

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

TIMBERCREEK COMMUNITIES HERON GATE COMMUNITY

CITY OF OTTAWA

PROJECT NO.: 18-1080

APRIL 2019 – REV 1 © DSEL

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR HERON GATE COMMUNITY

TIMBERCREEK COMMUNITIES

TABLE OF CONTENTS

1.0	INTRODUCTION	1		
1.1	Existing Conditions	2		
1.2	Development Concept			
1.3	Required Permits / Approvals			
1.4	Pre-consultation	3		
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4		
2.1	Existing Studies, Guidelines, and Reports	4		
3.0	WATER SUPPLY SERVICING	6		
3.1	Existing Water Supply Services	6		
3.2	Water Supply Servicing Design	6		
	3.2.1 Boundary Conditions3.2.2 Summary of Hydraulic Modeling Analysis			
3.3	Water Supply Conclusion	10		
4.0	WASTEWATER SERVICING	11		
4.1	Existing Wastewater Services	11		
4.2	Wastewater Design	11		
	4.2.1 Wastewater Design – Phase I			
	4.2.2 Wastewater Design – Phase II			
4.3	Wastewater Servicing Conclusions	17		
5.0	STORMWATER MANAGEMENT			
5.1	Existing Stormwater Services			
5.2	Post-development Stormwater Management Target1			
5.3	Proposed Stormwater Management System – Phase I			
5.4	Proposed Stormwater Management System – Phase II			
5.5	Proposed Stormwater Management System – Phase III2			
5.6	Stormwater Servicing Conclusions21			
6.0	UTILITIES	22		
7.0	EROSION AND SEDIMENT CONTROL	23		
8.0	CONCLUSION AND RECOMMENDATIONS	24		

FIGURES

Figure 1	Site Location

TABLES

Table 1:	Anticipated Permit/Approval Requirements
T I I A	

- Table 2:
 Water Supply Design Criteria
- Table 3:Water Demand Ultimate
- Table 4:Boundary Conditions Heron Road
- Table 5:Boundary Conditions Walkley Road
- Table 6:Summary of Available System Pressures
- Table 7:Summary of Available Fire Flows
- Table 8Summary of Estimated Peak Wastewater Flow –
Existing Subdivision
- Table 9Wastewater Design Criteria
- Table 10 Summary of Estimated Peak Wastewater Flow Phase I
- Table 11Summary of Estimated Peak Wastewater Flow –
Phase II
- Table 12Summary of Estimated Peak Wastewater Flow –
Phase III
- Table 13Stormwater Allowable Release Rate
- Table 14
 Stormwater Flow Rate Summary Phase I
- Table 15Stormwater Flow Rate Summary Phase II
- Table 16
 Stormwater Flow Rate Summary Phase III

APPENDICES

- Appendix A Pre-consultation Notes
- Appendix B Water Supply
- Appendix C Wastewater Collection
- Appendix D Stormwater Management
- Drawings / Figures Proposed Site Plan

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR HERON GATE COMMUNITY TIMBERCREEK COMMUNITIES APRIL 2019 – REV 1

CITY OF OTTAWA PROJECT NO.: 18-1080

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by Timbercreek Communities to prepare a Functional Servicing and Stormwater Management (FSR) report in support of the application for a Plan of Subdivision for the Heron Gate community.

As indicated by *Figure 1,* below, the lands are bound by Heron Road to the north, the Sandalwood Park to the east, and Walkley Road to the south. The subject site is zoned Arterial Mainstreet (AM) and Residential Fifth Density (R5).

Figure 1: Site Location

The FSR study area:

- measures approximately 22.8 ha;
- is located within the City of Ottawa urban boundary in the Alta Vista ward;
- ➢ is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA);
- > is located south of an existing community centre at 1480 Heron Road; and
- is located east of Sandalwood Park and the Heron Gate Shopping Centre at 1670 Heron Road and 1718 Heron Road.

The objective of this report is to provide sufficient detail to demonstrate that the proposed Subdivision is supported by existing municipal services.

1.1 Existing Conditions

The existing site contains a subdivision consisting of **307** townhomes and **1,209** apartment units. The completed development proposes to retain five existing high-rise apartment buildings, located at: 2850 Cedarwood Drive; 2870 Cedarwood Drive; 2840 Baycrest Drive; 2851 Baycrest Drive; and 2861 Baycrest Drive. The apartment buildings that are contemplated to be retained consist of **957** apartment units. The **307** existing townhomes are contemplated to be reconstructed as part of the re-development.

Sewer and watermain mapping were collected from the City of Ottawa to evaluate the existing services located within the adjacent municipal right-of-ways. Refer to drawing *EX-WTR, EX-SAN,* and *EX-STM* (located in *Drawings/Figures*) for existing servicing layouts.

1.2 Development Concept

The development concept, prepared by Dialog Design, is included in *Drawings/Figures*.

The proposed land use within the study area consists of a combination of townhomes, mid-rise and high-rise apartment buildings; which will be accessed via a local road network consisting of Cedarwood Drive, Baycrest Drive and Sandalwood Drive. Proposed Stormwater management design for the subject site requires the construction of off-site storm sewers and storm ditches. It is anticipated that Timbercreek Communities will be responsible for securing planning and construction approvals for all required off-site infrastructure.

The Concept Plan contemplates the following residential developments:

- Townhomes Approximately 315 units;
- Mid-Rise and High-Rise Apartment Buildings Approximately 4,748 units and associated above ground and below ground parking lots; and
- > Existing High-Rise Apartment Buildings Approximately **957 units**.

1.3 Required Permits / Approvals

The City of Ottawa must approve detailed engineering design drawings and reports prior to construction of the municipal infrastructure identified in this report. Approvals are expected to occur as part of the approval process for *Planning Act* development applications.

The following additional approvals and permits listed in *Table 1*, below, may be required prior to construction of the municipal infrastructure detailed herein. Please note that other permits and approvals may be required and will be addressed at the detailed design stage.

Agency	Permit/Approval Required	Trigger	Remarks
MOECC	Environmental Compliance Approval	Construction of new sanitary, storm sewers, and potential stormwater management works.	The MOECC is expected to review the stormwater collection system and wastewater collection system by transfer of review submission.
City of Ottawa	MOECP Form 1 – Record of Watermains Authorized as a Future Alteration.	Construction of watermains.	The City of Ottawa is expected to review the watermains on behalf of the MOECP through the Form 1 – Record of Watermains Authorized as a Future Alteration.
City of Ottawa / Private Landowners	Permission/license to access/occupation and/or legal property instruments.	Construction of servicing infrastructure (e.g. storm sewer, overland flow route) beyond the FSR study area.	Construction activities and permanent infrastructure beyond the FSR study area may trigger legal agreements.

