	E611D	93.7 μg/L	100 μg/L	93.7	60.0	140	
		hexane, n-	110-54-3	E611D	99.5 μg/L	100 μg/L	99.5	60.0	140	
		methyl ethyl ketone [MEK]	78-93-3	E611D	87 μg/L	100 μg/L	87.4	60.0	140	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	89 µg/L	100 μg/L	88.9	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	103 μg/L	100 μg/L	103	60.0	140	
		styrene	100-42-5	E611D	76.1 µg/L	100 μg/L	76.1	60.0	140	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	85.5 μg/L	100 μg/L	85.5	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	84.6 µg/L	100 μg/L	84.6	60.0	140	
		tetrachloroethylene	127-18-4	E611D	96.4 μg/L	100 μg/L	96.4	60.0	140	
		toluene	108-88-3	E611D	95.0 μg/L	100 μg/L	95.0	60.0	140	
		trichloroethane, 1,1,1-	71-55-6	E611D	98.2 μg/L	100 μg/L	98.2	60.0	140	
		trichloroethane, 1,1,2-	79-00-5	E611D	92.3 μg/L	100 μg/L	92.3	60.0	140	
		trichloroethylene	79-01-6	E611D	87.8 μg/L	100 μg/L	87.8	60.0	140	
		trichlorofluoromethane	75-69-4	E611D	99.2 μg/L	100 μg/L	99.2	60.0	140	
		vinyl chloride	75-01-4	E611D	83.7 µg/L	100 μg/L	83.7	60.0	140	
	I	xylene, m+p-	179601-23-1	E611D	197 µg/L	200 μg/L	98.5	60.0	140	

 Page
 : 16 of 16

 Work Order
 : WT2204113

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic	Compounds (QCLot: 49	4387) - continued								
WT2204113-001	GW-12566614-051722-NG-0	xylene, o-	95-47-6	E611D	91.6 μg/L	100 μg/L	91.6	60.0	140	
Volatile Organic	Compounds (QCLot: 49	4592)								
WT2203988-001	Anonymous	benzene	71-43-2	E611A	98.5 μg/L	100 μg/L	98.5	60.0	140	
		ethylbenzene	100-41-4	E611A	91.2 μg/L	100 μg/L	91.2	60.0	140	
		toluene	108-88-3	E611A	98.0 μg/L	100 μg/L	98.0	60.0	140	
		xylene, m+p-	179601-23-1	E611A	188 μg/L	200 μg/L	94.3	60.0	140	
		xylene, o-	95-47-6	E611A	91.6 μg/L	100 μg/L	91.6	60.0	140	
Hydrocarbons (C	QCLot: 494388)									
WT2204113-001	GW-12566614-051722-NG-0 01	F1 (C6-C10)		E581.F1-L	1830 µg/L	2000 μg/L	91.3	60.0	140	
Hydrocarbons (0	QCLot: 494591)									
WT2203988-001	Anonymous	F1 (C6-C10)		E581.F1-L	1730 μg/L	2000 μg/L	86.5	60.0	140	

ALS Sample ID: WT2204113-001-E601.SG Client Sample ID: GW-12566614-051722-NG-001

← F2-	→ ←	—F3—→ ← —F4—	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067⁰F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Je	et Fuels→						

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

ALS Sample ID: WT2204113-002-E601.SG Client Sample ID: GW-12566614-051722-NG-002

← F2-	→ ←	-F3 → F4	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067°F						
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →								
←	-Diesel/Jet	Fuels→							

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

ALS Sample ID: WT2204113-003-E601.SG Client Sample ID: GW-12566614-051722-NG-003

← -F2-	→ ←	—F3 —→ ←—F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ıe →	← M	lotor Oils/Lube Oils/Grease—————	
←	-Diesel/Jet	t Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

ALS Sample ID: WT2204113-004-E601.SG Client Sample ID: GW-12566614-051722-NG-004

← F2-	→ ←	-F3 → F4	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067°F						
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →								
←	-Diesel/Jet	Fuels→							

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Canada Toll Free: 1 800 668 9878

Page **Environmental Division**

Š

Telephone: +1 519 886 6910

Date and Time Required for all E&P TATs:

For tests that can not be performed according to the Tr

	samples for h	. [samples take		Drinking													S Sample #	LS Lab Wor	9	/ AFE:	#:	S Account		ntact:	mpany:	
IS NO	numan consumption/ use?	2	n from a Regulated DW Syste		Water (DW) Samples¹ (clie							-	Troblink	GW-125666	GW-1256661	SW-12566614	GW-125666614-	Sample (This de	k Order # (lab use only):/			12566614				GHD Ltd. (Acct 13791)	Copy of Invoice with Report
		7 7		1001										14-05 120-M	4-05122-NG-	-051722- NG-	05/722-NIG-	Identification and/or Coordi	J19904113				100/WT2022GHDL1000057	mation			☐ YES ☑ NO
		BUNDA EM	NO VINE	(Ex	Specify Limits for result ev									7004	.003	. 002	00)	nates port)	ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	Oil	Email 2	Email 1 or Fax	Select Invoice D
		n In	DTV /	cel COC only)	aluation by select								4				17/05/22	Date (dd-mmm-yy)	Rick H					and Gas Require		Invoicing-Canada	Select Invoice Distribution: 🔽 EMAIL 🗌 MAIL
		1/50 /-	-1 -1		ing from drop-dow								Z/B	11.30	14:10	11:30	10:20	Time (hh:mm)	Sampler:			Routing Code:	PO#	ed Fields (client		a@ghd.com	MAIL MAIL
		hu	da	100	m below	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	Sample Type						use)			FAX
14		Cooler	Submis	Cooling									2	9	4	3.	9	NUN	IBER	OF	С	01	IT	AIN	E	RS	
U	ITIINI	Custoo	sion C	Metho										<		1	<		norganic	S	_	_					
	T COO	ly Seal	ommei											_	<	5	<	PHC			-	+	_	-		Indica	
	ER TE	s Intac	nts idei	NON									<	<	_	<	<	vocs								te Filten	
	MPERAT	T.	ntified		SAMI									<	<	<	<	втех						-	-	ed (F), F	
	URES 9	☐ YES	on Sar	E I	YE R								<					Trip Bla	ink -F1							reserve	
	C		nple R	□ ICE	ECEIP.													-,								d (P) or	Anal
	H		eceipt	PACKS	T DET.																			_		Filtered	ysis R
00		imple C	Notifica		AILS (I								_													and Pres	Analysis Request
	FINAL C	ustody	tion:	ROZEN	ab use																					served (F	
	OOLER	Seals I	□ Y:		only)																					/P) below	
	TEMPER	Intact:		COOL		щ.																				*	1
	ATURE		ON	ING INI			-						4				-	SAM	PIFS	0.0	N	10	1 1			\dashv	
		_		TIATED													\dashv						_	_	IRE	D	
		N/A										1						_		_	_	_	_	_		_	
	14.5 0 NO 28.7	INITIAL COOLER TEMPERATURES °C FINAL COOLER T	Cooler Custody Seals Intact:	**THE BLANK EMITY CF 05/17/12 Submission Comments identified on Sample Receipt Notification: YES NO NOTIFICATION N	(Excel COC only) Cooling Method: \ None \ \frac{1}{2} \text{CE} \ CE PACKS \ FROZEN \ COOLING INITIATI Submission Comments identified on Sample Receipt Notification: \ YES \ No Cooler Custody Seals Infact: \ YES \ NIMITIAL COOLER TEMPERATURES °C \ FINAL COOLER TEMPERATURES	SAMPLE RECEIPT DETAILS (lab use only) SAMPLE RECEIPT DETAILS (lab use only)	Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) **TU! BUANK EMITY CF 05/17/12 Submission Comments identified on Sample Receipt Notification: □ ves □ no Sample Receipt Notification: □ ves □	WATER Cooling Method:	WATER Submission Comments identified on Sample Receipt Notification: ves no ves nest nest	WATER Submission Comments identified on Sample Receipt Notification: □ res □ noter all stance in the color of the color	WATER	WATER WA	WATER WA	WATER W	Motes / Specify Limits for result evaluation by selecting from drop-down below WATER WAT	14-05 22-N(5-004 1 -36 WATER 4	1	- O.5. - 2.2 - N.1.5 - O.0.1	Date Interfaction and/or Coordinates Date Imper type Date Sample Type Date Da	ALS Contact: Rick H Sampler BR Fig. Fig	Coalion: Rick H Sampler: Burganian Fig. Fig.	Requisitioner:	Routing Code: Routing Code: Routing Code: Code	Authority Auth	Contraction Column Colum	Email 2 POR POR	

LS PO A

Invoice To Postal Code: City/Province: Street:

Same as Report To

4

YES | NO

Email 3 Email 2

N2L 3X2

Waterloo, ON 455 Phillip St. Phone:

519-884-0510 Pascal Renella GHD Ltd. (Acct 13791)

Company address below will appear on the final report

Email 1 or Fax pascal.renella@ghd.com

See SSOW/PO

Invoice Recipients

Select Distribution:

Merge QC/QCI Reports with COA ☐ YES ☐ NO

Compare Results to Criteria on Report - provide details below if box checked

✓ EMAIL | MAIL

FAX

Routine [R] if received by 3pm M-F - no surcharges apply

4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum

3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum

2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum

1 day [E] if received by 3pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 10pm M-F - 200% rush surcharge minimum

Same day [R2] if received by 10pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 10pm M-F - 200% rush surcharge minimum

Same day [R2] if received by 10pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 10pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 10pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 3pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 3pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 3pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 3pm M-F - 100% rush surcharge minimum

Same day [R2] if received by 3pm M-F - 100% rush surcharge minimum

Select Report Format:

