#### Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

Archaeological Services

#### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

# patersongroup

# **Phase II Environmental Site Assessment**

3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

**Prepared For** 

Main and Main Developments Inc.

April 29 2019

Report: PE4546-2

# TABLE OF CONTENTS

| EXE | CUTIV       | E SUMMARY                                                      | iii |  |  |
|-----|-------------|----------------------------------------------------------------|-----|--|--|
| 1.0 | INTR        | ODUCTION                                                       | 1   |  |  |
|     | 1.1         | Site Description                                               | 1   |  |  |
|     | 1.2         | Current and Proposed Future Uses                               | 1   |  |  |
|     | 1.3         | Applicable Site Condition Standard                             | 2   |  |  |
| 2.0 | BAC         | KGROUND INFORMATION                                            | 2   |  |  |
|     | 2.1         | Physical Setting                                               | 2   |  |  |
|     | 2.2         | Past Investigations                                            | 2   |  |  |
| 3.0 | SCO         | PE OF INVESTIGATION                                            |     |  |  |
|     | 3.1         | Overview of Site Investigation                                 | 4   |  |  |
|     | 3.2         | Media Investigated                                             | 4   |  |  |
|     | 3.3         | Phase I Conceptual Site Model                                  | 4   |  |  |
|     | 3.4         | Deviations from Sampling and Analysis Plan                     | 6   |  |  |
|     | 3.5         | Impediments                                                    |     |  |  |
| 4.0 | INVE        | STIGATION METHOD                                               |     |  |  |
|     | 4.1         | Subsurface Investigation                                       | 6   |  |  |
|     | 4.2         | Soil Sampling                                                  |     |  |  |
|     | 4.3         | Field Screening Measurements                                   | 7   |  |  |
|     | 4.4         | Groundwater Monitoring Well Installation                       | 8   |  |  |
|     | 4.5         | Field Measurement of Water Quality Parameters                  | 8   |  |  |
|     | 4.6         | Groundwater Sampling                                           | 8   |  |  |
|     | 4.7         | Analytical Testing                                             | 9   |  |  |
|     | 4.8         | Residue Management                                             | 11  |  |  |
|     | 4.9         | Elevation Surveying                                            | 11  |  |  |
|     | 4.10        | Quality Assurance and Quality Control Measures                 | 11  |  |  |
| 5.0 | REVI        | EW AND EVALUATION                                              | 11  |  |  |
|     | 5.1         | Geology                                                        | 11  |  |  |
|     | 5.2         | Groundwater Elevations, Flow Direction, and Hydraulic Gradient | 11  |  |  |
|     | 5.3         | Fine-Coarse Soil Texture                                       | 12  |  |  |
|     | 5.4         | Soil: Field Screening                                          | 12  |  |  |
|     | 5.5         | Soil Quality                                                   | 12  |  |  |
|     | 5.6         | Groundwater Quality                                            | 13  |  |  |
|     | 5.7         | Quality Assurance and Quality Control Results                  | 14  |  |  |
|     | 5.8         | Phase II Conceptual Site Model                                 | 15  |  |  |
| 6.0 | CONCLUSIONS |                                                                |     |  |  |
| 7.0 | STAT        | TEMENT OF LIMITATIONS                                          | 23  |  |  |

#### List of Figures

Ottawa

patersongroup

Kingston

North Bay

| Figure 1 - Key Plan |                                         |  |  |  |  |
|---------------------|-----------------------------------------|--|--|--|--|
| PE4546-3            | Test Hole Location Plan                 |  |  |  |  |
| PE4546-4A           | Analytical Testing Plan – Soil (BTEX)   |  |  |  |  |
| PE4546-4B           | Analytical Testing Plan – Soil (PHC)    |  |  |  |  |
| PE4546-4C           | Analytical Testing Plan – Soil (VOC)    |  |  |  |  |
| PE4546-4D           | Analytical Testing Plan – Soil (METALS) |  |  |  |  |
| PE4546-4E           | Analytical Testing Plan – Soil (SAR)    |  |  |  |  |
| PE4546-4F           | Cross Section A'-A – Soil               |  |  |  |  |
| PE4546-4G           | Cross Section B'-B – Soil               |  |  |  |  |
| PE4546-5A           | Analytical Testing Plan – Groundwater   |  |  |  |  |
| PE4546-5B           | Cross Section A'-A – Groundwater        |  |  |  |  |
| PE4546-5C           | Cross Section B'-B – Groundwater        |  |  |  |  |

#### **List of Tables**

Table 1A – Soil Analytical Test Results – PHCs

- Table 2A Soil Analytical Test Results VOCs and BTEX
- Table 3A Soil Analytical Test Results Metals and Inorganics
- Table 1B Groundwater Analytical Test Results PHCs
- Table 2B Groundwater Analytical Test Results VOCs and BTEX
- Table 3B Groundwater Analytical Test Results Metals and Inorganics

### **List of Appendices**

Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

# EXECUTIVE SUMMARY

# Assessment

A Phase II ESA was conducted for the properties addressed 3-33 Selkirk Street and 2 Montreal Road, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property. The subsurface investigation consisted of drilling ten boreholes, all of which were constructed with groundwater monitoring wells.

Soil samples were obtained from the boreholes and screened using visual observations and organic vapour measurements. A total of ten soil samples were submitted for laboratory analysis of a combination of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F<sub>1</sub>-F<sub>4</sub>), volatile organic compounds (VOCs), metals and inorganics. PHC and BTEX parameters exceeding the MECP Table 3 Standards were identified along the north property line of 3-33 Selkirk Street and were reported on the 2 Montreal Road property by others. Electrical Conductivity exceedances were identified along the east property line as a result of the use of road salt for safety purposes. Paterson was unable to access 2 Montreal Road to confirm the soil quality.

Groundwater was determined to be in compliance with the MECP Table 3 Standards on the 3-33 Selkirk Street property. Previous reports indicated that impacted groundwater exists on 2 Montreal Road portion of the site. Paterson was unable to access 2 Montreal Road to confirm the groundwater quality.

# Conclusion

Based on the findings of the Phase II ESA, soil impacted with BTEX and PHC concentrations above the MECP Table 3 Coarse Grained Residential Standards is present on the Phase II Property along the north property line of 3-33 Selkirk Street and on the 2 Montreal Road property. Impacted groundwater reportedly exists on the 2 Montreal Road property, although this could not to be confirmed by Paterson. It is our understanding that the subject site is to be redeveloped with several residential and commercial buildings with underground parking covering the majority of the property.

It is our recommendation that an environmental site remediation program, involving the removal of all impacted soil and groundwater, be completed concurrently with the site redevelopment.

Prior to offsite disposal at a licenced landfill site, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

Prior to the commencement of construction activities, it is recommended that all groundwater monitoring wells be tested to confirm groundwater quality and to assess the need for any special disposal/management requirements.

It is also recommended that Paterson personnel be onsite during remediation activities to direct the excavation and segregation of impacted soil and to conduct confirmatory sampling as required.

It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of construction excavation. It is recommended that the integrity of the monitoring wells be maintained, prior to future construction, for future groundwater monitoring purposes.

# 1.0 INTRODUCTION

At the request of Main and Main Developments Inc., Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment of 3-33 Selkirk Street and 2 Montreal Road, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II Property, during the Phase I ESA conducted by Paterson in April 2019.

# **1.1 Site Description**

| Address:                | 3-33 Selkirk Street and 2 Montreal Road, Ottawa, Ontario.                                                                                                                                                                                                 |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Legal Description:      | Part of Lots 6 and 7, Gore Junction, Rideau Front, Gloucester Township, City of Ottawa, Ontario.                                                                                                                                                          |  |  |  |
| Property Identification |                                                                                                                                                                                                                                                           |  |  |  |
| Number:                 | 04237-0001, 04237-0003                                                                                                                                                                                                                                    |  |  |  |
| Location:               | The subject site covers the entire block bound by<br>Montreal Road, North River Road, Selkirk Street and<br>Montgomery Street, in Ottawa, Ontario. No access to<br>the property addressed as 2 Montreal Road was<br>provided as part of the Phase II ESA. |  |  |  |
| Latitude and Longitude: | 45° 25' 56" N, 75° 40' 05" W                                                                                                                                                                                                                              |  |  |  |
| Configuration:          | Irregular                                                                                                                                                                                                                                                 |  |  |  |
| Site Area:              | 1.64ha (approximate).                                                                                                                                                                                                                                     |  |  |  |

# **1.2 Current and Proposed Future Uses**

The Phase II Property is currently occupied by a large commercial plaza and parking areas. It is Paterson's understanding that the site will be redeveloped with a mixed use commercial and residential complex with an underground parking structure covering the majority of the site.

# **1.3 Applicable Site Condition Standard**

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of the Environment, Conservation and Parks (MECP), April 2011. The MECP Table 3 Standards are based on the following considerations:

- Coarse-grained soil conditions
- **Full depth generic site conditions**
- □ Non-potable groundwater conditions
- Residential land use

The residential standards were selected based on the proposed future use of the subject site. Based on a review of the soil conditions, coarse-grained standards are applicable to the site. Grain size analysis was not completed.

# 2.0 BACKGROUND INFORMATION

# 2.1 Physical Setting

The Phase II Property is located in an urban area surrounded by various sized residential, commercial, and institutional structures. Site topography is generally flat. The Phase II Property is at a similar grade as the adjacent properties. Site drainage consists primarily of sheet flow to catch basins located within the parking areas and the adjacent roadways. The Phase II Property is situated within a municipally serviced area.

# 2.2 Past Investigations

Pinchin completed a Phase I ESA in 2013 for the subject site. Based on their historical research Pinchin identified three potential environmental concerns to the subject site;

- A former retail fuel outlet at 2 Montreal Road,
- An existing retail fuel outlet at 42 Montreal Road,
- An existing Automotive Service Garage at 299 Montgomery Street.

Pinchin recommended a Phase II ESA be carried out at the time of site redevelopment. No subsurface investigation work was carried out.

While Paterson did not have access to 2 Montreal Road during this property, Paterson was able to review several reports prepared for the former retail fuel outlet at 2 Montreal Road as part of the historical research. Based on the reports prepared by others for 2 Montreal Road several areas of soil and groundwater impacts remain present on the 2 Montreal Road property.

Based on a 2019 Phase I ESA conducted by Paterson for the subject land, several historical on and off-site potentially contaminating activities (PCAs) were considered to result in areas of potential environmental concern (APECs) on the Phase I and Phase II Property, as presented in Table 1.

| Table 1: Are                                       | as of Potential                                                                                           | Environmental Co                                                                                                                                 | ncern                                              |                                         |                                                                                |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|
| Area of<br>Potential<br>Environmental<br>Concern   | Location of<br>Area of<br>Potential<br>Environmental<br>Concern with<br>respect to<br>Phase I<br>Property | Potentially<br>Contaminating<br>Activity                                                                                                         | Location<br>of PCA<br>(on-site<br>or off-<br>site) | Contaminants<br>of Potential<br>Concern | Media<br>Potentially<br>Impacted<br>(Groundwater,<br>Soil, and/or<br>Sediment) |
| Former Retail<br>Fuel Outlet                       | Northern section<br>of Phase I ESA<br>property                                                            | Item 28 - Gasoline and<br>Associated Products<br>Storage in Fixed UST                                                                            | On-Site                                            | PHCs, BTEX                              | Soil and groundwater                                                           |
| Former Lumber<br>Yard                              | Southeast corner<br>of Phase I ESA<br>property                                                            | Not Applicable                                                                                                                                   | On-Site                                            | Metals                                  | Soil and groundwater                                                           |
| Former Dry<br>Cleaners                             | South central<br>portion of Phase I<br>ESA property                                                       | Item 37 – Operation of<br>Dry Cleaning Equipment<br>(where chemicals are<br>used)                                                                | On-Site                                            | VOCs                                    | Soil and groundwater                                                           |
| Existing Retail<br>Fuel Outlet                     | Northeast corner<br>of Phase I ESA<br>property                                                            | Item 28 - Gasoline and<br>Associated Products<br>Storage in Fixed Tanks                                                                          | Off-Site                                           | PHCs, BTEX                              | Groundwater                                                                    |
| Existing<br>Automotive<br>Service Garage           | Eastern property<br>boundary of<br>Phase I ESA<br>property                                                | Item 52 – Storage,<br>Maintenance, Fuelling<br>and repair of equipment,<br>vehicles, and material<br>used to maintain<br>transportation systems. | Off-Site                                           | PHCs, BTEX                              | Groundwater                                                                    |
| Application of<br>Road Salt for<br>safety purposes | Within Parking<br>Areas of Phase I<br>ESA property                                                        | Not Applicable                                                                                                                                   | On-Site                                            | EC/SAR,<br>Sodium,<br>Chlorides         | Soil and groundwater                                                           |

A Phase II ESA was recommended to address the aforementioned APECs.

# 3.0 SCOPE OF INVESTIGATION

# 3.1 Overview of Site Investigation

The subsurface investigation was conducted during the interim of April 3 to 11th, 2019. The field program consisted of drilling ten boreholes, all of which were instrumented with groundwater monitoring wells.

# 3.2 Media Investigated

During the subsurface investigation, soil and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA.

Contaminants of concern for soil and groundwater include petroleum hydrocarbons (PHCs, fractions F<sub>1-</sub>F<sub>4</sub>), Benzene, Toluene, Ethylbenzne, and Xylenes (BTEX), volatile organic compounds (VOCs), metals (including Mercury and Chrome VI), Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR) and Chlorides.

# 3.3 Phase I Conceptual Site Model

### Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on the information from NRCAN, bedrock in the area of the site consists of shale of the Billings Formation. Based on the maps, the thickness of overburden ranges from 3 to 10 m. Overburden consists of offshore marine sediments (sand and silt). Groundwater is expected to be encountered in the overburden or the upper weathered shale bedrock.

### **Contaminants of Potential Concern**

As per Section 3.2 of this report, CPCs identified on the subject site include Metals (including Hg, and CrVI), PHCs, BTEX, VOCs, EC, SAR and Chlorides.

### **Existing Buildings and Structures**

The subject site is occupied by a commercial plaza with a partial basement in the southwest corner of the building and mezzanines in several of the units.

#### Water Bodies

The closest water body is the Rideau River, approximately 35m to the west of the subject site.

#### **Areas of Natural Significance**

There are no areas of natural and scientific interest on the subject property or within the Phase I ESA study area

#### **Drinking Water Wells**

The subject site is located within a municipally serviced area and drinking water wells are not considered to be present within the Phase I ESA study area.

#### Neighbouring Land Use

Neighbouring land use in the Phase I study area consists of commercial, residential and institutional properties. Land use is shown on Drawing PE4546-2 Surrounding Land Use Plan.

# Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 2.2 of this report, Potentially Contaminating Activities and Areas of Potential Environmental Concern were identified within the Phase I ESA study area. Four PCAs were identified on the subject site during the historical review or Phase I ESA site visit. Two additional off site PCAs representing APECs on the subject site were identified during the historical review;

- General Former retail fuel outlet along the northern part of the subject site;
- Given Series Former dry cleaner located within the retail plaza on the subject site;
- Given Service And Service And
- Existing Retail fuel outlet located to the east of the subject site;
- Existing automobile service garage located to the east of the subject site;
- Application of road salt for safety purposes.

### Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I ESA is considered to be sufficient to conclude that there are areas of potential environmental concern on the subject site which have the potential to have impacted the subject site. The presence of potentially contaminating activities

was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

# 3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. There were no deviations from the Sampling and Analysis Plan, with the exception of duplicate and trip blank samples. Appropriate trip blank and duplicate sampling is recommended to be completed during a future analytical testing program.

# 3.5 Impediments

Paterson was unable to access the 2 Montreal Road property as part of the Phase II ESA. No soil or groundwater samples were collected on the 2 Montreal Road property. Borehole locations were adjusted slightly due to underground utilities throughout the subject site, however no significant deviations occurred.

# 4.0 INVESTIGATION METHOD

# 4.1 Subsurface Investigation

The subsurface investigation was conducted between April 3<sup>rd</sup> and 11<sup>th</sup>, 2019 and consisted of drilling ten boreholes on the Phase II Property. All of the boreholes were instrumented with groundwater monitoring wells. The boreholes were placed to address the aforementioned areas of potential environmental concern (APECs) and to provide coverage of the site from a geotechnical perspective. The boreholes were drilled with a truck mounted power auger drill rig, with the exception of BH10 which was drilled using portable drilling equipment. The truck mounted drill rig was provided by George Downing Estate Drilling of Hawkesbury, Ontario. The portable drilling equipment was provided by CCC Geotechnical and Environmental Drilling of Ottawa, Ontario. Borehole locations are shown on Drawing PE4546-3 – Test Hole Location Plan, appended to this report.

# 4.2 Soil Sampling

A total of 99 soil samples were obtained from the boreholes by means of sampling from shallow auger flights and split spoon sampling. The depths at which auger samples and split spoon samples were obtained from the boreholes are shown as "**AU**" and "**SS**" on the Soil Profile and Test Data Sheets, appended to this report.

Site soils consist of a pavement structure underlain by fill material and glacial till followed by fractured shale bedrock. Fill material present beneath the pavement structure extended to depths ranging from approximately 1.98m and 5.64m below the existing grade and generally consisted of silty sand with gravel and shale fragments. Glacial till, consisting of silty sand, gravel, and trace clay, was identified in some boreholes beneath the fill material. Fractured shale bedrock was encountered in all boreholes between 1.98m and 5.79m below the existing grade, with the exception of BH9 where bedrock was not encountered and the borehole was terminated in glacial till. The bedrock was cored in several boreholes to facilitate the installation of a groundwater monitoring well.

# 4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as soil vapour screening with an RKI Eagle Combustible Vapour Monitor.

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated/manipulated gently as the measurements were taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement.

The combustible vapour readings were found to range from 0 ppm to 25ppm. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

No obvious olfactory indications of potential environmental concerns were identified in the soil samples, with the exception of faint hydrocarbon odours in BH1. Several fill samples were selected for analysis based on a visual evaluation of the soil quality. Several additional soil samples including ones from BH1, were selected for analytical testing.

# 4.4 Groundwater Monitoring Well Installation

Ten groundwater monitoring wells were installed on the Phase II Property as part of the Phase II investigation. The monitoring wells consisted of 32 mm or 51mm diameter Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

| Table 2: Monitoring Well Construction Details          |                                |                           |                                 |                      |                              |                |
|--------------------------------------------------------|--------------------------------|---------------------------|---------------------------------|----------------------|------------------------------|----------------|
| Well ID                                                | Ground<br>Surface<br>Elevation | Total<br>Depth<br>(m BGS) | Screened<br>Interval<br>(m BGS) | Sand Pack<br>(m BGS) | Bentonite<br>Seal<br>(m BGS) | Casing<br>Type |
| BH1                                                    | 98.45                          | 8.23                      | 5.23-8.23                       | 4.93-8.23            | 0.30-4.93                    | Flushmount     |
| BH2                                                    | 98.46                          | 8.18                      | 5.18-8.18                       | 4.88-8.18            | 0.30-4.88                    | Flushmount     |
| BH3                                                    | 98.84                          | 7.67                      | 4.67-7.67                       | 4.37-7.67            | 0.30-4.37                    | Flushmount     |
| BH4                                                    | 98.87                          | 8.13                      | 5.13-8.13                       | 4.83-8.13            | 0.30-4.83                    | Flushmount     |
| BH5                                                    | 98.92                          | 7.67                      | 4.67-7.67                       | 4.37-7.67            | 0.30-4.37                    | Flushmount     |
| BH6                                                    | 99.06                          | 8.25                      | 5.25-8.25                       | 4.95-8.25            | 0.30-4.95                    | Flushmount     |
| BH7                                                    | 99.12                          | 7.92                      | 4.92-7.92                       | 4.62-7.92            | 0.30-4.62                    | Flushmount     |
| BH8                                                    | 99.07                          | 7.62                      | 4.62-7.62                       | 4.32-7.62            | 0.30-4.32                    | Flushmount     |
| BH9                                                    | 99.03                          | 8.23                      | 5.23-8.23                       | 4.93-8.23            | 0.30-4.93                    | Flushmount     |
| BH10 <sup>1</sup>                                      | NA                             | 7.92                      | 4.92-7.92                       | 4.62-7.92            | 0.30-4.62                    | Flushmount     |
| 1 - Ground Surface Elevations at BH10 was not recorded |                                |                           |                                 |                      |                              |                |

# 4.5 Field Measurement of Water Quality Parameters

Field measurement of water quality parameters was not completed as part of the Phase II ESA. Significant sediment was encountered in several monitoring wells rendering the equipment unusable. Water quality parameters were abandoned to prevent damage to water sampling equipment.

# 4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

# 4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil samples were submitted for analysis:

| Table 3: Soil Samples Submitted              |                                                  |                     |                                           |                     |      |        |                                                                        |  |
|----------------------------------------------|--------------------------------------------------|---------------------|-------------------------------------------|---------------------|------|--------|------------------------------------------------------------------------|--|
|                                              |                                                  | Parameters Analyzed |                                           |                     |      | ed     |                                                                        |  |
| Sample<br>ID                                 | Sample Depth /<br>Stratigraphic<br>Unit          | ВТЕХ                | PHCs<br>(F <sub>1</sub> -F <sub>4</sub> ) | Metals <sup>1</sup> | VOCs | EC/SAR | Rationale                                                              |  |
| BH1-SS2                                      | 0.76-1.37m, Fill                                 |                     |                                           | Х                   |      |        | Assess Fill Material of<br>Unknown Quality                             |  |
| BH1-SS7                                      | 4.57-5.18m,<br>Glacial Till /<br>Weathered Shale | х                   | х                                         |                     |      |        | Assess the former RFO at 2<br>Montreal Road                            |  |
| BH2-SS8                                      | 5.33-5.94m,<br>Glacial Till /<br>Weathered Shale | х                   | х                                         |                     |      |        | Assess the former RFO at 2<br>Montreal Road                            |  |
| BH3-SS2                                      | 0.76-1.37m, Fill                                 |                     |                                           | X1                  |      |        | Assess Fill Material of                                                |  |
| BH4-SS2                                      | 0.76-1.37m, Fill                                 |                     |                                           |                     |      | Х      | Unknown Quality and the                                                |  |
| BH5-SS2                                      | 0.76-1.37m, Fill                                 |                     |                                           | X1                  |      |        | application of road salt for                                           |  |
| BH6-SS2                                      | 0.76-1.37m, Fill                                 |                     |                                           | X1                  |      |        | safety purposes                                                        |  |
| BH7-SS8                                      | 5.33-5.94m,<br>Glacial Till /<br>Weathered Shale |                     |                                           |                     | х    |        | Assess the former Dry<br>Cleaners within the<br>commercial plaza.      |  |
| BH8-SS3                                      | 1.52-2.13m, Fill                                 |                     |                                           | Х                   |      |        | Assess Fill Material of                                                |  |
| BH9-SS2                                      | 0.76-1.37m, Fill                                 |                     |                                           | X1                  |      | x      | Unknown Quality the<br>application of road salt for<br>safety purposes |  |
| 1 – Metals including Mercury and Chromium VI |                                                  |                     |                                           |                     |      |        |                                                                        |  |

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following groundwater samples were submitted for analysis:

| Table 4:                                                                     | Table 4: Groundwater Samples Submitted           |      |                 |                     |        |           |                                                                                                                                          |  |
|------------------------------------------------------------------------------|--------------------------------------------------|------|-----------------|---------------------|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                              |                                                  | P    | arame           | ters A              | nalyze | ed        |                                                                                                                                          |  |
| Sample<br>ID                                                                 | Screened Interval /<br>Stratigraphic Unit        | BTEX | PHCs<br>(F1-F4) | Metals <sup>1</sup> | vocs   | Chlorides | Rationale                                                                                                                                |  |
| BH1-GW1                                                                      | 5.22-8.22m, Glacial<br>Till / Weathered<br>Shale |      | х               |                     | x      |           | Assess the former retail fuel outlet at 2 Montreal                                                                                       |  |
| BH2-GW1                                                                      | 5.17-8.17m, Glacial<br>Till / Weathered<br>Shale |      | х               | X <sup>2</sup>      | х      | х         | Road                                                                                                                                     |  |
| BH3-GW1                                                                      | 3.45-6.45m Glacial<br>Till / Weathered<br>Shale  | х    | х               |                     |        |           | Assess the former retail<br>fuel outlet at 2 Montreal<br>Road and the existing<br>retail fuel outlet to the<br>east of the subject site. |  |
| BH4-GW1                                                                      | 4.82-7.82m, Glacial<br>Till / Weathered<br>Shale |      |                 | X <sup>2</sup>      |        | х         | Assess the potential<br>impacts related to the<br>application of road salt<br>for safety purposes                                        |  |
| BH5-GW1                                                                      | 4.67-7.67, Glacial Till<br>/ Weathered Shale     |      | x               |                     | x      |           | Assess any offsite<br>impacts from the<br>adjacent automotive<br>service garage                                                          |  |
| BH6-GW1                                                                      | 5.25-8.25m, Glacial<br>Till / Weathered<br>Shale |      |                 | х                   |        |           | Assess potential<br>impacts from fill material<br>of unknown quality                                                                     |  |
| BH7-GW1                                                                      | 4.97-7.97m, Glacial<br>Till / Weathered<br>Shale |      |                 |                     | x      |           | Assess the former Dry<br>Cleaners within the<br>commercial plaza.                                                                        |  |
| BH8-GW1                                                                      | 4.62-7.62m, Glacial<br>Till / Weathered<br>Shale |      |                 | х                   | х      | х         | Assess potential<br>impacts from fill material                                                                                           |  |
| BH9-GW1                                                                      | 5.22-8.22m, Glacial<br>Till / Weathered<br>Shale |      |                 | Х                   | х      | х         | of unknown quality and road salt                                                                                                         |  |
| BH10-<br>GW1                                                                 | 4.92-7.92m, Glacial<br>Till / Weathered<br>Shale |      |                 |                     | x      |           | Assess the former Dry<br>Cleaners within the<br>commercial plaza.                                                                        |  |
| 1 – Metals including Mercury and Chromium VI<br>2 – Analysed for Sodium only |                                                  |      |                 |                     |        |           |                                                                                                                                          |  |

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

# 4.8 Residue Management

All purge water and fluids from equipment cleaning were retained on-site.

# 4.9 Elevation Surveying

An elevation survey of all borehole locations (with the exception of BH10) was completed by Paterson at the time of the subsurface investigation. All borehole elevations are relative to the top spindle of a fire hydrant in front of 307 Montgomery Street with an assumed elevation of 100m.

# 4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

# 5.0 REVIEW AND EVALUATION

# 5.1 Geology

Site soils generally consist of a pavement structure over fill material, underlain by native silty clay and/or glacial till. Site stratigraphy is shown on Drawing PE4546-4F – Cross-Section A-A' and Drawing PE4546-5B – Cross-Section B-B'.

# 5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on April 12, 2019, using an electronic water level meter. Groundwater levels are summarized below in Table 6. All borehole elevations are relative to the top spindle of a fire hydrant in front of 307 Montgomery Street, a with an assumed elevation 100m

| Table 5: Groundwater Level Measurements                |               |                   |             |                |  |
|--------------------------------------------------------|---------------|-------------------|-------------|----------------|--|
| Borehole                                               | Ground        | Water Level Depth | Water Level | Date of        |  |
| Location                                               | Surface       | (m below grade)   | Elevation   | Measurement    |  |
|                                                        | Elevation (m) |                   | (m ASL)     |                |  |
| BH1                                                    | 98.45         | 6.02              | 92.43       | April 12, 2019 |  |
| BH2                                                    | 98.46         | 5.56              | 92.90       | April 12, 2019 |  |
| BH3                                                    | 98.84         | 5.94              | 92.90       | April 12, 2019 |  |
| BH4                                                    | 98.87         | 5.95              | 92.92       | April 12, 2019 |  |
| BH5                                                    | 98.92         | 5.98              | 92.94       | April 12, 2019 |  |
| BH6                                                    | 99.06         | 5.56              | 93.50       | April 12, 2019 |  |
| BH7                                                    | 99.12         | 6.22              | 92.90       | April 12, 2019 |  |
| BH8                                                    | 99.07         | 6.16              | 92.91       | April 12, 2019 |  |
| BH9                                                    | 99.03         | 4.04              | 94.99       | April 12, 2019 |  |
| BH10 <sup>1</sup>                                      | NA            | 6.43              | NA          | April 12, 2019 |  |
| 1 – Ground Surface Elevation at BH10 was not recorded. |               |                   |             |                |  |

Based on the groundwater elevations measured during the April 2019 sampling event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4546-3 – Test Hole Location Plan. Based on the contour mapping, groundwater flow beneath the Phase II Property was calculated for the site. The groundwater appears to flow towards the northwest. A horizontal hydraulic gradient of approximately 0.011 m/m was calculated.

# 5.3 Fine-Coarse Soil Texture

No grain size analysis was completed for the subject site. Based on the observed soil conditions the site is considered to be coarse textured.

# 5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in vapour readings ranging from 0ppm to 25ppm. No olfactory indications of potential contamination were identified in the soil samples at the time of the field program, with the exception of a faint hydrocarbon odour from BH1. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

# 5.5 Soil Quality

Various soil samples were submitted for analytical testing. The results of the analytical testing are presented in the Tables at the end of the report. The laboratory certificates of analysis are provided in Appendix 1. A discussion of the soil quality at the subject site, based on the analytical testing, follows;

#### PHCs and BTEX

Two soil samples were submitted for analysis of PHCs (F1-F4) and BTEX. Based on the analytical test results, PHCs and BTEX exceeding the MECP Table 3 Standards were identified along the north property line of 3-33 Selkirk Street, adjacent to the former retail fuel outlet at 2 Montreal Road. Based on a review of reports by others, impacted soil exists on the 2 Montreal Road property. The results of the analytical testing for PHCs and BTEX are provided in Table 1A amd 2A at the end of this report.

### VOCs

One soil sample was submitted for analysis of VOCs. Based on the analytical test results, no VOCs (with the exception of BTEX parameters) were identified in the soil sample analysed. The soil sample is in compliance with the MECP Table 3 Standards for VOCs. The results of the analytical testing for VOCs are provided in Table 2A at the end of this report.

#### Metals and Inorganics

Seven soil samples were submitted for analysis of metals (including Cr VI and Hg) and/or Inorganics (Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC)). Based on the analytical test results, the fill material on the subject site is in compliance with the MECP Table 3 Standards for metals. Based on the analytical test results, the shallow soils on the subject site exceed the MECP Table 3 Standards for EC. The results of the analytical testing for Metals and Inorganics are provided in Table 3A at the end of this report.

# 5.6 Groundwater Quality

Groundwater samples were submitted for various analytical testing. The results of the analytical testing are presented in the Tables at the end of the report. The laboratory certificates of analysis are provided in Appendix 1. A discussion of the groundwater quality at the subject site, based on the 2019 Phase II ESA, follows;

#### PHCs and BTEX

Four groundwater samples were submitted for analysis of PHCs (F1-F4) and BTEX. Based on the analytical test results, the groundwater on the subject site is in compliance for PHCs and BTEX. The results of the analytical testing for PHCs is provided in Table 1B at the end of this report. BTEX results are included in Table 2B at the end of this report.

#### VOCs

Seven groundwater samples were submitted for analysis of VOCs. Based on the analytical test results, the groundwater on the subject site is in compliance for VOCs. The results of the analytical testing for VOCs are provided in Table 2B at the end of this report.

#### Metals and Inorganics

Five groundwater samples were submitted for analysis of Metals and/or Inorganics. Based on the analytical test results, the groundwater on the subject site is in compliance for Metals and Inorganics The results of the analytical testing for Metals and Inorganics are provided in Table 3B at the end of this report.

# 5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the April 2019 sampling event were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type. As per Subsection 47(3) of O.Reg. 153/04 as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

# 5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 269/11 amending O.Reg. 153/04 - Record of Site Condition regulation, made under the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

# Site Description

# Potentially Contaminating Activity and Areas of Potential Environmental Concern

As indicated in the Phase I-ESA report and Section 2.2 of this report, the following PCAs are considered to result in APECs on the Phase I and Phase II Property:

- □ Former Retail Fuel outlet on the northern portion of the subject site;
- □ Former Lumber Yard in the southeast corner of the subject site
- Former Dry Cleaners within the commercial plaza on the southern portion of the subject site;
- Existing Retail Fuel Outlet to the east of the subject site;
- Existing Automotive Service Garage to the east of the subject site;
- Application of Road Salt for safety purposes throughout the parking areas at the subject site.

Contaminants of potential concern associated with the aforementioned PCAs include a combination of Metals (including Hg and Cr(VI)), Inorganics, PHCs, BTEX, and VOCs in the groundwater and/or soil.

#### Subsurface Structures and Utilities

Underground service locates were completed prior to the subsurface investigation. Underground utilities on the Phase II Property include natural gas, electrical, communications, water, and sewage services. No private wells or sewage systems are present on the Phase II Property or within the Phase I Study Area.

# **Physical Setting**

### Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on the cross sections attached in the figures section of this report. Stratigraphy consists of:

- Pavement structure consisting of approximately 0.1m of asphaltic concrete over crushed stone.
- □ Fill material generally consisting of brown silty sand with crushed stone, gravel and clay, was identified at each borehole location, beneath the pavement structure and extending to depths ranging from approximately 1.98 to 5.64m below grade.
- Glacial till was identified beneath the fill material at three of the borehole locations (BH5, BH9 and BH10). The glacial till is a sandy clay matrix with gravel and shale fragments.
- Fractured black shale was identified in all boreholes (with the exception of BH9), between depths of 1.98 and 5.79m below grade. Groundwater was encountered in the shale.

### Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered within the fractured shale bedrock. These two strata are expected to act as one aquifer throughout the subject site and are at times indistinguishable from each other geologically.

Water levels were measured at the subject site on April 12, 2019, at depths ranging from 4.04-6.43m below grade. Based on the groundwater elevations measured during this monitoring event, groundwater contour mapping was completed and the horizontal hydraulic gradient for the subject site was calculated. Groundwater flow at the subject site was in a north-westerly direction, with a hydraulic gradient of approximately 0.011 m/m.

#### Approximate Depth to Bedrock

Fractured shale was encountered between 1.98m and 5.79m below the existing grade. Based on the soil samples collected, the fractured shale and the native glacial till are at times indistinguishable geologically. Where rock was cored, low recovery and RQD values were encountered, indicating poor quality bedrock.

#### Approximate Depth to Water Table

Depth to water table at the subject site varies between approximately 4.04 to 6.43m below existing grade.

#### Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the subject site.

Section 43.1 of the Regulation does not apply to the subject site in that the subject site is not a Shallow Soil Property.

#### Fill Placement

Fill material was identified across the Phase II Property beneath the pavement structure and extended to depths of 5.64m below grade in select locations. The fill material is suspected to have been placed during previous redevelopments of the subject site and surrounding area.

### Proposed Buildings and Other Structures

It is our understanding that the Phase II Property will be redeveloped with a multistorey residential/commercial complex with underground parking and a building footprint covering the majority of the property.

#### **Existing Buildings and Structures**

The 3-33 Selkirk Street property is occupied by a large commercial plaza along the south property boundary, with the remaining areas covered by surface parking. 2 Montreal Road is a gravel covered fenced area with no buildings or structures visible.

#### Water Bodies

There are no water bodies on the subject site. The Rideau River is present approximately 35m to the west of the subject site. No other water bodies are present within the study area.

#### Areas of Natural Significance

No areas of natural significance are present on or within the study area.

# **Environmental Condition**

#### **Areas Where Contaminants are Present**

Based on visual screening and analytical test results, PHC and BTEX impacted soil is present along the north property line of the 3-33 Selkirk Street property. No impacted groundwater was identified on the 3-33 Selkirk Street property. Based on a historical report review, impacted soil and groundwater are present on the 2 Montreal Road property. Paterson was not able to access the 2 Montreal Road property to confirm the soil and groundwater results at this time. Analytical testing also indicated that exceedances related to EC in the soil (related to the application of road salt for safety purposes) were identified on the subject site.

#### Types of Contaminants

Based on the PCAs resulting in APECs on the Phase II Property and current analytical testing, contaminants of concern in the soil include the following: PHCs (F1 and F2), Benzene, Ethylbenzene, Xylenes and EC.

Based on the current analytical testing there are no contaminants of concern in the groundwater on the 3-33 Selkirk Street property. The 2 Montreal Road property has previously identified exceedances for PHCs and BTEX in the groundwater, although these impacts were not able to be confirmed as part of this Phase II ESA.

#### **Contaminated Media**

Based on the results of the Phase II ESA, shallow fill material (directly beneath the pavement structure) is impacted with EC. Soil/shale impacted with PHCs and BTEX was identified along the north property line of the 3-33 Selkirk Street property, adjacent to 2 Montreal Road.

The groundwater on 3-33 Selkirk Street is not considered to be impacted. The groundwater on the 2 Montreal Road property is considered to be impacted with PHCs and BTEX, although Paterson was not able to access the property to update the groundwater quality information.

#### What Is Known About Areas Where Contaminants Are Present

Impacted soil/shale related to the former on-site retail fuel outlet is present in the north portion of the subject site. Impacts related to the application of road salt for safety purposes are present along the eastern property boundary, although are expected to extend throughout the parking areas.

Groundwater impacts appear to be confined to the 2 Montreal Road property and do not appear to extend onto the 3-33 Selkirk Street property.

#### **Distribution and Migration of Contaminants**

The PHC impacts are expected to be related to the former retail fuel outlet at 2 Montreal Road and appear confined to the 2 Montreal Road property and the northern portion of the Selkirk Street property. The PHC impacts appear to have migrated from the former RFO onto the Selkirk Street property. Migration is affected by seasonal fluctuations in water levels due to precipitation and meltwater on the 2 Montreal Road property.

### Discharge of Contaminants

The PHC impacted soil is considered to have resulted from the former uses of the subject site as a retail fuel outlet. The EC exceedances are related to the application of road salt for safety purposes (de-icing) on the subject site and adjacent roadways.

### **Climatic and Meteorological Conditions**

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

#### Potential for Vapour Intrusion

The potential for vapour intrusion is considered to be low based on the location of the BTEX and PHC impacts. The BTEX and PHC impacts are all located a significant distance from the subject building and are not considered likely to result in vapour intrusion.

# 6.0 CONCLUSIONS

### Assessment

A Phase II ESA was conducted for the properties addressed 3-33 Selkirk Street and 2 Montreal Road, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property. The subsurface investigation consisted of drilling ten boreholes, all of which were constructed with groundwater monitoring wells.

Soil samples were obtained from the boreholes and screened using visual observations and organic vapour measurements. A total of ten soil samples were submitted for laboratory analysis of a combination of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F<sub>1</sub>-F<sub>4</sub>), volatile organic compounds (VOCs), metals and inorganics. PHC and BTEX parameters exceeding the MECP Table 3 Standards were identified along the north property line of 3-33 Selkirk Street and were reported on the 2 Montreal Road property by others. Electrical Conductivity exceedances were identified along the east property line as a result of the use of road salt for safety purposes. Paterson was unable to access 2 Montreal Road to confirm the soil quality.

Groundwater was determined to be in compliance with the MECP Table 3 Standards on the 3-33 Selkirk Street property. Previous reports indicated that impacted groundwater exists on 2 Montreal Road portion of the site. Paterson was unable to access 2 Montreal Road to confirm the groundwater quality.

# Conclusion

Based on the findings of the Phase II ESA, soil impacted with BTEX and PHC concentrations above the MECP Table 3 Coarse Grained Residential Standards is present on the Phase II Property along the north property line of 3-33 Selkirk Street and on the 2 Montreal Road property. Impacted groundwater reportedly exists on the 2 Montreal Road property, although this could not to be confirmed by Paterson. It is our understanding that the subject site is to be redeveloped with several residential and commercial buildings with underground parking covering the majority of the property.

It is our recommendation that an environmental site remediation program, involving the removal of all impacted soil and groundwater, be completed concurrently with the site redevelopment.

Prior to offsite disposal at a licenced landfill site, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

Prior to the commencement of construction activities, it is recommended that all groundwater monitoring wells be tested to confirm groundwater quality and to assess the need for any special disposal/management requirements.

It is also recommended that Paterson personnel be onsite during remediation activities to direct the excavation and segregation of impacted soil and to conduct confirmatory sampling as required.

It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of construction excavation. It is recommended that the integrity of the monitoring wells be maintained, prior to future construction, for future groundwater monitoring purposes.

# 7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 as amended, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

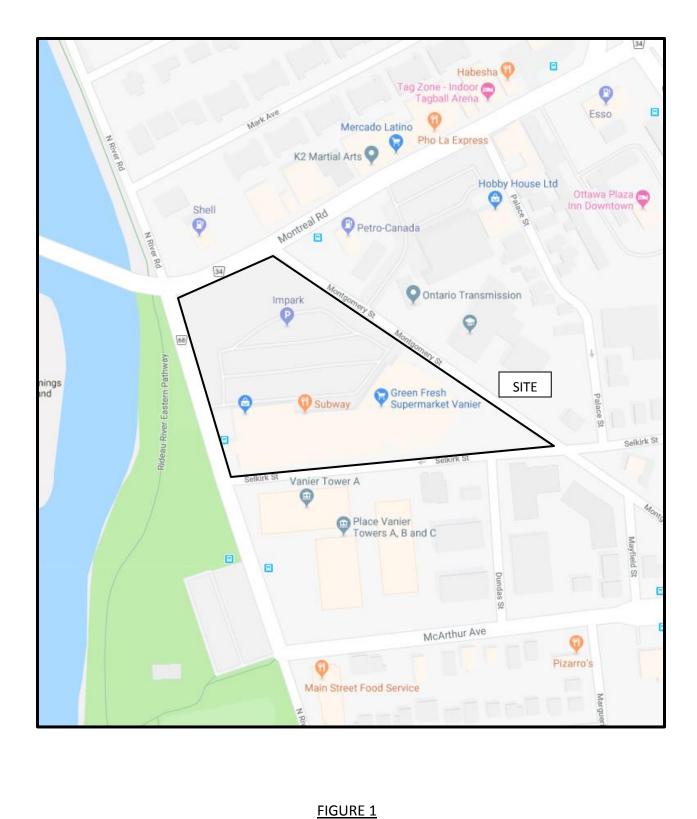
This report was prepared for the sole use of Main and Main Developments Inc. Notification from Main and Main Developments Inc. and Paterson Group will be required to release this report to any other party.

