Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

patersongroup

Phase II Environmental Site Assessment

829 Carling Avenue City of Ottawa, Ontario

Prepared For

Claridge Homes

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca May 25, 2021

Report: PE4247-2

TABLE OF CONTENTS

EXE	CUTIV	'E SUMMARY	iii
1.0	INTR	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	1
	1.4	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
	2.2	Past Investigations	3
3.0	SCO	PE OF INVESTIGATION	4
	3.1	Overview of Site Investigation	4
	3.2	Media Investigated	4
	3.3	Phase I Conceptual Site Model	5
	3.4	Deviations from Sampling and Analysis Plan	8
	3.5	Impediments	
4.0	INVE	STIGATION METHOD	8
	4.1	Subsurface Investigation	8
	4.2	Soil Sampling	9
	4.3	Field Screening Measurements	9
	4.4	Groundwater Monitoring Well Installation	10
	4.5	Field Measurement of Water Quality Parameters	10
	4.6	Groundwater Sampling	10
	4.7	Analytical Testing	11
	4.8	Residue Management	12
	4.9	Elevation Surveying	12
	4.10	Quality Assurance and Quality Control Measures	13
5.0	REV	IEW AND EVALUATION	13
	5.1	Geology	13
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	13
	5.3	Fine-Coarse Soil Texture	14
	5.4	Soil: Field Screening	14
	5.5	Soil Quality	14
	5.6	Groundwater Quality	23
	5.7	Quality Assurance and Quality Control Results	27
	5.8	Phase II Conceptual Site Model	
6.0	CON	ICLUSIONS	
7.0	STA	TEMENT OF LIMITATIONS	36

List of Figures

Figure 1 - Key Plan

Drawing PE4247-3 – Test Hole Location Plan & Groundwater Contour Plan

Drawing PE4247-4 – Analytical Testing Plan – Soil (BTEX, PHCs, VOCs)

Drawing PE4247-4A – Cross-section A – A' – Soil (BTEX, PHCs, VOCs)

Drawing PE4247-4B – Cross-section B – B' – Soil (BTEX, PHCs, VOCs)

Drawing PE4247-5 – Analytical Testing Plan – Soil (Metals)

Drawing PE4247-5B – Cross-section A – A' – Soil (Metals)

Drawing PE4247-6 – Analytical Testing Plan – Soil (PAHs)

Drawing PE4247-6A – Cross-section A – A' – Soil (PAHs) Drawing PE4247-6B – Cross-section B – B' – Soil (PAHs)

Drawing PE4247-7 – Analytical Testing Plan – Groundwater (BTEX, PHCs, VOCs) Drawing PE4247-7A – Cross-section A – A' – Groundwater (BTEX, PHCs, VOCs)

Drawing PE4247-7B - Cross-section B - B' - Groundwater (BTEX, PHCs, VOCs)

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

Report: PE4247-2

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 829 Carling Avenue, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II ESA Property.

The subsurface investigation consisted of six (6) boreholes, of which three (3) were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of fill material consisting of silty sand and crushed stone, followed by another fill layer consisting of silty sand with demolition debris (concrete and brick fragments), crushed stone, and some gravel and organics, overlying shallow limestone bedrock.

Four (4) soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F₁-F₄), Polycyclic Aromatic Hydrocarbons (PAHs), and metals (including hydride forming compounds: arsenic (As), Antimony (Sb), Selenium (Se)), mercury (Hg) and hexavalent chromium (CrVI). No BTEX/PHC concentrations were identified in any of the soil samples analysed. Concentrations of several PAH parameters and metal parameters were identified above the selected MECP Table 7 Standards in soil ample BH1-AU1/SS3.

Groundwater samples from monitoring wells MW-1, MW-2, BH1-21, BH2-21 and BH3-21 were collected during the interim of April 18 to April 28, 2021. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling event.

Groundwater samples were analyzed for BTEX, PHCs and/or VOCs. A concentration of benzene was identified at BH1-21, in excess of the selected MECP Table 7 Standards. The groundwater from this well is indicate that the well has not stabilized. Additional groundwater analysis is recommended to confirm the true groundwater quality. All other groundwater results comply with the MECP Table 7 Standards.

Recommendations

It is our understanding that the Phase II ESA Property will be redeveloped with a 60storey residential building with ground-floor commercial space and underground parking.

Report: PE4247-2

May 25, 2021 Page iii

Due to the change in land use to a more sensitive land use (commercial parking lot to residential), a record of site condition (RSC) will be required as per O.Reg 154/03.

Soils

Fill material on the northeastern corner of the Phase II ESA Property contained PAH concentrations in excess of the Table 7 Standards. Soil/fill in excess of the MECP Standards, will need to be removed and disposed of at an approved waste disposal facility.

Subsequent to demolition and prior to construction, a test pit program to assess the soil for off-site disposal purposes and at the same time delineate the PAH exceedances identified is recommended.

In accordance with the new Excess Soil Reg.406/19, additional testing of the soil will be required prior to off-site disposal at a receiving site.

Groundwater

It is expected that the small concentrations of benzene present in the groundwater in BH1-21 above MECP Table 7 Standards is a result of the groundwater monitoring well not properly developed and should be retested when it stabilizes.

Monitoring Wells

If the monitoring wells installed on the subject site are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation.

Report: PE4247-2

1.0 INTRODUCTION

At the request of Claridge Homes, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment at 829 Carling Avenue (the Phase II ESA Property), in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified during the Phase I ESA conducted by Paterson in April of 2021.

1.1 Site Description

Address: 829 Carling Avenue, Ottawa, Ontario

Legal Description: Part of Lots 1554, 1554, 1556 and 1557 of Plan 38, in

the City of Ottawa.

Location: The site is located on the northwest corner of the

Preston Street and Carling Avenue intersection, in the City of Ottawa, Ontario. Refer to Figure 1 - Key Plan

in the Figures section following the text.

PINs: 04102-0029

Latitude and Longitude: 45° 23' 52.02" N, 75° 42' 29.22" W

Site Description:

Configuration: Irregular

Area: 1,579 m² (approximately)

Zoning: AM – Main Artillery Zone.

1.2 Property Ownership

Paterson was engaged to conduct this Phase I-ESA by Mr. Vincent Denomme of Claridge Homes. The head office is located at 210 Gladstone Avenue, Ottawa, Ontario. Mr. Denomme can be reached by telephone at (613)-233-6030.

1.3 Current and Proposed Future Uses

The Phase II ESA Property is currently occupied by a slab-on-grade commercial building and an asphaltic concrete paved parking lot situated on the eastern and western portions of the Phase II ESA Property, respectively.

Report: PE4247-2

It is our understanding that the Phase II ESA Property will be redeveloped with a 60-storey mixed-use high-rise building with 6 levels of underground parking. Due to the change in land use to a more sensitive land use (commercial to residential), a record of site condition (RSC) will be required as per O.Reg 154/03.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 7 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011. The MECP selected Table 7 Standards are based on the following considerations:

Coarse-grained soil conditions
Generic site conditions for shallow soils
Non-potable groundwater conditions
Residential land use

Section 35 of O.Reg. 153/04 does apply to the Phase II ESA Property in that the property does not rely upon potable groundwater.

Section 41 of O.Reg. 153/04 does not apply to the Phase II ESA Property, as the property is not within 30m of an environmentally sensitive area.

Section 43.1 of O.Reg. 153/04 does apply to the Phase II ESA Property in that the property is a Shallow Soil property.

The intended use of the Phase II ESA Property is residential; therefore, the Residential Standards have been selected for the purpose of this Phase II ESA.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II ESA Property is situated in a mixed-used urban area, located on the northwest corner of Preston Street and Carling Avenue.

The Phase II ESA Property is occupied by a 2-storey, slab-on-grade commercial building with a more recent addition constructed circa early 1960s, which occupies the eastern portion of the site with an associated asphaltic concrete paved parking lot on the western portion of the Phase I ESA Property. Site

Report: PE4247-2

drainage consists primarily of sheetflow to catch basins located on site and overflows to the adjacent streets.

The site is relatively flat and at the grade of the adjacent streets, while the regional topography slopes downwards in a northerly direction.

2.2 Past Investigations

"Phase I Environ	nmental Site	Assessment,	829	Carling	Avenue,	Ottawa,
Ontario, (CIBC T	ransit #406)," _l	prepared by P	inchir	n, dated	March 2,	2016.

The Phase I ESA did not identify any potential environmental concerns on the subject site, however a former retail fuel outlet and garage located on the adjacent property to the west was considered to have the potential to impact the subject site. A Phase II ESA was recommended.

"Phase II Environmental Site Assessment, 829 Carling Avenue, Ottawa, Ontario, (CIBC Transit #406)," prepared by Pinchin, dated May 27, 2016.

The subsurface program consisted of drilling three (3) boreholes along the western portion of the site, all of which were completed as groundwater monitoring wells. Soil and groundwater samples were collected and analyzed for BTEX, PHCs and VOCs. All soil samples were in compliance with the selected MECP Table 7 Commercial Standards. Groundwater samples obtained from the monitoring wells identified benzene concentration in excess of the selected MECP standards. Based on the results of the Phase II ESA, Pinchin recommended further investigation to delineate, remediate and/or manage the groundwater impacts.

Paterson completed a Phase I ESA in April of 2021 for the subject property. Based on the findings of the Phase I ESA, three (3) potentially contaminating activities (PCAs) were determined to result in areas of potential environmental concern (APECs) on the Phase II ESA Property:

APEC 1: Resulting from fill material of unknown quality, associated wit	h
the redevelopment of the site in the 1960s (PCA 30).	

- APEC 2: Resulting from the use of road salt for de-icing purpose on the asphaltic paved concrete parking lot and walkways (PCA Other).
- APEC 3: Resulting from the presence of former retail fuel outlet and current automotive repair garage at 845 Carling Avenue (PCA 28, PCA 52).

Report: PE4247-2

Although not identified as a specific PCA in Table 2 of the O.Reg. 153/04, the application of deicing salts for vehicular and pedestrian safety is also considered to represent an APEC (APEC 2) on the Phase I ESA Property.

Based on the findings of the Phase I ESA, it is considered likely that road salt was applied to the surface of the walkways and paved access lane on the Phase I ESA Property for the safety of vehicular and pedestrian traffic under conditions of ice and/or snow.

According to Section 49.1 of O.Reg. 153/04, if an applicable site condition standard is exceeded at a property solely because of the following reason, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act: "The qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both."

In accordance with Section 49.1 of O.Reg. 153/04, any EC and SAR concentrations on the Phase I ESA Property that may exceed the MECP Table 7 Standards for a residential/institutional land use are deemed not to be exceeded for the purpose of Part XV.1 of the Act.

The rationale for identifying the above APECs is based on a review of fire insurance plans, aerial photographs, previous reports, field observations, and personal interviews. A Phase II ESA was recommended to address the aforementioned APECs.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation was conducted on April 20 and April 21, 2021. The field program consisted of drilling six (6) boreholes to address the APECs identified on the Phase II ESA Property. Three (3) the boreholes (BH1-21 through BH3-21) were cored into the bedrock and completed with monitoring well installations. Boreholes were drilled to a maximum depth of 23.49 m below the ground surface (mbgs).

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and

Report: PE4247-2

analyzing the soil and groundwater is based on the Contaminants of Potential Concern (CPCs) identified in the Phase I ESA.

Contaminants of potential concern on the Phase II ESA Property include benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metals; including arsenic, antimony, selenium, mercury (Hg) and hexavalent chromium (CrVI). These CPCs may be present in the soil and/or groundwater beneath the Phase II ESA Property.

3.3 Phase I Conceptual Site Model

According to the Geological Survey of Canada website, the bedrock in the area of the Phase I Property is reported to consist of interbedded shale and limestone of the Verulam Formation. The surficial geology in the area of the site consists of plain till with a drift thickness ranging from 1 to 3 m.

The groundwater beneath the Phase I ESA Property is anticipated to flow in an easterly direction.

Fill Placement

Based on the historical use of the Phase I ESA Property, fill material of an unknown quality is potentially present on-site. It is expected that that fill material is associated with the former buildings on-site, which were demolished prior to the 1965.

Existing Buildings and Structures

A 2-storey, slab-on-grade commercial building constructed circa early 1960s with an addition added on the north end of the building in 1991, occupies the eastern portion of the Phase I ESA Property. The building exterior is finished in brick with a flat tar and gravel style roof. The building is heated and cooled by a natural gas fired HVAC roof mounted unit with electrical baseboard heaters for secondary heating.

Subsurface Structures and Utilities

The Phase I ESA Property is situated in a municipally serviced area. Underground utilities, both public and private are present on the Phase I ESA Property.

Areas of Natural Significance

No areas of natural significance were identified in the Phase I ESA Study Area.

Water Bodies

Dow's Lake is located approximately 175 m southeast of the Phase I ESA Property. No other natural bodies were identified in the Phase I ESA Study Area.

Drinking Water Wells and Monitoring Wells

There are no known potable water wells on the Phase I ESA Property, nor are they expected to be present as the subject land is situated in a municipally serviced area.

Three (3) groundwater monitoring wells drilled by Pinchin were identified along the western portion of the Phase I ESA Property.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area consists of both residential and commercial (offices, cafes, and retailers) properties.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 7.1 of the Phase I-ESA, three (3) PCAs were considered to result in APECs on the Phase I ESA Property, which are summarized in Table 1, along with their respective location and contaminants of potential concern (CPCs).

Report: PE4247-2

	Table 1: Potentially Contaminating Activities and Areas of Potential Environmental Concern									
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)					
APEC 1: Resulting from fill material of unknown quality	Western portion of the Phase I ESA Property.	PCA 30 – Importation of Fill Material of Unknown Quality	On-site	PAHs Metals Hg, CrVI	Soil					
APEC 2: Resulting from the use of road salt	Western portion of the Phase I ESA Property.	PCA Other – the application of road salt on paved areas for the safety of vehicular or pedestrian traffic under conditions of snow or ice	On-site	Electrical conductivity and Sodium adsorption ratio	Soil					
APEC 3: Resulting from the former retail fuel outlet and current automotive repair garage at 845 Carling Avenue.	Western corner of the Phase I ESA Property	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks PCA 52 – Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-site	VOCs PHCs (F ₁ -F ₄)	Soil Groundwater					

Based on the findings of this assessment, it is understood that a substance has been applied to surfaces of the Phase I ESA Property for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both.

In accordance with Section 49.1 of O.Reg. 153/04, any EC and SAR concentrations on the RSC Property that exceed the applicable MECP standards for a residential/institutional land use are deemed not to be exceeded for the purpose of Part XV.1 of the Act.

Report: PE4247-2

This exemption is being relied on for APEC 2. The remaining off-site PCAs were not considered to represent APECs on the Phase I ESA Property based on their separation distances and/or orientations relative to the subject property.

Contaminants of Potential Concern

Contaminants of potential concern on the Phase II ESA Property include, Petroleum Hydrocarbons (PHCs, F1-F4), Polycyclic Aromatic Hydrocarbons (PAHs), Volatile Organic Compounds (VOCs) and Metals; including arsenic, antimony, selenium, mercury (Hg) and hexavalent chromium (CrVI).

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I-ESA is considered to be sufficient to conclude that there are PCAs that have resulted in APECs on the Phase I ESA Property.

A variety of independent sources were consulted as part of this assessment, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

There were no deviations from the Sampling and Analysis Plan which is included in Appendix 1 of this report.

3.5 Impediments

No physical impediments were encountered during the Phase II ESA field program aside from utilities and building structures. Paterson resampled the existing groundwater monitoring wells (MW-1, MW-2 and MW-3) during the April 16, 2021 sampling event, however, no groundwater sample could be retrieved from MW-3, as the monitoring well was dry when checked several times during the program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was conducted April 20 through April 22, 2021, and consisted of drilling six (6) boreholes (BH1-21 through BH6-21) across the Phase II ESA Property, three (3) of which were completed with groundwater monitoring

well installations. The boreholes were drilled to a maximum depth of 23.49m below ground surface (bgs) to intercept groundwater.

The boreholes were drilled using a low clearance track mounted drill rig operated by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE4247-3 - Test Hole Location Plan.

4.2 Soil Sampling

A total of 15 soil samples and 44 rock core samples were obtained from the boreholes by means of grab sampling from auger flights, split spoon sampling, and rock coring using diamond drilling bits. Split spoon samples were taken at approximate 0.76 m intervals.

The depths at which grab samples, split spoon samples, and rock core samples were obtained from the boreholes are shown as "AU", "SS" and "RC" on the Soil Profile and Test Data Sheets.

The borehole profiles generally consist of an asphaltic concrete paved structure overlying a gravelled layer, followed by fill material consisting of silty sand with some silty clay, with crushed stones, and traces of gravel and topsoil, underlain by limestone bedrock. Boreholes BH1-21 through BH3-21 were terminated in bedrock at depths ranging from 22.61 to 23.93 m below the ground surface (mbgs).

4.3 Field Screening Measurements

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. A photo ionization detector (PID) was used to measure the volatile organic vapour concentrations. The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The PID readings were found to range from 0 to 14.2 ppm in the soil samples obtained. These results do not indicate the potential for significant contamination

Report: PE4247-2

from volatile contaminants. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

The results of the vapour survey are presented on the Soil Profile and Test Data sheets.

4.4 Groundwater Monitoring Well Installation

Three (3) groundwater monitoring wells were installed on the Phase II ESA Property as part of the subsurface investigation. The monitoring wells consisted of 32 mm diameter, Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Borehole locations and elevations were surveyed geodetically by Paterson personnel.

TABLE 2	TABLE 2. Monitoring Well Construction Details									
Well ID	Ground Total Screened Surface Depth Interval Elevation (m BGS) (m BGS)			Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type				
BH1-21	62.29	10.7+	9.29-10.79	8.53-10.79	0.18-8.53	Flushmount				
BH2-21	62.37	22.86	19.83-22.86	19.51-22.86	0.18-19.51	Flushmount				
BH3-21	62.67	7.62	4.62-7.62	3.35-7.62	0.18-3.35	Flushmount				

4.5 Field Measurement of Water Quality Parameters

Groundwater samples from the existing Pinchin 2016 groundwater monitoring wells MW1 and MW2 were collected on April 16, 2021, and on April 28, 2021 for the wells installed during the recent subsurface program. Water levels were the only field parameter measured. No other field parameters were measured at the time of sampling.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard

Report: PE4247-2

operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples, as well as analyzed parameters are presented in Tables 3 and 4.

TABLE 3: Soil Samples Submitted and Analyzed Parameters										
	Pa	Parameters Analyzed								
Sample ID	Sample Depth / Stratigraphic Unit	втех	PHCs (F1-F4)	PAHs	VOCs	Metals	Hg	CrVI	EC/SAR	Rationale
April 15, 201	6 (Pinchin)									
MW1-SS2	0.75-1.52m Fill	Х	Х		Х					Assess the potential soil impact due to the former off-site retail fuel outlet and garage.
MW2-SS2	0.75-1.52m Fill	Х	Х		х					Assess the potential soil impact due to the former off-site retail fuel outlet and garage.
MW3-SS2	0.75-1.52m Fill	X	Х		x					Assess the potential soil impact due to the former off-site retail fuel outlet and garage.
April 20, 21	and 22, 2021									
BH1- AU2/SS3	0.3-1.27m Fill	X		X	X	X	X	X	X	Assess the potential soil impact due to the former off-site retail fuel outlet, garage and use of road salt as well as assess the quality of the fill material.
BH3-AU1	0.08-0.60m Fill			Χ		Х	Χ	Χ		Assess the quality of the fill material.
BH3-SS2	0.76-1.09m Fill			X		Х	Χ	X		Assess the quality of the fill material.
BH4-SS3	0.76-1.37m Fill	X	X	X		X	X	X		Assess the potential soil impact due to the former off-site retail fuel outlet and garage as well as assess the quality of the fill material.
DUP	0.3-1.27m Fill	Х			Х					Duplicate soil sample (BH1-AU2/SS3) for QA/QC purposes.

Report: PE4247-2

TABLE 4: Groundwater Samples Submitted and Analyzed Parameters								
		Parameters Analyzed						
Sample ID	Screened Interval	ВТЕХ	PHCs (F1-F4)	VOCs	Rationale			
April 18, 2016	(Pinchin)	•						
MW-1	2.6-4.53m	Х	Х	X	Assess potential groundwater impacts from the former off-site retail fuel outlet and garage.			
MW-2	3.1-6.1m	Х	Х	X	Assess potential groundwater impacts from the former off-site retail fuel outlet and garage.			
April 13, 2021								
MW-1-GW1	2.6-4.53m	Х	Х	Х	Assess potential groundwater impacts from the former off-site retail fuel outlet and garage.			
MW-2-GW1	3.1-6.1m	Х	Х	Х	Assess potential groundwater impacts from the former off-site retail fuel outlet and garage.			
April 28, 2021								
BH1-GW1	9.29-10.79m	Х	Х	Х	Assess potential groundwater impacts from the former off-site retail fuel outlet and garage.			
BH3-GW1	4.62-7.62m	Х	Х	X	Assess potential groundwater impacts from the former off-site retail fuel outlet and garage.			
DUP	4.62-7.62m	Х		Χ	Duplicate groundwater sample (BH3-GW1) for QA/QC purposes.			

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

Boreholes were surveyed at geodetic elevations by Paterson personnel.

Report: PE4247-2

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site soils consist of an asphaltic concrete structure over sand with crushed stones, underlain by fill material consisting of silty sand with demolition debris (brick and concrete fragments), traces of crushed stone and organics, underlain by silty clay, overlying glacial till (silty clay with sand and gravel) and shale bedrock. The boreholes were terminated at a maximum depth of 23.93mbgs.

Groundwater was encountered within the bedrock at depths ranging from approximately 2.1 to 23.24 mbgs.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on April 28, 2021, using an electronic water level meter. Groundwater levels are summarized below in Table 5.

TABLE 5: (TABLE 5: Groundwater Level Measurements								
Borehole	Ground	Water Level	Water Level	Date of					
Location	Surface Elevation (m)	Depth (m below grade)	Elevation (m ASL)	Measurement					
MW1	62.32	1.51	60.81	April 28, 2021					
MW2	62.12	1.16	60.96	April 28, 2021					
MW3	62.69	Dry		April 28, 2021					
BH1-21	62.29	10.35	51.94	April 28, 2021					
BH2-21	62.37	23.24	39.13	April 28, 2021					
BH3-21	62.67	3.59	59.08	April 28, 2021					

Based on the shallow wells, groundwater elevations measured during the sampling events, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4247-3. Based on the contour mapping,

Report: PE4247-2

groundwater flow at the subject site is in a northerly direction. A horizontal hydraulic gradient of approximately 0.15 m/m was calculated.

5.3 Fine-Coarse Soil Texture

Grain-size analysis was not completed for the Phase II ESA Property. As such, the more stringent, coarse-grained soil standards were used.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in vapour readings ranging from 0 to 14.2 ppm. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

Three (3) soil samples including a duplicate sample were submitted for BTEX, PHCs (F1-F4), PAHs, VOCs, and/or metals including mercury and hexavalent chromium as well as EC/SAR analysis. The results of the 2016 Pinchin and the recent analytical tests results are presented below in Tables 6 through 10. The laboratory certificate of analysis is provided in Appendix 1.

TABLE 6: Analytical Test Results – Soil BTEX and PHCs F₁-F₄									
Parameter	MDL	Soil <i>J</i>	MECP Table 7						
Farameter	(µg/g)	MW-1-SS2	MW-1-SS2 MW-2-SS2 MW-3-SS2		Residential Standards (µg/g)				
Benzene	0.02	nd	nd	nd	0.21				
Toluene	0.05	nd	nd	nd	2.3				
Ethylbenzene	0.05	nd	nd	nd	0.05				
Xylenes	0.05	nd	nd	nd	3.1				
PHC F₁	7	<10	<10	<10	55				
PHC F ₂	4	<10	<10	<10	98				
PHC F ₃	8	<50	300	100	300				
PHC F ₄	PHC F ₄ 6 <50 120 <50 2800								
Notes: MDL – Method Detection Limit nd – not detected above the MDL									

No detectable BTEX parameters were identified in any of the soil samples analyzed. Concentrations of PHC F3-F4 were detected in soil samples MW-2-SS2 and MW-3-SS2. All of the identified concentrations comply with the MECP Table 7 Residential Standards.

Report: PE4247-2

Parameter	MDL	Soil April	MECP Table 7		
1 arameter	(µg/g)	BH1-AU2/SS3	BH4-SS3	DUP	Residential Standards (µg/g)
Benzene	0.02	nd	nd	nd	0.21
Toluene	0.05	nd	nd	nd	2.3
Ethylbenzene	0.05	nd	nd	nd	0.05
Xylenes	0.05	nd	nd	nd	3.1
PHC F₁	7	NA	nd	NA	55
PHC F ₂	4	NA	nd	NA	98
PHC F ₃	8	NA	13	NA	300
PHC F ₄	6	NA	15	NA	2800

- MDL Method Detection Limit
- nd not detected above the MDL
- NA Parameter not analyzed

No detectable BTEX parameters were identified in any of the soil samples analyzed. Concentrations of PHC F3-F4 were detected in soil sample BH4-SS3. All identified concentrations comply with the MECP Table 7 Residential Standards.

TABLE 7: Analytical Test Results – Soil									
Metals									
Parameter	MDL (µg/g)	Soil Samp April 20 an		MECP Table 7 Residential Standards					
		BH1-AU2/SS3	BH4-SS3	(µg/g)					
Antimony	1.0	1.0	nd	7.5					
Arsenic	1.0	14.8	6.5	18					
Barium	1.0	287	149	390					
Beryllium	0.5	0.6	0.8	4					
Boron	5.0	14.2	15.4	120					
Cadmium	0.5	0.6	nd	1.2					
Chromium	5.0	23.6	27.7	160					
Chromium (VI)	0.2	nd	nd	8					
Cobalt	1.0	6.8	8.3	22					
Copper	5.0	50.8	18.4	140					
Lead	1.0	<u>299</u>	33.3	120					
Mercury	0.1	<u>0.3</u>	nd	0.27					
Molybdenum	1.0	2.6	1.0	6.9					
Nickel	5.0	16.3	20.2	100					
Selenium	1.0	1.6	nd	2.4					
Silver	0.3	nd	nd	20					
Thallium	1.0	nd	nd	1					
Uranium	1.0	nd	nd	23					
Vanadium	10.0	24.7	34.2	86					
Zinc	20.0	248	100	340					

- MDL Method Detection Limit
- nd not detected above the MDL
- Bold and underlined Parameter exceeds the selected MECP standards

Report: PE4247-2

Parameter	MDL (µg/g)	Soil Samp April 2	MECP Table 7 Residential Standards	
		BH3-AU1	BH3-SS2	(µg/g)
Antimony	1.0	2.7	1.3	7.5
Arsenic	1.0	1.5	1.4	18
Barium	1.0	18.0	31.7	390
Beryllium	0.5	nd	nd	4
Boron	5.0	nd	nd	120
Cadmium	0.5	nd	nd	1.2
Chromium	5.0	7.0	8.2	160
Chromium (VI)	0.2	nd	nd	8
Cobalt	1.0	3.3	3.4	22
Copper	5.0	9.2	8.9	140
Lead	1.0	38.3	16.5	120
Mercury	0.1	nd	nd	0.27
Molybdenum	1.0	nd	nd	6.9
Nickel	5.0	nd	5.9	100
Selenium	1.0	nd	nd	2.4
Silver	0.3	nd	nd	20
Thallium	1.0	nd	nd	1
Uranium	1.0	nd	nd	23
Vanadium	10.0	17.9	14.5	86
Zinc	20.0	29.8	36.5	340

nd – not detected above the MDL

Metal parameters were detected in all of the soil samples analyzed. Lead and mercury in soil sample BH1-AU2/SS2 were in excess of the MECP Table 7 Residential Standards. All other metals concentrations comply with the selected MECP Table 7 Residential Standards.

Report: PE4247-2

TABLE 8: Analytical Test Results – Soil								
PAHs Parameter	MDL (µg/g)		ples (µg/g) nd 21, 2021	MECP Table 7				
		BH1- AU2/SS3	BH4-SS3	Residential Standards (µg/g)				
Acenaphthene	0.02	0.07	nd	7.9				
Acenaphthylene	0.02	<u>0.38</u>	0.04	0.15				
Anthracene	0.02	0.24	0.02	0.67				
Benzo[a]anthracene	0.02	<u>0.90</u>	0.04	0.5				
Benzo[a]pyrene	0.02	<u>0.96</u>	0.06	0.3				
Benzo[b]fluoranthene	0.02	<u>1.15</u>	0.07	0.78				
Benzo[g,h,i]perylene	0.02	0.67	0.06	6.6				
Benzo[k]fluoranthene	0.02	0.57	0.04	0.78				
Chrysene	0.02	1.01	0.07	7				
Dibenzo[a,h]anthracene	0.02	<u>0.19</u>	nd	0.1				
Fluoranthene	0.02	<u>1.36</u>	0.08	0.69				
Fluorene	0.02	0.09	nd	62				
Indeno[1,2,3-cd]pyrene	0.02	<u>0.65</u>	0.06	0.38				
1-Methylnaphthalene	0.02	0.31	nd	0.99				
2-Methylnaphthalene	0.02	0.43	nd	0.99				
Methylnaphthalene (1&2)	0.04	0.74	nd	0.99				
Naphthalene	0.01	0.45	nd	0.6				
Phenanthrene	0.02	0.80	0.02	6.2				
Pyrene	0.02	1.40	0.08	78				

- MDL Minimum Detection Limit
- nd not detected above the MDL <u>Bold and underlined</u> Parameter exceeds the selected MECP standards

Report: PE4247-2

Parameter	MDL (µg/g)	April 2	oles (µg/g) 2, 2021	MECP Table 7 Residential Standards	
		BH3-AU1	BH3-SS2	(µg/g)	
Acenaphthene	0.02	nd	nd	7.9	
Acenaphthylene	0.02	nd	nd	0.15	
Anthracene	0.02	nd	nd	0.67	
Benzo[a]anthracene	0.02	nd	nd	0.5	
Benzo[a]pyrene	0.02	nd	nd	0.3	
Benzo[b]fluoranthene	0.02	nd	nd	0.78	
Benzo[g,h,i]perylene	0.02	nd	nd	6.6	
Benzo[k]fluoranthene	0.02	nd	nd	0.78	
Chrysene	0.02	nd	nd	7	
Dibenzo[a,h]anthracene	0.02	nd	nd	0.1	
Fluoranthene	0.02	0.03	0.04	0.69	
Fluorene	0.02	nd	nd	62	
Indeno[1,2,3-cd]pyrene	0.02	nd	nd	0.38	
1-Methylnaphthalene	0.02	nd	nd	0.99	
2-Methylnaphthalene	0.02	nd	nd	0.99	
Methylnaphthalene (1&2)	0.04	nd	nd	0.99	
Naphthalene	0.01	nd	nd	0.6	
Phenanthrene	0.02	nd	nd	6.2	
Pyrene	0.02	0.03	0.04	78	

PAH parameters were detected in all of the soil samples analyzed. Several PAH concentrations in soil sample BH1-AU2/SS3 were in excess of the MECP Table 7 Residential Standards. All other PAH concentrations comply with the selected MECP Table 7 Residential Standards.

	MDL		Samples pril 15, 20		MECP Table 7
Parameter	(µg/g)	MW-1- SS2	MW-2- SS2	MW-3- SS2	Residential Standards (µg/g)
Acetone	0.50	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	16
1,2-Dichlorobenzene	0.05	nd	nd	nd	3.4
1,3-Dichlorobenzene	0.05	nd	nd	nd	4.8
1,4-Dichlorobenzene	0.05	nd	nd	nd	0.083
1,1-Dichloroethane	0.05	nd	nd	nd	3.5
1,2-Dichloroethane	0.05	nd	nd	nd	0.05
1,1-Dichloroethylene	0.05	nd	nd	nd	0.05
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	3.4
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	0.084
1,2-Dichloropropane	0.05	nd	nd	nd	0.05
1,3-Dichloropropene, total	0.05	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	2
Ethylene dibromide (dibromoethane, 1,2-)	0.05	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	2.8
Methyl Ethyl Ketone (2-Butanone)	0.50	nd	nd	nd	16
Methyl Isobutyl Ketone	0.50	nd	nd	nd	1.7
Methyl tert-butyl ether	0.05	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	0.28
Toluene	0.05	nd	nd	nd	2.3
1,1,1-Trichloroethane	0.05	nd	nd	nd	0.38
1,1,2-Trichloroethane	0.05	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	4
Vinyl Chloride	0.02	nd	nd	nd	0.02
Xylenes, total	0.05	nd	nd	nd	3.1

Report: PE4247-2

	MDL		mples (µ and 21,		MECP Table 7
Parameter	(µg/g)	BH1- AU2/SS3	BH4- SS3	DUP	Residential Standards (µg/g)
Acetone	0.50	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	16
1,2-Dichlorobenzene	0.05	nd	nd	nd	3.4
1,3-Dichlorobenzene	0.05	nd	nd	nd	4.8
1,4-Dichlorobenzene	0.05	nd	nd	nd	0.083
1,1-Dichloroethane	0.05	nd	nd	nd	3.5
1,2-Dichloroethane	0.05	nd	nd	nd	0.05
1,1-Dichloroethylene	0.05	nd	nd	nd	0.05
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	3.4
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	0.084
1,2-Dichloropropane	0.05	nd	nd	nd	0.05
1,3-Dichloropropene, total	0.05	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	2
Ethylene dibromide (dibromoethane, 1,2-)	0.05	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	2.8
Methyl Ethyl Ketone (2-Butanone)	0.50	nd	nd	nd	16
Methyl Isobutyl Ketone	0.50	nd	nd	nd	1.7
Methyl tert-butyl ether	0.05	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	0.28
Toluene	0.05	nd	nd	nd	2.3
1,1,1-Trichloroethane	0.05	nd	nd	nd	0.38
1,1,2-Trichloroethane	0.05	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	4
Vinyl Chloride	0.02	nd	nd	nd	0.02
Xylenes, total	0.05	nd	nd	nd	3.1

Report: PE4247-2

nd – not detected above the MDL

No VOC parameters were detected in any of the soil samples analyzed. All VOC concentrations comply with the selected MECP Table 7 Residential Standards.

TABLE 10: Analy pH, EC/SAR	ytical Test	t Results – S	oil			
			MECP			
Parameter	MDL	April 1	5, 2016	April 20, 2021	Table 7 Residential	
		MW-1-SS2	MW-3-SS2	BH1-AU2/SS3	Standards	
рН	0.05	7.58	7.41	7.64	5 to 9	
EC (uS/cm)	5	NA	NA	<u>1240</u>	700	
SAR	0.01	NA	NA	3.55	5	
Notes:	•	•	•			

- MDL Minimum Detection Limit
- NA Parameter not analyzed
- <u>Bold and underlined</u> Parameter exceeds the selected MECP standards

The soil pH and sodium absorption ratio (SAR) are in compliance with the selected MECP standards. The electrical conductivity (EC) is in excess of the MECP Table 7 Residential Standards. It should be noted that although the use of road salt was identified as an APEC, an exception has been made under the Section 49.1 of O.Reg. 153/04.

The analytical results for BTEX, PHCs, PAHs, VOCs and metals including pH and EC/SAR tested in soil are shown on Drawings PE4247-4, PE4247-5 and PE4247-6 - Analytical Testing Plans.

The maximum concentrations of analyzed parameters in the soil at the site are summarized below in Table 11.

TABLE 11: Maximum	Concentrations - S	oil	
Parameter	Maximum Concentration (μg/g)	Borehole	Depth Interval (m BGS)
PHC F ₃	300	MW-2-SS2	
PHC F ₄	120	MW-2-SS2	
Antimony	1.0	BH1-AU2/SS3	0.05-1.37
Arsenic	14.8		
Barium	287		
Beryllium	0.8	BH4-SS3	0.76-1.37
Boron	15.4		
Cadmium	0.6	BH1-AU2/SS3	0.05-1.37
Chromium	27.7	BH4-SS3	0.76-1.37
Cobalt	8.3		
Copper	50.8	BH1-AU2/SS3	0.05-1.37
Lead	<u>299</u>		
Mercury	<u>0.3</u>		

Report: PE4247-2

Parameter	Maximum Concentration (µg/g)	Borehole	Depth Interval (m BGS)	
Molybdenum	2.6			
Nickel	20.2	BH4-SS3	0.76-1.37	
Selenium	1.6	BH1-AU2/SS3	0.05-1.37	
Vanadium	34.2	BH4-SS3	0.76-1.37	
Zinc	248	BH1-AU2/SS3	0.05-1.37	
Acenaphthene	0.07	BH1-AU2/SS3		
Acenaphthylene	0.38	BH1-AU2/SS3	0.76-1.37	
Anthracene	0.24			
Benzo[a]anthracene	0.90			
Benzo[a]pyrene	0.96			
Benzo[b]fluoranthene	<u>1.15</u>			
Benzo[g,h,i]perylene	0.67			
Benzo[k]fluoranthene	0.57			
Chrysene	1.01			
Dibenzo[a,h]anthracene	<u>0.19</u>			
Fluoranthene	<u>1.36</u>			
Fluorene	0.09			
Indeno[1,2,3-cd]pyrene	<u>0.65</u>			
1-Methylnaphthalene	0.31			
2-Methylnaphthalene	0.43			
Methylnaphthalene (1&2)	0.74			
Naphthalene	0.45			
Phenanthrene	0.80			
Pyrene	1.40			

No other parameters were identified above the laboratory method detection limits.

5.6 Groundwater Quality

Groundwater samples from monitoring wells installed in BH1-21 and BH3-21 including a duplicate sample from BH3-21 were submitted for laboratory analysis of BTEX and PHC (fractions, F1-F4) and/or VOC analyses. The groundwater samples were obtained from the screened intervals noted in Table 2. The results of the analytical testing are presented in Tables 12 and 13. The laboratory certificates of analysis are provided in Appendix 1.

Report: PE4247-2

TABLE 12: Analy BTEX and PHCs	TABLE 12: Analytical Test Results – Groundwater BTEX and PHCs								
Parameter	MDL (µg/L)	Gı	roundwate	MECP					
	,	April 18, 2016 April 13, 2021 Table			2016 April 13, 2021				
		MW-1	MW-2	MW1- GW1	MW2- GW1	(µg/L)			
Benzene	0.5	1.2	0.58	nd	nd	0.5			
Toluene	0.5	4.8	2.30	nd	nd	320			
Ethylbenzene	0.5	0.37	nd	nd	nd	54			
Xylenes	0.5	4.5	1.7	nd	nd	72			
PHC F ₁	25	nd	nd	nd	nd	750			
PHC F ₂	100	nd	nd	nd	nd	150			
PHC F ₃	100	nd	nd	nd	nd	500			
PHC F₄	100	nd	nd	nd	nd	500			

- MDL Minimum Detection Limit
- nd not detected above the MDL
- NA not analyzed for this parameter
- Bold and Underlined parameter exceeds the selected MECP Standards

Parameter	MDL (µg/L)	Ground	MECP Table 7		
	" 0 /		April 28, 2021	Standards	
		BH1-GW1	BH3-GW1	DUP	(µg/L)
Benzene	0.5	2.6	nd	nd	0.5
Toluene	0.5	6.4	nd	nd	320
Ethylbenzene	0.5	nd	nd	nd	54
Xylenes	0.5	0.6	nd	nd	72
PHC F ₁	25	nd	nd	NA	750
PHC F ₂	100	nd	nd	NA	150
PHC F ₃	100	nd	nd	NA	500
PHC F₄	100	nd	nd	NA	500

Notes:

- MDL Minimum Detection Limit
- nd not detected above the MDL
- NA not analyzed for this parameter
- Bold and Underlined parameter exceeds the selected MECP Standards

No detectable PHC concentrations were identified in the groundwater samples analyzed. No BTEX parameters were identified in BH3-21.

Based on the most recent groundwater sampling event, BTEX concentration in excess of the selected MECP Table 7 Standards was identified in BH1-GW1.

The analytical results for BTEX and PHCs tested in groundwater are shown on Drawing PE4247-7—Analytical Testing Plan – Groundwater.

Report: PE4247-2

Parameter	MDL (µg/L)	Groundwa (μι	MECP Table 7		
		April 18, 2016 MW-1 MW-2		Standards (µg/L)	
Acetone	5.0	nd	nd	100000	
Benzene	0.5	1.2	0.58	0.5	
Bromodichloromethane	0.5	nd	nd	67000	
Bromoform	0.5	nd	nd	5	
Bromomethane	0.5	nd	nd	0.89	
Carbon Tetrachloride	0.3	nd	nd	0.2	
Chlorobenzene	0.5	nd	nd	140	
Chloroform	0.5	nd	nd	2	
Dibromochloromethane	0.5	nd	nd	65000	
Dichlorodifluoromethane	1.0	nd	nd	3500	
1,2-Dichlorobenzene	0.5	nd	nd	3500 150	
		nd	nd	7600	
1,3-Dichlorobenzene	0.5	nd	nd		
1,4-Dichlorobenzene		nd	nd	0.5 11	
1,1-Dichloroethane 1,2-Dichloroethane	0.5	nd	nd		
		nd	nd	0.5	
1,1-Dichloroethylene	0.5	nd	nd	0.5	
cis-1,2-Dichloroethylene	0.5	nd	nd	1.6	
trans-1,2-Dichloroethylene	0.5			1.6	
1,2-Dichloropropane	0.5	nd	nd	0.58	
1,3-Dichloropropene, total	0.5	nd 0.27	nd	0.5	
Ethylbenzene	0.5	0.37	nd	54	
Ethylene dibromide (dibromoethane, 1,2-)	0.2	nd	nd	0.2	
Hexane	1.0	nd	nd	5	
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	21000	
Methyl Isobutyl Ketone	5.0	nd	nd	5200	
Methyl tert-butyl ether	2.0	nd	nd	15	
Methylene Chloride	5.0	nd	nd	26	
Styrene	0.5	nd	nd	43	
1,1,1,2-Tetrachloroethane	0.5	nd	nd	1.1	
1,1,2,2-Tetrachloroethane	0.5	nd	nd	0.5	
Tetrachloroethylene	0.5	nd	nd	0.5	
Toluene	0.5	4.8	2.3	320	
1,1,1-Trichloroethane	0.5	nd	nd	23	
1,1,2-Trichloroethane	0.5	nd	nd	0.5	
Trichloroethylene	0.5	nd	nd	0.5	
Trichlorofluoromethane	1.0	nd	nd	2000	
Vinyl Chloride	0.5	nd	nd	0.5	
Xylenes, total	0.5	4.5	1.7	72	

- MDL Minimum Detection Limit
- nd not detected above the MDL
- <u>Bold and Underlined</u> parameter exceeds the selected MECP Standards

Report: PE4247-2

Parameter	MDL (µg/L)		Samples 021	MECP Table 7 Standards	
		BH1- GW1	BH3- GW1	DUP	(µg/L)
Acetone	5.0	nd	nd	nd	100000
Benzene	0.5	2.6	nd	nd	0.5
Bromodichloromethane	0.5	0.9	nd	nd	67000
Bromoform	0.5	nd	nd	nd	5
Bromomethane	0.5	nd	nd	nd	0.89
Carbon Tetrachloride	0.2	nd	nd	nd	0.2
Chlorobenzene	0.5	nd	nd	nd	140
Chloroform	0.5	<u>16.5</u>	0.5	0.6	2
Dibromochloromethane	0.5	nd	nd	nd	65000
Dichlorodifluoromethane	1.0	nd	nd	nd	3500
1,2-Dichlorobenzene	0.5	nd	nd	nd	150
1,3-Dichlorobenzene	0.5	nd	nd	nd	7600
1,4-Dichlorobenzene	0.5	nd	nd	nd	0.5
1,1-Dichloroethane	0.5	nd	nd	nd	11
1,2-Dichloroethane	0.5	nd	nd	nd	0.5
1,1-Dichloroethylene	0.5	nd	nd	nd	0.5
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	0.58
1,3-Dichloropropene, total	0.5	nd	nd	nd	0.5
Ethylbenzene	0.5	nd	nd	nd	54
Ethylene dibromide (dibromoethane, 1,2-)	0.2	nd	nd	nd	0.2
Hexane	1.0	nd	nd	nd	5
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	nd	21000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	5200
Methyl tert-butyl ether	2.0	nd	nd	nd	15
Methylene Chloride	5.0	nd	nd	nd	26
Styrene	0.5	nd	nd	nd	43
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	1.1
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	0.5
Tetrachloroethylene	0.5	nd	nd	nd	0.5
Toluene	0.5	6.4	nd	nd	320
1,1,1-Trichloroethane	0.5	nd	nd	nd	23
1,1,2-Trichloroethane	0.5	nd	nd	nd	0.5
Trichloroethylene	0.5	nd	nd	nd	0.5
Trichlorofluoromethane	1.0	nd	nd	nd	2000
Vinyl Chloride	0.5	nd	nd	nd	0.5
Xylenes, total	0.5	0.6	nd	nd	72

- MDL Minimum Detection Limit
- nd not detected above the MDL
- Bold and Underlined parameter exceeds the selected MECP Standards

Report: PE4247-2

The maximum concentrations of analyzed parameters in the groundwater at the site are summarized below in Table 14.

TABLE 14: Maximum Concentrations – Groundwater				
Parameter	Maximum Concentration (μg/g)	Borehole	Screened Interval (m BGS)	
Benzene	<u>2.6</u>	BH1-GW1	9.85-12.85m	
Bromodichloromethane	0.9			
Chloroform	<u>16.5</u>			
Toluene	6.4			
Xylenes	0.6			

Remaining parameters analysed were not identified above the laboratory method detection limits.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the April 2021 sampling events were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type. As per Subsection 47(3) of O.Reg. 153/04, as amended, under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

A duplicate soil sample and groundwater sample (DUP) were obtained from BH1-AU2/SS3 and BH3-GW1 and analyzed for BTEX and VOCs. Test results for the duplicate soil sample were non detect above the laboratory limits. Test results for the duplicate groundwater sample and RPD calculations are provided below in Table 15.

TABLE 15: QA/QC Results - Groundwater (VOCs)				
Parameter	BH3-GW1	DUP	RPD (%)	QA/QC Results
Chloroform	0.5	0.6	18.18	Within the acceptable range

The remainder of the test results for the duplicate water sample were non-detect above the laboratory detection limit.

Based on the analytical laboratory results, it is our opinion that the overall quality of the field data collected during this Phase II-ESA is sufficient to meet the overall objectives of this assessment.

Report: PE4247-2

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As presented in Table 1 in Section 3.3 of this report on- and off-site PCAs are considered to results in the following three APECs on the Phase II ESA Property:

0011010	defeate results in the following three 7th 200 on the Finase in 2071 reports.
	APEC 1: Resulting from fill material of unknown quality, associated with the redevelopment of the site in the 1960s (PCA 30).
	APEC 2: Resulting from the use of road salt for de-icing purpose on the asphaltic paved concrete parking lot and walkways (PCA Other).
	APEC 3: Resulting from the presence of former retail fuel outlet and current automotive repair garage at 845 Carling Avenue (PCA 28, PCA 52).
Conta	minants of Potential Concern
Based	I on the APECs identified on the Phase II ESA Property, the contaminants

of potential concern (CPCs) present in soil and/or groundwater include:

Benzene, toluene, ethylbenzene, and xylenes (BTEX);
Petroleum hydrocarbons (PHCs, Fractions F ₁ -F ₄);
Polycyclic aromatic compounds (PAHs);
Metals, Hg and CrVI; and
Volatile organic compounds (VOCs).