Table 1: Anticipated Permit/Approval Requirements

1.4 Pre-consultation

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-03
 City of Ottawa, March 21, 2018.
 (ISTB-2018-03)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update (OBC)

- Geotechnical Investigation Report, Herongate 7 Proposed Development WSP Canada Inc., April 2016. (Geotechnical Report)
- Site Servicing Report
 MMM Group Limited (Project No. 14-16012), March 2017.
 (Block 1 Servicing Report)
- Stormwater Management Report
 MMM Group Limited (Project No. 14-16012), March 2017.
 (Block 1 SWM Report)
- Hydraulic Capacity and Modelling Analysis Herongate Subdivision Redevelopment GeoAdvice Engineering Ltd. (Project ID: 2019-027-DSE), April 2019. (GeoAdvice Report)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 2W2C pressure zone, as shown by the Pressure Zone map in *Appendix B*. Local 203 mm diameter watermains exists within the Baycrest Drive, Sandalwood Drive, and Cedarwood Drive right-of-ways. A 305 mm diameter watermain and a 450 mm diameter watermain exists within the Heron Road and Walkley Road rights-of-way respectively. Refer to drawing *EX-WTR*, included in *Drawings/Figures*, for an existing watermain layout.

3.2 Water Supply Servicing Design

Table 2, below, summarizes the *Water Supply Guidelines* employed in the preparation of the preliminary water demand estimate prepared by GeoAdvice Engineering. Hydraulic modelling is included in *Appendix B*.

Design Parameter	Value			
Residential Townhouse	2.7 Persons/unit			
Residential Average Apartment	1.8 Persons/unit			
Residential Average Daily Demand	280 L/person/day			
Minimum Hour Peaking Factor	0.60**			
Maximum Day Peaking Factor	1.90**			
Peak Hour Peaking Factor	2.85**			
Minimum Watermain Size	150 mm diameter			
Minimum Depth of Cover	2.4 m from top of watermain to finished grade			
During normal operating conditions desired	350 kPa and 480 kPa			
operating pressure is within				
During normal operating conditions pressure must	275 kPa			
not drop below				
During normal operating conditions pressure must	552 kPa			
not exceed				
During fire flow operating pressure must not drop	140 kPa			
below				
*Daily average based on Appendix 4-A from Water Supply Guidelines ** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-1 for more than 3,000 persons.				
- I able updated to reflect ISD-2010-2				

Table 2: Water Supply Design Criteria

Table 3, below, summarizes the anticipated water supply demand for the contemplated development based on the *Water Supply Guidelines*.

Design Parameter	Anticipated Demand ¹ (L/min)	
Average Daily Demand	2,162	
Max Day + Fire Flow	4,108 + 22,000 = 26,108	
Peak Hour	6,162	
1) Water demand calculation per <i>Water Supply Guidelines</i> . See		
Appendix B for detailed calculations.		

Table 3: Water Demand – Ultimate

Fire flow requirements are to be determined in accordance with the City of Ottawa *Water* **Supply Guidelines** and the Ontario Building Code. GeoAdvice used the **FUS** method to establish a conservative estimation of fire flow. Refer to **Appendix B** for detailed FUS calculations included in the **GeoAdvice Report**.

The following construction parameters were coordinated with Dialog Designs:

- Type of construction Non-Combustible Construction;
- Occupancy type Limited Combustibility; and
- Sprinkler Protection Supervised Sprinkler System

The above assumptions result in an estimated fire flow of approximately **22,000** L/min. A certified fire protection system specialist would need to be employed to design the buildings fire suppression systems and confirm the actual fire flow demand.

The existing 203 mm diameter watermains within the Baycrest Drive, Sandalwood Drive, and Cedarwood Drive right-of-ways are not sufficiently sized to accommodate the ultimate development and will need to be increased to 305 mm diameter watermains. Refer to hydraulic modelling included in *Appendix B* for further details.

It is contemplated to replace the existing watermain network with 305 mm diameter watermains. Phasing of replacement will be reviewed at the detailed design stage.

3.2.1 Boundary Conditions

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand, as indicated in the boundary request correspondence included in *Appendix B*. An updated boundary condition request was sent to the City of Ottawa on April 4th, 2019 due to revised water demands, however a response was not received at the time of publication. The revised water demands contemplate a 10% reduction in comparison to the previously requested demands. The results presented in this report are based on the boundary conditions for the conditions received on January 19th, 2019.

The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow demand for the demands as indicated by the correspondence in *Appendix B*.

- > Connection 1: Heron Road at Baycrest Drive (300 mm diameter); and
- Connection 2: Heron Road at Sandalwood Drive (300 mm diameter).
- Connection 3: Walkley Road at Baycrest Drive (450 mm diameter); and
- Connection 4: Walkley Road at Cedarwood Drive (450 mm diameter).

The boundary conditions are summarized in *Table 4* and *Table 5* for all contemplated connections to both Heron Road and Walkley Road, respectively. The boundary conditions provided by the City of Ottawa are enclosed in *Appendix B*.

	Connection 1 Heron Road at Baycrest Drive		Conn Heron Road at	ection 2 Sandalwood Drive
Condition	HGL (m)	Pressure (psi)	HGL (m)	Pressure (psi)
Maximum HGL	131.5	51.1	130.5	52.2
Peak Hour (min pressure)	123.0	39.0	122.5	40.8
Max Day + Fire (483 L/s)	120.5	35.4	120.5	38.0

Table 4: Boundary Conditions – Heron Road

Table 5: Boundary Conditions Walkley Road

	Connection 1 Walkley Road at Baycrest Drive		Connection 2 Walkley Road at Cedarwood Drive	
Condition	HGL (m) Pressure (psi)		HGL (m)	Pressure (psi)
Maximum HGL	131.0	55.1	132.0	60.4
Peak Hour (min pressure)	123.0	43.8	131.0	58.9
Max Day + Fire (167 L/s)	122.5	43.1	122.5	46.8

As indicated in **Table 4** and **Table 5**, above, the peak hour pressure at Connection 1 falls below the required operating condition pressure as specified by the **Water Supply Guidelines**. It is anticipated that booster pumps will be required to meet the required building pressures during peak hour demands and will be confirmed at the detailed design stage.