Reports / Recipients ☑ PDF ☑ EXCEL ☑

EDD (DIGITAL) □ N/A

Turnaround Time (TAT) Requested

Work Order Reference WT2204113

Company: Report To

Contact and company name below will appear on the final report

Contact:

13.45

Are

Are

Street:

455 Phillip St.

Company address below will appear on the final report

Phone:

519-884-0510 Pascal Renella GHD Ltd. (Acct 13791)

Company: Report To

Contact and company name below will appear on the final report

Select Report Format:

Reports / Recipients ✓ PDF ✓ EXCEL

Merge QC/QCI Reports with COA YES

O EDD (DIGITAL) □ N/A

Compare Results to Criteria on Report - provide details below if box checked

✓ EMAIL

MAIL

FAX

3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum
2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum
1 day [E] if received by 3pm M-F - 100% rush surcharge minimum
Same day [E2] if received by 10am M-F - 200% rush surcharge. Ad
fees may apply to rush resuests on weekends, statutory holidays and

Routine [R] if received by 3pm M-F - no surcharges apply

4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum

Turnaround Time (TAT) Requested

Contact:

City/Province:

ostal Code:

N2L 3X2 Waterloo, ON

> Email 2 Email 1 or Fax Select Distribution:

pascal.renella@ghd.com See SSOW/PO

Invoice To

Same as Report To

Copy of Invoice with Report

4

Canada Toll Free: 1 800 668 9878

Page

Environmental Division

Waterloo

Work Order Reference

_
≥
22
04
$\vec{\Box}$
ω

	Time: c	second second second second second second second second	I dieplicia . + 1 212 000 0210
YES NO	Invoice Recipients	For tests that can not be performed according to	cording to the T
YES INO	Select Invoice Distribution: 🗵 EMAIL 🗌 MAIL 📗 FAX	Ana	Analysis Request
	Email 1 or Fax Invoicing-Canada@ghd.com	Indicate Filtered (F), Preserved (P) or Filtered a	nd Preserved (F/P) below
	Email 2		IRE

Are samples taken from a Regulated DW System? Are samples for human consumption/ use? Released by: PO / AFE: Job #: ALS Account # / Quote #: LSD: Contact: Company: (lab use only) ALS Sample # ALS Lab Work Order # (lab use only): () 3304 | 3 Drinking Water (DW) Samples (client use) YES YES [6M-12566614-05122-NG-003 SW-12566614-051722-NG-002 PM-12566614-05122-NO-00H TY O BLINK GW-125666614-051722-NIG-001 GHD Ltd. (Acct 13791) 12566614 NO NO SHIPMENT RELEASE (client use) Project Information Sample Identification and/or Coordinates (This description will appear on the report) GHD100/WT2022GHDL1000057 * THE BLANK EMPTY CF/ 05/17/22 Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Time: Received ALS Contact: Requisitioner: AFE/Cost Center: Major/Minor Code: ocation: Oil and Gas Required Fields (client use) INITIAL SHIPMENT RECEPTION (lab use only) (dd-mmm-yy) 105/22 Rick H Date Date: 11.30 14:10 10:20 Sampler Routing Code: 11:30 (mm:nh) Time Sample Type WATER Cooler Custody Seals Intact: Submission Comments identified on Sample Receipt Notification: Cooling Method: | NONE | TCE 0 NUMBER OF CONTAIN INITIAL COOLER TEMPERATURES °C Received by: PAHS vocs SAMPLE RECEIPT DETAILS (lab use only) BTEX FINAL SHIPMENT RECEPTION (lab use only) YES N/A Trip Blank -F1 ☐ ICE PACKS ☐ FROZEN Sample Custody Seals Intact: FINAL COOLER TEMPERATURES °C ☐ YES COOLING INITIATED NO YES N/A SAMPLES ON HOLD EXTENDED STORAGE REQU SUSPECTED HAZARD (see n

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Temps and Conditions as specified on the back page of the white - report copy REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COP YELLOW - CLIENT COPY

CERTIFICATE OF ANALYSIS

Page : WT2204544 Work Order

Waterloo ON Canada N2L 3X2

Client : GHD Limited Laboratory : Waterloo - Environmental

Contact **Account Manager** : Pascal Renella : Rick Hawthorne Address : 455 Phillip Street

Address : 60 Northland Road, Unit 1

Waterloo ON Canada N2V 2B8

: 1 of 10

Telephone : +1 519 886 6910 **Date Samples Received** : 27-May-2022 10:30

Date Analysis : 28-May-2022

Commenced

Issue Date : 07-Jun-2022 12:52

Telephone : 519 725 3313 **Project** : 12566614 РО : 735-002942

C-O-C number Sampler ----Site

: 12566614-SSOW-735-002942 Quote number

No. of samples received : 4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario
Sarah Birch	Team Leader - Volatiles	Organics, Waterloo, Ontario

 Page
 : 2 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre
mS/cm	millisiemens per centimetre
pH units	pH units

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample WT2204544-004	Client Id GW-12566614-052622-NG-00	ALS Sample #4 NG-008: Insufficient Sample. Test could not be conducted for
	8	EC,PH,CL.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

<: less than.

 Page
 : 3 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-001

Sub-Matrix: Water Client sample ID: GW-12566614-052522-NG-005

(Matrix: Water)

Client sampling date / time: 25-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests							Date	
conductivity		2.90	0.0010	mS/cm	E100	28-May-2022	28-May-2022	502956
рН		7.54	0.10	pH units	E108	28-May-2022	28-May-2022	502955
Anions and Nutrients								
chloride	16887-00-6	749 DLDS,	2.50	mg/L	E235.CI	28-May-2022	30-May-2022	502949
Cyanides							,	
cyanide, weak acid dissociable		<2.0	2.0	μg/L	E336	30-May-2022	30-May-2022	504606
Dissolved Metals							, , ,	
antimony, dissolved	7440-36-0	<1.00 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
arsenic, dissolved	7440-38-2	<1.00 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
barium, dissolved	7440-39-3	129 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
beryllium, dissolved	7440-41-7	<0.200 DLHC,	0.200	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
boron, dissolved	7440-42-8	<100 DLHC,	100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
cadmium, dissolved	7440-43-9	<0.0500 DLHC,	0.0500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
chromium, dissolved	7440-47-3	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
cobalt, dissolved	7440-47-3	1.46 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022 02-Jun-2022	507519
copper, dissolved	7440-46-4 7440-50-8	<2.00 DLHC,	2.00	μg/L μg/L	E421	02-Jun-2022	02-Jun-2022 02-Jun-2022	507519
lead, dissolved		<0.500 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022 02-Jun-2022	
mercury, dissolved	7439-92-1 7439-97-6	<0.0050	0.0050	μg/L μg/L	E509	31-May-2022		507519
molybdenum, dissolved		7.98 DLHC,	0.500		E421	02-Jun-2022	31-May-2022	505316
• ,	7439-98-7	7.96 5.87 DLHC,		μg/L	E421	02-Jun-2022 02-Jun-2022	02-Jun-2022	507519
nickel, dissolved	7440-02-0	0.914 DLHC,	5.00	μg/L			02-Jun-2022	507519
selenium, dissolved	7782-49-2	0.514	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
silver, dissolved	7440-22-4	40.100	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
sodium, dissolved	7440-23-5	000000	500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
thallium, dissolved	7440-28-0	40.100	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
uranium, dissolved	7440-61-1	10.4	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
vanadium, dissolved	7440-62-2	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
zinc, dissolved	7440-66-6	<10.0 DLHC,	10.0	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
dissolved mercury filtration location		Field	-	-	EP509	-	31-May-2022	505316
dissolved metals filtration location		Field	-	-	EP421	-	02-Jun-2022	507519
Speciated Metals								
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.50	0.50	μg/L	E532A	-	30-May-2022	504601
Volatile Organic Compounds					ı			
acetone	67-64-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
benzene	71-43-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059

 Page
 : 4 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12566614-052522-NG-005 Client sampling date / time: 25-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Volatile Organic Compounds							Date	
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
styrene	100-42-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
toluene	108-88-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
BTEX, total		<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	91.7	1.0	%	E611D	31-May-2022	31-May-2022	505059
difluorobenzene, 1,4-	540-36-3	97.2	1.0	%	E611D	31-May-2022	31-May-2022	505059
Hydrocarbons				I				
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	31-May-2022	31-May-2022	505060
F2 (C10-C16)		<100	100	μg/L	E601.SG	01-Jun-2022	07-Jun-2022	506541
F3 (C16-C34)		<250	250	μg/L	E601.SG	01-Jun-2022	07-Jun-2022	506541
F4 (C34-C50)		<250	250	μg/L	E601.SG	01-Jun-2022	07-Jun-2022	506541
F1-BTEX		<25	25	μg/L	EC580	-	01-Jun-2022	-
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	04 1 2003	01-Jun-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	01-Jun-2022	07-Jun-2022	506541
Hydrocarbons Surrogates bromobenzotrifluoride, 2- (F2-F4 surr)	202.02.0	86.9	1.0	%	E601.SG	01-Jun-2022	07 Jun 2022	506544
dichlorotoluene, 3,4-	392-83-6	84.6	1.0	%	E581.F1-L	31-May-2022	07-Jun-2022	506541
Polycyclic Aromatic Hydrocarbons	97-75-0	04.0	1.0	/0	L001.1 1-L	31-Way-2022	31-May-2022	505060
acenaphthene	83-32-9	0.013	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
acenaphthylene	208-96-8	<0.010	0.010	μg/L μg/L	E641A	01-Jun-2022	02-Jun-2022 02-Jun-2022	506540
anthracene	208-96-8 120-12-7	0.040	0.010	μg/L μg/L	E641A	01-Jun-2022	02-Jun-2022 02-Jun-2022	506540
benz(a)anthracene	56-55-3	<0.010	0.010	μg/L μg/L	E641A	01-Jun-2022	02-Jun-2022 02-Jun-2022	506540
benzo(a)pyrene	50-32-8	<0.0050	0.0050	μg/L μg/L	E641A	01-Jun-2022	02-Jun-2022 02-Jun-2022	506540
benzo(b+j)fluoranthene		<0.0030	0.0030	μg/L μg/L	E641A	01-Jun-2022	02-Jun-2022 02-Jun-2022	506540
Son 20(8. Jindordilliene	n/a	-0.010	0.010	µ9/∟	LOTIA	01 Juli-2022	02-Juli-2022	500540