Subsurface Structures and Utilities

The Phase II ESA Property is situated in a municipally serviced area. Underground utility services on the Phase II ESA Property include natural gas, electricity, municipal water and sewer services. These services enter the Phase II ESA Property from Carling Avenue and Preston Street.

Report: PE4247-2

Based on the findings of the Phase II ESA, underground utilities are not expected to affect contaminant distribution and transport.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawings PE4247-4A, 4B, 5A, 5B, 6A, 6B, 7A and 7B. The stratigraphy consists of:

- An asphaltic concrete structure of approximately 0.05 to 0.08 m thick, which overlies a fill material consisting of silty sand with crushed stone. This fill was encountered in BH1-21, BH3-21 and BH6-21extending to depths of 0.76 to 0.91 mbgs. Groundwater was not encountered in this layer.
- Fill material consisting of silty sand or silty clay with crushed stone and traces of gravel and topsoil and traces of demolition debris. Fill material was encountered in all of the boreholes and extended to depths of approximately 1.09 to 1.22 mbgs. Groundwater was not encountered in this layer.
- Limestone bedrock was encountered in boreholes BH1-21, BH2-21 and BH3-21 and terminated at a maximum depth of 23.93 mbgs. Practical refusal to augering was encountered at BH4-21, BH5-21 and BH6-21 at depths ranging from 0.91 to 1.45 mbgs. Groundwater was encountered in this layer at BH1-21, BH2-21 and BH3-21.

Hydrogeological Characteristics

Groundwater at the Phase II ESA Property was encountered in the bedrock. During the most recent groundwater monitoring event, groundwater flow was measured in a northerly direction, with a hydraulic gradient of 0.15 m/m. Groundwater contours are shown on Drawing PE4247-3 – Test Hole Location Plan.

Approximate Depth to Bedrock

Bedrock was encountered during the drilling program at depths ranging from approximately 0.91 to 1.45 mbgs.

Approximate Depth to Water Table

The depth to the water table at the subject site varies between approximately 2.1 to 23.24 m below existing grade.

Sections 35, 41 and 43.1 of the Regulation

Non-potable groundwater conditions, as defined in Section 35 of O.Reg. 153/04, were selected as the Phase II ESA Property is situated in a municipally serviced area and residential land use standards were selected based on the proposed development.

Section 41 of the O.Reg. 153/04 does not apply to the Phase II ESA Property, as there are no areas of natural significance or bodies of water located on or within 30 m of the Phase II ESA Property. The Phase II ESA Property is not considered to be environmentally sensitive.

Section 43.1 of O.Reg. 153/04 does apply to the Phase II ESA Property as bedrock is located less than 2 m below ground surface and thus, the site is defined as a shallow soil property.

Fill Placement

Two fill material layers were encountered during the subsurface program. The first layer consisted of silty sand with crushed stone, and traces of clay, which extended to depths of approximately 0.76 to 0.91mbgs. The second layer consisted of silty sand with gravel, traces of topsoil and demolition debris, which extended to depths ranging from 1.09 to 1.22 mbgs.

Existing Buildings and Structures

A 2-storey, slab-on-grade commercial building constructed circa early 1960s occupies the eastern portion of the Phase II ESA Property. The building exterior is finished in brick with a flat tar and gravel style roof. The building is heated and cooled by a natural gas fired HVAC roof mounted unit with electrical baseboard heaters for secondary heating.

No other buildings or above-grade structures are present on the Phase II ESA Property.

Proposed Buildings and Other Structures

The proposed site development for the Phase II ESA Property will include a 60-storey residential building with ground floor commercial space and 6 levels of underground parking.

Report: PE4247-2

Areas of Natural Significance

No areas of natural significance were identified in the Phase I ESA Study Area.

Water Bodies

Dow's Lake is located approximately 175 m southeast of the Phase II ESA Property. No other natural bodies were identified in the Phase I ESA Study Area.

Environmental Condition

Areas Where Contaminants are Present

Based on the analytical results for soil and groundwater, contaminants are present in the fill material on the western portion of the Phase II ESA Property, and in the groundwater below the western portion of the Phase II ESA Property.

Types of Contaminants

Based on the PCAs identified at the Phase II ESA Property, the Contaminants of Concern (COCs) identified in the soil at the Phase II ESA Property included lead (Pb) and mercury (Hg) and several PAH parameters.

The COCs identified in the groundwater at the Phase II ESA Property include Benzene. Chloroform was also identified in the groundwater in excess of the selected standards, however, the presence of chloroform at the time of the testing is a result of the municipal water used for bedrock coring. It is excepted that the chloroform concentration will dissipate in the near future.

Contaminated Media

Based on the findings of the Phase II ESA, the concentration of lead, mercury, and several PAH parameters at BH1-21 exceed MECP Table 7 Standards for soil.

The analyzed groundwater sample for BH1-21 exceeded MECP Table 7 Standard for benzene.

What Is Known About Areas Where Contaminants Are Present

The impacted soil identified in BH1-21 is considered to have originated on-site from former residential buildings during site redevelopment in approximately the early 1960s.

It is suspected that the small concentrations of benzene present in the groundwater in BH1-21 above MECP Table 7 Standards is a result of the groundwater monitoring well not properly developed and should be retested when it stabilizes.

Distribution and Migration of Contaminants

A layer of impacted fill material was identified in the western portion of subject site. This layer was observed to be approximately 1.2 metres thick. Based on the observations made during the field program, in conjunction with analytical test results, it is expected that the majority of the fill material is impacted with metals and/or PAHs.

The groundwater results from BH1 are not considered to be representative of the groundwater beneath the Phase II ESA Porperty given the presence of the chloroform.

Discharge of Contaminants

The metals and PAH impacted fill material identified in the western portion of the subject site is considered to be the result of site redevelopment, or from the importation of fill material of a poor quality.

It is suspected that the small concentrations of benzene present in the groundwater in BH1-21 above MECP Table 7 Standards is a result of the groundwater monitoring well not properly developed and should be retested when it stabilizes.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Based on the analytical results contaminant distribution is not considered to have occurred on the Phase II ESA Property.

May 25, 2021 Page 32

Potential for Vapour Intrusion

Based on the findings of the Phase II ESA and lack of building structures below the ground surface, there is no potential for vapour intrusion on the Phase II ESA Property.

Report: PE4247-2

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 829 Carling Avenue, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II ESA Property.

The subsurface investigation consisted of six (6) boreholes, of which three (3) were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of fill material consisting of silty sand and crushed stone, followed by another fill layer consisting of silty sand with demolition debris (concrete and brick fragments), crushed stone, and some gravel and organics, overlying shallow limestone bedrock.

Four (4) soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F₁-F₄), Polycyclic Aromatic Hydrocarbons (PAHs), and metals (including hydride forming compounds: arsenic (As), Antimony (Sb), Selenium (Se)), mercury (Hg) and hexavalent chromium (CrVI). No BTEX/PHC concentrations were identified in any of the soil samples analysed. Concentrations of several PAH parameters and metal parameters were identified above the selected MECP Table 7 Standards in soil ample BH1-AU1/SS3.

Groundwater samples from monitoring wells MW-1, MW-2, BH1-21, BH2-21 and BH3-21 were collected during the interim of April 18 to April 28, 2021. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling event.

Groundwater samples were analyzed for BTEX, PHCs and/or VOCs. A concentration of benzene was identified at BH1-21, in excess of the selected MECP Table 7 Standards. The groundwater from this well is indicate that the well has not stabilized. Additional groundwater analysis is recommended to confirm the true groundwater quality. All other groundwater results comply with the MECP Table 7 Standards.

Report: PE4247-2

May 25, 2021 Page 34

Recommendations

It is our understanding that the Phase II ESA Property will be redeveloped with a 60-storey residential building with ground-floor commercial space and underground parking. Due to the change in land use to a more sensitive land use (commercial parking lot to residential), a record of site condition (RSC) will be required as per O.Reg 154/03.

Soils

Fill material on the northeastern corner of the Phase II ESA Property contained PAH concentrations in excess of the Table 7 Standards. Soil/fill in excess of the MECP Standards, will need to be removed and disposed of at an approved waste disposal facility.

Subsequent to demolition and prior to construction, a test pit program to assess the soil for off-site disposal purposes and at the same time delineate the PAH exceedances identified is recommended.

In accordance with the new Excess Soil Reg.406/19, additional testing of the soil will be required prior to off-site disposal at a receiving site.

Groundwater

It is expected that the small concentrations of benzene present in the groundwater in BH1-21 above MECP Table 7 Standards is a result of the groundwater monitoring well not properly developed and should be retested when it stabilizes.

Monitoring Wells

If the monitoring wells installed on the subject site are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation.

Report: PE4247-2

May 25, 2021 Page 35

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared under the supervision of a Qualified Person, in general accordance with O.Reg. 153/04, as amended, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Claridge Homes. Notification from Claridge Homes and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Mandy Witteman, B.Eng., M.A.Sc.

Mark D'Arcy, P.Eng., QPESA

M.S. D'ARCY 90377839

Report Distribution:

- Claridge Homes
- Paterson Group

FIGURES

Figure 1 - Key Plan

Drawing PE4247-3 – Test Hole Location Plan

Drawing PE4247-4 – Analytical Testing Plan – Soil (BTEX, PHCs, VOCs)

Drawing PE4247-4A - Cross-section A - A' - Soil (BTEX, PHCs, VOCs)

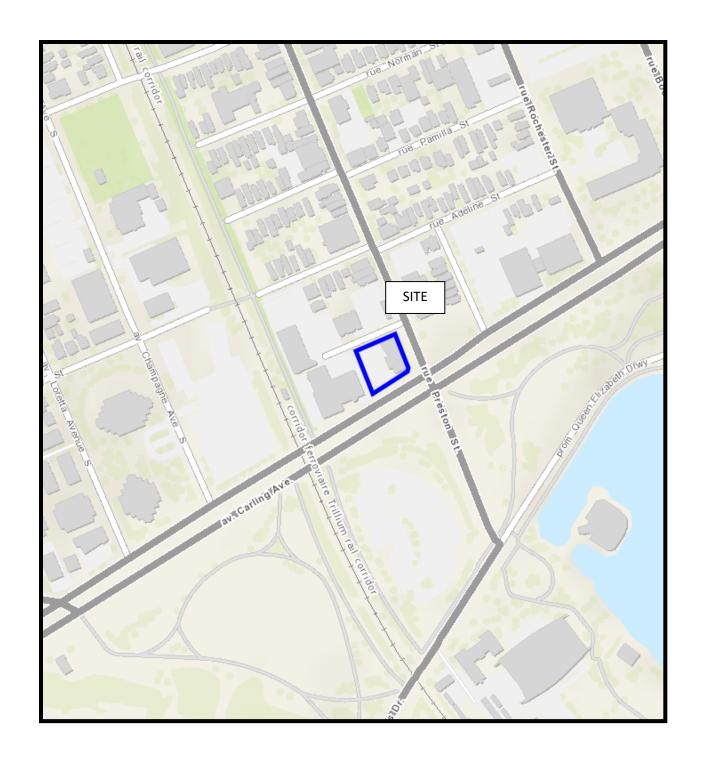
Drawing PE4247-4B - Cross-section B - B' - Soil (BTEX, PHCs, VOCs)

Drawing PE4247-5 – Analytical Testing Plan – Soil (Metals)

Drawing PE4247-5A – Cross-section A – A' – Soil (Metals)

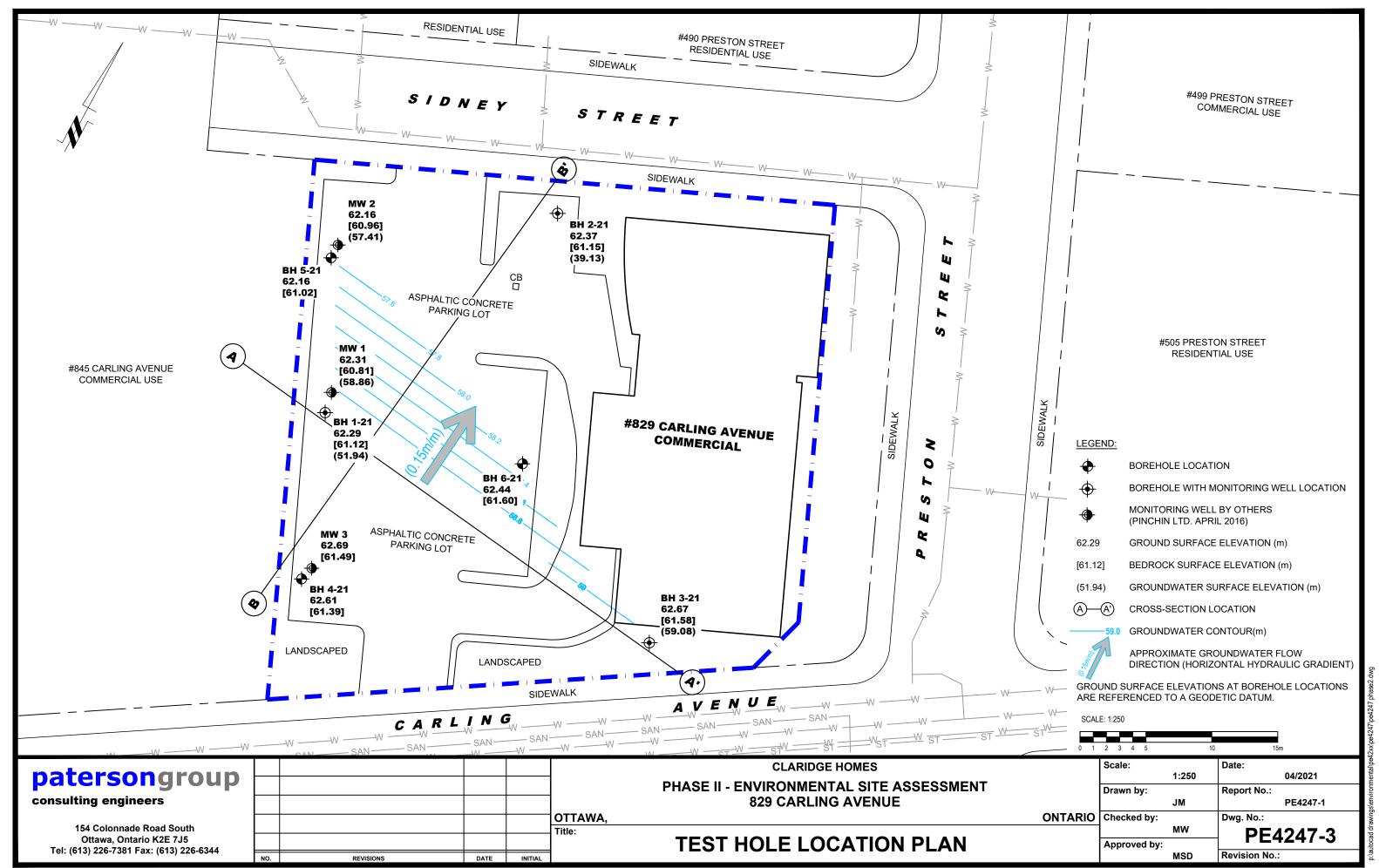
Drawing PE4247-5B - Cross-section B - B' - Soil (Metals)

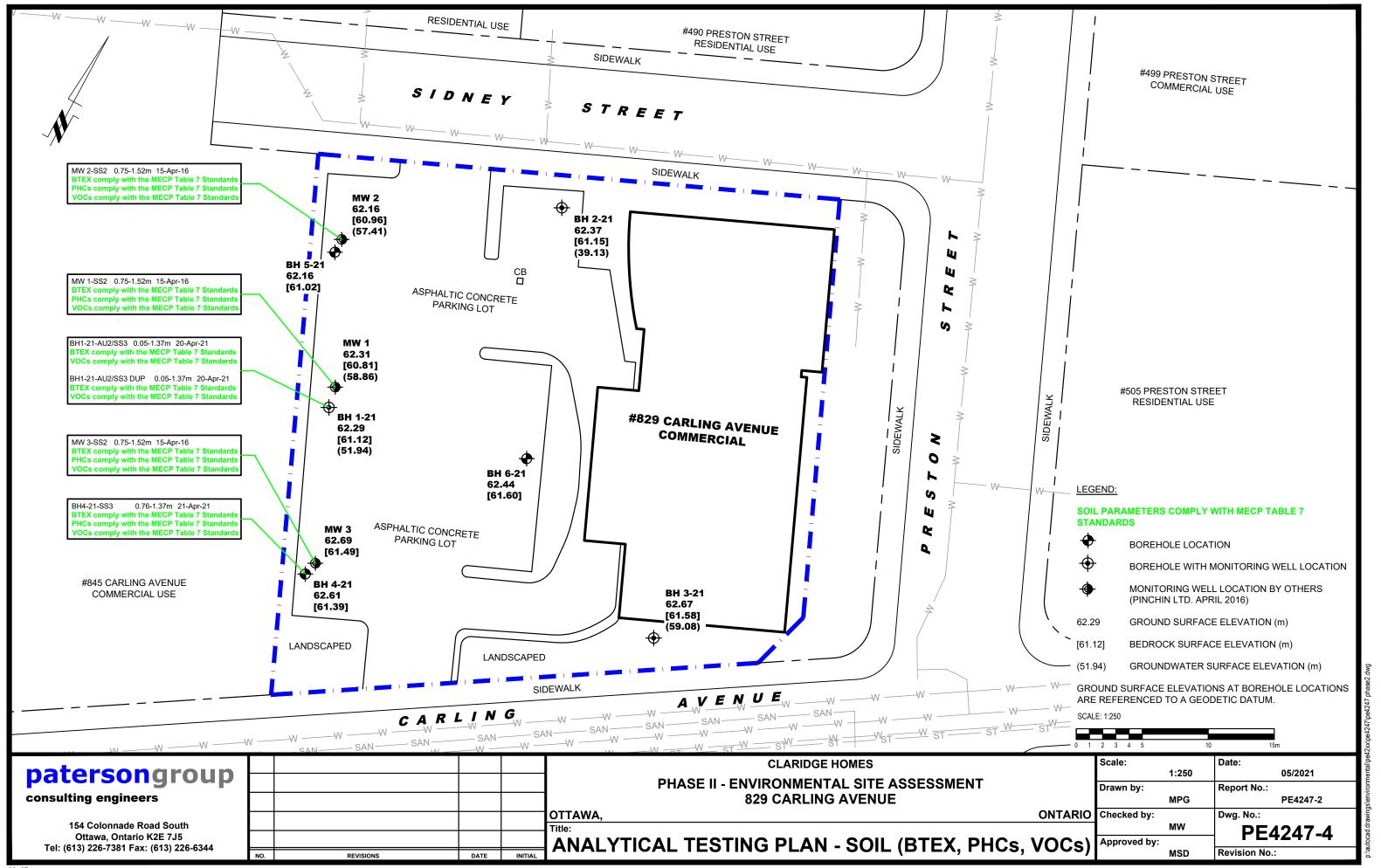
Drawing PE4247-6 – Analytical Testing Plan – Soil (PAHs)

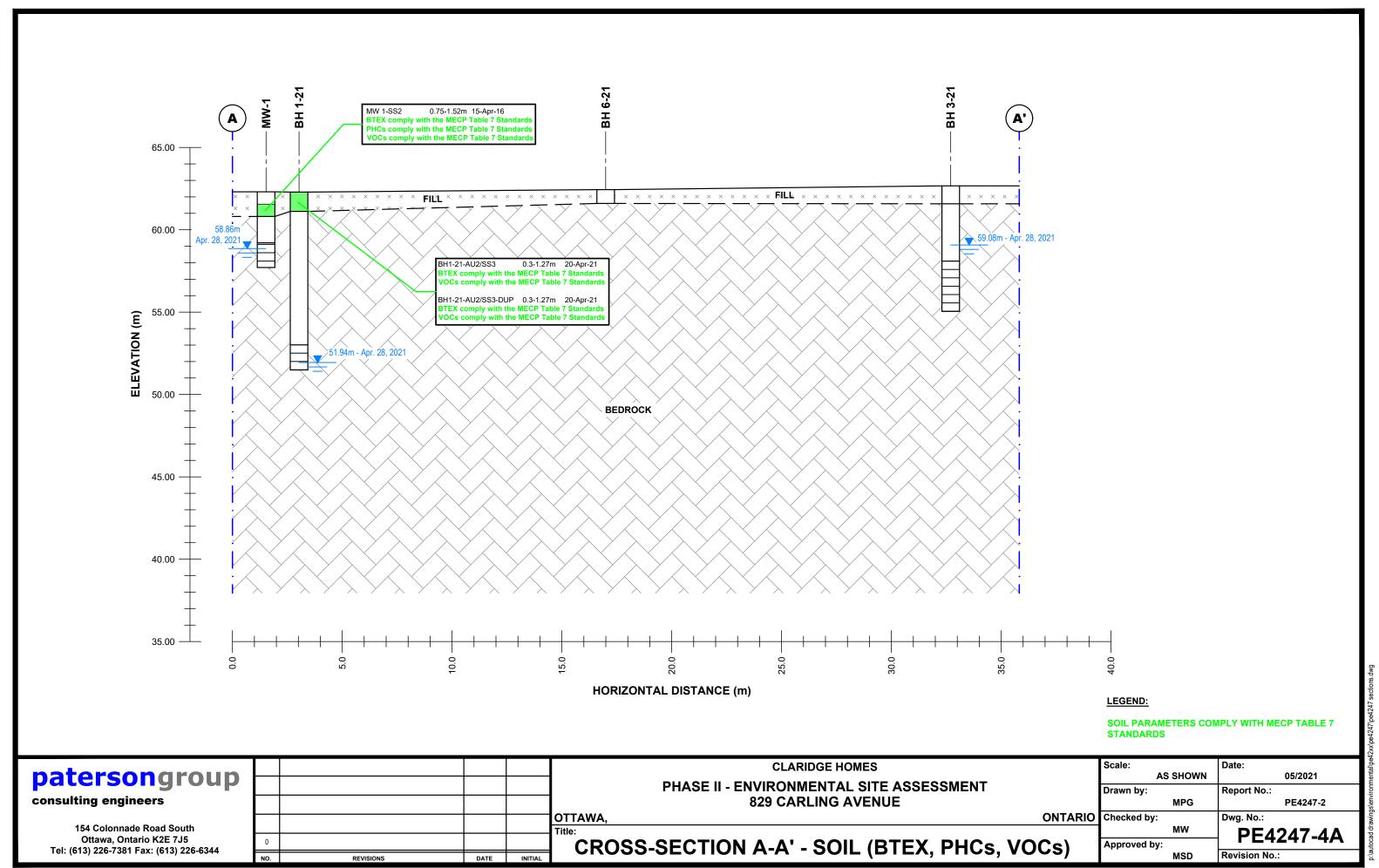

Drawing PE4247-6A - Cross-section A - A' - Soil (PAHs)

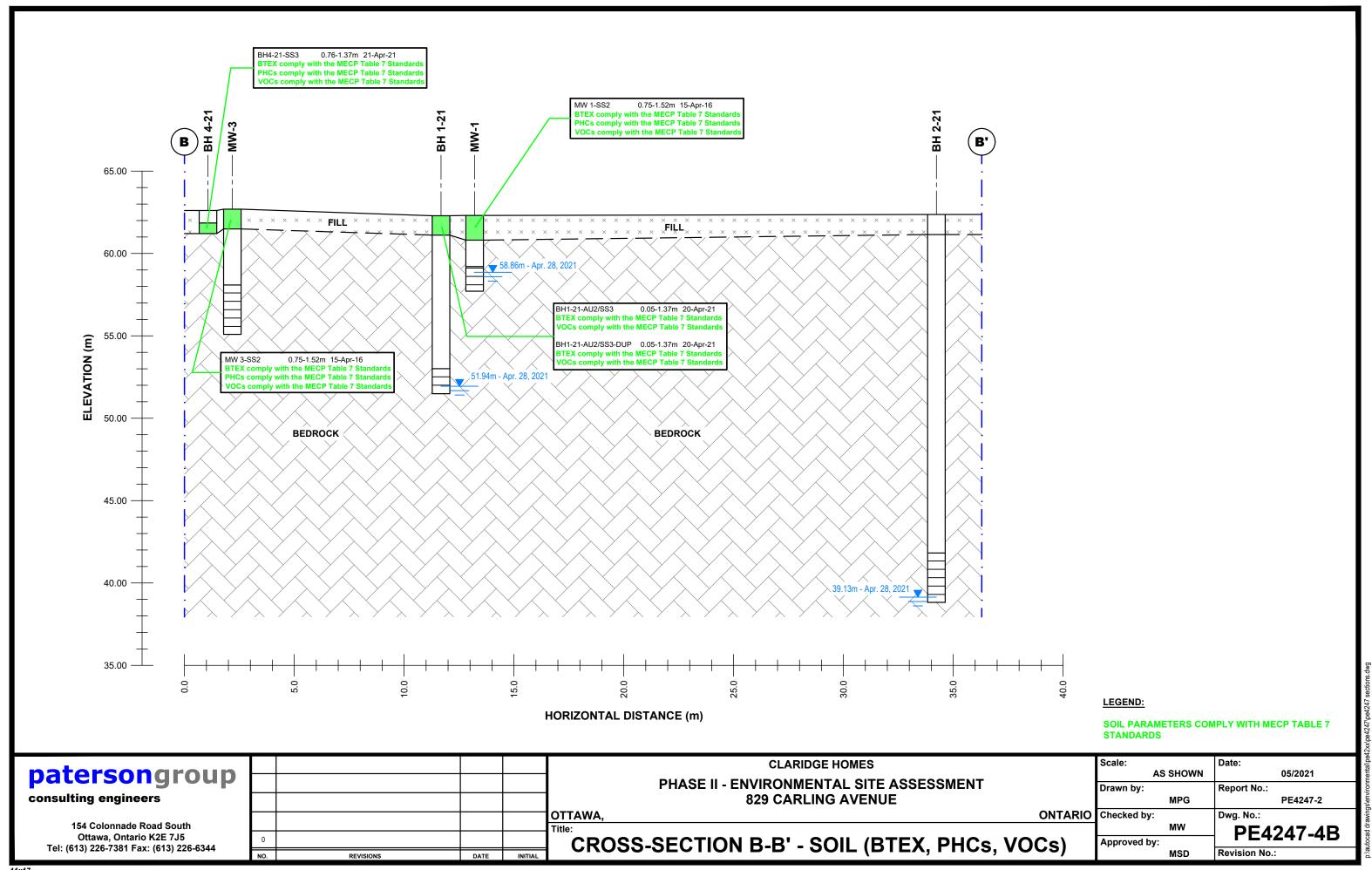
Drawing PE4247-6B - Cross-section B - B' - Soil (PAHs)

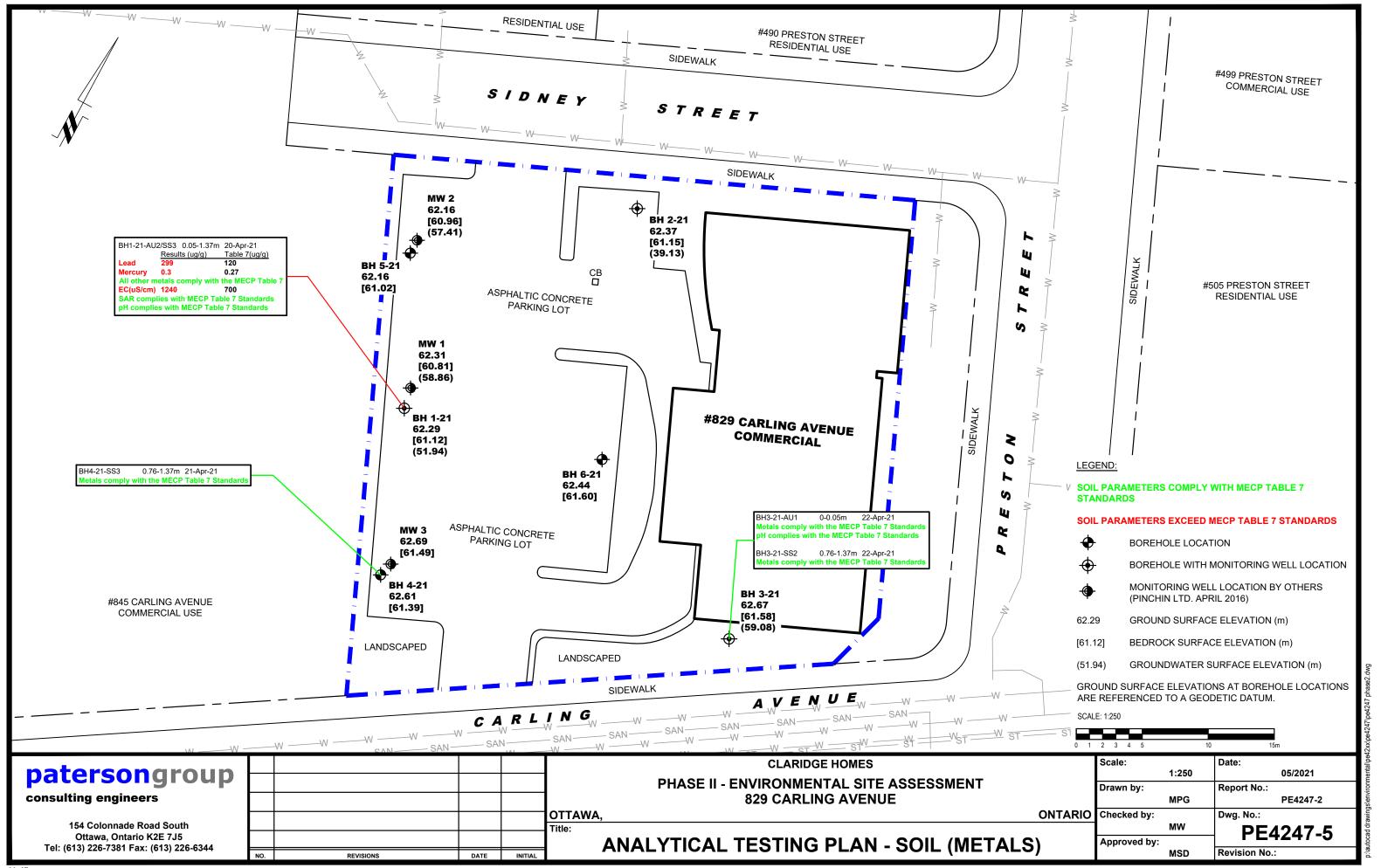
Drawing PE4247-7 – Analytical Testing Plan – Groundwater (BTEX, PHCs, VOCs)

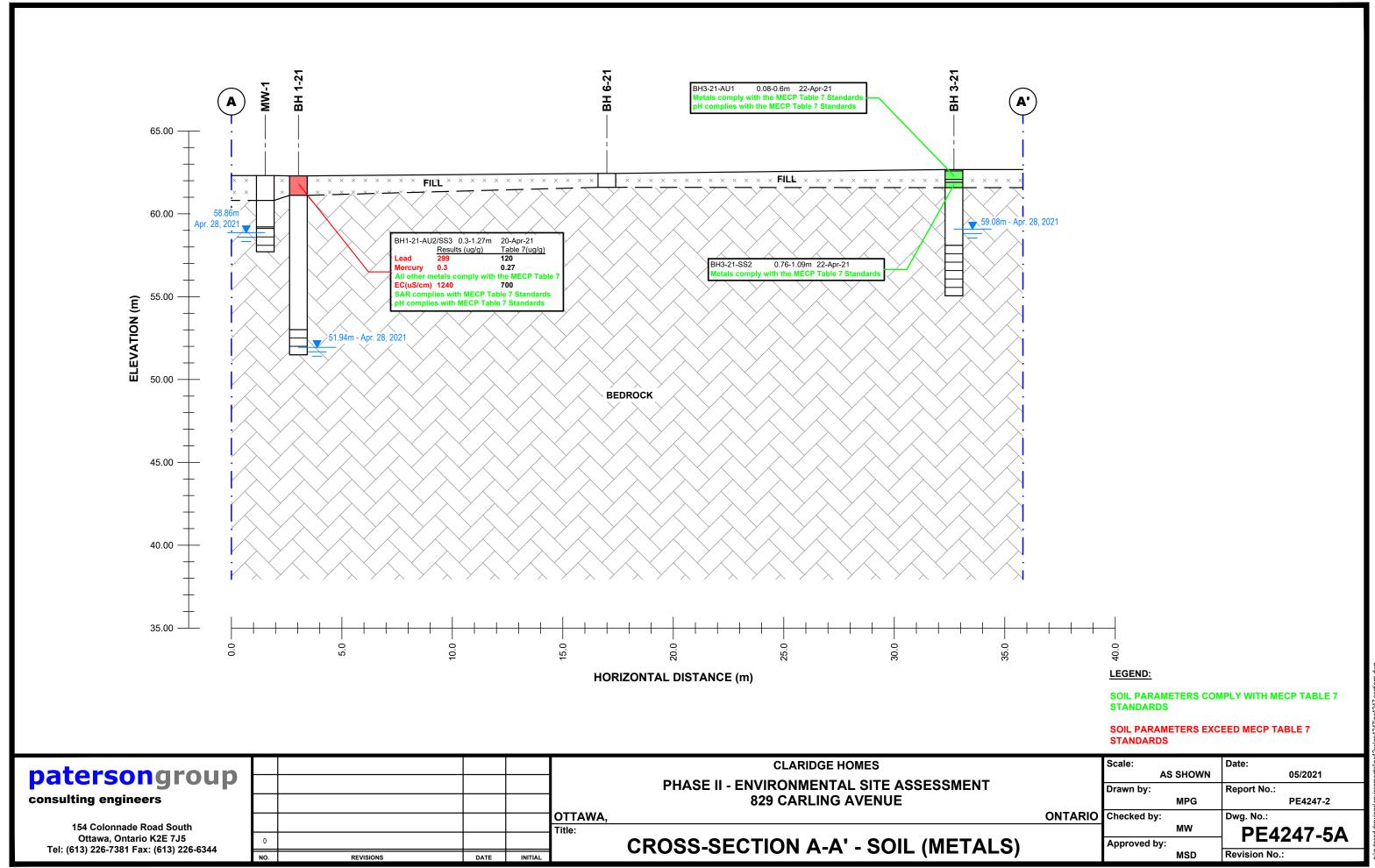

Drawing PE4247-7A – Cross-section A – A' – Groundwater (BTEX, PHCs, VOCs)

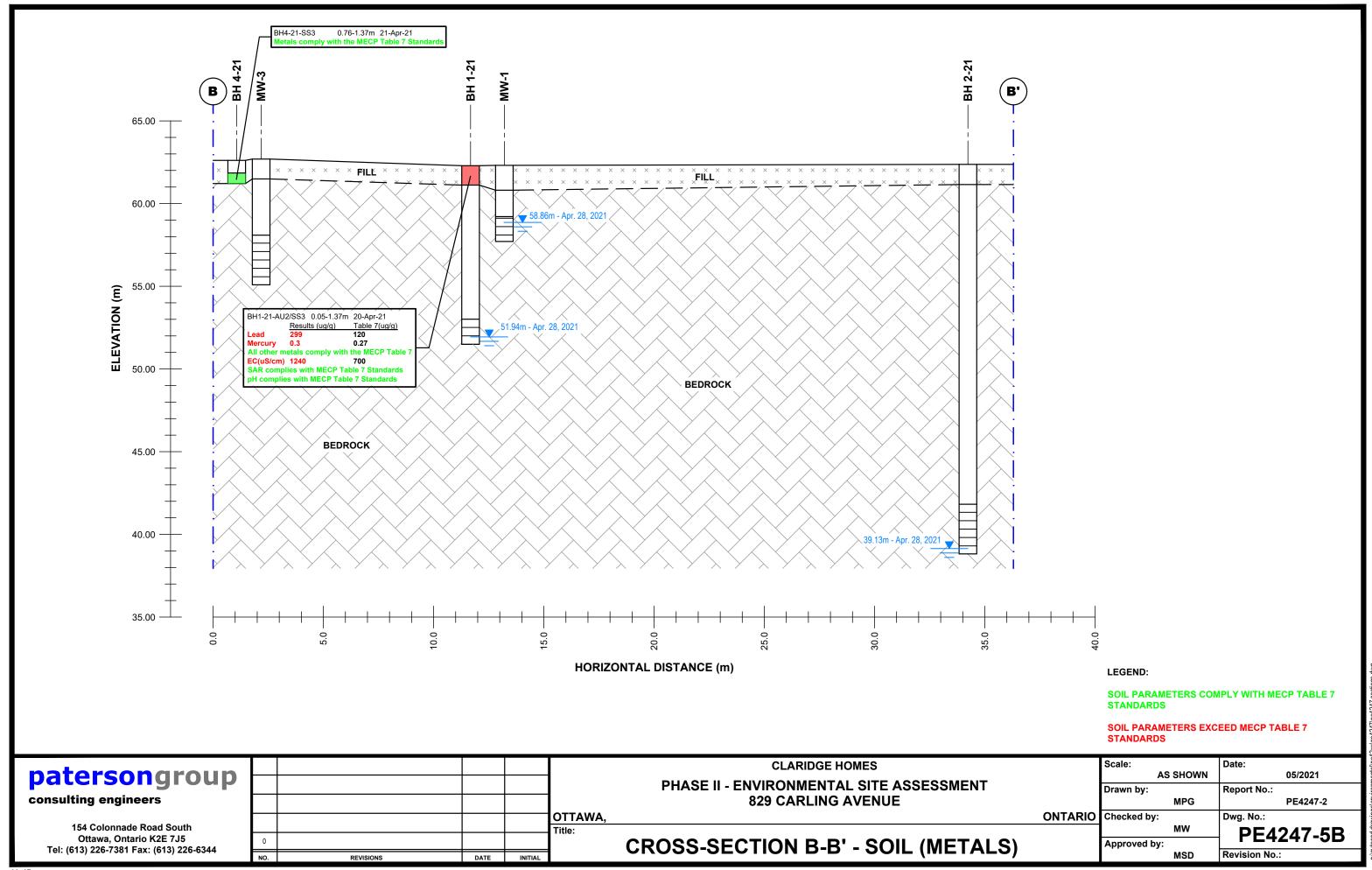

Drawing PE4247-7B – Cross-section B – B' – Groundwater (BTEX, PHCs, VOCs)