3.2.2 Summary of Hydraulic Modeling Analysis

As discussed in *Section 3.2*, the existing 203 mm diameter watermains within the Baycrest Drive, Sandalwood Drive, and Cedarwood Drive right-of-ways are not

sufficiently sized to accommodate the ultimate development and will need to be increased to 300 mm diameter watermains.

A complete watermain analysis of the future 305 mm diameter watermain network has been prepared to confirm that the network is sized adequately. Refer to the *GeoAdvice Report*, enclosed in *Appendix B*.

System Pressures

The modeling indicates that the development can be adequately serviced by the contemplated watermain network. Modeled service pressures for the development are summarized in *Table 6.* The detailed pipe and junction tables are contained in the *GeoAdvice Report*, enclosed in *Appendix B.*

Table 6: Summary of Available System Pressures

	Minimum Hour Demand Maximum Pressure		Peak Hour Demand Minimum Pressure	
	kPA	psi	kPA	psi
Phase 1 – Existing Pressure Zone Configuration	352	51	262	38

The generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi) as outlined in the City of Ottawa Design Guidelines. During normal operating conditions pressures must not drop below 275kPa. As conservative values were made for elevation and population numbers when requesting boundary conditions, it is anticipated that peak hour demand will meet the minimum required pressure at all locations. Furthermore, contemplated units have been reduced since the initial boundary condition request was made on January 19th, 2019. The model will be updated upon receipt of updated boundary conditions at the reduced estimated demands.

Available Fire Flows

The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire. A summary of the available fire flows is presented in *Table 7*. The detailed fire flow reports are found in the *GeoAdvice Report* enclosed in *Appendix B*.

	Required Fire Flow (L/s)	Minimum Available Flow (L/s)	Junction ID
Phase 1 – Existing Pressure Zone	333	556	J-06
Configuration	367	837	J-03

Table 7: Summary of Available Fire Flows

As shown in **Table 7**, the model predicts the network will be able to provide all required fire flows under the proposed pressure zone configuration. Four hydrants will be required to provide a total flow of **367** L/s. As per *Table 18.5.4.3* in City in Ottawa Technical Bulletin ISTB-2018-02, one hydrant can deliver +/- 5,700 L/min if it is located within 75 m of the structure. Hydrant locations will be determined during the detailed design phase of this development and will be placed in accordance with City of Ottawa design guidelines. Detailed results are included in the **GeoAdvice Report**, enclosed in **Appendix B**.

3.3 Water Supply Conclusion

Anticipated water demand under proposed conditions was submitted to the City of Ottawa for establishing boundary conditions.

As indicated by the hydraulic model, the existing 203 mm diameter watermains within the Baycrest Drive, Sandalwood Drive, and Cedarwood Drive right-of-ways are not sufficiently sized to accommodate the ultimate development. It is contemplated that the existing watermains be replaced with 305 mm diameter watermains to service the ultimate build-out. Phasing to be reviewed at detailed design.

Based on the current boundary conditions provided by the City, booster pumps may be required in order to meet minimum pressure during peak hour demands. Booster pump requirement to be determined at detailed design stage.

DSEL employed a daily consumption rate of 280 L/person/day to align with the revised wastewater rates identified by City of Ottawa Technical Bulletin ISTB-2018-03. As a result, DSEL is submitting for a deviation from the *Water Supply Guidelines*.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site lies within the South Ottawa Collector Sewer catchment area, as shown by the City sewer mapping included in *Appendix C*. The existing 300 mm diameter sanitary sewers located within the Heron Road and Walkley Road right-of-ways are available to service the contemplated development. Municipal infrastructure within Heron Road and Walkley Road is tributary to the South Ottawa Collector Sewer, which is located approximately 4.5 km and 4.6 km downstream, respectively.

There is an existing 300 mm diameter sanitary sewer located within the Albion Road rightof-way. Municipal infrastructure within Albion Road is tributary to the South Ottawa Collector Sewer, which is located approximately 430 m downstream.

The existing subdivision is currently serviced via the existing sanitary sewers within the Baycrest Drive, Cedarwood Drive, and Sandalwood Drive right-of-ways. Refer to drawing *EXSAN*, included in *Drawings/Figures*, for a detailed layout. All sewer discharge to Walkley Road and Heron Road is ultimately tributary to the South Ottawa Collector sewer.

Table 8, below, demonstrates the estimated peak flow for the existing subdivision. See *Appendix C* for associated calculations.

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	10.04
Estimated Peak Dry Weather Flow	29.55
Estimated Peak Wet Weather Flow	42.09

 Table 8

 Summary of Estimated Peak Wastewater Flow – Existing Subdivision

4.2 Wastewater Design

Based on consultation with City staff, an HGL analysis for the contemplated development was prepared for the existing sanitary sewers within Heron Road and Walkley Road. As indicated by the hydraulic assessment, included in *Appendix C* for reference, there is approximately **35** *L*/s and **20** *L*/s of capacity currently available in the Heron Road and Walkley Road sanitary sewers, respectively. Once the existing buildings contemplated to be demolished are off-line, approximately **62** *L*/s of capacity will be available within the Walkley Road sanitary sewer.

Based on coordination with the City, an infiltration rate of 0.55 L/s/ha has been applied to the existing subdivision for the purposes of estimating existing wastewater discharge.

In order to assess the available capacity, a sanitary analysis was conducted for the local municipal sanitary sewers located within the Albion Road right-of-way. The catchment

area serviced by the Albion Road sanitary sewer was identified and evaluated by reviewing existing development and zoning within the area. The analysis was conducted from the site to the upstream extents of the drainage area, located near the intersection of Colbert Crescent and Finn Court. An infiltration rate of 0.55 L/s/ha has been applied to recently constructed subdivision to the East, consistent with the City's HGL analysis.

Based on the sanitary analysis, the controlling section of the local sewer system is located at the intersection of Albion Road and Heatherington Road, with an available residual capacity of **25.0 L/s**; detailed calculations are included in **Appendix C**.

Due to the capacity constraints within the Heron Road, Walkley Road, and Albion Road sanitary sewers, the development is contemplated to be staged in three phases.

Table 9, below, summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

Design Parameter	Value
Residential Townhome	2.7 L/person/d
Residential Bachelor Apartment	1.4 L/person/d
Residential 1 Bedroom Apartment	1.4 L/person/d
Residential 2 Bedroom Apartment	2.1 L/person/d
Residential 3 Bedroom Apartment	3.1 L/person/d
Residential Average Apartment	1.8 L/person/d
Residential Average Daily Demand	280 L/person/d
Residential Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
	Harmon's Correction Factor 0.8
Infiltration and Inflow Allowance	0.05 L/s/ha (Dry Weather)
	0.28 L/s/ha (Wet Weather)
	0.33 L/s/ha (Total)
	0.55 L/s/ha *
Sanitary sewers are to be sized employing the	$1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
Manning's Equation	$Q = -AR^{3}S^{2}$
Minimum Sewer Size	200 mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5 m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6 m/s
Maximum Full Flowing Velocity	3.0 m/s
Extracted from Sections 4 and 6 of the City of Ottawa Sewer De	sign Guidelines, October 2012.