 Page
 : 5 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-001 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-052522-NG-005

Client sampling date / time: 25-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Polycyclic Aromatic Hydrocarbons								
benzo(g,h,i)perylene	191-24-2	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
benzo(k)fluoranthene	207-08-9	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
chrysene	218-01-9	0.012	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
dibenz(a,h)anthracene	53-70-3	<0.0050	0.0050	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
fluoranthene	206-44-0	0.117	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
fluorene	86-73-7	0.043	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
indeno(1,2,3-c,d)pyrene	193-39-5	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
methylnaphthalene, 1-	90-12-0	0.024	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
methylnaphthalene, 1+2-		0.064	0.015	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
methylnaphthalene, 2-	91-57-6	0.040	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
naphthalene	91-20-3	<0.050	0.050	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
phenanthrene	85-01-8	0.486	0.020	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
pyrene	129-00-0	0.108	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
Polycyclic Aromatic Hydrocarbons Surrogates								
chrysene-d12	1719-03-5	117	0.1	%	E641A	01-Jun-2022	02-Jun-2022	506540
naphthalene-d8	1146-65-2	92.7	0.1	%	E641A	01-Jun-2022	02-Jun-2022	506540
phenanthrene-d10	1517-22-2	113	0.1	%	E641A	01-Jun-2022	02-Jun-2022	506540

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2204544-002

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12566614-052622-NG-006

Client sampling date / time: 26-May-2022

						I		
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity		7.76	0.0010	mS/cm	E100	28-May-2022	28-May-2022	502956
рН		7.84	0.10	pH units	E108	28-May-2022	28-May-2022	502955
Anions and Nutrients								
chloride	16887-00-6	2820 DLDS,	10.0	mg/L	E235.CI	28-May-2022	30-May-2022	502949
Cyanides								
cyanide, weak acid dissociable		<2.0	2.0	μg/L	E336	30-May-2022	30-May-2022	504606
Dissolved Metals								
antimony, dissolved	7440-36-0	<1.00 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
arsenic, dissolved	7440-38-2	<1.00 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
barium, dissolved	7440-39-3	573 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
beryllium, dissolved	7440-41-7	<0.200 DLHC,	0.200	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
boron, dissolved	7440-42-8	<100 DLHC,	100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
cadmium, dissolved	7440-43-9	0.0799 DLHC,	0.0500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
chromium, dissolved	7440-47-3	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
cobalt, dissolved	7440-48-4	1.23 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
copper, dissolved	7440-50-8	3.75 DLHC,	2.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
lead, dissolved	7439-92-1	<0.500 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
mercury, dissolved	7439-97-6	<0.0050	0.0050	μg/L	E509	31-May-2022	31-May-2022	505316
molybdenum, dissolved	7439-98-7	6.93 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
nickel, dissolved	7440-02-0	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519

 Page
 : 6 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-002 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-052622-NG-006

Client sampling date / time: 26-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
selenium, dissolved	7782-49-2	0.745 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
silver, dissolved	7440-22-4	<0.100 DLHC,	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
sodium, dissolved	7440-23-5	1570000 DLHC,	5000	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
thallium, dissolved	7440-28-0	<0.100 DLHC,	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
uranium, dissolved	7440-61-1	10.3 DLHC,	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
vanadium, dissolved	7440-62-2	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
zinc, dissolved	7440-66-6	<10.0 DLHC,	10.0	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
dissolved mercury filtration location		Field	-	-	EP509	-	31-May-2022	505316
dissolved metals filtration location		Field	-	-	EP421	-	02-Jun-2022	507519
Speciated Metals								
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.50	0.50	μg/L	E532A	-	30-May-2022	504601
Volatile Organic Compounds								
acetone	67-64-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
benzene	71-43-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
styrene	100-42-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
toluene	108-88-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059

 Page
 : 7 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-002 Sub-Matrix:**Water**

(Matrix: Water)

Client sample ID: GW-12566614-052622-NG-006

Client sampling date / time: 26-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
						·	Date	
Volatile Organic Compounds								
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
BTEX, total		<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	91.0	1.0	%	E611D	31-May-2022	31-May-2022	505059
difluorobenzene, 1,4-	540-36-3	97.5	1.0	%	E611D	31-May-2022	31-May-2022	505059
Hydrocarbons							,	
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	31-May-2022	31-May-2022	505060
F2 (C10-C16)		<100	100	μg/L	E601.SG	01-Jun-2022	07-Jun-2022	506541
F3 (C16-C34)		<250	250	μg/L	E601.SG	01-Jun-2022	07-Jun-2022	506541
F4 (C34-C50)		<250	250	μg/L	E601.SG	01-Jun-2022	07-Jun-2022	506541
F1-BTEX		<25	25	μg/L	EC580	-	01-Jun-2022	-
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	-	01-Jun-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	01-Jun-2022	07-Jun-2022	506541
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	92.6	1.0	%	E601.SG	01-Jun-2022	07-Jun-2022	506541
dichlorotoluene, 3,4-	97-75-0	88.0	1.0	%	E581.F1-L	31-May-2022	31-May-2022	505060
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	0.045	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
acenaphthylene	208-96-8	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
anthracene	120-12-7	0.018	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
benz(a)anthracene	56-55-3	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
benzo(a)pyrene	50-32-8	<0.0050	0.0050	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
benzo(b+j)fluoranthene	n/a	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
benzo(g,h,i)perylene	191-24-2	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
benzo(k)fluoranthene	207-08-9	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
chrysene	218-01-9	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
dibenz(a,h)anthracene	53-70-3	<0.0050	0.0050	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
fluoranthene	206-44-0	0.048	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
fluorene	86-73-7	0.074	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
indeno(1,2,3-c,d)pyrene	193-39-5	<0.010	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
methylnaphthalene, 1-	90-12-0	0.144	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
methylnaphthalene, 1+2-		0.224	0.015	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
methylnaphthalene, 2-	91-57-6	0.080	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
naphthalene	91-20-3	<0.050	0.050	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
phenanthrene	85-01-8	0.638	0.020	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
pyrene	129-00-0	0.100	0.010	μg/L	E641A	01-Jun-2022	02-Jun-2022	506540
Polycyclic Aromatic Hydrocarbons Surrogates				0.1	50.	04.1		
chrysene-d12	1719-03-5	103	0.1	%	E641A	01-Jun-2022	02-Jun-2022	506540
naphthalene-d8	1146-65-2	115	0.1	%	E641A	01-Jun-2022	02-Jun-2022	506540
phenanthrene-d10	1517-22-2	131	0.1	%	E641A	01-Jun-2022	02-Jun-2022	506540

Please refer to the General Comments section for an explanation of any qualifiers detected.

 Page
 : 8 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-003 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12566614-052622-NG-007

Client sampling date / time: 26-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds								
acetone	67-64-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
benzene	71-43-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,2-	95-50-1	< 0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,3-	541-73-1	< 0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,1-	75-34-3	< 0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
styrene	100-42-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
toluene	108-88-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethylene	79-00-5 79-01-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
xylenes, total	1330-20-7	<0.50	0.50	μg/L μg/L	E611D	31-May-2022	31-May-2022	505059
BTEX, total		<1.0	1.0	μg/L μg/L	E611D	31-May-2022	-	
Volatile Organic Compounds Surrogates		71.0	1.0	µ9/∟	20110	51-Way-2022	31-May-2022	505059
bromofluorobenzene, 4-	460.00.4	92.4	1.0	%	E611D	31-May-2022	31 May 2022	505050
difluorobenzene, 1,4-	460-00-4	92.4 97.2	1.0	%	E611D	_	31-May-2022	505059
umuorobenzene, 1,4-	540-36-3	91.2	1.0	70	EULID	31-May-2022	31-May-2022	505059

Please refer to the General Comments section for an explanation of any qualifiers detected.

 Page
 : 9 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-004 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12566614-052622-NG-008

Client sampling date / time: 26-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Cyanides								
cyanide, weak acid dissociable		<2.0	2.0	μg/L	E336	30-May-2022	30-May-2022	504606
Dissolved Metals								
antimony, dissolved	7440-36-0	<1.00 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
arsenic, dissolved	7440-38-2	<1.00 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
barium, dissolved	7440-39-3	473 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
beryllium, dissolved	7440-41-7	<0.200 DLHC,	0.200	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
boron, dissolved	7440-42-8	<100 DLHC,	100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
cadmium, dissolved	7440-43-9	<0.0500 DLHC,	0.0500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
chromium, dissolved	7440-47-3	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
cobalt, dissolved	7440-48-4	2.78 DLHC,	1.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
copper, dissolved	7440-50-8	<2.00 DLHC,	2.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
lead, dissolved	7439-92-1	<0.500 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
mercury, dissolved	7439-97-6	<0.0050	0.0050	μg/L	E509	31-May-2022	31-May-2022	505316
molybdenum, dissolved	7439-98-7	17.4 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
nickel, dissolved	7440-02-0	9.96 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
selenium, dissolved	7782-49-2	0.701 DLHC,	0.500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
silver, dissolved	7440-22-4	<0.100 DLHC,	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
sodium, dissolved	7440-23-5	381000 DLHC,	500	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
thallium, dissolved	7440-28-0	<0.100 DLHC,	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
uranium, dissolved	7440-61-1	5.51 DLHC,	0.100	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
vanadium, dissolved	7440-62-2	<5.00 DLHC,	5.00	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
zinc, dissolved	7440-66-6	<10.0 DLHC,	10.0	μg/L	E421	02-Jun-2022	02-Jun-2022	507519
dissolved mercury filtration location		Field	-	-	EP509	-	31-May-2022	505316
dissolved metals filtration location		Field	-	-	EP421	-	02-Jun-2022	507519
Speciated Metals								
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.50	0.50	μg/L	E532A	-	30-May-2022	504601
Volatile Organic Compounds							· · · · ·	
acetone	67-64-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
benzene	71-43-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
	· -	<0.50	0.50	. •	E611D	1	,	