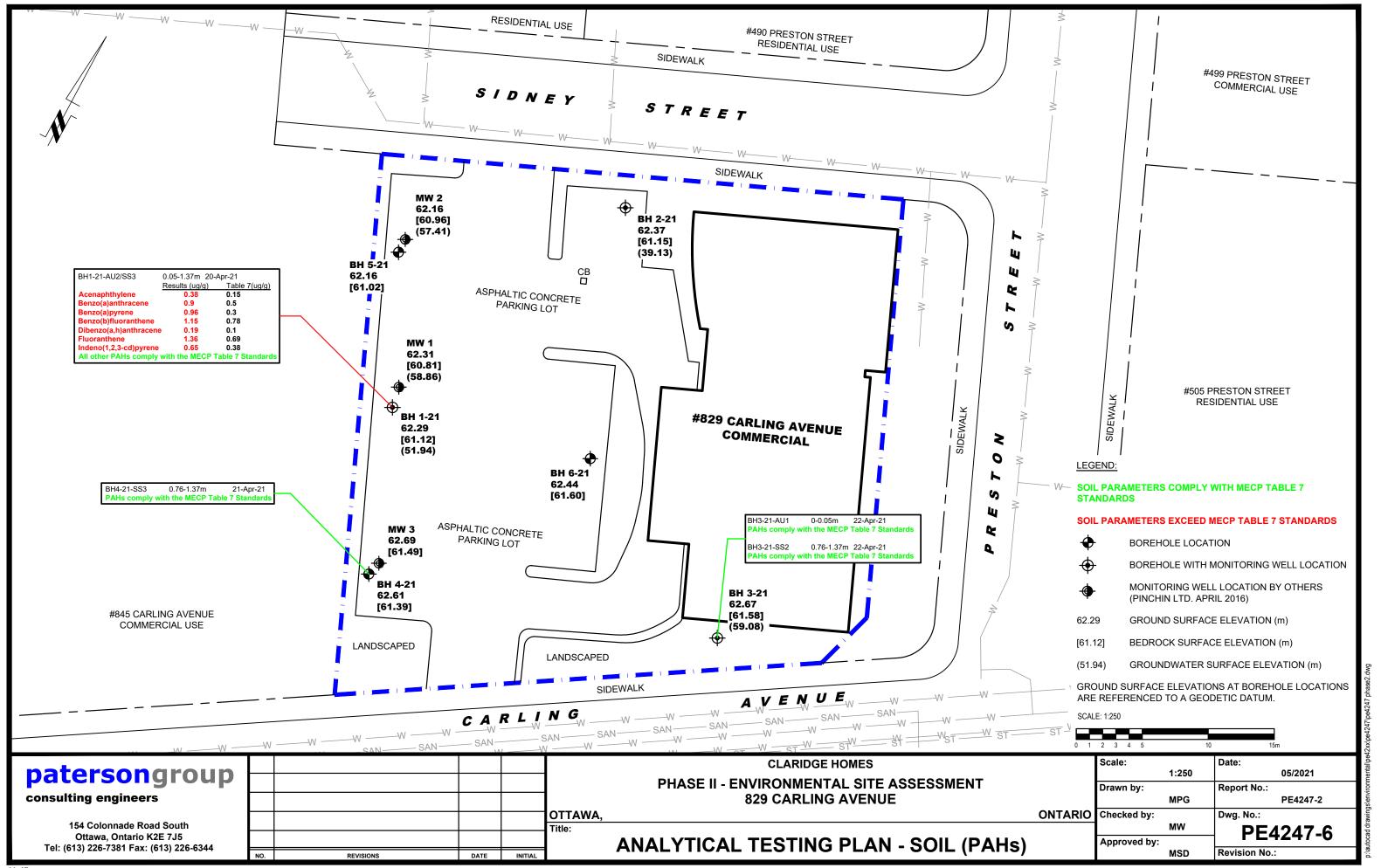


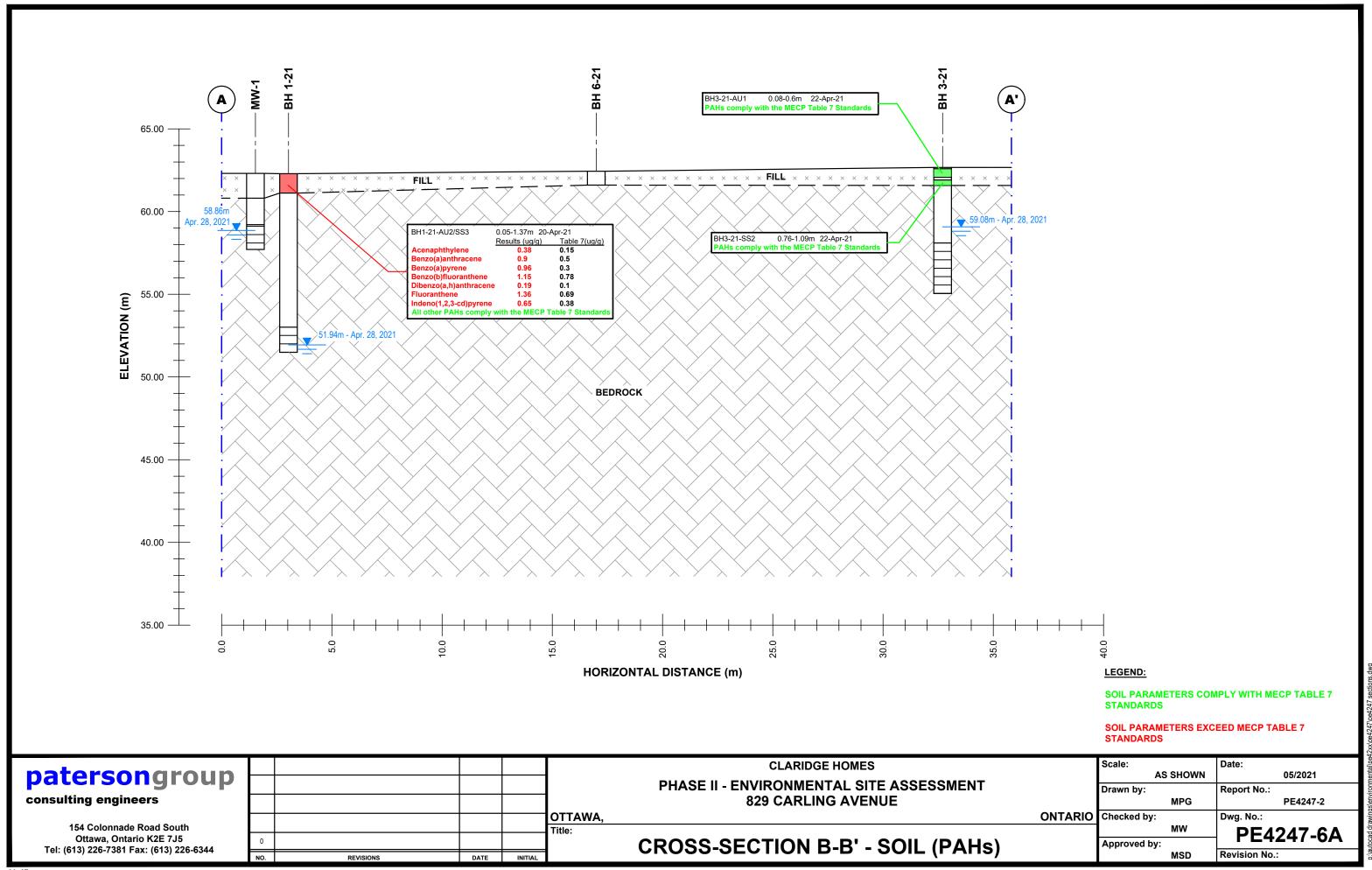

FIGURE 1 KEY PLAN

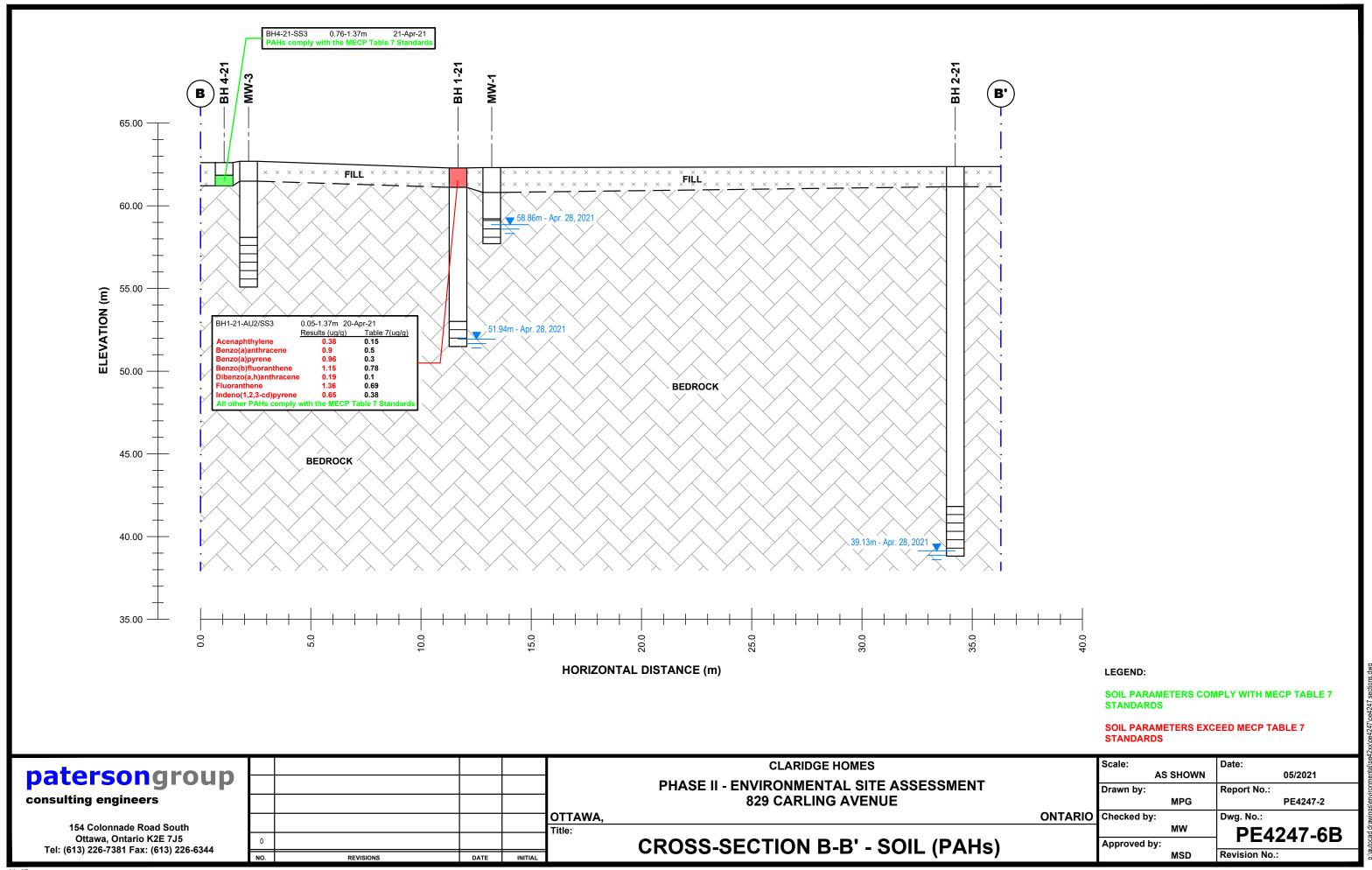

patersongroup

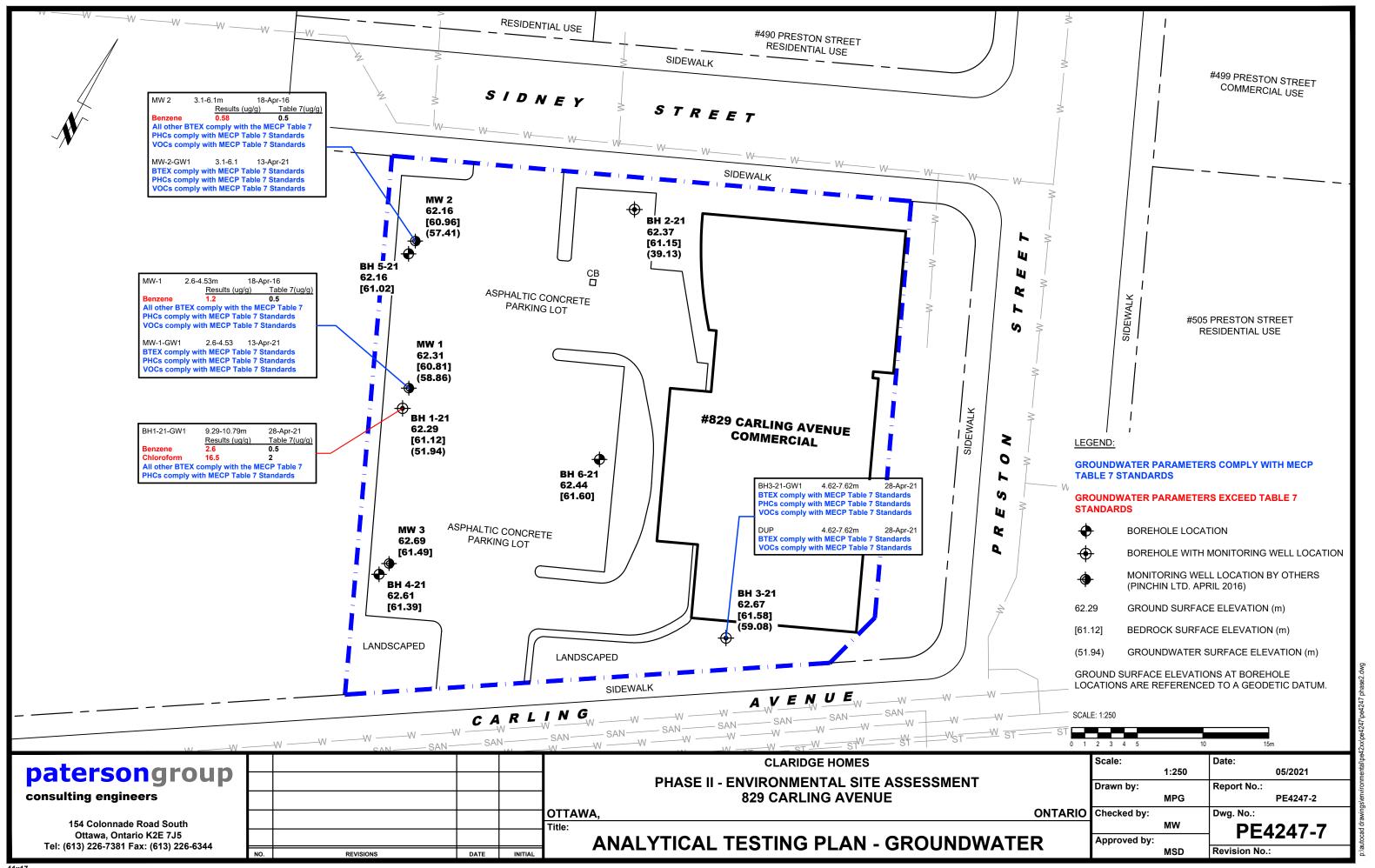


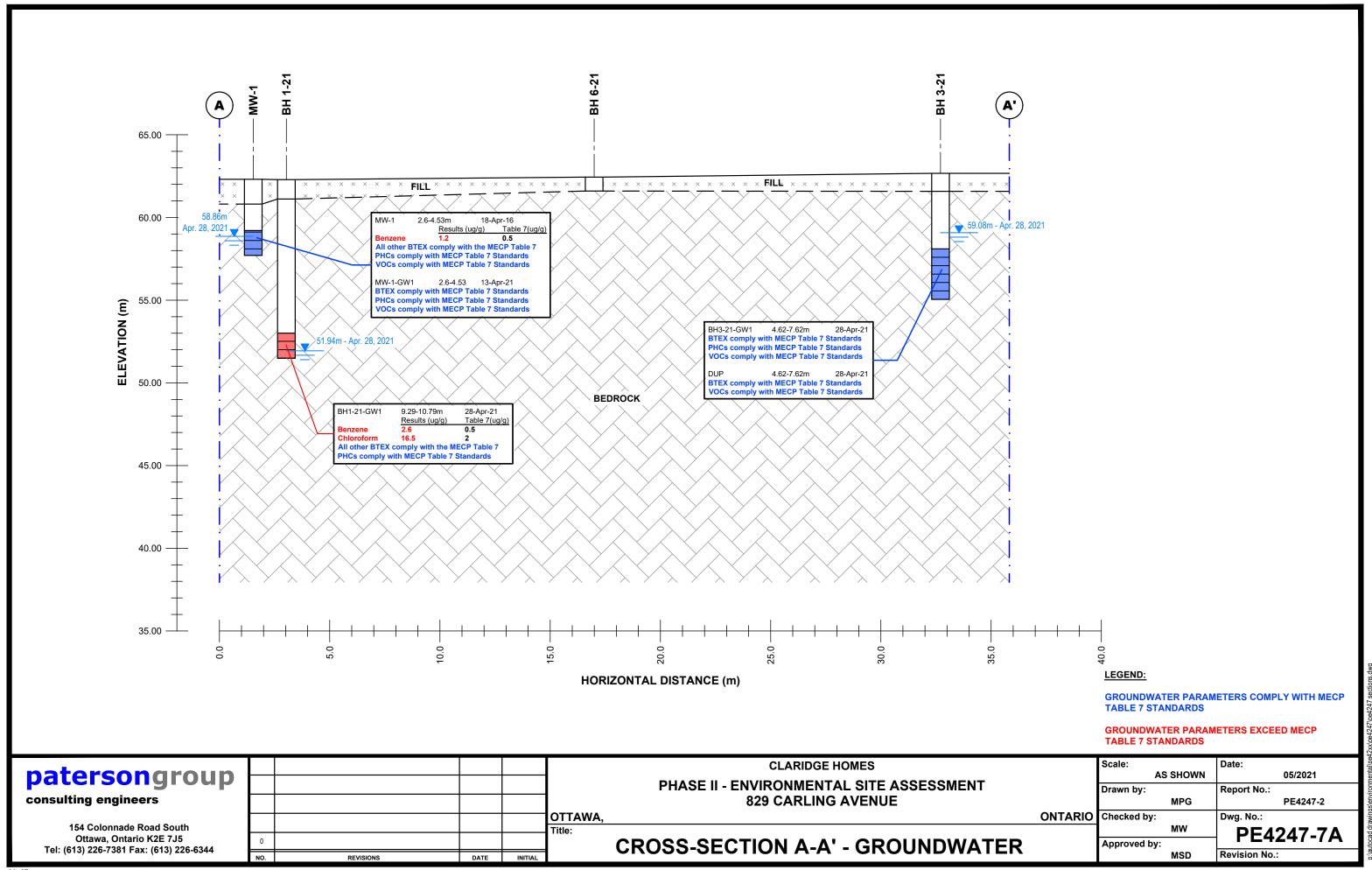


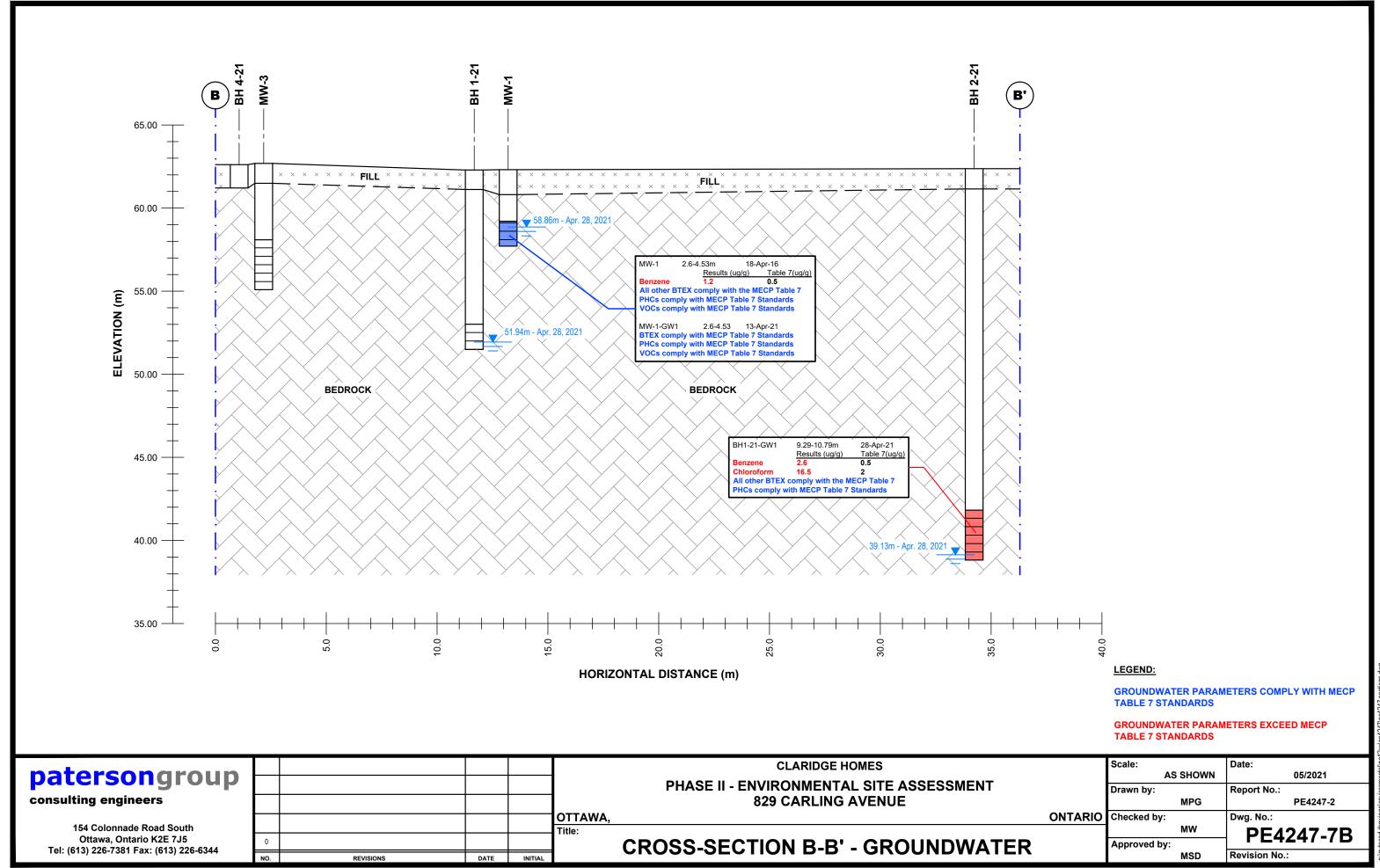












APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

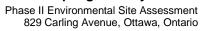
Building Science

patersongroup

Sampling & Analysis Plan

Phase II Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

Prepared For


Claridge Homes

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca **April 2021**

Report: PE4247-SAP

Table of Contents

1.0	SAMPLING PROGRAM	1
	ANALYTICAL TESTING PROGRAM	
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	
	3.2 Monitoring Well Installation Procedure	
	3.3 Monitoring Well Sampling Procedure	
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
	DATA QUALITY OBJECTIVES	
	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Vincent Denomme of Claridge Homes to conduct a Phase II Environmental Site Assessment (ESA) for the Phase II ESA Property, addressed 829 Carling Avenue, Ottawa, Ontario.

The Phase II ESA was carried out to address the APECs identified in the Paterson Phase I ESA. The following subsurface investigation program was developed to identify and delineate potential environmental concerns.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1-21	Assess soil and/or groundwater conditions on and beneath the Phase I Property due to APECs 1, 2 and 3.	Boreholes to be advanced to approximately 10.8 mbgs to intercept water table to install groundwater monitoring well.
BH2-21	Assess soil and groundwater conditions on and beneath the Phase I Property due to APECs 1, 2 and 3.	Boreholes to be advanced to approximately 23 mbgs to install a deep groundwater monitoring well.
BH3-21	Assess soil and groundwater conditions on and beneath the Phase I Property due to APECs 1 and 2.	Boreholes to be advanced to approximately 7.6 mbgs to intercept water table to install groundwater monitoring well.
BH4-21	Assess soil conditions on the Phase I Property due to APECs 1, 2 and 3.	Boreholes to be advanced to approximately 1.4 mbgs.
BH5-21	Assess soil conditions on the Phase I Property due to APECs 1, 2 and 3.	Boreholes to be advanced to approximately 1.5 mbgs.
BH5-21	Assess soil conditions on the Phase I Property due to APECs 1, 2 and 3.	Boreholes to be advanced to approximately 0.9 mbgs.

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until groundwater was intercepted. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

Report: PE4247-SAP

Phase II Environmental Site Assessment 829 Carling Avenue, Ottawa, Ontario

2.0 ANALYTICAL TESTING PROGRAM

e analytical testing program for soil at the subject site is based on the following neral considerations:
At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP's site condition standards.
In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.
e analytical testing program for groundwater at the subject site is based on the lowing general considerations:
Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing.
Parameters analyzed should be consistent with the Contaminants of Concernidentified in the Phase I ESA and with the contaminants identified in the soil samples.

Report: PE4247-SAP

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

J	glass soil sample jars
J	two buckets
J	cleaning brush (toilet brush works well)
J	dish detergent
J	methyl hydrate
]	water (if not available on site - water jugs available in trailer)
J	latex or nitrile gloves (depending on suspected contaminant)
]	RKI Eagle organic vapour meter or MiniRae photoionization detecto
	(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Elevations were surveyed at geodetic elevations by Paterson personnel.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

☐ Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.

	Make sure samples are well sealed in plastic bags with no holes prior to
	screening and are kept cool but unfrozen.
	If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample
	which may be analyzed must be taken and placed in the laboratory-provided
	methanol vial.
	Note all and any odours or discolouration of samples.
	Split spoon samplers must be washed between samples.
	If obvious contamination is encountered, continue sampling until vertical extent
	of contamination is delineated.
	As a general rule, environmental boreholes should be deep enough to intercept
	the groundwater table (unless this is impossible/impractical - call project
	manager to discuss).
	If at all possible, soil samples should be submitted to a preliminary screening
	procedure on site, either using a RKI Eagle, PID, etc. depending on type of
	suspected contamination.
Sp	oon Washing Procedure
ΑII	sampling equipment (spilt spoons, etc.) must be washed between samples in
	der to prevent cross contamination of soil samples.
	Obtain two buckets of water (preferably hot if available)
	Add a small amount of dish soap to one bucket
	Scrub spoons with brush in soapy water, inside and out, including tip
	Rinse in clean water
	Apply a small amount of methyl hydrate to the inside of the spoon. (A spray
	bottle or water bottle with a small hole in the cap works well)
	Allow to dry (takes seconds)
	Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Report: PE4247-SAP

Phase II Environmental Site Assessment 829 Carling Avenue, Ottawa, Ontario

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.	
	Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
	Turn instrument on and allow to come to zero - calibrate if necessary
	If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
	Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
	automatically switch to %LEL (lower explosive limit) if higher concentrations
	are encountered.
	Break up large lumps of soil in the sample bag, taking care not to puncture bag.
	Insert probe into soil bag, creating a seal with your hand around the opening.
	Gently manipulate soil in bag while observing instrument readings.
	Record the highest value obtained in the first 15 to 25 seconds
	Make sure to indicate scale (ppm or LEL); also note which instrument was used
	(RKI Eagle 1 or 2, or MiniRae).
	Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Eq	uipment
	5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock)
	5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock)
	Threaded end-cap Slip-cap or J-plug
	Asphalt cold patch or concrete
	Silica Sand Bentonite chips (Holeplug)
	Steel flushmount casing
Pr	ocedure
	Drill borehole to required depth, using drilling and sampling procedures described above.
	If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is
	not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole.
	Monitoring wells should not be screened across more than one stratigraphic
	unit to prevent potential migration of contaminants between units. Where LNAPLs are the suspected contaminants of concern, monitoring wells
	should be screened straddling the water table in order to capture any free product floating on top of the water table.
	Thread the end cap onto a section of screen. Thread second section of screen
	if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
	As drillers remove augers, backfill borehole annulus with silica sand until the
	level of sand is approximately 0.3 m above the top of the screen. Backfill with holeplug until at least 0.3 m of holeplug is present above the top
	of the silica sand. Backfill remainder of borehole with holeplug or with auger cuttings (if
	contamination is not suspected).
	Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground
	annaise man conteres, cons patern, or neroping to materi contouriding ground

Report: PE4247-SAP

surface.

3.3 Monitoring Well Sampling Procedure

Εq	Equipment		
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles		
Sa	Sampling Procedure		
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.		
	Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product. Measure total depth of well.		
	Clean water level tape or interface probe using methanol and water. Change gloves between wells.		
	Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.		
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).		
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.		
	Replace well cap and flushmount casing cap.		

Report: PE4247-SAP

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:
 All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
 All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
 Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
 Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
 Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

Report: PE4247-SAP

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

Report: PE4247-SAP
April 2021 Page 9

body of the Phase II ESA report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the laboratory
	Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
Sit	e-specific impediments to the Sampling and Analysis plan are discussed in the

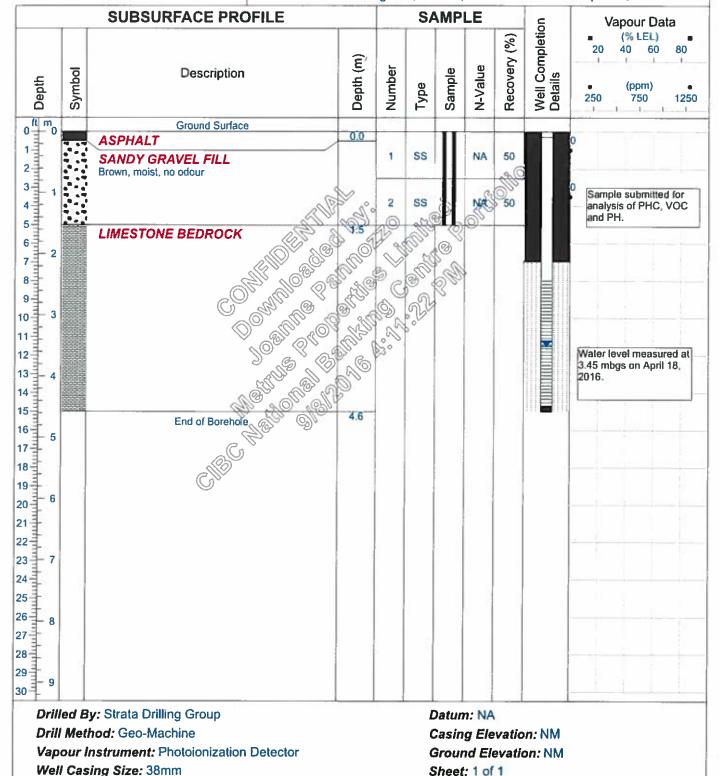
Report: PE4247-SAP

Stratigraphic and Instrumentation Log: MW-1

Pinchin Ltd. 555 Legget Drive, Suite 1001 Kanata, Ontario Project No.: 111021.002

Project: Phase II ESA

Client: CIBC Corporate Real Estate


Location: 829 Carling Ave, Ottawa, ON

Logged By: RML

Entered By: RML

Project Manager: FD

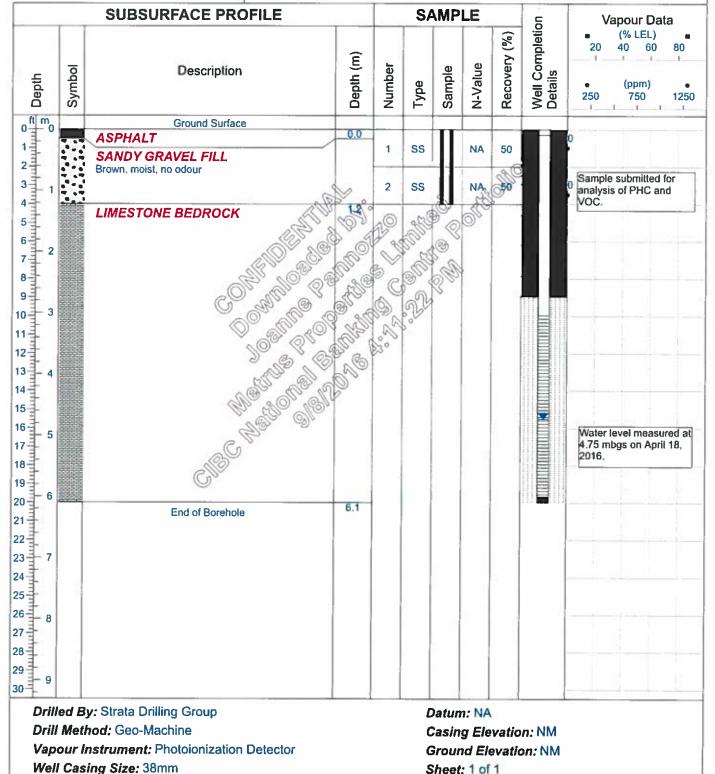
Drill Date: April 15, 2016

Stratigraphic and Instrumentation Log: MW-2

Pinchin Ltd. 555 Legget Drive, Suite 1001 Kanata, Ontario Project No.: 111021.002

Project: Phase II ESA

Client: CIBC Corporate Real Estate


Location: 829 Carling Ave, Ottawa, ON

Logged By: RML

Entered By: RML

Project Manager: FD

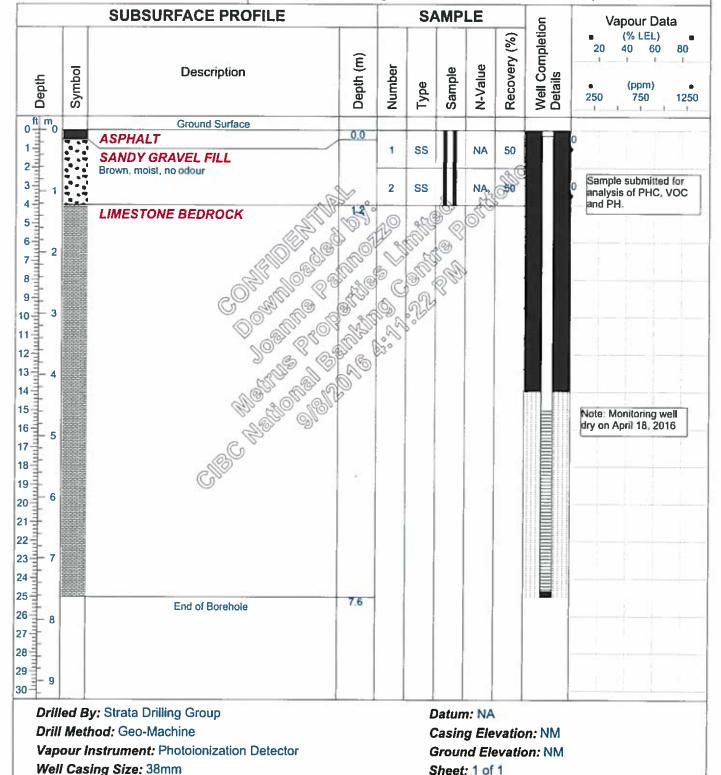
Drill Date: April 15, 2016

Stratigraphic and Instrumentation Log: MW-3

Pinchin Ltd. 555 Legget Drive, Suite 1001 Kanata, Ontario Project No.: 111021.002

Project: Phase II ESA

Client: CIBC Corporate Real Estate


Location: 829 Carling Ave, Ottawa, ON

Logged By: RML

Entered By: RML

Project Manager: FD

Drill Date: April 15, 2016

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

DATUM Geodetic FILE NO. **PE4247 REMARKS** HOLE NO. **BH 1-21 BORINGS BY** Track-Mount Power Auger **DATE** April 20, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD STRATA NUMBER **Lower Explosive Limit %** N o v **GROUND SURFACE** 80 0+62.29Asphaltic concrete 0.05 FILL: Brown silty sand with crushed 36 2 0.76 FILL: Topsoil with silty clay SS 3 50 28 1+61.29FILL: Brown silty sand with clay and gravel, trace topsoil 2+60.29RC 1 100 62 BEDROCK: Poor quality, grey limestone 3.00 3+59.29RC 2 100 88 4 + 58.295+57.29RC 3 100 100 6+56.29RC 4 100 100 7+55.29**BEDROCK:** Good to excellent quality, grey limestone 8+54.29RC 5 100 100 9+53.296 RC 100 100 ¥ 10+52.2911 + 51.29RC 7 100 100 12 + 50.2913+49.29 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

DATUM Geodetic FILE NO. **PE4247 REMARKS**

HOLE NO.

BORINGS BY Track-Mount Power Auge	er			D	ATE /	April 20, 2	2021				BH 1	- <u>∠</u> I
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Photo Id			etector dg. (ppm)	Mol.
SPOUND SUPEACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD		,		r Expl		Limit %	Monitoring Well
GROUND SURFACE		RC	8	100	100	13-	-49.29	20	40	60	80	+-
		_				14-	-48.29					
		RC	9	100	100							
		_				15-	-47.29					
		RC	10	100	100	16-	-46.29					
EDROCK: Good to excellent		RC	11	100	100	17-	-45.29					
uality, grey limestone		_				18-	-44.29					
		RC	12	100	95	19-	-43.29					
		_	10	100	00	20-	-42.29					
		RC -	13	100	90	21-	-41.29					
		RC	14	100	100	22-	-40.29					
nd of Borehole												
WL @ 10.35m - April 28, 2021)												
								100 RKI E ▲ Full Ga				500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

DATUM Geodetic
REMARKS
FILE NO.
PE4247
HOLE NO.

HOLE NO. **BH 2-21 BORINGS BY** Track-Mount Power Auger **DATE** April 21, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD STRATA NUMBER **Lower Explosive Limit %** N or v **GROUND SURFACE** 80 0+62.37Asphaltic concrete 0.08 1 FILL: Brown silty sand with crushed 2 stone, trace clay 3 SS 20 54 1+61.372+60.37RC 1 100 100 3+59.37RC 2 100 95 4 + 58.37RC 3 100 100 5+57.376+56.37RC 4 100 100 **BEDROCK:** Excellent quality, grey limestone 7+55.37RC 5 100 100 8+54.379+53.37RC 6 100 100 10+52.37RC 7 100 100 11 + 51.3712 + 50.37RC 8 100 100 13+49.37 200 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

DATUM Geodetic FILE NO. **PE4247 REMARKS** HOLE NO. **BH 2-21 BORINGS BY** Track-Mount Power Auger **DATE** April 21, 2021 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE **Lower Explosive Limit % GROUND SURFACE** 80 13 + 49.37RC 9 100 100 14 + 48.3715+47.37RC 10 100 100 16+46.37 RC 100 11 100 17+45.37 18+44.37 **BEDROCK:** Excellent quality, grey RC 12 100 97 limestone 19+43.37 RC 13 100 100 20 + 42.3721 + 41.37RC 14 100 90 ▼

RC

23.55

15

22+40.37

23 + 39.37

200

RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

300

500

100

100

End of Borehole

(GWL @ 23.24m - April 28, 2021)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

DATUM Geodetic
REMARKS
FILE NO.
PE4247

HOLE NO. **BH 3-21 BORINGS BY** Track-Mount Power Auger **DATE** April 22, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY STRATA VALUE r RQD NUMBER **Lower Explosive Limit %** N o v **GROUND SURFACE** 80 0+62.67Concrete 0.08 1 FILL: Brown silty sand, trace crushed stone 2 100 5 1+61.67FILL: Brown silty sand with gravel,1.09 some topsoil, trace wood, brick, mortar and concrete BEDROCK: Poor quality, grey RC 1 100 47 2+60.67limestone - vertical seam from 1.45 to 1.9m depth 3+59.67RC 2 100 93 4 + 58.67RC 3 100 98 5+57.676+56.67RC 4 100 100 7+55.67**BEDROCK:** Excellent quality, grey limestone RC 5 100 95 8+54.679+53.67RC 6 100 10 10+52.67RC 7 100 100 11+51.67 12 + 50.67RC 8 100 100 13+49.67 500 RKI Eagle Rdg. (ppm)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

SOIL PROFILE AND TEST DATA

RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

DATUM Geodetic FILE NO. **PE4247 REMARKS** HOLE NO. **BH 3-21 BORINGS BY** Track-Mount Power Auger **DATE** April 22, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 13 + 49.67RC 9 100 100 14 + 48.6715+47.67RC 10 100 100 16+46.67 RC 11 100 95 17+45.67 18+44.67 **BEDROCK:** Excellent quality, grey RC 12 100 97 limestone 19+43.67 RC 13 100 100 20+42.67 21 + 41.67RC 14 100 85 22+40.67 23 + 39.67RC 15 100 100 23.93 End of Borehole (GWL @ 3.59m - April 28, 2021) 200 300 500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM Geodetic									FILE NO.	PE4247	,
REMARKS POPINGS BY Track Mount Power August					ATE	1 nril 20	2021		HOLE NO.	BH 4-2	21
BORINGS BY Track-Mount Power Auge			SVIV	ں PLE	AIE /	April 20, 2	2021	Photo I	onization De		
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)		tile Organic Rd		Monitoring Well Construction
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r RQD			○ Lowe	r Explosive	Limit %	nitorir onstru
GROUND SURFACE	ST	Ħ	N	REC	N V			20	40 60	80	M PO
Asphaltic concrete0.05		Ş AU Ş AU	1 2			0-	62.61				
FILL: Crushed stone with topsoil, some sand		7		00	4.4	1 -	-61.61				
BEDROCK: Weathered grey limestone 1.22 1.40		SS	3	33	14	'	01.01				
End of Borehole		J									
Practical refusal to augering at 1.40m depth.											
1.40m deptn.											
								100	200 300	400 50	nn
								RKI E	agle Rdg. (∣ as Resp. △ Me	ppm)	,,,

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

DATUM Geodetic FILE NO. **PE4247 REMARKS** HOLE NO. **BH 5-21 BORINGS BY** Track-Mount Power Auger **DATE** April 20, 2021 Monitoring Well Construction **Photo Ionization Detector SAMPLE** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+62.16Asphaltic concrete 0.08 FILL: Brown silty sand with crushed 2 - some topsoil, trace clay and rock_{1.14} 1+61.163 25 31 fragments by 0.8m depth **BEDROCK:** Weathered grey limestone End of Borehole Practical refusal to augering at 1.45m depth. 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 829 Carling Avenue Ottawa, Ontario

REMARKS											PE4247	ı
BORINGS BY Trac	k-Mount Power Auge	er			D	ATE A	April 21, 2	2021		HOLE NO.	BH 6-2	21
				SAN	/IPLE		DEPTH	ELEV.	Photo	lonization [)etector	Nell C
SOIL DES	SCRIPTION	A PLOT		R	RY	買り	(m)	(m)	• Vol	atile Organic R	dg. (ppm)	Monitoring Well Construction
		STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD			O Lowe	er Explosive	Limit %	Onito
GROUND SURFA				Z	퓚	z o	0-	-62.44	20	40 60	80	Σ
Asphaltic concrete FILL: Brown silty stone BEDROCK: Weat limestone End of Borehole Practical refusal to 0.91m depth.	sand with crushed 0.84 hered, grey 0.91		& AU SS	1 2	8	50+						
										200 300 Eagle Rdg.	(ppm)	00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

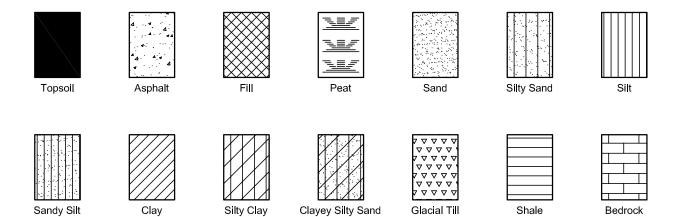
p'₀ - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

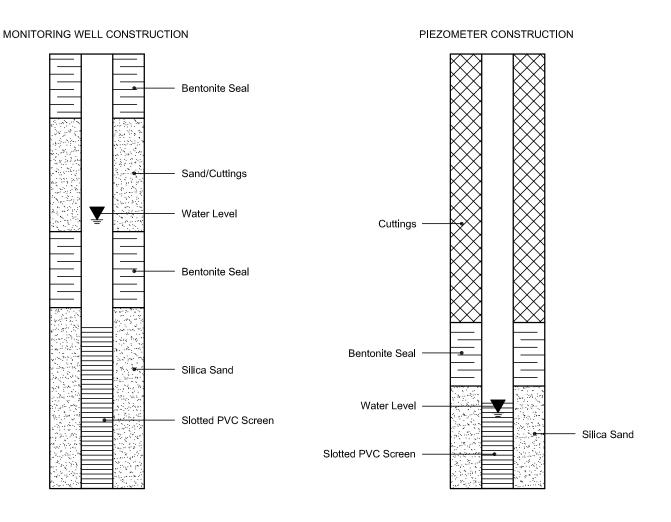
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Your Project #: PII ESA Site#: 111021.002

Site Location: CARLING AVE Your C.O.C. #: 544903-04-01

Attention:Ryan Laronde

Pinchin Ltd Ottawa 555 Legget Dr Suite 1001 (Tower A) Kanata, ON K2K 2X3

> Report Date: 2016/04/25 Report #: R3972343

Version: 1 - Final

CERTIFICATE OF ANALYSIS MAXXAM JOB #: B677217 Received: 2016/04/19, 11:15 Sample Matrix: Soil # Samples Received: 5 Quantity Extracted **Analyses** Analyzed Laboratory Method Reference 1,3-Dichloropropene Sum (1) 2015/04/25 EPA 8260C m Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2) 2016/04/25 CAM SOP-00457 OMOE 3015 m ₩2016/04/23 CAM SOP-00315 CCME PHC-CWS m 2016/04/22 2016/04/25 CAM SOP-00316 CCME CWS m 2016/04/23 2016/04/25 CAM SOP-00449 Fluoride by ISE in Leachates (1) SM 22 4500-F- C m Mercury (TCLP Leachable) (mg/L) (1) 2016/04/22 CAM SOP-00453 EPA 7470A m Total Metals in TCLP Leachate by ICPMS (1) 2016/04/22 2016/04/25 CAM SOP-00447 EPA 6020A m Ignitability of a Sample (1) 2016/04/25 2016/04/25 CAM SOP-00432 EPA 1030 Rev. 0 m Moisture (1) N/A 2016/04/21 CAM SOP-00445 Carter 2nd ed 51.2 m Nitrate(NO3) + Nitrite(NO2) in Leachate (1) N/A 2016/04/25 CAM SOP-00440 SM 22 4500-NO3I/NO2B PAH Compounds in Leachate by GC/MS (SIM) (1) 2016/04/22 2016/04/23 CAM SOP-00318 EPA 8270D m Polychlorinated Biphenyl in Leachate (1) 2016/04/23 2016/04/23 CAM SOP-00309 EPA 8082A m pH CaCl2 EXTRACT (1) 2016/04/21 2016/04/21 CAM SOP-00413 EPA 9045 D m Sieve, 75um (1) 1 N/A 2016/04/25 CAM SOP-00467 Carter 2nd ed m TCLP - % Solids (1) 1 2016/04/21 2016/04/22 CAM SOP-00401 EPA 1311 Update I m TCLP - Extraction Fluid (1) N/A 2016/04/22 CAM SOP-00401 EPA 1311 Update I m TCLP - Initial and final pH (1) 1 N/A 2016/04/22 CAM SOP-00401 EPA 1311 Update I m Volatile Organic Compounds in Soil (1) 3 N/A 2016/04/22 CAM SOP-00228 EPA 8260C m

Sample Matrix: Water # Samples Received: 2

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	2	N/A	2016/04/22		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water (1)	2	N/A	2016/04/24	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 3)	2	2016/04/23	2016/04/24	CAM SOP-00316	CCME PHC-CWS m
Volatile Organic Compounds in Water (1)	2	N/A	2016/04/21	CAM SOP-00226	EPA 8260C m

Remarks:

Your Project #; PII ESA Site#: 111021.002

Site Location: CARLING AVE Your C.O.C. #: 544903-04-01

Attention:Ryan Laronde

Pinchin Ltd Ottawa 555 Legget Dr Suite 1001 (Tower A) Kanata, ON K2K 2X3

Report Date: 2016/04/25

Report #: R3972343 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B677217 Received: 2016/04/19, 11:15

Maxxam Analytics has performed all analytical testing herein in accordance with 150 2025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in the analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Bart XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by preario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed of implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated promitications from appellic reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results (18) result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field disserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the reference method and performance based elements have been validated all modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wige Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modification from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Parnian Baber, Project Manager
Email: pbaber@maxxam.ca
Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID			CFE299		CFE301		CFE302		
Sampling Date			2016/04/15		2016/04/15		2016/04/15		
COC Number			544903-04-01		544903-04-01		544903-04-01		
	UNITS	Criteria	MW-1 SS2	QC Batch	MW-2 SS2	QC Batch	MW-3 SS2	RDL	QC Batch
Inorganics						-			
Moisture	%	-	18	4466763	34	4466683	22	1.0	4466763
BTEX & F1 Hydrocarbons				•					
F1 (C6-C10)	ug/g	55	<10	4468697	<10	4468697	<10	10	4468697
F1 (C6-C10) - BTEX	ug/g	55	<10	4468697	<10	4468697	<10	10	4468697
F2-F4 Hydrocarbons					 -				
F2 (C10-C16 Hydrocarbons)	ug/g	230	<10	4468834	<10	4468834	<10	10	4468834
F3 (C16-C34 Hydrocarbons)	ug/g	1700	<50	4468834	300	4468834	100	50	4468834
F4 (C34-C50 Hydrocarbons)	ug/g	3300	<50, 65	4468834	120	4468834	<50	50	4468834
Reached Baseline at C50	ug/g	-	Yes, UV	4468834		1468834	Yes		4468834
Surrogate Recovery (%)			all along	415	COLUMN 18	 -			
1,4-Difluorobenzene	%	- ~	∂ \%100,(%)	4468697	1029	4468697	101		4468697
4-Bromofluorobenzene	%		2, 63 <u>1,</u> 4	4468697	(N) 26m	4468697	94		4468697
D10-Ethylbenzene	%	U.S.	105)	4468697	104	4468697	101		4468697
D4-1,2-Dichloroethane	%(?	- m	S (99 6	4468697	S 38	4468697	97		4468697
o-Terphenyl	%	(a)	(W104 (V)	4468834	103	4468834	104		4468834

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 18) 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Soil - Industrial/Commercial/Community Property Use Coarse Texture

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID			CFE303		
Sampling Date			2016/04/15		_
COC Number			544903-04-01		
	UNITS	Criteria	TCLP	RDL	QC Batch
Inorganics					
Moisture	%	-	23	1.0	4467824
BTEX & F1 Hydrocarbons					
Benzene	ug/g	0.32	<0.020	0.020	4468697
Toluene	ug/g	68	0.021	0.020	4468697
Ethylbenzene	ug/g	9.5	<0.020	0.020	4468697
o-Xylene	ug/g	-	<0.020	0.020	4468697
p+m-Xylene	ug/g	-	<0.040	0.040	4468697
Total Xylenes	HEZE	. ₀ 26	<0.040	0.040	4468697
F1 (C6-C10)	ug/g-	₹ 55 €	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	4468697
F1 (C6-C10) - BTEX	ug/g	255	10 8	10	4468697
F2-F4 Hydrocarbons	(B)	0, 6	My Hills		
F2 (C10-C16 Hydrocarbons)	ug/g)	230	(MOOTS)	10	4468834
F3 (C16-C34-Hydrocarbons) ()ŭĝ/g₃	1700 (3 6 2 2	50	4468834
F4 (C34-C50 Hydrocarbons)	ug(g)	330Ĝ	ന് ്ട ാ	50	4468834
Reached Basel (ne at C50)	WB/B	Har	Yes		4468834
Surrogate Recovery (%)	@	13,000	>		_
1,4-Difluorobenzene	2	S EN	101		4468697
4-Bromofluorobenzene	34 V	\$ ·	94		4468697
D10-Ethylbenzene	1000	-	110		4468697
D4-1,2-Dichloroethane	೨ [∨] %	-	97		4468697
o-Terphenyl	%	-	104	$\overline{}$	4468834

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable

Ground Water Condition

Soil - Industrial/Commercial/Community Property Use - Coarse Texture

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

O.REG 153 VOLATILE ORGANICS (SOIL)

Maxxam ID			CFE299	CFE301	CFE302				
Sampling Date			2016/04/15	2016/04/15	2016/04/15				
COC Number			544903-04-01	544903-04-01	544903-04-01				
	UNITS	Criteria	MW-1 552	MW-2 \$S2	MW-3 SS2	RDL	QC Batch		
Calculated Parameters									
1.3-Dichloropropene (cis+trans)	ue/e	0.18	< 0.050	< 0.050	< 0.050	0.050	4463003		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Soil - Industrial/Commercial/Community Property Use - Coarse Texture

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

Maxxam ID		CFE303							
Sampling Date		2016/04/15							
COC Number		544903-04-01							
	UNITS	TCLP	RDL	QC Batch					
Inorganics		not vivoleti	± 44,01650	-30					
Leachable Fluoride (F-)	mg/L	0.26	0.10	4470308					
Leachable Free Cyanide	mg/L	<0.010	0.010	4470316					
Leachable Nitrite (N)	mg/L	<0.10	0.10	4470317					
Leachable Nitrate (N)	mg/L	<1.0	1.0	4470317					
Leachable Nitrate + Nitrite (N)	mg/L	<1.0	1.0	4470317					
Metals				. (6)					
Leachable Mercury (Hg)	mg/L	<0.0010	0.0010	4468656					
Leachable Arsenic (As)	mg/L	<0.2	0.2	4468854					
Leachable Barium (Ba)	्रमहो L	0.7	~163g	4468854					
Leachable Boron (B)	mg/Li	0.5	∜0.1	4468854					
Leachable Cadmium (Cd)	mgAL	₹0.05,₹	0.05	4468854					
Leachable Chromium (Q)	mg/L	⁵ _<6660000000000000000000000000000000000	0.1	4468854					
Leachable Lead (Ph) 💛 🔿 🕆	148/6	(C}0.1 (V)	0.1	4468854					
Leachable Selentum (Sel)	mg/L	6 40 ju	0.1	4468854					
Leachable Silver (Ag)	TUR (V)	€0:01	0.01	4468854					
Leachable Vranilim (U)	TOB/L	<0.01	0.01	4468854					
RDL = Reportable Detection Line QC Batch = Quality Control Bate									

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		CFE303						
Sampling Date	We see	2016/04/15						
COC Number		544903-04-01						
	UNITS	TCLP	ROL	QC Batch				
Inorganics								
Final pH	рH	6.16		4468352				
Initial pH	pН	8.75		4468352				
TCLP - % Solids	%	100	0.2	4468343				
TCLP Extraction Fluid	N/A	FLUID 1		4468351				
RDL = Reportable Detection								

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

O.REG 558 TCLP PCBS (SOIL)

Maxxam ID		CFE303		
Sampling Date		2016/04/15		
COC Number		544903-04-01		
	UNITS	TCLP	RDL	QC Ba
PCBs				
Leachable Aroclor 1016	ug/L	<3.0	3.0	4469
Leachable Aroclor 1221	ug/L	<3.0	3.0	4469
Leachable Aroclor 1242	ug/L	<3.0	3.0	4469
Leachable Aroclor 1248	ug/L	<3.0	3.0	4469
Leachable Arocior 1254	ug/L	<3.0	3.0	4469
Leachable Aroclor 1260	ug/L	<3.0	3.0	4469
Leachable Total PCB	ug/L	<3.0	3.0	4469
Surrogate Recovery (%)	.0	13	۲.	30
Leachable Decachloropiphenyi	81%	a 1288		4469
RDL = Reportable Detection Limi QC Batch = Quality Control Batch	OZZ	Malling	(0)	4405.
Leachable Decachloropionenyl, RDL = Reportable Detection Limi QC Batch = Quality control Batch			\$	4403.