Table 9 Wastewater Design Criteria

4.2.1 Wastewater Design – Phase I

The contemplated Phase I development includes the construction of Block 1. As indicated by the Site Servicing Report (*Block 1 Servicing Report*), prepared by MMM Group and dated March 2017, the Block 1 development is proposed to be serviced via the existing

300 mm diameter sanitary sewer within the Heron Road right-of-way. The peak wet weather flow rate for the Block 1 development was estimated to be **10.75 L/s**.

The contemplated Phase I development includes the construction of Block 2. It is contemplated that Block 2 will be serviced via the existing 300 mm diameter sanitary sewer within the Heron Road right-of-way. As indicated by **Table 10**, below, the estimated peak wet weather flow rate for Block 2 is **13.79** L/s. Refer to **Appendix C** for detailed calculations and **Drawings/Figures** for drawing **SAN-1** for the detailed Phase sanitary servicing layout.

It is anticipated that no modifications to the existing sanitary sewers within Baycrest Drive, Cedarwood Drive, Sandalwood Drive, Heron Road, and Walkley Road will be required to support the Phase I development. The apartment buildings to be retained will continue to be serviced via the sanitary sewers within Baycrest Drive and Cedarwood Drive, which are ultimately tributary to the Walkley Road sanitary sewer.

Table 10, below, demonstrates the anticipated peak flow from the Phase I development. See *Appendix C* for associated calculations.

		Design Parameter			
Development Block	Outlet	Estimated Average Dry Weather Flow (L/s)	Estimated Peak Dry Weather Flow (L/s)	Estimated Peak Wet Weather Flow (L/s)	
Block 1*	Heron Road	-	-	10.75	
Block 2	Heron Road	5.24	13.02	13.79	
Total	Heron Road	-	-	24.54	
2850 & 2870 Cedarwood Drive	Walkley Road	3.29	8.08	8.87	
2840 Baycrest Drive	Walkley Road	0.76	1.91	1.93	
2851 Baycrest Drive	Walkley Road	0.88	2.14	2.40	
2861 Baycrest Drive	Walkley Road	1.18	2.90	3.16	
Total	Walkley Road	-	-	16.34	
*As indicated by the Block 1 Servicing Report prepared by MMM Group Limited.					

Table 10Summary of Estimated Peak Wastewater Flow – Phase I

As summarized by **Table 10**, above, the total estimated sanitary flow, based on the Concept Plan provided in **Drawings/Figures**, anticipates a peak wet weather flow of **24.54** L/s to the Heron Road sanitary sewer. Based on consultation with City staff, the available capacity within the Heron Road sanitary sewer is **35** L/s; the residual capacity after the Phase I development is estimated to be **10.46** L/s.

As summarized by *Table 10,* above, the total estimated peak wet weather sanitary flow tributary to the existing sanitary sewer within Walkley Road is *16.34 L/s*. Based on

consultation with City staff, the available capacity within the Walkley Road is **62.09 L/s**; the residual capacity after the Phase I development is estimated to be **45.73 L/s**.

4.2.2 Wastewater Design – Phase II

The contemplated Phase II development includes the construction of Block 3. It is contemplated that Block 3 will be serviced via the existing 250 mm diameter sanitary sewer within the Sandalwood Drive right-of-way. As indicated by **Table 11**, below, the estimated peak wet weather flow rate for Block 3 is **14.23** L/s.

The contemplated Phase II development also includes the construction of Block 8. It is contemplated that Block 8 will be serviced via the existing 250 mm diameter sanitary sewer within the Baycrest Drive right-of-way. As indicated by **Table 11**, below, the estimated peak wet weather flow rate for Block 8 is **17.26** L/s.

Additionally, the contemplated Phase II development includes the construction of Block 9. It is contemplated that Block 9 will be serviced via the existing 250 mm diameter sanitary sewer within the Baycrest Drive right-of-way. As indicated by **Table 11**, below, the estimated peak wet weather flow rate for Block 9 is **12.48** L/s. Refer to **Appendix C** for detailed calculations and drawing **SAN-2** (included in **Drawings/Figures**) for the detailed Phase II sanitary servicing layout.

In order to accommodate Blocks 8 and 9 modifications will be required to the existing sewer within the Baycrest Drive right-of-way. The existing sewer located between Sandalwood Drive and Walkley Road will require a 300 mm diameter sanitary sewer to provide capacity to the contemplated Phase II development.

It is anticipated that no modifications to the existing sanitary sewers within Cedarwood Drive, Sandalwood Drive, Heron Road, and Walkley Road will be required to support the Phase II development. The apartment buildings that are to be retained will continue to be serviced via the sanitary sewers within Baycrest Drive and Cedarwood Drive, which are ultimately tributary to the Walkley Road sanitary sewer.

Table 11, below, demonstrates the anticipated peak flow from the Phase II development. See *Appendix C* for associated calculations.

		Design Parameter			
Development Block	Outlet	Estimated Average Dry Weather Flow (L/s)	Estimated Peak Dry Weather Flow (L/s)	Estimated Peak Wet Weather Flow (L/s)	
Block 3	Walkley Road	5.55	13.93	14.23	
Block 8	Walkley Road	6.62	16.51	17.26	
Block 9	Walkley Road	4.79	11.93	12.48	
Total	Walkley Road	16.96	42.37	43.98	

Table 11Summary of Estimated Peak Wastewater Flow – Phase II

The residual capacity within the Walkley Road sanitary sewer is **45.73** *L/s* after the Phase II development. As summarized by **Table 11**, above, the total estimated sanitary flow, based on the Concept Plan provided in *Drawings/Figures*, anticipates a peak wet weather flow of **43.98** *L/s* to the Walkley Road sanitary sewer. As a result, it is estimated that approximately **1.75** *L/s* of available capacity will be available after the Phase II development is complete.

4.2.3 Wastewater Design – Phase III

The contemplated Phase III development includes the construction of Block 4. It is contemplated that Block 4 will be serviced via the existing 250 mm diameter sanitary sewer within the Cedarwood Drive right-of-way. As indicated by **Table 8**, which follows, the estimated peak wet weather flow rate for Block 4 is **7.95** *L/s*.