 Page
 : 10 of 10

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Results

WT2204544-004 Sub-Matrix: Water (Matrix: Water)

Client sample ID: GW-12566614-052622-NG-008

Client sampling date / time: 26-May-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds								
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	31-May-2022	31-May-2022	505059
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
styrene	100-42-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
toluene	108-88-3	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	31-May-2022	31-May-2022	505059
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	31-May-2022	31-May-2022	505059
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	31-May-2022	31-May-2022	505059
BTEX, total		<1.0	1.0	μg/L	E611D	31-May-2022	31-May-2022	505059
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	90.4	1.0	%	E611D	31-May-2022	31-May-2022	505059
difluorobenzene, 1,4-	540-36-3	97.6	1.0	%	E611D	31-May-2022	31-May-2022	505059
Hydrocarbons								
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	31-May-2022	31-May-2022	505060
F1-BTEX		<25	25	μg/L	EC580	-	01-Jun-2022	-
Hydrocarbons Surrogates								
dichlorotoluene, 3,4-	97-75-0	85.0	1.0	%	E581.F1-L	31-May-2022	31-May-2022	505060

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order WT2204544 Page : 1 of 11

Client GHD Limited Laboratory : Waterloo - Environmental

Contact : Pascal Renella Account Manager · Rick Hawthorne Address : 455 Phillip Street Address

: 60 Northland Road, Unit 1 Waterloo ON Canada N2L 3X2

Waterloo, Ontario Canada N2V 2B8

Telephone : 519 725 3313 Telephone : +1 519 886 6910 **Project** : 12566614 **Date Samples Received** : 27-May-2022 10:30 PO Issue Date : 735-002942 : 07-Jun-2022 12:53

C-O-C number Sampler Site

Quote number : 12566614-SSOW-735-002942

No. of samples received : 4 No. of samples analysed :4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 11 : WT2204544 Work Order Client : GHD Limited : 12566614 Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Matrix Spike (MS) Recoveries								
Dissolved Metals	Anonymous	Anonymous	selenium, dissolved	7782-49-2	E421	132 % ^{MES}	70.0-130%	Recovery greater than upper data quality objective
Volatile Organic Compounds	Anonymous	Anonymous	tetrachloroethane, 1,1,2,2-	79-34-5	E611D	34.9 % RRQC	60.0-140%	Recovery less than lower data quality objective

Result Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a
	Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RRQC	Refer to report comments for information regarding this QC result.

 Page
 : 4 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Rec Actual Date Anions and Nutrients : Chloride in Water by IC HDPE E235.CI 26-May-2022 30-May-2022 1 GW-12566614-052622-NG-006 28 days 5 days Anions and Nutrients : Chloride in Water by IC **HDPE** GW-12566614-052522-NG-005 E235.CI 25-May-2022 30-May-2022 28 days 6 days ✓ ----Cyanides: WAD Cyanide HDPE - total (sodium hydroxide) GW-12566614-052622-NG-006 E336 26-May-2022 30-May-2022 14 days 5 days Cyanides: WAD Cyanide HDPE - total (sodium hydroxide) GW-12566614-052622-NG-008 E336 26-May-2022 30-May-2022 14 days 5 days Cyanides: WAD Cyanide HDPE - total (sodium hydroxide) GW-12566614-052522-NG-005 E336 25-May-2022 30-May-2022 14 days | 6 days Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) GW-12566614-052622-NG-006 E509 26-May-2022 31-May-2022 31-May-2022 28 days 5 days --------Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) GW-12566614-052622-NG-008 E509 26-May-2022 31-May-2022 31-May-2022 28 days 5 days ✓

 Page
 : 5 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wattix: water						raidation. • -	nolding time exce	cuarice,	_ vviti iii	Holding III		
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis					
Container / Client Sample ID(s)			Preparation Holding Times		Eval	Analysis Date	Holding Times		Eval			
			Date	Rec	Actual			Rec	Actual			
Dissolved Metals : Dissolved Mercury in Water by CVAAS												
Glass vial dissolved (hydrochloric acid)												
GW-12566614-052522-NG-005	E509	25-May-2022	31-May-2022				31-May-2022	28 days	6 days	✓		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS												
HDPE dissolved (nitric acid)												
GW-12566614-052622-NG-006	E421	26-May-2022	02-Jun-2022				02-Jun-2022	180	7 days	✓		
								days				
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS												
HDPE dissolved (nitric acid)												
GW-12566614-052622-NG-008	E421	26-May-2022	02-Jun-2022				02-Jun-2022	180	7 days	✓		
								days				
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS												
HDPE dissolved (nitric acid)												
GW-12566614-052522-NG-005	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180	8 days	✓		
								days				
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)												
Glass vial (sodium bisulfate)												
GW-12566614-052622-NG-006	E581.F1-L	26-May-2022	31-May-2022				31-May-2022	14 days	5 days	✓		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)												
Glass vial (sodium bisulfate)												
GW-12566614-052622-NG-008	E581.F1-L	26-May-2022	31-May-2022				31-May-2022	14 days	5 days	✓		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)								_				
Glass vial (sodium bisulfate)												
GW-12566614-052522-NG-005	E581.F1-L	25-May-2022	31-May-2022				31-May-2022	14 days	6 days	✓		
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID												
Amber glass/Teflon lined cap (sodium bisulfate)	F004 00	00.14. 0005	04 1 2225		0.1		07 1. 0000	40 :		,		
GW-12566614-052622-NG-006	E601.SG	26-May-2022	01-Jun-2022	14	6 days	✓	07-Jun-2022	40 days	6 days	✓		
				days								
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID												
Amber glass/Teflon lined cap (sodium bisulfate)	F004 00	05 May 0000	04 1 0000		7 4		07 1 0000	40	0 4	,		
GW-12566614-052522-NG-005	E601.SG	25-May-2022	01-Jun-2022	14	7 days	✓	07-Jun-2022	40 days	o days	✓		
				days								

 Page
 : 6 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						araation.	Holding time exce	oddiioo ,	V V I CI III	· · · · · · · · · · · · · · · · · · ·	
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis				
Container / Client Sample ID(s)			Preparation Holding Times		g Times	Eval	Analysis Date	Holding Times		Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : Conductivity in Water											
HDPE											
GW-12566614-052622-NG-006	E100	26-May-2022					28-May-2022	28 days	3 days	✓	
Physical Tests : Conductivity in Water											
HDPE											
GW-12566614-052522-NG-005	E100	25-May-2022					28-May-2022	28 days	4 days	1	
		•					,				
Physical Tests : pH by Meter											
HDPE											
GW-12566614-052622-NG-006	E108	26-May-2022					28-May-2022	0.25	64 hrs	×	
								hrs		EHTR-FM	
Discript Tests will be Mater								19			
Physical Tests : pH by Meter HDPE							l e	<u> </u>			
GW-12566614-052522-NG-005	E108	25-May-2022					28-May-2022	0.25	88 hrs		
GW-12300014-032322-NG-003	L 100	25-iviay-2022					20-iviay-2022	0.25 hrs	001115	EHTR-FM	
								1115		LITTIX-I IVI	
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS									ı		
Amber glass/Teflon lined cap (sodium bisulfate)	F044A	00 May 2000	04 1 2000		0.1		00 1 0000	40 1	4 1		
GW-12566614-052622-NG-006	E641A	26-May-2022	01-Jun-2022	14	6 days	✓	02-Jun-2022	40 days	1 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS											
Amber glass/Teflon lined cap (sodium bisulfate)											
GW-12566614-052522-NG-005	E641A	25-May-2022	01-Jun-2022	14	7 days	✓	02-Jun-2022	40 days	1 days	✓	
				days							
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC											
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))											
GW-12566614-052622-NG-006	E532A	26-May-2022					30-May-2022	28 days	5 days	✓	
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC											
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))											
GW-12566614-052622-NG-008	E532A	26-May-2022					30-May-2022	28 days	5 days	✓	
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC								1	I.		
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))											
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate)) GW-12566614-052522-NG-005	E532A	25-May-2022					30-May-2022	28 days	6 days	1	

 Page
 : 7 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

VICTOR TRACE					_	raidation.	riolaning time oxoco	Judilioo ,	***************************************	riolanig in
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12566614-052622-NG-006	E611D	26-May-2022	31-May-2022				31-May-2022	14 days	5 days	✓
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12566614-052622-NG-007	E611D	26-May-2022	31-May-2022				31-May-2022	14 days	5 days	✓
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12566614-052622-NG-008	E611D	26-May-2022	31-May-2022				31-May-2022	14 days	5 days	✓
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS						1	•			
Glass vial (sodium bisulfate)										
GW-12566614-052522-NG-005	E611D	25-May-2022	31-May-2022				31-May-2022	14 days	6 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