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

RESULTS OF ANALYSES OF SOIL

		CFE299	CFE300		CFE302						
mpling Date 2016/04/15 2016/04/15 2016/04/15											
OC Number 544903-04-01 544903-04-01 544903-04-01											
	UNITS	MW-1 SS2	MW-1 GS	RDL	MW-3 SS2	QC Batch					
Inorganics											
Available (CaCl2) pH	рН	7.58			7.41	4466630					
Miscellaneous Parameters											
Grain Size	%		COARSE	N/A		4469053					
Sieve - #200 (<0.075mm)	%		40	1		4469053					
Sieve - #200 (>0.075mm)	%		60	1		4469053					
RDL = Reportable Detection L	imit				. 6						
QC Batch = Quality Control Ba	itch	^			Miles						
N/A = Not Applicable											
Inorganics Available (CaCl2) pH											

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

2016/04/15		
544903-04-01		
TCLP	RDL	QC Batch
<0.20	0.20	4469240
2.0	0.20	4469240
<0.20	0.20	4469240
0.47	0.20	4469240
0.90	0.20	4469240
1.4	0.20	4469240
0.21	0.20	8469240
0.39	056	4469240
, 0.28	9,50	4469240
20,20	0.20	4469240
70.20	0.20	4469240
(8)20M	0.20	4469240
ૺૢૢૢૺ૾ઌઌૢૢઌ	0.10	4469240
ര് 220	0.20	4469240
₹0.20	0.20	4469240
১ <0.20	0.20	4469240
5.2	0.20	4469240
6.5	0.20	4469240
107		4469240
101		4469240
93		4469240
	93	93

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID			CFE299	CFE299	CFE301	CFE302		
Sampling Date			2016/04/15	2016/04/15	2016/04/15	2016/04/15		
COC Number			544903-04-01	544903-04-01	544903-04-01	544903-04-01		
	UNITS	Criteria	MW-1 552	MW-1 SS2 Lab-Dup	MW-2 SS2	MW-3 SS2	RDL	QC Batch
Volatile Organics								
Acetone (2-Propanone)	ug/g	16	<0.50	<0.50	<0.50	<0.50	0.50	4466776
Benzene	ug/g	0.32	<0,020	<0.020	<0.020	<0.020	0.020	4466776
Bromodichloromethane	ug/g	18	<0.050	<0.050	<0.050	<0.050	0.050	4466776
Bromoform	ug/g	0.61	<0,050	<0.050	<0.050	<0.050	0.050	4466776
Bromomethane	ug/g	0.05	<0.050	<0.050	<0.050	<0.050	0.050	4466776
Carbon Tetrachloride	ug/g	0.21	<0.050	<0.050	<0.0\$0	<0.050	0.050	4466776
Chlorobenzene	ug/g	2.4	€0:050	<0.050	Pap (030)	<0.050	0.050	4466776
Chlaroform	ug/g	0.47	° 0.050°	~ <0,050 ⁽³⁾	€0.050	<0.050	0.050	4466776
Dibromochloromethane	ug/g	13/2	<0.050 Al	[₹] 50,050 €	<0.050	<0.050	0.050	4466776
1,2-Dichlorobenzene	ug/g	€ 638	@><0.050)V	%0.050®	<0.050	<0.050	0.050	4466776
1,3-Dichlorobenzene	ug/g>	9.6	50.080 a	√ <0₹0\$30 	<0.050	<0.050	0.050	4466776
1,4-Dichlorobenzene	WB/B	(c)(2)	റ് ^{ശ്ര} ്.050ॐ്	@ \$0.05@ V	<0.050	<0.050	0.050	4466776
Dichlorodifluoromethane (FREON 12)	=ug/g	16 @	~ <0.050 €	SQ:0350	<0.050	<0.050	0.050	4466776
1,1-Dichloroethane	-ug/B	180	⟨\$0.05Q(\$\)	₹0:050	<0.050	<0.050	0.050	4466776
1,2-Dichloroethane	Wg/g_	%0:05 ₹	<0.050° °	√> <0.050	<0.050	<0.050	0.050	4466776
1,1-Dichloroethylene	ug/g	0.064	£0.050 ₩	<0.050	<0.050	<0.050	0.050	4466776
cis-1,2-Dichloroethylene	ug/g	J35 C	 Sobjet 	<0.050	<0.050	<0,050	0.050	4466776
trans-1,2-Dichloroethylene	UBARS	1,3%	(A)0.050	<0.050	<0.050	<0.050	0.050	4466776
1,2-Dichloropropane	UB/B	016	₹ } 0.050	<0.050	<0.050	<0.050	0.050	4466776
cis-1,3-Dichloropropene	ug/gି	O.182	<0.030	<0.030	<0.030	<0.030	0.030	4466776
trans-1,3-Dichloropropene	, úg/g	0.18	<0.040	<0.040	<0.040	<0.040	0.040	4466776
Ethylbenzene	Pug/g	9.5	<0.020	<0.020	<0.020	<0.020	0.020	4466776
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	<0.050	<0.050	0.050	4466776
Hexane	ug/g	46	<0.050	<0.050	<0.050	<0.050	0.050	4466776
Methylene Chloride(Dichloromethane)	ug/g	1.6	<0.050	<0.050	<0.050	<0.050	0.050	4466776
Methyl Ethyl Ketone (2-Butanone)	ug/g	70	<0.50	<0.50	<0.50	<0.50	0.50	4466776
Methyl Isobutyl Ketone	ug/g	31	<0.50	<0.50	<0.50	<0.50	0.50	4466776
Methyl t-butyl ether (MTBE)	ug/g	11	<0.050	<0.050	<0.050	<0.050	0.050	4466776
Styrene	ug/g	34	<0.050	<0.050	<0.050	<0.050	0.050	4466776
1,1,1,2-Tetrachloroethane	ug/g	0.087	<0.050	<0.050	<0.050	<0.050	0.050	4466776
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	<0.050	<0.050	0.050	4466776

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

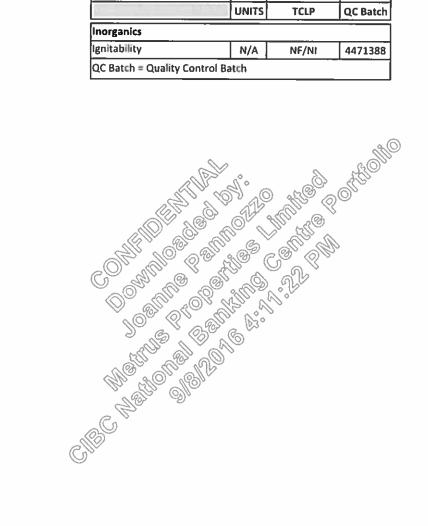
Soil - Industrial/Commercial/Community Property Use - Coarse Texture

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

VOLATILE ORGANICS BY GC/MS (SOIL)

4.5 68 6.1 0.05 0.91 4 0.032	2016/04/15 544903-04-01 MW-1 SS2 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	2016/04/15 544903-04-01 MW-1 SS2 Lab-Dup <0.050 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050	2016/04/15 544903-04-01 MW-2 SS2 <0.050 <0.020 <0.050 <0.050 <0.050 <0.050	2016/04/15 544903-04-01 MW-3 SS2 <0.050 <0.020 <0.050 <0.050 <0.050	RDL 0.050 0.020 0.050 0.050 0.050 0.050	QC Batch 4466776 4466776 4466776 4466776 4466776
4.5 68 6.1 0.05 0.91 4	<pre><0.050 <0.050 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050</pre>	MW-1 SS2 Lab-Dup <0.050 <0.020 <0.050 <0.050 <0.050 <0.050	<pre><0.050 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050</pre>	<pre><0.050 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050</pre>	0.050 0.020 0.050 0.050 0.050	4466776 4466776 4466776 4466776
4.5 68 6.1 0.05 0.91 4	<0.050 <0.020 <0.050 <0.050 <0.050 <0.050 <0.020	<pre>Lab-Dup <0.050 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050</pre>	<0.050 <0.020 <0.050 <0.050 <0.050	<0.050 <0.020 <0.050 <0.050 <0.050 <0.050	0.050 0.020 0.050 0.050 0.050	4466776 4466776 4466776 4466776
68 6.1 0.05 0.91 4 0.032	<0.020 <0.050 <0.050 <0.050 <0.050 <0.020	<0.020 <0.050 <0.050 <0.050 <0.050 <0.020	<0.020 <0.050 <0.050 <0.050 <0.050	<0.020 <0.050 <0.050 <0.050 <0.050	0.020 0.050 0.050 0.050	4466776 4466776 4466776
6.1 0.05 0.91 4 0.032	<0.050 <0.050 <0.050 <0.050 <0.020	<0.050 <0.050 <0.050 <0.050 <0.020	<0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050	0.050 0.050 0.050	4466776 4466776 4466776
0.05 0.91 4 0.032	<0.050 <0.050 <0.050 <0.020	<0.050 <0.050 <0.050 <0.020	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	0.050 0.050	4466776 4466776
0.91 4 0.032	<0.050 <0.050 <0.020	<0.050 <0.050 <0.020	<0.050 <0.050	<0.050 <0.050	0.050	4466776
4 0.032	<0.050 <0.020	<0.050 <0.020	<0.050	<0.050		
0.032	<0.020	<0.020			0.050	4466776
			<0.020			
•	€0:020	-0.030		<0.020	0.020	4466776
		<0.020	SD 020	<0.020	0.020	4466776
- 6	<i>∭</i> <0.05Ø ⋄	<0,020	\$0.020	<0.020	0.020	4466776
26	S<0.020 A	× <0.020 <	<0.020	<0.020	0.020	4466776
NV S	(B) (O) (C)	All 1 4 3				
- 65	9 AGO @		100	100	_	4466776
10,	റ ^{ശ്ര} 90ു®്	C @30 @ V	108	97		4466776
> - 6		(A)	98	99		4466776
Stop.	(0)100 ₍₍₁₎	ું. <mark>99</mark>	99	99		4466776
20						
ow Soil	sin a Non-Potal	ble Ground Wat	er Condition			
	3- - (1) - (- 1 98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 98 99 100 99	99 98 99 99 99 99 99 99 99 99 99 99 99 9	99 99 99 99 99 99 99 99 99 99 99 99 99	98 99 99 99 99 99 99 99 99 99 99 99 99 9



Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

MISCELLANEOUS (SOIL)

Maxxam ID		CFE303	
Sampling Date	- 3	2016/04/15	
COC Number	201	544903-04-01	
	UNITS	TCLP	QC Batch
Inorganics			
Ignitability	N/A	NF/NI	4471388
QC Batch = Quality Cor	ntrol Batch		

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		CFE304	CFE305							
Sampling Date		2016/04/18	2016/04/18							
COC Number		544903-04-01	544903-04-01							
	UNITS	MW-1	MW-2	RDL	QC Batcl					
BTEX & F1 Hydrocarbons										
F1 (C6-C10)	ug/L	<25	<25	25	4470516					
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	4470516					
F2-F4 Hydrocarbons	-									
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	4469971					
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	4469971					
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	4469971					
Reached Baseline at C50	ug/L	Yes	Yes	S	4469971					
Surrogate Recovery (%)										
1,4-Difluorobenzene	(1 %)	1040	102 N		4470516					
4-Bromofluorobenzene	S#8 C	1997 E	<u>%_6₹</u>		4470516					
D10-Ethylbenzene	X.	~(O)108 \(\)\)	ROE 75		4470516					
D4-1,2-Dichloroethane	× %_{	95	(25)		4470516					
o-Terphenyl	⊘% ©	2 TO2	101		4469971					
RDL = Reportable Detection (QC Batch = Quality:Control Ba	Boit otch⊗	102 (C)	1							
D4-1,2-Dichloroethane o-Terphenyl RDL = Reportable Detection (QC Batch = Quality Control Ba										

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

O.REG 153 VOLATILE ORGANICS (WATER)

Maxxam ID		CFE304		CFE305		
Sampling Date		2016/04/18		2016/04/18		
COC Number		544903-04-01		544903-04-01		
	UNITS	MW-1	RDL	MW-2	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	<0.57	0.57	<0.57	0.57	4463059
Volatile Organics	•					
Acetone (2-Propanone)	ug/L	<30 (1)	30	<20	20	4465300
Benzene	ug/L	1.2	0.20	0.58	0.20	4465300
Bromodichloromethane	ug/L	<0.20	0.20	<0.20	0.20	4465300
Bromoform	ug/L	<0.40	0.40	<0.40	0.40	4465300
Bromomethane	ug/L	<1.0	1.0	<1,0	1.0	4465300
Carbon Tetrachloride	HELL	.⋄ <0.20	0,50	¥46.750	0.20	4465300
Chlorobenzene	ug/L-	S <0=20 or	020	√0.20	0.20	4465300
Chloroform	L/B/L	0.20	0.20	∜ <0.20	0.20	4465300
Dibromochloromethane		(O) <0.40° c	0,40	<0.40	0.40	4465300
1,2-Dichlorobenzene	na(j)	@0.40 S	0.40	<0.40	0.40	4465300
1,3-Dichlorobenzene		₹ 0.€0	0,40	<0.40	0.40	4465300
1,4-Dichlorobenzenen	ug	(3) ,40 m	0.40	<0.40	0.40	4465300
Dichlorodifluoromethane (EREO)(12)	₹Ĵĝ\Ľ,	100 < 10, or	1.0	<1.0	1.0	4465300
1,1-Dichloroethane	ug/k	S <0,20	0.20	<0.20	0.20	4465300
1,2-Dichloroethane	∂ ₩	₂ [₹] ₹0.40	0.40	<0.40	0.40	4465300
1,1-Dichloroethylene	n8\fr	S <0.20	0.20	<0.20	0.20	4465300
cis-1,2-Dichloroethylene	(G)	<0.20	0.20	<0.20	0.20	4465300
trans-1,2-Dichloroethytene	Đùg/L	<0.20	0.20	<0.20	0.20	4465300
1,2-Dichloropropane	ug/L	<0.20	0.20	<0.20	0.20	4465300
cis-1,3-Dichloropropene	ug/L	<0.40	0.40	<0.40	0.40	4465300
trans-1,3-Dichlorograpene	ug/L	<0.40	0.40	<0.40	0.40	4465300
Ethylbenzene 🕠	ug/L	0.37	0.20	<0.20	0.20	4465300
Ethylene Dibromide	ug/L	<0.40	0.40	<0.40	0.40	4465300
Hexane	ug/L	<1.0	1.0	<1.0	1.0	4465300
Methylene Chloride(Dichloromethane)	ug/L	<1.0	1.0	<1.0	1.0	4465300
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	<10	10	4465300
Methyl Isobutyl Ketone	ug/L	<10	10	<10	10	4465300
Methyl t-butyl ether (MTBE)	ug/L	<0.40	0.40	<0.40	0.40	4465300
Styrene	ug/L	<0.40	0.40	<0.40	0.40	4465300
1,1,1,2-Tetrachloroethane	ug/L	<0.40	0.40	<0.40	0.40	4465300
1,1,2,2-Tetrachloroethane	ug/L	<0.40	0.40	<0.40	0.40	4465300
Tetrachloroethylene	ug/L	<0.20	0.20	<0.20	0.20	4465300
RDL = Reportable Detection Limit						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) VOC Analysis: Detection limit was raised due to matrix interferences.

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

O.REG 153 VOLATILE ORGANICS (WATER)

Maxxam ID		CFE304		CFE305					
Sampling Date		2016/04/18		2016/04/18					
COC Number		544903-04-01		544903-04-01					
	UNITS	MW-1	RDL	MW-2	RDL	QC Batch			
Toluene	ug/L	4.8	0.40	2.3	0.40	4465300			
1,1,1-Trichloroethane	ug/L	<0.20	0.20	<0.20	0.20	4465300			
1,1,2-Trichloroethane	ug/L	<0.40	0.40	<0.40	0.40	4465300			
Trichloroethylene	ug/L	<0.20	0.20	<0.20	0.20	4465300			
Trichlorofluoromethane (FREON 11)	ug/L	<0.40	0.40	<0.40	0.40	4465300			
Vinyl Chloride	ug/L	<0.40	0.40	<0.40	0.40	4465300			
p+m-Xylene	ug/L	3,4	0.20	1.3	0.20	4465300			
o-Xylene	ug/L	1.2	0.20	0.44	0.20	4465300			
Total Xylenes	HEAV	4.5	0,20	CENT .	0.20	4465300			
Total Xylenes 4.5 0.20 4465300 Surrogate Recovery (%)									
4-Bromofluorobenzene	86 V	A 100	~ (3 101		4465300			
D4-1,2-Dichloroethane	3%	(O) \$10)// P	(B)	111		4465300			
D8-Toluene	100	@98 <u></u>	ું હું	89		4465300			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	3 m	Ja Ca	2						
Surrogate Recovery (%) 4-Bromofluorobenzene D4-1,2-Dichloroethane D8-Toluene RDL = Reportable Detection Limit QC Batch = Quality Control Batch	17 July 18 18 18 18 18 18 18 18 18 18 18 18 18								

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

TEST SUMMARY

Maxxam ID: CFE299 Sample ID: MW-1 SS2 Matrix: Soil

Collected:

2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4463003	N/A	2016/04/25	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Moisture	BAL	4466763	N/A	2016/04/21	Valentina Kaftani
pH CaCl2 EXTRACT	AT	4466630	2016/04/21	2016/04/21	Neil Dassanayake
Volatile Organic Compounds in Soil	GC/MS	4466776	N/A	2016/04/22	Xueming Jiang

Maxxam ID: CFE299 Dup Sample ID: MW-1 SS2

Matrix: Soil

Collected:

2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation Batch Extracted Date Analyzed	Analyst
Volatile Organic Compounds in Soil	GC/MS 4466776 N/A 2016/04/22	Xueming Jiang

Maxxam ID: CFE300 Sample ID: MW-1 GS Matrix: Soil

Collected: 2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation Batch Extracted	Date Analyzed	Analyst	
Sieve, 75um	SIEV & (2469053 N/A	2016/04/25	Nimarta Singh	

Maxxam ID: CFE301 Sample ID: MW-2 SS2 Matrix: Soil

Collected: 2016/04/15 Shipped:

Received: 2016/04/19

Test Description	nstrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	(COALC	4463003	N/A	2016/04/25	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Moisture	BAL	4466683	N/A	2016/04/21	Valentina Kaftani
Volatile Organic Compounds in Soil	GC/MS	4466776	N/A	2016/04/22	Xueming Jiang

Maxxam ID: CFE302 Sample ID: MW-3 SS2 Matrix: Soil

Collected: 2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4463003	N/A	2016/04/25	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Moisture	BAL	4466763	N/A	2016/04/21	Valentina Kaftani
pH CaCl2 EXTRACT	AT	4466630	2016/04/21	2016/04/21	Neil Dassanayake
Volatile Organic Compounds in Soil	GC/MS	4466776	N/A	2016/04/22	Xueming Jiang

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

TEST SUMMARY

Maxxam ID: CFE303 Sample ID: TCLP Matrix: Soil

Collected:

2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Cyanide (WAD) in Leachates	5KAL/CN	4470316	N/A	2016/04/25	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Fluoride by ISE in Leachates	ISE	4470308	2016/04/23	2016/04/25	Surinder Rai
Mercury (TCLP Leachable) (mg/L)	CV/AA	4468656	N/A	2016/04/22	Magdalena Carlos
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4468854	2016/04/22	2016/04/25	Arefa Dabhad
Ignitability of a Sample	BAL	4471388	2016/04/25	2016/04/25	Min Yang
Moisture	BAL	4467824	N/A	2016/04/23	Valentina Kaftani
Nitrate(NO3) + Nitrite(NO2) in Leachate	LACH	(H400317	N/A s	2015/04/25	Chandra Nandlai
PAH Compounds in Leachate by GC/MS (SIM)	GC/M5	4469240 °	2016/04/22	2016/04/23	Jett Wu
Polychlorinated Biphenyl in Leachate	GC/ECD	4469978	2016/04/23	2016/04/23	Svitlana Shaula
TCLP - % Solids	BAL	A468343	Q005/04/2E	2016/04/22	Jian (Ken) Wang
TCLP - Extraction Fluid		4468353	MA CO	2016/04/22	Jian (Ken) Wang
TCLP - Initial and final pH	PH WY ATO	4458352	N/AS	2016/04/22	Jian (Ken) Wang

Maxxam ID: CFE304 Sample ID: MW-1 Matrix: Water

Collected: 2016/04/18

Shipped:

Received: 2016/04/19

Test Description	Instrumentation Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC (463059	N/A	2016/04/22	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSQC/MSFD (14)70516	N/A	2016/04/24	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID (1) 4469971	2016/04/23	2016/04/24	Jeevaraj Jeevaratrnam
Volatile Organic Compounds in Water	P&T/M50 4465300	N/A	2016/04/21	Blair Gannon

Maxxam ID: CFE305 Sample ID: MW-2 Matrix: Water

Collected: 2016/04/18 Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4463059	N/A	2016/04/22	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	4470516	N/A	2016/04/24	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	4469971	2016/04/23	2016/04/24	Jeevaraj Jeevaratrnam
Volatile Organic Compounds in Water	P&T/MS	4465300	N/A	2016/04/21	Blair Gannon

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.0°C

VOC Analysis: Due to insufficient sample volume, samples required dilution. Detection limits were adjusted accordingly.

Sample CFE303-01: NF/NI=Non Flammable and Non Ignitable

Results relate only to the items tested.

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QUALITY ASSURANCE REPORT

Batch Init Oct Type	QA/QC				Date	<u></u>			
4465300 BG1 Matrix Spike		Init	QC Type	Parameter		Value	Recovery	LIMITS	QC Limits
D4-1,2-Dichlorotenhane	4465300	BG1		4-Bromofluorobenzene		70.00			70 - 130
DB-Toluene			•	D4-1,2-Dichloroethane					70 - 130
Acetone (2-Propagnane)									70 - 130
Benzene					• •				60 - 140
Bromodichioromethane 2016/04/21 98									70 - 130
Bromoform 2016/04/21 94 % 75				Bromodichloromethane					70 - 130
Bromomethane				Bromoform					70 - 130
Carbon Tetrachloride				Bromomethane					60 - 140
Chlorobenzene				Carbon Tetrachloride	- · · · · · · · · · · · · · · · · · · ·				70 - 130
Chloroform 2016/04/21 98 70				Chlorobenzene	*. *				70 - 130
Dibromochloromethane 2016/04/21 97 70				Chloroform					70 - 130
1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Di				Dibromochloromethane)			70 - 130
1.3-Dichlorobenzene				1,2-Dichlorobenzene	(11/0				70 - 130
1,4-Dichlorobenzee 10,1 10,1 3 70,									70 - 130
Dichlorodifulorogebiane FBEON 2016/04/21 93 70 70 70 70 70 70 70 7				1 4-Dichlorobenzene	CHARLING T				70 - 130
1,1-Dichlor bethylese				Dichlorodifluoromethane (FREON 12)	2016/04/21				60 - 140
1,1-Dichloroethylene				1,1-Dichloroethane	2016/04/21				70 - 130
Clay				1,2-Dichloroethane	2016/04/21				70 - 130
1-2 Dichthopropress 2016/04/21 99 % 70				1,1-Dichloroethylene	2010/04/21				70 - 130
1-2 Dichthopropress 2016/04/21 99 % 70				cis-1-2-Dichloroethylene	@ 2016/04/21				70 - 130
Ethylene Dibromide Hexane 2016/04/21 2016/04				trans-1,2-Dicblorgethylene					70 - 130
Ethylene Dibromide Hexane 2016/04/21 2016/04				1,2 Dichloropropane	2016/04/21				70 - 130
Ethylene Dibromide Hexane 2016/04/21 2016/04				cis-13-Dichloropropene	2016/04/21				70 - 130
Ethylene Dibromide Hexane 2016/04/21 2016/04				trans-1,3 Dichloropropene	2016/04/21				70 - 130
Ethylene Dibromide Hexane 2016/04/21 2016/04				Ethylbenzene	2016/04/21				70 - 130
Hexane				Ethylene Dibromide					70 - 130
Methyletic Chts/de Bit Gromethane 2016/04/21 91 % 70				Hexane (1)					70 - 130
Methyl Ethyl Ethyl Etone 2016/04/21 95 % 60				Methylene Chloride (Bichloromethane)	, ,				70 - 130
Methyl Reione 2016/04/21 94 % 70 Methyl Lebryl ether (MTBE) 2016/04/21 93 % 70 Strone 2016/04/21 100 % 70 Strone 2016/04/21 100 % 70 Strone 2016/04/21 97 % 70 Tetrachloroethane 2016/04/21 97 % 70 Tetrachloroethylene 2016/04/21 101 % 70 I,1,2-Tetrachloroethane 2016/04/21 101 % 70 I,1,1-Trichloroethane 2016/04/21 101 % 70 I,1,1-Trichloroethane 2016/04/21 97 % 70 Trichloroethylene 2016/04/21 97 % 70 Trichloroethylene 2016/04/21 105 % 70 Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 Vinyl Chloride 2016/04/21 103 % 70 O-Xylene 2016/04/21 101 % 70 O-Xylene 2016/04/21 102 % 70 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70 D4-1,2-Dichloroethane 2016/04/21 98 % 70 D4-1,2-Dichloroethane 2016/04/21 100 % 70 B-Toluene 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Benomofichloromethane 2016/04/21 105 % 70 Bromofichloromethane 2016/04/21 105 % 70 Bromofichloromethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 105 % 70				Methyl Ethyl Ketone (2-Butanone)					60 - 140
Methyl-Dutyl ether (MTBE) 2016/04/21 93 % 70									70 - 130
### Company of Company					• •				70 - 130
### Addition of the image of th									70 - 130
1,1,2,2-Tetrachloroethane 2016/04/21 94 % 70 Tetrachloroethylene 2016/04/21 97 % 70 Toluene 2016/04/21 101 % 70 1,1,1-Trichloroethane 2016/04/21 97 % 70 1,1,1-Trichloroethane 2016/04/21 97 % 70 1,1,2-Trichloroethane 2016/04/21 94 % 70 Trichloroethylene 2016/04/21 96 % 70 Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 p+m-Xylene 2016/04/21 101 % 70 o-Xylene 2016/04/21 102 % 70 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70 D4-1,2-Dichloroethane 2016/04/21 98 % 70 D8-Toluene 2016/04/21 98 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 102 % 70				1,1,2-Tetrachloroethane	- · ·				70 - 130
Tetrachloroethylene 2016/04/21 97 % 70 Toluene 2016/04/21 101 % 70 1,1,1-Trichloroethane 2016/04/21 97 % 70 1,1,2-Trichloroethane 2016/04/21 94 % 70 Trichloroethylene 2016/04/21 96 % 70 Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 0-Xylene 2016/04/21 101 % 70 0-Xylene 2016/04/21 101 % 70 0-Xylene 2016/04/21 102 % 70 0-4-1,2-Dichloroethane 2016/04/21 98 % 70 D8-Toluene 2016/04/21 98 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Benzene 2016/04/21 100 % 70 Benzene 2016/04/21 100 % 70 Benzene 2016/04/21 100 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 102 % 70 Bromometh				1/ 40					70 - 130
Toluene 2016/04/21 101 % 70 1,1,1-Trichloroethane 2016/04/21 97 % 70 1,1,2-Trichloroethane 2016/04/21 94 % 70 Trichloroethylene 2016/04/21 96 % 70 Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 p+m-Xylene 2016/04/21 101 % 70 o-Xylene 2016/04/21 102 % 70 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70 D4-1,2-Dichloroethane 2016/04/21 98 % 70 D8-Toluene 2016/04/21 98 % 70 Acetone (2-Propanone) 2016/04/21 106 % 60 Benzene 2016/04/21 105 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 100 % 70 Bromomethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 100 % 70 Bromomethane 2016/04/21 100 % 70				Tetrachloroethylene					70 - 130
1,1,1-Trichloroethane 2016/04/21 97 % 70 1,1,2-Trichloroethane 2016/04/21 94 % 70 Trichloroethylene 2016/04/21 96 % 70 Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 p+m-Xylene 2016/04/21 101 % 70 o-Xylene 2016/04/21 102 % 70 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70 D4-1,2-Dichloroethane 2016/04/21 98 % 70 D8-Toluene 2016/04/21 98 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Bromodichloromethane 2016/04/21 100 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 102 % 70 Bromomethane 2016/04/21					• •				70 - 130
1,1,2-Trichloroethane 2016/04/21 94 % 70 Trichloroethylene 2016/04/21 96 % 70 Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 p+m-Xylene 2016/04/21 101 % 70 o-Xylene 2016/04/21 102 % 70 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70 D4-1,2-Dichloroethane 2016/04/21 98 % 70 D8-Toluene 2016/04/21 98 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 100 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 102 % 70 Bromome				1,1,1-Trichloroethane					70 - 130
Trichloroethylene 2016/04/21 96 % 70- Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70- Vinyl Chloride 2016/04/21 101 % 70- p+m-Xylene 2016/04/21 101 % 70- o-Xylene 2016/04/21 102 % 70- 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70- D4-1,2-Dichloroethane 2016/04/21 98 % 70- D8-Toluene 2016/04/21 100 % 70- Acetone (2-Propanone) 2016/04/21 106 % 60- Benzene 2016/04/21 105 % 70- Bromodichloromethane 2016/04/21 105 % 70- Bromomethane 2016/04/21 105 % 70-									70 - 130
Trichlorofluoromethane (FREON 11) 2016/04/21 105 % 70 Vinyl Chloride 2016/04/21 103 % 70 P+m-Xylene 2016/04/21 101 % 70 O-Xylene 2016/04/21 102 % 70 O-Xylene 2016/04/21 100 % 70 O-Xylene 201									70 - 130
Vinyl Chloride 2016/04/21 103 % 70- p+m-Xylene 2016/04/21 101 % 70- o-Xylene 2016/04/21 102 % 70- 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70- D4-1,2-Dichloroethane 2016/04/21 98 % 70- D8-Toluene 2016/04/21 100 % 70- Acetone (2-Propanone) 2016/04/21 106 % 60- Benzene 2016/04/21 102 % 70- Bromodichloromethane 2016/04/21 105 % 70- Bromoform 2016/04/21 105 % 70- Bromomethane 2016/04/21 105 % 70- Bromomethane 2016/04/21 105 % 70- Bromomethane 2016/04/21 105 % 70- Carbon Tetrachloride 2016/04/21 102 % 70-				Trichlorofluoromethane (FREON 11)					70 - 130
p+m-Xylene 2016/04/21 101 % 70- o-Xylene 2016/04/21 102 % 70- 4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70- D4-1,2-Dichloroethane 2016/04/21 98 % 70- D8-Toluene 2016/04/21 100 % 70- Acetone (2-Propanone) 2016/04/21 106 % 60- Benzene 2016/04/21 102 % 70- Bromodichloromethane 2016/04/21 105 % 70- Bromoform 2016/04/21 105 % 70- Bromomethane 2016/04/21 105 % 70- Bromomethane 2016/04/21 105 % 70- Carbon Tetrachloride 2016/04/21 102 % 70-									70 - 130
o-Xylene 2016/04/21 102 % 70-4465300 BG1 Spiked Blank 4-Bromofluorobenzene 2016/04/21 98 % 70-D4-1,2-Dichloroethane 2016/04/21 98 % 70-D8-Toluene 2016/04/21 100 % 70-Acetone (2-Propanone) 2016/04/21 106 % 60-Benzene 2016/04/21 102 % 70-Bromofichloromethane 2016/04/21 105 % 70-Bromoform 2016/04/21 105 % 70-Bromomethane 2016/04/21 105 % 70-Bromomethane 2016/04/21 105 % 70-Bromomethane 2016/04/21 105 % 70-Carbon Tetrachloride 2016/04/21 102 % 70-Carbon Tetrachloride 2016/04/21 102 % 70-DATE TO THE TOTAL TO THE				•					70 - 130
4465300 BG1 Spiked Blank				•					70 - 130
D4-1,2-Dichloroethane 2016/04/21 98 % 70 D8-Toluene 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 106 % 60 Benzene 2016/04/21 102 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromoform 2016/04/21 105 % 70 Bromomethane 2016/04/21 105 % 70 Bromomethane 2016/04/21 105 % 70 Graphon Tetrachloride 2016/04/21 102 % 70 Graphon Tetrachloride 2016/04/21 % 70 Graphon Tetrachloride 2	465300	BG1	Spiked Blank	•					70 - 130
D8-Toluene 2016/04/21 100 % 70 Acetone (2-Propanone) 2016/04/21 106 % 60 Benzene 2016/04/21 102 % 70 Bromodichloromethane 2016/04/21 105 % 70 Bromoform 2016/04/21 105 % 70 Bromomethane 2016/04/21 105 % 70 Carbon Tetrachloride 2016/04/21 102 % 70 Carbon Tetrachloride 2016/04/21 102 % 70 Carbon Tetrachloride			•						70 - 130
Acetone (2-Propanone) 2016/04/21 106 % 60- Benzene 2016/04/21 102 % 70- Bromodichloromethane 2016/04/21 105 % 70- Bromoform 2016/04/21 105 % 70- Bromomethane 2016/04/21 90 % 60- Carbon Tetrachloride 2016/04/21 102 % 70-				*	, ,				70 - 130
Benzene 2016/04/21 102 % 70 - Bromodichloromethane 2016/04/21 105 % 70 - Bromoform 2016/04/21 105 % 70 - Bromomethane 2016/04/21 90 % 60 - Carbon Tetrachloride 2016/04/21 102 % 70 -									60 - 140
Bromodichloromethane 2016/04/21 105 % 70 - Bromoform 2016/04/21 105 % 70 - Bromomethane 2016/04/21 90 % 60 - Carbon Tetrachloride 2016/04/21 102 % 70 -									70 - 130
Bromoform 2016/04/21 105 % 70 - Bromomethane 2016/04/21 90 % 60 - Carbon Tetrachloride 2016/04/21 102 % 70 -									70 - 130
Bromomethane 2016/04/21 90 % 60 - Carbon Tetrachloride 2016/04/21 102 % 70 -				Bromoform	• •				70 - 130
Carbon Tetrachloride 2016/04/21 102 % 70 -									60 - 140
70 / 10									70 - 130
Chlorobenzene 2016/04/21 101 % 70 -				Chlorobenzene	2016/04/21		102		70 - 130 70 - 130

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
			Chlaraform	2016/04/21		100	%	70 - 130
			Dibromochloromethane	2016/04/21		106	%	70 - 130
			1,2-Dichlorobenzene	2016/04/21		101	%	70 - 130
			1,3-Dichlorobenzene	2016/04/21		98	%	70 - 130
			1,4-Dichlorobenzene	2016/04/21		100	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2016/04/21		100	%	60 - 140
			1,1-Dichloroethane	2016/04/21		99	%	70 - 130
			1,2-Dichloroethane	2016/04/21		100	%	70 - 130
			1,1-Dichloroethylene	2016/04/21		104	%	70 - 130
			cis-1,2-Dichloroethylene	2016/04/21		102	%	70 - 130
			trans-1,2-Dichloroethylene	2016/04/21		99	%	70 - 130
			1,2-Dichloropropane	2016/04/21	a(O)	104	%	70 - 130
			cis-1,3-Dichloropropene	2016/04/21	Miles	107	%	70 - 130
			trans-1,3-Dichloropropens	2016/04/24) "	102	%	70 - 130
			Ethylbenzene Charles	AB16/04/21		100	%	70 - 130
			Ethylene Dibronde	2016/04/21		105	%	70 - 130
			Hexane Company	2036/04/21		102	%	70 - 130
			Methylene Chloride Dichloromethane)	©\$3016/04/21		93	%	70 - 130
			Methyl Ethyl Ketofie (2-Butanona) Methyl Sobuty Ketofie Methyl t-butyl ether IMTRE	2018/04/21		110	%	60 - 140
			Methyl sobuty Ketone & & C	D16/04/21		109	%	70 - 130
			Methyl t-butyl ether (MTBE)	<u> </u>		106	%	70 - 130
			Styrene W . W . W . W .	2016/04/21		103	%	70 - 130
			1,1(12) Tetrachloroettaine	2016/04/21		100	%	70 - 130
			1,1,2,2,Tetrachlomethane	2016/04/21		106	%	70 - 130
			Tetrachloroethylene	2016/04/21		95	%	70 - 130
			Toluene (1)	2016/04/21		98	%	70 - 130
			1,1,1-Trichioroettane	2016/04/21		97	%	70 - 130
			1,1,2 Trichlorgerhane	2016/04/21		104	%	70 - 130
			Trichloroethylene	2016/04/21		96	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2016/04/21		105	%	70 - 130
			Vinyl Chloride	2016/04/21		104	%	70 - 130
			gtm Xylene	2016/04/21		99	%	70 - 130
			Xylene	2016/04/21		103	%	70 - 130
465300	BG1	Method Blank		2016/04/21		97	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/21		98	%	70 - 130
			D8-Toluene	2016/04/21		100	%	70 - 130
			Acetone (2-Propanone)	2016/04/21	<10		ug/L	70 130
			Benzene	2016/04/21	<0.10		ug/L	
			Bromodichloromethane	2016/04/21	<0.10		ug/L	
			Bromoform	2016/04/21	<0.20		ug/L	
			Bromomethane	2016/04/21	< 0.50		ug/L	
			Carbon Tetrachloride	2016/04/21	<0.10		ug/L	
			Chłorobenzene	2016/04/21	<0.10		ug/L	
			Chloroform	2016/04/21	<0.10		ug/L	
			Dibromochloromethane	2016/04/21	<0.20		ug/L	
			1,2-Dichlorobenzene	2016/04/21	<0.20		ug/L	
			1,3-Dichlorobenzene	2016/04/21	<0.20		ug/L	
			1,4-Dichlorobenzene	2016/04/21	<0.20		ug/L	
			Dichlorodifluoromethane (FREON 12)	2016/04/21	<0.50		ug/L	88
			1,1-Dichloroethane	2016/04/21	<0.10		ug/L	
			1,2-Dichloroethane	2016/04/21	<0.20		ug/L	
			1,1-Dichloroethylene	2016/04/21	<0.10		ug/L	

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS	QC Limit
-			trans-1,2-Dichloroethylene	2016/04/21	<0.10	ug/L	
			1,2-Dichloropropane	2016/04/21	<0.10	ug/L	
			cis-1,3-Dichloropropene	2016/04/21	<0.20	ug/L	
			trans-1,3-Dichloropropene	2016/04/21	<0.20	ug/L	
			Ethylbenzene	2016/04/21	<0.10	ug/L	
			Ethylene Dibromide	2016/04/21	<0.20	ug/L	
			Hexane	2016/04/21	< 0.50	ug/L	
			Methylene Chloride(Dichloromethane)	2016/04/21	< 0.50	ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2016/04/21	<5.0	ug/L	
			Methyl Isobutyl Ketone	2016/04/21	<5.0	ug/L	
			Methyl t-butyl ether (MTBE)	2016/04/21	< 0.20	ug/L	
			Styrene	2016/04/21	<0.20	ug/L	
			1,1,1,2-Tetrachloroethane	2016/04/21	<0.20	ug/L	
			1,1,2,2-Tetrachloroethage	2016/04/24	<0.20	ug/L	
			Tetrachloroethylene	(2016/04/21	< 0.10	ug/L	
			Toluene S	2016/04/21	<0.20	ug/L	
			1,1,1-Trichloroethane	2016/04/21	<0.10	ug/L	
			1,1,2-Trichlordethartes	2016/04/21	< 0.20	ug/L	
			Trichlornet hvienes	2018/04/21	< 0.10	ug/L	
			Trichlorofluoromethane (FREON:11)	2016/04/21	< 0.20	ug/L	
			Vinvi hlodide	~ 11	<0.20	ug/L	
			vinte chloride prin-xylene o-xylene Total xylene Acetone (2-Propanone)	2016/04/21	<0.10	ug/L	
			o-Xy(e) e	2016/04/21	<0.10	ug/L	
			Total Xylenes	2016/04/21	<0.10	ug/L	
65300	RG1	RPD	Acetone (Z-Propanone)	2016/04/21	NC	%	30
0000	DOI	W D	Benzene S	2016/04/21	NC	%	30
			Bromodichbromethane	2016/04/21	NC	%	30
			Bramorom N	2016/04/21	NC	%	30
			Bronomethane	2016/04/21	NC	%	30
			Carbon Tetrachloride	2016/04/21	NC	%	30
			Chlorobenzene	2016/04/21	NC	%	30
			Chloroform	2016/04/21	NC	%	30
			Obromochloromethane	2016/04/21	NC	%	30
			1.2-Dichlorobenzene	2016/04/21	NC	%	30
			1,3-Dichlorobenzene	2016/04/21	NC	%	30
			1,4-Dichlorobenzene	2016/04/21	NC	%	30
			Dichlorodifluoromethane (FREON 12)	2016/04/21	NC	%	30
			1,1-Dichloroethane	2016/04/21	NC	%	30
			1,1-Dichloroethane	2016/04/21	NC	%	30
				2016/04/21	NC	%	30
			1,1-Dichloroethylene	2016/04/21	NC	%	30
			cls-1,2-Dichloroethylene	2016/04/21	NC	%	30
			trans-1,2-Dichloroethylene	2016/04/21	NC	%	30
			1,2-Dichloropropane			%	30
			cis-1,3-Dichloropropene	2016/04/21	NC	% %	30
			trans-1,3-Dichloropropene	2016/04/21	NC	% %	30
			Ethylbenzene	2016/04/21	NC		
			Ethylene Dibromide	2016/04/21	NC	%	30
			Hexane	2016/04/21	NC	%	30
			Methylene Chloride(Dichloromethane)	2016/04/21	NC	%	30
			Methyl Ethyl Ketone (2-Butanone)	2016/04/21	NC	%	30
			Methyl Isobutyl Ketone	2016/04/21	NC	%	30
			Methyl t-butyl ether (MTBE)	2016/04/21	NC	%	30
			Styrene	2016/04/21	NC	% _	30

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limi
			1,1,1,2-Tetrachloroethane	2016/04/21	NC		%	30
			1,1,2,2-Tetrachloroethane	2016/04/21	NC		%	30
			Tetrachloroethylene	2016/04/21	NC		%	30
			Toluene	2016/04/21	NC		%	30
			1,1,1-Trichloroethane	2016/04/21	NC		%	30
			1,1,2-Trichloroethane	2016/04/21	NC		%	30
			Trichloroethylene	2016/04/21	NC		%	30
			Trichlorofluoromethane (FREON 11)	2016/04/21	NC		%	30
			Vinyl Chloride	2016/04/21	NC		%	30
			p+m-Xylene	2016/04/21	NC		%	30
			o-Xylene	2016/04/21	NC		%	30
			Total Xylenes	2016/04/21) NC		%	30
466630	NYS	Spiked Blank	Available (CaCl2) pH	2016/04/21		98	%	97 - 10
466630	NYS	RPD	Available (CaCl2) pH	2016/04/24	0.20		%	N/A
466683	DSR	RPD	\$ \frac{1}{2} \tag{1} \tag{1}	G916/04/21	2.5		%	20
466763	DSR	RPD	Moisture 4-Bromofluoroben ene D10-o-Xylene D4-1,2-Dichlorostiane D8-Toluene Avetone (25Popapone)	2016/04/21	2.9		%	20
466776	XJI	Matrix Spike [CFE299-04]	4-Bromofluorobenzene	2016/04/22		100	%	60 - 14
		, , ,	D10-o-Xylene	∑2016/04/22		92	%	60 - 13
			D4-1,2-Dichloroethane	2016/04/22 2016/04/22 2016/04/22		97	%	60 - 14
			D8-Tollene	2016/04/22		102	%	60 - 14
			Acetone (25 topanene)			86	%	60 - 14
			Aretone (25 Propagare) Benzene Bromodichloromethane Bromoform Bromoniethane	2016/04/22		88	%	60 - 1
			Bromodichloromethan	2016/04/22		88	%	60 - 1
			Bromologn OT MILE	2016/04/22		88	%	60 - 1
			Bromomethane 650	2016/04/22		81	%	60 - 1
			Carbon Tetractiforide	2016/04/22		98	%	60 - 1
			Chlorobenzene	2016/04/22		92	%	60 - 1
			Chlorolofm The Chloroloff	2016/04/22		90	%	60 - 1
			Dibramochloromethane	2016/04/22		89	%	60 - 1
			1,2-Dichlorobenzene	2016/04/22		89	%	60 - 1
			1,3-Dichlorobenzene	2016/04/22		90	%	60 - 1
			1A Dichlorobenzene	2016/04/22		91	%	60 - 1
			Ochlorodifluoromethane (FREON 12)	2016/04/22		90	%	60 - 1
		(C	1,1-Dichloroethane	2016/04/22		89	%	60 - 1
			1,2-Dichloroethane	2016/04/22		88	%	60 - 1
			1,1-Dichloroethylene	2016/04/22		95	%	60 - 1
			cis-1,2-Dichloroethylene	2016/04/22		88	%	60 - 1
			trans-1,2-Dichloroethylene	2016/04/22		90	%	60 - 1
			1.2-Dichloropropane	2016/04/22		85	%	60 - 1
			cis-1,3-Dichloropropene	2016/04/22		89	%	60 - 1
			trans-1,3-Dichloropropene	2016/04/22		87	%	60 - 1
			Ethylbenzene	2016/04/22		91	%	60 - 1
			Ethylene Dibromide	2016/04/22		84	%	60 - 1
			Hexane	2016/04/22		89	%	60 - 1
			Methylene Chloride(Dichloromethane)	2016/04/22		91	%	60 - 1
			Methyl Ethyl Ketone (2-Butanone)	2016/04/22		85	%	60 - 1
			Methyl Isobutyl Ketone	2016/04/22		79	%	60 - 1
			Methyl t-butyl ether (MTBE)	2016/04/22		88	%	60 - 1
			Styrene	2016/04/22		87	%	60 - 1
			1,1,1,2-Tetrachloroethane	2016/04/22		92	96	60 - 1
				2016/04/22		83	%	60 - 1
			1,1,2,2-Tetrachloroethane	, ,				
			Tetrachloroethylene	2016/04/22		95	%	60 - 1
			Toluene	2016/04/22		89	%	60 - 1

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,1-Trichloroethane	2016/04/22		92	%	60 - 140
			1,1,2-Trichloroethane	2016/04/22		86	%	60 - 140
			Trichloroethylene	2016/04/22		90	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2016/04/22		98	%	60 - 140
			Vinyl Chloride	2016/04/22		95	%	60 - 140
			p+m-Xylene	2016/04/22		89	%	60 - 140
			o-Xylene	2016/04/22		90	%	60 - 140
4466776	XJI	Spiked Blank	4-Bromofluorobenzene	2016/04/22		101	%	60 - 140
			D10-o-Xylene	2016/04/22		101	%	60 - 130
			D4-1,2-Dichloroethane	2016/04/22		102	%	60 - 140
			D8-Toluene	2016/04/22		100	%	60 - 140
			Acetone (2-Propanone)	2016/04/22	(O)	106	%	60 - 140
			Benzene	2016/04/22		95	%	60 - 130
			Bromodichloromethan	2016/04/22		98	%	60 - 130
				a916/04/22		103	%	60 - 130
			Bromomethane (1)	2016/04/22		87	%	60 - 140
			Bromomethane Carbon Tetrachionde Chlorobergene	2016/04/22		104	%	60 - 130
			Chlorobenzene	2016/04/22		99	%	60 - 130
			Bromoform Bromomethane Carbon Tetrachionide Chlorobergene Chloroform Dibromochloromethane 1,32 Dichlorobengene 1,40 Elocolomethane	2010/04/22		98	%	60 - 130
			Dibromochloromethane & C	2016/04/22		101	%	60 - 130
			1:2-Dichloropenzene	A 2016/04/22		97	%	60 - 130
			1.3 Dichlorobenzene	2016/04/22		95	%	60 - 130
			1,4 Dichlorobenzeng	2016/04/22		96	%	60 - 130
			1,4 Dichlorodienzene	2016/04/22		101	%	60 - 140
			1,1-Dichloroethane	2016/04/22		96	%	60 - 130
			1,2-Dichlorpethane	2016/04/22		101	%	60 - 130
			1,1-Dichloroethylege	2016/04/22		101	%	60 - 130
			cis-1/2-Dichlorgethylene	2016/04/22		97	%	60 - 130
			trans 1,2-Dichorpethylene	2016/04/22		96	%	60 - 130
			1,2-Dichigropropane	2016/04/22		94	%	60 - 130
			cis-1,3 Dichloropropene	2016/04/22		97	%	60 - 130
			trace 1,3-Dichloropropene	2016/04/22		93	%	60 - 130
			Ethylbenzene	2016/04/22		96	%	60 - 130
			Ethylene Dibromide	2016/04/22		97	%	60 - 130
			Hexane	2016/04/22		104	%	
			Methylene Chloride(Dichloromethane)	2016/04/22		104	70 %	60 - 130
				• • • • • • • • • • • • • • • • • • • •				60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2016/04/22		108	%	60 - 140
			Methyl Isobutyl Ketone	2016/04/22		98	%	60 - 130
			Methyl t-butyl ether (MTBE)	2016/04/22		98	%	60 - 130
			Styrene	2016/04/22		94	%	60 - 130
			1,1,1,2-Tetrachloroethane	2016/04/22		101	%	60 - 130
			1,1,2,2-Tetrachloroethane	2016/04/22		99	%	60 - 130
			Tetrachloroethylene	2016/04/22		98	%	60 - 130
			Toluene	2016/04/22		94	%	60 - 130
			1,1,1-Trichloroethane	2016/04/22		98	%	60 - 130
			1,1,2-Trichloroethane	2016/04/22		98	%	60 - 130
			Trichloroethylene	2016/04/22		95	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2016/04/22		104	%	60 - 130
			Vinyl Chloride	2016/04/22		101	%	60 - 130
			p+m-Xylene	2016/04/22		93	%	60 - 130
			o-Xylene	2016/04/22		95	%	60 - 130
4466776	XJI	Method Blank	4-Bromofluorobenzene	2016/04/22		100	%	60 - 140
			D10-o-Xylene	2016/04/22		101	%	60 - 130