It is contemplated that the existing apartment building at 2840 Baycrest Drive will maintain the existing connection to the 250 mm diameter sanitary sewer within the Baycrest Drive right-of-way. As indicated by **Table 12**, the estimated peak wet weather flow rate for 2840 Baycrest Drive is **1.93 L/s**.

The contemplated Phase III development also includes the construction of Block 5. It is contemplated that Block 5 will be serviced via the existing 250 mm diameter sanitary sewer within the Cedarwood Drive right-of-way. As indicated by **Table 12**, the estimated peak wet weather flow rate for Block 5 is **1.69** L/s.

Based on the Concept Plan, prepared by Dialog Design and included in **Drawings/Figures**, the contemplated development within Block 5 will require modifications to the existing sanitary sewer, located north of the 2850 Cedarwood Drive. The existing sewer is currently providing servicing to the apartment building that is contemplated to remain. No modifications to the existing service connection to 2870 Cedarwood Drive are contemplated. It is contemplated that the afore mentioned existing apartment buildings will be serviced via the existing 250 mm diameter sanitary sewer within the Cedarwood Drive right-of-way. As indicated by **Table 12**, the estimated peak wet weather flow rate for 2850 & 2870 Cedarwood Drive is **8.87 L/s**.

The contemplated Phase III development also includes the construction of Block 6. It is contemplated that Block 6 will be serviced via the existing 250 mm diameter sanitary sewer within the Cedarwood Drive right-of-way. As indicated by **Table 12**, the estimated peak wet weather flow rate for Block 6 is **4.85** L/s.

Additionally, the contemplated Phase III development includes the construction of Block 7. It is contemplated that Block 7 will be serviced via the future 300 mm diameter sanitary sewer within the Walkley Road right-of-way, which is ultimately tributary to the future 300 mm diameter sanitary sewer within Albion Road. As indicated by **Table 12**, the estimated peak wet weather flow rate for Block 7 is **9.40** *L*/**s**; refer to **Drawings/Figures** for detailed calculations and drawing **SAN-3** for the detailed Phase III sanitary servicing layout.

Table 12, below, demonstrates the anticipated peak flow from the contemplated Phase III development. See *Appendix C* for associated calculations.

		Design Parameter			
Development Block	Outlet	Estimated Average Dry Weather Flow (L/s)	Estimated Peak Dry Weather Flow (L/s)	Estimated Peak Wet Weather Flow (L/s)	
Block 4	Albion Road	3.03	7.54	7.95	
Block 5*	Albion Road	0.67	1.69	1.69	
Block 6	Albion Road	1.63	3.94	4.58	
Block 7	Albion Road	3.63	9.06	9.40	
2850 & 2870 Cedarwood Drive	Albion Road	3.29	8.08	8.87	
2840 Baycrest Drive	Albion Road	0.76	1.91	1.93	
Total	Albion Road	13.01	32.22	34.42	
*Infiltration rate account for in 2850 & 2870 Cedarwood Drive Analysis					

Table 12Summary of Estimated Peak Wastewater Flow – Phase III

As discussed in *Section 4.2*, **25.02** L/s of capacity is available within the existing 300 mm diameter sanitary sewer within the Albion Road right-of-way, which is tributary to the South Ottawa Collector Trunk sewer. **Table 12**, above, indicates that the anticipated peak wet weather flow rate for the Phase III development is **34.42** L/s.

Based on consultation with City staff, a connection to the existing Albion Road sanitary sewer is available to service the development. As illustrated by drawing **SAN-4**, included in **Drawings/Figures**, a 300 mm diameter sanitary sewer extension is contemplated within the Walkley Road and Albion Road right-of-ways to support the Phase III development. In addition, the existing 300 mm diameter sanitary sewer within Albion Road is expected to be upsized to a 375 mm diameter sanitary sewer, up to the connection to the South Ottawa Collector Trunk sewer. Refer to drawing **SAN-3** and **SAN-4**, both located in **Drawings/Figures** or accompanying this report, for further details.

Once the Phase III development has been completed, the residual capacity within the Heron Road, Walkley Road, and Albion Road sanitary sewers is estimated to be **10.46** *L/s*, **12.55** *L/s*, and **4.71** *L/s*, respectively. The analysis above indicates that sufficient capacity is available in the local sewers to accommodate the contemplated development.

4.3 Wastewater Servicing Conclusions

The site is tributary to the South Ottawa Trunk Collector sewer; the existing subdivision is currently serviced via existing sanitary sewers within the Baycrest Drive, Sandalwood Drive, and Cedarwood Drive right-of-ways.

The contemplated Phase I development includes the construction of Block 1 and Block 2. Both developments are contemplated to be serviced via the existing 300 mm diameter sanitary sewer within Heron Road.

The contemplated Phase II development includes the construction of Block 3, Block 8, and Block 9. Block 3 is contemplated to be serviced via the existing 250 mm diameter sanitary sewer within Sandalwood Drive, Block 8 is contemplated to be serviced via the existing 250 mm diameter sanitary sewer within Baycrest, and Block 9 is contemplated to be serviced via the existing 250 mm diameter sanitary sewer within Baycrest, and Block 9 is contemplated to be serviced via the existing 250 mm diameter sanitary sewer within Baycrest Drive. The existing buildings located at 2840 Baycrest Drive and 2860 Baycrest Drive are to remain and will continue to discharge wastewater to the existing sewers within Baycrest Drive.

The contemplated Phase III development includes the construction of Block 4, Block 5, Block 6, and Block 7. Block 4, Block 5 and Block 6 are contemplated to be serviced via the existing 250 mm diameter sanitary sewer within Cedarwood Drive. Block 7 is contemplated to be serviced via the future 300 mm diameter sanitary sewer within Walkley Road. The existing buildings located at 2851 Baycrest Drive, 2850 Cedarwood Drive, and 2870 Cedarwood Drive are to remain and will contribute wastewater to the sanitary sewer within Baycrest Drive and Cedarwood Drive, ultimately tributary to the future Albion Road sanitary sewer.

The ultimate development contemplates replacing the existing sanitary sewer within Baycrest Drive and Albion Road with a 300 mm diameter sanitary sewer and contemplates the construction of a new sanitary sewer within Walkley Road and Albion Road.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system and is located within the Ottawa Central sub-watershed. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed, and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA). Consultation with the RVCA is located in *Appendix A*.