 Page
 : 8 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			С	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	505060	1	10	10.0	5.0	✓
Chloride in Water by IC	E235.CI	502949	1	19	5.2	5.0	√
Conductivity in Water	E100	502956	1	17	5.8	5.0	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	504601	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	505316	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	507519	1	20	5.0	5.0	<u> </u>
pH by Meter	E108	502955	1	18	5.5	5.0	
VOCs (ON List) by Headspace GC-MS	E611D	505059	2	16	12.5	5.0	
WAD Cyanide	E336	504606	1	9	11.1	5.0	
Laboratory Control Samples (LCS)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	505060	1	10	10.0	5.0	1
Chloride in Water by IC	E235.CI	502949	1	19	5.2	5.0	
Conductivity in Water	E100	502956	1	17	5.8	5.0	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	504601	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	505316	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	507519	1	20	5.0	5.0	
PAHs by Hexane LVI GC-MS	E641A	506540	1	10	10.0	5.0	
pH by Meter	E108	502955	1	18	5.5	5.0	
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	506541	1	13	7.6	5.0	
VOCs (ON List) by Headspace GC-MS	E611D	505059	1	16	6.2	5.0	<u> </u>
WAD Cyanide	E336	504606	1	9	11.1	5.0	
Method Blanks (MB)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	505060	1	10	10.0	5.0	1
Chloride in Water by IC	E235.CI	502949	1	19	5.2	5.0	
Conductivity in Water	E100	502956	1	17	5.8	5.0	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	504601	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	505316	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	507519	1	20	5.0	5.0	
PAHs by Hexane LVI GC-MS	E641A	506540	1	10	10.0	5.0	
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	506541	1	13	7.6	5.0	
VOCs (ON List) by Headspace GC-MS	E611D	505059	1	16	6.2	5.0	
WAD Cyanide	E336	504606	1	9	11.1	5.0	
Matrix Spikes (MS)							-
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	505060	1	10	10.0	5.0	1
Chloride in Water by IC	E235.Cl	502949	1	19	5.2	5.0	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	504601	1	20	5.0	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	505316	1	20	5.0	5.0	

 Page
 : 9 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Quality Control Sample Type					Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Dissolved Metals in Water by CRC ICPMS	E421	507519	1	20	5.0	5.0	✓
VOCs (ON List) by Headspace GC-MS	E611D	505059	1	16	6.2	5.0	✓
WAD Cyanide	E336	504606	1	9	11.1	5.0	✓

 Page
 : 10 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Waterloo - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Waterloo - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Chloride in Water by IC	E235.Cl Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
WAD Cyanide	E336 Waterloo - Environmental	Water	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
Dissolved Metals in Water by CRC ICPMS	E421 Waterloo - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Mercury in Water by CVAAS	E509 Waterloo - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A Waterloo - Environmental	Water	APHA 3500-Cr C (Ion Chromatography)	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV detection. sample pretreatment involved field or lab filtration following by sample preservation.
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L Waterloo - Environmental	Water	CCME PHC in Soil - Tier	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG Waterloo - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4).
VOCs (ON List) by Headspace GC-MS	E611D Waterloo - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.

 Page
 : 11 of 11

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PAHs by Hexane LVI GC-MS	E641A	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	Waterloo -			
	Environmental			
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	Waterloo -			
	Environmental			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier 1	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg
	Waterloo -			is not used within this calculation due to overlap with other fractions.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Waterloo -			
	Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Waterloo -			
	Environmental			

QUALITY CONTROL REPORT

Work Order :WT2204544

Client : GHD Limited
Contact : Pascal Renella
Address : 455 Phillip Street

:455 Phillip Street

Waterloo ON Canada N2L 3X2

Telephone :519 725 3313

Project :12566614

PO :735-002942

C-O-C number : ---Sampler : ---Site : ----

Quote number : 12566614-SSOW-735-002942

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 14

Laboratory : Waterloo - Environmental

Account Manager : Rick Hawthorne

Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

Date Samples Received :27-May-2022 10:30

Date Analysis Commenced :28-May-2022

Issue Date : 07-Jun-2022 12:53

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario
Sarah Birch	Team Leader - Volatiles	Waterloo Organics, Waterloo, Ontario

 Page
 : 2 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 502955)										
WT2204540-030	Anonymous	pH		E108	0.10	pH units	6.81	6.81	0	Diff <2x LOR	
Physical Tests (QC	Lot: 502956)										
WT2204540-030	Anonymous	conductivity		E100	2.0	μS/cm	28.9	28.8	0.1	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 502949)										
NT2204540-030	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Cyanides (QC Lot:	504606)										
NT2204494-002	Anonymous	cyanide, weak acid dissociable		E336	0.0020	mg/L	<2.0 μg/L	<0.0020	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 505316)										
WT2204494-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 507519)										
WT2204494-002	Anonymous	antimony, dissolved	7440-36-0	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00100	mg/L	90.8 μg/L	0.0915	0.718%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000200	mg/L	<0.200 µg/L	<0.000200	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.100	mg/L	<100 µg/L	<0.100	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000500	mg/L	<0.0500 µg/L	<0.0000500	0	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00500	mg/L	<5.00 μg/L	<0.00500	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00100	mg/L	<1.00 µg/L	<0.00100	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00200	mg/L	<2.00 μg/L	<0.00200	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000500	mg/L	<0.500 µg/L	<0.000500	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000500	mg/L	<0.500 µg/L	<0.000500	0	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00500	mg/L	<5.00 μg/L	<0.00500	0	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000500	mg/L	<0.500 µg/L	<0.000500	0	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.500	mg/L	48200 μg/L	49.6	2.70%	20%	
		thallium, dissolved	7440-28-0	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00500	mg/L	<5.00 μg/L	<0.00500	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0100	mg/L	<10.0 µg/L	<0.0100	0	Diff <2x LOR	
Speciated Metals (OC Lot: 504601)										
WT2204494-002	Anonymous	chromium, hexavalent [Cr VI],	18540-29-9	E532A	0.00050	mg/L	<0.50 µg/L	<0.00050	0	Diff <2x LOR	
	<u> </u>	dissolved									

 Page
 : 4 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

ub-Matrix: Water									Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie					
/olatile Organic Co	mpounds (QC Lot: 50	5059)														
VT2204497-003	Anonymous	ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
NT2204497-003	Anonymous	acetone	67-64-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR						
		benzene	71-43-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		bromodichloromethane	75-27-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		bromoform	75-25-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		bromomethane	74-83-9	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		carbon tetrachloride	56-23-5	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR						
		chlorobenzene	108-90-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dibromochloromethane	124-48-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dibromoethane, 1,2-	106-93-4	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR						
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichlorobenzene, 1,3-	541-73-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichlorodifluoromethane	75-71-8	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloroethane, 1,1-	75-34-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloroethane, 1,2-	107-06-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloroethylene, 1,1-	75-35-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR						
		dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR						
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR						
		hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR						
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR						
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR						
		tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR						
		toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						
		trichloroethane, 1,1,2-	79-00-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR						

 Page
 : 5 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 5050	59) - continued									
WT2204497-003	Anonymous	trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 505060)										
WT2204497-003	Anonymous	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	

 Page
 : 6 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 502956)						
conductivity		E100	1	μS/cm	1.1	
Anions and Nutrients (QCLot: 502949)						
chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Cyanides (QCLot: 504606)						
cyanide, weak acid dissociable		E336	0.002	mg/L	<0.0020	
Dissolved Metals (QCLot: 505316)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 507519)						
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
ranadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Speciated Metals (QCLot: 504601)						
chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	<0.00050	
Volatile Organic Compounds (QCLot: 5	05059)					
acetone	67-64-1	E611D	20	μg/L	<20	
penzene	71-43-2	E611D	0.5	μg/L	<0.50	
bromodichloromethane	75-27-4	E611D	0.5	μg/L	<0.50	

 Page
 : 7 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCL	ot: 505059) - continued				
bromoform	75-25-2 E611D	0.5	μg/L	<0.50	
promomethane	74-83-9 E611D	0.5	μg/L	<0.50	
carbon tetrachloride	56-23-5 E611D	0.2	μg/L	<0.20	
chlorobenzene	108-90-7 E611D	0.5	μg/L	<0.50	
chloroform	67-66-3 E611D	0.5	μg/L	<0.50	
libromochloromethane	124-48-1 E611D	0.5	μg/L	<0.50	
libromoethane, 1,2-	106-93-4 E611D	0.2	μg/L	<0.20	
dichlorobenzene, 1,2-	95-50-1 E611D	0.5	μg/L	<0.50	
lichlorobenzene, 1,3-	541-73-1 E611D	0.5	μg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7 E611D	0.5	μg/L	<0.50	
lichlorodifluoromethane	75-71-8 E611D	0.5	μg/L	<0.50	
lichloroethane, 1,1-	75-34-3 E611D	0.5	μg/L	<0.50	
lichloroethane, 1,2-	107-06-2 E611D	0.5	μg/L	<0.50	
ichloroethylene, 1,1-	75-35-4 E611D	0.5	μg/L	<0.50	
ichloroethylene, cis-1,2-	156-59-2 E611D	0.5	μg/L	<0.50	
ichloroethylene, trans-1,2-	156-60-5 E611D	0.5	μg/L	<0.50	
ichloromethane	75-09-2 E611D	1	μg/L	<1.0	
ichloropropane, 1,2-	78-87-5 E611D	0.5	μg/L	<0.50	
ichloropropylene, cis-1,3-	10061-01-5 E611D	0.3	μg/L	<0.30	
ichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	μg/L	<0.30	
thylbenzene	100-41-4 E611D	0.5	μg/L	<0.50	
exane, n-	110-54-3 E611D	0.5	μg/L	<0.50	
nethyl ethyl ketone [MEK]	78-93-3 E611D	20	μg/L	<20	
nethyl isobutyl ketone [MIBK]	108-10-1 E611D	20	μg/L	<20	
nethyl-tert-butyl ether [MTBE]	1634-04-4 E611D	0.5	μg/L	<0.50	
tyrene	100-42-5 E611D	0.5	μg/L	<0.50	
etrachloroethane, 1,1,1,2-	630-20-6 E611D	0.5	μg/L	<0.50	
etrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	μg/L	<0.50	
etrachloroethylene	127-18-4 E611D	0.5	μg/L	<0.50	
bluene	108-88-3 E611D	0.5	μg/L	<0.50	
richloroethane, 1,1,1-	71-55-6 E611D	0.5	μg/L	<0.50	
ichloroethane, 1,1,2-	79-00-5 E611D	0.5	μg/L	<0.50	
richloroethylene	79-01-6 E611D	0.5	μg/L	<0.50	
ichlorofluoromethane	75-69-4 E611D	0.5	μg/L	<0.50	
rinyl chloride	75-01-4 E611D	0.5	μg/L	<0.50	
kylene, m+p-	179601-23-1 E611D	0.4	μg/L	<0.40	