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
	_		D4-1,2-Dichloroethane	2016/04/22		101	%	60 - 140
			D8-Toluene	2016/04/22		98	%	60 - 140
			Acetone (2-Propanone)	2016/04/22	<0.50		ug/g	
			Benzene	2016/04/22	<0.020		ug/g	
			Bromodichloromethane	2016/04/22	<0.050		ug/g	
			Bromoform	2016/04/22	<0.050		ug/g	
			Bromomethane	2016/04/22	<0.050		ug/g	
			Carbon Tetrachloride	2016/04/22	<0.050		ug/g	
			Chlorobenzene	2016/04/22	<0.050		ug/g	
			Chloroform	2016/04/22	<0.050		ug/g	
			Dibromochloromethane	2016/04/22	<0.050		ug/g	
			1,2-Dichlorobenzene	2016/04/22	0.050		ug/g	
			1,3-Dichlorobenzene	2016/04/22	<0.050		ug/g	
			1,4-Dichlorobenzene	2016/04/22	<0.050		ug/g	
			Dichlorodifluoromethabe (FREDIN 12)	@016/04/22	<0.050		ug/g	
			1,1-Dichloroethane	2016/04/22	<0.050		ug/g	
			1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene	2036/04/22	<0.050		ug/g	
			1,1-Dichloroethylene	(\$2016/04/22	<0.050		ug/g	
			cis-1,2-Olchloroethylene &	201 8/ 04/22	<0.050		ug/g	
			trans 722 Dichloroethylene	﴿2016/04/22	<0.050		ug/g	
			1:2-Bichloropropage	ဤ _{>} 2016/04/22	<0.050		ug/g	
			cis-1,3-Dicillorograppene	2016/04/22	<0.030		ug/g	
			trans-1,3-Dichloroproperie	2016/04/22	<0.040		ug/g	
			trans 1,3-Dichloroproperie Ethylbenzene Ethylene Dibromide	2016/04/22	<0.020		ug/g	
			Ethylene Dibromide	2016/04/22	< 0.050		ug/g	
			Hexane W	2016/04/22	<0.050		ug/g	
			Methylene Chloride Dich oromethane)	2016/04/22	<0.050		ug/g	
			Methyl Ethyl Ketone (2) Butanone)	2016/04/22	<0.50		ug/g	
			Methyl Isobutyl Ketone	2016/04/22	<0.50		ug/g	
			Methylit-butyl ether (MTBE)	2016/04/22	<0.050		ug/g	
			Styrene	2016/04/22	< 0.050		ug/g	
			الرارغ 1/2-Tetrachloroethane	2016/04/22	< 0.050		ug/g	
			1,2,2,2-Tetrachloroethane	2016/04/22	< 0.050		ug/g	
			Tetrachloroethylene	2016/04/22	< 0.050		ug/g	
			Toluene	2016/04/22	< 0.020		ug/g	
			1,1,1-Trichloroethane	2016/04/22	< 0.050		ug/g	
			1,1,2-Trichloroethane	2016/04/22	< 0.050		ug/g	
			Trichloroethylene	2016/04/22	< 0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2016/04/22	< 0.050		ug/g	
			Vinyl Chloride	2016/04/22	< 0.020		ug/g	
			p+m-Xylene	2016/04/22	< 0.020		ug/g	
			o-Xylene	2016/04/22	< 0.020		ug/g	
			Total Xylenes	2016/04/22	< 0.020		ug/g	
166776	ILX	RPD (CFE299-04)	Acetone (2-Propanone)	2016/04/22	NC		%	50
		•	Benzene	2016/04/22	NC		%	50
			Bromodichloromethane	2016/04/22	NC		%	50
			Bromoform	2016/04/22	NC		%	50
			Bromomethane	2016/04/22	NC		%	50
			Carbon Tetrachloride	2016/04/22	NC		%	50
			Chlorobenzene	2016/04/22	NC		%	50
			Chloroform	2016/04/22	NC		%	50
			Dibromochloromethane	2016/04/22	NC		%	50
			1,2-Dichlorobenzene	2016/04/22	NC		%	50

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

04/05			QUALITY ASSURANCE REPO	Date				
QA/QC Batch	ledt	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
Datcii	Init	QC Type	1,3-Dichlorobenzene	2016/04/22	NC	TICCOVETY_	%	50
			1,4-Dichlorobenzene	2016/04/22	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2016/04/22	NC		%	50
			1,1-Dichloroethane	2016/04/22	NC		%	50
			1,2-Dichloroethane	2016/04/22	NC		%	50
			1,1-Dichloroethylene	2016/04/22	NC		%	50
			cis-1,2-Dichloroethylene	2016/04/22	NC		%	50
			trans-1,2-Dichloroethylene	2016/04/22	NC		%	50
			1,2-Dichloropropane	2016/04/22	NC		%	50
			cis-1,3-Dichloropropene	2016/04/22	NC		%	50
			trans-1,3-Dichloropropene	2016/04/22	NC		%	50
			Ethylbenzene	2016/04/22	₃⊚ NC		%	50
			Ethylene Dibromide	2016/04/22	NC		%	50
			Hexane	2016/04/22	NC		%	50
			Methylene Chloride(Dichloromethane)	an 6/04/22	NC		%	50
			Methyl Ethyl Ketone (2-Butarone)	2016/04/22	NC		%	50
			Methyl Isobutyl Ketone	2016/04/22	NC		%	50
			BALLIN LOOK LAND STORY	MS01E/04/22	NC		%	50
			Styrene	2016/04/22 2016/04/22 2016/04/22	NC		%	50
			1,1,1,27 etrachleroethane	3016/04/22	NC		%	50
			1,1,2-Tetrachioroethane 1,3,2-Tetrachioroethane Tetrachioroethylene Tolicene 1,1,1-Trichloroethane 1,1,2-Trithloroethane	2016/04/22	NC		%	50
			Tetrachloroethylene	2016/04/22	NC		%	50
			Tolvene Colo Olo Villa A	2016/04/22	NC		%	50
			1,1,1-Trichtoroethane	2016/04/22	NC		%	50
			1,1,2-Trichlorgethane	2016/04/22	NC		%	50
			Trichloroethylene	2016/04/22	NC		%	50
			Trichloroflyoromethane (EREON 11)	2016/04/22	NC		%	50
			Vinyl Chilbride	2016/04/22	NC		%	50
			p+m-Xylene	2016/04/22	NC		%	50
			o-Xylene	2016/04/22	NC		%	50
			Total Xylenes	2016/04/22	NC		%	50
4467824	NS3	RPD	Mbisture	2016/04/21	1.8		%	20
4468656	MC	Matrix Spike	Cachable Mercury (Hg)	2016/04/22		113	%	75 - 125
4468656	MC	Leachate Blank	Leachable Mercury (Hg)	2016/04/22	< 0.0010		mg/L	
4468656	MC	Spiked Blank	Leachable Mercury (Hg)	2016/04/22		106	%	80 - 120
4468656	MC	Method Blank	Leachable Mercury (Hg)	2016/04/22	<0.0010		mg/L	
4468656	MC	RPD	Leachable Mercury (Hg)	2016/04/22	NC		%	25
4468697	AAI	Matrix Spike	1,4-Difluorobenzene	2016/04/22		101	%	60 - 140
		•	4-Bromofluorobenzene	2016/04/22		98	%	60 - 140
			D10-Ethylbenzene	2016/04/22		85	%	60 - 140
			04-1,2-Dichloroethane	2016/04/22		99	%	60 - 140
			Benzene	2016/04/22		99	%	60 - 140
			Toluene	2016/04/22		105	%	60 - 140
			Ethylbenzene	2016/04/22		110	%	60 - 140
			o-Xylene	2016/04/22		114	%	60 - 140
			p+m-Xylene	2016/04/22		102	%	60 - 140
			F1 (C6-C10)	2016/04/22		89	%	60 - 140
4468697	AAI	Spiked Blank	1,4-Difluorobenzene	2016/04/22		102	%	60 - 140
		•	4-Bromofluorobenzene	2016/04/22		99	%	60 - 140
			D10-Ethylbenzene	2016/04/22		97	%	60 - 140
			D4-1,2-Dichloroethane	2016/04/22		100	%	60 - 140
			Benzene	2016/04/22		101	%	60 - 140
			Toluene	2016/04/22		105	%	60 - 140

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
- Dateii	11111	QC 17PC	Ethylbenzene	2016/04/22		111	%	60 - 140
			o-Xylene	2016/04/22		112	%	60 - 140
			p+m-Xylene	2016/04/22		102	%	60 - 140
			F1 (C6-C10)	2016/04/22		94	%	80 - 120
4468697	AAI	Method Blank	1.4-Difluorobenzene	2016/04/22		101	%	60 - 140
4400037	חחו	WEGITOD BIBLIK	4-Bromofluorobenzene	2016/04/22		98	%	60 - 140
			D10-Ethylbenzene	2016/04/22		101	%	60 - 140
,			D4-1,2-Dichloroethane	2016/04/22		98	%	60 - 140
			Benzene	2016/04/22	< 0.020		ug/g	
			Toluene	2016/04/22	< 0.020		ug/g	
			Ethylbenzene	2016/04/22	< 0.020		ug/g	
			o-Xylene	2016/04/22	(O<0.020		ug/g	
			p+m-Xylene	2016/04/22	<0.040		ug/g	
			Total Xylenes	2016/04/22	<0.040		ug/g	
			F1 (C6-C10)		<10		ug/g	
			F1 (C6-C10) - BTE	2016/04/22	<10		ug/g	
4468697	AAI	RPD	F1 (C6-C10) F1 (C6-C10) - BTE Benzene Toluene Ethylbenzene o-Xylene p+m-xylene Fotal Xylenes F1 (C6-C10) F1 (C6-C10) F2 (C10-C16-Hydrocarbons)	2016/04/22	NC		%	50
			Toluene NO NO NO	2016/04/22	NC		%	50
			Ethylbenzene ®	2010/04/22	NC		%	50
			a-Xylene	@ Q016/04/22	NC		%	50
			p+m-Xylene	9,2016/04/22	NC		%	50
			Total Xylanes	2016/04/22	NC		%	50
			F1 (G) (10)	2016/04/22	NC		%	30
			F1 (C6-C10) BTE8	2016/04/22	NC		%	30
4468834	ZZ	Matrix Spike	o-Terphenyl	2016/04/25		102	%	60 - 130
		•	o-Terphenyl F2 (C10-C16 Hydrocarbons)	2016/04/25		102	%	50 - 130
			F3 (C16-C3) Hydrocarbons	2016/04/25		111	%	50 - 130
			F4 (C34-C50 Hyprocarbons)	2016/04/25		104	%	50 - 130
4468834	ZZ	Spiked Blank	o-Temhenvil	2016/04/25		106	%	60 - 130
		•	F2 (C10 C16 Hydrocarbons)	2016/04/25		104	%	80 - 120
			F3.(C16-C34 Hydrocarbons)	2016/04/25		110	%	80 - 120
			F4 (c34-C50 Hydrocarbons)	2016/04/25		105	%	80 - 120
4468834	ZZ	Method Blank	Terphenyl	2016/04/25		103	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2016/04/25	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2016/04/25	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2016/04/25	<50		ug/g	
4468834	ZZ	RPD	F2 (C10-C16 Hydrocarbons)	2016/04/25	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2016/04/25	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2016/04/25	NC		%	30
4468854	ADA	Matrix Spike	Leachable Arsenic (As)	2016/04/25		100	%	80 - 120
			Leachable Barium (Ba)	2016/04/25		NC	%	80 - 120
			Leachable Boron (B)	2016/04/25		NC	%	80 - 120
			Leachable Cadmium (Cd)	2016/04/25		103	%	80 - 120
			Leachable Chromium (Cr)	2016/04/25		98	%	80 - 120
			Leachable Lead (Pb)	2016/04/25		95	%	80 - 120
			Leachable Selenium (Se)	2016/04/25		101	%	80 - 120
			Leachable Silver (Ag)	2016/04/25		101	%	80 - 120
			Leachable Uranium (U)	2016/04/25		97	%	80 - 120
4468854	ADA	Leachate Blank	Leachable Arsenic (As)	2016/04/25	<0.2		mg/L	
			Leachable Barium (Ba)	2016/04/25	<0.2		mg/L	
			Leachable Boron (B)	2016/04/25	<0.1		mg/L	
			Leachable Cadmium (Cd)	2016/04/25	< 0.05		mg/L	
			Leachable Chromium (Cr)	2016/04/25	< 0.1		mg/L	

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date	-			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		Д0 17 р 2	Leachable Lead (Pb)	2016/04/25	<0.1	HECOVERY	mg/L	QC EITHE
			Leachable Selenium (Se)	2016/04/25	<0.1		mg/L	
			Leachable Silver (Ag)	2016/04/25	<0.01		mg/L	
			Leachable Uranium (U)	2016/04/25	< 0.01		mg/L	
4468854	ADA	Spiked Blank	Leachable Arsenic (As)	2016/04/25	10.02	100	%	80 - 120
			Leachable Barium (Ba)	2016/04/25		101	%	80 - 120
			Leachable Boron (B)	2016/04/25		95	%	80 - 120
			Leachable Cadmium (Cd)	2016/04/25		97	%	80 - 120
			Leachable Chromium (Cr)	2016/04/25		98	%	80 - 120
			Leachable Lead (Pb)	2016/04/25		97	%	80 - 120
			Leachable Selenium (Se)	2016/04/25		99	%	80 - 120
			Leachable Silver (Ag)	2016/04/25	(0)	100	96	80 - 120
			Leachable Uranium (U)	2016/04/25		99	%	80 - 120
4468854	ADA	RPD	Leachable Arsenic (As)	2016/04/25	NC		%	35
			Lazababla Basiwa (62)	- Coreins	NC		%	35
			Leachable Barium (En) Leachable Boron (E) Leachable Cadmium (Cd) Leachable Chromium (Cd) Leachable Chromium (Cd)	2016/04/25 2016/04/25 2016/04/25 2016/04/25	NC		%	35
			Leachable Cadhilpin (Cd)	2016/04/25	NC		%	35
			Leachable Chromium (Cr)	2016/04/25	NC		%	35
			Leachable Lead (PB) Leachable Selentum (Se)	2016/04/25 2016/04/25 2016/04/25	NC		%	35
			Leachable Selemum (5e)	2016/04/25	NC		%	35
			Leachable Silver (Ag)	2016/04/25	NC		%	35
			Leachable Silver (Ag) Leachable Uranitor (U) Sieve #200 (@) 075 (m) Sieve - #200 (~0,075 (m)) Sieve - #200 (~0,075 (m))	2016/04/25	NC		%	35
4469053	NS3	QC Standard	Sieve #200 (<0.075mm)	2016/04/25		89	%	88 - 91
			Sieve - #200 (>0.075mm)	2016/04/25		11	%	9 - 12
4469053	NS3	RPD	Sieve - #200 (<0.075mm) (©	2016/04/25	2.0		%	20
			Sieve - #200 (>0.075mm)	2016/04/25	0.82		%	20
4469240	JET	Matrix Spike	Leachable D10-Anthracene	2016/04/23		101	%	50 - 130
		•	Leachable Q14 Terpheny (FS)	2016/04/23		89	%	50 - 130
			Leachable 08-Acenaphthylene	2016/04/23		96	%	50 - 130
			Leachable Benzo(b/) fluoranthene	2016/04/23		99	%	50 - 130
			Leachable Naphthalene	2016/04/23		78	%	50 - 130
			Leachable Acenaphthylene	2016/04/23		92	%	50 - 130
			Leachable Acenaphthene	2016/04/23		85	%	50 - 130
			C Leachable Fluorene	2016/04/23		93	%	50 - 130
			Leachable Phenanthrene	2016/04/23		94	%	50 - 130
			Leachable Anthracene	2016/04/23		99	%	50 - 130
			Leachable Fluoranthene	2016/04/23		99	%	50 - 130
			Leachable Pyrene	2016/04/23		98	%	50 - 130
			Leachable Benzo(a)anthracene	2016/04/23		100	%	50 - 130
			Leachable Chrysene	2016/04/23		98	%	50 - 130
			Leachable Benzo(k)fluoranthene	2016/04/23		83	%	50 - 130
			Leachable Benzo(a)pyrene	2016/04/23		95	%	50 - 130
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/23		105	%	50 - 130
			Leachable Dibenz(a,h)anthracene	2016/04/23		90	%	50 - 130
			Leachable Benzo(g,h,i)perylene	2016/04/23		95	%	50 - 130
			Leachable 1-Methylnaphthalene	2016/04/23		112	%	50 - 130
			Leachable 2-Methylnaphthalene	2016/04/23		101	%	50 - 130
4469240	JET	Spiked Blank	Leachable D10-Anthracene	2016/04/22		105	%	50 - 130
			Leachable D14-Terphenyl (FS)	2016/04/22		98	%	50 - 130
			Leachable D8-Acenaphthylene	2016/04/22		95	%	50 - 130
			Leachable Benzo(b/j)fluoranthene	2016/04/22		95	%	50 - 130
			Leachable Naphthalene	2016/04/22		81	%	50 - 130
			Leachable Acenaphthylene	2016/04/22		92		50 - 130

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

		 	QUALITY ASSURANCE REI	J(J.J				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	OC Limite
Dotter		QC 17PC	Leachable Acenaphthene	2016/04/22	value	93	% %	QC Limits 50 - 130
			Leachable Fluorene	2016/04/22		93 97	%	50 - 130
			Leachable Phenanthrene	2016/04/22		93	%	50 - 130
			Leachable Anthracene	2016/04/22		102	%	50 - 130
			Leachable Fluoranthene	2016/04/22		102	%	50 - 130
			Leachable Pyrene	2016/04/22		100	% %	50 - 130
			Leachable Benzo(a)anthracene	2016/04/22		99	%	50 - 130
			Leachable Chrysene	2016/04/22		98	%	50 - 130
			Leachable Benzo(k)fluoranthene	2016/04/22		92	%	50 - 130
			Leachable Benzo(a)pyrene	2016/04/22		96	%	50 - 130
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/22		110	76 %	50 - 130
			Leachable Dibenz(a,h)anthracene	2016/04/22	(a)	90	%	
			Leachable Benzo(g,h,i)perylene	2016/04/22	10	98	%	50 - 130
			Leachable 1-Methylnaphthalene	2016/04/22	3	93	%	50 - 130 50 - 130
			Leachable 2-Methylnaphthalene	2016/04/22 62016/04/22		85	%	50 - 130
4469240	JET	Method Blank	Leachable D10-Anthracene	2016/04/22		106	%	50 - 130
4403240	361	WELLIOU DIBLIK	Leachable D14 Terphenye (FS)	2010/04/22		101		50 - 130
			Leachable 28-Acenaphthylene	2016/04/22		91	% %	50 - 130
			Leachable Benzo (1) Iluganthen	2010/04/22	<0.20	31	⊅o ug/l.	20 - 130
			Leachable Naphthalene	2016/04/22	<0.20		ug/L	
			Leachable Acenaphthylene	2019/04/22 2016/04/22 2016/04/22	<0.20			
			ceachable Acenapathene	2016/04/22	<0.20		ug/L	
			770	\ ^-	<0.20		ug/L	
			Leachable Fluigiène Leachable Fluigiène Leachable Anthracene	2016/04/22	<0.20		ug/L	
			Leachaile Anthracene	2016/04/22	<0.20		ug/L	
			Leachable Flogranthene	2016/04/22	<0.20		ug/L	
				2016/04/22	<0.20		ug/L	
			Leachable Berro(a)anthracene	2016/04/22	<0.20		ug/L	
			Leachable Chrysens	2016/04/22	<0.20		ug/L	
			Leachable Eenzo(k)fluoranthene	2016/04/22	<0.20		ug/L	
			Leachable Benzo(a)pyrene	2016/04/22	<0.10		ug/L	
			Jazechable Indeno(1,2,3-cd)pyrene		<0.20		ug/L	
			Leachable Dibenz(a,h)anthracene	2016/04/22			ug/L	
			Leachable Benzo(g,h,i)perylene	2016/04/22 2016/04/22	<0.20		ug/L	
			Leachable 1-Methylnaphthalene		<0.20		ug/L	
			Leachable 2-Methylnaphthalene	2016/04/22	<0.20		ug/L	
4469240	JET	RPD	Leachable Benzo(b/j)fluoranthene	2016/04/22 2016/04/23	<0.20 NC		ug/L	40
7705270	,,,,	W D	Leachable Naphthalene	2016/04/23	2.7		% %	40
			Leachable Naphthalene	2016/04/23	NC			40
			Leachable Acenaphthene	2016/04/23			%	40
			Leachable Fluorene	2016/04/23	3.3		%	40
			Leachable Phenanthrene		0.16		%	40
			Leachable Anthracene	2016/04/23	NC		%	40
			Leachable Fluoranthene	2016/04/23 2016/04/23	NC		%	40
			Leachable Pyrene		NC NC		%	40
				2016/04/23	NC		%	40
			Leachable Benzo(a)anthracene Leachable Chrysene	2016/04/23	NC		%	40
			Leachable Enrysene Leachable Benzo(k)fluoranthene	2016/04/23	NC		%	40
			Leachable Benzo(k)nuorantnene Leachable Benzo(a)pyrene	2016/04/23	NC		%	40
			* ** *	2016/04/23	NC		%	40
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/23	NC		%	40
			Leachable Dibenz(a,h)anthracene	2016/04/23	NC		%	40
			Leachable Benzo(g,h,i)perylene	2016/04/23	NC		%	40
			Leachable 1-Methylnaphthalene	2016/04/23	3,1		%	40

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC Batch 4469971	Init	QC Type	Parameter	Date				
		do 17pc		Analyzed	Value	Recovery	UNITS	QC Limits
4469971			Leachable 2-Methylnaphthalene	2016/04/23	2.6	necovery	%	40
1103371	JJE	Matrix Spike	o-Terphenyl	2016/04/23	2.0	104	%	60 - 130
	336	William Spike	F2 (C10-C16 Hydrocarbons)	2016/04/23		94	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2016/04/23		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2016/04/23		92	%	50 - 130
4469971	JJE	Spiked Blank	o-Terphenyl	2016/04/23		105	%	60 - 130
1-103311	***	Spinea Dialik	F2 (C10-C16 Hydrocarbons)	2016/04/23		101	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2016/04/23		103	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2016/04/23		101	%	60 - 130
4469971	JJE	Method Blank	o-Terphenyl	2016/04/23		103	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2016/04/23	<100	103	ug/L	00-100
			F3 (C16-C34 Hydrocarbons)	2016/04/23	g () <200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2016/04/23	<200		ug/L	
4469971	JJE	RPD	F2 (C10-C16 Hydrocarbons)	2016/04/24	NC		%	30
			E3 (C16-C34 Hydrorarhyns)	and sindral	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2016/04/24	NC		%	30
4469978	SVS	Matrix Spike	Leachable Aroctor 1260	2016/04/24 2016/04/23 2016/04/23		96	%	30 - 130
			Leachable Decachioropiphem	2016/04/23		118	%	30 - 130
			Leachable Total PCB	2010/04/23		96	%	30 - 130
1469978	SVS	Spiked Blank	Leachable Total PCB Leachable Aroctor 1250	(6) (200 100 100		100	%	30 - 130
			Leachable Decachleroniphery	2016/04/23 2016/04/23 2016/04/23 2016/04/23 2016/04/23		125	96	30 - 130
			Leacháble Décáchlarobiphetú? Leachable Total PCB Leacháble Araclor 10(6)	2016/04/23		100	%	30 - 130
1469978	SVS	Method Blank	Leachable Areclor 10.06	2016/04/23	<3.0		ug/L	
			Leachable Aroclo 1221	2016/04/23	<3.0		ug/L	
			Leachable Argelor 1247	2016/04/23	<3.0		ug/L	
			Leachable Ardgor 1248	2016/04/23	<3.0		ug/L	
			Leachable Aroclor (2254)	2016/04/23	<3.0		ug/L	
			Leachable Arggior 1260	2016/04/23	<3.0		ug/L	
			Leachable Decachiorobiphenyl	2016/04/23		120	%	30 - 130
			Leachaine Total PCB	2016/04/23	<3.0	120	ug/L	30 230
1469978	SVS	RPD	Leachable Total PCB	2016/04/23	NC		%	40
470308	SAU	Matrix Spike	trachable Fluoride (F-)	2016/04/25		101	%	80 - 120
1470308	SAU	Leachate Blank	Cachable Fluoride (F-)	2016/04/25	< 0.10		mg/L	
1470308	SAU	Spiked Blank	Leachable Fluoride (F-)	2016/04/25		99	%	80 - 120
1470308	SAU	Method Blank	Leachable Fluoride (F-)	2016/04/25	< 0.10		mg/L	
1470308	SAU	RPD	Leachable Fluoride (F-)	2016/04/25	NC		%	25
1470316	XQI	Matrix Spike	Leachable Free Cyanide	2016/04/25		96	%	80 - 120
1470316	XQI	Leachate Blank	Leachable Free Cyanide	2016/04/25	< 0.010		mg/L	
470316	XQI	Spiked Blank	Leachable Free Cyanide	2016/04/25		99	%	80 - 120
1470316	XQI	Method Blank	Leachable Free Cyanide	2016/04/25	<0.0020		mg/L	
1470316	XQI	RPD	Leachable Free Cyanide	2016/04/25	NC		%	20
	C_N	Matrix Spike	Leachable Nitrite (N)	2016/04/25		100	%	80 - 120
	_	•	Leachable Nitrate (N)	2016/04/25		100	%	80 - 120
			Leachable Nitrate + Nitrite (N)	2016/04/25		100	%	80 - 120
470317	C_N	Leachate Blank	Leachable Nitrite (N)	2016/04/25	<0.10		mg/L	
	-		Leachable Nitrate (N)	2016/04/25	<1.0		mg/L	
			Leachable Nitrate + Nitrite (N)	2016/04/25	<1.0		mg/L	
470317	C_N	Spiked Blank	Leachable Nitrite (N)	2016/04/25		104	%	80 - 120
			Leachable Nitrate (N)	2016/04/25		101	%	80 - 120
			Leachable Nitrate + Nitrite (N)	2016/04/25		102	%	80 - 120
470317	C N	Method Blank	Leachable Nitrite (N)	2016/04/25	<0.10		mg/L	400
	-		Leachable Nitrate (N)	2016/04/25	<1.0		mg/L	
			Leachable Nitrate + Nitrite (N)	2016/04/25	<1.0		mg/L	

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
4470317	C_N	RPD	Leachable Nitrite (N)	2016/04/25	NC		%	25
			Leachable Nitrate (N)	2016/04/25	NC		%	25
			Leachable Nitrate + Nitrite (N)	2016/04/25	NC		%	25
4470516	AAI	Matrix Spike	1,4-Difluorobenzene	2016/04/24		100	%	70 - 130
			4-Bromofluorobenzene	2016/04/24		95	%	70 - 130
			D10-Ethylbenzene	2016/04/24		106	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/24		97	%	70 - 130
			F1 (C6-C10)	2016/04/24		85	%	70 - 130
4470516	AAI	Spiked Blank	1,4-Difluorobenzene	2016/04/24		101	%	70 - 130
			4-Bromofluorobenzene	2016/04/24		97	%	70 - 130
			D10-Ethylbenzene	2016/04/24		95	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/24	(O)	98	%	70 - 130
			F1 (C6-C10)	2016/04/24		93	%	70 - 130
4470516	AAI	Method Blank	1,4-Difluorobenzene	2016/04/24		101	%	70 - 130
			4-Bromofluorobenzene	2016/04/24		95	%	70 - 130
			D10-Ethylbenzerte	2016/04/24		103	%	70 - 130
			D4-1,2-Dichloroethane	7916/04/24		98	%	70 - 130
			F1 (C6-C1P)	2016/04/24	<25		ug/L	
			F1 (C6-C10) BTE() F1 (C6-C10)	2018/04/24	<25		ug/L	
4470516	AAI	RPD	F1 (GEC10)	2016/04/24	NC		%	30
			F1 C6-C101 BTEX	A 2016/04/24	NC		%	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing at reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

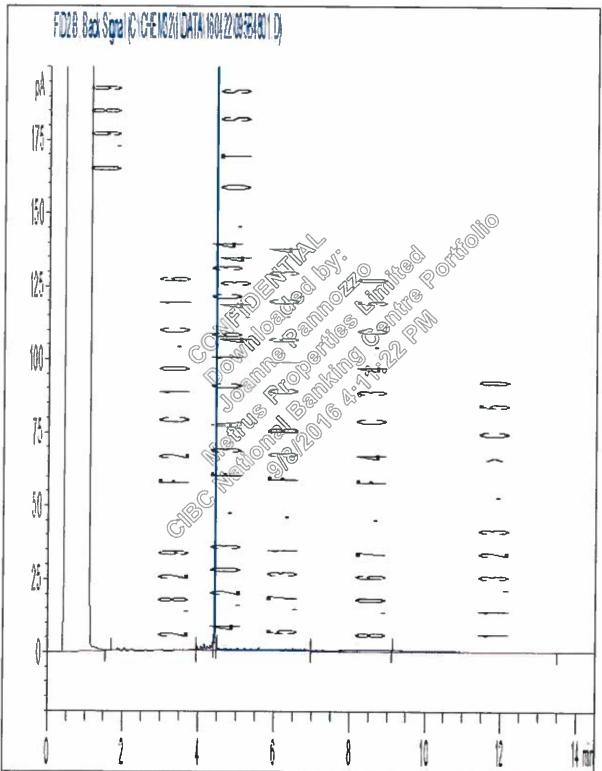
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eva Parks C

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

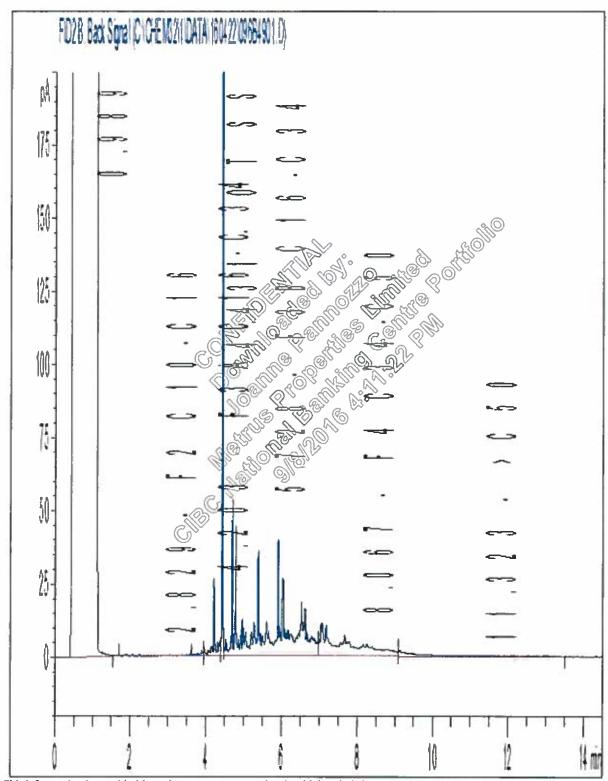
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page


	MYDICE TO: REPORT TO:		H	П		PROJECT MFDRMATION	DRMATION		100
Conpany Name #982 Penchin Ltd	Ltd	Company Manu	lama		Outstand	A70927		R677217	Boste Order #
Assertant Ryan Larende	Ryan Larende / Thington Victoria	Allembon	Ryan Laronde		P.D. F	430 40	1		
Kanata ON K2K 2X3	K 2X3	Agora			Property	1	1.00	NAF ENV-107	52
(613) 592-3387	7 12 (613) 592-5897	7		Fau	Property Name	1=		STEATHER STATE	-
rlaronde@purcher.com	him com	franci	riaronde or pinchin com	n com	Serviced Dr	, A		THE PROPERTY OF THE PROPERTY O	KALLEL KILLELL Partial Dates
REGULATED DRIBINI SUBBITTED	MOE REGOLATED DRIBKINTS WATEH OR WATE RELITINGED FOR HUMAN CONSUMENTION INESTIGE. SUBBITTED ON THE MAXXAX DRIBKING WATER CHAIN OF CUSTORY	FOR HUMAN CO	STOOY		ANALYSIS REG	ANALYSIS REQUESTED INVENTE BY SPECIFIC	ECIFIC	all seems	Tulnumental Stree (TAT) Removed Francisco Francisco (Street Property)
Requisition 153 (2011)	Other Regulations	1	Special Instructions	Г	01	7-1	d	Regular (Standard) TAT:	
These Reviews Countries peer Reviews Countries peer Reviews Countries peer Peer Peer	Numbers Code: Sertian Severe Pulmers on Code: Sertian Severe Eylan Numbers Code: Severe Eylan Se	Byten	å	Bernd (please or	SH THE SAG SEEDING	1.5 3,74 10.000 An man	031 I	John Sophord Falls 2 New-Indiana)	The be expected it was it it is and a parameter. The parameter is it is a first development of the parameter is a parameter in the parameter in the parameter is a parameter in the parameter in th
Include Criti	include Criticia on Certificate of Analysis (Y/N)?	Yes				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			17112
Servole Barcoda Litter	Slavene (Location) Naminfolderin	1	Time Sampled Matter	Ť			n	D to Specific	Carmenta
	MW-1552	Phoniss	S					9	
	mtw- 65					X			
	mw-2 552°		3	X X X X X X X X X X X X X X X X X X X			•	2	
	MW-3 552		(A)			×		V3	
	TCLP	>	S				X	.9	
			- (6		800				
	PMU0-1	\$ 14g	***		>^			Τ	2 H 1
	Mw-7	>	100	X	X			5	
			D.						9)2 100
The state of the s		-)			7			
Jan L. R.A.	(b) (d)	(4//6 12:00	7.67	A L. Mar. Br., (Septiably oversity)	51/4/4/VI	15:00	med submitted	Time Settline Perpendice (C) on Henrick	Laboratore Uses Ortho P(C) att Name pt Challed Soul Ves
			The state of the s		and to be the			V	- Free

Maxxam Job #: B677217 Report Date: 2016/04/25 Maxxam Sample: CFE299

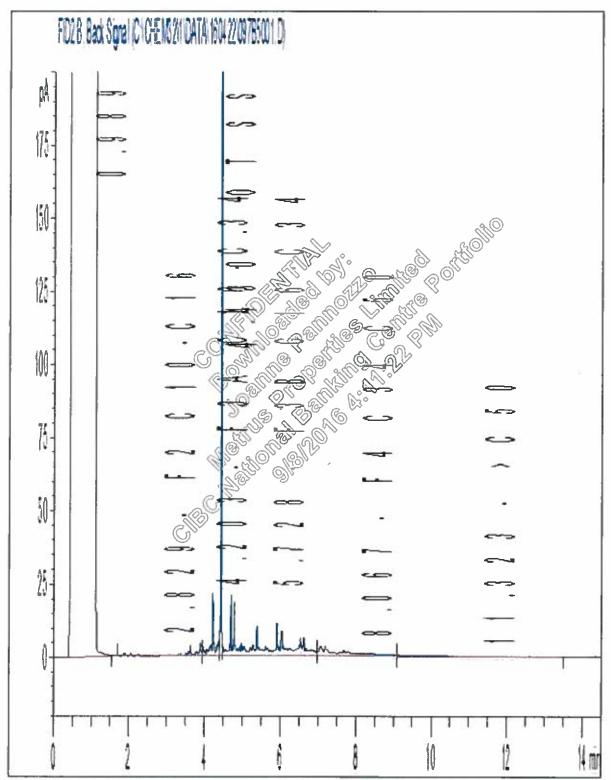
Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE Client ID: MW-1 SS2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Maxxam Job #: B677217 Report Date: 2016/04/25 Maxxam Sample: CFE301 Pinchin Ltd

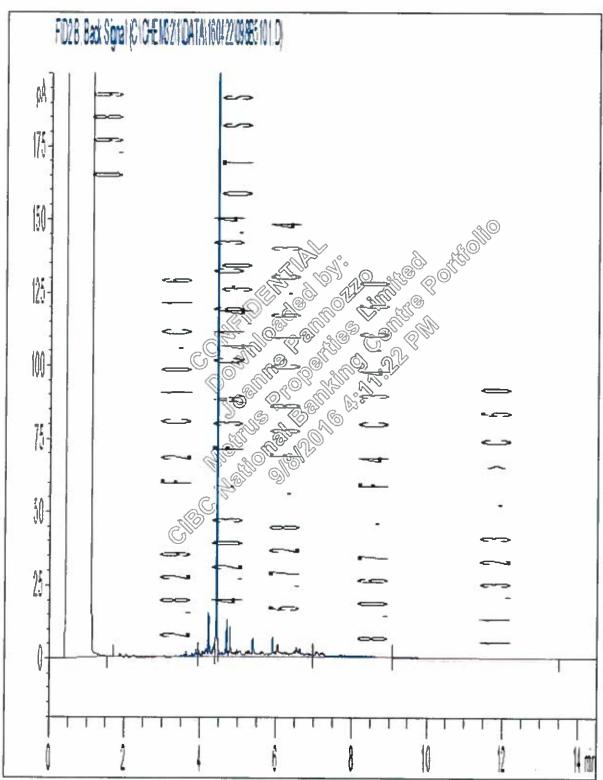
Client Project #: PII ESA Project name: CARLING AVE Client ID: MW-2 SS2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Maxxam Job #: 8677217 Report Date: 2016/04/25 Maxxam Sample: CFE302 Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE Client ID: MW-3 552

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

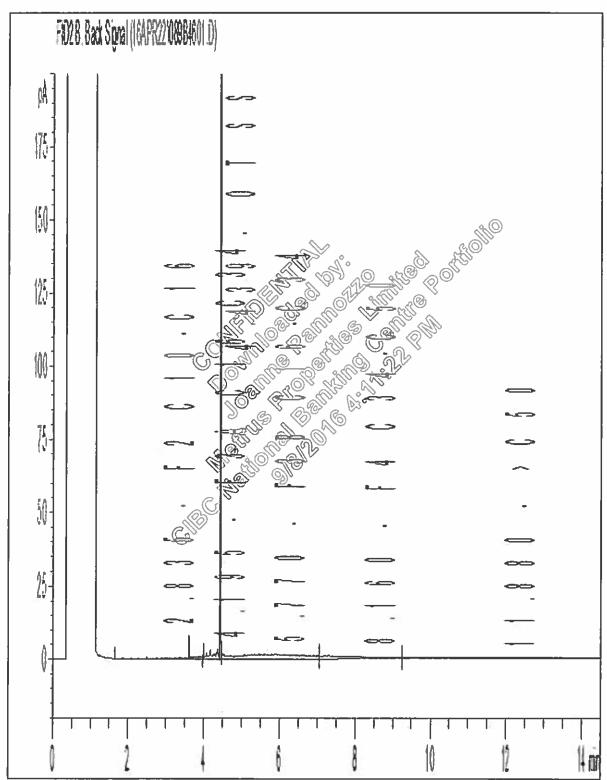


Maxxam Job #: B677217 Report Date: 2016/04/2S Maxxam Sample: CFE303 Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE

Client ID: TCLP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

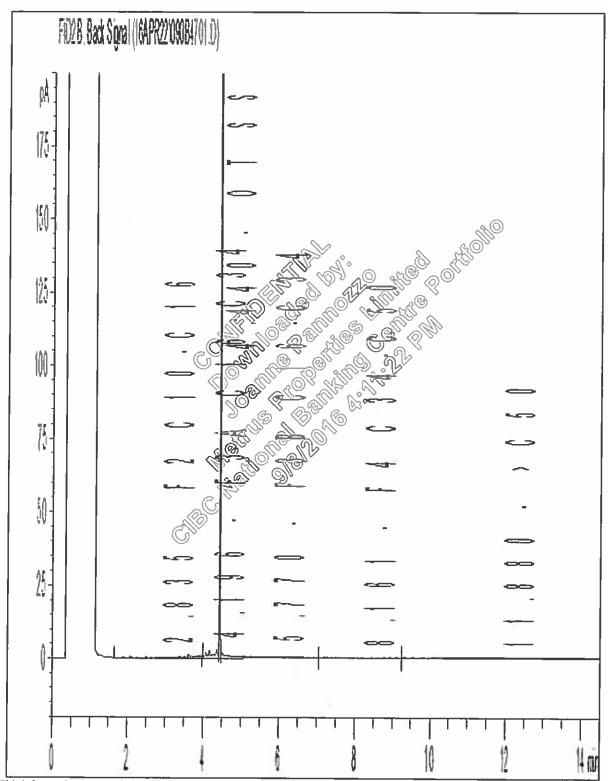


Maxxam Job #: B677217 Report Date: 2016/04/25 Maxxam Sample: CFE304 Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE

Client ID: MW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Maxxam Job #: B677217 Report Date: 2016/04/25 Maxxam Sample: CFE305 Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE

Client ID: MW-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: PII ESA Site#: 111021.002

Site Location: CARLING AVE Your C.O.C. #: 544903-04-01

Attention:Ryan Laronde

Pinchin Ltd Ottawa 555 Legget Dr Suite 1001 (Tower A) Kanata, ON K2K 2X3

> Report Date: 2016/04/25 Report #: R3972343

> > Version: 1 - Final

MAXXAM JOB #: B677217 Received: 2016/04/19, 11:15 Sample Matrix: Soil # Samples Received: 5 Analyses Quantity Extracted Analysed Laborato 1,3-Dichloropropene Sum (1) Cyanide (WAD) in Leachates (1)

	@ _	Date	Date .		
Analyses	luantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	5) (B) S	NEA CO	2016/04/25		EPA 8260C m
Cyanide (WAD) in Leachates (1)	1 1 (T)	N/AS	2016/04/25	CAM SOP-00457	OMOE 3015 m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	(C)	N/AS	2016/04/23	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	0% K	2016/04/22	2016/04/25	CAM SOP-00316	CCME CWS m
Fluoride by ISE in Leachates (1)		2006/04/23	2016/04/25	CAM SOP-00449	SM 22 4500-F- C m
Mercury (TCLP Leachable) (mg/L) (1)		® /A	2016/04/22	CAM SOP-00453	EPA 7470A m
Total Metals in TCLP Leachate by ICPMS (1)	(C)	2016/04/22	2016/04/25	CAM SOP-00447	EPA 6020A m
Ignitability of a Sample (1)		2016/04/25	2016/04/25	CAM SOP-00432	EPA 1030 Rev. 0 m
Moisture (1)	4	N/A	2016/04/21	CAM SOP-00445	Carter 2nd ed 51.2 m
Nitrate(NO3) + Nitrite(NO2) in Leachate (1)	1	N/A	2016/04/25	CAM SOP-00440	SM 22 4500-NO3I/NO2B
PAH Compounds in Leachate by GC/MS (SIM) (1)	1	2016/04/22	2016/04/23	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Leachate (1)	1	2016/04/23	2016/04/23	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT (1)	2	2016/04/21	2016/04/21	CAM SOP-00413	EPA 9045 D m
Sieve, 75um (1)	1	N/A	2016/04/25	CAM SOP-00467	Carter 2nd ed m
TCLP - % Solids (1)	1	2016/04/21	2016/04/22	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid (1)	1	N/A	2016/04/22	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH (1)	1	N/A	2016/04/22	CAM SOP-00401	EPA 1311 Update I m
Volatile Organic Compounds in Soil (1)	3	N/A	2016/04/22	CAM 50P-00228	EPA 8260C m

Sample Matrix: Water # Samples Received: 2

Andreas		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	2	N/A	2016/04/22	<u> </u>	EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water (1)	2	N/A	2016/04/24	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 3)	2	2016/04/23	2016/04/24	CAM SOP-00316	CCME PHC-CWS m
Volatile Organic Compounds in Water (1)	2	N/A	2016/04/21	CAM SOP-00226	EPA 8260C m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Your Project #: PII ESA Site#: 111021.002

Site Location: CARLING AVE Your C.O.C. #: 544903-04-01

Attention:Ryan Laronde

Pinchin Ltd Ottawa 555 Legget Dr Suite 1001 (Tower A) Kanata, ON K2K 2X3

Report Date: 2016/04/25

Report #: R3972343

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B677217

Received: 2016/04/19, 11:15

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol, ction pate is the date sampled unless otherwise stated.

(3) All CCME PHC results met required criteria unless otherwise stated fifthe report the EWS PHG (reprode expulsional property of the Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instance of the Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instance of the Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instance of Soxiet extraction. F2/F3/F4 data reported using validated cold solvent extraction instead of Soxillet extra

Encryption Key

Please direct all questions regarding this Certificate of Analysis to you

Parnian Baber, Project Manager

Email: pbaber@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improperties of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E),

signing the reports. For Service Group specific validation blease refer to the Validation Signature Page. Maxxam Analytics International Corporation is NELAP accredited laboratory. Certificates #04012 and #4079-001. This certificate shall not be reproduced except in full, without the written approvator Maxxam.

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

RESULTS OF ANALYSES OF SOIL

Maxxam ID		CFE299	CFE300		CFE301		CFE302			
Sampling Date		2016/04/15	2016/04/15		2016/04/15		2016/04/15			
COC Number		544903-04-01	544903-04-01		544903-04-01		544903-04-01			
	UNITS	MW-1 SS2	MW-1 GS	QC Batch	MW-2 SS2	QC Batch	MW-3 552	RDL	QC Batch	MDL
Inorganics		<u> </u>								
Moisture	%	18		4466763	34	4466683	22	1.0	4466763	0.50
Available (CaCl2) pH	рН	7.58		4466630			7.41		4466630	
Miscellaneous Parameters									·	
Grain Size	%		COARSE	4469053				N/A		N/A
Sieve - #200 (<0.075mm)	%		40	4469053				1		N/A
Sieve - #200 (>0.075mm)	%		60	4469053			3	1		N/A
RDL = Reportable Detection I	Limit					AGO DI	9			
QC Batch = Quality Control B	atch		(B)	× .	B	TE(0).				