#### Paterson Group Inc.

Michael Beaudoin, P.Eng.



Mark S. D'Arcy, P.Eng.


#### Report Distribution:

- Main and Main
- Paterson Group



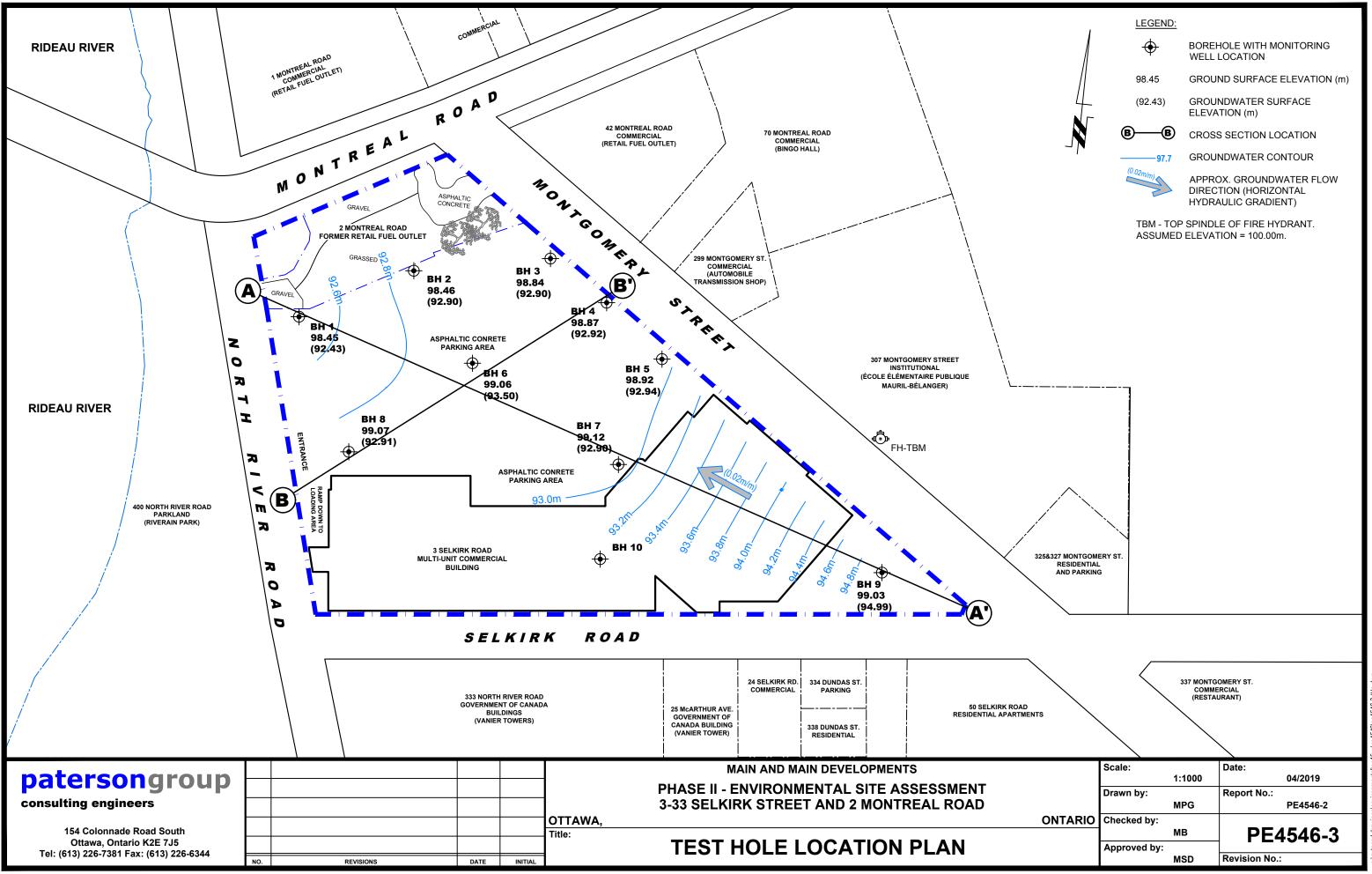
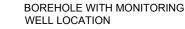
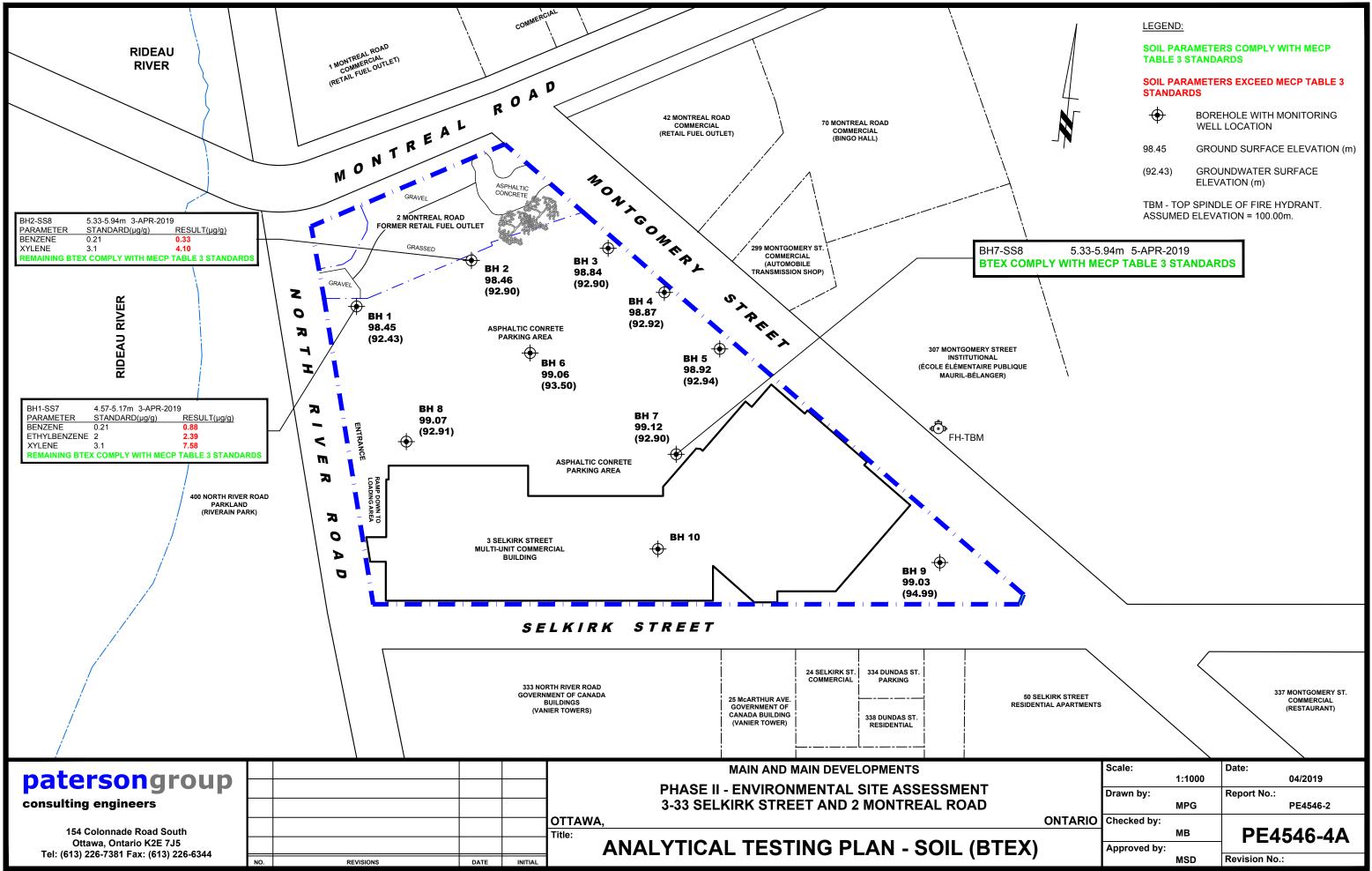

# FIGURES

Figure 1 - Key Plan PE4546-3 Test Hole Location Plan Analytical Testing Plan – Soil (BTEX) PE4546-4A Analytical Testing Plan – Soil (PHC) PE4546-4B Analytical Testing Plan – Soil (VOC) **PE4546-4C** Analytical Testing Plan – Soil (METALS) PE4546-4D PE4546-4EAnalytical Testing Plan – Soil (SAR) PE4546-4FCross Section A-A' Soil PE4546-4G **Cross Section B-B' Soil** PE4546-5A **Analytical Testing Plan – Groundwater** PE4546-5B **Cross Section A-A' Groundwater Cross Section B-B' Groundwater** PE4546-5C

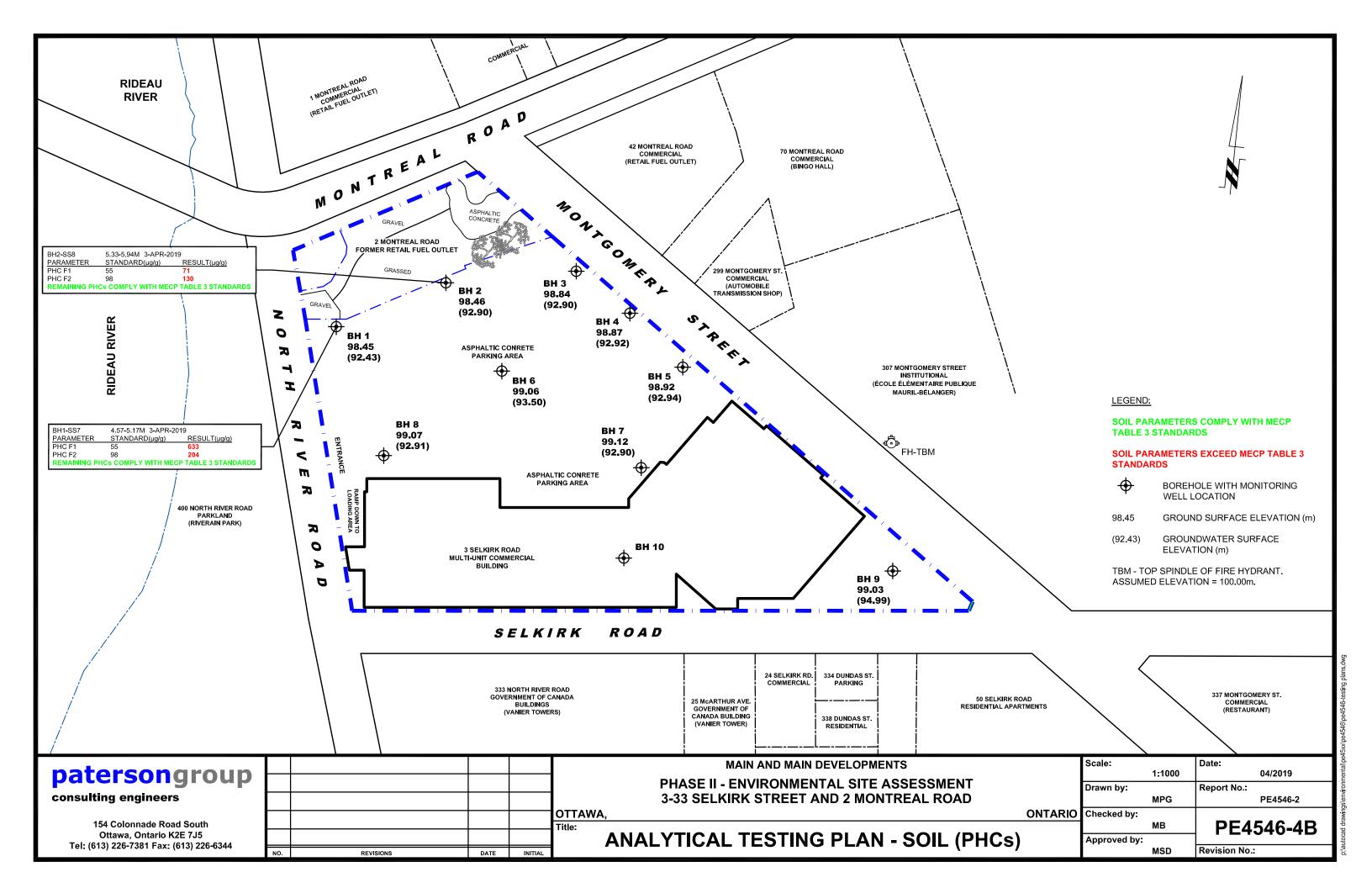


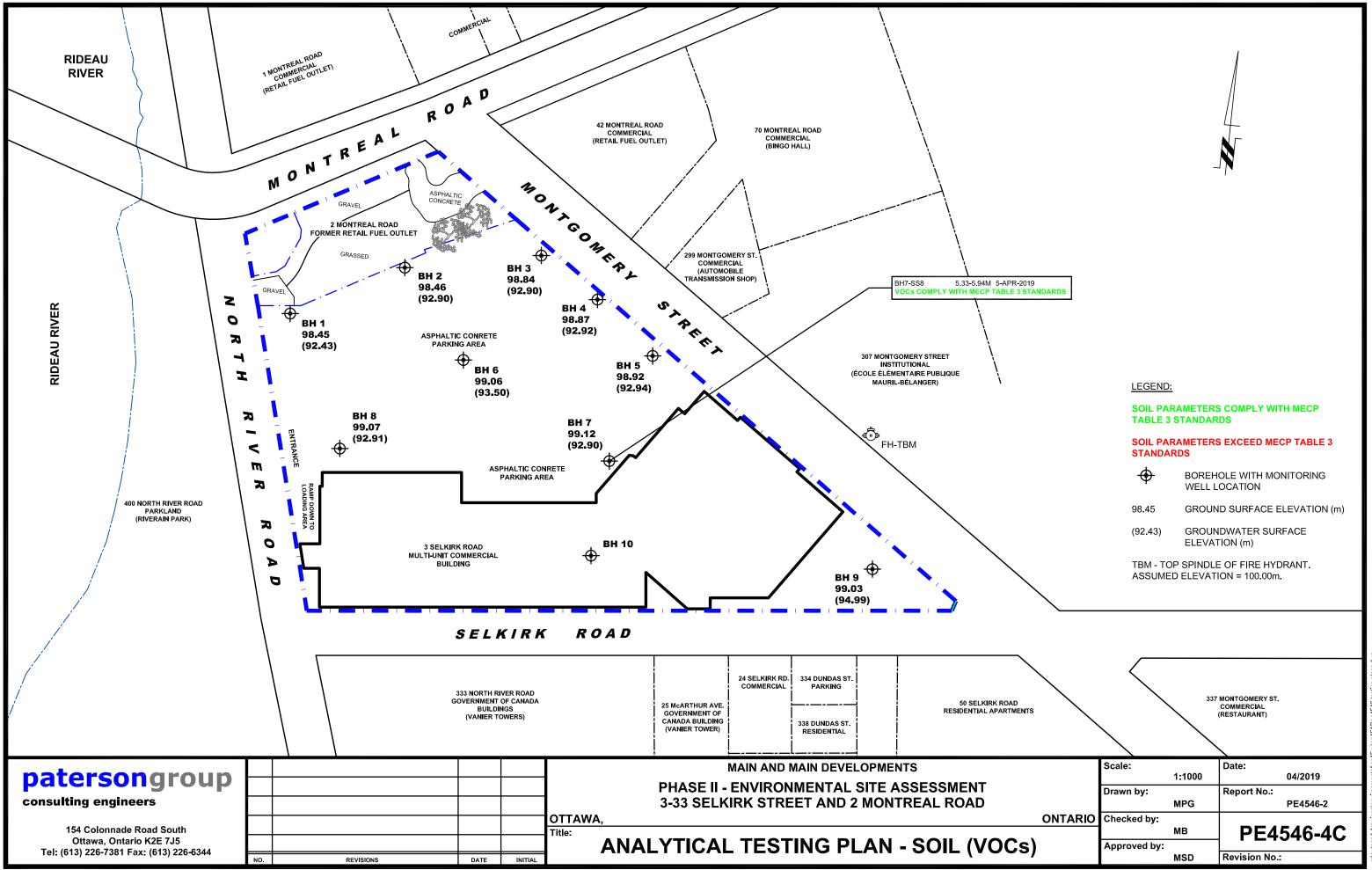

patersongroup

**KEY PLAN** 



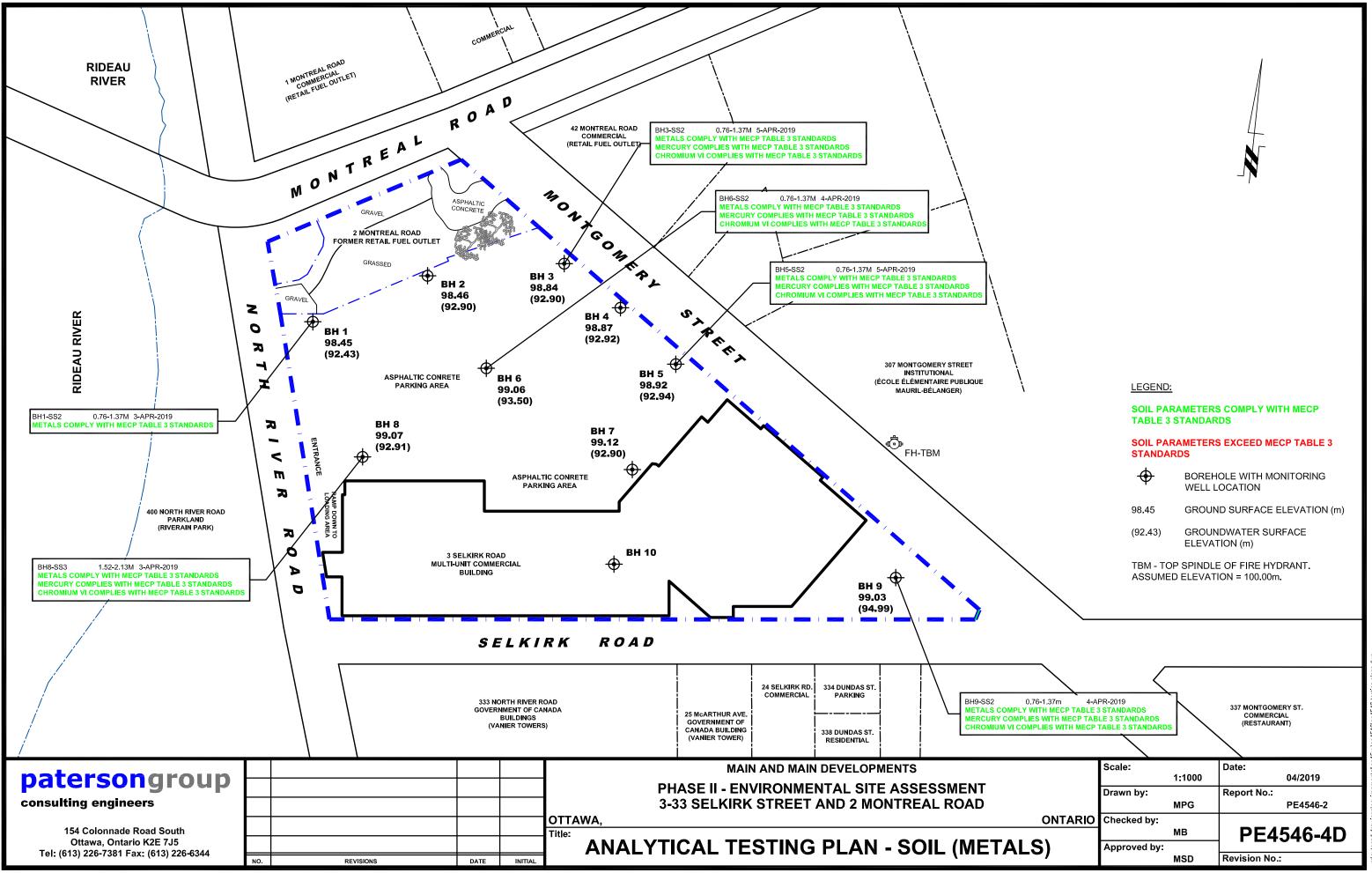


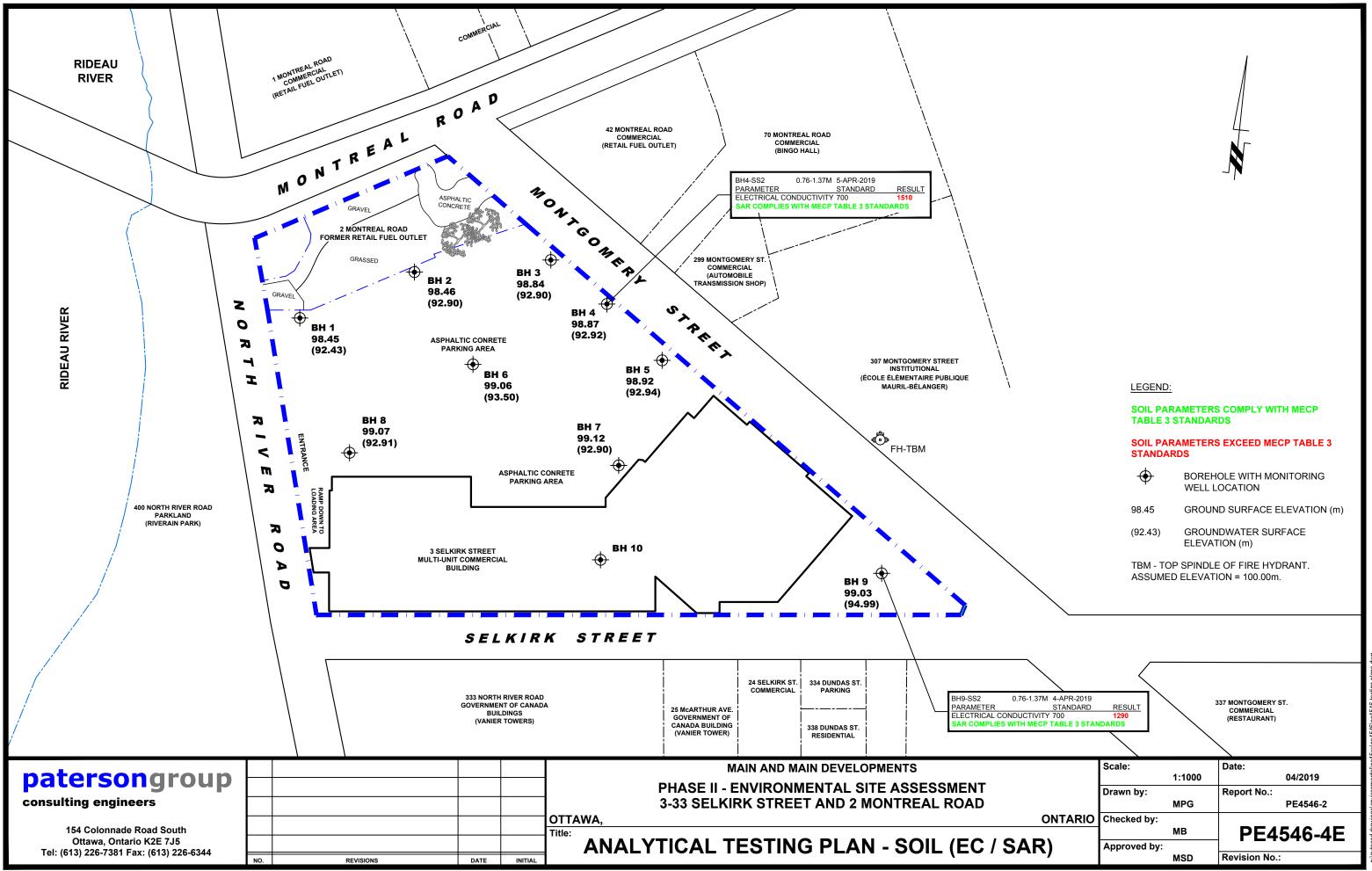




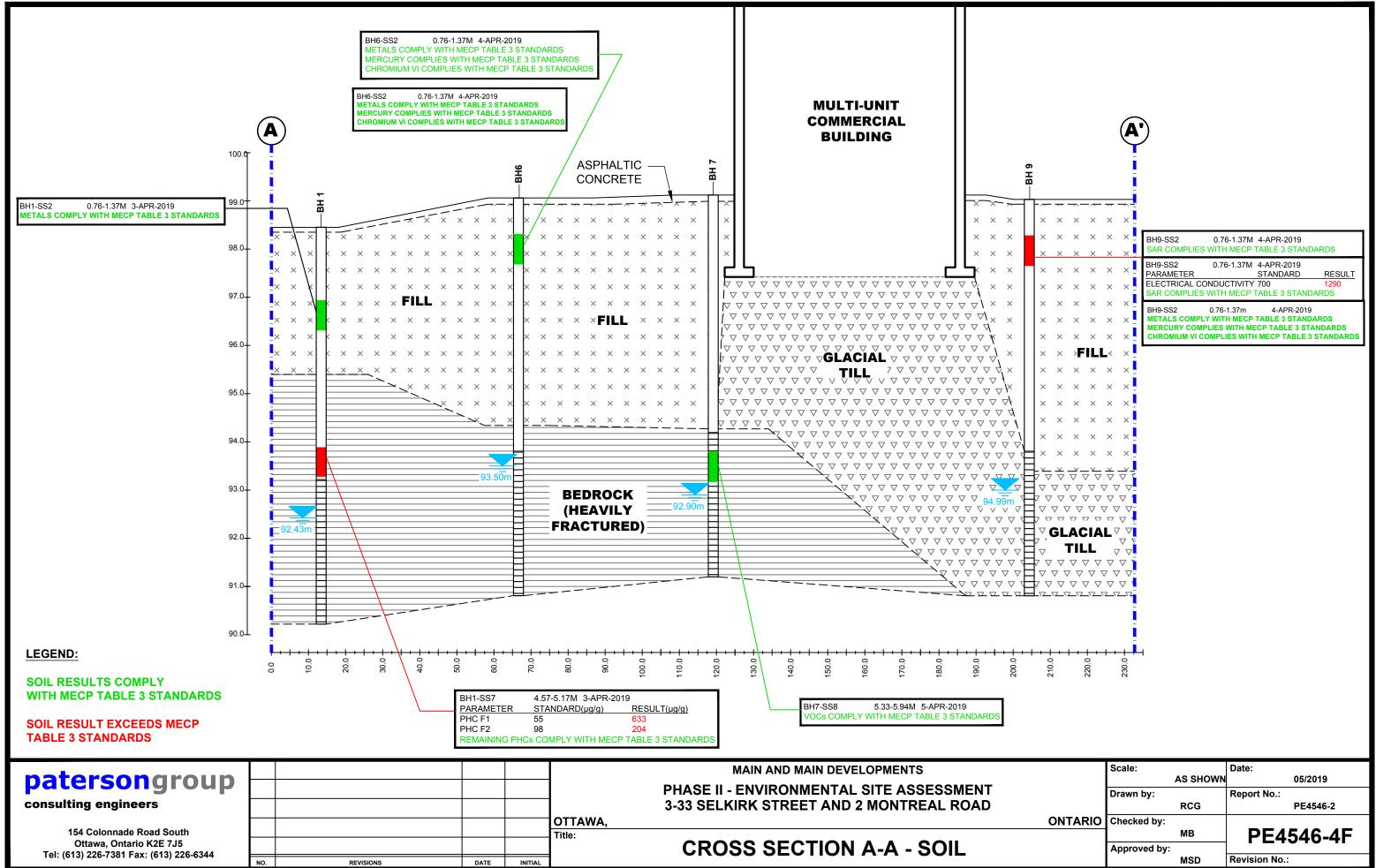




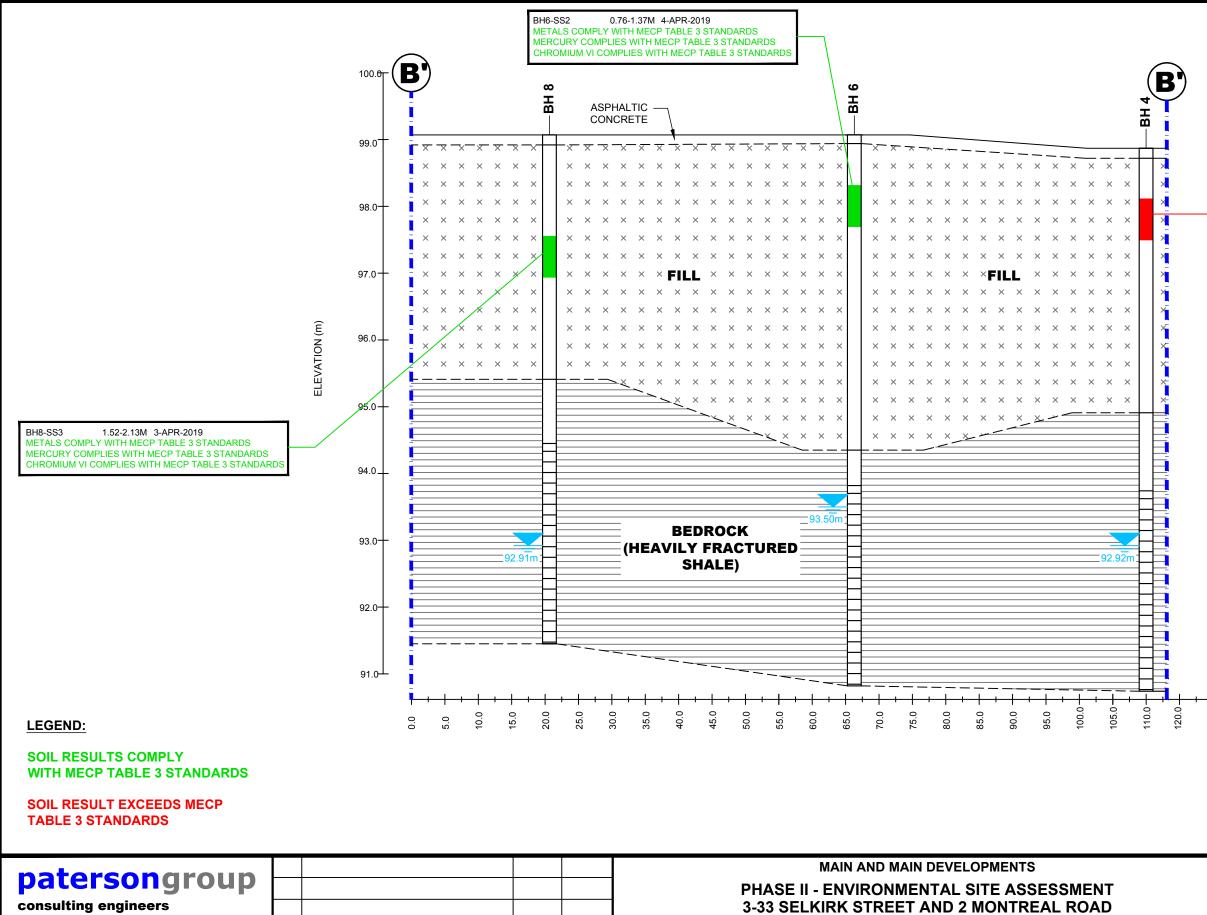




| $\oplus$ | BOREHOLE WITH MONITORING |
|----------|--------------------------|
| т        | WELL LOCATION            |






| $\oplus$ | BOREHOLE WITH MONITORING |
|----------|--------------------------|
| т        | WELL LOCATION            |



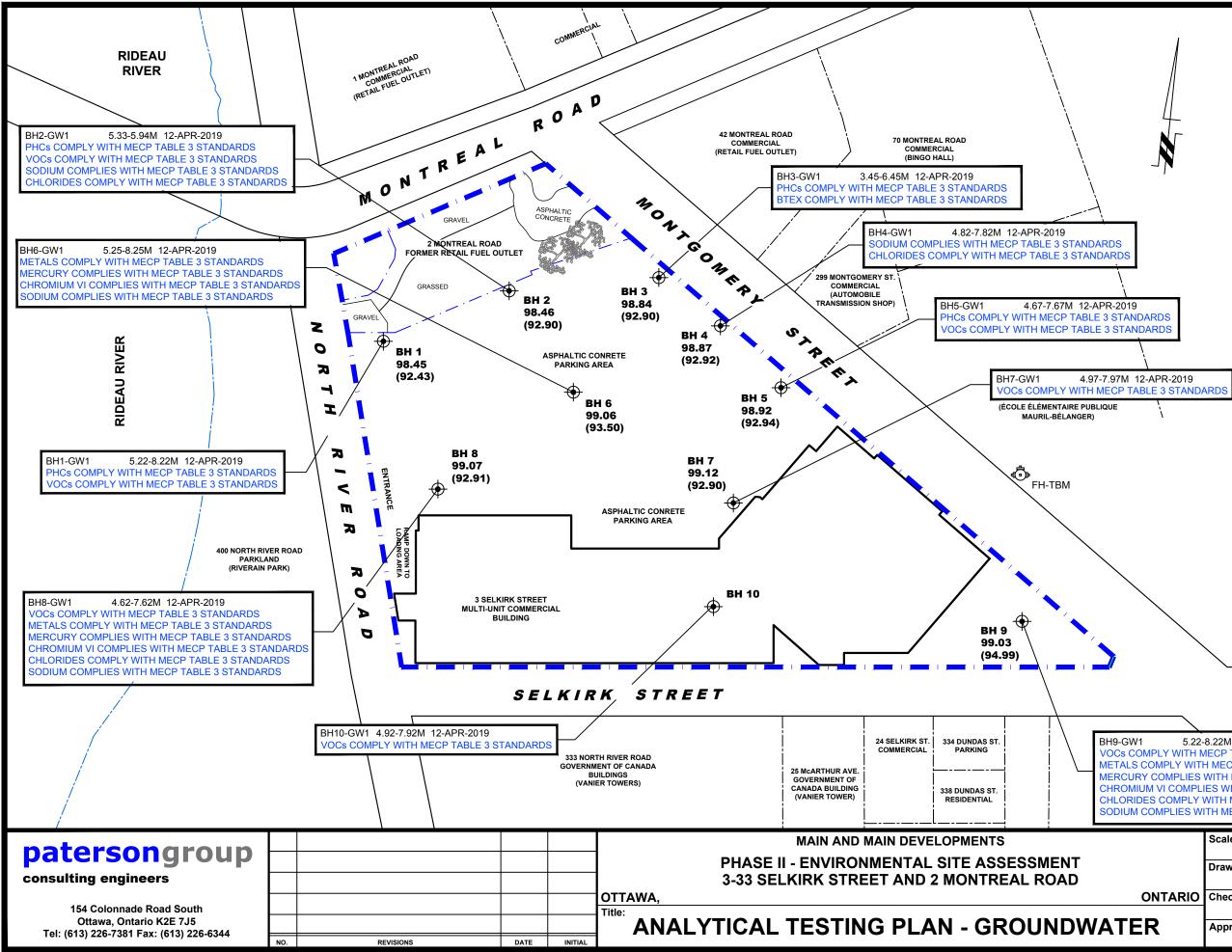



| $\oplus$ | BOREHOLE WITH MONITORING |
|----------|--------------------------|
| т        | WELL LOCATION            |



autocad drawings\environmental\pe45xx\pe4546\pe4546-3 thlp.dw




| 154 Colonnade Road South               |    |
|----------------------------------------|----|
| Ottawa, Ontario K2E 7J5                |    |
| Tel: (613) 226-7381 Fax: (613) 226-634 | 44 |

|     |           |      |         | OTTAWA,<br>Title: |
|-----|-----------|------|---------|-------------------|
|     |           |      |         | The.              |
| 10. | REVISIONS | DATE | INITIAL |                   |

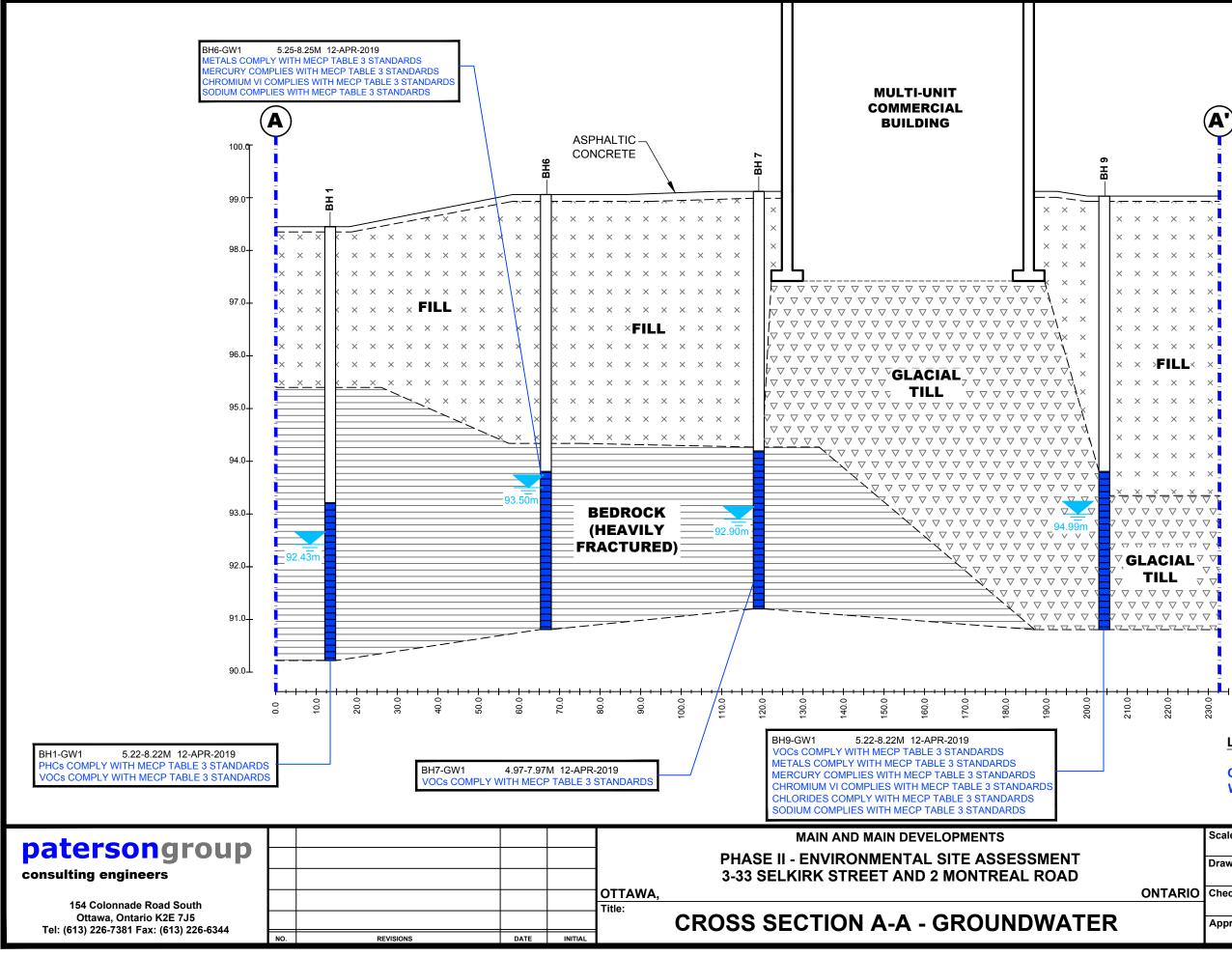
## **CROSS SECTION B-B - SOIL**

|         | Scale:       |          | Date:         |          |
|---------|--------------|----------|---------------|----------|
|         |              | AS SHOWN |               | 05/2019  |
|         | Drawn by:    |          | Report No.:   |          |
|         |              | RCG      |               | PE4546-2 |
| ONTARIO | Checked by:  |          |               |          |
|         |              | MB       | <b>PE4</b> !  | 546-4G   |
|         | Approved by: |          |               |          |
|         |              | MSD      | Revision No.: |          |
|         |              |          |               |          |

| BH4-SS2<br>SAR COMPLIES V |            | 5-APR-2019<br>TABLE 3 STANDA | RDS    |
|---------------------------|------------|------------------------------|--------|
| BH4-SS2<br>PARAMETER      | 0.76-1.37M | 5-APR-2019<br>STANDARD       | RESULT |
| ELECTRICAL COM            | NDUCTIVITY | 700                          | 1510   |