 Page
 : 8 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCI	_ot: 505059) - continued					
xylene, o-	95-47-6	E611D	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 505060)						
F1 (C6-C10)		E581.F1-L	25	μg/L	<25	
Hydrocarbons (QCLot: 506541)						
F2 (C10-C16)		E601.SG	100	μg/L	<100	
F3 (C16-C34)		E601.SG	250	μg/L	<250	
F4 (C34-C50)		E601.SG	250	μg/L	<250	
Polycyclic Aromatic Hydrocarbons	(QCLot: 506540)					
acenaphthene	83-32-9	E641A	0.01	μg/L	<0.010	
acenaphthylene	208-96-8	E641A	0.01	μg/L	<0.010	
inthracene	120-12-7	E641A	0.01	μg/L	<0.010	
penz(a)anthracene	56-55-3	E641A	0.01	μg/L	<0.010	
penzo(a)pyrene	50-32-8	E641A	0.005	μg/L	<0.0050	
enzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	<0.010	
penzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	<0.010	
enzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	<0.010	
chrysene	218-01-9	E641A	0.01	μg/L	<0.010	
libenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	<0.0050	
luoranthene	206-44-0	E641A	0.01	μg/L	<0.010	
luorene	86-73-7	E641A	0.01	μg/L	<0.010	
ndeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	<0.010	
nethylnaphthalene, 1-	90-12-0	E641A	0.01	μg/L	<0.010	
nethylnaphthalene, 2-	91-57-6	E641A	0.01	μg/L	<0.010	
naphthalene	91-20-3	E641A	0.05	μg/L	<0.050	
phenanthrene	85-01-8	E641A	0.02	μg/L	<0.020	
pyrene	129-00-0	E641A	0.01	μg/L	<0.010	

 Page
 : 9 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Con	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	/ Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 502955)									
рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 502956)									
conductivity		E100	1	μS/cm	1409 μS/cm	96.9	90.0	110	
Anions and Nutrients (QCLot: 502949)									
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	99.6	90.0	110	
Cyanides (QCLot: 504606)		E000	0.000	,			00.0	400	
cyanide, weak acid dissociable		E336	0.002	mg/L	0.125 mg/L	92.4	80.0	120	
mercury, dissolved	7439-97-6	F509	0.000005	mg/L	0.0001 mg/L	98.3	80.0	120	
	7.100 07.0	2000	0.00000	9,2	0.0001 mg/L	30.3	30.0	1.20	
Dissolved Metals (QCLot: 507519) antimony, dissolved	7440-36-0	F421	0.0001	mg/L	0.05 mg/L	106	80.0	120	
arsenic, dissolved	7440-38-2		0.0001	mg/L	0.05 mg/L	106	80.0	120	
barium, dissolved	7440-39-3		0.0001	mg/L	0.0125 mg/L	106	80.0	120	
beryllium, dissolved	7440-41-7		0.00002	mg/L	0.005 mg/L	104	80.0	120	
boron, dissolved	7440-42-8		0.01	mg/L	0.05 mg/L	105	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.005 mg/L	106	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.0125 mg/L	105	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.0125 mg/L	105	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.0125 mg/L	104	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.025 mg/L	104	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.0125 mg/L	102	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.025 mg/L	106	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	105	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.005 mg/L	96.9	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	2.5 mg/L	114	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	0.05 mg/L	101	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.00025 mg/L	107	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.025 mg/L	108	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.025 mg/L	106	80.0	120	
Speciated Metals (QCLot: 504601)									
chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	0.025 mg/L	100	80.0	120	

 Page
 : 10 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report Spike Recovery (%) Recovery Limits (%)				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot:									
acetone	67-64-1	E611D	20	μg/L	100 μg/L	97.6	70.0	130	
benzene	71-43-2	E611D	0.5	μg/L	100 μg/L	99.9	70.0	130	
bromodichloromethane	75-27-4	E611D	0.5	μg/L	100 μg/L	96.2	70.0	130	
bromoform	75-25-2	E611D	0.5	μg/L	100 μg/L	92.6	70.0	130	
bromomethane	74-83-9	E611D	0.5	μg/L	100 μg/L	95.0	70.0	130	
carbon tetrachloride	56-23-5	E611D	0.2	μg/L	100 μg/L	103	70.0	130	
chlorobenzene	108-90-7	E611D	0.5	μg/L	100 μg/L	95.1	70.0	130	
chloroform	67-66-3	E611D	0.5	μg/L	100 μg/L	93.5	70.0	130	
dibromochloromethane	124-48-1	E611D	0.5	μg/L	100 μg/L	104	70.0	130	
dibromoethane, 1,2-	106-93-4	E611D	0.2	μg/L	100 μg/L	89.5	70.0	130	
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	100 μg/L	97.5	70.0	130	
dichlorobenzene, 1,3-	541-73-1	E611D	0.5	μg/L	100 μg/L	99.4	70.0	130	
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	μg/L	100 μg/L	101	70.0	130	
dichlorodifluoromethane	75-71-8	E611D	0.5	μg/L	100 μg/L	114	70.0	130	
dichloroethane, 1,1-	75-34-3	E611D	0.5	μg/L	100 μg/L	93.4	70.0	130	
dichloroethane, 1,2-	107-06-2	E611D	0.5	μg/L	100 μg/L	91.2	70.0	130	
dichloroethylene, 1,1-	75-35-4	E611D	0.5	μg/L	100 μg/L	93.9	70.0	130	
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	μg/L	100 μg/L	90.5	70.0	130	
dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	μg/L	100 μg/L	86.6	70.0	130	
dichloromethane	75-09-2	E611D	1	μg/L	100 μg/L	92.2	70.0	130	
dichloropropane, 1,2-	78-87-5	E611D	0.5	μg/L	100 μg/L	87.6	70.0	130	
dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	μg/L	100 μg/L	85.2	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	μg/L	100 μg/L	82.1	70.0	130	
ethylbenzene	100-41-4	E611D	0.5	μg/L	100 μg/L	103	70.0	130	
nexane, n-	110-54-3	E611D	0.5	μg/L	100 μg/L	91.0	70.0	130	
methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	100 μg/L	91.5	70.0	130	
methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	100 μg/L	96.4	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	100 μg/L	103	70.0	130	
styrene	100-42-5	E611D	0.5	μg/L	100 μg/L	98.2	70.0	130	
tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	μg/L	100 μg/L	93.0	70.0	130	
etrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L	100 μg/L	86.4	70.0	130	
etrachloroethylene	127-18-4	E611D	0.5	μg/L	100 μg/L	109	70.0	130	
oluene	108-88-3	E611D	0.5	μg/L	100 μg/L	104	70.0	130	
richloroethane, 1,1,1-	71-55-6	E611D	0.5	μg/L	100 μg/L	95.2	70.0	130	
trichloroethane, 1,1,2-	79-00-5	E611D	0.5	μg/L	100 μg/L	92.9	70.0	130	
trichloroethylene	79-01-6		0.5	μg/L	100 μg/L	96.0	70.0	130	
richlorofluoromethane		E611D	0.5	μg/L	100 µg/L	102	70.0	130	

 Page
 : 11 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 5	505059) - continued								
vinyl chloride	75-01-4	E611D	0.5	μg/L	100 μg/L	88.8	70.0	130	
xylene, m+p-	179601-23-1	E611D	0.4	μg/L	200 μg/L	103	70.0	130	
xylene, o-	95-47-6	E611D	0.3	μg/L	100 μg/L	102	70.0	130	
Hydrocarbons (QCLot: 505060)									
F1 (C6-C10)		E581.F1-L	25	μg/L	2000 μg/L	104	80.0	120	
Hydrocarbons (QCLot: 506541)									
F2 (C10-C16)		E601.SG	100	μg/L	5018 μg/L	104	70.0	130	
F3 (C16-C34)		E601.SG	250	μg/L	6312 μg/L	130	70.0	130	
F4 (C34-C50)		E601.SG	250	μg/L	6087 μg/L	82.8	70.0	130	
Polycyclic Aromatic Hydrocarbons (QC									
acenaphthene	83-32-9		0.01	μg/L	0.5263 μg/L	93.6	50.0	140	
acenaphthylene	208-96-8		0.01	μg/L	0.5263 µg/L	90.6	50.0	140	
anthracene	120-12-7	E641A	0.01	μg/L	0.5263 μg/L	90.6	50.0	140	
benz(a)anthracene	56-55-3	E641A	0.01	μg/L	0.5263 μg/L	95.3	50.0	140	
benzo(a)pyrene	50-32-8	E641A	0.005	μg/L	0.5263 µg/L	81.2	50.0	140	
benzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	0.5263 μg/L	92.0	50.0	140	
benzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	0.5263 μg/L	82.1	50.0	140	
benzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	0.5263 μg/L	88.6	50.0	140	
chrysene	218-01-9	E641A	0.01	μg/L	0.5263 μg/L	94.6	50.0	140	
dibenz(a,h)anthracene	53-70-3	E641A	0.005	μg/L	0.5263 μg/L	99.4	50.0	140	
fluoranthene	206-44-0	E641A	0.01	μg/L	0.5263 μg/L	100	50.0	140	
fluorene	86-73-7	E641A	0.01	μg/L	0.5263 μg/L	95.4	50.0	140	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	μg/L	0.5263 μg/L	98.4	50.0	140	
methylnaphthalene, 1-	90-12-0	E641A	0.01	μg/L	0.5263 μg/L	90.9	50.0	140	
methylnaphthalene, 2-	91-57-6	E641A	0.01	μg/L	0.5263 μg/L	84.4	50.0	140	
naphthalene	91-20-3	E641A	0.05	μg/L	0.5263 μg/L	87.6	50.0	140	
phenanthrene	85-01-8	E641A	0.02	μg/L	0.5263 μg/L	101	50.0	140	
pyrene	129-00-0	E641A	0.01	μg/L	0.5263 μg/L	89.7	50.0	140	