The existing subdivision is serviced via the existing storm sewers within the Baycrest Drive, Cedarwood Drive, and Sandalwood Drive right-of-ways. Refer to drawing *EXSTM*, included in *Drawings/Figures*, for a detailed layout.

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa, where the proposed development is required to:

- Meet allowable release rates based on a Rational Method Coefficient of 0.50, employing the City of Ottawa IDF parameters for a 2-year storm with a calculated time of concentration;
- Attenuate all storms up to and including the City of Ottawa 100-year design event on site; and
- Quality controls are not anticipated to be required for the contemplated development due to the site's distance from the outlet; correspondence with the RVCA is included in *Appendix A*.

An existing storm sewer calculation sheet was prepared for the local sewers in order to estimate the time of concentration for the municipal sewers within the Baycrest Drive, Sandalwood Drive, and Cedarwood Drive right-of-ways. The anticipated time of concentration for the existing subdivision to outlet to the existing 900 mm diameter storm sewer within Walkley Road is **16.7** minutes.

Based on the above the allowable release rate for the proposed development is **80.7** *L/s/ha*.

Table 13, below, summarizes the allowable release rates and estimated drainage area for each Block of the contemplated development.

Stormwater Allowable Release Rate					
Development Block Estimated Drainage Area Allowable Release Ra					
	(ha)	(L/s)			
Block 1*	-	158.8			
Block 2	2.78	223.9			
Block 3	2.95	237.9			
Block 4	2.11	170.2			
Block 5	2.80	226.3			
Block 6	2.29	184.9			
Block 7	1.22	98.5			
Block 8	2.68	216.5			
Block 9	1.98	159.6			
Total	-	1,576.6			
*As Per Block 1 SWM Report prepared by MMM Group Limited.					

Table 13

5.3 Proposed Stormwater Management System – Phase I

To meet the stormwater objectives the contemplated Phase I development may contain a combination of roof top flow attenuation along with surface and subsurface storage.

The contemplated Phase I development includes the construction of Block 1. As indicated by the Site Servicing Report (**Block 1 SWM Report**), prepared by MMM Group and dated March 2017, the Block 1 development is proposed to be serviced via the existing 900 mm diameter storm sewer within the Heron Road right-of-way. Refer to the Block 1 SWM *Report* for further details.

The contemplated Phase I development also includes the construction of Block 2. It is contemplated that Block 2 will be serviced via the existing 450 mm diameter storm sewer within the Baycrest Drive right-of-way. Refer to Drawings/Figures for both the detailed calculations and drawing **STM-1** for a detailed Phase I servicing layout.

It is anticipated that no modifications to the existing storm sewers within Baycrest Drive, Cedarwood Drive, Sandalwood Drive, Heron Road, and Walkley Road are required to support the Phase I development. The apartment buildings that are to be retained will continue to be serviced via the storm sewers within Baycrest Drive and Cedarwood Drive, which are ultimately tributary to Walkley Road.

Table 14. summarizes post-development flow rates. The following storage requirement estimate assumes that approximately 10% of the development area will be directed to the outlet without flow attenuation. These areas will be compensated for in areas with flow attenuation controls.

Stormwater Flow Rate Summary – Phase I					
Control Area 5-Year 5-Year 100-Year 100-Year					
	Release Rate	Storage			
(L/s) (m ³) (L/s)		(L/s)	(m ³)		
Block 2	111.7	485.31	223.90	969.8	

Table 14

As summarized by **Table 14**, above, approximately **969.8** *m*³ of storage will be required for Block 2 in order to meet the target release rate established in Section 5.2.

Actual storage volumes will need to be confirmed at the detailed design stage based on a number of factors including grading constraints.

5.4 Proposed Stormwater Management System – Phase II

To meet the stormwater objectives the contemplated Phase II development may contain a combination of roof top flow attenuation, along with surface and subsurface storage.

It is anticipated that no modifications to the existing storm sewers within Baycrest Drive, Cedarwood Drive, Sandalwood Drive, Heron Road, and Walkley Road are required to support the Phase II development. The apartment buildings located at 2840 Baycrest Drive, 2850 Cedarwood Drive, and 2870 Cedarwood Drive will continue to be serviced via the storm sewers within Baycrest Drive and Cedarwood Drive, which are ultimately tributary to the Walkley Road storm sewer.

The contemplated Phase II development includes the construction of Block 3, 8, and 9. It is contemplated that Block 3, including 2851 & 2861 Baycrest Drive, will be serviced via the existing 525 mm diameter storm sewer within the Sandalwood Drive right-of-way; Block 8 will be serviced via the existing 750 mm diameter storm sewer within the Baycrest Drive right-of-way; and Block 9 will be serviced via the existing 750 mm diameter storm sewer within Baycrest right-of-way. Refer to **Appendix D** for detailed calculations and **Drawings/Figures** for drawing **STM-2**, which indicates a detailed Phase II servicing layout.

Table 15, below, summarizes post-development flow rates. The following storage requirement estimate assumes that approximately 10% of the development area will be directed to the outlet without flow attenuation. These areas will be compensated for in areas with flow attenuation controls.

Stormwater Flow Rate Summary – Phase II				
Control Area	5-Year	5-Year	100-Year	100-Year
	Release Rate	Storage	Release Rate	Storage
	(L/s)	(m ³)	(L/s)	(m³)
Block 3 *	118.7	515.62	237.89	1030.3
Block 8	108.0	469.24	216.49	937.7
Block 9	79.6	345.96	159.61	691.3
Total	306.3	1330.82	613.99	2658.9

Table 15 Stormwater Flow Rate Summary – Phase II

Actual storage volumes need to be confirmed at the detailed design stage based on a number of factors, including grading constraints.

5.5 Proposed Stormwater Management System – Phase III

To meet the stormwater objectives the contemplated Phase III development may contain a combination of roof top flow attenuation along with surface and subsurface storage.

The contemplated Phase III development includes the construction of Block 4, 5, 6, and 7. It is anticipated that modifications to the existing storm sewers within Cedarwood Drive will be required to support the Phase III development. Refer to drawing *STM-3*, included for a detailed servicing layout.

It is contemplated that Block 4, including 2840 Baycrest Drive, will be serviced via the future 750 mm diameter storm sewer within the Cedarwood Drive right-of-way. It is contemplated that Block 5, including 2850 & 2870 Cedarwood Drive, will be serviced via the future 825 mm diameter storm sewer within the Cedarwood Drive right-of-way. In addition, it is proposed that Block 6 and Block 7 will be serviced via the future 750 mm diameter storm sewer and the future 900 mm diameter storm sewer within the Cedarwood Drive right-of-way. In Drive right-of-way. Refer to *Appendix D* for detailed calculations and *Drawings/Figures* for drawing *STM-3*, which indicates a detailed Phase III servicing layout.