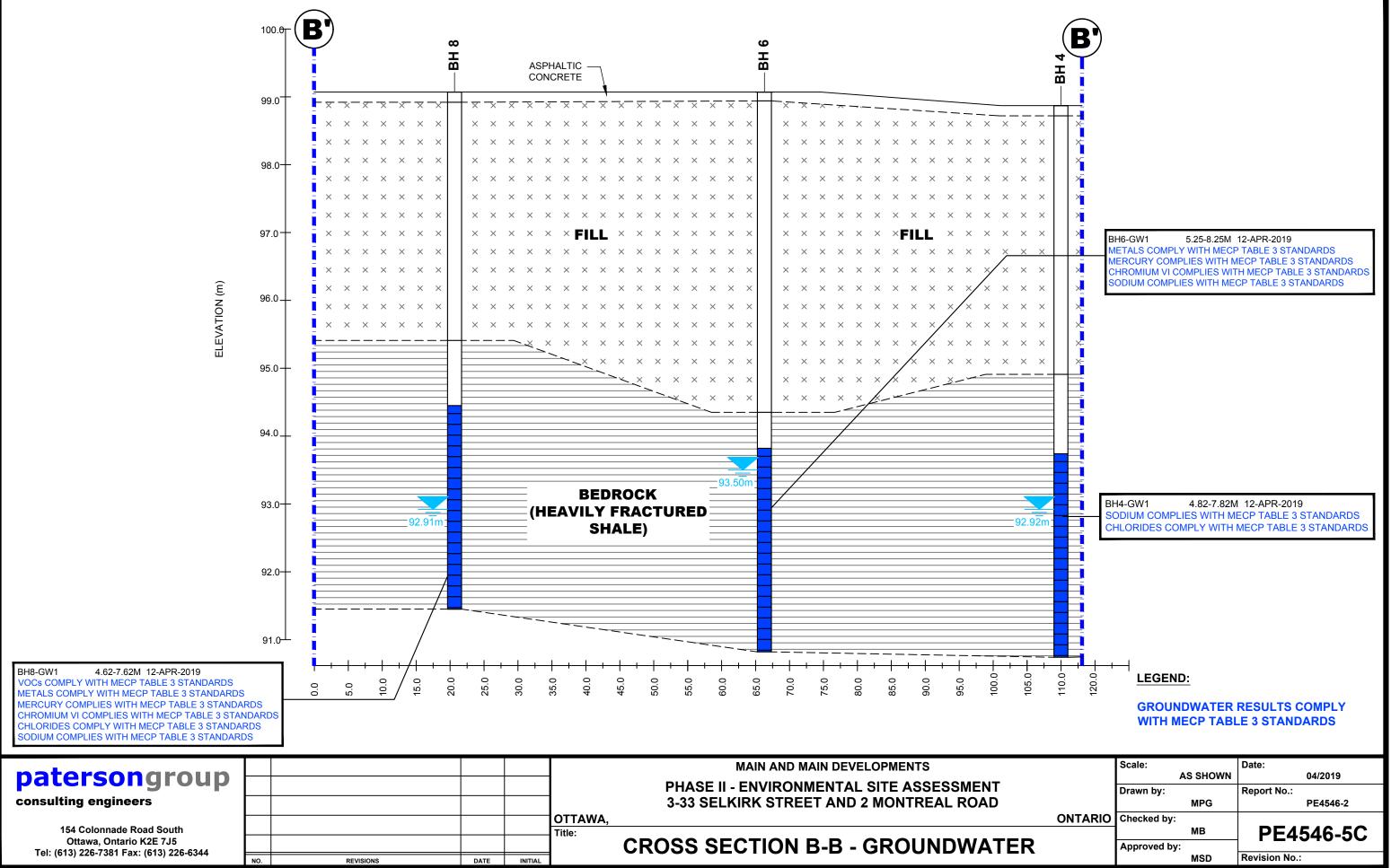
LEGEND:




#### **GROUNDWATER RESULTS COMPLY WITH MECP TABLE 3 STANDARDS**

- $\odot$ BOREHOLE WITH MONITORING WELL LOCATION
- GROUND SURFACE ELEVATION (m) 98.45
- (92.43) GROUNDWATER SURFACE ELEVATION (m)

TBM - TOP SPINDLE OF FIRE HYDRANT. ASSUMED ELEVATION = 100.00m.


|                                                                                                                       |                                                  |          |          | -        |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|----------|----------|
| -GW1 5.22<br>COMPLY WITH M<br>ALS COMPLY WITH<br>CURY COMPLIES<br>COMIUM VI COMPL<br>ORIDES COMPLY<br>DIUM COMPLIES W | 337 MONTGOMERY ST.<br>COMMERCIAL<br>(RESTAURANT) |          |          |          |
|                                                                                                                       | Scale:                                           | <u> </u> | Date:    |          |
|                                                                                                                       |                                                  | 1:1000   |          | 04/2019  |
|                                                                                                                       | Drawn by:                                        |          | Report N | 0.:      |
|                                                                                                                       |                                                  | MPG      |          | PE4546-2 |
| ONTARIO                                                                                                               | Checked by:                                      |          |          |          |
|                                                                                                                       | -                                                | MB       | PF       | 4546-5A  |
|                                                                                                                       |                                                  |          |          |          |
| TER                                                                                                                   | Approved by:                                     |          |          |          |



LEGEND:

#### GROUNDWATER RESULTS COMPLY WITH MECP TABLE 3 STANDARDS

|         | Scale:       |       | Date:            |  |
|---------|--------------|-------|------------------|--|
|         | AS           | SHOWN | 04/2019          |  |
|         | Drawn by:    |       | Report No.:      |  |
|         |              | MPG   | PE4546-2         |  |
| ONTARIO | Checked by:  |       |                  |  |
|         |              | MB    | <b>PE4546-5B</b> |  |
|         | Approved by: |       |                  |  |
|         |              | MSD   | Revision No.:    |  |



autocad drawings/environmental/pe45xx/pe4546/pe4546-3 tt

## TABLES

 Table 1A – Soil Analytical Test Results – PHCs

 Table 2A – Soil Analytical Test Results – VOCs and BTEX

 Table 3A – Soil Analytical Test Results – Metals and Inorganics

 Table 1B – Groundwater Analytical Test Results – PHCs

 Table 2B – Groundwater Analytical Test Results – VOCs and BTEX

Table 3B – Groundwater Analytical Test Results – Metals and<br/>Inorganics



Ottawa Kingston North Bay

| Parameter         | meter Units MDL |   | Regulation                     | BH1-SS7   | BH2-SS8   |
|-------------------|-----------------|---|--------------------------------|-----------|-----------|
| Sample De         | pth (m)         |   | Reg 153/04 (2011)-             | 4.57-5.18 | 5.33-5.94 |
| Sample            | Date            |   | Table 3 Residential,<br>Coarse | 3-Apr-19  | 3-Apr-19  |
| Hydrocarbons      |                 |   |                                |           |           |
| F1 PHCs (C6-C10)  | ug/g dry        | 7 | 55 ug/g dry                    | 633       | 71        |
| F2 PHCs (C10-C16) | ug/g dry        | 4 | 98 ug/g dry                    | 204       | 130       |
| F3 PHCs (C16-C34) | ug/g dry        | 8 | 300 ug/g dry                   | 141       | 162       |
| F4 PHCs (C34-C50) | ug/g dry        | 6 | 2800 ug/g dry                  | 11        | 13        |

ND (0.5) No concentrations identified above the

MDL

MDL Method Detection Limit

#### Table 2A: Soil Analytical Test Results VOCs and BTEX

Ottawa Kingston North Bay

| Parameter                   | Units    | MDL                   | Regulation              | BH1-SS7   | BH2-SS8   | BH7-SS8   |
|-----------------------------|----------|-----------------------|-------------------------|-----------|-----------|-----------|
| Sample Depth (m)            |          |                       | Reg 153/04 (2011)-Table | 4.57-5.18 | 5.33-5.94 | 5.33-5.94 |
| Sample Date                 |          | 3 Residential, Coarse | 03-Apr-19               | 03-Apr-19 | 5-Apr-19  |           |
| Volatiles                   |          |                       |                         |           |           |           |
| Acetone                     | ug/g dry | 0.50                  | 16 ug/g dry             | NA        | NA        | ND (0.50) |
| Benzene                     | ug/g dry | 0.02                  | 0.21 ug/g dry           | 0.88      | 0.33      | ND (0.02) |
| Bromodichloromethane        | ug/g dry | 0.05                  | 13 ug/g dry             | NA        | NA        | ND (0.05) |
| Bromoform                   | ug/g dry | 0.05                  | 0.27 ug/g dry           | NA        | NA        | ND (0.05) |
| Bromomethane                | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Carbon Tetrachloride        | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Chlorobenzene               | ug/g dry | 0.05                  | 2.4 ug/g dry            | NA        | NA        | ND (0.05) |
| Chloroform                  | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Dibromochloromethane        | ug/g dry | 0.05                  | 9.4 ug/g dry            | NA        | NA        | ND (0.05) |
| Dichlorodifluoromethane     | ug/g dry | 0.05                  | 16 ug/g dry             | NA        | NA        | ND (0.05) |
| 1,2-Dichlorobenzene         | ug/g dry | 0.05                  | 3.4 ug/g dry            | NA        | NA        | ND (0.05) |
| 1,3-Dichlorobenzene         | ug/g dry | 0.05                  | 4.8 ug/g dry            | NA        | NA        | ND (0.05) |
| 1,4-Dichlorobenzene         | ug/g dry | 0.05                  | 0.083 ug/g dry          | NA        | NA        | ND (0.05) |
| 1,1-Dichloroethane          | ug/g dry | 0.05                  | 3.5 ug/g dry            | NA        | NA        | ND (0.05) |
| 1,2-Dichloroethane          | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| 1,1-Dichloroethylene        | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| cis-1,2-Dichloroethylene    | ug/g dry | 0.05                  | 3.4 ug/g dry            | NA        | NA        | ND (0.05) |
| trans-1,2-Dichloroethylene  | ug/g dry | 0.05                  | 0.084 ug/g dry          | NA        | NA        | ND (0.05) |
| 1,2-Dichloropropane         | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| cis-1,3-Dichloropropylene   | ug/g dry | 0.05                  |                         | NA        | NA        | ND (0.05) |
| trans-1,3-Dichloropropylene | ug/g dry | 0.05                  |                         | NA        | NA        | ND (0.05) |
| 1,3-Dichloropropene, total  | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Ethylbenzene                | ug/g dry | 0.05                  | 2 ug/g dry              | 2.39      | 0.64      | ND (0.05) |
| Ethylene dibromide          | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Hexane                      | ug/g dry | 0.05                  | 2.8 ug/g dry            | NA        | NA        | ND (0.05) |
| Methyl Ethyl Ketone         | ug/g dry | 0.50                  | 16 ug/g dry             | NA        | NA        | ND (0.50) |
| Methyl Isobutyl Ketone      | ug/g dry | 0.50                  | 1.7 ug/g dry            | NA        | NA        | ND (0.50) |
| Methyl tert-butyl ether     | ug/g dry | 0.05                  | 0.75 ug/g dry           | NA        | NA        | ND (0.05) |
| Methylene Chloride          | ug/g dry | 0.05                  | 0.1 ug/g dry            | NA        | NA        | ND (0.05) |
| Styrene                     | ug/g dry | 0.05                  | 0.7 ug/g dry            | NA        | NA        | ND (0.05) |
| 1,1,1,2-Tetrachloroethane   | ug/g dry | 0.05                  | 0.058 ug/g dry          | NA        | NA        | ND (0.05) |
| 1,1,2,2-Tetrachloroethane   | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Tetrachloroethylene         | ug/g dry | 0.05                  | 0.28 ug/g dry           | NA        | NA        | ND (0.05) |
| Toluene                     | ug/g dry | 0.05                  | 2.3 ug/g dry            | 1.23      | 0.78      | 0.06      |
| 1,1,1-Trichloroethane       | ug/g dry | 0.05                  | 0.38 ug/g dry           | NA        | NA        | ND (0.05) |
| 1,1,2-Trichloroethane       | ug/g dry | 0.05                  | 0.05 ug/g dry           | NA        | NA        | ND (0.05) |
| Trichloroethylene           | ug/g dry | 0.05                  | 0.061 ug/g dry          | NA        | NA        | ND (0.05) |
| Trichlorofluoromethane      | ug/g dry | 0.05                  | 4 ug/g dry              | NA        | NA        | ND (0.05) |
| Vinyl Chloride              | ug/g dry | 0.02                  | 0.02 ug/g dry           | NA        | NA        | ND (0.02) |
| m/p-Xylene                  | ug/g dry | 0.05                  |                         | 6.74      | 3.12      | 0.11      |
| o-Xylene                    | ug/g dry | 0.05                  |                         | 0.85      | 0.98      | 0.09      |
| Xylenes, total              | ug/g dry | 0.05                  | 3.1 ug/g dry            | 7.58      | 4.10      | 0.19      |

ND (0.5) No concentrations identified above the MDL

MDL Method Detection Limit N/A Parameter not analysed Sample exceeds MECP Table 3 Residential Coarse Grained Standard

Ottawa Kingston North Bay

| Parameter        | Units    | MDL                     | Regulation            | BH1-SS2   | BH3-SS2   | BH4-SS2   | BH5-SS2   | BH6-SS2   | BH8-SS3   | BH9-SS2  |
|------------------|----------|-------------------------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| Sample Depth (m) |          | Reg 153/04 (2011)-Table | 0.76-1.37             | 0.76-1.37 | 0.76-1.37 | 0.76-1.37 | 0.76-1.37 | 1.52-2.13 | 0.76-1.52 |          |
| Sample Date      |          |                         | 3 Residential, Coarse | 3-Apr-19  | 5-Apr-19  | 5-Apr-19  | 5-Apr-19  | 4-Apr-19  | 3-Apr-19  | 4-Apr-19 |
| Metals           |          |                         |                       |           |           |           |           |           |           |          |
| Chromium (VI)    | ug/g dry | 0.2                     | 8 ug/g dry            | NA        | ND (0.2)  | NA        | ND (0.2)  | ND (0.2)  | NA        | ND (0.2) |
| Mercury          | ug/g dry | 0.1                     | 0.27 ug/g dry         | NA        | 0.2       | NA        | ND (0.1)  | ND (0.1)  | NA        | ND (0.1) |
| Antimony         | ug/g dry | 1.0                     | 7.5 ug/g dry          | ND (1.0)  | ND (1.0)  | NA        | ND (1.0)  | ND (1.0)  | ND (1.0)  | ND (1.0) |
| Arsenic          | ug/g dry | 1.0                     | 18 ug/g dry           | 4.0       | 4.3       | NA        | 7.3       | 3.7       | 4.2       | 5.7      |
| Barium           | ug/g dry | 1.0                     | 390 ug/g dry          | 91.1      | 143       | NA        | 110       | 213       | 60.4      | 80.7     |
| Beryllium        | ug/g dry | 0.5                     | 4 ug/g dry            | 0.6       | 0.6       | NA        | 0.9       | 0.7       | ND (0.5)  | 0.8      |
| Boron            | ug/g dry | 5.0                     | 120 ug/g dry          | 5.7       | 5.5       | NA        | 9.3       | 7.2       | 7.0       | 10.7     |
| Cadmium          | ug/g dry | 0.5                     | 1.2 ug/g dry          | ND (0.5)  | ND (0.5)  | NA        | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5) |
| Chromium         | ug/g dry | 5.0                     | 160 ug/g dry          | 21.6      | 28.4      | NA        | 25.6      | 32.4      | 18.5      | 22.1     |
| Cobalt           | ug/g dry | 1.0                     | 22 ug/g dry           | 8.3       | 7.3       | NA        | 14.7      | 8.7       | 7.5       | 11.1     |
| Copper           | ug/g dry | 5.0                     | 140 ug/g dry          | 16.4      | 16.6      | NA        | 37.5      | 14.9      | 19.6      | 28.0     |
| Lead             | ug/g dry | 1.0                     | 120 ug/g dry          | 9.5       | 88.9      | NA        | 13.8      | 11.1      | 10.9      | 10.6     |
| Molybdenum       | ug/g dry | 1.0                     | 6.9 ug/g dry          | 1.3       | 1.1       | NA        | 4.5       | 1.5       | ND (1.0)  | 4.0      |
| Nickel           | ug/g dry | 5.0                     | 100 ug/g dry          | 24.6      | 19.0      | NA        | 55.1      | 23.4      | 21.4      | 48.4     |
| Selenium         | ug/g dry | 1.0                     | 2.4 ug/g dry          | ND (1.0)  | ND (1.0)  | NA        | ND (1.0)  | ND (1.0)  | ND (1.0)  | ND (1.0) |
| Silver           | ug/g dry | 0.3                     | 20 ug/g dry           | ND (0.3)  | ND (0.3)  | NA        | ND (0.3)  | ND (0.3)  | ND (0.3)  | ND (0.3) |
| Thallium         | ug/g dry | 1.0                     | 1 ug/g dry            | ND (1.0)  | ND (1.0)  | NA        | ND (1.0)  | ND (1.0)  | ND (1.0)  | ND (1.0) |
| Uranium          | ug/g dry | 1.0                     | 23 ug/g dry           | ND (1.0)  | ND (1.0)  | NA        | 1.8       | 1.1       | ND (1.0)  | 1.8      |
| Vanadium         | ug/g dry | 10.0                    | 86 ug/g dry           | 31.5      | 33.6      | NA        | 41.5      | 42.9      | 28.5      | 35.5     |
| Zinc             | ug/g dry | 20.0                    | 340 ug/g dry          | 44.7      | 83.8      | NA        | 80.7      | 61.4      | 44.8      | 58.1     |
| SAR              | N/A      | 5                       | 5 N/A                 | NA        | NA        | 0.96      | NA        | NA        | NA        | 0.95     |
| Conductivity     | uS/cm    | 5                       | 0.7 mS/cm (700 uS/cm) | NA        | NA        | 1510      | NA        | NA        | NA        | 1290     |

#### Sample exceeds MECP Table 3 Residential

Coarse Grained Standard

ND (0.5) No concentrations identified above the MDL

MDL Method Detection Limit for Samples Submitted during 2018 Field program

NA Parameter not analysed

2



Ottawa Kingston North Bay

Table1B: Groundwater Analytical Test Results PHCs Phase II ESA 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

BH5-GW1

4.67-7.67

12-Apr-19

| Parameter        | Units      | MDL                         | Regulation                     | BH1-GW1   | BH2-GW1   | BH3-GW1   |
|------------------|------------|-----------------------------|--------------------------------|-----------|-----------|-----------|
| Screen Inv       | verval (m) |                             | Reg 153/04 (2011)-Table 3 Non- | 5.22-8.22 | 5.17-8.17 | 3.45-6.45 |
| Sample Date      |            | Potable Groundwater, Coarse | 12-Apr-19                      | 12-Apr-19 | 12-Apr-19 |           |
| Hydrocarbons     |            |                             |                                |           |           |           |
| F1 PHCs (C6-C10) | ug/g drv   | 25                          | 750 ug/L                       | ND (25)   | ND (25)   | ND (25)   |

| -                 |          |     |          |          |          |          |          |
|-------------------|----------|-----|----------|----------|----------|----------|----------|
| F1 PHCs (C6-C10)  | ug/g dry | 25  | 750 ug/L | ND (25)  | ND (25)  | ND (25)  | ND (25)  |
| F2 PHCs (C10-C16) | ug/g dry | 100 | 150 ug/L | ND (100) | ND (100) | ND (100) | ND (100) |
| F3 PHCs (C16-C34) | ug/g dry | 100 | 500 ug/L | ND (100) | ND (100) | ND (100) | ND (100) |
| F4 PHCs (C34-C50) | ug/g dry | 100 | 500 ug/L | ND (100) | ND (100) | ND (100) | ND (100) |

ND (0.5) No concentrations identified above the MDL

MDL Method Detection Limit

#### Table 2B: Groundwater Analytical Test Results VOCs and BTEX

Ottawa Kingston North Bay

| Parameter                   | Units        | MDL | Regulation                          | BH1-GW1              | BH2-GW1   | BH3-GW1   | BH5-GW1              | BH7-GW1   | BH8-GW2   | BH9-GW2   | BH10-GW1  |
|-----------------------------|--------------|-----|-------------------------------------|----------------------|-----------|-----------|----------------------|-----------|-----------|-----------|-----------|
| Screen Interval (m          | )            |     | Reg 153/04 (2011)-Table             | 5.22-8.22            | 5.17-8.17 | 3.45-6.45 | 4.67-7.67            | 4.97-7.97 | 4.62-7.62 | 5.22-8.22 | 4.92-7.92 |
| Sample Date                 |              |     | 3 Non-Potable<br>Groundwater Coarse | 12-Apr-19            | 12-Apr-19 | 12-Apr-19 | 12-Apr-19            | 12-Apr-19 | 18-Apr-19 | 18-Apr-19 | 12-Apr-19 |
| Volatiles                   |              |     |                                     |                      |           |           |                      |           |           |           |           |
| Acetone                     | ug/L         | 5.0 | 130000 ug/L                         | ND (5.0)             | ND (5.0)  | NA        | 80.1                 | ND (5.0)  | ND (5.0)  | ND (5.0)  | ND (5.0)  |
| Benzene                     | ug/L         | 0.5 | 44 ug/L                             | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)             | 1.1       | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Bromodichloromethane        | ug/L         | 0.5 | 85000 ug/L                          | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Bromoform                   | ug/L         | 0.5 | 380 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Bromomethane                | ug/L         | 0.5 | 5.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Carbon Tetrachloride        | ug/L         | 0.2 | 0.79 ug/L                           | ND (0.2)             | ND (0.2)  | NA        | ND (0.2)             | ND (0.2)  | ND (0.2)  | ND (0.2)  | ND (0.2)  |
| Chlorobenzene               | ug/L         | 0.5 | 630 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Chloroform                  | ug/L         | 0.5 | 2.4 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Dibromochloromethane        | ug/L         | 0.5 | 82000 ug/L                          | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Dichlorodifluoromethane     | ug/L         | 1.0 | 4400 ug/L                           | ND (1.0)             | ND (1.0)  | NA        | ND (1.0)             | ND (1.0)  | ND (1.0)  | ND (1.0)  | ND (1.0)  |
| 1,2-Dichlorobenzene         | ug/L         | 0.5 | 4600 ug/L                           | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,3-Dichlorobenzene         | ug/L         | 0.5 | 9600 ug/L                           | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,4-Dichlorobenzene         | ug/L         | 0.5 | 8 ug/L                              | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,1-Dichloroethane          | ug/L         | 0.5 | 320 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1.2-Dichloroethane          | ug/L         | 0.5 | 1.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,1-Dichloroethylene        | ug/L         | 0.5 | 1.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| cis-1,2-Dichloroethylene    | ug/L         | 0.5 | 1.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| trans-1,2-Dichloroethylene  | ug/L         | 0.5 | 1.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,2-Dichloropropane         | ug/L         | 0.5 | 16 ug/L                             | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| cis-1,3-Dichloropropylene   | ug/L         | 0.5 | 20 (18) -                           | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| trans-1,3-Dichloropropylene | ug/L         | 0.5 |                                     | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,3-Dichloropropene, total  | ug/L         | 0.5 | 5.2 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Ethylbenzene                | ug/L         | 0.5 | 2300 ug/L                           | ND (0.5)             | ND (0.5)  | ND (0.1)  | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Ethylene dibromide          | ug/L         | 0.2 | 0.25 ug/L                           | ND (0.2)             | ND (0.2)  | NA        | ND (0.2)             | ND (0.2)  | ND (0.2)  | ND (0.2)  | ND (0.2)  |
| Hexane                      | ug/L         | 1.0 | 51 ug/L                             | ND (0.2)             | ND (1.0)  | NA        | ND (0.2)             | ND (0.2)  | ND (0.2)  | ND (1.0)  | ND (0.2)  |
| Methyl Ethyl Ketone         | ug/L         | 5.0 | 470000 ug/L                         | ND (5.0)             | ND (5.0)  | NA        | ND (5.0)             | ND (5.0)  | ND (5.0)  | ND (5.0)  | ND (5.0)  |
| Methyl Isobutyl Ketone      | ug/L         | 5.0 | 140000 ug/L                         | ND (5.0)             | ND (5.0)  | NA        | ND (5.0)             | ND (5.0)  | ND (5.0)  | ND (5.0)  | ND (5.0)  |
| Methyl tert-butyl ether     | ug/L         | 2.0 | 190 ug/L                            | ND (2.0)             | ND (2.0)  | NA        | ND (2.0)             | ND (2.0)  | ND (2.0)  | ND (2.0)  | ND (2.0)  |
| Methylene Chloride          | ug/L         | 5.0 | 610 ug/L                            | ND (5.0)             | ND (5.0)  | NA        | ND (5.0)             | ND (5.0)  | ND (5.0)  | ND (5.0)  | ND (5.0)  |
| Styrene                     | ug/L         | 0.5 | 1300 ug/L                           | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,1,1,2-Tetrachloroethane   | ug/L         | 0.5 | 3.3 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,1,2,2-Tetrachloroethane   | ug/L         | 0.5 | 3.2 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Tetrachloroethylene         | ug/L         | 0.5 | 1.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Toluene                     | ug/L         | 0.5 | 18000 ug/L                          | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)             | 4.0       | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,1,1-Trichloroethane       | ug/L         | 0.5 | 640 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| 1,1,2-Trichloroethane       | ug/L         | 0.5 | 4.7 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Trichloroethylene           | ug/L         | 0.5 | 1.6 ug/L                            | ND (0.5)             | ND (0.5)  | NA        | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Trichlorofluoromethane      | ug/L         | 1.0 | 2500 ug/L                           | ND (0.3)             | ND (0.3)  | NA        | ND (0.5)             | ND (0.3)  | ND (0.3)  | ND (0.3)  | ND (0.3)  |
| Vinyl Chloride              | ug/L<br>ug/L | 0.5 | 0.5 ug/L                            | ND (1.0)<br>ND (0.5) | ND (0.5)  | NA        | ND (1.0)<br>ND (0.5) | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| m/p-Xylene                  | ug/L<br>ug/L | 0.5 | 0.5 ug/ L                           | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)             | 1.8       | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| o-Xylene                    | ug/L<br>ug/L | 0.5 |                                     | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)  | ND (0.5)  |
|                             |              | -   | 4200 ug/l                           |                      |           |           |                      |           |           |           |           |
| Xylenes, total              | ug/L         | 0.5 | 4200 ug/L                           | ND (0.5)             | ND (0.5)  | ND (0.5)  | ND (0.5)             | 1.8       | ND (0.5)  | ND (0.5)  | ND (0.5)  |

ND (0.5)

MDL

NA

No concentrations identified above the MDL

Method Detection Limit

Parameter Not Analysed

#### Phase II ESA 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

Ottawa Kingston North Bay

| Parameter      | Units  | MDL | Regulation                                                    | BH2-GW1   | BH4-GW1   | BH6-GW1   | BH8-GW1   | BH9-GW1   |
|----------------|--------|-----|---------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Screen Interva | al (m) |     | Dec 452 (04 (2011) Table 2 Nov                                | 5.22-8.22 | 4.82-7.82 | 5.25-8.25 | 4.62-7.62 | 5.22-8.22 |
| Sample Da      | te     |     | Reg 153/04 (2011)-Table 3 Non-<br>Potable Groundwater, Coarse | 12-Apr-19 | 12-Apr-19 | 12-Apr-19 | 12-Apr-19 | 12-Apr-19 |
| Metals         |        |     |                                                               |           |           |           |           |           |
| Mercury        | ug/L   | 0.1 | 0.29 ug/L                                                     | NA        | NA        | ND (0.1)  | ND (0.1)  | ND (0.1)  |
| Antimony       | ug/L   | 0.5 | 20000 ug/L                                                    | NA        | NA        | ND (0.5)  | ND (0.5)  | 1.4       |
| Arsenic        | ug/L   | 1   | 1900 ug/L                                                     | NA        | NA        | ND (1)    | ND (1)    | ND (1)    |
| Barium         | ug/L   | 1   | 29000 ug/L                                                    | NA        | NA        | 52        | 37        | 159       |
| Beryllium      | ug/L   | 0.5 | 67 ug/L                                                       | NA        | NA        | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Boron          | ug/L   | 10  | 45000 ug/L                                                    | NA        | NA        | 56        | 46        | 100       |
| Cadmium        | ug/L   | 0.1 | 2.7 ug/L                                                      | NA        | NA        | 0.1       | ND (0.1)  | ND (0.1)  |
| Chromium       | ug/L   | 1   | 810 ug/L                                                      | NA        | NA        | ND (1)    | ND (1)    | ND (1)    |
| Chromium (VI)  | ug/L   | 10  | 140 ug/L                                                      | NA        | NA        | ND (10)   | ND (10)   | ND (10)   |
| Cobalt         | ug/L   | 0.5 | 66 ug/L                                                       | NA        | NA        | ND (0.5)  | 1.2       | 2.7       |
| Copper         | ug/L   | 0.5 | 87 ug/L                                                       | NA        | NA        | 4.6       | ND (0.5)  | 0.6       |
| Lead           | ug/L   | 0.1 | 25 ug/L                                                       | NA        | NA        | 0.3       | ND (0.1)  | ND (0.1)  |
| Molybdenum     | ug/L   | 0.5 | 9200 ug/L                                                     | NA        | NA        | 1.8       | 4.2       | 7.9       |
| Nickel         | ug/L   | 1   | 490 ug/L                                                      | NA        | NA        | 8         | 11        | 12        |
| Selenium       | ug/L   | 1   | 63 ug/L                                                       | NA        | NA        | ND (1)    | ND (1)    | ND (1)    |
| Silver         | ug/L   | 0.1 | 1.5 ug/L                                                      | NA        | NA        | ND (0.1)  | ND (0.1)  | ND (0.1)  |
| Sodium         | ug/L   | 200 | 2300000 ug/L                                                  | 472000    | 1030000   | 814000    | 172000    | 838000    |
| Thallium       | ug/L   | 0.1 | 510 ug/L                                                      | NA        | NA        | ND (0.1)  | ND (0.1)  | 0.1       |
| Uranium        | ug/L   | 0.1 | 420 ug/L                                                      | NA        | NA        | 10.1      | 3.5       | 4.6       |
| Vanadium       | ug/L   | 0.5 | 250 ug/L                                                      | NA        | NA        | ND (0.5)  | ND (0.5)  | ND (0.5)  |
| Zinc           | ug/L   | 5   | 1100 ug/L                                                     | NA        | NA        | 20        | 8         | ND (5)    |
| Chloride       | mg/L   | 1   | 2300000 ug/L                                                  | 1000000   | 2010000   | NA        | 323000    | 2250000   |

ND (0.5)

No concentrations identified above the MDL

MDL Method Detection Limit N/A

## **APPENDIX 1**

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

Archaeological Services

#### Sampling & Analysis Plan

Phase II Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

#### **Prepared For**

Main and Main Developments Inc.

#### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April 2019

Report: PE4546-SAP

Phase II Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

#### **Table of Contents**

| 1.0 | SAMPLING PROGRAM                                 | 1 |
|-----|--------------------------------------------------|---|
| 2.0 | ANALYTICAL TESTING PROGRAM                       | 2 |
| 3.0 | STANDARD OPERATING PROCEDURES                    | 3 |
|     | 3.1 Environmental Drilling Procedure             | 3 |
|     | 3.2 Monitoring Well Installation Procedure       | 5 |
|     | 3.3 Monitoring Well Sampling Procedure           | 6 |
| 4.0 | QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)        | 7 |
| 5.0 | DATA QUALITY OBJECTIVES                          | 8 |
| 6.0 | PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN | 9 |
|     |                                                  |   |

#### 1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Main and Main Developments Inc. to conduct a Phase II Environmental Site Assessment (ESA) at 3-33 Selkirk Street and 2 Montreal Road, in the City of Ottawa, Ontario. Based on a Phase I ESA completed by Paterson for the subject property, a subsurface investigation program, consisting of borehole drilling, was developed. A geotechnical investigation was conducted concurrently with the environmental subsurface investigation.

| Borehole   | Location & Rationale                                                                                                                      | Proposed Depth & Rationale                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BH1<br>BH2 | Near former RFO at 2 Montreal Road to<br>assess soil and groundwater conditions on 3-<br>33 Selkirk Street.                               | Borehole to be advanced to intercept both the groundwater table and known hydrocarbon impacts from 2 Montreal Road. |
| BH3        | Northeast corner of 3-33 Selkirk Street to<br>address former RFO at 2 Montreal Road and<br>existing RFO at 42 Montreal Road.              | Borehole to be advanced to intercept both the groundwater table and known hydrocarbon impacts from 2 Montreal Road. |
| BH4        | Near east property line to address the existing<br>RFO at 42 Montreal Road and the automotive<br>service garage at 299 Montgomery Street. | Borehole to be advanced to<br>intercept the groundwater table to<br>facilitate installation of a                    |
| BH5        | Near east property to address the existing automotive service garage at 299 Montgomery Street.                                            | groundwater monitoring well.                                                                                        |
| BH6        | Center of the subject site for general coverage purposes.                                                                                 |                                                                                                                     |
| BH7        | As near to Units 21/23 to address former dry cleaners.                                                                                    |                                                                                                                     |
| BH8        | Western portion of subject site for general coverage purposes.                                                                            |                                                                                                                     |
| BH9        | Southeast corner of subject site to address former lumber yard.                                                                           |                                                                                                                     |
| BH10       | Within vacant Unit 21 to address former dry cleaners.                                                                                     |                                                                                                                     |

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater

samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

#### 2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

- □ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- □ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
- □ In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MOECC site condition standards.
- In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for groundwater at the subject site is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is waterbearing.

Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

#### 3.0 STANDARD OPERATING PROCEDURES

#### 3.1 Environmental Drilling Procedure

#### Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

#### Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- □ glass soil sample jars
- two buckets
- □ cleaning brush (toilet brush works well)
- □ dish detergent
- methyl hydrate
- water (if not available on site water jugs available in trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

#### **Determining Borehole Locations**

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a fire hydrant located on south side of Lisgar Street (300 Lisgar Street), with geodetic elevation of 72.57m above sea level (asl).

#### Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- □ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- □ If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.

#### Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- Add a small amount of dish soap to one bucket
- □ Scrub spoons with brush in soapy water, inside and out, including tip
- **I** Rinse in clean water
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- **Rinse with distilled water, a spray bottle works well.**

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

#### Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- □ Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- □ Turn instrument on and allow to come to zero calibrate if necessary
- □ If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- **D** Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- □ Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per Sampling and Analysis Plan.

#### 3.2 Monitoring Well Installation Procedure

#### Equipment

- □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" [1.52 m x 32 mm] if installing in cored hole in bedrock)
- □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" [1.52 m x 32 mm] if installing in cored hole in bedrock)

and 2 Montreal Road Ottawa, Ontario

patersongroup

Kingston

Ōttawa

- Threaded end-cap
- Slip-cap or J-plug
- □ Asphalt cold patch or concrete

North Bay

- Silica Sand
- Bentonite chips (Holeplug)
- □ Steel flushmount casing

#### Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).
- Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.

#### 3.3 Monitoring Well Sampling Procedure

#### Equipment

□ Water level metre or interface probe on hydrocarbon/LNAPL sites

- □ Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- D Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- □ Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen
- □ Laboratory-supplied sample bottles

#### Sampling Procedure

- Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- □ Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
- Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- □ Replace well cap and flushmount casing cap.

## 4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- □ All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- □ Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.
- Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
- Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

#### 5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where  $x_1$  is the concentration of a given parameter in an original sample and  $x_2$  is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

#### 6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- D Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- Winter conditions
- **O** Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA report

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road

154 Colonnade Road South. Ottawa. Ontario K2E 7.15

|     | <b>FI 1</b> | м   |
|-----|-------------|-----|
| DAI | U           | IVI |

| 154 Colonnade Moad South, Ottawa, Oh                                                                |                |           | -       |               | Ot             | tawa, Or     | ntario       |        |                                       |                                       |                                                                                                                              |
|-----------------------------------------------------------------------------------------------------|----------------|-----------|---------|---------------|----------------|--------------|--------------|--------|---------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>DATUM</b> TBM - Top spindle of fire h<br>Assumed elevation = 100.                                | nydrar<br>00m. | nt loca   | ited in | front         | of 30          | 7 Montgo     | mery Str     | eet.   | FILE NO.                              | PE4546                                | 5                                                                                                                            |
| REMARKS                                                                                             |                |           |         |               |                |              |              |        | HOLE NO.                              |                                       |                                                                                                                              |
| BORINGS BY CME 45 Power Auger                                                                       |                |           |         | D             | ATE 2          | 2019 Apri    | 13           | 1      |                                       | BH 1                                  |                                                                                                                              |
| SOIL DESCRIPTION                                                                                    | PLOT           |           | SAN     | IPLE          |                | DEPTH<br>(m) | ELEV.<br>(m) |        | onization <b>[</b><br>tile Organic R  |                                       | Monitoring Well<br>Construction                                                                                              |
|                                                                                                     | STRATA         | ТҮРЕ      | NUMBER  | %<br>RECOVERY | VALUE<br>r RQD | (,           | (,           | ○ Lowe | r Explosive                           | e Limit %                             | nitorin<br>onstru                                                                                                            |
| GROUND SURFACE                                                                                      | ST             | H         | ЛN      | REC           | N N<br>N       |              |              | 20     | 40 60                                 | 80                                    | ΣŌ                                                                                                                           |
| Asphaltic concrete $0.10$<br><b>FILL:</b> Brown silty clay with sand, $0.51$<br>gravel, trace brick |                | × AU      | 1       |               |                | 0-           | -98.45       | A      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                                                                                                              |
| FILL: Light brown silty sand with gravel                                                            |                | ss        | 2       | 79            | 23             | 1-           | -97.45       | A      |                                       |                                       | <u>սիկդիկիսի</u>                                                                                                             |
| <u>1.52</u>                                                                                         |                | ∐<br>∏ss  | 3       | 83            | 37             |              |              |        |                                       |                                       | <u>լինիրիրի</u>                                                                                                              |
| <b>FILL:</b> Brown sandy silt to silty sand, trace shale fragments and clay                         |                | $\square$ | Ū       |               |                | 2-           | -96.45       |        |                                       |                                       | <u>լիրիրիրի</u>                                                                                                              |
| - shale fragments increasing with depth                                                             |                | ss        | 4       | 88            | 27             | 3-           | -95.45       |        |                                       |                                       | լիրիրիրի<br>Անիրնիրի                                                                                                         |
|                                                                                                     |                | ss        | 5       | 83            | 45             |              |              |        | · · · · · · · · · · · · · · · · · · · |                                       | <u>իսիսիկին</u>                                                                                                              |
|                                                                                                     |                | ∦ss       | 6       | 100           | 50+            | 4-           | -94.45       |        |                                       |                                       | չինդրերունդեն երկերերին երկերերությունը եներերերին երկերերությունը։<br>Գրկերությունը երկերերերեր երկերերերերերերերերերերերեր |
|                                                                                                     |                | ss        | 7       | 88            | 87             | 5-           | -93.45       | Δ      |                                       |                                       |                                                                                                                              |
| <b>BEDROCK:</b> Heavily fractured to fractured, black shale                                         |                | ss        | 8       | 78            | 50+            |              |              | Δ      |                                       |                                       |                                                                                                                              |
|                                                                                                     |                | ss        | 9       | 71            | 43             | 6-           | -92.45       | Δ      |                                       |                                       |                                                                                                                              |
|                                                                                                     |                |           | 10      | 90            | 50+            | 7-           | -91.45       |        | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                                                              |
|                                                                                                     |                | _         |         |               |                | 1            | 01.40        |        |                                       |                                       |                                                                                                                              |
| <u>8.2</u> 3                                                                                        |                | ss        | 11      | 75            | 11             | 8-           | -90.45       |        |                                       |                                       |                                                                                                                              |
| End of Borehole                                                                                     |                |           |         |               |                |              |              |        |                                       |                                       |                                                                                                                              |
| (GWL @ 6.02m - April 12, 2019)                                                                      |                |           |         |               |                |              |              |        |                                       |                                       |                                                                                                                              |
|                                                                                                     |                |           |         |               |                |              |              |        | 200 300<br>Eagle Rdg.<br>as Resp. △ M |                                       | 00                                                                                                                           |

## SOIL PROFILE AND TEST DATA patersongroup

## Phase II - Environmental Site Assessment 2-33 Selkirk Street and 2 Montreal Road

• Full Gas Resp.  $\triangle$  Methane Elim.

| 154 Colonnade Road South, Ottawa, Or                                              |                  |         |        |               | Ot                | tawa, Or  | ntario   |            |                     | د<br>                                 |                                 |
|-----------------------------------------------------------------------------------|------------------|---------|--------|---------------|-------------------|-----------|----------|------------|---------------------|---------------------------------------|---------------------------------|
| DATUM TBM - Top spindle of fire<br>Assumed elevation = 100                        | hydran<br>0.00m. | it loca | ted ir | n front       | of 30             | 7 Montgo  | mery Str | reet.      | FILE NO.            | PE454                                 | 6                               |
| REMARKS<br>BORINGS BY CME 45 Power Auger                                          |                  |         |        | C             | ATE               | 2019 Apri | il 3     |            | HOLE NO             | <sup>).</sup> BH 2                    |                                 |
|                                                                                   | PLOT             |         | SAN    | <b>IPLE</b>   |                   | DEPTH     | ELEV.    | Photo      | onization           | Detector                              | Vell                            |
| SOIL DESCRIPTION                                                                  |                  | 51      | IR     | IRY           | ALUE<br>RQD       | (m)       | (m)      | Vola       | tile Organic        | Rdg. (ppm)                            | Monitoring Well<br>Construction |
|                                                                                   | STRATA           | ТҮРЕ    | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD |           |          | ○ Lowe     | er Explosiv         | ve Limit %                            | Aonito<br>Cons                  |
| GROUND SURFACE                                                                    |                  |         |        | Ř             | 4                 | 0-        | -98.46   | 20         | 40 6                | 0 80                                  |                                 |
| Asphaltic concrete0.1:<br><b>FILL:</b> Brown silty sand with<br>crushed stone 0.6 |                  | AU      | 1      |               |                   |           |          | <b>A</b>   |                     | · · · · · · · · · · · · · · · · · · · |                                 |
|                                                                                   |                  | 7       |        |               |                   |           | 07.40    |            |                     | · · · · · · · · · · · · · · · · · · · |                                 |
| FILL: Brown silty sand, some clay, gravel and shale fragments                     |                  | ss      | 2      | 88            | 22                | 1-        | -97.46   |            |                     |                                       |                                 |
|                                                                                   |                  | ss      | 3      | 100           | 50                |           |          |            |                     |                                       |                                 |
| 1.9                                                                               |                  | A       | Ū      |               |                   | 2-        | -96.46   |            |                     |                                       |                                 |
|                                                                                   |                  | ⊠ss     | 4      | 88            | 50+               |           |          | A          |                     |                                       |                                 |
|                                                                                   |                  |         |        |               |                   |           | 0 - 10   |            |                     |                                       |                                 |
|                                                                                   |                  | ss      | 5      | 80            | 50+               | 3-        | -95.46   | A          |                     |                                       |                                 |
|                                                                                   |                  |         |        |               |                   |           |          |            |                     |                                       |                                 |
|                                                                                   |                  | ss      | 0      | 07            | 45                | 4-        | -94.46   |            |                     | · · · · · · · · · · · · · · · · · · · |                                 |
|                                                                                   |                  | 1 22    | 6      | 87            | 45                |           |          |            |                     |                                       |                                 |
| <b>BEDROCK:</b> Heavily fractured to fractured, black shale                       |                  | ss      | 7      | 71            | 50+               |           |          | <b>A</b>   |                     | · · · · · · · · · · · · · · · · · · · |                                 |
|                                                                                   |                  |         |        |               |                   | 5-        | -93.46   |            |                     |                                       | - 8                             |
|                                                                                   |                  | 7       |        |               |                   |           |          |            |                     |                                       |                                 |
|                                                                                   |                  | ∦ ss∣   | 8      | 30            | 36                |           |          |            |                     |                                       |                                 |
|                                                                                   |                  | 7       |        |               |                   | 6-        | -92.46   |            |                     |                                       |                                 |
|                                                                                   |                  | RC      | 4      | 100           | 44                |           | 02.40    |            |                     |                                       |                                 |
|                                                                                   |                  | пС      | 1      | 100           | 44                |           |          |            |                     |                                       |                                 |
|                                                                                   |                  | -       |        |               |                   |           |          |            |                     |                                       |                                 |
|                                                                                   |                  |         |        |               |                   |           |          |            |                     |                                       |                                 |
|                                                                                   |                  |         | 0      | 05            |                   |           |          |            |                     |                                       |                                 |
|                                                                                   |                  | RC      | 2      | 35            | 8                 |           |          |            |                     |                                       |                                 |
|                                                                                   |                  |         |        |               |                   |           |          |            |                     |                                       |                                 |
| 8.1                                                                               | 8                | -       |        |               |                   |           |          |            |                     |                                       |                                 |
| End of Borehole                                                                   |                  |         |        |               |                   |           |          |            |                     |                                       |                                 |
| (GWL @ 5.56m - April 12, 2019)                                                    |                  |         |        |               |                   |           |          |            |                     |                                       |                                 |
|                                                                                   |                  |         |        |               |                   |           |          |            |                     |                                       | 4                               |
|                                                                                   |                  |         |        |               |                   |           |          | 100<br>BKI | 200 30<br>Eagle Rdg |                                       | 500                             |
|                                                                                   |                  |         |        |               |                   |           |          |            | Lagie nuų           | J. (PPIII)                            |                                 |

# patersongroup Consulting Engineers

#### SOIL PROFILE AND TEST DATA

FILE NO.