6	V	S41 0 a	(2h /	00					
Maxxam ID	2/2		ž (Q)'	9					
Sampling Date	36°	@016/04(1)5	4®						
COC Number		544903-04-01	Mark						
10 10 10 10 10 10 10 10 10 10 10 10 10 1	UNITS	ℳŤ¢μ₽ૐ`	(BDL)	QC Batch	MDL				
Inorganics									
Final pH	SQH,	16.12 ° C		4468352					
Leachable Fluoride (F4)	mg/E	S 0.26	0.10	4470308	0.020				
Initial pH	O PAR	8.75		4468352					
Moisture	~ 96 W	23	1.0	4467824	0.50				
TCLP - % Solids	(P)	100	0.2	4468343	N/A				
TCLP Extraction Fluid	N/A	FLUID 1		4468351					
Leachable Free Cyanide 💛 💛	mg/L	<0.010	0.010	4470316	0.0010				
Leachable Nitrite (N)	mg/L	<0.10	0.10	4470317	0.050				
Leachable Nitrate (N)	mg/L	<1.0	1.0	4470317	0.20				
Leachable Nitrate + Nitrite (N)	mg/L	<1.0	1.0	4470317	0.20				
Metals					•				
Leachable Mercury (Hg)	mg/L	<0.0010	0.0010	4468656	0.00010				
RDI - Reportable Detection Lim	it								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		CFE303	ı		
Sampling Date		2016/04/15			
COC Number		544903-04-01			
	UNITS	TCLP	RDL	QC Batch	MDL
Metals					
Leachable Arsenic (As)	mg/L	<0.2	0.2	4468854	0.01
Leachable Barium (Ba)	mg/L	0.7	0.2	4468854	0.01
Leachable Boron (B)	mg/L	0.2	0.1	4468854	0.02
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	4468854	0.000
Leachable Chromium (Cr)	mg/L	<0.1	0.1	4468854	0.01
Leachable Lead (Pb)	mg/L	<0.1	0.1	4468854	0.00
Leachable Selenium (Se)	mg/L	<0.1	0.1	4468854	0.01
Leachable Silver (Ag)	ma/L	,o <0.01	0.01	4468854	0.00
Leachable Uranium (U)	JV - 115	40.01	200	ARCOOLA	0.00
RDL = Reportable Detection Li QC Batch = Quality Control Ba	ings Beh	75 to 01	√@ B'01	4468854	0.001
Leachable Uranium (U) RDL = Reportable Detection Li QC Batch = Quality Control Be	mily Bigh		(A)	(19 90034	0.00

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		CFE303								
Sampling Date		2016/04/15								
COC Number		544903-04-01								
	UNITS	TCLP	RDL	QC Batch	MDL					
Polyaromatic Hydrocarbons										
Leachable Benzo(b/j)fluoranthene	ug/L	< 0.20	0.20	4469240	0.020					
Leachable Naphthalene	ug/L	2.0	0.20	4469240	0.020					
Leachable Acenaphthylene	ug/L	<0.20	0.20	4469240	0.020					
Leachable Acenaphthene	ug/L	0.47	0.20	4469240	0.020					
Leachable Fluorene	ug/L	0.90	0.20	4469240	0.020					
Leachable Phenanthrene	ug/L	1.4	0.20	4469240	0.020					
Leachable Anthracene	ug/L	0.21	0.20	4469240	0.020					
Leachable Fluoranthene	Yug/L	0.39	0.20	469240	0.020					
Leachable Pyrene	AFB) L	0.28	0.20	4469240	0.020					
Leachable Benzo(a)anthracene 🖇	ug/ki	12 <0.50	0,20	4469240	0.020					
Leachable Chrysene	HEAD.	~ \20.20.K	0.20	4469240	0.020					
Leachable Benzo(khluoranthene ू	Wg/L(0.20	4469240	0.020					
Leachable Benzo(a)pyrehe 🏈 🌣	地位	©0.10 (V	0.10	4469240	0.020					
Leachable indeno(1,3)3-cd) pyrene	%DB/L	6 < g 20 b	0.20	4469240	0.020					
Leachable Dibent(a,h)anthracen	/J. glu	°	0.20	4469240	0.020					
Leachable Benzo(g,h:))perylarie	ઉજ્જો ∟	◆ [√] √<0.20	0.20	4469240	0.020					
Leachable 1-Methylnaphthalen		^ک 5،2	0.20	4469240	0.020					
Leachable 2-Methylnaphthalene	Ng/T	6.5	0.20	4469240	0.020					
Surrogate Recovery (%)	<u> </u>									
Leachable D18 Anthracene	%	107		4469240						
Leachable D14-Terphenyl (FS)	%	101		4469240						
Leachable D&Acenaphthylene	%	93		4469240						
RDL = Reportable Detection Limit										
QC Batch Quality Control Batch										

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

VOLATILE ORGANICS BY GC/MS (SOIL)

								_
Maxxam ID			CFE299	CFE301	CFE302			<u> </u>
Sampling Date			2016/04/15	2016/04/15	2016/04/15			
COC Number			544903-04-01	544903-04-01	544903-04-01			
	UNITS	Criteria	MW-1 552	MW-2 SS2	MW-3 SS2	RDL	QC Batch	MDL
Calculated Parameters							-	-
1,3-Dichloropropene (cis+trans)	ug/g	0.18	<0.050	<0.050	<0.050	0.050	4463003	0.010
Volatile Organics								
Acetone (2-Propanone)	ug/g	16	<0.50	<0.50	<0.50	0.50	4466776	0.50
Benzene	ug/g	0.32	<0,020	<0.020	<0.020	0.020	4466776	0.020
Bromodichloromethane	ug/g	18	<0.050	<0.050	<0.050	0.050	4466776	0.050
Bromoform	ug/g	0.61	<0.050	<0.050	<0,050	0.050	4466776	0.050
Bromomethane	ug/g	0.05	<0.050	<0.050	\$0.050	0.050	4466776	0.050
Carbon Tetrachloride	ug/g	0.21	ॐ <0,050	<0;850	0.050	0.050	4466776	0.050
Chlorobenzene	ug/g	24	~~ 050 <u>0</u>	~~@05Q ()	<0.050	0.050	4466776	0.050
Chloroform	ug/g/	0.47	<0.050	€0.050,	<0.050	0.050	4466776	0.050
Dibromochloromethane	ug/g)	13.0		^১ ১ব্ট.950	<0.050	0.050	4466776	0.050
1,2-Dichlorobenzene	(Qg/g	€6.8	(0.050	₹0.050\s	<0.050	0.050	4466776	0.050
1,3-Dichlorobenzene	ug/g	[™] 9:€) [™]	^{₹0,050} €	[™] _<6?,050	<0.050	0.050	4466776	0.050
1,4-Dichlorobenzene	CORIB	(0 ;2°	Ø.0.05€	ത്യി 0.050	<0.050	0.050	4466776	0.050
Dichlorodifluoromethane (FREON 12)	Dug/g	5°16_%	? \$0 ,050_ <i>[</i> \	ັ≎່ <0.050	<0.050	0.050	4466776	0.050
1,1-Dichloroethane	NELE	@17°	_€\$0.050°	<0.050	<0.050	0.050	4466776	0.050
1,2-Dichloroethane	oug/ga	0.05	©> 60.050	<0.050	<0.050	0.050	4466776	0.050
1,1-Dichloroethylene	UE/E	0.064	√ √ 0.050	<0.050	<0.050	0.050	4466776	0.050
cis-1,2-Dichloroethylene	Jug/g_	0155 N	<0.050	<0.050	<0.050	0.050	4466776	0.050
trans-1,2-Dichloroethylene	UB/8-	1/30	<0.050	<0.050	<0.050	0.050	4466776	0.050
1,2-Dichloropropane	€¥g/g	0.16	<0.050	<0.050	<0.050	0.050	4466776	0.050
cis-1,3-Dichloropropene	ug/g	0.18	<0.030	<0.030	<0.030	0.030	4466776	0.030
trans-1,3-Dichloropropene	ug/g	0.18	<0.040	<0.040	<0.040	0.040	4466776	0.040
Ethylbenzene	ug/g	9.5	<0.020	<0.020	<0.020	0.020	4466776	0.020
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	<0.050	0.050	4466776	0.050
Hexane	ug/g	46	<0.050	<0.050	<0.050	0.050	4466776	0.050
Methylene Chloride(Dichloromethane)	ug/g	1.6	<0.050	<0.050	<0.050	0.050	4466776	0.050
Methyl Ethyl Ketone (2-Butanone)	ug/g	70	<0.50	<0.50	<0.50	0.50	4466776	0.50
Methyl Isobutyl Ketone	ug/g	31	<0.50	<0.50	<0.50	0.50	4466776	0.50
Methyl t-butyl ether (MTBE)	ug/g	11	<0.050	<0.050	<0.050	0.050	4466776	0.050
Styrene	ug/g	34	<0.050	<0.050	<0.050	0.050	4466776	0.050
1,1,1,2-Tetrachloroethane	ug/g	0.087	<0.050	<0.050	<0.050	0.050	4466776	0.050
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	<0.050	0.050	4466776	0.050

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Soil - Industrial/Commercial/Community Property Use - Coarse Texture

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID			CFE299	CFE301	CFE302			
Sampling Date			2016/04/15	2016/04/15	2016/04/15			
COC Number			544903-04-01	544903-04-01	544903-04-01			
	UNITS	Criteria	MW-1 SS2	MW-2 \$\$2	MW-3 552	RDL	QC Batch	MDL
Tetrachloroethylene	ug/g	4.5	<0.050	<0.050	<0.050	0.050	4466776	0.050
Toluene	ug/g	68	<0.020	<0.020	<0.020	0.020	4466776	0.020
1,1,1-Trichloroethane	ug/g	6.1	<0.050	<0.050	<0.050	0.050	4466776	0.050
1,1,2-Trichloroethane	ug/g	0.05	<0.050	<0.050	<0.050	0.050	4466776	0.050
Trichloroethylene	ug/g	0.91	<0.050	<0.050	<0.050	0.050	4466776	0.050
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.050	<0.050	<0.050	0.050	4466776	0.050
Vinyl Chloride	ug/g	0.032	<0.020	<0.020	<0,020	0.020	4466776	0.020
p+m-Xylene	ug/g	-	<0.020	<0.020	300020	0.020	4466776	0.020
o-Xylene	ug/g	7.6	ॐ<0,020	<0,20,20	₹0.020	0.020	4466776	0.020
Total Xylenes	ug/g	(26)V	₹0,020 0	020 O	> <0.020	0.020	4466776	0.020
Surrogate Recovery (%)	1	18 CE 18	3 495	Sold R				
4-Bromofluorobenzene	,#O)	1 20	_(100 \ \ \	_२ ^{८२} (म् ४६	100		4466776	
D10-o-Xylene	⟨%¥ <u>`</u>	90)	(1) 90E V	108/1	97		4466776	
D4-1,2-Dichloroethane	3 %	9 0°	%%98 C	৺ (98°	99		4466776	
D8-Toluene	Way.	_@ __ ``	N 1000	a 69	99		4466776	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Ontario Reg. 153/04 (Amended April 15, 2011)
Table 7: Generic Site Condition Standards for Shallow Soris in a Non-Potable Ground Water Condition
Soil - Industrial/Commercial/Community Property Use - Coarse Texture

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID	1		CFE299	CFE301	CFE302	CFE303	Γ				
Sampling Date			2016/04/15	2016/04/15	2016/04/15	2016/04/15					
COC Number			544903-04-01	544903-04-01	544903-04-01	544903-04-01					
	UNITS	Criteria	MW-1 SS2	MW-2 SS2	MW-3 \$\$2	TCLP	RDL	QC Batch	MDI		
BTEX & F1 Hydrocarbons											
Benzene	ug/g	0.32				<0.020	0.020	4468697	0.020		
Toluene	ug/g	68				0.021	0.020	4468697	0.020		
Ethylbenzene	ug/g	9.5				<0.020	0.020	4468697	0.020		
o-Xylene	ug/g	-				<0.020	0.020	4468697	0.020		
p+m-Xylene	ug/g	-				<0.040	0.040	4468697	0.040		
Total Xylenes	ug/g	26				<0.040	0.040	4468697	0.040		
F1 (C6-C10)	ug/g	55	<10	<10	<10	∭<10	10	4468697	5.0		
F1 (C6-C10) - BTEX	ug/g	55	<10	√ <10	×10 /	<10	10	4468697	5.0		
F2-F4 Hydrocarbons			Tell live	(Bay	~ @ ~ @						
F2 (C10-C16 Hydrocarbons)	ug/g	230	(1) 810 E	A TELL TO	ी सम	<10	10	4468834	5.0		
F3 (C16-C34 Hydrocarbons)	ug/g	1700	√<50	[™] ©306 <i>™</i>	~{\frac{4}{100}	67	50	4468834	5.0		
F4 (C34-C50 Hydrocarbons)	ug/g	33000	2 (28) (4	JU 120	J. 450	<50	50	4468834	10		
Reached Baseline at C50	ug/g	12	Yes	raffer es	Yes	Yes		4468834			
Surrogate Recovery (%)	C	n al	W 6	10° (1)	16						
1,4-Difluorobenzene	%	(S)	W101 (?)		101	101		4468697			
4-Bromofluorobenzene	%	<u> </u>	6 C3 C	Mr 9500	94	94		4468697			
D10-Ethylbenzene	%	-2	@ 105@5°C	€_104	101	110		4468697			
D4-1,2-Dichloroethane	%	ام ر	D. 362	98	97	97		4468697			
o-Terphenyl	%	~ (B)	(104 (9))	103	104	104		4468834			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

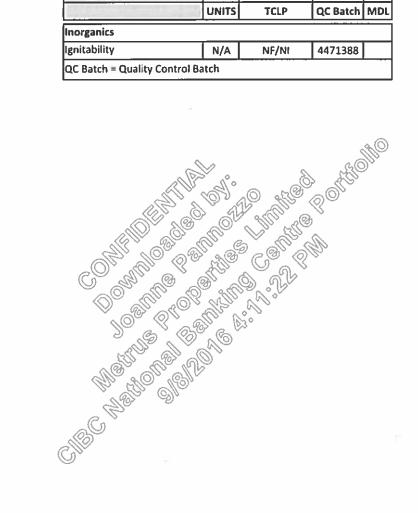
Soil - Industrial/Commercial/Community Property Use - Coarse Texture

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

		CFE303			
Sampling Date		2016/04/15			
COC Number		544903-04-01			
	UNITS	TCLP	RDL	QC Batch	MD
PCBs	-				
Leachable Aroclor 1016	ug/L	<3.0	3.0	4469978	0.20
Leachable Aroclor 1221	ug/L	<3.0	3.0	4469978	0.20
Leachable Aroclor 1242	ug/L	<3.0	3.0	4469978	0.20
Leachable Aroclor 1248	ug/L	<3.0	3.0	4469978	0.20
Leachable Aroclor 1254	ug/L	<3.0	3.0	4469978	0.2
Leachable Aroclor 1260	ug/L	<3.0	3.0	4469978	0.2
Leachable Total PCB	ug/L	<3.0	3.0	4469978	0.2
Surrogate Recovery (%)	So	Ş	,	W.	
Leachable Decachlorobipheny	1680	○ 12B. @	7 ,	4469978	
RDL = Reportable Detection Limit	\$ \\ \(\langle \text{\langle} \)		30	Dita paa 18	
Leachable Decachlorobipheny RDL = Reportable Detection Lim QC Batch = Quality Control Batch					



Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

MISCELLANEOUS (SOIL)

Maxxam ID		CFE303		
Sampling Date		2016/04/15		
COC Number		544903-04-01		
	UNITS	TCLP	QC Batch	MDL
Inorganics				
Ignitability	N/A	NF/NI	4471388	
QC Batch = Quality Co	ntrol Batch			

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		CFE304		CFE305			T
Sampling Date		2016/04/18		2016/04/18	\vdash	 	
COC Number		544903-04-01		544903-04-01			
	UNITS	MW-1	RDL	MW-2	RDL	QC Batch	MDL
Calculated Parameters		<u> </u>					<u> </u>
1,3-Dichloropropene (cis+trans)	ug/L	<0.57	0.57	<0.57	0.57	4463059	0.28
Volatile Organics					<u>. </u>		
Acetone (2-Propanone)	ug/L	<30 (1)	30	<20	20	4465300	1.0
Benzene	ug/L	1.2	0.20	0.58	0.20	4465300	0.020
Bromodichloromethane	ug/L	<0.20	0.20	<0.20	0.20	4465300	0.050
Bromoform	ug/L	<0.40	0.40	<0.40	0.40		0.10
Bromomethane	ug/L,	<1.0	1.0	<1.0	\$1.0	4465300	0.10
Carbon Tetrachloride	ug/S	₹0.20	0.20	<u></u> <0.2€	0.20	4465300	0.050
Chlorobenzene	(18)E	0.200	0.20		0.20	4465300	0.010
Chloroform	oug/L	50 20	0,20	3 <0.20	0.20	4465300	0.050
Dibromochloromethane	0890	30.40	0,40	<0.40	0.40	4465300	0.050
1,2-Dichlorobenzene	oug/L	⊘ <0:40	£40	€0.40	0.40	4465300	0.050
1,3-Dichlorobenzene	48) [0	8 0.40 Cn	0.46	₹ <0.40	0.40	4465300	0.050
1,4-Dichlorobenzene	∂મg/L	×0.60	0.40	<0.40	0.40	4465300	0.050
Dichlorodifluoromethane (FREON 12)	ug/LQ	1.0	۶Í.0	<1.0	1.0	4465300	0.050
1,1-Dichloroethane	SEE L	40.50°50,0	0.20	<0.20	0.20	4465300	0.050
1,2-Dichloroethane	ug/5	⁹⁵ @≤0.40	0.40	<0.40	0.40	4465300	0.050
1,1-Dichloroethylene	Sug/L	√√<0.20	0.20	<0.20	0.20	4465300	0.050
cis-1,2-Dichloroethylene	ug/t)	> <0.20	0.20	<0.20	0.20	4465300	0.050
trans-1,2-Dichloroethylene	(MEAL)	<0.20	0.20	<0.20	0.20	4465300	0.050
1,2-Dichloropropane	ટોંg/L	<0.20	0.20	<0.20	0.20	4465300	0.050
cis-1,3-Dichloropropene	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
Ethylbenzene ()	ug/L	0.37	0.20	<0.20	0.20	4465300	0.010
Ethylene Dibromide	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
Hexane	ug/L	<1.0	1.0	<1.0	1.0	4465300	0.10
Methylene Chloride(Dichloromethane)	ug/L	<1.0	1.0	<1.0	1.0	4465300	0.10
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	<10	10	4465300	0.50
Methyl Isobutyl Ketone	ug/L	<10	10	<10	10	4465300	0.10
Methyl t-butyl ether (MTBE)	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
Styrene	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
1,1,1,2-Tetrachloroethane	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
1,1,2,2-Tetrachloroethane	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050
Tetrachloroethylene	ug/L	<0.20	0.20	<0.20	0.20	4465300	0.050
RDL = Reportable Detection Limit		.1					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) VOC Analysis: Detection limit was raised due to matrix interferences.

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID			_							
		CFE304		CFE305			1			
Sampling Date		2016/04/18		2016/04/18						
COC Number		544903-04-01		544903-04-01						
	UNITS	MW-1	RDL	MW-2	RDL	QC Batch	MDL			
Toluene	ug/L	4.8	0.40	2.3	0.40	4465300	0.010			
1,1,1-Trichloroethane	ug/L	<0.20	0.20	<0.20	0.20	4465300	0.050			
1,1,2-Trichloroethane	ug/L	<0.40	0.40	< 0.40	0.40	4465300	0.050			
Trichloroethylene	ug/L	<0.20	0.20	<0.20	0.20	4465300	0.050			
Trichlorofluoromethane (FREON 11)	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.10			
Vinyl Chloride	ug/L	<0.40	0.40	<0.40	0.40	4465300	0.050			
p+m-Xylene	ug/L	3.4	0.20	1.3	0.20	4465300	0.010			
o-Xylene	ug/L	1.2	0.20	0.44	0.20	4465300	0.010			
Total Xylenes	ug/	× ,¢4.5	0.20	1.7	0.20	4465300	0.010			
Surrogate Recovery (%)	Le sur	(200) (200)	~~@	~@ ¹						
4-Bromofluorobenzene	3 % &	100	1/10	101		4465300				
D4-1,2-Dichloroethane	5.60	Alfo, W	200	9 111		4465300				
	500	2//, /	20	00 117		4465300				
D8-Toluene	RDI = Reportable Detection limit									
D8-Toluene RDL = Reportable Detection Limit QC Batch = Quality Confro Batch	<u>~</u> ************************************		Th 300	\$ 98		4465300				

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		CFE304	CFE305							
Sampling Date		2016/04/18	2016/04/18	_	-					
COC Number		544903-04-01	544903-04-01	_						
	UNITS	MW-1	MW-2	RDL	QC Batch	MDL				
BTEX & F1 Hydrocarbons										
F1 (C6-C10)	ug/L	<25	<25	25	4470516	20				
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	4470516	20				
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	4469971	50				
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	4469971	70				
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	4469971	50				
Reached Baseline at C50	ug/L	Yes	Yes		MAE9971					
Surrogate Recovery (%)										
1,4-Difluorobenzene	196	(A)104 (A)	, 102 C	2	4470516					
4-Bromofluorobenzene	128	99195			4470516					
D10-Ethylbenzene	% (2)	£198 «	~108 ⁷		4470516					
D4-1,2-Dichloroethane?	98	(N) 95 6	MISE ON		4470516					
o-Terphenyl	²⁾ %(?)	° 6405 €	n 161		4469971					
RDL = Reportable Detection Li	mgb ,	(d)	975							
QC Batch = Quality Control Ba	tch <	D. Million	001							
4-Bromofluorobenzene D10-Ethylbenzene D4-1,2-Dichloroethane o-Terphenyl RDL = Reportation Detection Li QC Batch = Quality: Control.Ba										

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

TEST SUMMARY

Maxxam ID: CFE299 Sample ID: MW-1 SS2 Matrix: Soil

Collected: 2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4463003	N/A	2016/04/25	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Moisture	BAL	4466763	N/A	2016/04/21	Valentina Kaftani
pH CaCl2 EXTRACT	AT	4466630	2016/04/21	2016/04/21	Neil Dassanayake
Volatile Organic Compounds in Soil	GC/MS	4466776	N/A	2016/04/22	Xueming Jiang

Maxxam ID: CFE299 Dup Sample ID: MW-1 SS2 Matrix: Soil

Collected: 2016/04/15

Shipped:

2016/04/19 Received:

Test Description	Instrumentation Batch Extracted Date Analyzed	Analyst
Volatile Organic Compounds in Soil	GC/M5 4466776 NYA 2016/04/22	Xueming Jiang
3	(8) 60 60 60	

Maxxam ID: CFE300 Sample ID: MW-1 GS

Matrix: Soil

Collected: 2016/04/15 Shipped:

Received: 2016/04/19

Test Description	Instrumentation Batch Extracted	Date Analyzed	Analyst
Sieve, 75um	SIEV 2 6 (246905) N/A	2016/04/25	Nimarta Singh
	1/6 / 0 / 6		

Maxxam ID: CFE301 Sample ID: MW-2 552 Matrix: Soil

Collected: 2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	COALC	4463003	N/A	2016/04/25	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petrofeum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Moisture	BAL	4466683	N/A	2016/04/21	Valentina Kaftani
Volatile Organic Compounds in Soil	GC/MS	4466776	N/A	2016/04/22	Xueming Jiang

Maxxam ID: CFE302 Sample ID: MW-3 SS2 Matrix: Soil

Collected: 2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4463003	N/A	2016/04/25	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Moisture	BAL	4466763	N/A	2016/04/21	Valentina Kaftani
pH CaCl2 EXTRACT	AT	4466630	2016/04/21	2016/04/21	Neil Dassanayake
Volatile Organic Compounds in Soil	GC/MS	4466776	N/A	2016/04/22	Xueming Jiang

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

TEST SUMMARY

Maxxam ID: CFE303 Sample ID: TCLP Matrix: Soil Collected: 2016/04/15

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Cyanide (WAD) in Leachates	SKAL/CN	4470316	N/A	2016/04/25	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4468697	N/A	2016/04/23	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4468834	2016/04/22	2016/04/25	Zhiyue (Frank) Zhu
Fluoride by ISE in Leachates	ISE	4470308	2016/04/23	2016/04/25	Surinder Rai
Mercury (TCLP Leachable) (mg/L)	CV/AA	4468656	N/A	2016/04/22	Magdalena Carlos
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	4468854	2016/04/22	2016/04/25	Arefa Dabhad
Ignitability of a Sample	BAL	4471388	2016/04/25	2016/04/25	Min Yang
Moisture	BAL	4467824	N/A	2016/04/21	Valentina Kaftani
Nitrate(NO3) + Nitrite(NO2) in Leachate	LACH	(A400317	N/A S	2016/04/25	Chandra Nandlal
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	4469240°	2016/04/22	2016/04/23	Jett Wu
Polychlorinated Biphenyl in Leachate	GC/ECD	4469978 4	2016/81/23	2016/04/23	Svitlana Shaula
TCLP - % Solids	BAL	64468343NV	2016/04/21D	2016/04/22	Jian (Ken) Wang
TCLP - Extraction Fluid		0 44683SI	WA AW	2016/04/22	Jian (Ken) Wang
TCLP - Initial and final pH	PH W M	A468352	N/ASA	2016/04/22	Jian (Ken) Wang

Maxxam ID: CFE304 Sample ID: MW-1 Matrix: Water Collected: 2016/04/18

Shipped:

Received: 2016/04/19

Test Description	Instrumentation Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC 463059	N/A	2016/04/22	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSQC/MSFD (1) (4)70516	N/A	2016/04/24	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/HD 200 4469971	2016/04/23	2016/04/24	Jeevaraj Jeevaratrnam
Volatile Organic Compounds in Water	P&T/M50 4465300	N/A	2016/04/21	Blair Gannon

Maxxam ID: CFE305 Sample ID: MW-2 Matrix: Water

Collected: 2016/04/18

Shipped:

Received: 2016/04/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4463059	N/A	2016/04/22	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	4470516	N/A	2016/04/24	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	4469971	2016/04/23	2016/04/24	Jeevaraj Jeevaratrnam
Volatile Organic Compounds in Water	P&T/MS	4465300	N/A	2016/04/21	Blair Gannon

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

GENERAL COMMENTS

VOC Analysis: Due to insufficient sample volume, samples required dilution. Detection limits were adjusted accordingly.

Sample CFE303-01: NF/NI=Non Flammable and Non Ignitable

Results relate only to the items tested.

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QUALITY ASSURANCE REPORT

QA/QC				Date		%		· ·
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4465300	BG1	Matrix Spike	4-Bromofluorobenzene	2016/04/21		97	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/21		94	%	70 - 130
			D8-Toluene	2016/04/21		101	%	70 - 130
			Acetone (2-Propanone)	2016/04/21		92	%	60 - 140
			Benzene	2016/04/21		102	%	70 - 130
			Bromodichloromethane	2016/04/21		98	%	70 - 130
			Bromoform	2016/04/21		94	%	70 - 130
			Bromomethane	2016/04/21		88	%	60 - 140
			Carbon Tetrachloride	2016/04/21		101	%	70 - 130
			Chlorobenzene	2016/04/21		101	%	70 - 130
			Chloroform	2016/04/21		98	%	70 - 130
			Dibromochloromethane	2016/04/21	9)	97	%	70 - 130
			1,2-Dichlorobenzene	2016/04/21		98	%	70 - 130
			1,3-Dichlorobenzene	2016/04/24		100	%	70 - 130
			1,4-Dichlorobenzene	a016/04/31		101	%	70 - 130
			Dichlorodifluoromethane (FREONAL)	2016/04/21		97	%	60 - 140
			1,1-Dichloroethane	2016/04/21		98	%	70 - 130
			1.2 Diables (C) 2 - 2 (2) - 2 (2)	S North of Ing. Ing.		92	%	70 - 130
			1,1-Dichloroethylene	2016/04/21		104	%	70 - 130
			cis-1-2-Dichlaroethylene	2016/04/21 2016/04/21 2016/04/21		100	%	70 - 130
			trans-1,2-Dichloroethylene	2016/04/21		101	%	70 - 130
			trans-1,2-Octoboroethylene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbengene	2016/04/21		99	%	70 - 130
			cis-1,3-Dichloropropene	2016/04/21		102	%	70 - 130
			trans-1,3 Dichilocopropen	2016/04/21		97	%	70 - 130
			Ethylbenzene	2016/04/21		102	%	70 - 130
			Ethylbenzene Ethylene Dibromide	2016/04/21		95	%	70 - 130
			Hauses & Commission of the Com	2016/04/21		107	%	70 - 130
			Methylene Chloride (Dichloromethane)	2016/04/21		91	%	70 - 130
			Methyl Ethyl Ketone 2-Butanone)	2016/04/21		95	%	60 - 140
			Methy Esabutyl Ketone	2016/04/21		94	%	70 - 130
			Methyl 1-butyl ether (MTBE)	2016/04/21		93	%	70 - 130
			Styrene	2016/04/21		100	%	70 - 130
			17,1,2-Tetrachloroethane	2016/04/21		97	%	70 - 130
			1,1,2,2-Tetrachloroethane	2016/04/21		94	%	70 - 130
			Tetrachloroethylene	2016/04/21		97	%	70 - 130
			Toluene	2016/04/21		101	%	70 - 130
			1,1,1-Trichloroethane	2016/04/21		97	%	70 - 130
			1,1,2-Trichloroethane	2016/04/21		94	%	70 - 130
			Trichloroethylene	2016/04/21		96	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2016/04/21		105	%	70 - 130
			Vinyl Chloride	2016/04/21		103	%	70 - 130
			p+m-Xylene	2016/04/21		101	%	70 - 130
			a-Xylene	2016/04/21		102	%	70 - 130
4465300	BG1	Spiked Blank	4-Bromofluorobenzene	2016/04/21		98	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/21		98	%	70 - 130
			D8-Toluene	2016/04/21		100	%	70 - 130
			Acetone (2-Propanone)	2016/04/21		106	%	60 - 140
			Benzene	2016/04/21		102	%	70 - 130
			Bromodichloromethane	2016/04/21		105	%	70 - 130
			Bromoform	2016/04/21		105	%	70 - 130
			Bromomethane	2016/04/21		90	%	60 - 140
			Carbon Tetrachloride	2016/04/21		102	ж %	
			Chlorobenzene	2016/04/21		102	% %	70 - 130
			- CHIOLOGORIZORE	2010/04/21		101	70	70 - 130

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Chloroform	2016/04/21		100	%	70 - 130
			Dibromochloromethane	2016/04/21		106	%	70 - 130
			1,2-Dichlorobenzene	2016/04/21		101	%	70 - 130
			1,3-Dichlorobenzene	2016/04/21		98	%	70 - 130
			1,4-Dichlorobenzene	2016/04/21		100	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2016/04/21		100	%	60 - 140
			1,1-Dichloroethane	2016/04/21		99	%	70 - 130
			1,2-Dichloroethane	2016/04/21		100	%	70 - 130
			1,1-Dichloroethylene	2016/04/21		104	%	70 - 130
			cis-1,2-Dichloroethylene	2016/04/21		102	%	70 - 130
			trans-1,2-Dichloroethylene	2016/04/21		99	%	70 - 130
			1,2-Dichloropropane	2016/04/21	(O)	104	%	70 - 130
			cis-1,3-Dichloropropene	2016/04/21		107	%	70 - 130
			trans-1,3-Dichloropropege	2016/04/24		102	%	70 - 130
			Ethylbenzene Color	AB16/04/21		100	%	70 - 130
			Ethylene Dibromide	2016/04/21		105	%	70 - 130
			Hexane (1)	2016/04/21		102	%	70 - 130
			Methylene Chloride(Dichlocomethane)	2016/04/21		93	%	70 - 130
			Methyl Ethyl Ketore (2-Butanone			110	96	60 - 140
			Methyl Ethyl Ketofie (2-Butanone) Methyl sobuty Ketofie	2016/04/21		109	%	70 - 130
			Methyl t-butyl ether (MTBE)	9 2016/04/21		106	%	70 - 130
			Styrene	2016/04/21		103	%	70 - 130
			1,1(12) Tetrachloroettane	2016/04/21		100	%	70 - 130
			1,1,2,2 Tetrachlomethane	2016/04/21		106	%	70 - 130
			Tetrachlproethylene	2016/04/21		95	%	70 - 130
			Toluene No	2016/04/21		98	%	70 - 130
			1,1,1-Trichloroethane	2016/04/21		97	%	70 - 130
			1,1,2 Trichlorgethane	2016/04/21		104	%	70 - 130
			Trichloroethylene	2016/04/21		96	%	70 - 130
			Trich(oroffuoromethane (FREON 11)	2016/04/21		105	%	70 - 130
			Vinyl Chloride	2016/04/21		104	%	70 - 130
			ptn-Xylene	2016/04/21		99	%	70 - 130
			Xylene	2016/04/21		103	%	70 - 130
4465300	BG1	Method Blank	4-Bromofluorobenzene	2016/04/21		97	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/21		98	%	70 - 130
			D8-Toluene	2016/04/21		100	%	70 - 130
			Acetone (2-Propanone)	2016/04/21	<10	200	ug/L	70 - 130
			Benzene	2016/04/21	<0.10		ug/L	
			Bromodichloromethane	2016/04/21	<0.10		ug/L	
			Bromoform	2016/04/21	<0.20		ug/L	
			Bromomethane	2016/04/21	<0.50		ug/L	
			Carbon Tetrachloride	2016/04/21	<0.10		ug/L ug/L	
			Chlorobenzene	2016/04/21	<0.10			
			Chloroform	2016/04/21	<0.10		ug/L	
			Dibromochloromethane	2016/04/21	<0.10		ug/L ug/L	
			1,2-Dichlorobenzene	2016/04/21	<0.20		_	
			1,3-Dichlorobenzene	2016/04/21	<0.20		ug/L ug/L	
			1,4-Dichlorobenzene	2016/04/21	<0.20			
			Dichlorodifluoromethane (FREON 12)	2016/04/21	<0.50		ug/L	
			1,1-Dichloroethane	2016/04/21	<0.10		ug/L	
			1,2-Dichloroethane	2016/04/21	<0.10		ug/L	
			1,1-Dichloroethylene	2016/04/21			ug/L	
			cis-1,2-Dichloroethylene		<0.10		ug/L	
 -			on the premore curyiene	2016/04/21	<0.10		ug/L	

Pinchin Ltd

Client Project #: PIF ESA
Site Location: CARLING AVE

QA/QC				Date		%	-
Batch	Init	QC Type	Parameter	Analyzed	Value		QC Limit
			trans-1,2-Dichloroethylene	2016/04/21	<0.10	ug/L	QC EIIIII
			1,2-Dichloropropane	2016/04/21	<0.10	ug/L	
			cis-1,3-Dichloropropene	2016/04/21	<0.20	ug/L	
			trans-1,3-Dichloropropene	2016/04/21	<0.20	ug/L	
			Ethylbenzene	2016/04/21	<0.10	ug/L	
			Ethylene Dibromide	2016/04/21	<0.20	ug/L	
			Hexane	2016/04/21	<0.50	ug/L	
			Methylene Chloride(Dichloromethane)	2016/04/21	<0.50	ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2016/04/21	<5.0	ug/L	
			Methyl Isobutyl Ketone	2016/04/21	<5.0	ug/L	
			Methyl t-butyl ether (MTBE)	2016/04/21	<0.20	ug/L	
			Styrene	2016/04/21	() <0.20	ug/L	
			1,1,1,2-Tetrachloroethane	2016/04/21	<0.20	ug/L	
			1,1,2,2-Tetrachloroethage	2016/04/24	<0.20	ug/L	
			Tetrachloroethylene	(2016/04/21	<0.10	ug/L	
			Toluene Company	2016/04/21	<0.20	ug/L	
			1,1,1-Trichloroethane	2016/04/21	<0.10	ug/L	
			1,1,2-Trichloroethane	2016/04/21	<0.20	ug/L	
				2010/04/21	<0.10	ug/L	
			Trichloroethylene	2016/04/21	<0.20	ug/L	
			VirlyEchlorde	@ 3000 100 100	<0.20	ug/L	
			p+m-xylene	2016/04/21 2016/04/21 2016/04/21	< 0.10	ug/L	
			o-Xylène	2016/04/21	< 0.10	ug/L	
			Total Xylenes	2016/04/21	<0.10	ug/L	
4465300	BG1	RPD - Sample/Sample Dup	Acetone Z-Propanone	2016/04/21	NC	%	30
			Benzene Benzene	2016/04/21	NC	%	30
			Bromodichloromethane	2016/04/21	NC	%	30
			Bromotorm ST	2016/04/21	NC	%	30
			Bromomethane	2016/04/21	NC	%	30
			Carbon Tetrachloride	2016/04/21	NC	%	30
			Chlorobenzene	2016/04/21	NC	%	30
			Chloroform	2016/04/21	NC	%	30
			Dibromochloromethane	2016/04/21	NC	%	30
		9	1,2-Dichlorobenzene	2016/04/21	NC	%	30
			1,3-Dichlorobenzene	2016/04/21	NC	%	30
			1,4-Dichlorobenzene	2016/04/21	NC	%	30
			Dichlorodifluoromethane (FREON 12)	2016/04/21	NC	%	30
			1,1-Dichloroethane	2016/04/21	NC	%	30
			1,2-Dichloroethane	2016/04/21	NC	%	30
			1,1-Dichloroethylene	2016/04/21	NC	%	30
			cis-1,2-Dichloroethylene	2016/04/21	NC	%	30
			trans-1,2-Dichloroethylene	2016/04/21	NC	%	30
			1,2-Dichloropropane	2016/04/21	NC	%	30
			cis-1,3-Dichloropropene	2016/04/21	NC	%	30
			trans-1,3-Dichloropropene	2016/04/21	NC	%	30
			Ethylbenzene	2016/04/21	NC	%	30
			Ethylene Dibromide	2016/04/21	NC	%	30
			Hexane	2016/04/21	NC	%	30
			Methylene Chloride(Dichloromethane)	2016/04/21	NC	%	30
			Methyl Ethyl Ketone (2-Butanone)	2016/04/21	NC	%	30
			Methyl Isobutyl Ketone	2016/04/21	NC	%	30
			Methyl t-butyl ether (MTBE)	2016/04/21	NC	%	30
			Styrene	2016/04/21	NC	%	30

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC			•	Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,1,2-Tetrachloroethane	2016/04/21	NC		%	30
			1,1,2,2-Tetrachloroethane	2016/04/21	NC		%	30
			Tetrachloroethylene	2016/04/21	NC		%	30
			Toluene	2016/04/21	NC		%	30
			1,1,1-Trichloroethane	2016/04/21	NC		%	30
			1,1,2-Trichloroethane	2016/04/21	NC		%	30
			Trichloroethylene	2016/04/21	NC		%	30
			Trichlorofluoromethane (FREON 11)	2016/04/21	NC		%	30
			Vinyl Chloride	2016/04/21	NC		%	30
			p+m-Xylene	2016/04/21	NC		%	30
			o-Xylene	2016/04/21	NC		%	30
			Total Xylenes	2016/04/21	NC .		%	30
4466630	NYS	Spiked Blank	Available (CaCl2) pH	2016/04/21		98	%	97 - 103
4466630	NYS	RPD - Sample/Sample Dup	Available (CaCl2) pH	2016/04/24	0.20		%	N/A
4466683	DSR	RPD - Sample/Sample Dup	Moisture	G016/04/31	2.5		%	20
4466763	DSR	RPD - Sample/Sample Dup	Moisture Moisture 4-Bromofluorobenzene D10-o-Xylene D4-1,2-Dichloroettiane D8-Toluene	2016/04/21 2016/04/21 2016/04/22 2016/04/22	2.9		%	20
4466776	XJI	Matrix Spike	4-Bromofluoropenzens	2016/04/22		100	%	60 - 140
			D10-o-Xylene	2016/04/22		92	%	60 - 130
			D4-1,2-Dichlorostfiane D8-Toluene Agetroe (20Propagone)	2016/04/22 2016/04/22 2016/04/22 2016/04/22		97	%	60 - 140
			D8-Toluene	2016/04/22		102	%	60 - 140
4466776	XJI	Matrix Spike(CFE299)	Acetone (2(Propanone)	2016/04/22 2016/04/22 2016/04/22 2016/04/22 2016/04/22 2016/04/22		86	%	60 - 140
			Bertzen	2016/04/22		88	%	60 - 140
			Bromodichlo Omethane	2016/04/22		88	%	60 - 140
			Bromoform O Com	2016/04/22		88	%	60 - 140
			Bromomethane	2016/04/22		81	%	60 - 140
			Carbon Tetracifioride	2016/04/22		98	%	60 - 140
			Chlorobenzene (%)	2016/04/22		92	%	60 - 140
			Chlorotofm	2016/04/22		90	%	60 - 140
			Dibramochiloromethane	2016/04/22		89	%	60 - 140
			1,2-Dicition denzene	2016/04/22		89	%	60 - 140
			1,3-Dichlorobenzene	2016/04/22		90	%	60 - 140
		^	1 A Dichlorobenzene	2016/04/22		91	%	60 - 140
		C	Dichlorodifluoromethane (FREON 12)	2016/04/22		90	%	60 - 140
			1,1-Dichloroethane	2016/04/22		89	%	60 - 140
			1,2-Dichloroethane	2016/04/22		88	%	60 - 140
			1,1-Dichloroethylene	2016/04/22		95	%	60 - 140
			cis-1,2-Dichloroethylene	2016/04/22		88	%	60 - 140
			trans-1,2-Dichloroethylene	2016/04/22		90	%	60 - 140
			1,2-Dichloropropane	2016/04/22		85	%	60 - 140
			cis-1,3-Dichloropropene	2016/04/22		89	%	60 - 140
			trans-1,3-Dichloropropene	2016/04/22		87	%	60 - 140
			Ethylbenzene	2016/04/22		91	%	60 - 140
			Ethylene Dibromide	2016/04/22		84	%	60 - 140
			Hexane	2016/04/22		89	%	60 - 140
			Methylene Chloride(Dichloromethane)	2016/04/22		91	%	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2016/04/22		85	%	60 - 140
			Methyl Isobutyl Ketone	2016/04/22		79	%	60 - 140
			Methyl t-butyl ether (MTBE)	2016/04/22		88	%	60 - 140
			Styrene	2016/04/22		87	%	60 - 140
			1,1,1,2-Tetrachloroethane	2016/04/22		92	%	60 - 140
			1,1,2,2-Tetrachloroethane	2016/04/22		83	%	60 - 140
			Tetrachloroethylene	2016/04/22		95	%	60 - 140
			Toluene	2016/04/22		89	%	60 - 140

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		- 71	1,1,1-Trichloroethane	2016/04/22		92	%	60 - 140
			1,1,2-Trichloroethane	2016/04/22		86	%	60 - 140
			Trichloroethylene	2016/04/22		90	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2016/04/22		98	%	60 - 140
			Vinyl Chloride	2016/04/22		95	%	60 - 140
			p+m-Xylene	2016/04/22		89	%	60 - 140
			o-Xylene	2016/04/22		90	%	60 - 140
4466776	XJI	Spiked Blank	4-Bromofluorobenzene	2016/04/22		101	%	60 - 140
		•	D10-o-Xylene	2016/04/22		101	%	60 - 130
			D4-1,2-Dichloroethane	2016/04/22		102	%	60 - 140
			D8-Toluene	2016/04/22		100	%	60 - 140
			Acetone (2-Propanone)	2016/04/22	<u></u>	106	%	60 - 140
			Benzene	2016/04/22		95	%	60 - 130
			Bromodichloromethan	2016/04/22		98	%	60 - 130
			Bromoform	ab16/04/22		103	%	60 - 130
			Bromoform Bromomethane Carbon Tetrachforde Chlorobemane Chloroform	2016/04/22		87	%	60 - 140
			Carbon Tetrachloride	2016/04/22		104	%	60 - 130
			Chlorobenzane	2015/04/22		99	%	60 - 130
			Chloroform 707	2018/04/22		98	%	60 - 130
			Chlorobenzane Chloroform Dibromochloromethane	2016/04/22		101	%	60 - 130
			1-2 Dichloropenzene	2016/04/22 2016/04/22 2016/04/22		97	%	60 - 130
			1,3 Dichlorobenzene	2016/04/22		95	%	60 - 130
			1,4 Dichlorobenzene	2016/04/22		96	%	60 - 130
			Dichlorodiffuoromethane (FREDN 12)	2016/04/22		101	%	60 - 140
			1,1-Dichloroethane	2016/04/22		96	%	60 - 130
			1,2-Dichlorgetrane	2016/04/22		101	%	60 - 130
		3.4	1,1-Dichlopethylene	2016/04/22		101	%	60 - 130
			cis-132 Dichloroethylene	2016/04/22		97	%	60 - 130
			trans 1,2-Dichlorpethylene	2016/04/22		96	%	60 - 130
			1,2-Dichlotopropane	2016/04/22		94	%	60 - 130
			cis-1,3 Dichloropropene	2016/04/22		97	%	60 - 130
			trans 1,3-Dichloropropene	2016/04/22		93	%	60 - 130
			Ethylbenzene	2016/04/22		96	%	60 - 130
			Ethylene Dibromide	2016/04/22		97	%	60 - 130
			Hexane	2016/04/22		104	%	60 - 130
			Methylene Chloride(Dichloromethane)	2016/04/22		101	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2016/04/22		108	%	60 - 140
			Methyl Isobutyl Ketone	2016/04/22		98	%	60 - 130
			Methyl t-butyl ether (MTBE)	2016/04/22		98	%	60 - 130
			Styrene	2016/04/22		94	%	60 - 130
			1,1,1,2-Tetrachloroethane	2016/04/22		101	%	60 - 130
			1,1,2,2-Tetrachloroethane	2016/04/22		99	%	60 - 130
			Tetrachloroethylene	2016/04/22		98	%	60 - 130
			Toluene	2016/04/22		94	%	60 - 130
			1,1,1-Trichloroethane	2016/04/22		98	%	60 - 130
			1,1,2-Trichloroethane	2016/04/22		98	%	60 - 130
			Trichloroethylene	2016/04/22		95	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2016/04/22		104	%	60 - 130
			Vinyl Chloride	2016/04/22		101	%	60 - 130
			p+m-Xylene	2016/04/22		93	<i>7</i> 0 %	60 - 130
			o-Xylene	2016/04/22		95	%	60 - 130
4466776	XJI	Method Blank	4-Bromofluorobenzene	2016/04/22			76 %	
	741	midia demin	D10-o-Xylene	2016/04/22		100		60 - 140
			D10-0-VAIGHE	1010/04/22		101	%	60 - 130