 Page
 : 12 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ents (QCLot: 50294	9)								
WT2204540-030	Anonymous	chloride	16887-00-6	E235.CI	101 mg/L	100 mg/L	101	75.0	125	
yanides (QCLo	t: 504606)									
WT2204494-002	Anonymous	cyanide, weak acid dissociable		E336	0.118 mg/L	0.125 mg/L	94.8	70.0	130	
issolved Metals	(QCLot: 505316)									
NT2204494-003	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000927 mg/L	0.0001 mg/L	92.7	70.0	130	
issolved Metals	(QCLot: 507519)									
VT2204494-003	Anonymous	antimony, dissolved	7440-36-0	E421	0.0610 mg/L	0.05 mg/L	122	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0624 mg/L	0.05 mg/L	125	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.00609 mg/L	0.005 mg/L	122	70.0	130	
		boron, dissolved	7440-42-8	E421	0.057 mg/L	0.05 mg/L	114	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00600 mg/L	0.005 mg/L	120	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0147 mg/L	0.0125 mg/L	118	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0143 mg/L	0.0125 mg/L	114	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0138 mg/L	0.0125 mg/L	110	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0272 mg/L	0.025 mg/L	109	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0151 mg/L	0.0125 mg/L	121	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0285 mg/L	0.025 mg/L	114	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0658 mg/L	0.05 mg/L	132	70.0	130	MES
		silver, dissolved	7440-22-4	E421	0.00555 mg/L	0.005 mg/L	111	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0545 mg/L	0.05 mg/L	109	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.00025 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0307 mg/L	0.025 mg/L	123	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.0299 mg/L	0.025 mg/L	119	70.0	130	
peciated Metals	(QCLot: 504601)									
VT2204494-002	Anonymous	chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0399 mg/L	0.04 mg/L	99.7	70.0	130	
olatile Organic	Compounds (QCLot	: 505059)								
WT2204458-001	Anonymous	acetone	67-64-1	E611D	ND μg/L	100 μg/L	ND	60.0	140	
		benzene	71-43-2	E611D	94.9 μg/L	100 μg/L	94.9	60.0	140	
	1	bromodichloromethane	75-27-4	E611D	80.0 μg/L	100 μg/L	80.0	60.0	140	

 Page
 : 13 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recover	y Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic	Compounds (QCLo	t: 505059) - continued								
WT2204458-001	Anonymous	bromoform	75-25-2	E611D	80.6 μg/L	100 μg/L	80.6	60.0	140	
		bromomethane	74-83-9	E611D	83.4 μg/L	100 μg/L	83.4	60.0	140	
		carbon tetrachloride	56-23-5	E611D	97.5 μg/L	100 μg/L	97.5	60.0	140	
		chlorobenzene	108-90-7	E611D	88.8 µg/L	100 μg/L	88.8	60.0	140	
		chloroform	67-66-3	E611D	85.0 μg/L	100 μg/L	85.0	60.0	140	
		dibromochloromethane	124-48-1	E611D	93.1 μg/L	100 μg/L	93.1	60.0	140	
		dibromoethane, 1,2-	106-93-4	E611D	79.7 μg/L	100 μg/L	79.7	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	91.3 μg/L	100 μg/L	91.3	60.0	140	
		dichlorobenzene, 1,3-	541-73-1	E611D	96.0 μg/L	100 μg/L	96.0	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	93.9 μg/L	100 μg/L	93.9	60.0	140	
		dichlorodifluoromethane	75-71-8	E611D	101 μg/L	100 μg/L	101	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611D	87.0 μg/L	100 μg/L	87.0	60.0	140	
		dichloroethane, 1,2-	107-06-2	E611D	81.7 μg/L	100 μg/L	81.7	60.0	140	
		dichloroethylene, 1,1-	75-35-4	E611D	87.8 μg/L	100 μg/L	87.8	60.0	140	
		dichloroethylene, cis-1,2-	156-59-2	E611D	85.3 μg/L	100 μg/L	85.3	60.0	140	
		dichloroethylene, trans-1,2-	156-60-5	E611D	79.8 μg/L	100 μg/L	79.8	60.0	140	
		dichloromethane	75-09-2	E611D	79.6 μg/L	100 μg/L	79.6	60.0	140	
		dichloropropane, 1,2-	78-87-5	E611D	80.4 μg/L	100 μg/L	80.4	60.0	140	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	ND μg/L	100 μg/L	ND	60.0	140	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	74.6 µg/L	100 μg/L	74.6	60.0	140	
		ethylbenzene	100-41-4	E611D	99.9 μg/L	100 μg/L	99.9	60.0	140	
		hexane, n-	110-54-3	E611D	ND μg/L	100 μg/L	ND	60.0	140	
		methyl ethyl ketone [MEK]	78-93-3	E611D	ND μg/L	100 μg/L	ND	60.0	140	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	77 μg/L	100 μg/L	77.0	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	76.1 μg/L	100 μg/L	76.1	60.0	140	
		styrene	100-42-5	E611D	ND μg/L	100 μg/L	ND	60.0	140	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	87.0 μg/L	100 μg/L	87.0	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	34.9 μg/L	100 μg/L	34.9	60.0	140	RRQC
		tetrachloroethylene	127-18-4	E611D	102 μg/L	100 μg/L	102	60.0	140	
		toluene	108-88-3	E611D	ND μg/L	100 μg/L	ND	60.0	140	
		trichloroethane, 1,1,1-	71-55-6	E611D	91.2 μg/L	100 μg/L	91.2	60.0	140	
		trichloroethane, 1,1,2-	79-00-5	E611D	85.3 μg/L	100 μg/L	85.3	60.0	140	
		trichloroethylene	79-01-6	E611D	90.9 μg/L	100 μg/L	90.9	60.0	140	
		trichlorofluoromethane	75-69-4	E611D	96.8 µg/L	100 μg/L	96.8	60.0	140	
		vinyl chloride	75-01-4	E611D	79.8 μg/L	100 μg/L	79.8	60.0	140	
		xylene, m+p-	179601-23-1	E611D	134 µg/L	200 μg/L	66.8	60.0	140	
		xylene, o-	95-47-6	E611D	69.2 µg/L	100 μg/L	69.2	60.0	140	

 Page
 : 14 of 14

 Work Order
 : WT2204544

 Client
 : GHD Limited

 Project
 : 12566614

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Hydrocarbons (0	QCLot: 505060)									
WT2204497-003	Anonymous	F1 (C6-C10)		E581.F1-L	1730 μg/L	2000 μg/L	86.6	60.0	140	

Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered
	acceptable as per OMOE & CCME).
RRQC	Refer to report comments for information regarding this QC result.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: WT2204544-001-E601.SG
Client Sample ID: GW-12566614-052522-NG-005

← -F2-	→ ←	—F3 —→ ←—F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ıe →	← M	lotor Oils/Lube Oils/Grease—————	
←	– Diesel/Jet	t Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: WT2204544-002-E601.SG Client Sample ID: GW-12566614-052622-NG-006

← F2-	→ ←	-F3 → F4	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ıe →	← N	Notor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Phone: Contact: Company: Report To