HOLE NO.

Photo Ionization Detector

**PE4546** 

Vell

**BH 3** 

Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spindle of fire hydrant located in front of 307 Montgomery Street. Assumed elevation = 100.00m. REMARKS BORINGS BY CME 45 Power Auger DATE 2019 April 5 SAMPLE Ę DEPTH ELEV. 

| SOIL DESCRIPTION                                                           | PLOJ     |              |          | DEPTH ELEV.    | ● Volatile Organic Rdg. (ppm) |         |                                                                                                           |
|----------------------------------------------------------------------------|----------|--------------|----------|----------------|-------------------------------|---------|-----------------------------------------------------------------------------------------------------------|
| GROUND SURFACE                                                             | STRATA F | ТҮРЕ         | NUMBER   | °∂<br>RECOVERY | N VALUE<br>or RQD             | (m) (m) | Volatile Organic Rdg. (ppm)     Volatile Organic Rdg. (ppm)     C Lower Explosive Limit %     20 40 60 80 |
|                                                                            |          | AU           | 1        |                |                               | 0-98.84 |                                                                                                           |
| <b>FILL:</b> Brown silty sand with clay, gravel, trace plastic and topsoil |          | ss           | 2        | 54             | 5                             | 1-97.84 |                                                                                                           |
|                                                                            |          | ss           | 3        | 62             | 11                            | 2-96.84 |                                                                                                           |
| <b>FILL:</b> Brown silty sand with gravel and crushed stone, trace clay    |          | ss           | 4        | 67             | 51                            | 3-95.84 |                                                                                                           |
|                                                                            |          | ss           | 5        | 79             | 78                            |         |                                                                                                           |
| 4.09                                                                       |          | ∦ss<br>∝ss   | 6<br>7   | 70<br>60       | 50+<br>50+                    | 4-94.84 |                                                                                                           |
|                                                                            |          | × 55         | 8        | 100            | 50+                           | 5-93.84 |                                                                                                           |
| <b>BEDROCK:</b> Heavily fractured to fractured, black shale                |          | × SS         | 9        | 100            | 50+                           | 6-92.84 |                                                                                                           |
|                                                                            |          | ∝ 33<br>× SS |          |                |                               |         |                                                                                                           |
| 7.67                                                                       | ,        | ≏ 33<br>≖ SS | 10<br>11 | 100            | 50+<br>50+                    | 7-91.84 |                                                                                                           |
| End of Borehole<br>(GWL @ 5.94m - April 12, 2019)                          |          |              |          |                |                               |         |                                                                                                           |
|                                                                            |          |              |          |                |                               |         | 100 200 300 400 500                                                                                       |
|                                                                            |          |              |          |                |                               |         | <b>RKI Eagle Rdg. (ppm)</b><br>▲ Full Gas Resp. △ Methane Elim.                                           |

#### SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| <b>DATUM</b> TBM - Top spindle of fire h<br>Assumed elevation = 100. | nydrai<br>00m. | nt loca      | ted in | 1 front       | of 30             | 7 Montgo     | mery Str     | reet.        | FILE NO.                        | PE4546         | 5                                                     |
|----------------------------------------------------------------------|----------------|--------------|--------|---------------|-------------------|--------------|--------------|--------------|---------------------------------|----------------|-------------------------------------------------------|
| REMARKS<br>BORINGS BY CME 45 Power Auger                             |                |              |        |               | ATE 4             | 2019 Apri    | 15           |              | HOLE NO.                        | BH 4           |                                                       |
|                                                                      |                |              | CAN    |               |                   |              |              | Dhatal       | anization D                     |                | =                                                     |
| SOIL DESCRIPTION                                                     | A PLOT         |              |        | IPLE<br>것     | ĔО                | DEPTH<br>(m) | ELEV.<br>(m) |              | onization De<br>tile Organic Rd |                | Monitoring Well<br>Construction                       |
|                                                                      | STRATA         | ТҮРЕ         | NUMBER | %<br>RECOVERY | N VALUE<br>or ROD |              |              |              | r Explosive                     |                | <b>Monitor</b><br>Const                               |
| GROUND SURFACE                                                       | 1              |              |        | щ             | -                 | 0-           | -98.87       | 20           | 40 60                           | 80             | _<br>                                                 |
|                                                                      |                | X AU         | 1      |               |                   |              |              |              |                                 |                |                                                       |
| FILL: Crushed stone with sand 0.60                                   |                |              | I      |               |                   |              |              |              |                                 |                | արդերիները ուներիներինը։<br>Արբերիներիներիներիներիներ |
| gravel, shale fragments, trace topsoil                               |                | ss           | 2      | 46            | 5                 | 1-           | -97.87       |              |                                 |                |                                                       |
| 1.45                                                                 |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | ss           | 3      | 42            | 24                |              |              |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   | 2-           | -96.87       |              | ·····                           |                |                                                       |
| FILL: Dark brown silty sand with shale fragments and gravel          |                | ss           | 4      | 54            | 71                |              |              |              |                                 |                |                                                       |
| Shale hagments and graver                                            |                | 83           | 4      | 54            |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | ss           | 5      | 100           |                   | 3-           | -95.87       |              |                                 |                |                                                       |
|                                                                      |                | N 22         | Э      | 100           |                   |              |              |              |                                 |                |                                                       |
| 0.00                                                                 |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
| <u>3.9</u> 6                                                         |                | ss           | 6      | 100           |                   | 4-           | -94.87       |              |                                 |                |                                                       |
|                                                                      |                | $\mathbb{A}$ | U      |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | ≍ SS         | 7      | 100           |                   |              |              | Δ            |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   | 5-           | -93.87       |              |                                 |                |                                                       |
|                                                                      |                |              | 0      | 100           |                   | Ū            | 00.07        |              |                                 |                |                                                       |
| BEDROCK: Heavily fractured to                                        |                | ≍ SS         | 8      | 100           |                   |              |              |              |                                 |                |                                                       |
| fractured, black shale                                               |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | × SS         | 9      | 67            |                   | 6-           | -92.87       |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | ≍ SS         | 10     | 0             |                   | 7-           | -91.87       |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | ≍ SS         | 11     | 0             |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                | ≏ 33         | 11     | 0             |                   |              |              |              |                                 |                |                                                       |
| 8.13<br>End of Borehole                                              |                | -            |        |               |                   | 8-           | -90.87       |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
| (GWL @ 5.95m - April 12, 2019)                                       |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   |              |              |              |                                 |                |                                                       |
|                                                                      |                |              |        |               |                   |              |              | 100<br>RKI E | 200 300<br>Eagle Rdg. (         | 400 50<br>ppm) | JU                                                    |
|                                                                      |                |              |        |               |                   |              |              |              | as Besn ∧ Me                    |                |                                                       |

## SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa. Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

|                                                                       |                |                           |            |               |                   | lawa, Ol     | ilano        |         | 1              |            |                                          |
|-----------------------------------------------------------------------|----------------|---------------------------|------------|---------------|-------------------|--------------|--------------|---------|----------------|------------|------------------------------------------|
| <b>DATUM</b> TBM - Top spindle of fire h<br>Assumed elevation = 100.0 | ydrar<br>00m.  | nt loca                   | ted in     | front         | of 30             | 7 Montgo     | mery Str     | reet.   | FILE NO.       | PE4546     | 6                                        |
| REMARKS<br>BORINGS BY CME 45 Power Auger                              |                |                           |            | D             | ATE 2             | 2019 Apri    | 15           |         | HOLE NO.       | BH 5       |                                          |
|                                                                       | Ē              |                           | SAN        | IPLE          |                   |              |              | Photo I | onization      | Detector   | /ell                                     |
| SOIL DESCRIPTION                                                      | A PLOT         |                           | <u>с</u> с | RY            | Що                | DEPTH<br>(m) | ELEV.<br>(m) | Vola    | tile Organic I | Rdg. (ppm) | ing M<br>ructio                          |
|                                                                       | STRATA         | ТҮРЕ                      | NUMBER     | %<br>RECOVERY | N VALUE<br>or RQD |              |              | ○ Lowe  | r Explosiv     | ve Limit % | Monitoring Well<br>Construction          |
| GROUND SURFACE                                                        | N N            |                           | z          | RE            | z <sup>o</sup>    | 0            | -98.92       | 20      | 40 60          | 80         | ΣŬ                                       |
| Asphaltic concrete0.18                                                |                | × • • •                   | _          |               |                   | 0-           | -90.92       |         |                |            | <u>i i li s</u>                          |
|                                                                       |                | S AU                      | 1          |               |                   |              |              |         |                |            | անել անել ենել ենել ենենել ենել ենել ենե |
| FILL: Dark brown silty clay with sand and gravel, some topsoil and    |                | ss                        | 2          | 50            | 7                 | 1-           | -97.92       |         |                |            | <u>լիրիի</u><br>Մերկին                   |
| shale fragments                                                       |                | $\mathbb{V}_{\mathbb{C}}$ | 2          |               | ,                 |              |              |         |                |            | <u> կկկկ</u>                             |
| - clay content decreasing with depth                                  |                | ∛ss                       | 3          | 54            | 29                |              |              |         |                |            | րիրի<br>Միկի                             |
| 2.21                                                                  |                | 1 33                      | 3          | 54            | 29                | 2-           | -96.92       |         |                |            | լկկկկ<br>լկկկկ                           |
| FILL: Brown silty sand with crushed stone, gravel and shale           |                | $\overline{\mathbb{V}}$   |            |               |                   |              |              |         |                |            | <u>կսկվո</u>                             |
| fragments, trace clay2.90                                             |                | ss                        | 4          | 62            | 56                |              |              |         |                |            | լլլլլլ<br>լլլլլլ                         |
|                                                                       |                | $\overline{\mathbf{V}}$   |            |               |                   | 3-           | -95.92       |         |                | ·····      | <u>լիրի</u>                              |
|                                                                       |                | ss                        | 5          | 100           | 65                |              |              |         |                |            | <u>իրիի</u>                              |
| GLACIAL TILL: Very dense, grey                                        |                | $\overline{\mathbb{V}}$   |            |               |                   | 1-           | -94.92       |         |                |            | լլլկիլ<br>լ                              |
| sandy silt to silty sand, some gravel, trace clay                     |                | ss                        | 6          | 83            | 46                |              | 34.32        | Δ       |                |            | րրը։                                     |
|                                                                       |                | $\overline{\mathbf{v}}$   |            |               |                   |              |              |         |                |            |                                          |
| 5.00                                                                  |                | ss                        | 7          | 100           | 68                | 5-           | -93.92       |         |                |            |                                          |
| 5.26                                                                  | <u>\^^^^</u> ^ | ss                        | 8          | 33            | 50+               |              |              | Δ       |                |            |                                          |
|                                                                       |                |                           |            |               |                   |              |              |         |                |            |                                          |
| <b>BEDROCK:</b> Heavily fractured to                                  |                | ∏ss                       | 9          | 44            | 50+               | 6-           | -92.92       |         |                |            |                                          |
| fractured, black shale                                                |                | Δ                         | -          |               |                   |              |              |         |                |            |                                          |
|                                                                       |                | ≖ SS                      | 10         | 0             | 50+               | 7-           | -91.92       |         |                |            |                                          |
|                                                                       |                |                           |            |               |                   | 1            | 51.52        |         |                |            |                                          |
| End of Borehole                                                       |                | _                         |            |               |                   |              |              |         |                |            |                                          |
| (GWL @ 5.98m - April 12, 2019)                                        |                |                           |            |               |                   |              |              |         |                |            |                                          |
| (GWL @ 5.9011 - April 12, 2019)                                       |                |                           |            |               |                   |              |              |         |                |            |                                          |
|                                                                       |                |                           |            |               |                   |              |              |         |                |            |                                          |
|                                                                       |                |                           |            |               |                   |              |              | 100     | 200 300        | 0 400 50   | 00                                       |
|                                                                       |                |                           |            |               |                   |              |              |         | agle Rdg       |            |                                          |

#### SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM TBM - Top spindle of fire hydrant located in front of 307 Montgomery Street. Assumed elevation = 100.00m. REMARKS

| FILE NO. |        |
|----------|--------|
|          | PE4546 |

HOLE NO. DLL C

| BORINGS BY CME 45 Power Auger                                          |          |                                        |        | D              | ATE 2             | 2019 Apri | 4      |          | HOLE NO.                         | BH 6      |                                                                                                                                                                                                                        |
|------------------------------------------------------------------------|----------|----------------------------------------|--------|----------------|-------------------|-----------|--------|----------|----------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOIL DESCRIPTION                                                       | PLOT     |                                        | SAN    | IPLE           |                   | DEPTH     | ELEV.  |          | <b>Dization</b><br>ile Organic I |           | y Well                                                                                                                                                                                                                 |
| GROUND SURFACE                                                         | STRATA 1 | ТҮРЕ                                   | NUMBER | °%<br>RECOVERY | N VALUE<br>or RQD | (m)       | (m)    |          |                                  | e Limit % | Monitoring Well<br>Construction                                                                                                                                                                                        |
| FILL: Brown silty sand with crushed stone, some clay0.60               |          | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 1      |                |                   | - 0-      | -99.06 | <b>A</b> |                                  |           |                                                                                                                                                                                                                        |
| FILL: Light brown silty clay with sand and gravel, trace topsoil       |          | ss                                     | 2      | 67             | 21                | 1-        | -98.06 |          |                                  |           |                                                                                                                                                                                                                        |
|                                                                        |          | ss                                     | 3      | 88             |                   | 2-        | -97.06 | Δ        |                                  |           | Հենությունը ներերությունը կունդունը նորերությունը ներերությունը երերությունը հերերությունը հերերությունը<br>Հայուս առաջությունը են առաջությունը են առաջությունը են առաջությունը են |
| FILL: Brown silty sand with gravel and shale fragments, trace concrete |          | ∦ ss<br>∦ ss                           | 4<br>5 | 100<br>92      | 46<br>72          | 3-        | -96.06 |          |                                  |           |                                                                                                                                                                                                                        |
|                                                                        |          | ss                                     | 5<br>6 | 92             | 72                | 4-        | -95.06 | Δ        |                                  |           | <u>ինընդուրը։</u><br>Դեստերոները                                                                                                                                                                                       |
| 4.72                                                                   |          | ss                                     | 7      | 67             | 50+               | 5-        | -94.06 | <u>A</u> |                                  |           |                                                                                                                                                                                                                        |
|                                                                        |          | ss                                     | 8      | 100            | 58                | 6-        | -93.06 | <u>A</u> |                                  |           |                                                                                                                                                                                                                        |
| BEDROCK: Heavily fractured to<br>ractured, black shale                 |          | RC<br>-                                | 1      | 78             | 31                | 7-        | -92.06 |          |                                  |           |                                                                                                                                                                                                                        |
| 8.25<br>End of Borehole                                                |          | RC                                     | 2      | 79             | 0                 | 8-        | -91.06 |          |                                  |           |                                                                                                                                                                                                                        |
| (GWL @ 5.56m - April 12, 2019)                                         |          |                                        |        |                |                   |           |        |          |                                  |           |                                                                                                                                                                                                                        |
| (anz @ 0.00 , pri (2, 2010)                                            |          |                                        |        |                |                   |           |        |          | 200 300<br>agle Rdg<br>s Resp. △ |           | <b>i00</b>                                                                                                                                                                                                             |

## SOIL PROFILE AND TEST DATA

Monitoring Well Construction

Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road

| 154 Colonnade Road South, Ottawa, On                                 | lario r        | 2E /J                   | 5      |               | Ot                | tawa, Or  | ntario   |          |                                         |                                         |    |
|----------------------------------------------------------------------|----------------|-------------------------|--------|---------------|-------------------|-----------|----------|----------|-----------------------------------------|-----------------------------------------|----|
| <b>DATUM</b> TBM - Top spindle of fire h<br>Assumed elevation = 100. | nydrar<br>00m. | nt loca                 | ted in | front         | of 30             | 7 Montgo  | mery Str | eet.     | FILE NO                                 | PE454                                   | 46 |
| REMARKS                                                              |                |                         |        |               |                   |           |          |          | HOLE NO                                 | <sup>o.</sup> BH 7                      |    |
| BORINGS BY CME 45 Power Auger                                        | 1              |                         |        | D             | ATE 2             | 2019 Apri | il 5     | 1        |                                         |                                         |    |
| SOIL DESCRIPTION                                                     | PLOT           |                         | SAM    | IPLE          |                   | DEPTH     | ELEV.    |          |                                         | n Detector<br>c Rdg. (ppm)              |    |
| SOIL DESCRIPTION                                                     |                | ы                       | ER     | ERY           | UE<br>OD          | (m)       | (m)      | • voia   |                                         | c Rug. (ppm)                            | _  |
|                                                                      | STRATA         | ТҮРЕ                    | NUMBER | %<br>RECOVERY | I VALUE<br>or RQD |           |          | ○ Lowe   | r Explos                                | ive Limit %                             |    |
| GROUND SURFACE                                                       |                |                         | 4      | RI            | zö                | 0-        | -99.12   | 20       | 40                                      | 60 80                                   | _  |
| Asphaltic concrete0.13                                               |                | ž                       |        |               |                   | 0         | 55.12    |          |                                         |                                         |    |
| FILL: Brown silty sand to sandy sile.46<br>with crushed stone        |                | S AU                    | 1      |               |                   |           |          |          |                                         | · · · · · · · · · · · · · · · · · · ·   |    |
| FILL: Dark brown silty clay with                                     |                | $\overline{\mathbb{V}}$ | 0      | 10            | 4 5               | 1-        | -98.12   |          | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |    |
| sand and gravel, some topsoil, trace organics and shale fragments    |                | ss                      | 2      | 42            | 15                |           | 00.12    |          |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   |           |          |          |                                         |                                         |    |
| - clay content decreasing with depth                                 |                | ss                      | 3      | 33            | 19                |           |          | 4        |                                         |                                         |    |
| 2.21                                                                 |                |                         |        |               |                   | 2-        | -97.12   |          |                                         |                                         |    |
|                                                                      |                | $\overline{\mathbf{V}}$ |        |               |                   |           |          |          |                                         |                                         |    |
|                                                                      |                | SS                      | 4      | 58            | 61                |           |          | 4        |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   | 3-        | 96.12    |          |                                         |                                         |    |
| FILL: Brown silty sand with                                          |                | ss                      | 5      | 100           | 50+               |           |          | 4        |                                         |                                         |    |
| crushed stone and gravel, some                                       |                |                         |        |               |                   |           |          |          |                                         |                                         |    |
| shale fragments                                                      |                | ≖ SS                    | 6      | 0             | 50+               | 1-        | -95.12   |          |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   | 4         | 95.12    |          |                                         |                                         |    |
|                                                                      |                | _                       |        |               |                   |           |          |          |                                         |                                         |    |
| 4.85                                                                 | $\bigotimes$   | X ss                    | 7      | 82            | 50+               |           |          | <b>4</b> |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   | 5-        | -94.12   |          |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   |           |          |          |                                         |                                         |    |
|                                                                      |                | ≬ ss                    | 8      | 12            | 94                |           |          | 4        |                                         |                                         |    |
| BEDROCK: Heavily fractured to                                        |                |                         |        |               |                   | 6-        | 93.12    |          |                                         |                                         |    |
| fractured, black shale                                               |                | ss                      | 9      | 62            | 51                |           |          |          |                                         |                                         |    |
|                                                                      |                | $\Lambda$               | 5      | 02            | 51                |           |          | <b>1</b> |                                         |                                         |    |
|                                                                      |                | 7                       |        |               |                   | 7-        | -92.12   |          |                                         |                                         |    |
|                                                                      |                | ss                      | 10     | 8             | 8                 | 1         | 52.12    | 4        |                                         |                                         |    |
|                                                                      |                |                         |        | 0             | 50                |           |          |          |                                         |                                         |    |
| 7.92                                                                 |                | ≍ SS                    | 11     | 0             | 50+               |           |          |          |                                         |                                         |    |
| End of Borehole                                                      |                |                         |        |               |                   |           |          |          |                                         |                                         |    |
| (GWL @ 6.22`m - April 12, 2019)                                      |                |                         |        |               |                   |           |          |          |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   |           |          |          |                                         |                                         |    |
|                                                                      |                |                         |        |               |                   |           |          |          |                                         |                                         | :  |

100 200 300 400 500 RKI Eagle Rdg. (ppm) • Full Gas Resp.  $\triangle$  Methane Elim.

# Soil PROFILE AND TEST DATA Soil PROFILE AND TEST DATA Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

| DATUM TBM - Top spindle of fire<br>Assumed elevation = 100     | hydrai<br>.00m. | nt loca   | ated ir | n front       |                | 7 Montgo  |        | eet.                                                      | FILE NO.                              | PE4546                                | 5                                                       |
|----------------------------------------------------------------|-----------------|-----------|---------|---------------|----------------|-----------|--------|-----------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------------------|
| REMARKS<br>BORINGS BY CME 45 Power Auger                       |                 |           |         | C             | ATE 2          | 2019 Apri | il 3   |                                                           | HOLE NO.                              | BH 8                                  |                                                         |
| SOIL DESCRIPTION                                               |                 |           | SAN     | <b>IPLE</b>   |                | DEPTH     | ELEV.  | Photo Ionization Detector     Volatile Organic Rdg. (ppm) |                                       |                                       | d Well                                                  |
|                                                                | STRATA PLOT     | ТҮРЕ      | NUMBER  | %<br>RECOVERY | VALUE<br>r RQD | (m)       | (m)    | ○ Lowe                                                    | er Explosive                          | e Limit %                             | Monitoring Well<br>Construction                         |
| GROUND SURFACE                                                 | N.              |           | Ĩ       | RE            | N VI<br>OF     |           | 00.07  | 20                                                        | 40 60                                 | 80                                    | ≥ <sup>0</sup>                                          |
| Asphaltic concrete0.1<br><b>FILL:</b> Brown silty sand with0.5 |                 | AU        | 1       |               |                | 0-        | -99.07 | <b>A</b>                                                  |                                       |                                       |                                                         |
|                                                                |                 | ss        | 2       | 54            | 8              | 1-        | -98.07 |                                                           |                                       | · · · · · · · · · · · · · · · · · · · |                                                         |
| <b>FILL:</b> Brown silty sand, trace clay, gravel and brick    |                 | ss        | 3       | 46            | 9              | 2-        | -97.07 |                                                           |                                       |                                       | մումը ույնը մոր նունը ունը ունը ունը ունը ունը ունը ուն |
|                                                                |                 | ss        | 4       | 75            | 17             |           |        | Δ                                                         |                                       |                                       |                                                         |
| 3.66                                                           |                 | ss        | 5       | 58            | 62             | 3-        | -96.07 | ▲                                                         |                                       |                                       |                                                         |
| 0                                                              |                 | ss        | 6       | 100           | 87             | 4-        | -95.07 | <b>A</b>                                                  |                                       |                                       |                                                         |
| <b>BEDROCK:</b> Heavily fractured to                           |                 | ss        | 7       | 88            | 53             | 5-        | -94.07 | A                                                         |                                       |                                       |                                                         |
| fractured, black shale                                         |                 | ⊐<br>≍ SS | 8       | 0             | 50+            |           |        |                                                           |                                       |                                       |                                                         |
|                                                                |                 | ss        | 9       | 25            | 14             | 6-        | -93.07 |                                                           |                                       |                                       |                                                         |
|                                                                |                 | ss        | 10      | 38            | 33             | 7-        | -92.07 | <b>A</b>                                                  |                                       |                                       |                                                         |
| 7.62                                                           | 2               | -         |         |               |                |           |        |                                                           |                                       | <u></u>                               |                                                         |
| (GWL @ 6.16m - April 12, 2019)                                 |                 |           |         |               |                |           |        |                                                           |                                       |                                       |                                                         |
|                                                                |                 |           |         |               |                |           |        |                                                           | 200 300<br>Eagle Rdg.<br>as Resp. △ M | (ppm)                                 | ⊣<br>00                                                 |

#### SOIL PROFILE AND TEST DATA

**Phase II - Environmental Site Assessment** 3-33 Selkirk Street and 2 Montreal Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| DAI |  |
|-----|--|

| <b>DATUM</b> TBM - Top spindle of fire I<br>Assumed elevation = 100                                       | nydrar<br>.00m.                                   | nt loca | ited in | front         | of 30          | 7 Montgo  | mery Str | eet. | FILE NO.                                | PE4546                                | <br>}                                         |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|---------|---------------|----------------|-----------|----------|------|-----------------------------------------|---------------------------------------|-----------------------------------------------|
| REMARKS                                                                                                   |                                                   |         |         |               |                |           |          |      | HOLE NO.                                | BH 9                                  |                                               |
| BORINGS BY CME 45 Power Auger                                                                             |                                                   |         |         |               | ATE 2          | 2019 Apri | 4        |      |                                         |                                       | _                                             |
| SOIL DESCRIPTION                                                                                          | PLOT                                              |         | SAN     | IPLE          |                | DEPTH     | ELEV.    |      | onization D<br>tile Organic Ro          |                                       | Monitoring Well<br>Construction               |
|                                                                                                           |                                                   | ы       | BER     | ÆRY           | VALUE<br>r rod | (m)       | (m)      |      | _                                       |                                       | oring                                         |
|                                                                                                           | STRATA                                            | ТҮРЕ    | NUMBER  | %<br>RECOVERY | N VA<br>or I   |           |          |      | r Explosive                             |                                       | Aonit                                         |
| GROUND SURFACE                                                                                            |                                                   |         |         | <u></u>       | ~              | 0-        | -99.03   | 20   | 40 60                                   | 80                                    |                                               |
| Asphaltic concrete 0.10<br><b>FILL:</b> Brown silty sand with<br>crushed stone 0.60                       |                                                   | AU      | 1       |               |                |           |          | Δ    |                                         |                                       |                                               |
|                                                                                                           |                                                   | ss      | 2       | 88            | 10             | 1-        | -98.03   |      | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · · · · · · · · · | <u>երիներինը</u>                              |
|                                                                                                           |                                                   | ss      | 3       | 54            | 12             | 2-        | -97.03   |      |                                         |                                       |                                               |
| FILL: Dark brown to black silty clay                                                                      |                                                   | ss      | 4       | 83            | 12             |           |          |      |                                         |                                       |                                               |
| with gravel, cobbles, sand and<br>shale fragments, trace topsoil                                          |                                                   | ss      | 5       | 100           | 12             | 3-        | -96.03   | Δ    |                                         |                                       | ԻկուԴերմերմերմերմերմերմերմերմերմերմերմերմերմե |
|                                                                                                           |                                                   | ss      | 6       | 12            | 23             | 4-        | -95.03   | Δ    |                                         |                                       | <u>111111111111111111111111111111111111</u>   |
|                                                                                                           |                                                   | ss      | 7       | 33            | 13             | 5-        | -94.03   |      |                                         |                                       |                                               |
| 5.64                                                                                                      |                                                   | ss      | 8       | 75            | 25             | 6-        | -93.03   | Δ    |                                         |                                       |                                               |
|                                                                                                           |                                                   | ss      | 9       | 100           | 56             |           |          | Δ    |                                         |                                       |                                               |
| <b>GLACIAL TILL:</b> Compact to very dense, grey sandy silt to silty sand with gravel and shale fragments |                                                   | ss      | 10      | 83            | 91             | 7-        | -92.03   | Δ    |                                         |                                       |                                               |
| 8.23                                                                                                      | (),^,^,^,<br>,,^,^,,<br>,,,,,,,,<br>,,,,,,,,,,,,, | ss      | 11      | 88            | 67             | 8-        | -91.03   | Δ    |                                         |                                       |                                               |
| End of Borehole                                                                                           |                                                   |         |         |               |                |           |          |      |                                         |                                       |                                               |
| (GWL @ 4.04m - April 12, 2019)                                                                            |                                                   |         |         |               |                |           |          |      |                                         |                                       |                                               |
|                                                                                                           |                                                   |         |         |               |                |           |          |      | 200 300<br>Eagle Rdg. (<br>as Resp. △ M | (ppm)                                 | 1<br>00                                       |

#### SOIL PROFILE AND TEST DATA patersongroup Phase II - Environmental Site Assessment 3-33 Selkirk Street and 2 Montreal Road 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located in front of 307 Montgomery Street. FILE NO. DATUM Assumed elevation = 100.00m. **PE4546** REMARKS HOLE NO. **BH10** DATE 2019 May 4 BORINGS BY CME 45 Power Auger SAMPLE **Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Lower Explosive Limit % $\cap$ **GROUND SURFACE** 80 20 40 60 0 Concrete slab 0.13 AU 1 SS 2 67 FILL: Brown silty sand with gravel 1 1.22 AU 3 2 SS 4 50 3 **GLACIAL TILL:** Dark brown silty sand with gravel, cobbles and shale SS 5 12 fragments 6 SS 17 4 SS 7 8 5 SS 8 10 5.79 RC 1 44 0 6 RC 2 100 0 Ţ **BEDROCK:** Heavily fractured to RC 3 74 0 fractured, black shale 7 RC 4 58 28 7.92 End of Borehole

100

200

RKI Eagle Rdg. (ppm)▲ Full Gas Resp. △ Methane Elim.

300

400

500

(GWL @ 6.43m - April 12, 2019)

#### SYMBOLS AND TERMS

#### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

| Desiccated       | - | having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.                                   |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| Fissured         | - | having cracks, and hence a blocky structure.                                                                               |
| Varved           | - | composed of regular alternating layers of silt and clay.                                                                   |
| Stratified       | - | composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.                               |
| Well-Graded      | - | Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution). |
| Uniformly-Graded | - | Predominantly of one grain size (see Grain Size Distribution).                                                             |

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

| Relative Density | 'N' Value | Relative Density % |
|------------------|-----------|--------------------|
| Very Loose       | <4        | <15                |
| Loose            | 4-10      | 15-35              |
| Compact          | 10-30     | 35-65              |
| Dense            | 30-50     | 65-85              |
| Very Dense       | >50       | >85                |

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

| Consistency | 'N' Value |       |  |
|-------------|-----------|-------|--|
| Very Soft   | <12       | <2    |  |
| Soft        | 12-25     | 2-4   |  |
| Firm        | 25-50     | 4-8   |  |
| Stiff       | 50-100    | 8-15  |  |
| Very Stiff  | 100-200   | 15-30 |  |
| Hard        | >200      | >30   |  |

### SYMBOLS AND TERMS (continued)

### SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

### RQD % ROCK QUALITY

| 90-100 | Excellent, intact, very sound                                |
|--------|--------------------------------------------------------------|
| 75-90  | Good, massive, moderately jointed or sound                   |
| 50-75  | Fair, blocky and seamy, fractured                            |
| 25-50  | Poor, shattered and very seamy or blocky, severely fractured |
| 0-25   | Very poor, crushed, very severely fractured                  |

### SAMPLE TYPES

| SS | - | Split spoon sample (obtained in conjunction with the performing of the Standard |
|----|---|---------------------------------------------------------------------------------|
|    |   | Penetration Test (SPT))                                                         |

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

### SYMBOLS AND TERMS (continued)

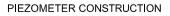
### **GRAIN SIZE DISTRIBUTION**

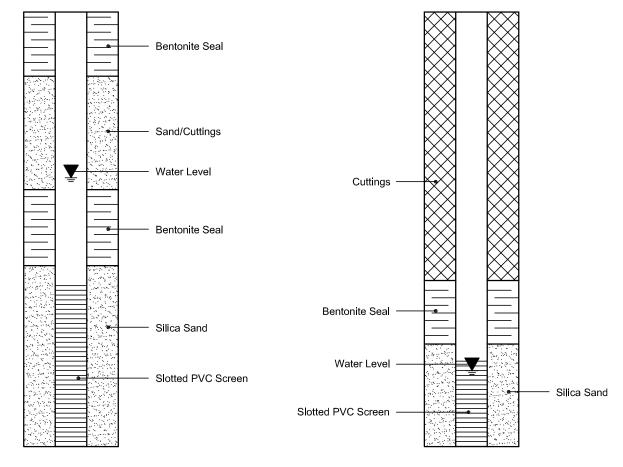
| MC%<br>LL<br>PL<br>PI                                          | -<br>-<br>- | Natural moisture content or water content of sample, %<br>Liquid Limit, % (water content above which soil behaves as a liquid)<br>Plastic limit, % (water content above which soil behaves plastically)<br>Plasticity index, % (difference between LL and PL) |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Dxx                                                            | -           | Grain size which xx% of the soil, by weight, is of finer grain sizes<br>These grain size descriptions are not used below 0.075 mm grain size                                                                                                                  |  |  |  |  |  |  |  |  |
| D10                                                            | -           | Grain size at which 10% of the soil is finer (effective grain size)                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| D60                                                            | -           | Grain size at which 60% of the soil is finer                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Сс                                                             | -           | Concavity coefficient = $(D30)^2 / (D10 \times D60)$                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Cu                                                             | -           | Uniformity coefficient = D60 / D10                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Cc and Cu are used to assess the grading of sands and gravels: |             |                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

### **CONSOLIDATION TEST**

| p'o      | -  | Present effective overburden pressure at sample depth          |
|----------|----|----------------------------------------------------------------|
| p'c      | -  | Preconsolidation pressure of (maximum past pressure on) sample |
| Ccr      | -  | Recompression index (in effect at pressures below p'c)         |
| Cc       | -  | Compression index (in effect at pressures above $p'_c$ )       |
| OC Ratio | )  | Overconsolidaton ratio = $p'_c / p'_o$                         |
| Void Rat | io | Initial sample void ratio = volume of voids / volume of solids |
| Wo       | -  | Initial water content (at start of consolidation test)         |


### PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

### SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

### MONITORING WELL AND PIEZOMETER CONSTRUCTION









RELIABLE.