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
			D4-1,2-Dichloroethane	2016/04/22		101	%	60 - 140
			D8-Toluene	2016/04/22		98	%	60 - 140
			Acetone (2-Propanone)	2016/04/22	<0.50		ug/g	
			Benzene	2016/04/22	<0.020		ug/g	
			Bromodichloromethane	2016/04/22	< 0.050		ug/g	
			Bromoform	2016/04/22	< 0.050		ug/g	
			Bromomethane	2016/04/22	< 0.050		ug/g	
			Carbon Tetrachloride	2016/04/22	<0.050		ug/g	
			Chlorobenzene	2016/04/22	< 0.050		ug/g	
			Chloroform	2016/04/22	< 0.050		ug/g	
			Dibromochloromethane	2016/04/22	< 0.050		ug/g	
			1,2-Dichlorobenzene	2016/04/22	<0.050		ug/g	
			1,3-Dichlorobenzene	2016/04/22	<0.050		ug/g	
			1,4-Dichlorobenzene	2016/04/22	<0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	æ016/04/22	< 0.050		ug/g	
			1,1-Dichloroethane	2016/04/22	< 0.050		ug/g	
			1,2-Dichloroethane 1,2-Dichloroethane 1.1-Dichloroethylene	2016/04/22	< 0.050		ug/g	
					< 0.050		ug/g	
			cis-1,2-Dichloroethylene	2016/04/22 2016/04/22 2016/04/22	< 0.050		ug/g	
			trans 172 Dichtoroethylene	愛 2016/04/22	< 0.050		ug/g	
			1-2 Dichloropropage	2016/04/22 2016/04/22 2016/04/22 2016/04/22 2016/04/22 2016/04/22 2016/04/22	< 0.050		ug/g	
			cis-1,3-Dichlorogropene	2016/04/22	< 0.030		ug/g	
			trans-1,3-Dichloropropene	2016/04/22	< 0.040		ug/g	
			Ethylbenzene	2016/04/22	<0.020		ug/g	
			Ethylene Dibromide	2016/04/22	<0.050		ug/g	
			Hexane	2016/04/22	<0.050		ug/g	
			Methylege Chloride Dichloromethane)	2016/04/22	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2016/04/22	< 0.50		ug/g	
			Methyl Isobutyl Ketone	2016/04/22	<0.50		ug/g	
			Methy[1-birtyl ether (MTBE)	2016/04/22	<0.050		ug/g	
			Styrene	2016/04/22	<0.050		ug/g	
			1112-Tetrachloroethane	2016/04/22	<0.050		ug/g	
		6	1,2,2-Tetrachloroethane	2016/04/22	<0.050		ug/g	
			Tetrachloroethylene	2016/04/22	<0.050		ug/g	
			Toluene	2016/04/22	<0.020		ug/g	
			1,1,1-Trichloroethane	2016/04/22	<0.050		ug/g	
			1,1,2-Trichloroethane	2016/04/22	<0.050		ug/g	
			Trichloroethylene	2016/04/22	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2016/04/22	<0.050		ug/g	
			Vinyl Chloride	2016/04/22	<0.020		ug/g	
			p+m-Xylene	2016/04/22	<0.020		ug/g	
			o-Xylene	2016/04/22	<0.020		ug/g	
			Total Xyienes	2016/04/22	<0.020		ug/g	
166776	XJI	RPD - Sample/Sample Dup	•	2016/04/22	NC		% %	50
		,	Benzene	2016/04/22	NC		%	50
			Bromodichloromethane	2016/04/22	NC		%	50
			Bromoform	2016/04/22	NC		%	50
			Bromomethane	2016/04/22	NC		%	50
			Carbon Tetrachloride	2016/04/22	NC		%	50
			Chlorobenzene	2016/04/22	NC		%	50
			Chloroform	2016/04/22	NC		%	50
			Dibromochloromethane	2016/04/22	NC		70 %	50
			1,2-Dichlorobenzene	2010/04/22	140		70	30

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
		-	1,3-Dichlorobenzene	2016/04/22	NC	· · · · · ·	%	50
			1,4-Dichlorobenzene	2016/04/22	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2016/04/22	NC		%	50
			1,1-Dichloroethane	2016/04/22	NC		%	50
			1,2-Dichloroethane	2016/04/22	NC		%	50
			1,1-Dichloroethylene	2016/04/22	NC		%	50
			cis-1,2-Dichloroethylene	2016/04/22	NC		%	50
			trans-1,2-Dichloroethylene	2016/04/22	NC		%	50
			1,2-Dichloropropane	2016/04/22	NC		%	50
			cis-1,3-Dichloropropene	2016/04/22	NC		%	50
			trans-1,3-Dichloropropene	2016/04/22	NC		%	50
			Ethylbenzene	2016/04/22	S NC		%	50
			Ethylene Dibromide	2016/04/22	MC NC		%	50
			Hexane	2016/04/22	NC		%	50
			Methylene Chloride (Dichloromethane)	G1016/04/27	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2016/04/22	NC		%	50
			Methyl Isobutyl Ketone	2016/04/22	NC		%	50
			Methyl t-butyl ether (MTBE)	2016/04/22	NC		%	50
			Styrene Styrene	2010/04/22	NC		%	50
			1,1,1,2 Tetrachloroethane	@ 2016/04/22	NC		%	50
			1-1-22-Tetrachloroethane	2016/04/22	NC		%	50
			Tetrachloroethy@ne	2016/04/22	NC		%	50
			Toluene - Com of office	2016/04/22	NC		%	50
			1,1,1-Trichloroethane	2016/04/22	NC		%	50
			1,1,2-Trichlorgethane	2016/04/22	NC		%	50
			Trichloroethylene	2016/04/22	NC		%	50
			Trichlorofiboromethane (FREON 11)	2016/04/22	NC		%	50
			Vinvi Chibride	2016/04/22	NC		%	50
			p+m-Xvlerie	2016/04/22	NC		%	50
			o-Xylene	2016/04/22	NC		%	50
			Total Xylenes	2016/04/22	NC		%	50
4467824	NS3	RPD - Sample/Sample Dup	Ministure	2016/04/21	1.8		%	20
4468656	MC	Matrix Spike	Leachable Mercury (Hg)	2016/04/22	1.0	113	%	75 - 125
4468656	MC	Leachate Blank	Leachable Mercury (Hg)	2016/04/22	<0.0010	113		73 - 123
4468656	MC	Spiked Blank	Leachable Mercury (Hg)	2016/04/22	\0.0010	106	mg/L %	80 - 120
4468656	MC	Method Blank	Leachable Mercury (Hg)	2016/04/22	<0.0010	100		00 - 120
4468656	MC	RPD - Sample/Sample Dup		2016/04/22	NC		mg/L %	25
4468697	AAI	Matrix Spike	1.4-Difluorobenzene	2016/04/22	140	101	%	25
1700037	7411	West in Spine	4-Bromofluorobenzene	2016/04/22		98	70 %	60 - 140
			D10-Ethylbenzene	2016/04/22				60 - 140
			D4-1,2-Dichloroethane	2016/04/22		85 99	% %	60 - 140
			Benzene	2016/04/22				60 - 140
			Toluene			99	%	60 - 140
			Ethylbenzene	2016/04/22 2016/04/22		105	%	60 - 140
			o-Xylene			110	%	60 - 140
			-	2016/04/22		114	%	60 - 140
			p+m-Xylene	2016/04/22		102	%	60 - 140
4468697	AAI	Spiked Blank	F1 (C6-C10) 1.4-Difluorobenzene	2016/04/22		89	%	60 - 140
770005/	AAI	Shired Digity	4-Bromofluorobenzene	2016/04/22		102	%	60 - 140
				2016/04/22		99	%	60 - 140
			D10-Ethylbenzene	2016/04/22		97	%	60 - 140
			D4-1,2-Dichloroethane	2016/04/22		100	%	60 - 140
			Benzene	2016/04/22		101	%	60 - 140
			Toluene	2016/04/22		105	%	60 - 140

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Dete		01		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	%	LIMITE	0011
Butter	11111	- це туре	Ethylbenzene		value	Recovery	UNITS	QC Limits
			o-Xylene	2016/04/22		111	%	60 - 140
			•	2016/04/22		112	%	60 - 140
			p+m-Xylene	2016/04/22		102	%	60 - 140
4468697		Backed Die-L	F1 (C6-C10)	2016/04/22		94	%	80 - 120
4400037	IAA	Method Blank	1,4-Difluorobenzene	2016/04/22		101	%	60 - 140
			4-Bromofluorobenzene	2016/04/22		98	%	60 - 140
			D10-Ethylbenzene	2016/04/22		101	%	60 - 140
			D4-1,2-Dichloroethane	2016/04/22		98	%	60 - 140
			Benzene	2016/04/22	<0.020		ug/g	
			Toluene	2016/04/22	<0.020		ug/g	
			Ethylbenzene	2016/04/22	<0.020		ug/g	
			o-Xylene	2016/04/22	્ર્∕્⊙<0.020		ug/g	
			p+m-Xylene	2016/04/22	0.040		ug/g	
			Total Xylenes	2016/04/22	<0.040		ug/g	
			F1 (C6-C10)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<10		ug/g	
			F1 (C6-C10) F1 (C6-C10) - BTE Benzene Toluene Ethylben ene o-Xylene	2016/04/22	<10		ug/g	
4468697	AAI	RPD - Sample/Sample Dup	Benzene Son Control	39,16704/22	NC		%	50
			Toluene	2016/04/22	NC		%	50
			Ethylbenzene	2010/04/22	NC		%	50
			o-Xylene %	@~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NC		%	50
			p+in-Xylene	9,2016/04/22	NC		%	50
			Total Xylanes	2016/04/22	NC		%	50
			F1 (C6-C10) - BTE Benzene Toluene Ethylbenzene o-Xylene Total Xylenes F1 (C6-C10) - BTE 8 o-Terphenyl F2 (C10-C16 Hydrocarbons) F3 (C16-C30 Hydrocarbons) F3 (C16-C30 Hydrocarbons)	2016/04/22	NC		%	30
			F1 (C6-C10) BTES	2016/04/22	NC		%	30
4468834	ZZ	Matrix Spike	o-Terphenyl	2016/04/25		102	%	60 - 130
			F2 (C10-C16 Rydrocarbons)	2016/04/25		102	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2016/04/25		111	%	50 - 130
			F4 (C34-C50 Hyprocarpons)	2016/04/25		104	%	50 - 130
4468834	ZZ	Spiked Blank	p-Terphenvil	2016/04/25		106	%	60 - 130
			F2 (C10 C16 Hydrocarbons)	2016/04/25		104	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2016/04/25		110	%	80 - 120
			FAS(234-C50 Hydrocarbons)	2016/04/25		105	%	80 - 120
4468834	ZZ	Method Blank	Terphenyl	2016/04/25		103	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2016/04/25	<10	103	ug/g	00 - 130
			F3 (C16-C34 Hydrocarbons)	2016/04/25	<50			
			F4 (C34-C50 Hydrocarbons)	2016/04/25	<50		ug/g	
4468834	ZZ	RPD - Sample/Sample Dup	F2 (C10-C16 Hydrocarbons)	2016/04/25	NC		ug/g %	20
		, , , , , , , , , , , , , , , , , , ,	F3 (C16-C34 Hydrocarbons)	2016/04/25	NC		%	30 30
			F4 (C34-C50 Hydrocarbons)	2016/04/25	NC		%	30
4468854	ADA	Matrix Spike	Leachable Arsenic (As)	2016/04/25	140	100		
			Leachable Barium (Ba)	2016/04/25			%	80 - 120
			Leachable Boron (B)	2016/04/25		NC	%	80 - 120
			Leachable Cadmium (Cd)	2016/04/25		NC 103	%	80 - 120
			Leachable Chromium (Cr)			103	%	80 - 120
			Leachable Lead (Pb)	2016/04/25		98	%	80 - 120
			Leachable Selenium (Se)	2016/04/25		95	%	80 - 120
			Leachable Silver (Ag)	2016/04/25		101	96	80 - 120
				2016/04/25		101	%	80 - 120
1468854	ADA		Leachable Uranium (U)	2016/04/25		97	%	80 - 120
1700034	AUA		Leachable Arsenic (As)	2016/04/25	<0.2		mg/L	
			Leachable Barium (Ba)	2016/04/25	<0.2		mg/L	
			Leachable Boron (B)	2016/04/25	<0.1		mg/L	
			Leachable Cadmium (Cd)	2016/04/25	< 0.05		mg/L	- 1
			Leachable Chromium (Cr)	2016/04/25	<0.1		mg/L	

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC			QUALITY ASSURANCE	Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	% Recovery	HAUTS	QC Limits
			Leachable Lead (Pb)	2016/04/25	<0.1	Recovery	mg/L	QC LIIIIIS
			Leachable Selenium (Se)	2016/04/25	<0.1		mg/L	
			Leachable Silver (Ag)	2016/04/25	<0.01		mg/L	
			Leachable Uranium (U)	2016/04/25	<0.01		mg/L	
4468854	ADA	Spiked Blank	Leachable Arsenic (As)	2016/04/25	\0.01	100	111g/L	80 - 120
			Leachable Barium (Ba)	2016/04/25		101	%	80 - 120
			Leachable Boron (B)	2016/04/25		95	%	80 - 120
			Leachable Cadmium (Cd)	2016/04/25		97	%	80 - 120
			Leachable Chromium (Cr)	2016/04/25		98	%	80 - 120
			Leachable Lead (Pb)	2016/04/25		97	%	80 - 120
			Leachable Selenium (Se)	2016/04/25		99	%	80 - 120
			Leachable Silver (Ag)	2016/04/25)	100	%	80 - 120
			Leachable Uranium (U)	2016/04/25	/	99	%	80 - 120
4468854	ADA	RPD - Sample/Sample Dup		2016/04/26	NC		%	35
		10-27			NC		%	35
			Leachable Boron	2016/04/25	NC		%	35
			Leachable Barium (Ea) Leachable Boron (B) Leachable Carmium (Cd) Leachable Chromium (Cd) Leachable Carmium (Cd)	2016/04/25 2016/04/25 2016/04/25 2016/04/25	NC		%	35
			Leachable Chromium (Er)	2016/04/25	NC		%	35
			Leachable Lead (PB) Leachable Selentim (Se)	2016/04/25 2016/04/25 2016/04/25 2016/04/25	NC		%	35
			Leachable Selenium (Se)	(C) 2016/04/25	NC		%	35
			Leachable Silver (Ag)	9 2016/04/25	NC		%	35
			Leachable Uranium (U)	2016/04/25	NC		%	35
4469053	NS3	QC Standard	Sieve #200 (20:075mm)	2016/04/25		89	%	88 - 91
			Sieve - #200 (>0.075mm)	2016/04/25		11	%	9 - 12
4469053	NS3	RPD - Sample/Sample Dup	Sieve - #200 (<9.075mm)	2016/04/25	2.0		%	20
			Sieve - #200 (>0.075mm)	2016/04/25	0.82		%	20
4469240	JET	Matrix Spike	Leachable D10-Anthracen	2016/04/23		101	%	50 - 130
			Leachable Q14- erphenyl (FS)	2016/04/23		89	%	50 - 130
			Leachable D& Acenaphthylene	2016/04/23		96	%	50 - 130
			Leachable Benzo(b/) fluoranthene	2016/04/23		99	%	50 - 130
			Leachable Naphthalene	2016/04/23		78	%	50 - 130
			Leachable Acenaphthylene	2016/04/23		92	%	50 - 130
		e	Leáchable Acenaphthene	2016/04/23		85	%	50 - 130
		40	Leachable Fluorene	2016/04/23		93	%	50 - 130
			Leachable Phenanthrene	2016/04/23		94	%	50 - 130
			Leachable Anthracene	2016/04/23		99	%	50 - 130
			Leachable Fluoranthene	2016/04/23		99	%	50 - 130
			Leachable Pyrene	2016/04/23		98	%	50 - 130
			Leachable Benzo(a)anthracene	2016/04/23		100	%	50 - 130
			Leachable Chrysene	2016/04/23		98	%	50 - 130
			Leachable Benzo(k)fluoranthene	2016/04/23		83	%	50 - 130
			Leachable Benzo(a)pyrene	2016/04/23		95	%	50 - 130
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/23		105	%	50 - 130
			Leachable Dibenz(a,h)anthracene	2016/04/23		90	%	50 - 130
			Leachable Benzo(g,h,i)perylene	2016/04/23		95	%	50 - 130
			Leachable 1-Methylnaphthalene	2016/04/23		112	%	50 - 130
4469240	IET		Leachable 2-Methylnaphthalene	2016/04/23		101	%	50 - 130
4403240	JET	Spiked Blank	Leachable D10-Anthracene	2016/04/22		105	%	50 - 130
			Leachable D14-Terphenyl (FS)	2016/04/22		98	%	50 - 130
			Leachable D8-Acenaphthylene	2016/04/22		95	%	50 - 130
			Leachable Benzo(b/j)fluoranthene	2016/04/22		95	%	50 - 130
			Leachable Naphthalene	2016/04/22		81	%	50 - 130
_		<u> </u>	Leachable Acenaphthylene	2016/04/22		92	%	50 - 130

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Leachable Acenaphthene	2016/04/22		93	%	50 - 130
			Leachable Fluorene	2016/04/22		97	%	50 - 130
			Leachable Phenanthrene	2016/04/22		93	%	50 - 130
			Leachable Anthracene	2016/04/22		102	%	50 - 130
			Leachable Fluoranthene	2016/04/22		100	%	50 - 130
			Leachable Pyrene	2016/04/22		100	%	50 - 130
			Leachable Benzo(a)anthracene	2016/04/22		99	%	50 - 130
			Leachable Chrysene	2016/04/22		98	%	50 - 130
			Leachable Benzo(k)fluoranthene	2016/04/22		92	%	50 - 130
			Leachable Benzo(a)pyrene	2016/04/22		96	%	50 - 130
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/22		110	%	50 - 130
			Leachable Dibenz(a,h)anthracene	2016/04/22)	90	%	50 - 130
			Leachable Benzo(g,h,i)pegylene	2016/04/22		98	%	50 - 130
			Leachable 1-Methylnaphthalene	2016/04/22		93	%	50 - 130
			Leachable 2-Methylnaphthalene°	@ @016/04/22 ·		85	%	50 - 130
4469240	JET	Method Blank	Leachable D10-Anthracene	2016)04/22		106	%	50 - 130
			Leachable D14 (erpheny (FS)	2016/04/22		101	%	50 - 130
			Leachable 08-Acenaphthylene	2015/04/22		91	%	50 - 130
			Leachable Benzo(b/) fluor anthene	2016/04/22	< 0.20		ug/L	
			Leachable Naphthalene	@ 2016/04/22	<0.20		ug/L	
			Leachable Arenaphthylene	2016/04/22	<0.20		ug/L	
			Leachable Acenaphthene	2016/04/22	<0.20		ug/L	
			Leachable Fluorene	2016/04/22	<0.20		ug/L	
			Leachable Rhenanthrene	2016/04/22	<0.20		ug/L	
			Leachaille Anthracene	2016/04/22	<0.20		ug/L	
			Leachable Flooranthene	2016/04/22	<0.20		ug/L	
			Leachable Ryrene	2016/04/22	<0.20		ug/L	
			Leachaule Berro (a) apthracene	2016/04/22	<0.20		ug/L	
			Leachable Chrysene	2016/04/22	<0.20		ug/L	
			Leachable Benzo(k)fluoranthene	2016/04/22	<0.20		ug/L	
			Leachable Benzo(a)pyrene	2016/04/22	<0.10		ug/L	
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/22	<0.20		ug/L	
			Leachable Dibenz(a,h)anthracene	2016/04/22	<0.20		ug/L	
		C	Leachable Benzo(g,h,i)perylene	2016/04/22	<0.20		ug/L	
			Leachable 1-Methylnaphthalene	2016/04/22	<0.20		ug/L	
			Leachable 2-Methylnaphthalene	2016/04/22	<0.20		ug/L	
4469240	JET	RPD - Sample/Sample Dup	Leachable Benzo(b/j)fluoranthene	2016/04/23	NC		%	40
			Leachable Naphthalene	2016/04/23	2.7		%	40
			Leachable Acenaphthylene	2016/04/23	NC		%	40
			Leachable Acenaphthene	2016/04/23	3.3		%	40
			Leachable Fluorene	2016/04/23	0.16		%	40
			Leachable Phenanthrene	2016/04/23	NC		%	40
			Leachable Anthracene	2016/04/23	NC		%	40
			Leachable Fluoranthene	2016/04/23	NC		%	40
			Leachable Pyrene	2016/04/23	, NC		%	40
			Leachable Benzo(a)anthracene	2016/04/23	NC		%	40
			Leachable Chrysene	2016/04/23	NC		%	40
			Leachable Benzo(k)fluoranthene	2016/04/23	NC		%	40
			Leachable Benzo(a)pyrene	2016/04/23	NC		%	40
			Leachable Indeno(1,2,3-cd)pyrene	2016/04/23	NC		%	40
			Leachable Dibenz(a,h)anthracene	2016/04/23	NC		%	40
			Leachable Benzo(g,h,i)perylene	2016/04/23	NC		%	40
			Leachable 1-Methylnaphthalene	2016/04/23	3.1		70 %	40
			constitution T. Methymaphitmateric	2010/04/25	3.1	_	70	40

Pinchin Ltd

Client Project #: PII ESA
Site Location: CARLING AVE

QA/QC			-	Date	_	%		
Batch	Init	QC Type	Parameter	Analyzed	Value	% Recovery	LIBUTE	QC Limits
Daten	11110	cic Type	Leachable 2-Methylnaphthalene	2016/04/23	2.6	Recovery	%	40
4469971	JJE	Matrix Spike	o-Terphenyl	2016/04/23	2.0	104	% %	60 - 130
4405571	,,,,	With Spike	F2 (C10-C16 Hydrocarbons)	2016/04/23		94	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2016/04/23		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2016/04/23		92	%	50 - 130
4469971	JJE	Spiked Blank	o-Terphenyl	2016/04/23		105	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2016/04/23		101	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2016/04/23		103	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2016/04/23		101	%	60 - 130
4469971	JJE	Method Blank	o-Terphenyl	2016/04/23		103	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2016/04/23	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2016/04/23	(C) <200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2016/04/23	<200		ug/L	
4469971	JJE	RPD - Sample/Sample Dup	F2 (C10-C16 Hydrocarbons)	2015/04/24	NC		%	30
			F3 (C16-C34 Hydrocarbons)	GB16/04/24	NC		%	30
			F4 (C34-C50 Hydrogarbons)	2016)04/24	NC		%	30
4469978	SVS	Matrix Spike	Leachable Aroclor 1260	2016)04/24 2916/04/23 2016/04/23		96	%	30 - 130
			Leachable Decachloropipher VI	2016/04/23		118	%	30 - 130
				2018/04/23		96	%	30 - 130
4469978	SVS	Spiked Blank		2016/04/23 2016/04/23 2016/04/23		100	%	30 - 130
			Leachable Decachlerobipheny	2016/04/23 2016/04/23 2016/04/23 2016/04/23 2016/04/23		125	%	30 - 130
			Leachable Total PCB	2016/04/23		100	%	30 - 130
4469978	SVS	Method Blank	Leachable Articlor 1016	2016/04/23	<3.0		ug/L	
			Leachable Aroclo 01221	2016/04/23	<3.0		ug/L	
			Leachable Aroclor 1242	2016/04/23	<3.0		ug/L	
			Leachable Acoclor 1248	2016/04/23	<3.0		ug/L	
			Leachable Arocloc (254)	2016/04/23	<3.0		ug/L	
			Leachable Aroclor 1260	2016/04/23	<3.0		ug/L	
			Leachable Decachlorobiphenyl	2016/04/23		120	%	30 - 130
			Leachaide Potal PCB	2016/04/23	<3.0		ug/L	
4469978	SVS	RPD - Sample/Sample Dup		2016/04/23	NC		%	40
4470308	SAU	Matrix Spike	beachable Fluoride (F-)	2016/04/25		101	%	80 - 120
4470308	SAU	Leachate Blank	Leáchable Fluoride (F-)	2016/04/25	<0.10		mg/L	
4470308	SAU	Spiked Blank	Leachable Fluoride (F-)	2016/04/25		99	%	80 - 120
4470308	SAU	Method Blank	Leachable Fluoride (F-)	2016/04/25	<0.10		mg/L	
4470308	SAU	RPD - Sample/Sample Dup	• •	2016/04/25	NC		%	25
4470316	XQI	Matrix Spike	Leachable Free Cyanide	2016/04/25		96	%	80 - 120
4470316	XQI	Leachate Blank	Leachable Free Cyanide	2016/04/25	<0.010		mg/L	
4470316	XQI	Spiked Blank	Leachable Free Cyanide	2016/04/25		99	%	80 - 120
4470316	XQI	Method Blank	Leachable Free Cyanide	2016/04/25	<0.0020		mg/L	
4470316	XQI	RPD - Sample/Sample Dup		2016/04/25	NC		%	20
4470317	C_N	Matrix Spike	Leachable Nitrite (N)	2016/04/25		100	%	80 - 120
			Leachable Nitrate (N)	2016/04/25		100	%	80 - 120
4470217	C N	Lasabasa Dialah	Leachable Nitrate + Nitrite (N)	2016/04/25	.0.40	100	%	80 - 120
4470317	C_N	Leachate Blank	Leachable Nitrite (N)	2016/04/25	<0.10		mg/L	
			Leachable Nitrate (N)	2016/04/25	<1.0		mg/L	
4470317	CM	Spiked Blank	Leachable Nitrate + Nitrite (N) Leachable Nitrite (N)	2016/04/25	<1.0	104	mg/L	00 430
44/031/	C_N	abiyen bigur	Leachable Nitrate (N)	2016/04/25		104	%	80 - 120
			Leachable Nitrate (N)	2016/04/25		101 102	%	80 - 120
4470317	C N	Method Blank	Leachable Nitrite (N)	2016/04/25	∠0.10	102	% /1	80 - 120
77/031/	C_14	WICHIUM DIBIIK	* *	2016/04/25	<0.10		mg/L	
			Leachable Nitrate (N) Leachable Nitrate + Nitrite (N)	2016/04/25	<1.0		mg/L	
			Leachable Nitrate + Nitrite (N)	2016/04/25	<1.0		mg/L	

Pinchin Ltd

Client Project #: PII ESA Site Location: CARLING AVE

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Malue	%	LIMITE	OC Hinda
4470317		RPD - Sample/Sample Dup			Value	Recovery	UNITS	
44/031/	C_N	Kro - Sample/Sample Dup	• •	2016/04/25	NC		%	25
			Leachable Nitrate (N)	2016/04/25	NC		%	25
			Leachable Nitrate + Nitrite (N)	2016/04/25	NC		%	25
4470516	AAI	Matrix Spike	1,4-Difluorobenzene	2016/04/24		100	%	70 - 130
			4-Bromofluorobenzene	2016/04/24		95	%	70 - 130
			D10-Ethylbenzene	2016/04/24		106	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/24		97	%	70 - 130
			F1 (C6-C10)	2016/04/24		85	%	70 - 130
4470516	AAI	Spiked Blank	1,4-Difluorobenzene	2016/04/24		101	%	70 - 130
			4-Bromofluorobenzene	2016/04/24		97	%	70 - 130
			D10-Ethylbenzene	2016/04/24		95	%	70 - 130
			D4-1,2-Dichloroethane	2016/04/24	9	98	%	70 - 130
			F1 (C6-C10)	2016/04/24		93	%	70 - 130
4470516	AAI	Method Blank	1,4-Difluorobenzene	2016/04/24		101	%	70 - 130
			4-Bromofluorobenzeno	_ 3616/0024		95	%	70 - 130
			D10-Ethylhenzene	2016/04/24		103	%	70 - 130
			D4-1 2-Dichlornathana	2016/04/24		98	%	
			F1 (C6-C1p)	2016/04/24	425	70		70 - 130
			F1 (C6-C10) - BTEX		<25		ug/L	
4470516		DDD - 51-/51- D		2016/04/24	<25		ug/L	
4470516	AAI	RPD - Sample/Sample Dup	F1 (66:C10)	2016/04/24	NC		%	30
			ET (CR. C10) BLEX	A) 2016/04/24	NC		%	30

N/A = Not Applicable

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the Baching procedure. Used to determine any process contamination.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Pinchin Ltd

Client Project #: PII ESA

Site Location: CARLING AVE

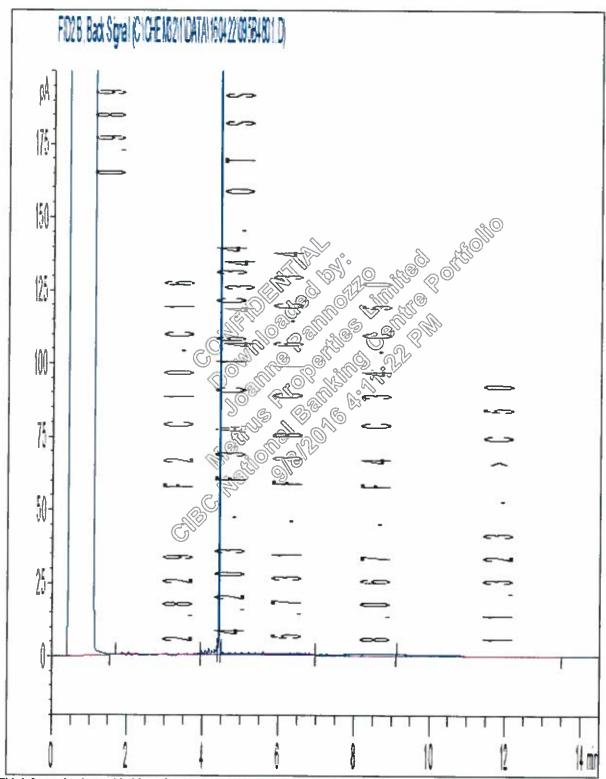
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

ave the required "signator validation Signature Page.

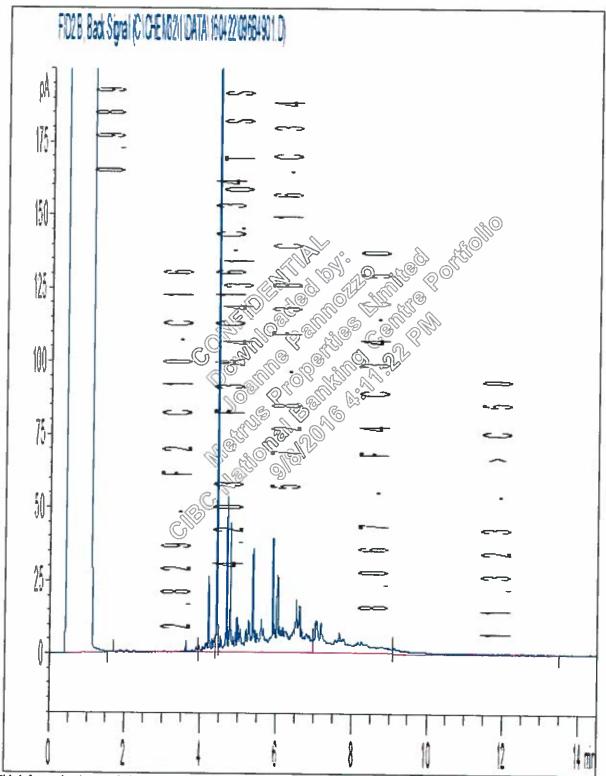
Validation Signature Page.


All the signa Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 1 of 7

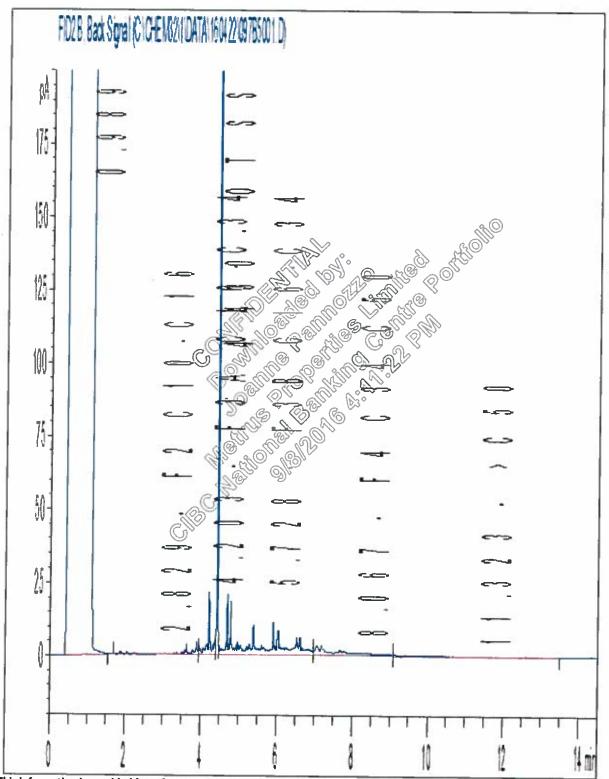
Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE Client ID: MW-1 SS2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

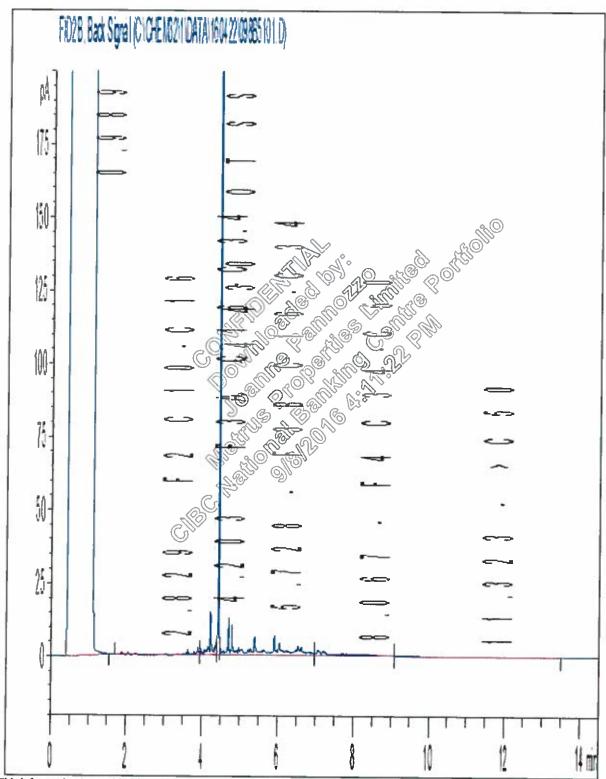
Client Project #: PII ESA Project name: CARLING AVE Client ID: MW-2 SS2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE Client ID: MW-3 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

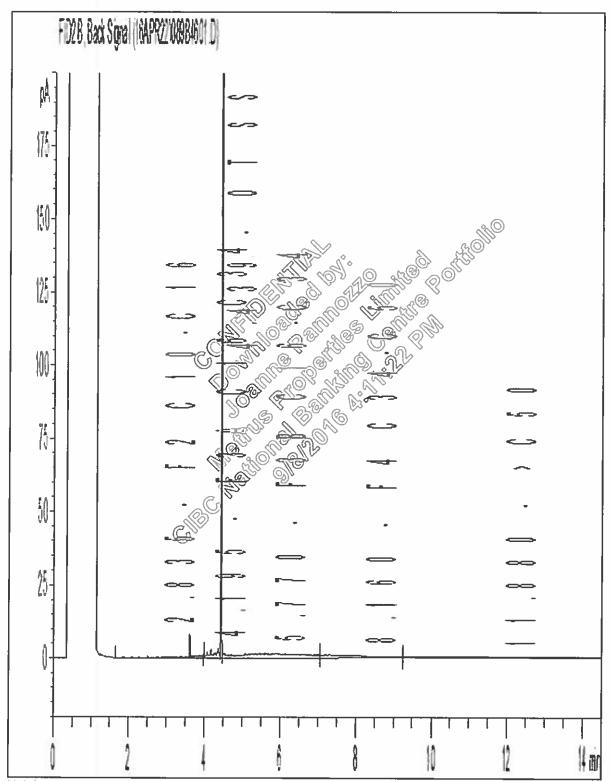


Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE

Client ID: TCLP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

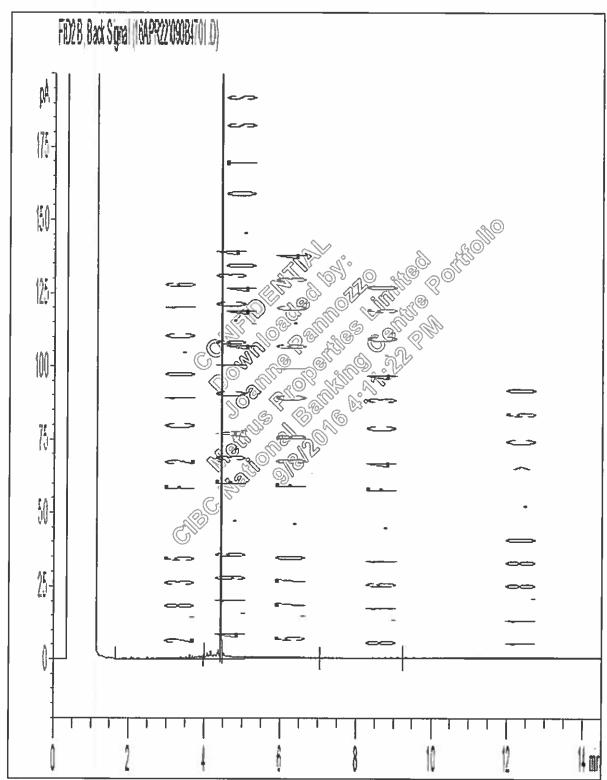


Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE

Client ID: MW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Pinchin Ltd

Client Project #: PII ESA Project name: CARLING AVE

Client ID: MW-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 33066 Project: PE4247 Custody: 131075

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

Order #: 2117385

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2117385-01
 BH1-AU2/SS3

 2117385-02
 BH4-SS3

 2117385-03
 DUP

Approved By:

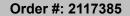
Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 2117385

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

Project Description: PE4247


Certificate of Analysis

Client: Paterson Group Consulting

Client: Paterson Group Consulting Engineers Client PO: 33066

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	22-Apr-21	22-Apr-21
Conductivity	MOE E3138 - probe @25 °C, water ext	27-Apr-21	27-Apr-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	27-Apr-21	27-Apr-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	26-Apr-21	26-Apr-21
PHC F1	CWS Tier 1 - P&T GC-FID	23-Apr-21	24-Apr-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	22-Apr-21	24-Apr-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	26-Apr-21	26-Apr-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	25-Apr-21	26-Apr-21
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	23-Apr-21	24-Apr-21
SAR	Calculated	27-Apr-21	27-Apr-21
Solids, %	Gravimetric, calculation	23-Apr-21	24-Apr-21

Client: Paterson Group Consulting Engineers

Client PO: 33066

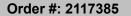
Report Date: 27-Apr-2021

Order Date: 21-Apr-2021

Project Description: PE4247

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-AU2/SS3 20-Apr-21 09:00 2117385-01 Soil	BH4-SS3 20-Apr-21 09:00 2117385-02 Soil	DUP 20-Apr-21 09:00 2117385-03 Soil	- - -
Physical Characteristics	MDEIGHILO				L
% Solids	0.1 % by Wt.	72.3	80.9	76.4	-
General Inorganics			•		-
SAR	0.01 N/A	3.55	-	-	-
Conductivity	5 uS/cm	1240	-	-	-
pH	0.05 pH Units	7.64	-	-	-
Metals	-		1		
Antimony	1.0 ug/g dry	1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	14.8	6.5	-	-
Barium	1.0 ug/g dry	287	149	-	-
Beryllium	0.5 ug/g dry	0.6	0.8	-	-
Boron	5.0 ug/g dry	14.2	15.4	-	-
Cadmium	0.5 ug/g dry	0.6	<0.5	-	-
Chromium	5.0 ug/g dry	23.6	27.7	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	-	-
Cobalt	1.0 ug/g dry	6.8	8.3	-	-
Copper	5.0 ug/g dry	50.8	18.4	-	-
Lead	1.0 ug/g dry	299	33.3	-	-
Mercury	0.1 ug/g dry	0.3	<0.1	-	-
Molybdenum	1.0 ug/g dry	2.6	1.0	-	-
Nickel	5.0 ug/g dry	16.3	20.2	-	-
Selenium	1.0 ug/g dry	1.6	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	24.7	34.2	-	-
Zinc	20.0 ug/g dry	248	100	-	-
Volatiles	- '		•		
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	-

Client: Paterson Group Consulting Engineers


Client PO: 33066

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

Project Description: PE4247

	Client ID: Sample Date: Sample ID:	BH1-AU2/SS3 20-Apr-21 09:00 2117385-01	BH4-SS3 20-Apr-21 09:00 2117385-02	DUP 20-Apr-21 09:00 2117385-03	- - -
	MDL/Units	Soil	Soil	Soil	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	1
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	119%	108%	112%	-
Dibromofluoromethane	Surrogate	97.9%	90.5%	97.7%	-

Page 4 of 12

Client: Paterson Group Consulting Engineers

Client PO: 33066 Project Description: PE4247

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

	Client ID: Sample Date:	BH1-AU2/SS3 20-Apr-21 09:00	BH4-SS3 20-Apr-21 09:00	DUP 20-Apr-21 09:00	
	Sample ID:	2117385-01	2117385-02	2117385-03	-
1 =	MDL/Units	Soil	Soil	Soil	-
Toluene-d8	Surrogate	107%	113%	130%	-
Hydrocarbons			1	ı	
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	-	13	-	-
F4 PHCs (C34-C50)	6 ug/g dry	-	15	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	0.07	<0.02	-	-
Acenaphthylene	0.02 ug/g dry	0.38	0.04	-	-
Anthracene	0.02 ug/g dry	0.24	0.02	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.90	0.04	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.96	0.06	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	1.15	0.07	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.67	0.06	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.57	0.04	-	-
Chrysene	0.02 ug/g dry	1.01	0.07	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.19	<0.02	-	-
Fluoranthene	0.02 ug/g dry	1.36	0.08	-	-
Fluorene	0.02 ug/g dry	0.09	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.65	0.06	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.31	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.43	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.74	<0.04	-	-
Naphthalene	0.01 ug/g dry	0.45	<0.01	-	-
Phenanthrene	0.02 ug/g dry	0.80	0.02	-	-
Pyrene	0.02 ug/g dry	1.40	0.08	-	-
2-Fluorobiphenyl	Surrogate	74.7%	64.6%	-	-
Terphenyl-d14	Surrogate	100%	107%	-	-

ANACLL
LABORATORIES LTD.