Contact and company name below will appear on the final report

Reports / Recipients

Canada Toll Free: 1 800 668 9878

COC Number: 20

Chain of Custody (COC) / Analytical Request Form

Waterloo **Environmental Division**

Page

Work Order Reference WT2204544

Turnaround Time (TAT) Requested

2020 FROM	AUG	Allas	8	γPγ	LOW - CLIENT COPY	W-CLI	到	WHITE - LABORATORY COPY	HW		WEORMATION Y. YO	26/S/22	N(munitu
1	Time:	2000	Date:	Received by:	Rec	Tigne:		Bank /		Received by:	Time:	Date:	Rologsed hv
	-		FINAL SHIPMENT RECEPTION (lab use only)				use only)	INITIAL SHIPMENT RECEPTION (lab use only)	INITIAL SHIPMEN			SHIPMENT RELEASE (client use)	
	O.	-	22		W	13						s I No	Ale samples of the
	URES °C	FINAL COOLER TEMPERATURES °C	INITIAL COOLER TEMPERATURES °C	COOLER TI	INITIAL							Are samples for human consumption/ use?	Are complete for h
N/A		Sample Custody Seals Intact:	☐ YES ☐ N/A	Cooler Custody Seals Intact:	ustody	ooler C						YES NO	3.4 \square
	NO	YES	Submission Comments identified on Sample Receipt Notification:	mments id	ion Cor	ubmiss	(O		* **			Are samples taken from a Regulated DW System?	Are samples take
	COOLING INITIATED		NONE TICE THE PACKS	: NO	Cooling Method:	ooling			(Excel COC only)	(E)	and of the second	Drinking Water (DW) Samples ¹ (client use)	Drinking \
		(lab use only)	SAMPLE RECEIPT DETAILS (lab use only)				below	ng from drop-down	valuation by selecti	Notes / Specify Limits for result evaluation by selecting from drop-down below	Notes / Spec		The second second
							WATER						
-	-						WATER						
	-					-	WATER						
	-						WATER						
t						-	WATER						
						-	WATER						
	-					-	WATER					THE PLANTS	
1			>			2	WATER	NA	20-05-22			TANIE MINT	
\dagger			F	X		6 X		13 00	26-05-22		N6-008	GW-11566614-052622-NG-008	
T				1	+	1	-	10.45	26-07-22		-NG-607		
+			>	< >	7	8		0.20	26-05-22		-NG-006	GW-12566614-052622-NG-006	0
1	1		× >	-	7		_	171.30	77-07-77		NG-003	GM-12566614-051522-NG-003	
1			×	×		+	WATER	Vc. n	1		podi on alchopary	(11lls describation will abboar on also rebord	(lab use only)
_			BTEX	PHC	PAHS		Sample Type	(hh:mm)	Date (dd-mmm-yy)		and/or Coordinates	Sample Identification and/or Coordinates	ALS Sample #
PECTI	VIPLE ENDE		lank -F1			Inorgan	//BEF	Sampler:	Rick H	ALS Contact:	1554	ALS Lab Work Order # (lab use only): WTJJGH544	ALS Lab Work
_			1			_				Location:			LSD:
_						71				Requisitioner:			PO / AFE:
_								Rouning Code.		Major/Minor Code:		12566614	Job #: 1
_						INI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TO#		AFE/Cost Center:	HDL1000057	Quote #: GHD100/WT2022GHDL1000057	ALS Account # / Quote #:
_						AI		Oil and Gas Required Fields (client use)	and Gas Required	Oil		Project Information	
_	UIF			I		T				Email 2			
_	REF	Served (F/F) below	Indicate Filtered (F), Freserved (F) or Filtered and Freserved (F)F) below	ndicate Filter			P	ghd.com	Invoicing-Canada@ghd.com	or Fax		GHD Ltd. (Acct 13791)	Company: G
		TO THE PERSON NAMED IN COLUMN TO THE	Analysis request			1	FAX	A	stribution: 🗸 EMAIL	Select Invoice Distribution:	NO	Copy of Invoice with Report	
		reduced her sell no collector	Call the battering of the call	FOR (BSCS LIIA)				cipients	Invoice Recipients		NO	Same as Report To ☑ YES ☐	Invoice To S
		reguested you will be contacted	Date and time required for our car care.	Nedanada	and Time	Date .				Email 3		N2L 3X2	
	0 169 0	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	COLUMN TATE		esus	routine tests			See SSOW/PO	Email 2		Waterloo, ON	City/Province: W
Ē		Telephone 1 510 000	fees may apply to rush resuests on weekends, statutory holidays i	rush resuest	y [EZ] "	fees may		d.com	pascal.renella@ghd.com	Email 1 or Fax		455 Phillip St.	Street: 4
			1 day [E] if received by 3pm M-F - 100% rush surcharge minim	ved by 3pm] if receiv	1 day [E		MAIL FAX	n: 🖂 EMAIL	Select Distribution:	report	Company address below will appear on the final report	
			2 day [P2] if received by 3pm M-F - 50% rush surcharge minim	eived by 3pm	2] if rece	2 day [l		ails be	to Criteria on Report -	Compare Results		519-884-0510	
			4 day [P4] if received by 3pm M-F - 20% rush surcharge minim.	ived by 3pm	4] if recei	4 day [P	1	Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A	Reports with COA	Merge QC/QCI F		Pascal Renella	
Ē			Routine [R] if received by 3pm M-F - no surcharges apply	eived by 3pm	[R] If rece	Routine	2	PDF V EXCEL V EDD (DIGITAL)		Select Report Format:		GHD Ltd. (Acct 13791)	Company: G

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY

Appendix C

Data Quality Assessment and Verification

Technical Memorandum

June 17, 2022

Lab QA/QC

То	Joseph Drader	Tel	450-902-4349
Copy to	Nidhi Gupta	Email	pascal.renella@ghd.com
From	Pascal Renella/an/01	Ref. No.	12566614
Subject	Data Quality Assessment and Verification		

Laboratory:	ALS Canada Ltd.				
Lab Job No.:	L2702132, WT2204113, WT2204544				
Date(s) Sampled:	April 28; May 17, 25, 26, 2022				
Media Sampled:	Soil and Groundwater				
QA/QC	Criteria	Pass	Qualifiers	Fail	N/A
Holding Times	Analyte specific	\boxtimes			
Temperature	<10°C at receipt		\boxtimes		
Sample Preservation	Required container/preservatives	\boxtimes			
Field Duplicate (blind)	Within 50% of original/<1xRL	\boxtimes			
Field Blank (blind)	Non detect				\boxtimes
Trip Blank	Non detect		П	П	\boxtimes

The following results are qualified due to high temperature (13.3°C) upon arrival at the laboratory:

Within standard recoveries

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
WT2204544	05/25/22	GW-12566614-052522-NG-005	conductivity	2.90	J	mS/cm
WT2204544	05/25/22	GW-12566614-052522-NG-005	рН	7.54	J	pH units
WT2204544	05/25/22	GW-12566614-052522-NG-005	chloride	749	J	mg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	cyanide, weak acid dissociable	2	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	antimony, dissolved	1	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	arsenic, dissolved	1	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	barium, dissolved	129	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	beryllium, dissolved	0.2	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	boron, dissolved	100	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	cadmium, dissolved	0.05	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	chromium, dissolved	5	UJ	μg/L

→ The Power of Commitment

12566614

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
WT2204544	05/25/22	GW-12566614-052522-NG-005	cobalt, dissolved	1.46	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	copper, dissolved	2	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	lead, dissolved	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	mercury, dissolved	0.005	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	molybdenum, dissolved	7.98	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	nickel, dissolved	5.87	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	selenium, dissolved	0.914	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	silver, dissolved	0.1	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	sodium, dissolved	33600 0	J	μg/L
NT2204544	05/25/22	GW-12566614-052522-NG-005	thallium, dissolved	0.1	UJ	μg/L
NT2204544	05/25/22	GW-12566614-052522-NG-005	uranium, dissolved	10.4	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	vanadium, dissolved	5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	zinc, dissolved	10	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	chromium, hexavalent [Cr VI], dissolved	0.5	UJ	μg/L
NT2204544	05/25/22	GW-12566614-052522-NG-005	acetone	20	UJ	μg/L
NT2204544	05/25/22	GW-12566614-052522-NG-005	benzene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	bromodichloromethane	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	bromoform	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	bromomethane	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	carbon tetrachloride	0.2	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	chlorobenzene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	chloroform	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dibromochloromethane	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dibromoethane, 1,2-	0.2	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichlorobenzene, 1,2-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichlorobenzene, 1,3-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichlorobenzene, 1,4-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichlorodifluoromethane	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloroethane, 1,1-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloroethane, 1,2-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloroethylene, 1,1-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloroethylene, cis-1,2-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloroethylene, trans-1,2-	0.5	UJ	μg/L
NT2204544	05/25/22	GW-12566614-052522-NG-005	dichloromethane	1	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloropropane, 1,2-	0.5	UJ	μg/L
NT2204544	05/25/22	GW-12566614-052522-NG-005	dichloropropylene, cis+trans-1,3-	0.5	UJ	µg/L

→ The Power of Commitment

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloropropylene, cis-1,3-	0.3	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dichloropropylene, trans-1,3-	0.3	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	ethylbenzene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	hexane, n-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	methyl ethyl ketone [MEK]	20	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	methyl isobutyl ketone [MIBK]	20	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	methyl-tert-butyl ether [MTBE]	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	styrene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	tetrachloroethane, 1,1,1,2-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	tetrachloroethane, 1,1,2,2-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	tetrachloroethylene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	toluene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	trichloroethane, 1,1,1-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	trichloroethane, 1,1,2-	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	trichloroethylene	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	trichlorofluoromethane	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	vinyl chloride	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	xylene, m+p-	0.4	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	xylene, o-	0.3	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	xylenes, total	0.5	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	BTEX, total	1	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	F1 (C6-C10)	25	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	F2 (C10-C16)	100	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	F3 (C16-C34)	250	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	F4 (C34-C50)	250	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	F1-BTEX	25	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	hydrocarbons, total (C6-C50)	370	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	acenaphthene	0.013	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	acenaphthylene	0.01	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	anthracene	0.040	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	benz(a)anthracene	0.01	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	benzo(a)pyrene	0.005	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	benzo(b+j)fluoranthene	0.01	UJ	μg/L

→ The Power of Commitment

Lab Report #	Sample Date (mm/dd/yyyy)	Sample ID	Analyte	Result	Qualifier	Units
WT2204544	05/25/22	GW-12566614-052522-NG-005	benzo(g,h,i)perylene	0.01	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	benzo(k)fluoranthene	0.01	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	chrysene	0.012	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	dibenz(a,h)anthracene	0.005	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	fluoranthene	0.117	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	fluorene	0.043	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	indeno(1,2,3-c,d)pyrene	0.01	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	methylnaphthalene, 1+2-	0.064	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	methylnaphthalene, 1-	0.024	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	methylnaphthalene, 2-	0.040	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	naphthalene	0.05	UJ	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	phenanthrene	0.486	J	μg/L
WT2204544	05/25/22	GW-12566614-052522-NG-005	pyrene	0.108	J	μg/L

Conclusions:

Based on the assessment detailed in the foregoing, the data summarized are acceptable with the specific qualifications noted above.

Notes:

 The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

 The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

BTEX - Benzene, Toluene, Ethylbenzene, Xylene

QA/QC - Quality Assurance/Quality Control

RL - Reporting Limit N/A - Not Applicable

Data verification reference documents:

- 1. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", United States Environmental Protection Agency (USEPA) 540/R-99-008, September 2016.
- 2. "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", Laboratory Services Branch, Ministry of the Environment, March 9, 2004, amended as of July 1, 2011

Regards

Pascal Renella

Data Management - Data Validator