# Certificate of Analysis

### Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26286 Project: PE4546 Custody: 121631

Report Date: 10-Apr-2019 Order Date: 4-Apr-2019

Order #: 1914537

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1914537-01 | BH1-SS2   |
| 1914537-02 | BH1-SS7   |
| 1914537-03 | BH2-SS8   |

Approved By:

Nack Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



### **Analysis Summary Table**

| Analysis                        | Method Reference/Description    | Extraction Date | Analysis Date |
|---------------------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS               | EPA 8260 - P&T GC-MS            | 8-Apr-19        | 9-Apr-19      |
| PHC F1                          | CWS Tier 1 - P&T GC-FID         | 8-Apr-19        | 9-Apr-19      |
| PHCs F2 to F4                   | CWS Tier 1 - GC-FID, extraction | 5-Apr-19        | 7-Apr-19      |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS   | 10-Apr-19       | 10-Apr-19     |
| Solids, %                       | Gravimetric, calculation        | 9-Apr-19        | 9-Apr-19      |

Report Date: 10-Apr-2019 Order Date: 4-Apr-2019



Report Date: 10-Apr-2019 Order Date: 4-Apr-2019

|                          | Client ID:<br>Sample Date:<br>Sample ID: | BH1-SS2<br>04/03/2019 09:00<br>1914537-01 | BH1-SS7<br>04/03/2019 09:00<br>1914537-02 | BH2-SS8<br>04/03/2019 09:00<br>1914537-03 |   |
|--------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---|
|                          | MDL/Units                                | Soil                                      | Soil                                      | Soil                                      | - |
| Physical Characteristics |                                          |                                           |                                           |                                           |   |
| % Solids                 | 0.1 % by Wt.                             | 88.2                                      | 93.8                                      | 95.6                                      | - |
| Metals                   |                                          |                                           |                                           |                                           |   |
| Antimony                 | 1.0 ug/g dry                             | <1.0                                      | -                                         | -                                         | - |
| Arsenic                  | 1.0 ug/g dry                             | 4.0                                       | -                                         | -                                         | - |
| Barium                   | 1.0 ug/g dry                             | 91.1                                      | -                                         | -                                         | - |
| Beryllium                | 0.5 ug/g dry                             | 0.6                                       | -                                         | -                                         | - |
| Boron                    | 5.0 ug/g dry                             | 5.7                                       | -                                         | -                                         | - |
| Cadmium                  | 0.5 ug/g dry                             | <0.5                                      | -                                         | -                                         | - |
| Chromium                 | 5.0 ug/g dry                             | 21.6                                      | -                                         | -                                         | - |
| Cobalt                   | 1.0 ug/g dry                             | 8.3                                       | -                                         | -                                         | - |
| Copper                   | 5.0 ug/g dry                             | 16.4                                      | -                                         | -                                         | - |
| Lead                     | 1.0 ug/g dry                             | 9.5                                       | -                                         | -                                         | - |
| Molybdenum               | 1.0 ug/g dry                             | 1.3                                       | -                                         | -                                         | - |
| Nickel                   | 5.0 ug/g dry                             | 24.6                                      | -                                         | -                                         | - |
| Selenium                 | 1.0 ug/g dry                             | <1.0                                      | -                                         | -                                         | - |
| Silver                   | 0.3 ug/g dry                             | <0.3                                      | -                                         | -                                         | - |
| Thallium                 | 1.0 ug/g dry                             | <1.0                                      | -                                         | -                                         | - |
| Uranium                  | 1.0 ug/g dry                             | <1.0                                      | -                                         | -                                         | - |
| Vanadium                 | 10.0 ug/g dry                            | 31.5                                      | -                                         | -                                         | - |
| Zinc                     | 20.0 ug/g dry                            | 44.7                                      | -                                         | -                                         | - |
| Volatiles                |                                          |                                           |                                           |                                           |   |
| Benzene                  | 0.02 ug/g dry                            | -                                         | 0.88                                      | 0.33                                      | - |
| Ethylbenzene             | 0.05 ug/g dry                            | -                                         | 2.39                                      | 0.64                                      | - |
| Toluene                  | 0.05 ug/g dry                            | -                                         | 1.23                                      | 0.78                                      | - |
| m,p-Xylenes              | 0.05 ug/g dry                            | -                                         | 6.74                                      | 3.12                                      | - |
| o-Xylene                 | 0.05 ug/g dry                            | -                                         | 0.85                                      | 0.98                                      | - |
| Xylenes, total           | 0.05 ug/g dry                            | -                                         | 7.58                                      | 4.10                                      | - |
| Toluene-d8               | Surrogate                                | -                                         | 111%                                      | 109%                                      | - |
| Hydrocarbons             |                                          |                                           |                                           |                                           |   |
| F1 PHCs (C6-C10)         | 7 ug/g dry                               | -                                         | 633                                       | 71                                        | - |
| F2 PHCs (C10-C16)        | 4 ug/g dry                               | -                                         | 204                                       | 130                                       | - |
| F3 PHCs (C16-C34)        | 8 ug/g dry                               | -                                         | 141                                       | 162                                       | - |
| F4 PHCs (C34-C50)        | 6 ug/g dry                               | -                                         | 11                                        | 13                                        | - |



Order #: 1914537

Report Date: 10-Apr-2019 Order Date: 4-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Blank

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | ND     | 7                  | ug/g  |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)     | ND     | 4                  | ug/g  |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)     | ND     | 8                  | ug/g  |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)     | ND     | 6                  | ug/g  |                  |      |               |     |              |       |
| Metals                |        |                    |       |                  |      |               |     |              |       |
| Antimony              | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Arsenic               | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Barium                | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Beryllium             | ND     | 0.5                | ug/g  |                  |      |               |     |              |       |
| Boron                 | ND     | 5.0                | ug/g  |                  |      |               |     |              |       |
| Cadmium               | ND     | 0.5                | ug/g  |                  |      |               |     |              |       |
| Chromium              | ND     | 5.0                | ug/g  |                  |      |               |     |              |       |
| Cobalt                | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Copper                | ND     | 5.0                | ug/g  |                  |      |               |     |              |       |
| Lead                  | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Molybdenum            | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Nickel                | ND     | 5.0                | ug/g  |                  |      |               |     |              |       |
| Selenium              | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Silver                | ND     | 0.3                | ug/g  |                  |      |               |     |              |       |
| Thallium              | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Uranium               | ND     | 1.0                | ug/g  |                  |      |               |     |              |       |
| Vanadium              | ND     | 10.0               | ug/g  |                  |      |               |     |              |       |
| Zinc                  | ND     | 20.0               | ug/g  |                  |      |               |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Ethylbenzene          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Toluene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene              | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: Toluene-d8 | 8.84   |                    | ug/g  |                  | 110  | 50-140        |     |              |       |
|                       |        |                    |       |                  |      |               |     |              |       |



Order #: 1914537

Report Date: 10-Apr-2019 Order Date: 4-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Duplicate

| Analyte                  | Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------|--------|--------------------|----------|------------------|------|---------------|------|--------------|-------|
| Hydrocarbons             |        |                    |          |                  |      |               |      |              |       |
| F1 PHCs (C6-C10)         | ND     | 7                  | ug/g dry | ND               |      |               |      | 40           |       |
| F2 PHCs (C10-C16)        | ND     | 4                  | ug/g dry | ND               |      |               |      | 30           |       |
| F3 PHCs (C16-C34)        | ND     | 8                  | ug/g dry | ND               |      |               |      | 30           |       |
| F4 PHCs (C34-C50)        | ND     | 6                  | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Metals                   |        |                    |          |                  |      |               |      |              |       |
| Antimony                 | 8.5    | 1.0                | ug/g dry | 9.2              |      |               | 7.6  | 30           |       |
| Arsenic                  | 6.4    | 1.0                | ug/g dry | 6.9              |      |               | 8.0  | 30           |       |
| Barium                   | 58.1   | 1.0                | ug/g dry | 65.9             |      |               | 12.6 | 30           |       |
| Beryllium                | 0.6    | 0.5                | ug/g dry | 0.6              |      |               | 2.4  | 30           |       |
| Boron                    | 7.6    | 5.0                | ug/g dry | 7.5              |      |               | 1.4  | 30           |       |
| Cadmium                  | ND     | 0.5                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Chromium                 | 17.0   | 5.0                | ug/g dry | 17.2             |      |               | 1.0  | 30           |       |
| Cobalt                   | 4.3    | 1.0                | ug/g dry | 4.4              |      |               | 2.5  | 30           |       |
| Copper                   | 66.5   | 5.0                | ug/g dry | 68.8             |      |               | 3.5  | 30           |       |
| Lead                     | 530    | 1.0                | ug/g dry | 549              |      |               | 3.3  | 30           |       |
| Molybdenum               | ND     | 1.0                | ug/g dry | 1.0              |      |               | 0.0  | 30           |       |
| Nickel                   | 18.1   | 5.0                | ug/g dry | 18.2             |      |               | 0.7  | 30           |       |
| Selenium                 | ND     | 1.0                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Silver                   | ND     | 0.3                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Thallium                 | ND     | 1.0                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Uranium                  | ND     | 1.0                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Vanadium                 | 18.7   | 10.0               | ug/g dry | 19.5             |      |               | 4.5  | 30           |       |
| Zinc                     | 56.8   | 20.0               | ug/g dry | 57.0             |      |               | 0.5  | 30           |       |
| Physical Characteristics |        |                    |          |                  |      |               |      |              |       |
| % Šolids                 | 86.4   | 0.1                | % by Wt. | 86.0             |      |               | 0.5  | 25           |       |
| Volatiles                |        |                    |          |                  |      |               |      |              |       |
| Benzene                  | ND     | 0.02               | ug/g dry | ND               |      |               |      | 50           |       |
| Ethylbenzene             | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| Toluene                  | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| m,p-Xylenes              | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| o-Xylene                 | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| Surrogate: Toluene-d8    | 10.3   |                    | ug/g dry |                  | 106  | 50-140        |      |              |       |



Method Quality Control: Spike

Report Date: 10-Apr-2019 Order Date: 4-Apr-2019

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | 181    | 7                  | ug/g  |                  | 90.4 | 80-120        |     |              |       |
| F2 PHCs (C10-C16)     | 93     | 4                  | ug/g  | ND               | 100  | 60-140        |     |              |       |
| F3 PHCs (C16-C34)     | 250    | 8                  | ug/g  | ND               | 109  | 60-140        |     |              |       |
| F4 PHCs (C34-C50)     | 157    | 6                  | ug/g  | ND               | 109  | 60-140        |     |              |       |
| Metals                |        |                    |       |                  |      |               |     |              |       |
| Antimony              | 43.8   |                    | ug/L  | 3.7              | 80.2 | 70-130        |     |              |       |
| Arsenic               | 48.0   |                    | ug/L  | 2.8              | 90.4 | 70-130        |     |              |       |
| Barium                | 66.2   |                    | ug/L  | 26.4             | 79.7 | 70-130        |     |              |       |
| Beryllium             | 45.4   |                    | ug/L  | ND               | 90.3 | 70-130        |     |              |       |
| Boron                 | 45.5   |                    | ug/L  | ND               | 85.0 | 70-130        |     |              |       |
| Cadmium               | 44.8   |                    | ug/L  | ND               | 89.4 | 70-130        |     |              |       |
| Chromium              | 52.8   |                    | ug/L  | 6.9              | 91.9 | 70-130        |     |              |       |
| Cobalt                | 46.7   |                    | ug/L  | 1.7              | 89.9 | 70-130        |     |              |       |
| Copper                | 69.8   |                    | ug/L  | 27.5             | 84.5 | 70-130        |     |              |       |
| Lead                  | 47.7   |                    | ug/L  |                  | 95.4 | 70-130        |     |              |       |
| Molybdenum            | 46.5   |                    | ug/L  | ND               | 92.2 | 70-130        |     |              |       |
| Nickel                | 51.0   |                    | ug/L  | 7.3              | 87.5 | 70-130        |     |              |       |
| Selenium              | 42.6   |                    | ug/L  | ND               | 84.8 | 70-130        |     |              |       |
| Silver                | 43.6   |                    | ug/L  | ND               | 87.1 | 70-130        |     |              |       |
| Thallium              | 43.1   |                    | ug/L  | ND               | 86.1 | 70-130        |     |              |       |
| Uranium               | 44.7   |                    | ug/L  | ND               | 88.7 | 70-130        |     |              |       |
| Vanadium              | 54.8   |                    | ug/L  | ND               | 94.0 | 70-130        |     |              |       |
| Zinc                  | 63.0   |                    | ug/L  | 22.8             | 80.3 | 70-130        |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | 3.80   | 0.02               | ug/g  |                  | 95.1 | 60-130        |     |              |       |
| Ethylbenzene          | 3.70   | 0.05               | ug/g  |                  | 92.5 | 60-130        |     |              |       |
| Toluene               | 3.46   | 0.05               | ug/g  |                  | 86.6 | 60-130        |     |              |       |
| m,p-Xylenes           | 7.34   | 0.05               | ug/g  |                  | 91.7 | 60-130        |     |              |       |
| o-Xylene              | 3.64   | 0.05               | ug/g  |                  | 91.0 | 60-130        |     |              |       |
| Surrogate: Toluene-d8 | 8.44   |                    | ug/g  |                  | 105  | 50-140        |     |              |       |



#### **Qualifier Notes:**

None

**Sample Data Revisions** 

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| GPARACEL                                                          | RE          | USTI<br>SPO<br>LIAB | E               | Par                       | acel ID:       |                 |      |       |           |     |      | Laurent Blvd.<br>irio K1G 4J8<br>-1947<br>paracellabs.com |               | (L     | ab Use (  | Custody<br>Duly)<br>216 |       |
|-------------------------------------------------------------------|-------------|---------------------|-----------------|---------------------------|----------------|-----------------|------|-------|-----------|-----|------|-----------------------------------------------------------|---------------|--------|-----------|-------------------------|-------|
| LABORATORIES LTD                                                  | •           |                     |                 |                           |                |                 |      |       |           |     | -    |                                                           |               | Paj    | ge (      | of                      |       |
| Tient Name: Paterson Group                                        |             |                     |                 | Project Reference         | PE454          | 6               |      |       |           |     |      |                                                           |               | Turn   | aroun     | d Time                  | 4     |
| Contact Name: Karyo Munch                                         |             |                     |                 | Quote #                   |                | ·               |      |       |           |     |      |                                                           | <b>X</b>      | Day    |           | 🗆 3 E                   | Day   |
| address:                                                          |             |                     |                 | 10# 262                   | 86             |                 | _    |       |           |     |      |                                                           | - 21          | 2      |           | 41                      | /     |
| 154 Colonnade Rd.                                                 | _           |                     |                 | Email Address:            | 100            | 1               |      |       |           |     |      |                                                           | in the second |        | and a     | (JAKC)                  | guiar |
| clephone: 6/3-226-7381                                            | tite of the | 0.0                 | 550.04          | Knun                      | hea            | hel-            | 24   | de la | Del       | Pac | 01   | Municipalitae                                             | Date          | Requir | Other:    |                         |       |
| Criteria: XO. Reg. 153/04 (As Amended) Table _ CI RSC 1           |             |                     | 1               | Contraction of the second | and the second |                 |      |       | 1.7       | 110 | aryj | wonneipanty: _                                            |               |        | oundr.    |                         | -     |
| Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S | S (Storm?   | Sanitary S          | ewer) P         | (Paint) A (Air) O (       | Other)         | Re              | quir | ed A  | naly      | ses |      |                                                           |               |        |           |                         |       |
| Paracel Order Number:                                             | ix          | Air Volume          | # of Containers | Sample                    | Taken          | PHCs FI-F4+BTEX |      |       | s by ICP  |     |      | (C.x.                                                     |               |        |           |                         |       |
| Sample ID/Location Name                                           | Matrix      | Air \               | f of            | Date                      | Time           | PHCs            | VOCs | PAHs  | Metals by | Hg  | CrVI | (SWH) 8                                                   |               |        |           |                         |       |
| 1 BH1-SSZ                                                         | S           |                     | 1               | Apr 3/19                  | 1              |                 | Ē    |       | X         |     | -    |                                                           |               | 25     | m         |                         |       |
| 2 BH1-SS7                                                         | S           |                     | 2               | i                         |                | X               |      |       |           |     |      |                                                           |               | 25     | Imi       | +11                     | rid   |
| 3 BH2-558                                                         | S           |                     | 2               | V                         |                | X               |      |       |           |     |      |                                                           |               |        | V         |                         | /     |
| 4                                                                 |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 5                                                                 |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 6                                                                 |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 7                                                                 |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 8                                                                 |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 9                                                                 |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 10                                                                |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               |        |           |                         |       |
| 'omments:                                                         |             |                     |                 |                           |                |                 |      |       |           |     |      |                                                           |               | Method | Tor Deliv | ory:                    |       |
| telinquished By (Sign);                                           | Receive     | d by Dri            | ver Depo        | Trouse                    | Reco           | ved at 1        | ub:  | 91    | 201       | D   | ON   | 1 0                                                       | D.C           | an     | 01        |                         |       |
| Relinquished By (Print): Nick Sallivan                            | Date/Ti     | me: 0;              | 4/0             | 4/19 4                    | 00 Date/       | Time;           | M    | R     | Oy.       | 101 | -    | 05 116 Date                                               | Time:         | SFP    | na        | 20                      | 5     |
| Date Time: April 14/2019                                          | Temper      | ature:              | /               | ć .                       | PHL Temp       | crature:        | 10,  | 1     | "C '      |     |      | pH V                                                      | erified [ ]   | By:    |           |                         |       |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

# Certificate of Analysis

### Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26288 Project: PE4546 Custody: 121640

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

Order #: 1915249

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1915249-01 | BH3-SS2   |
| 1915249-02 | BH4-SS2   |
| 1915249-03 | BH5-SS2   |
| 1915249-04 | BH6-SS2   |
| 1915249-05 | BH7-SS8   |
| 1915249-06 | BH8-SS3   |
| 1915249-07 | BH9-SS2   |

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



### **Analysis Summary Table**

| Analysis                        | Method Reference/Description                     | Extraction Date | Analysis Date |
|---------------------------------|--------------------------------------------------|-----------------|---------------|
| Chromium, hexavalent - soil     | MOE E3056 - Extraction, colourimetric            | 9-Apr-19        | 10-Apr-19     |
| Conductivity                    | MOE E3138 - probe @25 °C, water ext              | 12-Apr-19       | 12-Apr-19     |
| Mercury by CVAA                 | EPA 7471B - CVAA, digestion                      | 11-Apr-19       | 12-Apr-19     |
| pH, soil                        | EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext. | 9-Apr-19        | 11-Apr-19     |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS                    | 11-Apr-19       | 12-Apr-19     |
| REG 153: VOCs by P&T GC/MS      | EPA 8260 - P&T GC-MS                             | 12-Apr-19       | 15-Apr-19     |
| SAR                             | Calculated                                       | 12-Apr-19       | 12-Apr-19     |
| Solids, %                       | Gravimetric, calculation                         | 11-Apr-19       | 11-Apr-19     |

OTTAWA • CALGARY • MISSISSAUGA • KINGSTON • LONDON • NIAGARA • WINDSOR

Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019



Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

|                            | Client ID:    | BH3-SS2          | BH4-SS2          | BH5-SS2          | BH6-SS2          |
|----------------------------|---------------|------------------|------------------|------------------|------------------|
|                            | Sample Date:  | 04/05/2019 09:00 | 04/05/2019 09:00 | 04/05/2019 09:00 | 04/04/2019 09:00 |
|                            | Sample ID:    | 1915249-01       | 1915249-02       | 1915249-03       | 1915249-04       |
| Physical Observationistics | MDL/Units     | Soil             | Soil             | Soil             | Soil             |
| Physical Characteristics   | 0.4.0/ h)//t  |                  |                  |                  | 1                |
| % Solids                   | 0.1 % by Wt.  | 76.3             | 76.4             | 84.8             | 82.6             |
| General Inorganics         | 0.04 N/A      |                  | 1                |                  |                  |
| SAR                        | 0.01 N/A      | -                | 0.96             | -                | -                |
| Conductivity               | 5 uS/cm       | -                | 1510             | -                | -                |
| рН                         | 0.05 pH Units | -                | 7.69             | -                | -                |
| Metals                     |               |                  |                  |                  |                  |
| Antimony                   | 1.0 ug/g dry  | <1.0             | -                | <1.0             | <1.0             |
| Arsenic                    | 1.0 ug/g dry  | 4.3              | -                | 7.3              | 3.7              |
| Barium                     | 1.0 ug/g dry  | 143              | -                | 110              | 213              |
| Beryllium                  | 0.5 ug/g dry  | 0.6              | -                | 0.9              | 0.7              |
| Boron                      | 5.0 ug/g dry  | 5.5              | -                | 9.3              | 7.2              |
| Cadmium                    | 0.5 ug/g dry  | <0.5             | -                | <0.5             | <0.5             |
| Chromium                   | 5.0 ug/g dry  | 28.4             | -                | 25.6             | 32.4             |
| Chromium (VI)              | 0.2 ug/g dry  | <0.2             | -                | <0.2             | <0.2             |
| Cobalt                     | 1.0 ug/g dry  | 7.3              | -                | 14.7             | 8.7              |
| Copper                     | 5.0 ug/g dry  | 16.6             | -                | 37.5             | 14.9             |
| Lead                       | 1.0 ug/g dry  | 88.9             | -                | 13.8             | 11.1             |
| Mercury                    | 0.1 ug/g dry  | 0.2              | -                | <0.1             | <0.1             |
| Molybdenum                 | 1.0 ug/g dry  | 1.1              | -                | 4.5              | 1.5              |
| Nickel                     | 5.0 ug/g dry  | 19.0             | -                | 55.1             | 23.4             |
| Selenium                   | 1.0 ug/g dry  | <1.0             | -                | <1.0             | <1.0             |
| Silver                     | 0.3 ug/g dry  | <0.3             | -                | <0.3             | <0.3             |
| Thallium                   | 1.0 ug/g dry  | <1.0             | -                | <1.0             | <1.0             |
| Uranium                    | 1.0 ug/g dry  | <1.0             | -                | 1.8              | 1.1              |
| Vanadium                   | 10.0 ug/g dry | 33.6             | -                | 41.5             | 42.9             |
| Zinc                       | 20.0 ug/g dry | 83.8             | -                | 80.7             | 61.4             |

## ARACEL LTD.

#### Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 26288

| Order | #: | 191 | 5249 |
|-------|----|-----|------|
|-------|----|-----|------|

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

|                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH7-SS8<br>04/05/2019 09:00<br>1915249-05<br>Soil | BH8-SS3<br>04/03/2019 09:00<br>1915249-06<br>Soil | BH9-SS2<br>04/04/2019 09:00<br>1915249-07<br>Soil | -<br>-<br>-<br>- |
|--------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------|
| Physical Characteristics |                                                       |                                                   |                                                   |                                                   |                  |
| % Solids                 | 0.1 % by Wt.                                          | 95.5                                              | 87.1                                              | 84.1                                              | -                |
| General Inorganics       |                                                       |                                                   |                                                   | [                                                 |                  |
| SAR                      | 0.01 N/A                                              | -                                                 | -                                                 | 0.95                                              | -                |
| Conductivity             | 5 uS/cm                                               | -                                                 | -                                                 | 1290                                              | -                |
| рН                       | 0.05 pH Units                                         | -                                                 | 8.13                                              | -                                                 | -                |
| Metals                   | 1.0                                                   |                                                   |                                                   |                                                   | T                |
| Antimony                 | 1.0 ug/g dry                                          | -                                                 | <1.0                                              | <1.0                                              | -                |
| Arsenic                  | 1.0 ug/g dry                                          | -                                                 | 4.2                                               | 5.7                                               | -                |
| Barium                   | 1.0 ug/g dry                                          | -                                                 | 60.4                                              | 80.7                                              | -                |
| Beryllium                | 0.5 ug/g dry                                          | -                                                 | <0.5                                              | 0.8                                               | -                |
| Boron                    | 5.0 ug/g dry                                          | -                                                 | 7.0                                               | 10.7                                              | -                |
| Cadmium                  | 0.5 ug/g dry                                          | -                                                 | <0.5                                              | <0.5                                              | -                |
| Chromium                 | 5.0 ug/g dry                                          | -                                                 | 18.5                                              | 22.1                                              | -                |
| Chromium (VI)            | 0.2 ug/g dry                                          | -                                                 | -                                                 | <0.2                                              | -                |
| Cobalt                   | 1.0 ug/g dry                                          | -                                                 | 7.5                                               | 11.1                                              | -                |
| Copper                   | 5.0 ug/g dry                                          | -                                                 | 19.6                                              | 28.0                                              | -                |
| Lead                     | 1.0 ug/g dry                                          | -                                                 | 10.9                                              | 10.6                                              | -                |
| Mercury                  | 0.1 ug/g dry                                          | -                                                 | -                                                 | <0.1                                              | -                |
| Molybdenum               | 1.0 ug/g dry                                          | -                                                 | <1.0                                              | 4.0                                               | -                |
| Nickel                   | 5.0 ug/g dry                                          | -                                                 | 21.4                                              | 48.4                                              | -                |
| Selenium                 | 1.0 ug/g dry                                          | -                                                 | <1.0                                              | <1.0                                              | -                |
| Silver                   | 0.3 ug/g dry                                          | -                                                 | <0.3                                              | <0.3                                              | -                |
| Thallium                 | 1.0 ug/g dry                                          | -                                                 | <1.0                                              | <1.0                                              | -                |
| Uranium                  | 1.0 ug/g dry                                          | -                                                 | <1.0                                              | 1.8                                               | -                |
| Vanadium                 | 10.0 ug/g dry                                         | -                                                 | 28.5                                              | 35.5                                              | -                |
| Zinc                     | 20.0 ug/g dry                                         | -                                                 | 44.8                                              | 58.1                                              | -                |
| Volatiles                |                                                       |                                                   |                                                   |                                                   | <u> </u>         |
| Acetone                  | 0.50 ug/g dry                                         | <0.50                                             | -                                                 | -                                                 | -                |
| Benzene                  | 0.02 ug/g dry                                         | <0.02                                             | -                                                 | -                                                 | -                |
| Bromodichloromethane     | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Bromoform                | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Bromomethane             | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Carbon Tetrachloride     | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Chlorobenzene            | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Chloroform               | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |



Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

| Γ                                | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH7-SS8<br>04/05/2019 09:00<br>1915249-05<br>Soil | BH8-SS3<br>04/03/2019 09:00<br>1915249-06<br>Soil | BH9-SS2<br>04/04/2019 09:00<br>1915249-07<br>Soil | -<br>-<br>-<br>- |
|----------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------|
| Dibromochloromethane             | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Dichlorodifluoromethane          | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,2-Dichlorobenzene              | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,3-Dichlorobenzene              | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,4-Dichlorobenzene              | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,1-Dichloroethane               | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,2-Dichloroethane               | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,1-Dichloroethylene             | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| cis-1,2-Dichloroethylene         | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| trans-1,2-Dichloroethylene       | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,2-Dichloropropane              | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| cis-1,3-Dichloropropylene        | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| trans-1,3-Dichloropropylene      | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,3-Dichloropropene, total       | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Ethylbenzene                     | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Ethylene dibromide (dibromoethar | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Hexane                           | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Methyl Ethyl Ketone (2-Butanone) | 0.50 ug/g dry                                         | <0.50                                             | -                                                 | -                                                 | -                |
| Methyl Isobutyl Ketone           | 0.50 ug/g dry                                         | <0.50                                             | -                                                 | -                                                 | -                |
| Methyl tert-butyl ether          | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Methylene Chloride               | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Styrene                          | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,1,1,2-Tetrachloroethane        | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,1,2,2-Tetrachloroethane        | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Tetrachloroethylene              | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Toluene                          | 0.05 ug/g dry                                         | 0.06                                              | -                                                 | -                                                 | -                |
| 1,1,1-Trichloroethane            | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| 1,1,2-Trichloroethane            | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Trichloroethylene                | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Trichlorofluoromethane           | 0.05 ug/g dry                                         | <0.05                                             | -                                                 | -                                                 | -                |
| Vinyl chloride                   | 0.02 ug/g dry                                         | <0.02                                             | -                                                 | -                                                 | -                |
| m,p-Xylenes                      | 0.05 ug/g dry                                         | 0.11                                              | -                                                 | -                                                 | -                |
| o-Xylene                         | 0.05 ug/g dry                                         | 0.09                                              | -                                                 | -                                                 | -                |
| Xylenes, total                   | 0.05 ug/g dry                                         | 0.19                                              | -                                                 | -                                                 | -                |
| 4-Bromofluorobenzene             | Surrogate                                             | 79.6%                                             | -                                                 | -                                                 | -                |



Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

|                      | Client ID:                 |            | BH8-SS3                        | BH9-SS2                        | - |
|----------------------|----------------------------|------------|--------------------------------|--------------------------------|---|
|                      | Sample Date:<br>Sample ID: | 1915249-05 | 04/03/2019 09:00<br>1915249-06 | 04/04/2019 09:00<br>1915249-07 | - |
|                      | MDL/Units                  | Soil       | Soil                           | Soil                           | - |
| Dibromofluoromethane | Surrogate                  | 95.8%      | -                              | -                              | - |
| Toluene-d8           | Surrogate                  | 85.9%      | -                              | -                              | - |



Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Blank

| Ceneral Inorganics           Conductivity         ND         5         uS(m)           Matinony         ND         1.0         ug'n           Antimony         ND         1.0         ug'n           Barlum         ND         1.0         ug'n           Barlum         ND         1.0         ug'n           Barlum         ND         0.0         ug'n           Chromium         ND         0.0         ug'n           Catati         ND         1.0         ug'n           Copper         ND         1.0         ug'n           Copper         ND         1.0         ug'n           Copper         ND         1.0         ug'n           Copper         ND         1.0         ug'n           Miked         ND         1.0         ug'n           Selenium         ND         1.0         ug'n           Selenium         ND         1.0         ug'n           Selenium         ND         1.0         ug'n           Matadum         ND         1.0         ug'n           Selenium         ND         0.0         ug'n           Selenium         ND                                                                                                                                                                                                                                            | Analyte                                       | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Metals         ND         1.0         ugig           Arismonic         ND         1.0         ugig           Barlum         ND         1.0         ugig           Beryllum         ND         0.5         ugig           Beryllum         ND         0.5         ugig           Cadmium         ND         0.5         ugig           Chronium (V)         ND         0.5         ugig           Chronium (V)         ND         1.0         ugig           Chronium (V)         ND         1.0         ugig           Mecury         ND         1.0         ugig           Medustherum         ND         1.0         ugig           Molyderuum         ND         1.0         ugig           Molyderuum         ND         1.0         ugig           Thallum         ND         1.0         ugig           Zinc         ND         1.0         ugig           Zinc         ND         1.0         ugig           Zinc         ND         0.0         ugig           Zinc         ND         0.0         ugig           Zinc         ND         0.05         ugig                                                                                                                                                                                                                                      | General Inorganics                            |        |                    |       |                  |      |               |     |              |       |
| Animony         ND         1.0         ug/g           Assenic         ND         1.0         ug/g           Barlum         ND         1.0         ug/g           Barlum         ND         0.5         ug/g           Born         ND         5.0         ug/g           Cadmium         ND         5.0         ug/g           Chromium (V)         ND         0.5         ug/g           Commu         ND         5.0         ug/g           Copper         ND         1.0         ug/g           Copper         ND         1.0         ug/g           Mercury         ND         1.0         ug/g           Nickal         ND         1.0         ug/g           Silver         ND         0.1         ug/g           Silver         ND         0.1         ug/g           Zano         ND         0.0         ug/g           Zano         ND         0.0         ug/g           Berzene         ND         0.02         ug/g           Berzene         ND         0.05         ug/g           Berzene         ND         0.05         ug/g                                                                                                                                                                                                                                                            |                                               | ND     | 5                  | uS/cm |                  |      |               |     |              |       |
| Animony         ND         1.0         ug/g           Assenic         ND         1.0         ug/g           Barlum         ND         1.0         ug/g           Barlum         ND         0.5         ug/g           Born         ND         5.0         ug/g           Cadmium         ND         5.0         ug/g           Chromium (V)         ND         0.5         ug/g           Commu         ND         5.0         ug/g           Copper         ND         1.0         ug/g           Copper         ND         1.0         ug/g           Mercury         ND         1.0         ug/g           Nickal         ND         1.0         ug/g           Silver         ND         0.1         ug/g           Silver         ND         0.1         ug/g           Zano         ND         0.0         ug/g           Zano         ND         0.0         ug/g           Berzene         ND         0.02         ug/g           Berzene         ND         0.05         ug/g           Berzene         ND         0.05         ug/g                                                                                                                                                                                                                                                            | Metals                                        |        |                    |       |                  |      |               |     |              |       |
| Arsenic         ND         1.0         uğ'g           Berylium         ND         0.5         ug'g           Berylium         ND         0.5         ug'g           Cadmium         ND         0.5         ug'g           Chromium         ND         0.5         ug'g           Chromium         ND         5.0         ug'g           Chromium         ND         5.0         ug'g           Cadati         ND         1.0         ug'g           Cadati         ND         1.0         ug'g           Maydenum         ND         1.0         ug'g           Maydenum         ND         1.0         ug'g           Maydenum         ND         1.0         ug'g           Steinim         ND         1.0         ug'g           Steinim         ND         1.0         ug'g           Varatium         ND         1.0         ug'g           Steine         ND         0.0         ug'g           Baronoficharomethane         ND         0.05         ug'g           Bromoficharomethane         ND         0.05         ug'g           Bromoficharomethane         ND         0.05 <td></td> <td>ND</td> <td>1.0</td> <td>ua/a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                    |                                               | ND     | 1.0                | ua/a  |                  |      |               |     |              |       |
| Barlium         ND         1.0         ug/g           Boron         ND         6.0         ug/g           Cadmium         ND         6.0         ug/g           Chromium (VI)         ND         0.2         ug/g           Chromium         ND         1.0         ug/g           Cobal         ND         1.0         ug/g           Cobal         ND         1.0         ug/g           Cadadium         ND         1.0         ug/g           Machan         ND         1.0         ug/g           Machan         ND         1.0         ug/g           Nickel         ND         1.0         ug/g           Nickel         ND         1.0         ug/g           Silver         ND         0.3         ug/g           Thalium         ND         1.0         ug/g           Vanadum         ND         1.0         ug/g           Zinc         ND         0.00         ug/g           Zinc         ND         0.00         ug/g           Chantem         ND         0.05         ug/g           Chantema         ND         0.05         ug/g                                                                                                                                                                                                                                                      |                                               |        |                    | ug/g  |                  |      |               |     |              |       |
| Bergin         ND         0.5         ug/g           Cadmum         ND         0.5         ug/g           Chromium (V1)         ND         0.2         ug/g           Chromium (V1)         ND         5.0         ug/g           Chromium (V1)         ND         5.0         ug/g           Capper         ND         5.0         ug/g           Capper         ND         5.0         ug/g           Malydoenum         ND         1.0         ug/g           Malydoenum         ND         1.0         ug/g           Selenium         ND         1.0         ug/g           Selenium         ND         1.0         ug/g           Valatium         ND         1.0         ug/g           Variant         ND         1.0         ug/g           Variant         ND         0.0         ug/g           Variant         ND         0.0         ug/g           Variant         ND         0.0         ug/g           Carton         ND         0.05         ug/g           Bromodichromethane         ND         0.05         ug/g           Bromodichromethane         ND         0.05 </td <td>Barium</td> <td>ND</td> <td></td> <td>ug/g</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                           | Barium                                        | ND     |                    | ug/g  |                  |      |               |     |              |       |
| Cadmium         ND         0.5         uğg           Chromium (N)         ND         0.2         uğg           Chromium (N)         ND         0.0         uğg           Copper         ND         1.0         uğg           Copper         ND         0.0         uğg           Mercury         ND         0.1         uğg           Mercury         ND         0.1         uğg           Nickal         ND         0.0         uğg           Silver         ND         0.0         uğg           Silver         ND         0.0         uğg           Zinc         ND         1.0         uğg           Zinc         ND         1.0         uğg           Zinc         ND         1.0         uğg           Zinc         ND         1.0         uğg           Zinc         ND         0.00         uğg           Zinc         ND         0.05         uğg           Bromodichloromethane         ND         0.05         uğg           Bromodichloromethane         ND         0.05         uğg           Choroberzene         ND         0.05         uğg <tr< td=""><td>Beryllium</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                         | Beryllium                                     |        |                    |       |                  |      |               |     |              |       |
| Chromium (VI)         ND         0.2         ug'g           Chromium (VI)         ND         1.0         ug'g           Cobalt         ND         1.0         ug'g           Cobalt         ND         1.0         ug'g           Mercury         ND         0.1         ug'g           Molydednum         ND         1.0         ug'g           Molydednum         ND         1.0         ug'g           Silver         ND         1.0         ug'g           Silver         ND         1.0         ug'g           Vanadium         ND         1.0         ug'g           Vanadium         ND         1.0         ug'g           Vanadium         ND         1.0         ug'g           Vanadium         ND         0.0         ug'g           Vanadium         ND         0.0         ug'g           Vanadium         ND         0.0         ug'g           Cotone         ND         0.05         ug'g           Cotone         ND         0.05         ug'g           Cotone         ND         0.05         ug'g           Cotone         ND         0.05         ug'g                                                                                                                                                                                                                              |                                               |        |                    | ug/g  |                  |      |               |     |              |       |
| Chromium         ND         5.0         uğr           Copar         ND         1.0         uğr           Copper         ND         5.0         uğr           Mercury         ND         0.1         uğr           Mercury         ND         0.1         uğr           Mickel         ND         0.1         uğr           Nickel         ND         1.0         uğr           Nickel         ND         1.0         uğr           Silver         ND         0.3         uğr           Yanadum         ND         1.0         uğr           Zinc         ND         1.0         uğr           Zinc         ND         1.0         uğr           Berzene         ND         0.0         uğr           Bromodrom         ND         0.0         uğr           Bromodrom         ND         0.05         uğr           Brom                                                                                                                                                                                                                                                 |                                               |        |                    |       |                  |      |               |     |              |       |
| Cabalt         ND         1.0         ug'g           Capper         ND         5.0         ug'g           Mecury         ND         0.1         ug'g           Motydefaum         ND         1.0         ug'g           Motydefaum         ND         1.0         ug'g           Silver         ND         1.0         ug'g           Selenium         ND         1.0         ug'g           Thallum         ND         1.0         ug'g           Vanadum         ND         0.0         ug'g           Vanadum         ND         0.0         ug'g           Benzene         ND         0.05         ug'g           Benzene         ND         0.05         ug'g           Chloroberzene         ND         0.05         ug'g           Chloroberzene         ND         0.05         ug'g           Chloroberzene         ND         0.05         ug'g<                                                                                                                                                                                                                       |                                               |        |                    |       |                  |      |               |     |              |       |
| Copper         ND         5.0         ug'g           Lead         ND         1.0         ug'g           Mercury         ND         0.1         ug'g           Molyddenum         ND         1.0         ug'g           Nickel         ND         5.0         ug'g           Silver         ND         0.0         ug'g           Silver         ND         0.0         ug'g           Vanadium         ND         1.0         ug'g           Zinc         ND         0.0         ug'g           Zinc         ND         0.02         ug'g           Bernzene         ND         0.05         ug'g           Bromodichioronethane         ND         0.05         ug'g           Bromodichioronethane         ND         0.05         ug'g           Chlorobenzene         ND         0.05         ug'g           Chlorobenzene         ND         0.05         ug'g           Dichiorodfluoronethane         ND         0.05         ug'g           1,3-Dichiorobenzene         ND         0.05         ug'g           1,2-Dichiorobenzene         ND         0.05         ug'g           1,3-Dichioroethylen                                                                                                                                                                                            |                                               |        |                    |       |                  |      |               |     |              |       |
| Leåd         ND         1.0         uğ'g           Mercury         ND         0.1         uğ'g           Meybdenum         ND         1.0         uğ'g           Nickel         ND         5.0         uğ'g           Selenium         ND         1.0         uğ'g           Silver         ND         0.3         uğ'g           Thallum         ND         1.0         uğ'g           Vanadum         ND         1.0         uğ'g           Vanadum         ND         1.0         uğ'g           Vanadum         ND         1.0         uğ'g           Zinc         ND         0.0         uğ'g           Setotne         ND         0.0         uğ'g           Bromodorm         ND         0.05         uğ'g           Bromodorm         ND         0.05         uğ'g           Bromodorm         ND         0.05         uğ'g           Dichoroditormethane         ND         0.05         uğ'g           Chloroform         ND         0.05         uğ'g           Dichoroditormethane         ND         0.05         uğ'g           1.2-Dichiorobenzene         ND         0.05 </td <td></td>                                                                                                       |                                               |        |                    |       |                  |      |               |     |              |       |
| Mercury<br>Molydenum         ND         0.1         ug/g<br>ug/g           Nokkel         ND         5.0         ug/g           Shernum         ND         5.0         ug/g           Shernum         ND         0.3         ug/g           Shernum         ND         0.3         ug/g           Thallum         ND         1.0         ug/g           Vanadum         ND         1.0         ug/g           Vanadum         ND         1.0         ug/g           Zinc         ND         0.0         ug/g           Volatiles         ND         0.02         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromodichloromethane         ND         0.05         ug/g           Chloroform         ND         0.05         ug/g           Dionomethane         ND         0.05         ug/g           Dionomethane         ND         0.05         ug/g           Lichorofthoromethane         ND         0.05         ug/g           Dichorofthoromethane         ND         0.05         ug/g           <                                                                                                                                                                                  |                                               |        |                    |       |                  |      |               |     |              |       |
| Motybérnum         ND         1.0         uýčg           Silker         ND         5.0         uýčg           Selenium         ND         1.0         uýčg           Silver         ND         0.3         uýčg           Thallum         ND         1.0         uýčg           Vanadum         ND         1.0         uýčg           Vanadum         ND         1.0         uýčg           Vanadum         ND         1.0         uýčg           Vanadum         ND         1.0         uýčg           Selotne         ND         0.0         uýčg           Bromodrinomhane         ND         0.05         uýčg           Bromodrinom         ND         0.05         uýčg           Bromodrinom         ND         0.05         uýčg           Bromochiromethane         ND         0.05         uýčg           Chlorobenzene         ND         0.05         uýčg           Dichloromethane         ND         0.05         uýčg           1.0-Dichloromethane         ND         0.05         uýčg           1.2-Dichloromethane         ND         0.05         uýčg           1.2-Dichloromethane <td></td>                                                                                            |                                               |        |                    |       |                  |      |               |     |              |       |
| Nickei         ND         5.0         uğ'g           Silver         ND         1.0         ug'g           Silver         ND         0.3         ug'g           Janum         ND         1.0         ug'g           Janum         ND         1.0         ug'g           Vanadium         ND         1.0         ug'g           Zinc         ND         20.0         ug'g           Volatiles         ND         0.02         ug'g           Formodichioromethane         ND         0.05         ug'g           Bromodichioromethane         ND         0.05         ug'g           Bromodichioromethane         ND         0.05         ug'g           Bromodichioromethane         ND         0.05         ug'g           Chioroform         ND         0.05         ug'g           Dioromethane         ND         0.05         ug'g           Dichorodifuoromethane         ND         0.05         ug'g           1,3-Dichiorobenzene         ND         0.05         ug'g           1,2-Dichioroethane         ND         0.05         ug'g           1,2-Dichioroethane         ND         0.05         ug'g      <                                                                                                                                                                                |                                               |        |                    |       |                  |      |               |     |              |       |
| Selerium         ND         1.0         uğ'g           Silver         ND         0.3         ug/g           Thallum         ND         1.0         ug/g           Vanadium         ND         10.0         ug/g           Vanadium         ND         10.0         ug/g           Zinc         ND         20.0         ug/g           Actone         ND         0.50         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromoform         ND         0.05         ug/g           Bromoformethane         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Chiorobenzene         ND         0.05         ug/g           Dichiorodifluoromethane         ND         0.05         ug/g           Dichiorodifluoromethane         ND         0.05         ug/g           L2-Dichiorobenzene         ND         0.05         ug/g           1.4-Dichiorobenzene         ND         0.05         ug/g           1.2-Dichiorobenzene         ND         0.05         ug/                                                                                                                                                                  |                                               |        |                    |       |                  |      |               |     |              |       |
| Silver         ND         0.3         ug/g           Thailium         ND         1.0         ug/g           Vanadium         ND         1.0         ug/g           Zinc         ND         20.0         ug/g           Volatiles         Vanadium         ND         0.0         ug/g           Formacichloromethane         ND         0.02         ug/g           Branzene         ND         0.05         ug/g           Bromocichloromethane         ND         0.05         ug/g           Bromocichloromethane         ND         0.05         ug/g           Chioroform         ND         0.05         ug/g           Chioroform         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           Chioroform         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           1.2-Dichlorobenzene         ND         0.05         ug/g           1.2-Dichlorobenzene         ND         0.05         ug/g           1.2-Dichlorobethylene         ND         0.05         ug/g           1.2-Dichlorobethylene         ND                                                                                                                                                                    |                                               |        |                    |       |                  |      |               |     |              |       |
| Thailum         ND         1.0         ug/g           Uranium         ND         10.0         ug/g           Zinc         ND         20.0         ug/g           Zinc         ND         20.0         ug/g           Acetone         ND         0.50         ug/g           Brazene         ND         0.02         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromodichloromethane         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Dichlorodifluoromethane         ND         0.05         ug/g           1.2-Dichlorobenzene         ND         0.05         ug/g           1.3-Dichlorobenzene         ND         0.05         ug/g           1.4-Dichloropethylene         ND         0.05         ug/g           1.2-Dichloropethylene         ND         0.05         ug/g           1.3-Dichloropethylene         ND         0.0                                                                                                                                                         |                                               |        |                    |       |                  |      |               |     |              |       |
| UraniumND1.0ug/gVanadiumND1.0.ug/gZincND20.0ug/gVolatilesAcetoneND0.50ug/gBornoroeND0.02ug/gBromodichloromethaneND0.05ug/gBromoformND0.05ug/gBromoformND0.05ug/gBromoformND0.05ug/gBromoformND0.05ug/gBromoformND0.05ug/gDichtorodifuoromethaneND0.05ug/gChlorobenzeneND0.05ug/gDichtorodifuoromethaneND0.05ug/g1,2-DichtorobenzeneND0.05ug/g1,3-DichtorobenzeneND0.05ug/g1,4-DichtorobenzeneND0.05ug/g1,4-DichtorobenzeneND0.05ug/g1,1-DichtorobenzeneND0.05ug/g1,1-DichtorobenzeneND0.05ug/g1,1-DichtorobenzeneND0.05ug/g1,1-DichtorobenzeneND0.05ug/g1,1-DichtorobenzeneND0.05ug/g1,1-DichtorobenzeneND0.05ug/g1,1-DichtorobethyleneND0.05ug/g1,1-DichtorobethyleneND0.05ug/gtrans-1,2-DichtorothyleneND0.05ug/gtrans-1,3-DichtoropropyleneND0.05ug/gtrans-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |        |                    |       |                  |      |               |     |              |       |
| Vanadium<br>ZincND10.0ug'gVolatilesActoneND0.00ug'gBenzeneND0.02ug'gBromodichloromethaneND0.05ug'gBromodichloromethaneND0.05ug'gBromodichloromethaneND0.05ug'gBromodichloromethaneND0.05ug'gBromodichloromethaneND0.05ug'gCarbon TetrachlorideND0.05ug'gChlorobenzeneND0.05ug'gDibromochloromethaneND0.05ug'gDibromochloromethaneND0.05ug'g1,3-DichlorobenzeneND0.05ug'g1,3-DichlorobenzeneND0.05ug'g1,3-DichlorobenzeneND0.05ug'g1,1-DichlorobenzeneND0.05ug'g1,1-DichlorobenzeneND0.05ug'g1,1-DichlorobenzeneND0.05ug'g1,1-DichlorobethyleneND0.05ug'g1,1-DichloroethyleneND0.05ug'gtrans-1,2-DichloroethyleneND0.05ug'g1,3-DichloropropaneND0.05ug'gtrans-1,2-DichloroethyleneND0.05ug'g1,3-DichloropropyleneND0.05ug'gtrans-1,2-DichloroethyleneND0.05ug'g1,3-DichloropropyleneND0.05ug'g1,3-DichloropropyleneND0.05ug'g                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |        |                    |       |                  |      |               |     |              |       |
| ZincND20.0ug/gVolatiliesAcetoneND0.50ug/gBenzeneND0.02ug/gBromodichloromethaneND0.05ug/gBromodichloromethaneND0.05ug/gBromodichloromethaneND0.05ug/gCarbon TetrachlorideND0.05ug/gDimomodichloromethaneND0.05ug/gChiorobenzeneND0.05ug/gDichorodifluoromethaneND0.05ug/gDichlorodifluoromethaneND0.05ug/g1.3-DichlorobenzeneND0.05ug/g1.3-DichlorobenzeneND0.05ug/g1.3-DichlorobenzeneND0.05ug/g1.3-DichlorobenzeneND0.05ug/g1.4-DichlorobenzeneND0.05ug/g1.1-DichloroethaneND0.05ug/g1.2-DichloroethyleneND0.05ug/g1.3-DichloroethyleneND0.05ug/g1.3-DichloroethyleneND0.05ug/gtrans-1.2-DichloroethyleneND0.05ug/gtrans-1.3-DichloropropyleneND0.05ug/gtrans-1.3-DichloropropyleneND0.05ug/gtrans-1.3-DichloropropyleneND0.05ug/gtrans-1.3-DichloropropyleneND0.05ug/gtrans-1.3-DichloropropyleneND0.05ug/gHyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |        |                    |       |                  |      |               |     |              |       |
| Volatiles         Actone       ND       0.50       ug/g         Benzene       ND       0.02       ug/g         Bromodichloromethane       ND       0.05       ug/g         Bromodichloromethane       ND       0.05       ug/g         Bromomethane       ND       0.05       ug/g         Carbon Tetrachloride       ND       0.05       ug/g         Chlorobenzene       ND       0.05       ug/g         Dichorodflucoromethane       ND       0.05       ug/g         Dichorodflucoromethane       ND       0.05       ug/g         1.3-Dichorobenzene       ND       0.05       ug/g         1.3-Dichorobenzene       ND       0.05       ug/g         1.4-Dichlorobenzene       ND       0.05       ug/g         1.4-Dichloropropane       ND       0.05       ug/g      <                                                                                                                                                                                                                  |                                               |        |                    |       |                  |      |               |     |              |       |
| Acetone         ND         0.50         ug/g           Benzene         ND         0.02         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromodichloromethane         ND         0.05         ug/g           Bromodirom         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Chiorobenzene         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           1,2-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroptylene         ND         0.05         ug/g           1,2-Dichloropty                                                                                                                                       |                                               |        | 20.0               | ~9,9  |                  |      |               |     |              |       |
| BenzeneND0.02ug/gBromodichioromethaneND0.05ug/gBromomethaneND0.05ug/gCarbon TetrachlorideND0.05ug/gChiorobenzeneND0.05ug/gChiorobenzeneND0.05ug/gDibromochloromethaneND0.05ug/gDibromochloromethaneND0.05ug/gDibromochloromethaneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,3-DichlorobenzeneND0.05ug/g1,4-DichlorobenzeneND0.05ug/g1,4-DichlorobenzeneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,1-DichlorobenzeneND0.05ug/g1,2-DichloroptyleneND0.05ug/g1,2-DichloroptyleneND0.05ug/g1,3-DichloropropyleneND0.05ug/g1,3-DichloropropyleneND0.05ug/g1,3-DichloropropyleneND0.05ug/g1,3-DichloropropyleneND0.05ug/g1,1-DichloropropyleneND0.05ug/g1,3-DichloropropyleneND0.05ug/g1,3-DichloropropyleneND0.05<                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |        | 0.50               | ,     |                  |      |               |     |              |       |
| Bromodichloromethane         ND         0.05         ug/g           Bromonethane         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           Dichlorodifluoromethane         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloropropylene         ND         0.05         ug/g           trans-1,2-Dichloropropylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g <td></td>                       |                                               |        |                    |       |                  |      |               |     |              |       |
| Bromoform         ND         0.05         ug/g           Bromomethane         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Dichorobenzene         ND         0.05         ug/g           Dichorodifluoromethane         ND         0.05         ug/g           1,2-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloropthylene         ND         0.05         ug/g           cis-1,2-Dichloropthylene         ND         0.05         ug/g           cis-1,3-Dichloroptopylene         ND         0.05         ug/g           cis-1,3-Dichloroptopylene         ND         0.05         ug/g                                                                                                                                        |                                               |        |                    |       |                  |      |               |     |              |       |
| Bromomethane         ND         0.05         ug/g           Carbon Tetrachloride         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Chlorobenzene         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           Dichlorobelrozene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           trans-1,2-Dichloroethylene         ND         0.05         ug/g           trans-1,3-Dichloroptylene         ND         0.05         ug/g           trans-1,3-Dichloroptylene         ND         0.05         ug/g           Ethylbenzene         ND         0.05         ug/g      E                                                                                                                               |                                               |        |                    |       |                  |      |               |     |              |       |
| Carbon TetrachlorideND0.05ug/gChlorobenzeneND0.05ug/gDibromochloromethaneND0.05ug/gDibromochloromethaneND0.05ug/gDichlorodifluoromethaneND0.05ug/g1,2-DichlorobenzeneND0.05ug/g1,4-DichlorobenzeneND0.05ug/g1,4-DichlorobenzeneND0.05ug/g1,4-DichlorobenzeneND0.05ug/g1,1-DichloroethaneND0.05ug/g1,2-DichloroethyleneND0.05ug/g1,1-DichloroethyleneND0.05ug/gcis-1,2-DichloroethyleneND0.05ug/gcis-1,2-DichloroethyleneND0.05ug/gcis-1,3-DichloropropyleneND0.05ug/gcis-1,3-DichloropropyleneND0.05ug/gcis-1,3-DichloropropyleneND0.05ug/gtrans-1,3-DichloropropyleneND0.05ug/gtrans-1,3-DichloropropyleneND0.05ug/gEthylbenzeneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.05ug/gMethyl Isobutyl Ketone (2-Butanone)ND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/g1,1,2-TetrachloroethaneND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                   |                                               |        |                    |       |                  |      |               |     |              |       |
| Chlorobenzene         ND         0.05         ug/g           Chloroform         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           Dichlorodifluoromethane         ND         0.05         ug/g           1,2-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroptylene         ND         0.05         ug/g           1,2-Dichloroptylene         ND         0.05         ug/g           1,2-Dichloroptylene         ND         0.05         ug/g           1,2-Dichloroptylene         ND         0.05         ug/g                                                                                                                                        |                                               |        |                    |       |                  |      |               |     |              |       |
| Chloroform         ND         0.05         ug/g           Dibromochloromethane         ND         0.05         ug/g           1,2-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloropropylene         ND         0.05         ug/g           1,2-Dichloropropylene         ND         0.05         ug/g           1,3-Dichloropropylene         ND         0.05         ug/g           1,3-Dichloropropylene         ND         0.05         ug/g           Htylbenzene         ND         0.05         ug/g           Htylbence (dibromotethane         ND         0.05         ug/g                                                                                                                                |                                               |        |                    |       |                  |      |               |     |              |       |
| Dibromochloromethane         ND         0.05         ug/g           Dichlorodifluoromethane         ND         0.05         ug/g           1,2-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           trans-1,2-Dichloroethylene         ND         0.05         ug/g           trans-1,2-Dichloroethylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g           thylene dibromide (dibromoethane         ND         0.05         ug/g           Hexane         ND         0.05         ug/g           Methyl Isobutyl Ketone         ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> |                                               |        |                    |       |                  |      |               |     |              |       |
| Dichlorodifluoromethane         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,3-Dichlorobenzene         ND         0.05         ug/g           1,4-Dichlorobenzene         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,1-Dichloroethane         ND         0.05         ug/g           1,1-Dichloroethylene         ND         0.05         ug/g           cis-1,2-Dichloroethylene         ND         0.05         ug/g           trans-1,2-Dichloroethylene         ND         0.05         ug/g           cis-1,3-Dichloropropylene         ND         0.05         ug/g           cis-1,3-Dichloropropylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g           Ethylbenzene         ND         0.05         ug/g           Hexane         ND         0.05         ug/g           Methyl Ethyl Ketone (2-Butanone)         ND         0.50         ug/g           Methyl tethyl tether         ND         0.05                                                                                                         |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,2-Dichlorobenzene       ND       0.05       ug/g         1,3-Dichlorobenzene       ND       0.05       ug/g         1,4-Dichlorobenzene       ND       0.05       ug/g         1,1-Dichloroethane       ND       0.05       ug/g         1,2-Dichloroethane       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         cis-1,2-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroethylene       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroethylene       ND       0.05       ug/g         1,3-Dichloropropane       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         1,3-Dichloropropylene       ND       0.05       ug/g         Hexane       ND       0.05       ug/g         Hexane       ND       0.50       ug/g         Methyl Ethyl Ketone (2-Butanone)       ND       0.50       ug/g         Methyl Isobutyl Ketone       ND       0.55       ug/g         Methyl Isobutyl Ketone       ND       0.05       ug/g </td <td></td>                                                                             |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,3-Dichlorobenzene       ND       0.05       ug/g         1,4-Dichlorobenzene       ND       0.05       ug/g         1,1-Dichloroethane       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         1,1-Dichloroethylene       ND       0.05       ug/g         1,1-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroethylene       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         1,2-Dichloroptylene       ND       0.05       ug/g         1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         Ethylbenzene       ND       0.05       ug/g         Ethylene dibromide (dibromoethane       ND       0.05       ug/g         Methyl Ethyl Ketone (2-Butanone)       ND       0.50       ug/g         Methyl Isobutyl Ketone       ND       0.05       ug/g         Methyl terb-butyl ether       ND       0.05       ug/g         Methyl terbordhore       ND       0.05                                                                                                                                                                        |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,4-DichlorobenzeneND0.05ug/g1,1-DichloroethaneND0.05ug/g1,2-DichloroethaneND0.05ug/g1,1-DichloroethyleneND0.05ug/gcis-1,2-DichloroethyleneND0.05ug/gtrans-1,2-DichloroethyleneND0.05ug/g(is-1,3-DichloroptyleneND0.05ug/g1,3-DichloroptyleneND0.05ug/gtrans-1,3-DichloroptyleneND0.05ug/gtrans-1,3-DichloroptyleneND0.05ug/gtrans-1,3-DichloroptyleneND0.05ug/gtrans-1,3-DichloroptyleneND0.05ug/gthylbenzeneND0.05ug/gEthylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl tert-butyl etherND0.05ug/gMethyl tert-butyl etherND0.05ug/gMethyl tert-butyl etherND0.05ug/gMethylene ChlorideND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/gTetrachloroethaneND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/gTetrachloroethaneND <td></td>                                                                                                                                                                                                                                                                                                                      |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,1-Dichloroethane       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         1,1-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroptopane       ND       0.05       ug/g         cis-1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         1,3-Dichloropropylene       ND       0.05       ug/g         1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropene, total       ND       0.05       ug/g         tethylenzene       ND       0.05       ug/g         Hexane       ND       0.05       ug/g         Methyl Ethyl Ketone (2-Butanone)       ND       0.50       ug/g         Methyl tetr-butyl ether       ND<                                                                                                                                                        |                                               | ND     |                    |       |                  |      |               |     |              |       |
| 1,2-Dichloroethane       ND       0.05       ug/g         1,1-Dichloroethylene       ND       0.05       ug/g         cis-1,2-Dichloroethylene       ND       0.05       ug/g         trans-1,2-Dichloroethylene       ND       0.05       ug/g         1,2-Dichloroethylene       ND       0.05       ug/g         1,2-Dichloroptopane       ND       0.05       ug/g         cis-1,3-Dichloropropylene       ND       0.05       ug/g         trans-1,3-Dichloropropylene       ND       0.05       ug/g         1,3-Dichloropropylene, total       ND       0.05       ug/g         Ethylbenzene       ND       0.05       ug/g         Ethylene dibromide (dibromoethane       ND       0.05       ug/g         Methyl Ethyl Ketone (2-Butanone)       ND       0.05       ug/g         Methyl Isobutyl Ketone       ND       0.05       ug/g         Methyl tert-butyl ether       ND       0.05       ug/g         Methylene Chloride       ND       0.05       ug/g         Styrene       ND       0.05       ug/g         1,1,2-Tetrachloroethane       ND       0.05       ug/g         1,1,2,2-Tetrachloroethane       ND <t< td=""><td>1,1-Dichloroethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                          | 1,1-Dichloroethane                            |        |                    |       |                  |      |               |     |              |       |
| cis-1,2-Dichloroethylene         ND         0.05         ug/g           trans-1,2-Dichloroethylene         ND         0.05         ug/g           1,2-Dichloropropane         ND         0.05         ug/g           cis-1,3-Dichloropropylene         ND         0.05         ug/g           trans-1,3-Dichloropropylene         ND         0.05         ug/g           1,3-Dichloropropylene         ND         0.05         ug/g           1,3-Dichloropropylene, total         ND         0.05         ug/g           Ethylene dibromide (dibromoethane         ND         0.05         ug/g           Hexane         ND         0.05         ug/g           Methyl Ethyl Ketone (2-Butanone)         ND         0.50         ug/g           Methyl Isobutyl Ketone         ND         0.05         ug/g           Methyl Isobutyl Ketone         ND         0.05         ug/g           Methyl tert-butyl ether         ND         0.05         ug/g           Methyl Isobutyl Ketone         ND         0.05         ug/g           Methyl tert-butyl ether         ND         0.05         ug/g           Methyl Isobutyl Ketone         ND         0.05         ug/g           1,1,2-Tetrachloroethane                                                                                           | 1,2-Dichloroethane                            |        | 0.05               | ug/g  |                  |      |               |     |              |       |
| trans-1,2-DichloroethyleneND0.05ug/g1,2-DichloropropaneND0.05ug/gcis-1,3-DichloropropyleneND0.05ug/gtrans-1,3-DichloropropyleneND0.05ug/g1,3-Dichloropropylene, totalND0.05ug/gEthylbenzeneND0.05ug/gEthylbenzeneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl tert-butyl etherND0.05ug/gMethylene ChlorideND0.05ug/gMethylene ChlorideND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/g1,1,2,2-Tetrachloro                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |        |                    | ug/g  |                  |      |               |     |              |       |
| 1,2-DichloropropaneND0.05ug/gcis-1,3-DichloropropyleneND0.05ug/gtrans-1,3-DichloropropyleneND0.05ug/g1,3-Dichloropropene, totalND0.05ug/gEthylbenzeneND0.05ug/gEthylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl tert-butyl etherND0.05ug/gMethylene ChlorideND0.05ug/gMethylene ChlorideND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cis-1,2-Dichloroethylene                      |        |                    | ug/g  |                  |      |               |     |              |       |
| cis-1,3-DichloropropyleneND0.05ug/gtrans-1,3-DichloropropyleneND0.05ug/g1,3-Dichloropropene, totalND0.05ug/gEthylbenzeneND0.05ug/gEthylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl eth-butyl etherND0.05ug/gMethylene ChlorideND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |        |                    |       |                  |      |               |     |              |       |
| trans-1,3-DichloropropyleneND0.05ug/g1,3-Dichloropropene, totalND0.05ug/gEthylbenzeneND0.05ug/gEthylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethylene ChlorideND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,3-Dichloropropene, totalND0.05ug/gEthylbenzeneND0.05ug/gEthylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethylene ChlorideND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |        |                    |       |                  |      |               |     |              |       |
| EthylbenzeneND0.05ug/gEthylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl Isobutyl KetoneND0.05ug/gMethyl tert-butyl etherND0.05ug/gStyreneND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |        |                    |       |                  |      |               |     |              |       |
| Ethylene dibromide (dibromoethaneND0.05ug/gHexaneND0.05ug/gMethyl Ethyl Ketone (2-Butanone)ND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl Isobutyl KetoneND0.50ug/gMethyl tert-butyl etherND0.05ug/gMethylene ChlorideND0.05ug/gStyreneND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |        |                    |       |                  |      |               |     |              |       |
| Hexane         ND         0.05         ug/g           Methyl Ethyl Ketone (2-Butanone)         ND         0.50         ug/g           Methyl Isobutyl Ketone         ND         0.50         ug/g           Methyl Isobutyl Ketone         ND         0.50         ug/g           Methyl Isobutyl Ketone         ND         0.05         ug/g           Methyl tert-butyl ether         ND         0.05         ug/g           Methylene Chloride         ND         0.05         ug/g           Styrene         ND         0.05         ug/g           1,1,1,2-Tetrachloroethane         ND         0.05         ug/g           1,1,2,2-Tetrachloroethane         ND         0.05         ug/g           Tetrachloroethylene         ND         0.05         ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethylpenzene<br>Ethylpenzenida (dibromaathana |        |                    |       |                  |      |               |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)         ND         0.50         ug/g           Methyl Isobutyl Ketone         ND         0.50         ug/g           Methyl Isobutyl Ketone         ND         0.05         ug/g           Methyl tert-butyl ether         ND         0.05         ug/g           Methylene Chloride         ND         0.05         ug/g           Styrene         ND         0.05         ug/g           1,1,2-Tetrachloroethane         ND         0.05         ug/g           1,1,2.2-Tetrachloroethane         ND         0.05         ug/g           Tetrachloroethylene         ND         0.05         ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |        |                    |       |                  |      |               |     |              |       |
| Methyl Isobutyl KetoneND0.50ug/gMethyl tert-butyl etherND0.05ug/gMethylene ChlorideND0.05ug/gStyreneND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |        |                    |       |                  |      |               |     |              |       |
| Methyl tert-butyl ether         ND         0.05         ug/g           Methylene Chloride         ND         0.05         ug/g           Styrene         ND         0.05         ug/g           1,1,1,2-Tetrachloroethane         ND         0.05         ug/g           1,1,2,2-Tetrachloroethane         ND         0.05         ug/g           Tetrachloroethylene         ND         0.05         ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |        |                    |       |                  |      |               |     |              |       |
| Methylene ChlorideND0.05ug/gStyreneND0.05ug/g1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |        |                    |       |                  |      |               |     |              |       |
| Styrene         ND         0.05         ug/g           1,1,1,2-Tetrachloroethane         ND         0.05         ug/g           1,1,2,2-Tetrachloroethane         ND         0.05         ug/g           Tetrachloroethylene         ND         0.05         ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,1,1,2-TetrachloroethaneND0.05ug/g1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,1,2,2-TetrachloroethaneND0.05ug/gTetrachloroethyleneND0.05ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |        |                    |       |                  |      |               |     |              |       |
| Tetrachloroethylene ND 0.05 ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |        |                    |       |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |        |                    |       |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene                                       | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane ND 0.05 ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |        |                    |       |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane ND 0.05 ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |        |                    |       |                  |      |               |     |              |       |



Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Blank

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Trichloroethylene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Trichlorofluoromethane          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Vinyl chloride                  | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes                     | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene                        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total                  | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene | 7.66   |                    | ug/g  |                  | 95.8 | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 7.92   |                    | ug/g  |                  | 99.0 | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 7.86   |                    | ug/g  |                  | 98.3 | 50-140        |     |              |       |



### Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Duplicate

| Analyte                           | Result        | Reporting<br>Limit | Units                | Source<br>Result | %REC | %REC<br>Limit | RPD        | RPD<br>Limit | Notes  |
|-----------------------------------|---------------|--------------------|----------------------|------------------|------|---------------|------------|--------------|--------|
| General Inorganics                |               |                    |                      |                  |      |               |            |              |        |
| SAR                               | 0.31          | 0.01               | N/A                  | 0.32             |      |               | 3.2        | 200          |        |
| Conductivity                      | 136           | 5                  | uS/cm                | 138              |      |               | 1.6        | 5            |        |
| pH                                | 8.48          | 0.05               | pH Units             | 7.89             |      |               | 7.2        | 10           |        |
| Metals                            | 0.10          | 0.00               | r 01110              |                  |      |               |            |              |        |
| Antimony                          | 1.2           | 1.0                | ug/g dry             | ND               |      |               | 0.0        | 30           |        |
| Arsenic                           | 3.2           | 1.0                | ug/g dry             | 4.9              |      |               | 40.6       | 30           |        |
| Barium                            | 28.0          | 1.0                | ug/g dry             | 46.2             |      |               | 48.9       | 30           | QR-01  |
| Beryllium                         | ND            | 0.5                | ug/g dry             | ND               |      |               | 0.0        | 30           |        |
| Boron                             | 5.9           | 5.0                | ug/g dry<br>ug/g dry | 8.0              |      |               | 30.1       | 30           | QR-01  |
| Cadmium                           | ND            | 0.5                | ug/g dry             | ND               |      |               | 0.0        | 30           | dit of |
| Chromium (VI)                     | ND            | 0.2                | ug/g dry             | ND               |      |               | 0.0        | 35           |        |
| Chromium                          | 14.2          | 5.0                | ug/g dry             | 14.3             |      |               | 0.9        | 30           |        |
| Cobalt                            | 4.4           | 1.0                | ug/g dry<br>ug/g dry | 4.5              |      |               | 2.0        | 30           |        |
| Copper                            | 8.9           | 5.0                | ug/g dry<br>ug/g dry | 9.1              |      |               | 2.0        | 30           |        |
| Lead                              | 44.5          | 5.0<br>1.0         |                      | 9.1<br>48.5      |      |               | 2.2<br>8.8 | 30<br>30     |        |
|                                   | 44.5<br>0.157 | 0.1                | ug/g dry<br>ug/g dry | 46.5<br>0.156    |      |               | o.o<br>0.8 | 30<br>30     |        |
| Mercury<br>Molybdenum             | 0.157<br>ND   | 1.0                | ug/g dry<br>ug/g dry | 0.156<br>ND      |      |               | 0.8        | 30<br>30     |        |
|                                   |               |                    |                      |                  |      |               |            |              |        |
| Nickel                            | 8.7           | 5.0                | ug/g dry             | 8.7              |      |               | 0.2        | 30           |        |
| Selenium                          | ND<br>ND      | 1.0                | ug/g dry             | ND               |      |               | 0.0        | 30           |        |
| Silver                            |               | 0.3                | ug/g dry             | ND               |      |               | 0.0        | 30           |        |
| Thallium                          | ND            | 1.0                | ug/g dry             | ND               |      |               | 0.0        | 30           |        |
| Uranium                           | ND            | 1.0                | ug/g dry             | ND               |      |               | 0.0        | 30           |        |
| Vanadium                          | 13.5          | 10.0               | ug/g dry             | 20.6             |      |               | 41.5       | 30           |        |
| Zinc                              | 59.8          | 20.0               | ug/g dry             | 91.9             |      |               | 42.4       | 30           |        |
| Physical Characteristics          |               |                    | 0/ 1 10//            |                  |      |               |            |              |        |
| % Solids                          | 93.0          | 0.1                | % by Wt.             | 93.6             |      |               | 0.6        | 25           |        |
| Volatiles                         |               |                    | , .                  |                  |      |               |            |              |        |
| Acetone                           | ND            | 0.50               | ug/g dry             | ND               |      |               |            | 50           |        |
| Benzene                           | ND            | 0.02               | ug/g dry             | ND               |      |               |            | 50           |        |
| Bromodichloromethane              | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Bromoform                         | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Bromomethane                      | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Carbon Tetrachloride              | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Chlorobenzene                     | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Chloroform                        | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Dibromochloromethane              | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Dichlorodifluoromethane           | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,2-Dichlorobenzene               | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,3-Dichlorobenzene               | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,4-Dichlorobenzene               | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,1-Dichloroethane                | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,2-Dichloroethane                | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,1-Dichloroethylene              | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| cis-1,2-Dichloroethylene          | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| trans-1,2-Dichloroethylene        | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| 1,2-Dichloropropane               | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| cis-1,3-Dichloropropylene         | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| trans-1,3-Dichloropropylene       | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Ethylbenzene                      | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Ethylene dibromide (dibromoethane | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Hexane                            | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Methyl Ethyl Ketone (2-Butanone)  | ND            | 0.50               | ug/g dry             | ND               |      |               |            | 50           |        |
| Methyl Isobutyl Ketone            | ND            | 0.50               | ug/g dry             | ND               |      |               |            | 50           |        |
| Methyl tert-butyl ether           | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
| Methylene Chloride                | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |
|                                   | ND            | 0.05               |                      | ND               |      |               |            |              |        |
| Styrene                           | ND            | 0.05               | ug/g dry             | ND               |      |               |            | 50           |        |



### Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Duplicate

| Analyte                         | Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|----------|------------------|------|---------------|-----|--------------|-------|
| 1,1,2,2-Tetrachloroethane       | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Tetrachloroethylene             | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Toluene                         | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| 1,1,1-Trichloroethane           | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| 1,1,2-Trichloroethane           | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Trichloroethylene               | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Trichlorofluoromethane          | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Vinyl chloride                  | ND     | 0.02               | ug/g dry | ND               |      |               |     | 50           |       |
| m,p-Xylenes                     | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| o-Xylene                        | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Surrogate: 4-Bromofluorobenzene | 8.62   |                    | ug/g dry |                  | 101  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 8.66   |                    | ug/g dry |                  | 101  | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 8.38   |                    | ug/g dry |                  | 98.2 | 50-140        |     |              |       |



### Order #: 1915249

Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Spike

| Analyte                           | Result | Reporting<br>Limit | Units  | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|--------|------------------|------|---------------|-----|--------------|-------|
| Metals                            |        |                    |        |                  |      |               |     |              |       |
| Antimony                          | 45.3   |                    | ug/L   | ND               | 89.9 | 70-130        |     |              |       |
| Arsenic                           | 48.5   |                    | ug/L   | 1.9              | 93.0 | 70-130        |     |              |       |
| Barium                            | 63.1   |                    | ug/L   | 18.5             | 89.4 | 70-130        |     |              |       |
| Beryllium                         | 48.2   |                    | ug/L   | ND               | 96.1 | 70-130        |     |              |       |
| Boron                             | 46.4   |                    | ug/L   | ND               | 86.5 | 70-130        |     |              |       |
| Cadmium                           | 48.6   |                    | ug/L   | ND               | 96.9 | 70-130        |     |              |       |
| Chromium (VI)                     | 0.1    |                    | mg/L   | ND               | 70.5 | 70-130        |     |              |       |
| Chromium                          | 52.6   |                    | ug/L   | 5.3              | 94.7 | 70-130        |     |              |       |
| Cobalt                            | 49.0   |                    | ug/L   | 1.5              | 95.1 | 70-130        |     |              |       |
| Copper                            | 55.7   |                    | ug/L   | 9.5              | 92.4 | 70-130        |     |              |       |
| Lead                              | 64.5   |                    | ug/L   | 19.4             | 90.2 | 70-130        |     |              |       |
| Mercury                           | 1.26   | 0.1                | ug/g   | 0.156            | 73.6 | 70-130        |     |              |       |
| Molybdenum                        | 46.9   |                    | ug/L   | ND               | 93.4 | 70-130        |     |              |       |
| Nickel                            | 48.5   |                    | ug/L   | ND               | 90.2 | 70-130        |     |              |       |
| Selenium                          | 45.9   |                    | ug/L   | ND               | 91.6 | 70-130        |     |              |       |
| Silver                            | 50.6   |                    | ug/L   | ND               | 101  | 70-130        |     |              |       |
| Thallium                          | 47.2   |                    | ug/L   | ND               | 94.3 | 70-130        |     |              |       |
| Uranium                           | 47.2   |                    | ug/L   | ND               | 93.9 | 70-130        |     |              |       |
| Vanadium                          | 57.1   |                    | ug/L   | ND               | 97.8 | 70-130        |     |              |       |
| Zinc                              | 76.1   |                    | ug/L   | 36.8             | 78.6 | 70-130        |     |              |       |
| Volatiles                         |        |                    | - 3, - |                  |      |               |     |              |       |
| Acetone                           | 9.59   | 0.50               | ug/g   |                  | 95.9 | 50-140        |     |              |       |
| Benzene                           | 3.27   | 0.02               | ug/g   |                  | 81.6 | 60-130        |     |              |       |
| Bromodichloromethane              | 4.29   | 0.05               | ug/g   |                  | 107  | 60-130        |     |              |       |
| Bromoform                         | 3.29   | 0.05               | ug/g   |                  | 82.2 | 60-130        |     |              |       |
| Bromomethane                      | 3.84   | 0.05               | ug/g   |                  | 96.1 | 50-140        |     |              |       |
| Carbon Tetrachloride              | 3.69   | 0.05               | ug/g   |                  | 92.3 | 60-130        |     |              |       |
| Chlorobenzene                     | 3.37   | 0.05               | ug/g   |                  | 84.2 | 60-130        |     |              |       |
| Chloroform                        | 3.62   | 0.05               | ug/g   |                  | 90.5 | 60-130        |     |              |       |
| Dibromochloromethane              | 3.28   | 0.05               | ug/g   |                  | 81.9 | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 3.56   | 0.05               | ug/g   |                  | 89.1 | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 3.50   | 0.05               | ug/g   |                  | 87.5 | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 3.40   | 0.05               | ug/g   |                  | 84.9 | 60-130        |     |              |       |
| 1,4-Dichlorobenzene               | 3.60   | 0.05               | ug/g   |                  | 89.9 | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 3.71   | 0.05               | ug/g   |                  | 92.8 | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 3.63   | 0.05               | ug/g   |                  | 90.7 | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 3.69   | 0.05               | ug/g   |                  | 92.3 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 3.54   | 0.05               | ug/g   |                  | 88.6 | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 3.32   | 0.05               | ug/g   |                  | 83.0 | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 3.43   | 0.05               | ug/g   |                  | 85.7 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 3.69   | 0.05               | ug/g   |                  | 92.1 | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 3.06   | 0.05               | ug/g   |                  | 76.4 | 60-130        |     |              |       |
| Ethylbenzene                      | 3.22   | 0.05               | ug/g   |                  | 80.4 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 2.69   | 0.05               | ug/g   |                  | 67.1 | 60-130        |     |              |       |
| Hexane                            | 2.77   | 0.05               | ug/g   |                  | 69.3 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 9.26   | 0.50               | ug/g   |                  | 92.6 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 8.23   | 0.50               | ug/g   |                  | 82.3 | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 11.1   | 0.05               | ug/g   |                  | 111  | 50-140        |     |              |       |
| Methylene Chloride                | 3.84   | 0.05               | ug/g   |                  | 96.1 | 60-130        |     |              |       |
| Styrene                           | 3.49   | 0.05               | ug/g   |                  | 87.2 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 3.29   | 0.05               | ug/g   |                  | 82.3 | 60-130        |     |              |       |
| .,.,                              | 0.20   | 0.00               | ~3,3   |                  | 02.0 | 00 100        |     |              |       |



Report Date: 15-Apr-2019 Order Date: 9-Apr-2019

**Project Description: PE4546** 

Method Quality Control: Spike

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| 1,1,2,2-Tetrachloroethane       | 3.19   | 0.05               | ug/g  |                  | 79.9 | 60-130        |     |              |       |
| Tetrachloroethylene             | 3.16   | 0.05               | ug/g  |                  | 79.0 | 60-130        |     |              |       |
| Toluene                         | 3.21   | 0.05               | ug/g  |                  | 80.3 | 60-130        |     |              |       |
| 1,1,1-Trichloroethane           | 3.38   | 0.05               | ug/g  |                  | 84.6 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane           | 3.78   | 0.05               | ug/g  |                  | 94.4 | 60-130        |     |              |       |
| Trichloroethylene               | 3.61   | 0.05               | ug/g  |                  | 90.4 | 60-130        |     |              |       |
| Trichlorofluoromethane          | 3.42   | 0.05               | ug/g  |                  | 85.5 | 50-140        |     |              |       |
| Vinyl chloride                  | 3.88   | 0.02               | ug/g  |                  | 96.9 | 50-140        |     |              |       |
| m,p-Xylenes                     | 6.66   | 0.05               | ug/g  |                  | 83.2 | 60-130        |     |              |       |
| o-Xylene                        | 3.51   | 0.05               | ug/g  |                  | 87.6 | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene | 7.60   |                    | ug/g  |                  | 95.0 | 50-140        |     |              |       |



#### **Qualifier Notes:**

#### QC Qualifiers :

QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

| GPARACEL                                                                                | RE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Paracel ID         |           |                 |      |      |            | awa,<br>I-800 | 9 St. L<br>Ontari<br>-749-1 | aurent B<br>o K1G 4<br>947<br>racellabs | IJ8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | -        | Use Or    |        | 0    |
|-----------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|-----------|-----------------|------|------|------------|---------------|-----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------|------|
| LABORATORIES LT                                                                         | D.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |           |                 |      |      | Ê          |               |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Page     | of        |        |      |
| Client Name: Paterson Group Inc                                                         | · .             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Project Reference: | PEUS      | 54(             | 0    |      |            |               |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T            | `urnar   | ound      | Time:  |      |
| Contact Name: Kaun MUDCh                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Quote #            | -         |                 | _    | _    | _          | _             |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🗆 l Da       | У        |           | 🗆 3 Da | ıy   |
| Address: 154 Lolonnode Rd.S                                                             | 0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | PO# 262            | 88        |                 | _    | -    | _          |               |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 2 Da       | y        |           | Reg    | ular |
|                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Email Address:     | murc      | ne              | Da   | at   | M          | 201           | ng                          | Dup                                     | ).a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date R       | equire   |           |        |      |
| Telephone: (0.13 - 72.60 - 7-38)<br>Criteria: (70. Reg. 153/04 (As Amended) Table _ 0 R | C Eiling II     | O Rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 558/00        |                    |           |                 |      |      |            |               |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |           |        |      |
|                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |           | 1               |      | d Ar |            |               |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |           |        |      |
| Matrix Type: S (Soil:Sed.) GW (Ground Water) SW (Surface Wat                            | er) SS (Storm:S | anitary S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ewer) r       | T                  | lier)     |                 |      |      | T          |               | T                           |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          |           |        |      |
| Paracel Order Number:<br>1915249                                                        | rix             | Air Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Containers | Sample '           | Faken     | PHCs F1-F4+BTEX | x    | Is   | als by ICP |               | GrVI<br>B (HWS)             | EC/SAR                                  | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |          |           |        |      |
| Sample ID/Location Name                                                                 | Matrix          | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # of          | Date               | Time      | PHC             | VOCS | PAHs | Metals     | Hg            | B ()                        | 4                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          | 000       | - 1    |      |
| 1 BH3-SSO                                                                               | S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             | April 5/19         |           |                 |      | _    | V          | 1             | 4                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          | 250       | ml     |      |
| 2 BH4-SS2                                                                               | S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             | April 5/19         | _         |                 |      |      | 1          |               | +                           | V                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          | V ach     |        | -    |
| 3 BHS-SS2                                                                               | S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             | Apri15/19          |           |                 |      | _    | Ŋ          | VI            | 4                           |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          | 120       | 111    | -    |
| · BHG-SSZ                                                                               | S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             | Apr.4/19           |           | _               |      |      | 4          | VI            | 4                           | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | -10      | 260       |        | al   |
| * 5 BH7-SS8                                                                             | S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9             | Apr. 5119          |           | -               | V    | _    |            | -             | +                           | -                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 3        | m         |        | nars |
| · BH8-SS3                                                                               | Ś               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             | Apr.3/19           |           | -               |      | _    | V          | -             | +                           |                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          | 25        | m      | - /  |
| 1 BH9-SS2                                                                               | S               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             | Apr.4/19           |           | -               | _    | _    | V          | V             |                             | V                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          |           | V      | -    |
| 8                                                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -             |                    |           | -               | -    | _    | -          | +             | +                           | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | -        |           |        | -    |
| 9                                                                                       |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             |                    |           | +               | -    | -    | -          | +             | +                           | -                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            |          |           |        | -    |
| 10                                                                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                    |           | _               |      |      |            | _             | _                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            | Method o | of Delive | ny:    |      |
| K 2 containers, please hold join in                                                     | ot needed       | Ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |           |                 |      |      |            |               |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1/2      | rac       | 19     |      |
| Relinquished By Osum                                                                    |                 | al by Dri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iver Dep      | Death              | C         | ived at I       | U    | 201  | 201        |               |                             | limini                                  | Verifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | st By        |          | ru-       |        |      |
| Relinquished By (Print): MAIN 3+ Presse                                                 | Date/T          | Contract of the local division of the local |               | 04/19 3            | 3:30 Date |                 |      | 129  | 20         | 19            | 0                           | 14.25                                   | and in case of the local division of the loc | ime 04/      |          | 11        | 6:25   |      |
| Date/Time:                                                                              | Tempe           | rature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /             | °C ,               | 71. Temp  | nerature        | 10   | .5   | C          |               |                             |                                         | pH Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rified [ ] B | Y:       | -         |        |      |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

# Certificate of Analysis

### Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Philip Price

Client PO: 26334 Project: PE4546 Custody: 121650

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

Order #: 1916101

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1916101-01 | BH1-GW1   |
| 1916101-02 | BH2-GW1   |
| 1916101-03 | BH3-GW1   |
| 1916101-04 | BH4-GW1   |
| 1916101-05 | BH5-GW1   |
| 1916101-06 | BH6-GW1   |
| 1916101-07 | BH7-GW1   |
| 1916101-08 | BH8-GW1   |
| 1916101-09 | BH9-GW1   |
| 1916101-10 | BH10-GW1  |

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



### **Analysis Summary Table**

| Analysis                     | Method Reference/Description    | Extraction Date | Analysis Date |
|------------------------------|---------------------------------|-----------------|---------------|
| Anions                       | EPA 300.1 - IC                  | 15-Apr-19       | 16-Apr-19     |
| BTEX by P&T GC-MS            | EPA 624 - P&T GC-MS             | 16-Apr-19       | 16-Apr-19     |
| Chromium, hexavalent - water | MOE E3056 - colourimetric       | 16-Apr-19       | 16-Apr-19     |
| Mercury by CVAA              | EPA 245.2 - Cold Vapour AA      | 16-Apr-19       | 16-Apr-19     |
| Metals, ICP-MS               | EPA 200.8 - ICP-MS              | 16-Apr-19       | 16-Apr-19     |
| PHC F1                       | CWS Tier 1 - P&T GC-FID         | 15-Apr-19       | 16-Apr-19     |
| PHCs F2 to F4                | CWS Tier 1 - GC-FID, extraction | 15-Apr-19       | 16-Apr-19     |
| REG 153: VOCs by P&T GC/MS   | EPA 624 - P&T GC-MS             | 15-Apr-19       | 16-Apr-19     |