Table 16, below, summarizes post-development flow rates. The following storage requirement estimate assumes that approximately 10% of the development area will be directed to the outlet without flow attenuation. These areas will be compensated for in areas with flow attenuation controls.

Stormwater Flow Rate Summary – Flase m				
Control Area	5-Year	5-Year	100-Year	100-Year
	Release Rate	Storage	Release Rate	Storage
	(L/s)	(m ³)	(L/s)	(m ³)
Block 4	85.0	369.00	170.24	737.3
Block 5	112.9	490.43	226.27	980.0
Block 6	92.3	400.77	184.90	800.8
Block 7	49.1	213.48	98.49	426.6
Total	339.3	1473.68	679.9	2944.7

Table 16 Stormwater Flow Rate Summary – Phase III

Actual storage volumes need to be confirmed at the detailed design stage based on a number of factors, including grading constraints.

5.6 Stormwater Servicing Conclusions

Post development stormwater runoff will be required to be restricted to the allowable target release rate for storm events up to and including the 100-year storm in accordance with City of Ottawa *City Standards*. The post-development allowable release rate was calculated as *80.7 L/s/ha* based on consultation with the City of Ottawa.

To meet the stormwater objectives the contemplated Phase I, Phase II and Phase III development may contain a combination of roof top flow attenuation along with surface and subsurface storage.

Actual storage volumes need to be confirmed at the detailed design stage based on a number of factors including grading constraints.

Quality controls are not anticipated to be required for the contemplated development due to the site's distance from the outlet.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 UTILITIES

Gas, Hydro services currently exist within the Cedarwood Drive, Sandalwood Drive, Baycrest Drive, Walkley Road, and Heron Road right-of-ways. Utility servicing will be coordinated with the individual utility companies prior to site development.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have filter fabric installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- Install filter cloth between catch basins and frames;
- Plan construction at proper time to avoid flooding; and
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by Timbercreek to prepare a Functional Servicing and Stormwater Management report in support of the application for a Plan of Subdivision for the Heron Gate community. The preceding report outlines the following:

- The development is contemplated to be completed in three phases. Modifications to the local watermain, sanitary sewer, and storm sewer will be required to support the ultimate development;
- An updated boundary condition request was sent to the City of Ottawa however were not received at the time of publication;
- The FUS method for estimating fire flow indicated a maximum fire flow of 22,000 L/min is required for the contemplated development;
- Based on the sanitary analysis conducted the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Based on consultation with the City of Ottawa, the contemplated development will be required to attenuate post development flows to an equivalent release rate of 80.7 L/s/ha for all storms up to and including the 100-year storm event;
- It is contemplated that stormwater objectives may be met through storm water retention via roof top, surface and subsurface storage to attenuate flow to the established release rate above and will be confirmed at the detailed design stage;
- Quality controls are not anticipated to be required for the contemplated development due to the site's distance from the outlet;
- Any development on the subject property may require Ontario Water Resources Act (OWRA) s.53 approval from the Ministry of the Environment (MOECP) for sanitary and stormwater discharge.

Prepared by, David Schaeffer Engineering Ltd.

Westing

Per: Alison J. Gosling, EIT

Reviewed by, David Schaeffer Engineering Ltd.

© DSEL

z:\projects\18-1080_timbercreek_heron-gate\b_design\b3_reports\b3-2_servicing (dsel)\2019-04_sub1\fsr-2019-04-17_1080_ajg.docx

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

18-1080

	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	EX-WTR, EX-SAN, EX-STM
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	N/A
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\boxtimes	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North)	
	-Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	N/A
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
\square	Availability of public infrastructure to service proposed development	Section 3.1

\boxtimes	Identification of system constraints	Section 3.1
\boxtimes	Identify boundary conditions	Section 3.1, 3.2
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.3

	Confirmation of adequate fire flow protection and confirmation that fire flow is	
\boxtimes	calculated as per the Fire Underwriter's Survey. Output should show available	Section 3.2
	fire flow at locations throughout the development.	
	Provide a check of high pressures. If pressure is found to be high, an assessment	N/A
_	is required to confirm the application of pressure reducing valves.	,
	Definition of phasing constraints. Hydraulic modeling is required to confirm	N/A
_	servicing for all defined phases of the project including the ultimate design	,
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
	Reference to water supply analysis to show that major infrastructure is capable	
\boxtimes	of delivering sufficient water for the proposed land use. This includes data that	Section 3.2. 3.3
_	shows that the expected demands under average day, peak hour and fire flow	,,
	conditions provide water within the required pressure range	
	Description of the proposed water distribution network, including locations of	
	proposed connections to the existing system, provisions for necessary looping,	N/A
	and appurtenances (valves, pressure reducing valves, valve chambers, and fire	
	hydrants) including special metering provisions.	
	Description of off-site required feedermains, booster pumping stations, and	
	other water infrastructure that will be ultimately required to service proposed	N/A
	development, including financing, interim facilities, and timing of	
	Implementation.	
\boxtimes	Confirmation that water demands are calculated based on the City of Ottawa	Section 3.2
	Design Guidelines.	
	streets parcels and building locations for reference	N/A
	streets, parcels, and building locations for reference.	
43	Development Servicing Report: Wastewater	
4.5	Summary of proposed docign criteria (Note: Wet weather flow criteria should	
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	
\boxtimes	not deviate nom the city of ottawa sewer besign duidennes, monitored now	
	data from relatively new infrastructure cannot be used to justify canacity	Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity	Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations.	Section 4.2 N/A
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that	Section 4.2 N/A
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes	Section 4.2 N/A N/A
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	Section 4.2 N/A N/A
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater	Section 4.2 N/A N/A
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).Confirm consistency with Master Servicing Study and/or justifications for deviations.Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 4.2 N/A N/A Section 4.1
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).Confirm consistency with Master Servicing Study and/or justifications for deviations.Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.Description of existing sanitary sewer available for discharge of wastewater from proposed development.Verify available capacity in downstream sanitary sewer and/or identification of	Section 4.2 N/A N/A Section 4.1
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be	Section 4.2 N/A N/A Section 4.1 Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Section 4.2 N/A N/A Section 4.1 Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the	Section 4.2 N/A N/A Section 4.1 Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C')	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C Section 4.2
	data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).Confirm consistency with Master Servicing Study and/or justifications for deviations.Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.Description of existing sanitary sewer available for discharge of wastewater from proposed development.Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.Description of proposed sewer network including sewers, pumping stations, and forcemains.Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses,	Section 4.2 N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C Section 4.2 N/A