Order #: 2117385

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33066

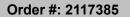
Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals			- 3 3						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND ND	0.02 0.02	ug/g						
Chrysene	ND ND	0.02	ug/g						
Dibenzo [a,h] anthracene Fluoranthene	ND ND	0.02	ug/g ug/g						
Fluorene	ND	0.02	ug/g ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.04		ug/g		77.9	50-140			
Surrogate: Terphenyl-d14	1.31		ug/g		98.1	50-140			
Volatiles			-						
Acetone	ND	0.50	ug/g						
Benzene	ND ND	0.02	ug/g ug/g						
Bromodichloromethane	ND ND	0.02	ug/g ug/g						
Bromoform	ND	0.05	ug/g ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						

Order #: 2117385

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

Project Description: PE4247


Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33066

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.52		ug/g		110	50-140			
Surrogate: Dibromofluoromethane	3.05		ug/g		95.4	50-140			
Surrogate: Toluene-d8	4.32		ug/g ug/g		135	50-140 50-140			

Report Date: 27-Apr-2021

Order Date: 21-Apr-2021

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33066 Project Description: PE4247

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
eneral Inorganics									
SAR	0.80	0.01	N/A	0.82			2.5	30	
Conductivity	286	5	uS/cm	294			2.8	5	
pH	7.43	0.05	pH Units	7.30			1.8	2.3	
ydrocarbons	7.10	0.00	pri omio	7.00			1.0	2.0	
•		_							
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND			NC	30	
letals									
Antimony	ND	1.0	ug/g dry	1.0			NC	30	
Arsenic	1.7	1.0	ug/g dry	1.8			2.3	30	
3arium Sarium	13.6	1.0	ug/g dry	15.6			13.8	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	ND	5.0	ug/g dry	ND			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	0.8	0.2	ug/g dry	0.9			12.2	35	
Chromium	8.3	5.0	ug/g dry	8.6			2.8	30	
Cobalt	2.7	1.0	ug/g dry	2.8			4.2	30	
Copper	6.4	5.0	ug/g dry	7.1			9.9	30	
Lead	3.1	1.0	ug/g dry	3.7			17.7	30	
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	5.2	5.0	ug/g dry	5.5			5.4	30	
Selenium	ND ND	1.0	ug/g dry	ND			NC	30	
Silver Thallium	ND ND	0.3	ug/g dry	ND			NC NC	30 30	
Uranium	ND ND	1.0 1.0	ug/g dry ug/g dry	ND ND			NC NC	30	
Vanadium	14.7	10.0	ug/g dry ug/g dry	15.0			1.7	30	
Zinc	63.1	20.0	ug/g dry ug/g dry	69.6			9.8	30	
	00.1	20.0	ug/g ury	03.0			3.0	30	
hysical Characteristics									
% Solids	82.7	0.1	% by Wt.	85.5			3.4	25	
emi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g dry	ND			NC	40	
Anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Chrysene	ND	0.02	ug/g dry	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Fluorene	ND	0.02	ug/g dry	ND			NC	40	
ndeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			NC	40	
1-Methylnaphthalene	0.301	0.02	ug/g dry	0.330			9.2	40	
2-Methylnaphthalene	0.660	0.02	ug/g dry	0.717			8.3	40	
Naphthalene	0.788	0.01	ug/g dry	0.890			12.2	40	
Phenanthrene	0.021	0.02	ug/g dry	0.023			8.8	40	
Pyrene	ND	0.02	ug/g dry	ND	70.7	E0 110	NC	40	
Surrogate: 2-Fluorobiphenyl	1.08		ug/g dry		70.7	50-140			
Surrogate: Terphenyl-d14	1.11		ug/g dry		73.1	50-140			
olatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	

Surrogate: Toluene-d8

Order #: 2117385

Report Date: 27-Apr-2021

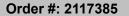
Order Date: 21-Apr-2021

Project Description: PE4247

Client: Paterson Group Consulting Engineers

Client PO: 33066

Method Quality Control: Duplicate


Reporting Source %REC **RPD** Analyte Result Limit RPD Notes %RFC Limit Limit Units Result ND NC 50 Bromodichloromethane ND 0.05 ug/g dry Bromoform ND 0.05 ND NC 50 ug/g dry Bromomethane ND 0.05 ug/g dry ND NC 50 Carbon Tetrachloride ND 0.05 ND NC 50 ug/g dry Chlorobenzene ND 0.05 ug/g dry ND NC 50 Chloroform ND 0.05 ND NC 50 ug/g dry Dibromochloromethane ND 0.05 ug/g dry ND NC 50 Dichlorodifluoromethane ND 0.05 ug/g dry ND NC 50 1,2-Dichlorobenzene ND 0.05 ug/g dry ND NC 50 1.3-Dichlorobenzene ND 0.05 ND NC 50 ug/g dry 1,4-Dichlorobenzene ND 0.05 ug/g dry ND NC 50 ND 0.05 ND NC 50 1 1-Dichloroethane ug/g dry 1,2-Dichloroethane ND 0.05 ug/g dry ND NC 50 1,1-Dichloroethylene ND 0.05 ND NC 50 ug/g dry cis-1,2-Dichloroethylene ND 0.05 ug/g dry ND NC 50 ND 0.05 ND NC 50 trans-1,2-Dichloroethylene ug/g dry 1,2-Dichloropropane ND 0.05 ug/g dry ND NC 50 0.05 ND NC 50 cis-1,3-Dichloropropylene ND ug/g dry trans-1,3-Dichloropropylene ND 0.05 ug/g dry ND NC 50 ND 0.05 ND NC 50 Ethylbenzene ug/g dry Ethylene dibromide (dibromoethane, 1,2-ND 0.05 ug/g dry ND NC 50 ND 0.05 ND NC 50 Hexane ug/g dry Methyl Ethyl Ketone (2-Butanone) ND 0.50 ug/g dry ND NC 50 NC Methyl Isobutyl Ketone ND 0.50 ND 50 ug/g dry Methyl tert-butyl ether ND 0.05 ug/g dry ND NC 50 ND NC 50 Methylene Chloride ND 0.05 ug/g dry Styrene ND 0.05 ug/g dry ND NC 50 1.1.1.2-Tetrachloroethane ND 0.05 ND NC 50 ug/g dry 1,1,2,2-Tetrachloroethane ND 0.05 ug/g dry ND NC 50 NC 50 ND 0.05 ND Tetrachloroethylene ug/g dry Toluene ND 0.05 ug/g dry ND NC 50 1,1,1-Trichloroethane NC 50 ND 0.05 ND ug/g dry 1,1,2-Trichloroethane ND 0.05 ug/g dry ND NC 50 Trichloroethylene ND 0.05 ND NC 50 ug/g dry Trichlorofluoromethane ND 0.05 ND NC 50 ug/g dry Vinyl chloride ND 0.02 ND NC 50 ug/g dry m,p-Xylenes ND 0.05 ug/g dry ND NC 50 ND ND NC 50 o-Xylene 0.05 ug/g dry Surrogate: 4-Bromofluorobenzene 3.62 108 50-140 ug/g dry 50-140 99.6 Surrogate: Dibromofluoromethane 3.35 ug/g dry

ug/g dry

105

50-140

3.52

Client: Paterson Group Consulting Engineers

Client PO: 33066 Project Description: PE4247

Report Date: 27-Apr-2021 Order Date: 21-Apr-2021

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	194	7	ug/g	ND	97.2	80-120			
F2 PHCs (C10-C16)	93	4	ug/g	ND	100	60-140			
F3 PHCs (C16-C34)	250	8	ug/g	ND	110	60-140			
F4 PHCs (C34-C50)	173	6	ug/g	ND	120	60-140			
Metals									
Antimony	48.9	1.0	ug/g	ND	96.9	70-130			
Arsenic	51.1	1.0	ug/g	ND	101	70-130			
Barium	55.7	1.0	ug/g	6.3	99.0	70-130			
Beryllium	51.9	0.5	ug/g	ND	104	70-130			
Boron	48.9	5.0	ug/g	ND	95.6	70-130			
Cadmium	49.1	0.5	ug/g	ND	98.1	70-130			
Chromium (VI)	6.1	0.2	ug/g	0.9	72.5	70-130			
Chromium	54.4	5.0	ug/g ug/g	ND	102	70-130			
Cobalt	51.2	1.0	ug/g ug/g	1.1	100	70-130			
Copper	50.7	5.0	ug/g	ND	95.8	70-130			
Lead	48.4	1.0	ug/g	1.5	93.8	70-130			
Mercury	1.60	0.1	ug/g	ND	107	70-130			
Molybdenum	49.3	1.0	ug/g	ND	98.0	70-130			
Nickel	50.6	5.0	ug/g	ND	96.9	70-130			
Selenium	49.4	1.0	ug/g	ND	98.4	70-130			
Silver	48.1	0.3	ug/g	ND	96.2	70-130			
Thallium	48.7	1.0	ug/g	ND	97.4	70-130			
Uranium	48.9	1.0	ug/g	ND	97.5	70-130			
Vanadium	56.9	10.0	ug/g	ND	102	70-130			
Zinc	71.8	20.0	ug/g	27.8	88.0	70-130			
Semi-Volatiles			-3.3						
	0.145	0.02	uala	ND	76.0	E0 140			
Acenaphthylana	0.145 0.159	0.02	ug/g	ND	76.0	50-140			
Actor		0.02	ug/g	ND	83.2	50-140			
Anthracene	0.135	0.02	ug/g	ND	70.9	50-140 50-140			
Benzo [a] anthracene	0.119	0.02	ug/g	ND	62.5	50-140 50-140			
Benzo [a] pyrene	0.138	0.02 0.02	ug/g	ND	72.3 84.3	50-140 50-140			
Benzo [b] fluoranthene	0.161 0.133	0.02	ug/g	ND ND	84.3 70.0	50-140 50-140			
Benzo [g,h,i] perylene Benzo [k] fluoranthene	0.158	0.02	ug/g	ND	70.0 82.9	50-140 50-140			
	0.158	0.02	ug/g	ND ND	82.9 80.0	50-140 50-140			
Chrysene Dibenzo [a,h] anthracene			ug/g			50-140 50-140			
Fluoranthene	0.122 0.152	0.02 0.02	ug/g	ND ND	63.8 79.9	50-140 50-140			
Fluorene	0.166	0.02	ug/g	ND	79.9 87.1	50-140 50-140			
Indeno [1,2,3-cd] pyrene	0.166	0.02	ug/g	ND ND	67.1	50-140 50-140			
	0.128		ug/g					^	M-06
1-Methylnaphthalene	1.14	0.02 0.02	ug/g	0.330 0.717	142 222	50-140 50-140			M-06
2-Methylnaphthalene			ug/g		222 176				M-06
Naphthalene	1.23	0.01	ug/g	0.890	75.6	50-140 50-140		Q	IVI-UU
Phenanthrene	0.167	0.02	ug/g	0.023		50-140 50-140			
Pyrene Surragata: 2 Fluorabinhanul	0.148	0.02	ug/g	ND	77.6	50-140 50-140			
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-d14	0.969 1.41		ug/g ug/g		63.5 92.4	50-140 50-140			
ourioguis. respirenti u 14	****		~∃′∃		V ,	55 7 70			
vialites									

Order #: 2117385

Report Date: 27-Apr-2021

Order Date: 21-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client: Paterson Group Consulting Engineers
Client PO: 33066

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	3.59	0.02	ug/g	ND	89.8	60-130			
Bromodichloromethane	3.73	0.05	ug/g	ND	93.3	60-130			
Bromoform	3.87	0.05	ug/g	ND	96.8	60-130			
Bromomethane	3.95	0.05	ug/g	ND	98.8	50-140			
Carbon Tetrachloride	3.59	0.05	ug/g	ND	89.7	60-130			
Chlorobenzene	3.58	0.05	ug/g	ND	89.5	60-130			
Chloroform	3.74	0.05	ug/g	ND	93.5	60-130			
Dibromochloromethane	3.78	0.05	ug/g	ND	94.5	60-130			
Dichlorodifluoromethane	4.47	0.05	ug/g	ND	112	50-140			
1,2-Dichlorobenzene	3.55	0.05	ug/g	ND	88.7	60-130			
1,3-Dichlorobenzene	3.47	0.05	ug/g	ND	86.9	60-130			
1,4-Dichlorobenzene	3.70	0.05	ug/g	ND	92.5	60-130			
1,1-Dichloroethane	3.59	0.05	ug/g	ND	89.7	60-130			
1,2-Dichloroethane	3.72	0.05	ug/g	ND	92.9	60-130			
1,1-Dichloroethylene	3.47	0.05	ug/g	ND	86.7	60-130			
cis-1,2-Dichloroethylene	3.36	0.05	ug/g	ND	84.0	60-130			
rans-1,2-Dichloroethylene	3.59	0.05	ug/g	ND	89.7	60-130			
1,2-Dichloropropane	3.67	0.05	ug/g	ND	91.7	60-130			
cis-1,3-Dichloropropylene	3.50	0.05	ug/g	ND	87.6	60-130			
rans-1,3-Dichloropropylene	3.48	0.05	ug/g	ND	86.9	60-130			
Ethylbenzene	3.58	0.05	ug/g	ND	89.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.75	0.05	ug/g	ND	93.8	60-130			
Hexane	3.92	0.05	ug/g	ND	97.9	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.13	0.50	ug/g	ND	91.3	50-140			
Methyl Isobutyl Ketone	9.26	0.50	ug/g	ND	92.6	50-140			
Methyl tert-butyl ether	9.33	0.05	ug/g	ND	93.3	50-140			
Methylene Chloride	3.46	0.05	ug/g	ND	86.5	60-130			
Styrene	3.29	0.05	ug/g	ND	82.3	60-130			
1,1,2-Tetrachloroethane	3.93	0.05	ug/g	ND	98.2	60-130			
1,1,2,2-Tetrachloroethane	3.35	0.05	ug/g	ND	83.8	60-130			
Tetrachloroethylene	3.78	0.05	ug/g	ND	94.6	60-130			
Toluene	3.88	0.05	ug/g	ND	96.9	60-130			
1,1,1-Trichloroethane	3.64	0.05	ug/g	ND	90.9	60-130			
1,1,2-Trichloroethane	3.66	0.05	ug/g	ND	91.4	60-130			
Trichloroethylene	3.63	0.05	ug/g	ND	90.8	60-130			
Trichlorofluoromethane	3.74	0.05	ug/g	ND	93.6	50-140			
Vinyl chloride	3.73	0.02	ug/g	ND	93.2	50-140			
m,p-Xylenes	7.20	0.05	ug/g	ND	90.0	60-130			
o-Xylene	3.77	0.05	ug/g	ND	94.3	60-130			
Surrogate: 4-Bromofluorobenzene	3.04		ug/g		95.0	50-140			
Surrogate: Dibromofluoromethane	3.19		ug/g		99.8	50-140			
Surrogate: Toluene-d8	3.13		ug/g		97.8	50-140			

Order #: 2117385

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 27-Apr-2021

Order Date: 21-Apr-2021

Client PO: 33066 Project Description: PE4247

Qualifier Notes:

Login Qualifiers:

Container and COC sample IDs don't match - Moisture taken from sample BH1-AU2/SS3.

Applies to samples: DUP

QC Qualifiers:

QM-06: Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on other QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

Nº 131075

et l							"	(211	1	71	25			1 Van	TO.	T019	
Contact Name:	Lowe			Proj	ect Ref:	PEY PEY	2 47	-			> '	23				D		
MARK Dia	ncy			Quot	e #:	14 159	297						+			Page		
				PO#	-			_					_		Turr	naroun	nd Time	/
154 COLOPPADE RO	L. S. 0T	TAWA, O	NT.	E-ma	33 il:	1066								□ 1 d	ay		. 0	3 day
Telephone: (613) 226 -	2701			1		incy op	TEN CANC	500		73	1			□ 2 d	ay		, ^D	Regular
	The same of the sa		_			,,,,,	. 10001-0	3140	7	.00			Da	ate Rec	quired:			
Regulation 153/04	Other Reg			Matrix	Type:	S (Soil/Sed.) GW (0	Ground Water)	1					1					31
☐ Table 1 ☐ Res/Park ☐ Med/Fine		☐ PWQ0		SW (Su	ırface V	Vater) SS (Storm/S	anitary Sewer)						Re	quired	Analys	is		
D D		☐ MISA			P (P	aint) A (Air) O (Ot	her)		T	П		П	Т	Г				
☐ Table 3 ☐ Agri/Other ☐ Table 7	SU - Sani	□ SU-Storm			5			BTEX							0			
	Mun:			ne l	Containers	Sample	Taken	-F4+B			ICP.				SAR			
	Other:		trix	Air Volume	Con			12			ils by		VS)	Ho	/			
Sample ID/Location			Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHs	Meta	Hg S	B (HWS)	`	EC			
1 BHI-AUZ (553			5	\	2	APR 20/2		+	Ĺ				-				+	+-
4 BH4 - SS3	,		5	\	2	1		t	,	1	٧	1	+	7	~	-	_	
3 Dup			S	\	1	*		+	,	4	7	1	4			_	_	
4				-	<u> </u>			+	>	4	4	+	Н			\perp		
5								_	4	4	4	\perp	Ш					
6			_		-													
7					_													
8											T						\top	
9																\top		+
0			_													\top		+
mments:									T		T		П				+	
											_	Met	hod of	Deliver	v:	15 15		3 03
inquished By (Sign):	· · · · · · · · · · · · · · · · · · ·												1	TCA	CEL	1	puel	K
	R	leceived By Driv	er/Dep	ot:	10	erce	Received at Lab	-//	1	الم		No.	fied By		0			
inquished By (Print):	D	late/Time:	1	104	117	ZK	Date/Aimen	111	K	300	IN	Per	/Ties	. Ose	4	Am		
e/Time:	T	emperature:	/	7	1 120		emperature:			いえ	15		_	April	2	,2021	13	1:34
ain of Custody (Env.) xlsx						Pavision 2.0	corperatore;	14.	90			pH V	erified	: 🗆	By:			
						Havieian 2.0								***************************************		_	A-1	

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 33053 Project: PE4247 Custody: 131437

Report Date: 28-Apr-2021 Order Date: 23-Apr-2021

Order #: 2117635

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2117635-02
 BH3-21-AU1

 2117635-03
 BH3-21-SS2

Approved By:

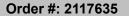
Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 2117635

Report Date: 28-Apr-2021 Order Date: 23-Apr-2021

Project Description: PE4247


Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33053

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	23-Apr-21	26-Apr-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	28-Apr-21	28-Apr-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	27-Apr-21	27-Apr-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	27-Apr-21	27-Apr-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	24-Apr-21	28-Apr-21
Solids, %	Gravimetric, calculation	24-Apr-21	24-Apr-21

Client: Paterson Group Consulting Engineers

Client PO: 33053

Report Date: 28-Apr-2021

Order Date: 23-Apr-2021

Project Description: PE4247

	Δυ	DUO O4 AU4	BH3-21-SS2		
	Client ID: Sample Date:	BH3-21-AU1 21-Apr-21 09:00	21-Apr-21 09:00	- -	-
	Sample ID:	2117635-02	2117635-03	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	92.6	86.4	-	-
General Inorganics					
рН	0.05 pH Units	8.61	-	-	-
Metals	, , , , , , , , , , , , , , , , , , , ,		ı		1
Antimony	1.0 ug/g dry	2.7	1.3	-	-
Arsenic	1.0 ug/g dry	1.5	1.4	-	-
Barium	1.0 ug/g dry	18.0	31.7	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	<5.0	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	7.0	8.2	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	-	-
Cobalt	1.0 ug/g dry	3.3	3.4	-	-
Copper	5.0 ug/g dry	9.2	8.9	-	-
Lead	1.0 ug/g dry	38.3	16.5	-	-
Mercury	0.1 ug/g dry	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	5.0 ug/g dry	<5.0	5.9	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	17.9	14.5	-	-
Zinc	20.0 ug/g dry	29.8	36.5	-	-
Semi-Volatiles			•	•	
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	-	-
Anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-
Chrysene	0.02 ug/g dry	<0.02	<0.02	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-

Order #: 2117635

Report Date: 28-Apr-2021

Order Date: 23-Apr-2021

Client: Paterson Group Consulting Engineers Client PO: 33053 **Project Description: PE4247**

	Client ID:	BH3-21-AU1	BH3-21-SS2	_	-
	Sample Date:	21-Apr-21 09:00	21-Apr-21 09:00	-	-
	Sample ID:	2117635-02	2117635-03	-	-
	MDL/Units	Soil	Soil	-	-
Fluoranthene	0.02 ug/g dry	0.03	0.04	-	-
Fluorene	0.02 ug/g dry	<0.02	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	-
Naphthalene	0.01 ug/g dry	<0.01	<0.01	-	-
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	-	-
Pyrene	0.02 ug/g dry	0.03	0.04	-	-
2-Fluorobiphenyl	Surrogate	79.2%	78.9%	-	-
Terphenyl-d14	Surrogate	120%	130%	-	-

Order #: 2117635

Report Date: 28-Apr-2021

Order Date: 23-Apr-2021

Project Description: PE4247

Client: Paterson Group Consulting Engineers
Client PO: 33053
Pro

Method Quality Control: Blank

Analyta	_	Reporting		Source		%REC		RPD Note		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
Metals										
Antimony	ND	1.0	ug/g							
Arsenic	ND	1.0	ug/g							
Barium	ND	1.0	ug/g							
Beryllium	ND	0.5	ug/g							
Boron	ND	5.0	ug/g							
Cadmium	ND	0.5	ug/g							
Chromium (VI)	ND	0.2	ug/g							
Chromium	ND	5.0	ug/g							
Cobalt	ND	1.0	ug/g							
Copper	ND	5.0	ug/g							
Lead	ND	1.0	ug/g							
Mercury	ND	0.1	ug/g							
Molybdenum	ND	1.0	ug/g							
Nickel	ND	5.0	ug/g							
Selenium	ND	1.0	ug/g							
Silver	ND	0.3	ug/g							
Thallium	ND	1.0	ug/g							
Uranium	ND	1.0	ug/g							
Vanadium	ND	10.0	ug/g							
Zinc	ND	20.0	ug/g							
Semi-Volatiles			0.0							
Acenaphthene	ND	0.02	ug/g							
Acenaphthylene	ND	0.02	ug/g							
Anthracene	ND	0.02	ug/g							
Benzo [a] anthracene	ND	0.02	ug/g							
Benzo [a] pyrene	ND	0.02	ug/g							
Benzo [b] fluoranthene	ND	0.02	ug/g							
Benzo [g,h,i] perylene	ND	0.02	ug/g							
Benzo [k] fluoranthene	ND	0.02	ug/g							
Chrysene	ND	0.02	ug/g							
Dibenzo [a,h] anthracene	ND	0.02	ug/g							
Fluoranthene	ND	0.02	ug/g							
Fluorene	ND	0.02	ug/g							
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g							
1-Methylnaphthalene	ND	0.02	ug/g							
2-Methylnaphthalene	ND	0.02	ug/g							
Methylnaphthalene (1&2)	ND	0.04	ug/g							
Naphthalene	ND	0.01	ug/g							
Phenanthrene	ND	0.02	ug/g							
Pyrene	ND	0.02	ug/g							
Surrogate: 2-Fluorobiphenyl	1.39		ug/g		104	50-140				
Surrogate: Terphenyl-d14	1.39		ug/g ug/g		104	50-140				

Order #: 2117635

Report Date: 28-Apr-2021

Order Date: 23-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33053

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Linito	Source	% DEC	%REC	RPD	RPD Limit	Notes
Titalyte	Result	LIIIII	Units	Result	%REC	Limit	KPD	Limit	Notes
General Inorganics									
pH	7.38	0.05	pH Units	7.39			0.1	2.3	
Metals									
Antimony	ND	1.0	ug/g dry	ND			NC	30	
Arsenic	2.2	1.0	ug/g dry	2.3			1.8	30	
Barium	182	1.0	ug/g dry	185			1.9	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	15.8	5.0	ug/g dry	16.8			5.7	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	0.3	0.2	ug/g dry	0.5			NC	35	
Chromium	16.6	5.0	ug/g dry	17.2			3.9	30	
Cobalt	4.7	1.0	ug/g dry	4.7			0.6	30	
Copper	7.8	5.0	ug/g dry	8.3			6.2	30	
Lead	6.9	1.0	ug/g dry	7.0			1.3	30	
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Molybdenum	1.1	1.0	ug/g dry	ND			NC	30	
Nickel	11.3	5.0	ug/g dry ug/g dry	11.7			3.2	30	
Selenium	ND	1.0	ug/g dry ug/g dry	ND			NC	30	
Silver	ND ND	0.3	ug/g dry ug/g dry	ND			NC	30	
Thallium	ND ND	1.0		ND			NC	30	
Uranium	ND ND	1.0	ug/g dry	ND ND			NC NC	30	
Vanadium	15.5	10.0	ug/g dry	15.6			0.9	30	
Zinc	20.4	20.0	ug/g dry	20.7				30	
Physical Characteristics	20.4	20.0	ug/g dry	20.7			1.8	30	
% Solids	76.0	0.1	0/ by/\A/t	75.0			1.3	25	
	76.0	0.1	% by Wt.	75.0			1.3	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g dry	ND			NC	40	
Anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Chrysene	ND	0.02	ug/g dry	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Fluorene	ND	0.02	ug/g dry	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g dry	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND			NC	40	
Naphthalene	ND	0.01	ug/g dry	ND			NC	40	
Phenanthrene	ND	0.02	ug/g dry	ND			NC	40	
Pyrene	ND	0.02	ug/g dry	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	1.48		ug/g dry		83.3	50-140			
Surrogate: Terphenyl-d14	1.63		ug/g dry		91.6	50-140			
5 · F · 7 ·									

Order #: 2117635

Report Date: 28-Apr-2021 Order Date: 23-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33053

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	42.9	1.0	ug/g	ND	85.6	70-130			
Arsenic	50.3	1.0	ug/g	ND	98.9	70-130			
Barium	115	1.0	ug/g	74.1	81.6	70-130			
Beryllium	45.7	0.5	ug/g	ND	91.0	70-130			
Boron	48.7	5.0	ug/g	6.7	83.9	70-130			
Cadmium	44.0	0.5	ug/g	ND	88.0	70-130			
Chromium (VI)	0.2	0.2	ug/g	ND	69.0	70-130			QM-05
Chromium	57.8	5.0	ug/g	6.9	102	70-130			
Cobalt	52.2	1.0	ug/g	1.9	101	70-130			
Copper	49.0	5.0	ug/g	ND	91.4	70-130			
Lead	43.7	1.0	ug/g	2.8	81.7	70-130			
Mercury	1.66	0.1	ug/g	ND	111	70-130			
Molybdenum	48.3	1.0	ug/g	ND	95.8	70-130			
Nickel	51.6	5.0	ug/g	ND	93.9	70-130			
Selenium	43.9	1.0	ug/g	ND	87.5	70-130			
Silver	42.9	0.3	ug/g	ND	85.8	70-130			
Thallium	42.3	1.0	ug/g	ND	84.6	70-130			
Uranium	43.5	1.0	ug/g	ND	86.9	70-130			
Vanadium	59.1	10.0	ug/g	ND	106	70-130			
Zinc	51.3	20.0	ug/g	ND	86.0	70-130			
Semi-Volatiles									
Acenaphthene	0.179	0.02	ug/g	ND	80.8	50-140			
Acenaphthylene	0.157	0.02	ug/g	ND	70.7	50-140			
Anthracene	0.173	0.02	ug/g	ND	77.8	50-140			
Benzo [a] anthracene	0.166	0.02	ug/g	ND	74.6	50-140			
Benzo [a] pyrene	0.162	0.02	ug/g	ND	72.8	50-140			
Benzo [b] fluoranthene	0.184	0.02	ug/g	ND	82.7	50-140			
Benzo [g,h,i] perylene	0.162	0.02	ug/g	ND	72.9	50-140			
Benzo [k] fluoranthene	0.159	0.02	ug/g	ND	71.8	50-140			
Chrysene	0.189	0.02	ug/g	ND	84.9	50-140			
Dibenzo [a,h] anthracene	0.171	0.02	ug/g	ND	76.8	50-140			
Fluoranthene	0.164	0.02	ug/g	ND	73.8	50-140			
Fluorene	0.164	0.02	ug/g	ND	73.8	50-140			
Indeno [1,2,3-cd] pyrene	0.166	0.02	ug/g	ND	74.7	50-140			
1-Methylnaphthalene	0.147	0.02	ug/g	ND	66.0	50-140			
2-Methylnaphthalene	0.154	0.02	ug/g	ND	69.1	50-140			
Naphthalene	0.179	0.01	ug/g	ND	80.8	50-140			
Phenanthrene	0.153	0.02	ug/g	ND	68.7	50-140			
Pyrene	0.161	0.02	ug/g	ND	72.6	50-140			
Surrogate: 2-Fluorobiphenyl	1.58		ug/g		89.1	50-140			
Surrogate: Terphenyl-d14	1.94		ug/g		109	50-140			

Report Date: 28-Apr-2021 Order Date: 23-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 33053

Qualifier Notes:

QC Qualifiers:

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Paracel ID: 2117635

Paracel Order Number

Chain Of Custody (Lab Use Only)

(Lab Use Only) № 131437

Client Name:		T			. /	t	11 1	6	77		3						
L L'ATEKSON				PE4247							-		Р	age (of /		
Contact Name: MARK D'ARCY Address:		Quote									\top			-	d Time		-
154 Colonnade Road				053								□ 1 da				3 day	
Y-1		E-mai		1	- to starrage						7	2 da	У			Regula	ır
Telephone: 613 - 226 - 7381			W	idary @f	gressing	Pou	p. 1	حصد				te Req				певан	
Regulation 153/04 Other Regulation	Γ,	Astriv 1	[vno.	Elsail/sad) cw/s		1											
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO				S (Soil/Sed.) GW (G Nater) SS (Storm/Sa							Rec	quired /	Analysi	is			
☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ MISA				Paint) A (Air) O (Oth					Т	\top	Т				\neg		
☑ Table 3 ☐ Agri/Other ☐ SU - Sani ☐ SU - Storm			S			BTEX											
Table Mun:		me	Containers	Sample	Taken	F4+B			by ICP								
For RSC: ☐ Yes ☐ No ☐ Other:	Matrix	Air Volume				s F1-	,s	s			WS)	_					
Sample ID/Location Name	Z	Air	# of	Date	Time	PHCs	VOCs	PAHS	Metals	E 2	B (HWS)	#C					
1 BH2-21-553	S		2	April 21/2021			1-	0	-0		\sqcap			\top	\top	+	7
2 BH3-21-AU1	5		1	April 21/Zora				7	7.	1	\forall	/	\neg	\neg	+	+	1
3 BH3-21-552	S		_	April 21/204				7	1	1	\forall		\dashv	\dashv	+	+	1
4 BH6-21-882	S		-	April 21/2011		\Box	Ц	O	1	+	Н		\dashv	\dashv	+	+	1
5				,		Н		1	1	+	\forall		+	+	+	+	1
6						Н	+	+	+	+	\forall		+	+	+	+	+
7						\forall	+	+	+	+	\dashv	-	+	+	+	+	+
8	\neg					H	+	+	+	+	H	\dashv	+	+	+	+	4
9						H	+	╁	+	+	H	\dashv	+	+	-	+	4
1.0		\neg				H	+	+	+	\vdash	Н	+	-	+	+	+	4
omments:						Ш					Ш	2000		1 100,000	\perp	\perp	
												Delivery		/	N OU CI	-	
linquished By (Sign): Received By Driv	ver/Dep	oot:	,		ceived at Lab:			1.		Vor	fied By		15		4,21	=	-
linguished By (Print) Joshpa Dampsy Date/Time: Z	<u>/</u> 'Z/	/· ·	1	2005	Ineefor	γγ	k	DN.	ma		66, 56, ****	, (4	Sh			
te/Time:	7	7/	//	°C 1	emperature 1	01	_(13	3		/Time:		10	3,70	11/6	6:66	
hain of Custody (Env.) xlsx				Povision 2.0	emperature, 16	12	°(pH V	'erified	: 🗆	By:				

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 32922 Project: PE4247 Custody: 131456

Report Date: 20-Apr-2021 Order Date: 14-Apr-2021

Order #: 2116387

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2116387-01
 MW1-GW1

 2116387-02
 MW2-GW1

Approved By:

Mark Froto

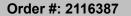
Mark Foto, M.Sc. Lab Supervisor

Client PO: 32922

Order #: 2116387

Certificate of Analysis

Client: Paterson Group Consulting Engineers


Report Date: 20-Apr-2021

Order Date: 14-Apr-2021

Project Description: PE4247

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	15-Apr-21	16-Apr-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	16-Apr-21	20-Apr-21
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	15-Apr-21	16-Apr-21

Client: Paterson Group Consulting Engineers

Client PO: 32922

Report Date: 20-Apr-2021 Order Date: 14-Apr-2021

Project Description: PE4247

Г	Client ID: Sample Date: Sample ID: MDL/Units	MW1-GW1 13-Apr-21 09:00 2116387-01 Water	MW2-GW1 13-Apr-21 09:00 2116387-02 Water	- - - -	- - -
Volatiles	MDE/Onits		1		
Acetone	5.0 ug/L	<5.0	<5.0	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-

Client: Paterson Group Consulting Engineers

Certificate of Analysis

Order #: 2116387

Report Date: 20-Apr-2021

Order Date: 14-Apr-2021

Client PO: 32922 Project Description: PE4247

	-				
	Client ID:	MW1-GW1	MW2-GW1	-	-
	Sample Date:	13-Apr-21 09:00	13-Apr-21 09:00	-	-
	Sample ID:	2116387-01	2116387-02	-	-
	MDL/Units	Water	Water	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	97.2%	93.8%	-	-
Dibromofluoromethane	Surrogate	101%	97.7%	-	-
Toluene-d8	Surrogate	101%	99.9%	-	-
Hydrocarbons			•		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Order #: 2116387

Report Date: 20-Apr-2021

Order Date: 14-Apr-2021

Client: Paterson Group Consulting Engineers Client PO: 32922 **Project Description: PE4247**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	76.8		ug/L		96.0	50-140			
Surrogate: Dibromofluoromethane	74.0		ug/L		92.4	50-140			
<u> </u>			· J. —						

Page 5 of 8

Report Date: 20-Apr-2021

Order Date: 14-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32922

Method Quality Control: Duplicate

Analysis		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
V olatiles			-						
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	7.36	0.5	ug/L ug/L	8.41			13.3	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.3	ug/L ug/L	ND			NC	30	
Chlorobenzene	ND ND	0.2	-	ND			NC	30	
Chloroform	4.20	0.5	ug/L	5.62			28.9	30	
Dibromochloromethane	4.20 ND	0.5 0.5	ug/L	5.62 ND			28.9 NC	30	
			ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	81.0	0.0	ug/L ug/L	ND	101	50-140	110	50	
<u> </u>	81.4		-		101	50-140 50-140			
Surrogate: Dibromofluoromethane			ug/L						
Surrogate: Toluene-d8	80.4		ug/L		100	50-140			

Report Date: 20-Apr-2021 Order Date: 14-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client PO: 32922

Client: Paterson Group Consulting Engineers

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2060	25	ug/L	ND	103	68-117			
F2 PHCs (C10-C16)	1260	100	ug/L	ND	78.9	60-140			
F3 PHCs (C16-C34)	4120	100	ug/L	ND	105	60-140			
F4 PHCs (C34-C50)	2560	100	ug/L	ND	103	60-140			
/olatiles			3						
Acetone	101	5.0	ug/L	ND	101	50-140			
Benzene	35.7	0.5	ug/L	ND	89.2	60-130			
Bromodichloromethane	33.0	0.5	ug/L	ND	82.6	60-130			
Bromoform	37.8	0.5	ug/L	ND	94.5	60-130			
Bromomethane	45.8	0.5	ug/L	ND	114	50-140			
Carbon Tetrachloride	31.6	0.2	ug/L	ND	79.0	60-130			
Chlorobenzene	40.8	0.5	ug/L	ND	102	60-130			
Chloroform	32.6	0.5	ug/L	ND	81.4	60-130			
Dibromochloromethane	34.7	0.5	ug/L	ND	86.6	60-130			
Dichlorodifluoromethane	45.9	1.0	ug/L	ND	115	50-140			
1,2-Dichlorobenzene	40.4	0.5	ug/L	ND	101	60-130			
1,3-Dichlorobenzene	41.1	0.5	ug/L	ND	103	60-130			
1,4-Dichlorobenzene	40.7	0.5	ug/L	ND	102	60-130			
1,1-Dichloroethane	32.7	0.5	ug/L	ND	81.7	60-130			
1,2-Dichloroethane	30.6	0.5	ug/L	ND	76.6	60-130			
1,1-Dichloroethylene	41.0	0.5	ug/L	ND	102	60-130			
cis-1,2-Dichloroethylene	34.7	0.5	ug/L	ND	86.8	60-130			
trans-1,2-Dichloroethylene	35.7	0.5	ug/L	ND	89.2	60-130			
1,2-Dichloropropane	35.2	0.5	ug/L	ND	88.0	60-130			
cis-1,3-Dichloropropylene	37.3	0.5	ug/L	ND	93.2	60-130			
trans-1,3-Dichloropropylene	33.8	0.5	ug/L	ND	84.6	60-130			
Ethylbenzene	38.1	0.5	ug/L	ND	95.2	60-130			
Ethylene dibromide (dibromoethane, 1,2	37.9	0.2	ug/L	ND	94.7	60-130			
Hexane	35.7	1.0	ug/L	ND	89.3	60-130			
Methyl Ethyl Ketone (2-Butanone)	95.8	5.0	ug/L	ND	95.8	50-140			
Methyl Isobutyl Ketone	97.1	5.0	ug/L	ND	97.1	50-140			
Methyl tert-butyl ether	87.0	2.0	ug/L	ND	87.0	50-140			
Methylene Chloride	40.6	5.0	ug/L	ND	102	60-130			
Styrene	41.1	0.5	ug/L	ND	103	60-130			
1,1,1,2-Tetrachloroethane	38.7	0.5	ug/L	ND	96.8	60-130			
1,1,2,2-Tetrachloroethane	37.5	0.5	ug/L	ND	93.7	60-130			
Tetrachloroethylene	40.7	0.5	ug/L	ND	102	60-130			
Toluene	38.9	0.5	ug/L	ND	97.2	60-130			
1,1,1-Trichloroethane	31.9	0.5	ug/L	ND	79.8	60-130			
1,1,2-Trichloroethane	35.2	0.5	ug/L	ND	88.1	60-130			
Trichloroethylene	38.1	0.5	ug/L	ND	95.2	60-130			
Trichlorofluoromethane	45.1	1.0	ug/L	ND	113	60-130			
Vinyl chloride	44.1	0.5	ug/L	ND	110	50-140			
m,p-Xylenes	74.9	0.5	ug/L ug/L	ND	93.7	60-130			
o-Xylene	39.9	0.5	ug/L ug/L	ND	99.7	60-130			
Surrogate: 4-Bromofluorobenzene	79.8	0.0	ug/L	.10	99.8	50-140			
Surrogate: 0-biomofluoromethane	79.0 78.7		ug/L ug/L		98.4	50-140 50-140			
Surrogate: Toluene-d8	77.8		ug/L ug/L		97.2	50-140			

Report Date: 20-Apr-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 14-Apr-2021

 Client PO:
 32922
 Project Description: PE4247

Qualifier Notes:

None

Certificate of Analysis

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2116387

Paracel Order Number (Lab Use Only) Chain Of Custody (Lab Use Only)

Nº 131456

2116387

Clina	t Name:			-			2 1	N	1.7	<i>y</i> (<u> </u>	1	1	5	100/	W. 3.5	ATON	W. F.	0.00	
100	1750N	į,		Proje	ct Ref:	47								16		- 4)	Page_	of	3	
Cont	act Name: ark D'Arcy		106.1	Quote		1.7		1			1	1			Ì	Turi	narou	nd Ti	ne	
Addr	ess: 4 Colonnado		3 8	PO #: 32 42 2 E-mail:						☐ 1 day ☐ 2 day				□ 3 c						
Teles 61	shone: 3 226 7381	ti ng maja sa taonas na nghi naga antang palaman. Na diang sa taonas sa na sa taonas na	(de sylv	M	n Ar	cy D Pater s	ion group.ca						ļu.	Date	e Req	juired:			REAL TO	
i	Regulation 153/04	Other Regulation	Ι.				POTENTIAL PROPERTY.							998						
X	able 1 Res/Park Med/Fine	☐ REG 558 ☐ PWQ0				S (Soil/Sed.) GW (Gr Water) SS (Storm/Sar								Requ	ired	Analy	sis			
		□ CCME □ MISA				Paint) A (Air) O (Oth								П	- 17-1-		1	1	T	П
_ T	able 3 Agri/Other	SU - Sani SU - Storm		ne	Containers	Sample	Taken	-F4+BTEX			by ICP		e/ -	i al		Çv: D		,		
	For RSC: Yes No	Other:	,×	Air Volume	Con	Violation of Property	1900	.s F1		s s	tals b	7.11	-16	B (HWS)		01-11	M (900	477	
	Sample ID/Locatio	n Name	Matrix	Air	# of	Date	Time] š	VOCs	PAH	Metals	E S	CrVI	B (H						
1	MW1-6 W1		GW		3	APr 13 2024		V,	1											
2	MW2-GW1	N	GW		3	\ \		7	/						- 16	u, i	vi.	j. 1		
3	growth in the state of the stat	the second second second	QOLD W.	d g	m wie	nggawaya Rullyan aka sewe aja Tari	V Capraglar 2003	1	'n.	9 (i ji	5,5	S. E.				10	Magazin	111	
4				114	7		# H . T	9	- 1	À										1
5	And the state of t	Maratily in a spirit of production of the spirit of the sp	o pole	, <u>-</u>	7.	to a sublimity and such discount discou			-	-	- 1	77 - 1		1		,		Se p		
6	7		7 .		7			1	1			+		\dashv						
7	in the second se							+		\neg		+	+	\forall			-			\vdash
8	7							-		1	+	+	+	+				-	- 3	
9	ý						, ' - , .	+		1	+	+	+	\dashv				0.		
10								+		\dashv	+	+	+	+			٠,	-		
	ished By (Sign):	Received By Di	river/De	pot:	5		Re (eived at Lab:			21			/	od of ed By:		ACE.	20	la.	OEL	<
elingu	ished By (Print):	Date/Time:	11		110	USE 142) murpo				1/1)ate/	Time	0	II,	2	7		
Gr A	ant Paterson	Temperature:	7/0	24/	14		Temperature:	108	1 1.0		۵. ۱	55		40 erifled		141 By:	20	5	:16	P
hain	0r 14 2021				11/24	7						ľ					N	117		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30926 Project: PE4247 Custody: 131521

Report Date: 6-May-2021 Order Date: 30-Apr-2021

Order #: 2118598

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2118598-01
 BH1-GW1

 2118598-02
 BH3-GW1

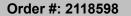
 2118598-03
 DUP

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 06-May-2021 Order Date: 30-Apr-2021


Project Description: PE4247

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client PO: 30926

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	3-May-21	4-May-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	5-May-21	6-May-21
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	3-May-21	4-May-21

Client: Paterson Group Consulting Engineers

Client PO: 30926 Project Description: PE4247

Report Date: 06-May-2021 Order Date: 30-Apr-2021

ſ	Client ID: Sample Date: Sample ID: MDL/Units	BH1-GW1 30-Apr-21 09:00 2118598-01 Water	BH3-GW1 30-Apr-21 09:00 2118598-02 Water	DUP 30-Apr-21 09:00 2118598-03 Water	- - -
Volatiles			!	!	<u> </u>
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	-
Benzene	0.5 ug/L	2.6	<0.5	<0.5	-
Bromodichloromethane	0.5 ug/L	0.9	<0.5	<0.5	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloroform	0.5 ug/L	16.5	0.5	0.6	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	6.4	<0.5	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-

Report Date: 06-May-2021 Order Date: 30-Apr-2021

Project Description: PE4247

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 30926

	-				
	Client ID:	BH1-GW1	BH3-GW1	DUP	-
	Sample Date:	30-Apr-21 09:00	30-Apr-21 09:00	30-Apr-21 09:00	-
	Sample ID:	2118598-01	2118598-02	2118598-03	-
	MDL/Units	Water	Water	Water	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	0.6	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	0.6	<0.5	<0.5	-
4-Bromofluorobenzene	Surrogate	103%	108%	108%	-
Dibromofluoromethane	Surrogate	98.8%	98.8%	105%	-
Toluene-d8	Surrogate	104%	105%	104%	-
Hydrocarbons			•		•
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Report Date: 06-May-2021

Order Date: 30-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 30926

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	87.3		ug/L		109	50-140			
Surrogate: Dibromofluoromethane	81.8		ug/L		102	50-140			
Surrogate: Toluene-d8	84.3		ug/L		105	50-140			

Order #: 2118598

Report Date: 06-May-2021

Order Date: 30-Apr-2021

Client: Paterson Group Consulting Engineers Client PO: 30926 **Project Description: PE4247**

Method Quality Control: Duplicate

No. of the		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
/olatiles			-						
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND ND	5.0 0.5	ug/L ug/L	ND ND			NC NC	30 30	
Bromodichloromethane	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
Bromoform	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC NC	30 30	
Bromomethane	ND ND	0.5 0.5	•	ND ND			NC NC	30 30	
Bromomethane Carbon Tetrachloride	ND ND	0.5 0.2	ug/L	ND ND			NC NC	30 30	
			ug/L						
Chloroform	ND ND	0.5 0.5	ug/L	ND			NC	30	
Chloroform	ND ND	0.5 0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	0.53			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND ND	5.0	ug/L ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND ND	5.0	ug/L ug/L	ND			NC	30	
Methyl tert-butyl ether	ND ND	2.0	ug/L ug/L	ND ND			NC NC	30 30	
Methylene Chloride	ND ND	2.0 5.0	ug/L ug/L	ND ND			NC NC	30 30	
	ND ND	5.0 0.5	-	ND ND			NC NC	30 30	
Styrene 1.1.1.2-Tetrachloroethane			ug/L					30 30	
1,1,1,2-Tetrachloroethane	ND ND	0.5 0.5	ug/L	ND			NC NC		
1,1,2,2-Tetrachloroethane	ND ND	0.5	ug/L	ND			NC NC	30	
Tetrachloroethylene	ND ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	1.40	0.5	ug/L	1.35			3.6	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	89.0		ug/L		111	50-140			
Surrogate: 4 Biomondorobenzene Surrogate: Dibromofluoromethane	83.7		ug/L		105	50-140			
Surrogate: Dibromondorometriane Surrogate: Toluene-d8	83.7 83.7		ug/L ug/L		105	50-140 50-140			

Report Date: 06-May-2021 Order Date: 30-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 30926

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
lydrocarbons									
F1 PHCs (C6-C10)	2160	25	ug/L	ND	108	68-117			
F2 PHCs (C10-C16)	1470	100	ug/L	ND	91.6	60-140			
F3 PHCs (C16-C34)	3860	100	ug/L	ND	98.5	60-140			
F4 PHCs (C34-C50)	2310	100	ug/L	ND	93.2	60-140			
/olatiles			Ü						
Acetone	110	5.0	ug/L	ND	110	50-140			
Benzene	37.9	0.5	ug/L	ND	94.8	60-130			
Bromodichloromethane	45.9	0.5	ug/L	ND	115	60-130			
Bromoform	41.8	0.5	ug/L	ND	104	60-130			
Bromomethane	36.1	0.5	ug/L	ND	90.3	50-140			
Carbon Tetrachloride	38.6	0.2	ug/L	ND	96.4	60-130			
Chlorobenzene	44.4	0.5	ug/L	ND	111	60-130			
Chloroform	45.6	0.5	ug/L	ND	114	60-130			
Dibromochloromethane	44.8	0.5	ug/L	ND	112	60-130			
Dichlorodifluoromethane	40.7	1.0	ug/L	ND	102	50-140			
1,2-Dichlorobenzene	32.9	0.5	ug/L	ND	82.2	60-130			
1,3-Dichlorobenzene	45.7	0.5	ug/L	ND	114	60-130			
1,4-Dichlorobenzene	38.5	0.5	ug/L	ND	96.2	60-130			
1,1-Dichloroethane	43.5	0.5	ug/L	ND	109	60-130			
1,2-Dichloroethane	44.6	0.5	ug/L	ND	112	60-130			
1,1-Dichloroethylene	41.4	0.5	ug/L	ND	104	60-130			
cis-1,2-Dichloroethylene	44.5	0.5	ug/L	ND	111	60-130			
trans-1,2-Dichloroethylene	44.5	0.5	ug/L	ND	111	60-130			
1,2-Dichloropropane	40.5	0.5	ug/L	ND	101	60-130			
cis-1,3-Dichloropropylene	44.0	0.5	ug/L	ND	110	60-130			
trans-1,3-Dichloropropylene	35.4	0.5	ug/L	ND	88.5	60-130			
Ethylbenzene	43.0	0.5	ug/L	ND	108	60-130			
Ethylene dibromide (dibromoethane, 1,2	43.8	0.2	ug/L	ND	109	60-130			
Hexane	45.0	1.0	ug/L	ND	112	60-130			
Methyl Ethyl Ketone (2-Butanone)	96.3	5.0	ug/L	ND	96.3	50-140			
Methyl Isobutyl Ketone	108	5.0	ug/L	ND	108	50-140			
Methyl tert-butyl ether	99.8	2.0	ug/L	ND	99.8	50-140			
Methylene Chloride	39.6	5.0	ug/L	ND	99.0	60-130			
Styrene	42.9	0.5	ug/L ug/L	ND	107	60-130			
1,1,1,2-Tetrachloroethane	41.1	0.5	ug/L	ND	103	60-130			
1,1,2,2-Tetrachioroethane	43.8	0.5	ug/L ug/L	ND	110	60-130			
Tetrachloroethylene	41.6	0.5	ug/L ug/L	ND	104	60-130			
Toluene	35.5	0.5	ug/L ug/L	ND	88.8	60-130			
1,1,1-Trichloroethane	42.3	0.5	ug/L ug/L	ND	106	60-130			
1,1,2-Trichloroethane	42.8	0.5	ug/L ug/L	ND	107	60-130			
Trichloroethylene	45.0	0.5	ug/L ug/L	ND	112	60-130			
Trichloroethylene	40.1	1.0	ug/L ug/L	ND	100	60-130			
Vinyl chloride	44.2	0.5	ug/L ug/L	ND	111	50-130			
m,p-Xylenes	90.3	0.5	ug/L ug/L	ND	113	60-130			
o-Xylene	44.0	0.5	ug/L ug/L	ND	110	60-130			
Surrogate: 4-Bromofluorobenzene	69.3	0.0	ug/L ug/L	יאט	86.6	50-130 50-140			
Surrogate: 4-Bromonuoroberizerie Surrogate: Dibromofluoromethane	79.8		ug/L ug/L		99.7	50-140 50-140			
Surrogate: Dibromondoromethane Surrogate: Toluene-d8	79.0 71.2		ug/L ug/L		89.0	50-140 50-140			

Report Date: 06-May-2021 Order Date: 30-Apr-2021

Project Description: PE4247

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 30926

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel Order Number (Lab Use Only)

Chain Of Custody

(Lab Use Only)

NO 121521

LABUKATUKI							")"	2	11	8	59	8			INE	TO	102	.1	
Client Name: Paterson Group				Project Ref: PE4Z47									Page of						
CONTACT NAME: Mark D'Arcy			Quote #:									Turnaround Time							
Contact Name: Mark D'Arcy Address: 154 Colonnade Rd. S.				PO#: 30926								□ 1 day					☐ 3 day		
				E-mail: m darcy @ fatersongroup.ca								☐ 2 day					Regular		
Telephone: 613-276-738					nd	arcy @ pates	Song roup.	cq					D	ate Req	uired:			/	
Regulation 153/04	Other R	Regulation		Aatrix 1	ľvne:	S (Soil/Sed.) GW (G	round Water)					(20)			85°				
☐ Table 1 🛱 Res/Park ☐ Med/Fin	e 🗆 REG 558	☐ PWQ0		Matrix Type: S (Soil/Sed.) GW (Ground SW (Surface Water) SS (Storm/Sanitary P (Paint) A (Air) O (Other)			,						Required Analysis						
☐ Table 2 ☐ Ind/Comm 🛱 Coarse	☐ CCME	☐ MISA					her)		T	Π	П	Т	Τ	T					Г
□ Agri/Other	□ .SU - Sani	☐ SU-Storm			5			Ĭ,											
□ Table	Mun:			ne n	of Containers	Sample Taken		-F4+BTEX			by ICP							1	
For RSC: ♥ Yes □ No	Other:		÷	Air Volume	Con	,		12			als by		l (SA						
Sample ID/Location	on Name		Matrix	Air V	# of	Date	Time	PHCs	VOCs	PAHs	Metals	E 3	B (HWS)						
1 BHI-GWI			GW		3	April 30/21	am	X	+-		П		-						
2 BH3-GW1			1		3	1	1	X	+		П	1	T						
3 Dup			6		2	7	7		X	П	\forall	\dagger	+						\vdash
4			ŕ	,		V.,		+			+	+	+						-i
5								+		Н	+	+	+						-
6		,						+			+	+	+						\vdash
7								+	-	-	-	+	+	\vdash			_	_	
8								+		-	+	+	+	\vdash			-	_	\vdash
9								+		\dashv	+	+	+		-	\dashv		_	-
10								+		-	+	+	\vdash		\dashv	ς.	\dashv	\dashv	
omments:			/						Ш			NA.	thed	of Deliver	Paris S				
												1	Ä	TEAL	Œ	. 4	P Dil	OF.	_
elinquished By (Sign):		Received By Dri	iver/De	pot:	1 %		Received at Lab:			1	1.	Mari	ified			200			
elinquished By (Print):		Date/Time: -	7	1.	UK	OUSE 1 52	Johney	201/1	1_	_	m		e/Tin	- ×	₫	N	M		
ate/Time:	th'w	Temperature:	0/	09	/2	° 21	Temperature (TAI C			4	_		140	1	30,	264	1	7:46
Chain of Custody (Env.) xlsx		40000				Revision 3.0	Temperature: 0	,4		°C		pH	Verifi	ed: D	Ву:				

Revision 3.0