Report Date: 16-Apr-2019

Order #: 1916101

Order Date: 15-Apr-2019



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

|                                  | Client ID:              | BH1-GW1                        | BH2-GW1                        | BH3-GW1                        | BH4-GW1                        |
|----------------------------------|-------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                  | Sample Date:            | 04/12/2019 09:00<br>1916101-01 | 04/12/2019 09:00<br>1916101-02 | 04/12/2019 09:00<br>1916101-03 | 04/12/2019 09:00<br>1916101-04 |
| Г                                | Sample ID:<br>MDL/Units | Water                          | Water                          | Water                          | Water                          |
| Anions                           | MDL/Onits               | Water                          | Water                          | Water                          | Water                          |
| Chloride                         | 1 mg/L                  | -                              | 1000                           | -                              | 2010                           |
| Metals                           |                         |                                |                                |                                |                                |
| Sodium                           | 200 ug/L                | -                              | 472000                         | -                              | 1030000                        |
| Volatiles                        |                         |                                |                                |                                |                                |
| Acetone                          | 5.0 ug/L                | <5.0                           | <5.0                           | -                              | -                              |
| Benzene                          | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Bromodichloromethane             | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Bromoform                        | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Bromomethane                     | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Carbon Tetrachloride             | 0.2 ug/L                | <0.2                           | <0.2                           | -                              | -                              |
| Chlorobenzene                    | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Chloroform                       | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Dibromochloromethane             | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Dichlorodifluoromethane          | 1.0 ug/L                | <1.0                           | <1.0                           | -                              | -                              |
| 1,2-Dichlorobenzene              | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,3-Dichlorobenzene              | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,4-Dichlorobenzene              | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,1-Dichloroethane               | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,2-Dichloroethane               | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,1-Dichloroethylene             | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| cis-1,2-Dichloroethylene         | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| trans-1,2-Dichloroethylene       | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,2-Dichloropropane              | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| cis-1,3-Dichloropropylene        | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| trans-1,3-Dichloropropylene      | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,3-Dichloropropene, total       | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Ethylbenzene                     | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| Ethylene dibromide (dibromoethan | 0.2 ug/L                | <0.2                           | <0.2                           | -                              | -                              |
| Hexane                           | 1.0 ug/L                | <1.0                           | <1.0                           | -                              | -                              |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L                | <5.0                           | <5.0                           | -                              | -                              |
| Methyl Isobutyl Ketone           | 5.0 ug/L                | <5.0                           | <5.0                           | -                              | -                              |
| Methyl tert-butyl ether          | 2.0 ug/L                | <2.0                           | <2.0                           | -                              | -                              |
| Methylene Chloride               | 5.0 ug/L                | <5.0                           | <5.0                           | -                              | -                              |
| Styrene                          | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L                | <0.5                           | <0.5                           | -                              | -                              |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

| 1,1,2,2-Tetrachloroethane<br>Tetrachloroethylene<br>Toluene | 0.5 ug/L<br>0.5 ug/L<br>0.5 ug/L<br>0.5 ug/L | <0.5<br><0.5<br><0.5 | <0.5<br><0.5 | -     | _ |
|-------------------------------------------------------------|----------------------------------------------|----------------------|--------------|-------|---|
| •                                                           | 0.5 ug/L                                     |                      | <0.5         |       | - |
| Toluene                                                     | -                                            | <0.5                 | <b>NO.0</b>  | -     | - |
|                                                             | 0.5 ug/L                                     | <0.0                 | <0.5         | -     | - |
| 1,1,1-Trichloroethane                                       |                                              | <0.5                 | <0.5         | -     | - |
| 1,1,2-Trichloroethane                                       | 0.5 ug/L                                     | <0.5                 | <0.5         | -     | - |
| Trichloroethylene                                           | 0.5 ug/L                                     | <0.5                 | <0.5         | -     | - |
| Trichlorofluoromethane                                      | 1.0 ug/L                                     | <1.0                 | <1.0         | -     | - |
| Vinyl chloride                                              | 0.5 ug/L                                     | <0.5                 | <0.5         | -     | - |
| m,p-Xylenes                                                 | 0.5 ug/L                                     | <0.5                 | <0.5         | -     | - |
| o-Xylene                                                    | 0.5 ug/L                                     | <0.5                 | <0.5         | -     | - |
| Xylenes, total                                              | 0.5 ug/L                                     | <0.5                 | <0.5         | -     | - |
| 4-Bromofluorobenzene                                        | Surrogate                                    | 110%                 | 108%         | -     | - |
| Dibromofluoromethane                                        | Surrogate                                    | 101%                 | 100%         | -     | - |
| Toluene-d8                                                  | Surrogate                                    | 93.5%                | 93.0%        | -     | - |
| Benzene                                                     | 0.5 ug/L                                     | -                    | -            | <0.5  | - |
| Ethylbenzene                                                | 0.5 ug/L                                     | -                    | -            | <0.5  | - |
| Toluene                                                     | 0.5 ug/L                                     | -                    | -            | <0.5  | - |
| m,p-Xylenes                                                 | 0.5 ug/L                                     | -                    | -            | <0.5  | - |
| o-Xylene                                                    | 0.5 ug/L                                     | -                    | -            | <0.5  | - |
| Xylenes, total                                              | 0.5 ug/L                                     | -                    | -            | <0.5  | - |
| Toluene-d8                                                  | Surrogate                                    | -                    | -            | 91.5% | - |
| Hydrocarbons                                                | •                                            |                      | •            |       |   |
| F1 PHCs (C6-C10)                                            | 25 ug/L                                      | <25                  | <25          | <25   | - |
| F2 PHCs (C10-C16)                                           | 100 ug/L                                     | <100                 | <100         | <100  | - |
| F3 PHCs (C16-C34)                                           | 100 ug/L                                     | <100                 | <100         | <100  | - |
| F4 PHCs (C34-C50)                                           | 100 ug/L                                     | <100                 | <100         | <100  | - |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

| <u> </u>                | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH5-GW1<br>04/12/2019 09:00<br>1916101-05<br>Water | BH6-GW1<br>04/12/2019 09:00<br>1916101-06<br>Water | BH7-GW1<br>04/12/2019 09:00<br>1916101-07<br>Water | BH8-GW1<br>04/12/2019 09:00<br>1916101-08<br>Water |
|-------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Anions                  | 1 mg/L                                                |                                                    |                                                    |                                                    |                                                    |
| Chloride<br>Metals      | T mg/L                                                | -                                                  | -                                                  | -                                                  | 323                                                |
| Mercury                 | 0.1 ug/L                                              | -                                                  | <0.1                                               | -                                                  | <0.1                                               |
| Antimony                | 0.5 ug/L                                              | -                                                  | <0.5                                               | -                                                  | <0.5                                               |
| Arsenic                 | 1 ug/L                                                | -                                                  | <1                                                 | -                                                  | <1                                                 |
| Barium                  | 1 ug/L                                                | -                                                  | 52                                                 | -                                                  | 37                                                 |
| Beryllium               | 0.5 ug/L                                              | -                                                  | <0.5                                               | -                                                  | <0.5                                               |
| Boron                   | 10 ug/L                                               | -                                                  | 56                                                 | -                                                  | 46                                                 |
| Cadmium                 | 0.1 ug/L                                              | -                                                  | 0.1                                                | -                                                  | <0.1                                               |
| Chromium                | 1 ug/L                                                | -                                                  | <1                                                 | -                                                  | <1                                                 |
| Chromium (VI)           | 10 ug/L                                               |                                                    | <10                                                | -                                                  | <10                                                |
| Cobalt                  | 0.5 ug/L                                              | -                                                  | <0.5                                               | -                                                  | 1.2                                                |
| Copper                  | 0.5 ug/L                                              | -                                                  | 4.6                                                | -                                                  | <0.5                                               |
| Lead                    | 0.1 ug/L                                              | -                                                  | 0.3                                                | -                                                  | <0.1                                               |
| Molybdenum              | 0.5 ug/L                                              | -                                                  | 1.8                                                | -                                                  | 4.2                                                |
| Nickel                  | 1 ug/L                                                | -                                                  | 8                                                  | -                                                  | 11                                                 |
| Selenium                | 1 ug/L                                                | -                                                  | <1                                                 | -                                                  | <1                                                 |
| Silver                  | 0.1 ug/L                                              | -                                                  | <0.1                                               | _                                                  | <0.1                                               |
| Sodium                  | 200 ug/L                                              | -                                                  | 814000                                             | -                                                  | 172000                                             |
| Thallium                | 0.1 ug/L                                              | -                                                  | <0.1                                               | -                                                  | <0.1                                               |
| Uranium                 | 0.1 ug/L                                              | -                                                  | 10.1                                               | -                                                  | 3.5                                                |
| Vanadium                | 0.5 ug/L                                              | -                                                  | <0.5                                               | -                                                  | <0.5                                               |
| Zinc                    | 5 ug/L                                                | -                                                  | 20                                                 | -                                                  | 8                                                  |
| Volatiles               |                                                       |                                                    | _                                                  |                                                    | -                                                  |
| Acetone                 | 5.0 ug/L                                              | 80.1                                               | -                                                  | <5.0                                               | -                                                  |
| Benzene                 | 0.5 ug/L                                              | <0.5                                               | -                                                  | 1.1                                                | -                                                  |
| Bromodichloromethane    | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |
| Bromoform               | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |
| Bromomethane            | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |
| Carbon Tetrachloride    | 0.2 ug/L                                              | <0.2                                               | -                                                  | <0.2                                               | -                                                  |
| Chlorobenzene           | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |
| Chloroform              | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |
| Dibromochloromethane    | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |
| Dichlorodifluoromethane | 1.0 ug/L                                              | <1.0                                               | -                                                  | <1.0                                               | -                                                  |
| 1,2-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                               | -                                                  | <0.5                                               | -                                                  |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

|                                  | Client ID:<br>Sample Date:<br>Sample ID: | BH5-GW1<br>04/12/2019 09:00<br>1916101-05 | BH6-GW1<br>04/12/2019 09:00<br>1916101-06 | BH7-GW1<br>04/12/2019 09:00<br>1916101-07 | BH8-GW1<br>04/12/2019 09:00<br>1916101-08 |
|----------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Г                                | MDL/Units                                | Water                                     | Water                                     | Water                                     | Water                                     |
| 1,3-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,4-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,1-Dichloroethane               | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,2-Dichloroethane               | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,1-Dichloroethylene             | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| cis-1,2-Dichloroethylene         | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| trans-1,2-Dichloroethylene       | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,2-Dichloropropane              | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| cis-1,3-Dichloropropylene        | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| trans-1,3-Dichloropropylene      | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,3-Dichloropropene, total       | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Ethylbenzene                     | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Ethylene dibromide (dibromoethar | 0.2 ug/L                                 | <0.2                                      | -                                         | <0.2                                      | -                                         |
| Hexane                           | 1.0 ug/L                                 | <1.0                                      | -                                         | <1.0                                      | -                                         |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L                                 | <5.0                                      | -                                         | <5.0                                      | -                                         |
| Methyl Isobutyl Ketone           | 5.0 ug/L                                 | <5.0                                      | -                                         | <5.0                                      | -                                         |
| Methyl tert-butyl ether          | 2.0 ug/L                                 | <2.0                                      | -                                         | <2.0                                      | -                                         |
| Methylene Chloride               | 5.0 ug/L                                 | <5.0                                      | -                                         | <5.0                                      | -                                         |
| Styrene                          | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,1,2,2-Tetrachloroethane        | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Tetrachloroethylene              | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Toluene                          | 0.5 ug/L                                 | <0.5                                      | -                                         | 4.0                                       | -                                         |
| 1,1,1-Trichloroethane            | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| 1,1,2-Trichloroethane            | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Trichloroethylene                | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Trichlorofluoromethane           | 1.0 ug/L                                 | <1.0                                      | -                                         | <1.0                                      | -                                         |
| Vinyl chloride                   | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| m,p-Xylenes                      | 0.5 ug/L                                 | <0.5                                      | -                                         | 1.8                                       | -                                         |
| o-Xylene                         | 0.5 ug/L                                 | <0.5                                      | -                                         | <0.5                                      | -                                         |
| Xylenes, total                   | 0.5 ug/L                                 | <0.5                                      | -                                         | 1.8                                       | -                                         |
| 4-Bromofluorobenzene             | Surrogate                                | 110%                                      | -                                         | 113%                                      | -                                         |
| Dibromofluoromethane             | Surrogate                                | 102%                                      | -                                         | 103%                                      | -                                         |
| Toluene-d8                       | Surrogate                                | 95.1%                                     | -                                         | 90.5%                                     | -                                         |
| Hydrocarbons                     |                                          |                                           | I                                         |                                           |                                           |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

|                   | Client ID:<br>Sample Date:<br>Sample ID: | 04/12/2019 09:00 | BH6-GW1<br>04/12/2019 09:00<br>1916101-06<br>Water | BH7-GW1<br>04/12/2019 09:00<br>1916101-07<br>Water | BH8-GW1<br>04/12/2019 09:00<br>1916101-08<br>Water |
|-------------------|------------------------------------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| F1 PHCs (C6-C10)  | MDL/Units<br>25 ug/L                     | <25              | -                                                  | -                                                  | -                                                  |
| F2 PHCs (C10-C16) | 100 ug/L                                 | <100             | -                                                  | -                                                  | -                                                  |
| F3 PHCs (C16-C34) | 100 ug/L                                 | <100             | -                                                  | -                                                  | -                                                  |
| F4 PHCs (C34-C50) | 100 ug/L                                 | <100             | -                                                  | -                                                  | -                                                  |



Order #: 1916101

Report Date: 16-Apr-2019

Order Date: 15-Apr-2019

|                         | Client ID:   | BH9-GW1          | BH10-GW1         | - | - 1 |
|-------------------------|--------------|------------------|------------------|---|-----|
|                         | Sample Date: | 04/12/2019 09:00 | 04/15/2019 09:00 | - | -   |
|                         | Sample ID:   | 1916101-09       | 1916101-10       | - | -   |
|                         | MDL/Units    | Water            | Water            | - | -   |
| Anions                  |              |                  | <u>г</u>         |   |     |
| Chloride                | 1 mg/L       | 2250             | -                | - | -   |
| Metals                  | 0.1 ug/L     |                  | 1                |   | ]   |
| Mercury                 | -            | <0.1             | -                | - | -   |
| Antimony                | 0.5 ug/L     | 1.4              | -                | - | -   |
| Arsenic                 | 1 ug/L       | <1               | -                | - | -   |
| Barium                  | 1 ug/L       | 159              | -                | - | -   |
| Beryllium               | 0.5 ug/L     | <0.5             | -                | - | -   |
| Boron                   | 10 ug/L      | 100              | -                | - | -   |
| Cadmium                 | 0.1 ug/L     | <0.1             | -                | - | -   |
| Chromium                | 1 ug/L       | <1               | -                | - | -   |
| Chromium (VI)           | 10 ug/L      | <10              | -                | - | -   |
| Cobalt                  | 0.5 ug/L     | 2.7              | -                | - | -   |
| Copper                  | 0.5 ug/L     | 0.6              | -                | - | -   |
| Lead                    | 0.1 ug/L     | <0.1             | -                | - | -   |
| Molybdenum              | 0.5 ug/L     | 7.9              | -                | - | -   |
| Nickel                  | 1 ug/L       | 12               | -                | - | -   |
| Selenium                | 1 ug/L       | <1               | -                | - | -   |
| Silver                  | 0.1 ug/L     | <0.1             | -                | - | -   |
| Sodium                  | 200 ug/L     | 838000           | -                | - | -   |
| Thallium                | 0.1 ug/L     | 0.1              | -                | - | -   |
| Uranium                 | 0.1 ug/L     | 4.6              | -                | - | -   |
| Vanadium                | 0.5 ug/L     | <0.5             | -                | - | -   |
| Zinc                    | 5 ug/L       | <5               | -                | - | -   |
| Volatiles               |              |                  |                  |   |     |
| Acetone                 | 5.0 ug/L     | -                | <5.0             | - | -   |
| Benzene                 | 0.5 ug/L     | -                | <0.5             | - | -   |
| Bromodichloromethane    | 0.5 ug/L     | -                | <0.5             | - | -   |
| Bromoform               | 0.5 ug/L     | -                | <0.5             | - | -   |
| Bromomethane            | 0.5 ug/L     | -                | <0.5             | - | -   |
| Carbon Tetrachloride    | 0.2 ug/L     | -                | <0.2             | - | -   |
| Chlorobenzene           | 0.5 ug/L     | -                | <0.5             | - | -   |
| Chloroform              | 0.5 ug/L     | -                | <0.5             | - | -   |
| Dibromochloromethane    | 0.5 ug/L     | -                | <0.5             | - | -   |
| Dichlorodifluoromethane | 1.0 ug/L     | -                | <1.0             | - | -   |
| 1,2-Dichlorobenzene     | 0.5 ug/L     | -                | <0.5             | - | -   |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

|                                  | Client ID:<br>Sample Date: | BH9-GW1<br>04/12/2019 09:00 | BH10-GW1<br>04/15/2019 09:00 | - | - |
|----------------------------------|----------------------------|-----------------------------|------------------------------|---|---|
|                                  | Sample ID:                 | 1916101-09                  | 1916101-10                   | - | - |
|                                  | MDL/Units                  | Water                       | Water                        | - | - |
| 1,3-Dichlorobenzene              | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,4-Dichlorobenzene              | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,1-Dichloroethane               | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,2-Dichloroethane               | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,1-Dichloroethylene             | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| cis-1,2-Dichloroethylene         | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| trans-1,2-Dichloroethylene       | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,2-Dichloropropane              | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| cis-1,3-Dichloropropylene        | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| trans-1,3-Dichloropropylene      | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,3-Dichloropropene, total       | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Ethylbenzene                     | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Ethylene dibromide (dibromoethar | 0.2 ug/L                   | -                           | <0.2                         | - | - |
| Hexane                           | 1.0 ug/L                   | -                           | <1.0                         | - | - |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L                   | -                           | <5.0                         | - | - |
| Methyl Isobutyl Ketone           | 5.0 ug/L                   | -                           | <5.0                         | - | - |
| Methyl tert-butyl ether          | 2.0 ug/L                   | -                           | <2.0                         | - | - |
| Methylene Chloride               | 5.0 ug/L                   | -                           | <5.0                         | - | - |
| Styrene                          | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,1,2,2-Tetrachloroethane        | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Tetrachloroethylene              | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Toluene                          | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,1,1-Trichloroethane            | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 1,1,2-Trichloroethane            | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Trichloroethylene                | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Trichlorofluoromethane           | 1.0 ug/L                   | -                           | <1.0                         | - | - |
| Vinyl chloride                   | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| m,p-Xylenes                      | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| o-Xylene                         | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| Xylenes, total                   | 0.5 ug/L                   | -                           | <0.5                         | - | - |
| 4-Bromofluorobenzene             | Surrogate                  | -                           | 108%                         | - | - |
| Dibromofluoromethane             | Surrogate                  | -                           | 103%                         | - | - |
| Toluene-d8                       | Surrogate                  | -                           | 90.8%                        | - | - |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Blank

| Anions         ND         1         mgL           Chicka         ND         1         mgL           Fl Accorbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Chirola         ND         1         mgt,           Hi PhGa (GA:01)         ND         25         ugL,           F3 PHGs (C10-C16)         ND         100         ugL,           F3 PHGs (C10-C16)         ND         100         ugL,           F4 PHGs (C34-C30)         ND         100         ugL,           Metaly         ND         0.1         ugL,           Antimony         ND         0.5         ugL,           Antimony         ND         1         ugL,           Barun         ND         1         ugL,           Cathium         ND         1         ugL,           Cathium         ND         1         ugL,           Coron         ND         1         ugL,           Cathium         ND         1         ugL,           Coron         ND         0.5         ugL,           Coron         ND         0.5         ugL,           Cathium         ND         0.5         ugL,           Cathium         ND         1         ugL,           Stearia         ND         1         ugL,           Stearia         ND         1         ugL,                                                                                                                                                                           | Anions                            |        |                    |       |                  |      |               |     |              |       |
| Hyper         ND         25         ugL           F1 PHS6 (S0-C10)         ND         100         ugL           F2 PHS6 (S0-C34)         ND         100         ugL           F4 PHS6 (S0-C34)         ND         100         ugL           F4 PHS6 (S0-C34)         ND         100         ugL           Metcus         ND         0.0         ugL           Ansenic         ND         0.1         ugL           Arsenic         ND         1         ugL           Barlum         ND         1         ugL           Barlum         ND         1         ugL           Cobati         ND         1         ugL           Chromium (V)         ND         0.5         ugL           Cobati         ND         0.5         ugL           Cobati         ND         0.5         ugL           Cobati         ND         0.5         ugL           Cobati         ND         0.1         ugL           Solum         ND         0.1         ugL           Solum         ND         0.1         ugL           Solum         ND         0.1         ugL                                                                                                                                                                                        |                                   | ND     | 1                  | mg/L  |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)     ND     25     ug/L       F2 PHCs (C16-C34)     ND     100     ug/L       F3 PHCs (C16-C34)     ND     100     ug/L       F4 PHCs (C16-C34)     ND     100     ug/L       Antimony     ND     0.5     ug/L       Assanic     ND     1     ug/L       Barlum     ND     1     ug/L       Barlum     ND     1     ug/L       Chromium (N)     ND     1     ug/L       Cohomium (N)     ND     1     ug/L       Cohomium (N)     ND     1     ug/L       Cohomium (N)     ND     1     ug/L       Cobalt     ND     0.5     ug/L       Cobalt     ND     0.5     ug/L       Molydenum     ND     0.5     ug/L       Molydenum     ND     0.5     ug/L       Notal     ND     1     ug/L       Variation     ND     0.1     ug/L       Vitation     ND     0.1     ug/L       Silver     ND     0.1     ug/L       Vitation     ND     0.1     ug/L       Vitation     ND     0.5     ug/L       Sofum     ND     0.5     ug/L                                                                                                                                                                                                                                                                                              |                                   |        |                    | J     |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)         ND         100         ugL           F3 PHCs (C34-C50)         ND         100         ugL           Merculy         ND         0.1         ugL           Antimony         ND         0.1         ugL           Antimony         ND         0.1         ugL           Assenia         ND         1         ugL           Barlum         ND         1         ugL           Cadmium         ND         0.5         ugL           Cadmium         ND         0.1         ugL           Cadmium         ND         0.1         ugL           Cadmium         ND         0.5         ugL           Cadmium         ND         0.5         ugL           Cadmium         ND         0.5         ugL           Cadmium         ND         1         ugL           Cadmium         ND         1         ugL           Selenium         ND         1         ugL           Silvert         ND         0.5         ugL           Silvert         ND         0.5         ugL           Socium         ND         1         ugL                                                                                                                                                                                               |                                   | ND     | 25                 | ua/l  |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)     ND     100     ug/L       HPtCs (C36-C36)     ND     100     ug/L       Antimony     ND     0.5     ug/L       Assenic     ND     1     ug/L       Barlum     ND     1     ug/L       Barlum     ND     1     ug/L       Bornon     ND     1     ug/L       Cadmium     ND     10     ug/L       Cadmium     ND     10     ug/L       Cadmium     ND     10     ug/L       Cobait     ND     10     ug/L       Cobait     ND     0.5     ug/L       Cobait     ND     0.5     ug/L       Cobait     ND     1     ug/L       Cobait     ND     1     ug/L       Cobait     ND     1     ug/L       Soldonum     ND     1     ug/L       Soldonum     ND     1     ug/L       Soldonum     ND     1     ug/L       Vanadum     ND     1     ug/L       Soldonum     ND     1     ug/L       Vanadum     ND     0.5     ug/L       Zanc     ND     0.5     ug/L       Berzene     ND     0.5                                                                                                                                                                                                                                                                                                                             |                                   |        |                    | ug/L  |                  |      |               |     |              |       |
| Netacity         ND         0.1         ug/L           Arienic         ND         0.1         ug/L           Bariun         ND         1         ug/L           Bariun         ND         0.5         ug/L           Bariun         ND         1         ug/L           Boron         ND         10         ug/L           Cadmium         ND         0.1         ug/L           Chomium         ND         10         ug/L           Cobalt         ND         0.5         ug/L           Cobalt         ND         0.5         ug/L           Cobalt         ND         0.5         ug/L           Cobalt         ND         0.5         ug/L           Kelenum         ND         0.5         ug/L           Molyanum         ND         0.1         ug/L           Soldum         ND         0.1         ug/L           Vanatium         ND         0.5         ug/L           Soldum         ND         0.5         ug/L           Vanatium         ND         0.5         ug/L           Soldum         ND         0.5         ug/L           Sold                                                                                                                                                                                    |                                   |        |                    |       |                  |      |               |     |              |       |
| Mercury         ND         0.1         ugL           Arsenic         ND         1         ugL           Barlum         ND         1         ugL           Berglium         ND         0.5         ugL           Berglium         ND         0.5         ugL           Cadmium         ND         0.5         ugL           Cadmium         ND         0.1         ugL           Cadmium         ND         0.1         ugL           Chromium (VI)         ND         1         ugL           Copper         ND         0.5         ugL           Copper         ND         0.5         ugL           Molydenum         ND         0.1         ugL           Molydenum         ND         0.1         ugL           Molydenum         ND         0.1         ugL           Silver         ND         0.1         ugL           Vanadum         ND         0.1         ugL           Vanadum         ND         0.5         ugL           Arstone         ND         0.5         ugL           Carbon         ND         0.5         ugL           Contre                                                                                                                                                                                    | F4 PHCs (C34-C50)                 | ND     | 100                |       |                  |      |               |     |              |       |
| Mercury         ND         0.1         ugL           Arsenic         ND         1         ugL           Barlum         ND         1         ugL           Berglium         ND         0.5         ugL           Berglium         ND         0.5         ugL           Cadmium         ND         0.5         ugL           Cadmium         ND         0.1         ugL           Cadmium         ND         0.1         ugL           Chromium (VI)         ND         1         ugL           Copper         ND         0.5         ugL           Copper         ND         0.5         ugL           Molydenum         ND         0.1         ugL           Molydenum         ND         0.1         ugL           Molydenum         ND         0.1         ugL           Silver         ND         0.1         ugL           Vanadum         ND         0.1         ugL           Vanadum         ND         0.5         ugL           Arstone         ND         0.5         ugL           Carbon         ND         0.5         ugL           Contre                                                                                                                                                                                    | Metals                            |        |                    |       |                  |      |               |     |              |       |
| Antimony         ND         0.5         ug/L           Barlium         ND         1         ug/L           Barlium         ND         1         ug/L           Born         ND         10         ug/L           Cadmium         ND         10         ug/L           Cadmium         ND         10         ug/L           Chromium         ND         10         ug/L           Cadait         ND         0.5         ug/L           Cabait         ND         0.5         ug/L           Cabait         ND         0.5         ug/L           Salenum         ND         1         ug/L           Salenum         ND         0.1         ug/L           Salenum         ND         0.1         ug/L           Salenum         ND         0.1         ug/L           Salenum         ND         0.1         ug/L           Variatium         ND         0.1         ug/L           Variatium         ND         0.5         ug/L           Zaro         ND         5         ug/L           Caton         ND         0.5         ug/L           Caton </td <td></td> <td>ND</td> <td>0.1</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                    |                                   | ND     | 0.1                | ug/L  |                  |      |               |     |              |       |
| Barlum         ND         1         ug/L           Boron         ND         0.5         ug/L           Coronium (VI)         ND         1.0         ug/L           Chromium (VI)         ND         1.0         ug/L           Cobalt         ND         0.5         ug/L           Cobalt         ND         0.5         ug/L           Cobalt         ND         0.5         ug/L           Lead         ND         0.1         ug/L           Noisolenum         ND         0.1         ug/L           Silver         ND         1         ug/L           Silver         ND         0.1         ug/L           Silver         ND         0.1         ug/L           Silver         ND         0.1         ug/L           Silver         ND         0.1         ug/L           Variadum         ND         0.5         ug/L           Variadum         ND         0.5         ug/L           Silver         ND         0.5         ug/L           Silver         ND         0.5         ug/L           Catone         ND         0.5         ug/L                                                                                                                                                                                         | Antimony                          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Berginium         ND         0.5         ug/L           Cardmium         ND         10         ug/L           Chromium (VI)         ND         10         ug/L           Chromium (VI)         ND         10         ug/L           Copper         ND         0.5         ug/L           Copper         ND         0.5         ug/L           Molydoenum         ND         0.5         ug/L           Molydoenum         ND         0.5         ug/L           Soliom         ND         1         ug/L           Soliom         ND         1         ug/L           Soliom         ND         0.1         ug/L           Soliom         ND         0.1         ug/L           Soliom         ND         0.1         ug/L           Soliom         ND         0.1         ug/L           Vanadium         ND         0.5         ug/L           Zinc         ND         0.5         ug/L           Arandom         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Chronotemeane         ND         0.5         ug/L <td></td>                                                          |                                   |        |                    |       |                  |      |               |     |              |       |
| Borin         ND         10         ug/L           Cadmium         ND         0.1         ug/L           Chromium (VI)         ND         10         ug/L           Cabalt         ND         0.5         ug/L           Cabalt         ND         0.5         ug/L           Cabalt         ND         0.5         ug/L           Lead         ND         0.5         ug/L           Maybdenum         ND         0.5         ug/L           Nickel         ND         1         ug/L           Silver         ND         0.1         ug/L           Silver         ND         0.1         ug/L           Vanadum         ND         0.1         ug/L           Vanadum         ND         0.1         ug/L           Vanadum         ND         0.1         ug/L           Vanadum         ND         0.5         ug/L           Vanadum         ND         0.5         ug/L           Bromodichioromethane         ND         0.5         ug/L           Bromodichioromethane         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L                                                                                                                                                               |                                   |        |                    |       |                  |      |               |     |              |       |
| Cardmium         ND         0.1         ug/L           Chromium (VI)         ND         1         ug/L           Corbin         ND         0.5         ug/L           Copper         ND         0.5         ug/L           Copper         ND         0.5         ug/L           Molyddenum         ND         0.5         ug/L           Molyddenum         ND         0.1         ug/L           Selenium         ND         1         ug/L           Sodium         ND         0.1         ug/L           Sodium         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Zinc         ND         0.1         ug/L           Vanadium         ND         0.5         ug/L           Zinc         ND         5.0         ug/L           Portone         ND         0.5         ug/L           Portone         ND         0.5         ug/L           Portonerthane         ND         0.5         ug/L           Portonerthane         ND         0.5         ug/L <td></td> <td></td> <td></td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                               |                                   |        |                    | ug/L  |                  |      |               |     |              |       |
| Chromium (VI)         ND         10         ug/L           Corbati         ND         0.5         ug/L           Cobati         ND         0.5         ug/L           Cadati         ND         0.5         ug/L           Lead         ND         0.5         ug/L           Molybdenum         ND         0.5         ug/L           Nickel         ND         1         ug/L           Silver         ND         1         ug/L           Silver         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Vanadium         ND         0.5         ug/L           Vanadium         ND         0.5         ug/L           Sinor         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dibromodiuromethane         ND         0.5                                                                                                                                                          |                                   |        |                    |       |                  |      |               |     |              |       |
| Chromium         ND         1         ug/L           Cobalt         ND         0.5         ug/L           Copper         ND         0.5         ug/L           Molybdenum         ND         0.5         ug/L           Molybdenum         ND         0.5         ug/L           Siker         ND         1         ug/L           Selenium         ND         1         ug/L           Sodium         ND         0.1         ug/L           Sodium         ND         0.1         ug/L           Sodium         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Vanadium         ND         0.5         ug/L           Vanadium         ND         0.5         ug/L           Vanadium         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Chloroberzene         ND         0.5         ug/L           Chloroberzene         ND         0.                                                                                                                                                 |                                   |        |                    |       |                  |      |               |     |              |       |
| Cobalt         ND         0.5         ug/L           Copper         ND         0.1         ug/L           Molyddenum         ND         0.5         ug/L           Nickel         ND         1         ug/L           Selenium         ND         1         ug/L           Sodium         ND         0.1         ug/L           Sodium         ND         0.1         ug/L           Thallum         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Zinc         ND         0.1         ug/L           Zinc         ND         5.0         ug/L           Zinc         ND         5.0         ug/L           Acetone         ND         5.0         ug/L           Bromodchioromethane         ND         0.5         ug/L           Bromodchioromethane         ND         0.5         ug/L           Bromodchioromethane         ND         0.5         ug/L           Chioroberzene         ND         0.5         ug/L           Chioroberzene         ND         0.5         ug/L           1,3-Dichioroethane         ND         0.5 <td></td>                                                |                                   |        |                    |       |                  |      |               |     |              |       |
| Copper         ND         0.5         ug/L           Molybdenum         ND         0.5         ug/L           Molybdenum         ND         0.5         ug/L           Siker         ND         1         ug/L           Selenium         ND         1         ug/L           Solium         ND         1         ug/L           Solium         ND         0.1         ug/L           Solium         ND         0.1         ug/L           Vanadum         ND         0.1         ug/L           Vanadum         ND         0.5         ug/L           Zinc         ND         5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Chorobenzene         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           1.4-Dichloroethylene         ND         0.5         ug/L           1.2-Dichloroethylene                                                                                                                                                 |                                   |        |                    | ug/L  |                  |      |               |     |              |       |
| Mokybernum         ND         0.5         uğ'L           Salemium         ND         1         ug'L           Salemium         ND         0.1         ug'L           Sodum         ND         200         ug'L           Sulver         ND         0.1         ug'L           Thailum         ND         0.1         ug'L           Vanadium         ND         0.1         ug'L           Vanadium         ND         0.5         ug'L           Zinc         ND         5.0         ug'L           Acetone         ND         0.5         ug'L           Bromodichloromethane         ND         0.5         ug'L           Bromodichloromethane         ND         0.5         ug'L           Bromodichloromethane         ND         0.5         ug'L           Bromodichloromethane         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlo                                                                                                                               |                                   |        |                    | ug/L  |                  |      |               |     |              |       |
| Nickel         ND         1         uğ'           Selenium         ND         1         ug'           Sodium         ND         0.1         ug'           Sodium         ND         0.1         ug'           Sodium         ND         0.1         ug'           Uranium         ND         0.1         ug'           Vanadium         ND         0.5         ug'           Zinc         ND         5.         ug'           Acetone         ND         0.5         ug'           Branceichloromethane         ND         0.5         ug'           Bromodichloromethane         ND         0.5         ug'           Bromodichloromethane         ND         0.5         ug'           Chioroform         ND         0.5         ug'           Chioroformethane         ND         0.5         ug'           Dibromodihoromethane         ND         0.5         ug'           1.3-bichlorobenzene         ND         0.5         ug'           1.4-bichlorobenzene         ND         0.5         ug'           1.3-bichloropethane         ND         0.5         ug'           1.4-bichloropethane                                                                                                                                     |                                   |        |                    |       |                  |      |               |     |              |       |
| Selerium         ND         1         ug/L           Solium         ND         0.1         ug/L           Solium         ND         0.1         ug/L           Uranium         ND         0.1         ug/L           Vanadium         ND         0.1         ug/L           Zinc         ND         5         ug/L           Acetone         ND         5.0         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromochrane         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Dichlorodifuoromethane         ND         0.5         ug/L           1.3-Dichlorobenzene         ND         0.5         ug/L           1.4-Dichlorobenzene         ND         0.5         ug/L           1.4-Dichlorobenzene         ND         0.5         ug/L <t< td=""><td>,</td><td></td><td></td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>            | ,                                 |        |                    | ug/L  |                  |      |               |     |              |       |
| Silver         ND         0.1         uğl           Sodium         ND         200         ugl           Thallium         ND         0.1         ugl           Uranium         ND         0.1         ugl           Vanadium         ND         0.1         ugl           Zinc         ND         0.5         ugl           Zinc         ND         5.0         ugl           Benzene         ND         0.5         ugl           Bromodichloromethane         ND         0.5         ugl           Bromodichloromethane         ND         0.5         ugl           Bromodichloromethane         ND         0.5         ugl           Catoon Tetrachloride         ND         0.5         ugl           Chioroform         ND         0.5         ugl           Chioroform         ND         0.5         ugl           Dibromodificomethane         ND         0.5         ugl           1,3-Dichlorobenzene         ND         0.5         ugl           1,3-Dichlorobenzene         ND         0.5         ugl           1,3-Dichlorobenzene         ND         0.5         ugl           1,1-Dichoroeth                                                                                                                               |                                   |        |                    |       |                  |      |               |     |              |       |
| Sodium         ND         200         ug/L           Thallium         ND         0.1         ug/L           Vanadum         ND         0.5         ug/L           Zinc         ND         5         ug/L           Acetone         ND         5.0         ug/L           Benzene         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Carton Tetrachloride         ND         0.5         ug/L           Chiorobenzene         ND         0.5         ug/L           Chiorobenzene         ND         0.5         ug/L           Dichlorodifluoromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlorobenzene         ND         0.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> |                                   |        |                    |       |                  |      |               |     |              |       |
| Thallum         ND         0.1         ug/L           Uranium         ND         0.1         ug/L           Vanadium         ND         0.5         ug/L           Zinc         ND         5         ug/L           Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |                    |       |                  |      |               |     |              |       |
| UraniumND0.1ug/LVanadiumND0.5ug/LZincND5ug/LKotoneND5.0ug/LBenzeneND0.5ug/LBromofichioromethaneND0.5ug/LBromoformND0.5ug/LBromoformND0.5ug/LCarbon TetrachlorideND0.5ug/LBromoformND0.5ug/LChlorobenzeneND0.5ug/LChlorobenzeneND0.5ug/LChlorobenzeneND0.5ug/LDichorochloromethaneND0.5ug/L1,2-DichlorobenzeneND0.5ug/L1,2-DichlorobenzeneND0.5ug/L1,2-DichlorobenzeneND0.5ug/L1,2-DichlorobenzeneND0.5ug/L1,2-DichlorobenzeneND0.5ug/L1,2-DichlorocethaneND0.5ug/L1,2-DichlorocethyleneND0.5ug/L1,2-DichlorocethyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-DichlorophyleneND0.5ug/L1,3-Dichlorophylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |        |                    |       |                  |      |               |     |              |       |
| Zinc         ND         5         ug/L           Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Uranium                           | ND     | 0.1                |       |                  |      |               |     |              |       |
| Volatiles           Acetone         ND         5.0         ug/L           Benzene         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromoderm         ND         0.5         ug/L           Carbon Tetrachloride         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           1.3-Dichlorobenzene         ND         0.5         ug/L           1.3-Dichlorobenzene         ND         0.5         ug/L           1.4-Dichlorobenzene         ND         0.5         ug/L           1.1-Dichlorothana         ND         0.5         ug/L           1.2-Dichlorothylene         ND         0.5         ug/L           1.2-Dichlorothylene         ND         0.5         ug/L           1.2-Dichlorothylene         ND         0.5         ug/L           1.2-Dichlorothylene         ND         0.5         ug/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>   |                                   |        |                    |       |                  |      |               |     |              |       |
| Acetone         ND         5.0         ug/L           Benzene         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromomethane         ND         0.5         ug/L           Carbon Tetrachloride         ND         0.2         ug/L           Chlorobenzene         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dichlorodentane         ND         0.5         ug/L           Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichloroptylene         ND                                                                                               |                                   | ND     | 5                  | ug/L  |                  |      |               |     |              |       |
| Benzene         ND         0.5         ug/L           Bromodichloromethane         ND         0.5         ug/L           Bromoform         ND         0.5         ug/L           Bromomethane         ND         0.5         ug/L           Carbon Tetrachloride         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,3-Dichloroptylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichl                                                                          | Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Bromodichloromethane         ND         0.5         ug/L           Bromonethane         ND         0.5         ug/L           Carbon Tetrachloride         ND         0.2         ug/L           Carbon Tetrachloride         ND         0.5         ug/L           Chlorobenzene         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           cis-1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloropthylene         ND         0.5         ug/L           cis-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L                                                                         |                                   |        |                    |       |                  |      |               |     |              |       |
| Bromoform         ND         0.5         ug/L           Bromomethane         ND         0.5         ug/L           Carbon Tetrachloride         ND         0.2         ug/L           Chlorobenzene         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorobenzene         ND         1.0         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,2-Dichloropthylene         ND         0.5         ug/L           transs-1,2-Dichloropthylene                                                                                |                                   |        |                    |       |                  |      |               |     |              |       |
| Bromomethane         ND         0.5         ug/L           Carbon Tetrachloride         ND         0.2         ug/L           Chlorobenzene         ND         0.5         ug/L           Chlorobromethane         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorobenzene         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,2-Dichloroethylene         ND         0.5         ug/L           1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloroptylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L                                                                                     |                                   |        |                    |       |                  |      |               |     |              |       |
| Carbon Tetrachloride         ND         0.2         ug/L           Chlorobenzene         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,2-Dichloroethylene         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,2-Dichloroethylene         ND         0.5         ug/L           1,2-Dichloroethylene         ND         0.5         ug/L           1,2-Dichloroptylene         ND         0.5         ug/L           1,2-Dichloroptylene         ND         0.5         ug/L           1,2-Dichloroptylene         ND         0.5         ug/L           1,3-Dichloroptylene         ND         0.5         ug/L           1,3-Dic                                                                          |                                   |        |                    |       |                  |      |               |     |              |       |
| Chlorobenzene         ND         0.5         ug/L           Chloroform         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         0.5         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloropthylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L<                                                |                                   |        |                    |       |                  |      |               |     |              |       |
| Chloroform         ND         0.5         ug/L           Dibromochloromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         1.0         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,2-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloroptylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           thylenezene         ND         0.5         ug/L                                                                   |                                   |        |                    |       |                  |      |               |     |              |       |
| Dibromochloromethane         ND         0.5         ug/L           Dichlorodifluoromethane         ND         1.0         ug/L           1,2-Dichlorobenzene         ND         0.5         ug/L           1,3-Dichlorobenzene         ND         0.5         ug/L           1,4-Dichlorobenzene         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethane         ND         0.5         ug/L           1,1-Dichloroethylene         ND         0.5         ug/L           cis-1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,2-Dichloroethylene         ND         0.5         ug/L           trans-1,3-Dichloropropylene         ND         0.5         ug/L           thexane         ND         0.5                                               |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,2-Dichlorobenzene       ND       0.5       ug/L         1,3-Dichlorobenzene       ND       0.5       ug/L         1,4-Dichlorobenzene       ND       0.5       ug/L         1,1-Dichlorobenzene       ND       0.5       ug/L         1,1-Dichloroethane       ND       0.5       ug/L         1,2-Dichloroethane       ND       0.5       ug/L         1,1-Dichloroethylene       ND       0.5       ug/L         cis-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloropropane       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         1,3-Dichloropropylene       ND       0.5       ug/L         Ethylbenzene       ND       0.5       ug/L         Hexane       ND       0.2       ug/L         Methyl Ethyl Ketone (2-Butanone)       ND       5.0       ug/L         Methyl Isobutyl Ketone       ND       5.0       ug/L         Methyl tert-butyl ether       ND       2.0       ug/L                                                                                                                              |                                   | ND     |                    | ug/L  |                  |      |               |     |              |       |
| 1,3-Dichlorobenzene       ND       0.5       ug/L         1,4-Dichlorobenzene       ND       0.5       ug/L         1,1-Dichloroethane       ND       0.5       ug/L         1,2-Dichloroethane       ND       0.5       ug/L         1,1-Dichloroethylene       ND       0.5       ug/L         cis-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloroethylene       ND       0.5       ug/L         1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         Ethylbenzene       ND       0.5       ug/L         Hexane       ND       0.2       ug/L         Methyl Ketone (2-Butanone)       ND       5.0       ug/L         Methyl Isobutyl Ketone       ND       5.0       ug/L <td></td>             |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,4-Dichlorobenzene       ND       0.5       ug/L         1,1-Dichloroethane       ND       0.5       ug/L         1,2-Dichloroethane       ND       0.5       ug/L         1,1-Dichloroethylene       ND       0.5       ug/L         cis-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloroethylene       ND       0.5       ug/L         trans-1,2-Dichloroptopane       ND       0.5       ug/L         cis-1,3-Dichloropropylene       ND       0.5       ug/L         trans-1,3-Dichloropropylene       ND       0.5       ug/L         thylbenzene       ND       0.5       ug/L         Ethylbenzene       ND       0.2       ug/L         Hexane       ND       1.0       ug/L         Methyl Isobutyl Ketone       ND       5.0       ug/L         Methyl Isobutyl Ketone       ND       5.0       ug/L     <                                                                                                                  |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,1-DichloroethaneND0.5ug/L1,2-DichloroethaneND0.5ug/L1,1-DichloroethyleneND0.5ug/Lcis-1,2-DichloroethyleneND0.5ug/Ltrans-1,2-DichloroethyleneND0.5ug/L1,2-DichloroptopaneND0.5ug/Lcis-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/LthylbenzeneND0.5ug/LEthylbenzeneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,2-DichloroethaneND0.5ug/L1,1-DichloroethyleneND0.5ug/Lcis-1,2-DichloroethyleneND0.5ug/Ltrans-1,2-DichloroethyleneND0.5ug/L1,2-DichloroptopaneND0.5ug/Lcis-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/LthylbenzeneND0.5ug/LEthylbenzeneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,1-DichloroethyleneND0.5ug/Lcis-1,2-DichloroethyleneND0.5ug/Ltrans-1,2-DichloroethyleneND0.5ug/L1,2-DichloropropaneND0.5ug/Lcis-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/LthylbenzeneND0.5ug/LEthylbenzeneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |        |                    | ug/L  |                  |      |               |     |              |       |
| cis-1,2-DichloroethyleneND0.5ug/Ltrans-1,2-DichloroethyleneND0.5ug/L1,2-DichloropropaneND0.5ug/Lcis-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/L1,3-DichloropropyleneND0.5ug/L1,3-DichloropropyleneND0.5ug/L1,3-Dichloropropene, totalND0.5ug/LEthylbenzeneND0.5ug/LHexaneND0.2ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,2-DichloropropaneND0.5ug/Lcis-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/L1,3-Dichloropropylene, totalND0.5ug/Ltrans-1,3-Dichloropropene, totalND0.5ug/LEthylbenzeneND0.5ug/LEthylene dibromide (dibromoethaneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl Itert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |        |                    | ug/L  |                  |      |               |     |              |       |
| cis-1,3-DichloropropyleneND0.5ug/Ltrans-1,3-DichloropropyleneND0.5ug/L1,3-Dichloropropene, totalND0.5ug/LEthylbenzeneND0.5ug/LEthylene dibromide (dibromoethaneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |        |                    |       |                  |      |               |     |              |       |
| trans-1,3-DichloropropyleneND0.5ug/L1,3-Dichloropropene, totalND0.5ug/LEthylbenzeneND0.5ug/LEthylene dibromide (dibromoethaneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |                    |       |                  |      |               |     |              |       |
| 1,3-Dichloropropene, totalND0.5ug/LEthylbenzeneND0.5ug/LEthylene dibromide (dibromoethaneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |        |                    |       |                  |      |               |     |              |       |
| EthylbenzeneND0.5ug/LEthylene dibromide (dibromoethaneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |        |                    |       |                  |      |               |     |              |       |
| Ethylene dibromide (dibromoethaneND0.2ug/LHexaneND1.0ug/LMethyl Ethyl Ketone (2-Butanone)ND5.0ug/LMethyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |        |                    |       |                  |      |               |     |              |       |
| Hexane         ND         1.0         ug/L           Methyl Ethyl Ketone (2-Butanone)         ND         5.0         ug/L           Methyl Isobutyl Ketone         ND         5.0         ug/L           Methyl Isobutyl Ketone         ND         5.0         ug/L           Methyl tert-butyl ether         ND         2.0         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethylene dibromide (dibromoethane |        |                    |       |                  |      |               |     |              |       |
| Methyl Isobutyl KetoneND5.0ug/LMethyl tert-butyl etherND2.0ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexane                            |        |                    | ug/L  |                  |      |               |     |              |       |
| Methyl tert-butyl ether ND 2.0 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |        |                    |       |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |        |                    |       |                  |      |               |     |              |       |
| inicitiyiene onionide IND 5.0 Ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |        |                    |       |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |



Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

**Project Description: PE4546** 

### Method Quality Control: Blank

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Styrene                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1,2-Tetrachloroethane       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2,2-Tetrachloroethane       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Tetrachloroethylene             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichloroethylene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichlorofluoromethane          | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Vinyl chloride                  | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| m,p-Xylenes                     | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| o-Xylene                        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total                  | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene | 86.5   |                    | ug/L  |                  | 108  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 79.8   |                    | ug/L  |                  | 99.8 | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 77.2   |                    | ug/L  |                  | 96.5 | 50-140        |     |              |       |
| Benzene                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylbenzene                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene                         | ND     | 0.5                | uğ/L  |                  |      |               |     |              |       |
| m,p-Xylenes                     | ND     | 0.5                | uğ/L  |                  |      |               |     |              |       |
| o-Xylene                        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total                  | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: Toluene-d8           | 77.2   |                    | ug/L  |                  | 96.5 | 50-140        |     |              |       |



Order #: 1916101

Report Date: 16-Apr-2019

Order Date: 15-Apr-2019

**Project Description: PE4546** 

# Method Quality Control: Duplicate

| Anglida                                     |          | Reporting  |              | Source   |      | %REC  |            | RPD      |       |
|---------------------------------------------|----------|------------|--------------|----------|------|-------|------------|----------|-------|
| Analyte                                     | Result   | Limit      | Units        | Result   | %REC | Limit | RPD        | Limit    | Notes |
| Anions                                      |          |            |              |          |      |       |            |          |       |
| Chloride                                    | 18.8     | 1          | mg/L         | 18.8     |      |       | 0.1        | 10       |       |
| Hydrocarbons                                |          |            |              |          |      |       |            |          |       |
| F1 PHCs (C6-C10)                            | ND       | 25         | ug/L         | ND       |      |       |            | 30       |       |
| F2 PHCs (C10-C16)                           | 720      | 100        | ug/L         | 840      |      |       | 15.4       | 30       |       |
| F3 PHCs (C16-C34)                           | 480      | 100        | ug/L         | 620      |      |       | 25.5       | 30       |       |
| F4 PHCs (C34-C50)                           | ND       | 100        | ug/L         | ND       |      |       |            | 30       |       |
| Metals                                      |          |            |              |          |      |       |            |          |       |
| Mercury                                     | ND       | 0.1        | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Antimony                                    | ND       | 0.5        | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Arsenic                                     | ND       | 1          | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Barium                                      | 52.9     | 1          | ug/L         | 51.9     |      |       | 1.9        | 20       |       |
| Beryllium                                   | ND       | 0.5        | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Boron                                       | 54       | 10         | ug/L         | 56       |      |       | 3.6        | 20       |       |
| Cadmium                                     | 0.12     | 0.1        | ug/L         | 0.11     |      |       | 4.1        | 20       |       |
| Chromium (VI)<br>Chromium                   | ND<br>ND | 10<br>1    | ug/L<br>ug/L | ND<br>ND |      |       | 0.0        | 20<br>20 |       |
| Cobalt                                      | ND       | 0.5        | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Copper                                      | 4.59     | 0.5        | ug/L         | 4.58     |      |       | 0.3        | 20       |       |
| Lead                                        | 0.37     | 0.1        | ug/L         | 0.33     |      |       | 12.2       | 20       |       |
| Molybdenum                                  | 1.92     | 0.5        | ug/L         | 1.84     |      |       | 4.3        | 20       |       |
| Nickel                                      | 7.5      | 1          | ug/L         | 7.7      |      |       | 2.8        | 20       |       |
| Selenium                                    | ND       | 1          | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Silver                                      | ND       | 0.1        | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Sodium                                      | 743000   | 2000       | ug/L         | 814000   |      |       | 9.1        | 20       |       |
| Thallium                                    | ND       | 0.1        | ug/L         | ND       |      |       | 0.0        | 20       |       |
| Uranium                                     | 10.6     | 0.1        | ug/L         | 10.1     |      |       | 4.9        | 20       |       |
| Vanadium<br>Zinc                            | ND<br>21 | 0.5<br>5   | ug/L<br>ug/L | ND<br>20 |      |       | 0.0<br>1.7 | 20<br>20 |       |
|                                             | 21       | 5          | ug/L         | 20       |      |       | 1.7        | 20       |       |
| Volatiles                                   |          | 5.0        |              |          |      |       |            | 20       |       |
| Acetone<br>Benzene                          | ND<br>ND | 5.0<br>0.5 | ug/L         | ND<br>ND |      |       |            | 30<br>30 |       |
| Bromodichloromethane                        | 2.58     | 0.5        | ug/L<br>ug/L | 2.74     |      |       | 6.0        | 30       |       |
| Bromoform                                   | ND       | 0.5        | ug/L         | ND       |      |       | 0.0        | 30       |       |
| Bromomethane                                | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| Carbon Tetrachloride                        | ND       | 0.2        | ug/L         | ND       |      |       |            | 30       |       |
| Chlorobenzene                               | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| Chloroform                                  | 6.75     | 0.5        | ug/L         | 6.11     |      |       | 10.0       | 30       |       |
| Dibromochloromethane                        | 1.34     | 0.5        | ug/L         | 1.58     |      |       | 16.4       | 30       |       |
| Dichlorodifluoromethane                     | ND       | 1.0        | ug/L         | ND       |      |       |            | 30       |       |
| 1,2-Dichlorobenzene                         | ND<br>ND | 0.5        | ug/L         | ND<br>ND |      |       |            | 30       |       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene  | ND       | 0.5<br>0.5 | ug/L<br>ug/L | ND       |      |       |            | 30<br>30 |       |
| 1,1-Dichloroethane                          | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| 1.2-Dichloroethane                          | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| 1,1-Dichloroethylene                        | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| cis-1,2-Dichloroethylene                    | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| trans-1,2-Dichloroethylene                  | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| 1,2-Dichloropropane                         | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| cis-1,3-Dichloropropylene                   | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| trans-1,3-Dichloropropylene                 | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| Ethylbenzene                                | ND       | 0.5        | ug/L         | ND       |      |       |            | 30       |       |
| Ethylene dibromide (dibromoethane<br>Hexane | ND<br>ND | 0.2<br>1.0 | ug/L         | ND<br>ND |      |       |            | 30<br>30 |       |
| Methyl Ethyl Ketone (2-Butanone)            | ND       | 5.0        | ug/L<br>ug/L | ND       |      |       |            | 30<br>30 |       |
| Methyl Isobutyl Ketone                      | ND       | 5.0        | ug/L         | ND       |      |       |            | 30       |       |
| Methyl tert-butyl ether                     | ND       | 2.0        | ug/L         | ND       |      |       |            | 30       |       |
| Methylene Chloride                          | ND       | 5.0        | ug/L         | ND       |      |       |            | 30       |       |
| ,                                           |          | -          |              |          |      |       |            | -        |       |



# Method Quality Control: Duplicate

|                                 | -      | Reporting |       | Source |      | %REC   |     | RPD   |       |
|---------------------------------|--------|-----------|-------|--------|------|--------|-----|-------|-------|
| Analyte                         | Result | Limit     | Units | Result | %REC | Limit  | RPD | Limit | Notes |
| Styrene                         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,1,2-Tetrachloroethane       | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,2,2-Tetrachloroethane       | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Tetrachloroethylene             | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Toluene                         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,1-Trichloroethane           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,2-Trichloroethane           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Trichloroethylene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Trichlorofluoromethane          | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |
| Vinyl chloride                  | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| m,p-Xylenes                     | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| o-Xylene                        | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Surrogate: 4-Bromofluorobenzene | 89.8   |           | ug/L  |        | 112  | 50-140 |     |       |       |
| Surrogate: Dibromofluoromethane | 80.3   |           | ug/L  |        | 100  | 50-140 |     |       |       |
| Surrogate: Toluene-d8           | 77.4   |           | ug/L  |        | 96.7 | 50-140 |     |       |       |
| Benzene                         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Ethylbenzene                    | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Toluene                         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| m,p-Xylenes                     | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| o-Xylene                        | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Surrogate: Toluene-d8           | 77.4   |           | ug/L  |        | 96.7 | 50-140 |     |       |       |

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019



## Method Quality Control: Spike

Report Date: 16-Apr-2019

Order Date: 15-Apr-2019

| Analyte                           | Result       | Reporting<br>Limit | Units        | Source<br>Result | %REC        | %REC<br>Limit    | RPD | RPD<br>Limit Notes |
|-----------------------------------|--------------|--------------------|--------------|------------------|-------------|------------------|-----|--------------------|
| Aniono                            |              |                    |              |                  |             |                  |     |                    |
| Anions<br>Chloride                | 28.0         | 1                  | ma/l         | 18.8             | 92.3        | 77-123           |     |                    |
|                                   | 20.0         | 1                  | mg/L         | 10.0             | 92.5        | 11-123           |     |                    |
| Hydrocarbons                      |              |                    |              |                  |             |                  |     |                    |
| F1 PHCs (C6-C10)                  | 1790         | 25                 | ug/L         |                  | 89.3        | 68-117           |     |                    |
| F2 PHCs (C10-C16)                 | 1690         | 100                | ug/L         |                  | 105         | 60-140           |     |                    |
| F3 PHCs (C16-C34)                 | 4150         | 100                | ug/L         |                  | 106         | 60-140           |     |                    |
| F4 PHCs (C34-C50)                 | 2150         | 100                | ug/L         |                  | 86.9        | 60-140           |     |                    |
| Metals                            |              |                    |              |                  |             |                  |     |                    |
| Mercury                           | 3.02         | 0.1                | ug/L         | ND               | 101         | 70-130           |     |                    |
| Antimony                          | 50.8         |                    | ug/L         | ND               | 101         | 80-120           |     |                    |
| Arsenic                           | 60.5         |                    | ug/L         | ND               | 121         | 80-120           |     | QM-07              |
| Barium                            | 105          |                    | ug/L         | 51.9             | 106         | 80-120           |     |                    |
| Beryllium                         | 47.6         |                    | ug/L         | ND               | 95.1        | 80-120           |     |                    |
| Boron                             | 95           |                    | ug/L         | 56               | 76.2        | 80-120           |     | QM-07              |
| Cadmium                           | 49.4         |                    | ug/L         | 0.11             | 98.6        | 80-120           |     |                    |
| Chromium (VI)                     | 193          | 10                 | ug/L         | ND               | 96.5        | 70-130           |     |                    |
| Chromium                          | 68.3         |                    | ug/L         | ND               | 136         | 80-120           |     | QM-07              |
| Cobalt                            | 61.7         |                    | ug/L         | ND               | 123         | 80-120           |     | QM-07              |
| Copper                            | 61.3         |                    | ug/L         | 4.58             | 113         | 80-120           |     |                    |
| Lead                              | 47.8         |                    | ug/L         | 0.33             | 94.9        | 80-120           |     |                    |
| Molybdenum                        | 56.2         |                    | ug/L         | 1.84             | 109         | 80-120           |     |                    |
| Nickel                            | 65.2         |                    | ug/L         | 7.7              | 115         | 80-120           |     |                    |
| Selenium                          | 52.2         |                    | ug/L         | ND               | 103         | 80-120           |     |                    |
| Silver                            | 45.7         |                    | ug/L         | ND               | 91.2        | 80-120           |     |                    |
| Sodium<br>Thallium                | 9470<br>49.9 |                    | ug/L         |                  | 94.7        | 80-120<br>80-120 |     |                    |
| Uranium                           | 49.9<br>62.7 |                    | ug/L<br>ug/L | ND<br>10.1       | 99.8<br>105 | 80-120<br>80-120 |     |                    |
| Vanadium                          | 72.3         |                    | ug/L         | ND               | 144         | 80-120<br>80-120 |     | QM-07              |
| Zinc                              | 65           |                    | ug/∟<br>ug/L | 20               | 90.3        | 80-120<br>80-120 |     | QIM-07             |
|                                   | 00           |                    | ug/L         | 20               | 50.5        | 00 120           |     |                    |
| Volatiles                         | 400          | 5.0                |              |                  | 400         | 50 4 40          |     |                    |
| Acetone                           | 102          | 5.0                | ug/L         |                  | 102         | 50-140           |     |                    |
| Benzene                           | 38.2<br>35.7 | 0.5                | ug/L         |                  | 95.5        | 60-130           |     |                    |
| Bromodichloromethane<br>Bromoform |              | 0.5                | ug/L         |                  | 89.3        | 60-130           |     |                    |
| Bromomethane                      | 32.9<br>41.2 | 0.5<br>0.5         | ug/L<br>ug/L |                  | 82.2<br>103 | 60-130<br>50-140 |     |                    |
| Carbon Tetrachloride              | 32.2         | 0.3                | ug/∟<br>ug/L |                  | 80.6        | 60-130           |     |                    |
| Chlorobenzene                     | 44.3         | 0.2                | ug/∟<br>ug/L |                  | 111         | 60-130<br>60-130 |     |                    |
| Chloroform                        | 40.8         | 0.5                | ug/L         |                  | 102         | 60-130<br>60-130 |     |                    |
| Dibromochloromethane              | 38.4         | 0.5                | ug/L         |                  | 96.1        | 60-130           |     |                    |
| Dichlorodifluoromethane           | 40.8         | 1.0                | ug/L         |                  | 102         | 50-130<br>50-140 |     |                    |
| 1,2-Dichlorobenzene               | 37.5         | 0.5                | ug/L         |                  | 93.8        | 60-130           |     |                    |
| 1,3-Dichlorobenzene               | 37.4         | 0.5                | ug/L         |                  | 93.4        | 60-130           |     |                    |
| 1,4-Dichlorobenzene               | 39.9         | 0.5                | ug/L         |                  | 99.8        | 60-130           |     |                    |
| 1,1-Dichloroethane                | 36.8         | 0.5                | ug/L         |                  | 92.1        | 60-130           |     |                    |
| 1,2-Dichloroethane                | 47.6         | 0.5                | ug/L         |                  | 119         | 60-130           |     |                    |
| 1,1-Dichloroethylene              | 34.9         | 0.5                | ug/L         |                  | 87.4        | 60-130           |     |                    |
| cis-1,2-Dichloroethylene          | 36.0         | 0.5                | ug/L         |                  | 90.0        | 60-130           |     |                    |
| trans-1,2-Dichloroethylene        | 36.6         | 0.5                | ug/L         |                  | 91.5        | 60-130           |     |                    |
| 1,2-Dichloropropane               | 35.9         | 0.5                | ug/L         |                  | 89.8        | 60-130           |     |                    |
| cis-1,3-Dichloropropylene         | 41.8         | 0.5                | ug/L         |                  | 105         | 60-130           |     |                    |
| trans-1,3-Dichloropropylene       | 39.1         | 0.5                | ug/L         |                  | 97.8        | 60-130           |     |                    |
|                                   |              |                    | 5            |                  |             |                  |     |                    |



## Order #: 1916101

Report Date: 16-Apr-2019 Order Date: 15-Apr-2019

**Project Description: PE4546** 

# Method Quality Control: Spike

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Ethylbenzene                      | 33.4   | 0.5                | ug/L  |                  | 83.4 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 44.7   | 0.2                | ug/L  |                  | 112  | 60-130        |     |              |       |
| Hexane                            | 32.4   | 1.0                | ug/L  |                  | 80.9 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 75.7   | 5.0                | ug/L  |                  | 75.7 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 68.7   | 5.0                | ug/L  |                  | 68.7 | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 81.4   | 2.0                | ug/L  |                  | 81.4 | 50-140        |     |              |       |
| Methylene Chloride                | 36.9   | 5.0                | ug/L  |                  | 92.2 | 60-130        |     |              |       |
| Styrene                           | 30.1   | 0.5                | ug/L  |                  | 75.3 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 40.4   | 0.5                | ug/L  |                  | 101  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 51.0   | 0.5                | ug/L  |                  | 128  | 60-130        |     |              |       |
| Tetrachloroethylene               | 39.2   | 0.5                | ug/L  |                  | 98.0 | 60-130        |     |              |       |
| Toluene                           | 45.4   | 0.5                | ug/L  |                  | 113  | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 34.0   | 0.5                | ug/L  |                  | 85.0 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 37.1   | 0.5                | ug/L  |                  | 92.6 | 60-130        |     |              |       |
| Trichloroethylene                 | 33.2   | 0.5                | ug/L  |                  | 82.9 | 60-130        |     |              |       |
| Trichlorofluoromethane            | 41.0   | 1.0                | ug/L  |                  | 102  | 60-130        |     |              |       |
| Vinyl chloride                    | 21.4   | 0.5                | ug/L  |                  | 53.4 | 50-140        |     |              |       |
| m,p-Xylenes                       | 76.2   | 0.5                | ug/L  |                  | 95.3 | 60-130        |     |              |       |
| o-Xylene                          | 41.6   | 0.5                | ug/L  |                  | 104  | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 77.1   |                    | ug/L  |                  | 96.4 | 50-140        |     |              |       |
| Benzene                           | 38.2   | 0.5                | ug/L  |                  | 95.5 | 60-130        |     |              |       |
| Ethylbenzene                      | 33.4   | 0.5                | ug/L  |                  | 83.4 | 60-130        |     |              |       |
| Toluene                           | 45.4   | 0.5                | ug/L  |                  | 113  | 60-130        |     |              |       |
| m,p-Xylenes                       | 76.2   | 0.5                | ug/L  |                  | 95.3 | 60-130        |     |              |       |
| o-Xylene                          | 41.6   | 0.5                | ug/L  |                  | 104  | 60-130        |     |              |       |



### **Qualifier Notes:**

### Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match - Samples read BH10-GW1, CoC read BH9-GW1 Applies to samples: BH9-GW1, BH10-GW1

#### **QC Qualifiers :**

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

#### Sample Data Revisions

None

### Work Order Revisions / Comments:

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| GPARACEL                                                          |            | Paracel 1D: 1916101<br>Head Office<br>300-2319 St. Laurent Blvd.<br>Ottawa, Ontario K1G 4J8<br>p: 1-800-749-1947<br>e: paracel@paracellabs.com |               |                          |               |                             |               |            | 4J8     | the second se |         |                                         |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|---------------|-----------------------------|---------------|------------|---------|-----------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LABORATORIES LTD                                                  |            |                                                                                                                                                |               | A                        |               |                             |               |            | _       |                                                                                                                 |         |                                         | Page 1       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client Name: Patersu Grap                                         |            |                                                                                                                                                | _             |                          | E454b         |                             | _             |            |         |                                                                                                                 |         |                                         | Furnarou     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contact Name: Phil Price                                          |            |                                                                                                                                                |               | Quote #                  |               |                             |               |            |         |                                                                                                                 |         | DI Da                                   | iy           | 🗆 3 D   | ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address: 154 Colonowy W                                           |            |                                                                                                                                                |               | PO# 263                  | 34            |                             |               |            |         |                                                                                                                 |         | D2 Da                                   | iy           | 🗆 Reg   | gular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Telephone: 613 226 7381                                           |            |                                                                                                                                                |               | Email Address:<br>PHLICE | C fate        | ang                         | w             | ·. (c      | -       |                                                                                                                 |         | Date F                                  | cequired:    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Criteria: O. Reg. 153/04 (As Amended) Table _ CRSC F              | iling D    | 1 O. Ree                                                                                                                                       | . 558/00      | DPWQ0 DCCM               | E I SUB (Sto  | orm)                        | SUB (         | Sanitar    | y) Mi   | micipa                                                                                                          | lity:   |                                         | _ D Other    | - 10-   | - The second sec |
| Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S |            |                                                                                                                                                |               |                          |               | quired                      |               |            |         |                                                                                                                 |         |                                         |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | a Canatina | lannary o                                                                                                                                      | 1             | Family recently second   |               |                             | T             |            | Ē       |                                                                                                                 | 1       |                                         |              | 1       | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Paracel Order Number:                                             | Matrix     | Air Volume                                                                                                                                     | of Containers | Sample Tak               | Cs F1-F       | VOCS<br>PAHs                | Metals by ICP | Hg<br>CrVI | B (HWS) | E. Car                                                                                                          | solice. | Houde                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID/Location Name                                           | -          | N.                                                                                                                                             | #             | 1                        | Time E        | × d                         | N             | Hg         | 8       | H                                                                                                               | V       |                                         |              |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 BH1-5W1                                                         | W          | -                                                                                                                                              |               | 12 April                 | - /           |                             | +             | -          | +       |                                                                                                                 | 17      | 1                                       |              | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 BH2-SWA1                                                        | 2          | -                                                                                                                                              | 4             | 12 April                 |               | -                           | +             |            | +       | 1                                                                                                               | -       | -                                       |              | +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 BHJ - GWI                                                       | W          | -                                                                                                                                              | 5             | 12 April                 | - /           | ++                          | +             |            | +       | H                                                                                                               | 1       | 1                                       |              | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| + BH4 - GWI                                                       | W          | -                                                                                                                                              | 3             | 12 April 12 April        | 1             |                             |               |            | +       |                                                                                                                 |         |                                         |              | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 BHS - GUI<br>6 PHC - GUD                                        | W          | -                                                                                                                                              | 3             | 12 April                 | -             | Í †                         | 1             | 11         |         |                                                                                                                 |         |                                         |              | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isrie duri                                                        | W          |                                                                                                                                                | 214           |                          |               | 1                           | W             | NAM        | ١       | H                                                                                                               |         |                                         |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * BH7 - GW1<br>* BH8 - GW1 L                                      | W          | -                                                                                                                                              | 4             | 12 Ap-11                 |               |                             | 1             | 11         |         | 1                                                                                                               | /       | /                                       |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · BHG - GWI FERRID BH                                             | Wa         | -                                                                                                                                              | 4             | 12 Ap-11                 |               |                             | 1             | 11         |         | 1                                                                                                               | /       | /                                       |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 BHID - GWI                                                     | W          |                                                                                                                                                | 2             | IS Ap-11                 |               | 1                           |               |            |         |                                                                                                                 |         |                                         |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comments:                                                         | Dec        | 2                                                                                                                                              | 1             | 0                        |               |                             |               |            |         | 0                                                                                                               |         |                                         | Method of De | livery: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By (Sign):                                           | Receive    | ed by Dri                                                                                                                                      | ver/Depo      |                          | Received at 1 | D                           | ten           | )at        | -       |                                                                                                                 | Verifie | mp/                                     | HN ,         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By (Print): PHILLY PRICE                             | Date/T     |                                                                                                                                                |               |                          | Date/Time:    | og til state og state og st | ent           | 19         | 15.     | 0                                                                                                               | Date/T  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1-15-        | 14 15   | 5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DaterTime: 15 Ap-11 3pm                                           | Temper     | rature:                                                                                                                                        | -             | c                        | Temperature   | 0,)                         |               | -          |         |                                                                                                                 | pit ve  | nified [X] 1                            | in the       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

## Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 26458 Project: PE4546 Custody: 121664

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019

Order #: 1916498

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** BH8-GW2 1916498-01 1916498-02 BH9-GW2

Approved By:

Nack Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1916498

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019

**Project Description: PE4546** 

## **Analysis Summary Table**

| Analysis                   | Method Reference/Description | Extraction Date | Analysis Date |
|----------------------------|------------------------------|-----------------|---------------|
| REG 153: VOCs by P&T GC/MS | EPA 624 - P&T GC-MS          | 18-Apr-19       | 22-Apr-19     |



Order #: 1916498

Report Date: 22-Apr-2019

Order Date: 18-Apr-2019

| r                                | Client ID:<br>Sample Date:<br>Sample ID: | BH8-GW2<br>04/18/2019 09:00<br>1916498-01 | BH9-GW2<br>04/18/2019 09:00<br>1916498-02 | -<br>- | -<br>-<br>- |
|----------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------|-------------|
| Volatiles                        | MDL/Units                                | Water                                     | Water                                     | -      | -           |
| Acetone                          | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | _      | [ ]         |
| Benzene                          | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Bromodichloromethane             | 0.5 ug/L                                 |                                           |                                           | -      | -           |
|                                  | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Bromoform<br>Bromomethane        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
|                                  | 0.2 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Carbon Tetrachloride             | 0.2 ug/L                                 | <0.2                                      | <0.2                                      |        | -           |
| Chlorobenzene                    | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Chloroform                       | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Dibromochloromethane             | 1.0 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Dichlorodifluoromethane          | 0.5 ug/L                                 | <1.0                                      | <1.0                                      | -      | -           |
| 1,2-Dichlorobenzene              | -                                        | <0.5                                      | <0.5                                      | -      | -           |
| 1,3-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,4-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,1-Dichloroethane               | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,2-Dichloroethane               | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,1-Dichloroethylene             | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| cis-1,2-Dichloroethylene         | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| trans-1,2-Dichloroethylene       | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,2-Dichloropropane              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| cis-1,3-Dichloropropylene        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| trans-1,3-Dichloropropylene      | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,3-Dichloropropene, total       | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Ethylbenzene                     | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Ethylene dibromide (dibromoethan | 0.2 ug/L                                 | <0.2                                      | <0.2                                      | -      | -           |
| Hexane                           | 1.0 ug/L                                 | <1.0                                      | <1.0                                      | -      | -           |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | -      | -           |
| Methyl Isobutyl Ketone           | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | -      | -           |
| Methyl tert-butyl ether          | 2.0 ug/L                                 | <2.0                                      | <2.0                                      | -      | -           |
| Methylene Chloride               | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | -      | -           |
| Styrene                          | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,1,2,2-Tetrachloroethane        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Tetrachloroethylene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| Toluene                          | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |
| 1,1,1-Trichloroethane            | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | -      | -           |



Order #: 1916498

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019

|                        | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH8-GW2<br>04/18/2019 09:00<br>1916498-01<br>Water | BH9-GW2<br>04/18/2019 09:00<br>1916498-02<br>Water | -<br>-<br>-<br>- | -<br>-<br>- |
|------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------|-------------|
| 1,1,2-Trichloroethane  | 0.5 ug/L                                              | <0.5                                               | <0.5                                               | -                | -           |
| Trichloroethylene      | 0.5 ug/L                                              | <0.5                                               | <0.5                                               | -                | -           |
| Trichlorofluoromethane | 1.0 ug/L                                              | <1.0                                               | <1.0                                               | -                | -           |
| Vinyl chloride         | 0.5 ug/L                                              | <0.5                                               | <0.5                                               | -                | -           |
| m,p-Xylenes            | 0.5 ug/L                                              | <0.5                                               | <0.5                                               | -                | -           |
| o-Xylene               | 0.5 ug/L                                              | <0.5                                               | <0.5                                               | -                | -           |
| Xylenes, total         | 0.5 ug/L                                              | <0.5                                               | <0.5                                               | -                | -           |
| 4-Bromofluorobenzene   | Surrogate                                             | 106%                                               | 91.5%                                              | -                | -           |
| Dibromofluoromethane   | Surrogate                                             | 102%                                               | 103%                                               | -                | -           |
| Toluene-d8             | Surrogate                                             | 83.5%                                              | 108%                                               | -                | -           |



Order #: 1916498

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019

**Project Description: PE4546** 

## Method Quality Control: Blank

| Analyte                           | Result | Reporting | l Inite | Source | 0/ 050 | %REC   | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|-----------|---------|--------|--------|--------|-----|--------------|-------|
|                                   | Nesul  | Limit     | Units   | Result | %REC   | Limit  | RPD | Limit        | NULES |
| Volatiles                         |        |           |         |        |        |        |     |              |       |
| Acetone                           | ND     | 5.0       | ug/L    |        |        |        |     |              |       |
| Benzene                           | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Bromodichloromethane              | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Bromoform                         | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Bromomethane                      | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Carbon Tetrachloride              | ND     | 0.2       | ug/L    |        |        |        |     |              |       |
| Chlorobenzene                     | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Chloroform                        | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Dibromochloromethane              | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Dichlorodifluoromethane           | ND     | 1.0       | ug/L    |        |        |        |     |              |       |
| 1,2-Dichlorobenzene               | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,3-Dichlorobenzene               | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,4-Dichlorobenzene               | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,1-Dichloroethane                | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,2-Dichloroethane                | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,1-Dichloroethylene              | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| cis-1,2-Dichloroethylene          | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| trans-1,2-Dichloroethylene        | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,2-Dichloropropane               | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| cis-1,3-Dichloropropylene         | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| trans-1,3-Dichloropropylene       | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,3-Dichloropropene, total        | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Ethylbenzene                      | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Ethylene dibromide (dibromoethane | ND     | 0.2       | ug/L    |        |        |        |     |              |       |
| Hexane                            | ND     | 1.0       | ug/L    |        |        |        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 5.0       | ug/L    |        |        |        |     |              |       |
| Methyl Isobutyl Ketone            | ND     | 5.0       | ug/L    |        |        |        |     |              |       |
| Methyl tert-butyl ether           | ND     | 2.0       | ug/L    |        |        |        |     |              |       |
| Methylene Chloride                | ND     | 5.0       | ug/L    |        |        |        |     |              |       |
| Styrene                           | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Tetrachloroethylene               | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Toluene                           | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,1,1-Trichloroethane             | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| 1,1,2-Trichloroethane             | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Trichloroethylene                 | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Trichlorofluoromethane            | ND     | 1.0       | ug/L    |        |        |        |     |              |       |
| Vinyl chloride                    | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| m,p-Xylenes                       | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| o-Xylene                          | ND     | 0.5       | ug/L    |        |        |        |     |              |       |
| Xylenes, total                    | ND     | 0.5       | ug/L    |        |        | 50 440 |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 90.8   |           | ug/L    |        | 113    | 50-140 |     |              |       |
| Surrogate: Dibromofluoromethane   | 91.7   |           | ug/L    |        | 115    | 50-140 |     |              |       |
| Surrogate: Toluene-d8             | 74.4   |           | ug/L    |        | 93.0   | 50-140 |     |              |       |



Order #: 1916498

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019

**Project Description: PE4546** 

# Method Quality Control: Duplicate

|                                                                                             |                      | Reporting |                      |                  |              | %REC                       |     | RPD   |       |
|---------------------------------------------------------------------------------------------|----------------------|-----------|----------------------|------------------|--------------|----------------------------|-----|-------|-------|
| Analyte                                                                                     | Result               | Limit     | Units                | Source<br>Result | %REC         | Limit                      | RPD | Limit | Notes |
| Volatiles                                                                                   |                      |           |                      |                  |              |                            |     |       |       |
| Acetone                                                                                     | ND                   | 5.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Benzene                                                                                     | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Bromodichloromethane                                                                        | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Bromoform                                                                                   | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Bromomethane                                                                                | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Carbon Tetrachloride                                                                        | ND                   | 0.2       | ug/L                 | ND               |              |                            |     | 30    |       |
| Chlorobenzene                                                                               | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Chloroform                                                                                  | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Dibromochloromethane                                                                        | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Dichlorodifluoromethane                                                                     | ND                   | 1.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,2-Dichlorobenzene                                                                         | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1.3-Dichlorobenzene                                                                         | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,4-Dichlorobenzene                                                                         | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,1-Dichloroethane                                                                          | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,2-Dichloroethane                                                                          | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,1-Dichloroethylene                                                                        | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| cis-1,2-Dichloroethylene                                                                    | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| trans-1,2-Dichloroethylene                                                                  | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,2-Dichloropropane                                                                         | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| cis-1,3-Dichloropropylene                                                                   | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| trans-1,3-Dichloropropylene                                                                 | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Ethylbenzene                                                                                | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Ethylene dibromide (dibromoethane                                                           | ND                   | 0.2       | ug/L                 | ND               |              |                            |     | 30    |       |
| Hexane                                                                                      | ND                   | 1.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Methyl Ethyl Ketone (2-Butanone)                                                            | ND                   | 5.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Methyl Isobutyl Ketone                                                                      | ND                   | 5.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Methyl tert-butyl ether                                                                     | ND                   | 2.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Methylene Chloride                                                                          | ND                   | 5.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Styrene                                                                                     | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,1,1,2-Tetrachloroethane                                                                   | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,1,2,2-Tetrachloroethane                                                                   | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Tetrachloroethylene                                                                         | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Toluene                                                                                     | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,1,1-Trichloroethane                                                                       | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| 1,1,2-Trichloroethane                                                                       | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Trichloroethylene                                                                           | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Trichlorofluoromethane                                                                      | ND                   | 1.0       | ug/L                 | ND               |              |                            |     | 30    |       |
| Vinyl chloride                                                                              | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| m,p-Xylenes                                                                                 | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| o-Xylene                                                                                    | ND                   | 0.5       | ug/L                 | ND               |              |                            |     | 30    |       |
| Surrogate: 4-Bromofluorobenzene                                                             | 90.6                 |           | ug/L                 |                  | 113          | 50-140                     |     |       |       |
| 0                                                                                           |                      |           |                      |                  |              |                            |     |       |       |
|                                                                                             |                      |           |                      |                  |              |                            |     |       |       |
| Surrogate: 4-Bromonuoroberizene<br>Surrogate: Dibromofluoromethane<br>Surrogate: Toluene-d8 | 90.8<br>78.9<br>72.9 |           | ug/L<br>ug/L<br>ug/L |                  | 98.6<br>91.1 | 50-140<br>50-140<br>50-140 |     |       |       |



# Method Quality Control: Spike

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | 94.9   | 5.0                | ug/L  |                  | 94.9 | 50-140        |     |              |       |
| Benzene                           | 39.0   | 0.5                | ug/L  |                  | 97.4 | 60-130        |     |              |       |
| Bromodichloromethane              | 36.7   | 0.5                | ug/L  |                  | 91.8 | 60-130        |     |              |       |
| Bromoform                         | 36.4   | 0.5                | ug/L  |                  | 91.1 | 60-130        |     |              |       |
| Bromomethane                      | 30.6   | 0.5                | ug/L  |                  | 76.6 | 50-140        |     |              |       |
| Carbon Tetrachloride              | 35.4   | 0.2                | ug/L  |                  | 88.6 | 60-130        |     |              |       |
| Chlorobenzene                     | 43.8   | 0.5                | ug/L  |                  | 110  | 60-130        |     |              |       |
| Chloroform                        | 40.7   | 0.5                | ug/L  |                  | 102  | 60-130        |     |              |       |
| Dibromochloromethane              | 38.3   | 0.5                | ug/L  |                  | 95.8 | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 46.4   | 1.0                | ug/L  |                  | 116  | 50-140        |     |              |       |
| 1.2-Dichlorobenzene               | 32.9   | 0.5                | ug/L  |                  | 82.3 | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 33.2   | 0.5                | ug/L  |                  | 82.9 | 60-130        |     |              |       |
| 1.4-Dichlorobenzene               | 35.8   | 0.5                | ug/L  |                  | 89.6 | 60-130        |     |              |       |
| 1.1-Dichloroethane                | 37.8   | 0.5                | ug/L  |                  | 94.5 | 60-130        |     |              |       |
| 1.2-Dichloroethane                | 42.7   | 0.5                | ug/L  |                  | 107  | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 37.2   | 0.5                | ug/L  |                  | 93.0 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 36.0   | 0.5                | ug/L  |                  | 90.1 | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 37.5   | 0.5                | ug/L  |                  | 93.6 | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 35.5   | 0.5                | ug/L  |                  | 88.8 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 45.7   | 0.5                | ug/L  |                  | 114  | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 43.2   | 0.5                | ug/L  |                  | 108  | 60-130        |     |              |       |
| Ethylbenzene                      | 33.0   | 0.5                | ug/L  |                  | 82.4 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 41.6   | 0.2                | ug/L  |                  | 104  | 60-130        |     |              |       |
| Hexane                            | 31.7   | 1.0                | ug/L  |                  | 79.2 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 75.3   | 5.0                | ug/L  |                  | 75.3 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 65.3   | 5.0                | ug/L  |                  | 65.3 | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 78.8   | 2.0                | ug/L  |                  | 78.8 | 50-140        |     |              |       |
| Methylene Chloride                | 37.7   | 5.0                | ug/L  |                  | 94.2 | 60-130        |     |              |       |
| Styrene                           | 34.7   | 0.5                | ug/L  |                  | 86.8 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 41.1   | 0.5                | ug/L  |                  | 103  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 48.7   | 0.5                | ug/L  |                  | 122  | 60-130        |     |              |       |
| Tetrachloroethylene               | 40.9   | 0.5                | ug/L  |                  | 102  | 60-130        |     |              |       |
| Toluene                           | 42.4   | 0.5                | ug/L  |                  | 106  | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 37.0   | 0.5                | ug/L  |                  | 92.5 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 38.1   | 0.5                | ug/L  |                  | 95.2 | 60-130        |     |              |       |
| Trichloroethylene                 | 35.8   | 0.5                | ug/L  |                  | 89.6 | 60-130        |     |              |       |
| Trichlorofluoromethane            | 43.3   | 1.0                | ug/L  |                  | 108  | 60-130        |     |              |       |
| Vinyl chloride                    | 28.6   | 0.5                | ug/L  |                  | 71.4 | 50-140        |     |              |       |
| m,p-Xylenes                       | 71.9   | 0.5                | ug/L  |                  | 89.9 | 60-130        |     |              |       |
| o-Xylene                          | 40.2   | 0.5                | ug/L  |                  | 101  | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 70.1   | 0.0                | ug/L  |                  | 87.6 | 50-140        |     |              |       |
|                                   |        |                    |       |                  | 00   |               |     |              |       |



## **Qualifier Notes:**

None

**Sample Data Revisions** None

## Work Order Revisions / Comments:

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Report Date: 22-Apr-2019 Order Date: 18-Apr-2019 **Project Description: PE4546** 

| Chient Name: Portarian<br>Contact Name: Marke DArcy<br>Address: 154 Cobrack W                                                                                                                                                                     |                     | Project Reference                   |                             |                 |              |                       |       | 100             | -1947<br>paracellabs.co | m          | Chain of Custody<br>(Lab Use Only)<br>NO 12166 |                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------|-----------------------------|-----------------|--------------|-----------------------|-------|-----------------|-------------------------|------------|------------------------------------------------|-------------------------------|--|
| ISE Glancie W         Telephone:       613       226       738/         Criteria:       DO. Reg. 153/04 (As Amended) Table IRSC Filing O. Reg.         Matrix Type: 8 (Soil/Sed.)       GW (Ground Water) SW (Surface Water) SS (Storm:Sanitary S |                     | Quote #<br>PO # 2<br>Email Address: | 10458<br>1Darco             | JB (Stor        | late<br>m) C | Anal                  | (Sann | 12 -1<br>ary) M | CG-<br>Aunicipality:    | Da         | Day<br>2 Day<br>te Required                    | ound Time:<br>3 Day<br>Regula |  |
| Paracel Order Number:<br>$\begin{array}{c c} \hline Paracel Order Number: \\ \hline 1 16498 \\ \hline Sample ID/Location Name \\ \hline 1 1648 - GW2 \\ \hline 2 1649 - GW2 \\ \hline 3 \\ \hline 4 \\ \hline \end{array}$                        | 2 2 # of Containers |                                     | e Taken<br>Time<br>AM<br>AM | PHCs F1-F4+BTEX | A VOCS       | PAHS<br>Metals by ICP | Hg    | CrVI<br>B GIWSI | former) at              |            |                                                |                               |  |
| 5       6       7       8       9       10       Comments:                                                                                                                                                                                        | ver/Depx            |                                     | Roce                        | ved at La       | b:           |                       | D     |                 | - 11 (California)       | nified by: | Meth@or<br>Po                                  | Delivery:                     |  |

Chain of Custody (Env) - Rev 0.7 Feb. 2016