	Pumping stations: impacts of proposed development on existing pumping	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
4.4	Development Servicing Report: Stormwater Checklist	
\boxtimes	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
\boxtimes	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
\boxtimes	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
\boxtimes	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
\boxtimes	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
\boxtimes	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
\boxtimes	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
	Confirm consistency with sub-watershed and Master Servicing Study, if	N/A
\boxtimes	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
\boxtimes	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3
	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
	Proposed minor and major systems including locations and sizes of stormwater	N/A
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100- year return period storm event	N/A
	Identification of potential impacts to receiving watercourses	N/A
	Identification of municipal drains and related approval requirements.	N/A

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for	Section 5.3
_	100 year flood levels and major flow routing to protect proposed development	
	from flooding for establishing minimum building elevations (MBE) and overall grading.	N/A
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 6.0
	Identification of floodplains – proponent to obtain relevant floodplain	
	information from the appropriate Conservation Authority. The proponent may	
	be required to delineate floodplain elevations to the satisfaction of the	N/A
	Conservation Authority if such information is not available or if information	
	does not match current conditions.	
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
15	Approval and Pormit Poquiroments: Checklist	
4.5	Approval and Permit Requirements. Checklist	
	floodplain, potential impact on fich babitat, proposed works in or adjacent to a	
	watercourse, cut/fill nermits and Annroval under Lakes and Rivers Improvement	
\boxtimes	Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2
	Rivers Improvement ct. Where there are Conservation Authority regulations in	Section 1.2
	place, approval under the Lakes and Rivers Improvement Act is not required.	
	except in cases of dams as defined in the Act.	
	Application for Certificate of Approval (CofA) under the Ontario Water	a) (a
	Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A
	Government Services Canada, Ministry of Transportation etc.)	N/A
4.6	Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	Section 8.0
	Comments received from review agencies including the City of Ottawa and	
	information on how the comments were addressed. Final sign-off from the	
	responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional	
	Engineer registered in Ontario	

MEMO

Date: March 13, 2015

To / Destinataire	Kersten Nitsche, Planner	
From / Expéditeur	Cody Oram, Project Manager, Infrastructure Approvals	
Subject / Objet	Pre-Application Consultation Herongate Re-Development & Ward No.18,	File No. PC2015-0068

Please note the following information regarding the engineering design submission for the above noted site in view of a Site Plan Application being applied for:

- 1. The Servicing Study Guidelines for Development Applications are available at the following address: <u>http://ottawa.ca/en/development-application-review-process-</u><u>O/servicing-study-guidelines-development-applications</u>
- 2. Servicing & site works shall be in accordance with the following documents:
 - ⇒ Ottawa Sewer Design Guidelines (2013)
 - ⇒ Ottawa Design Guidelines Water Distribution (2010)
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (2004)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (2006)
 - ⇒ City of Ottawa Park and Pathway Development Manual (2012)
 - ⇒ City of Ottawa Accessibility Design Standards (2012)
 - ⇒ Ottawa Standard Tender Documents (2013)
 - ⇒ Ontario Provincial Standards for Roads & Public Works (2013)
- 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- 4. The Stormwater Management Criteria, for individual subject sites submitted for site plan application, is to be based on the following:

- i. The storm event using the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997.
- ii. The public separated sewer system within the site limits is built pre-1970; and therefore the design of the storm sewers are based on a 2 year storm.
- iii. Flows to the storm sewer in excess of the 2-year storm release rate, up to and including the 100-year storm event, must be detained on site.
- iv. The pre-development runoff coefficient <u>or</u> a maximum equivalent 'C' of 0.5, whichever is less.
- v. A calculated time of concentration (Cannot be less than 10 minutes).
- vi. The City's downstream storm system outfalls to the Mather Award Drain and the subject site is located within the Greens Creek Study Area. Please contact Jocelyn Chandler, Planner, RVCA (jocelyn.chandler@rvca.ca) regarding water quality treatment.
- Note: There may be area specific SWM Criteria that may apply. Check for any related SWM &/or Sub-watershed studies that may have been completed.
- 5. Services (Storm, Sanitary & Water Supply)
 - i. The existing area currently is serviced with a combination of private and public infrastructure within the site limits. The public infrastructure within Baycrest Dr., Sandalwood Dr., and Cedarwood Dr. connect to the public infrastructure within Walkley Road. The area is to maintain the existing drainage patterns and continue to utilize the connections to Walkley Road. A master servicing study needs to be conducted to confirm that the existing public infrastructure within the development limits can accommodate the anticipated increase in demand from the future ultimate build out.
 - *ii.* No new connections to the Central Walkley Trunk storm sewer east of the Baycrest Dr. and Walkley Rd. intersection will be permitted.
- 6. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service
 - ii. Type of development and the amount of fire flow required.
 - iii. Average daily demand: ____ l/s.
 - iv. Maximum daily demand: ____l/s.
 - v. Maximum hourly daily demand: _____l/s.
- 7. Guide for completing Phase One and Two Environmental Site Assessments under Ontario Regulation 153/04.

Should you have any questions or require additional information, please contact me directly at (613) 580-2424, x 13422 or by email at <u>cody.oram@ottawa.ca</u>.

Alison Gosling

From:	Alison Gosling
Sent:	Tuesday, April 2, 2019 1:43 PM
То:	'Jamie Batchelor'
Cc:	'Eric Lalande'
Subject:	18-1080 Heron Gate Community

Good afternoon,

We wanted to touch base with you regarding the re-development of Heron Gate community.

The development involves the construction of a fifteen high-rise apartment buildings, thirty medium-rise apartment buildings, and 314 townhomes. In addition to the new construction, the development will retain 5 existing apartment towers.

The development proposes to outlet to the existing storm sewer within Walkley Road. The existing storm sewer travels approximately **6.0** km to an outlet into the stormwater pond located near the Hunt Club Road and Hawthorne Road intersection.

It is anticipated that stormwater quality controls are not required as the development due to the distance to the outlet. Can you please confirm?

Thank you,

Alison Gosling, E.I.T. Junior Project Manager

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.542

 cell:
 (343) 542-9218

 fax:
 (613) 836-7183

 email:
 agosling@dsel.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

APPENDIX B

Water Supply

kPa

416.1

406.3 322.9

Timbercreek Herongate Contemplated Site Conditions City of Ottawa - Boundary Condition Conversions

Boundary Conditions Unit Conversion

Connection 1 (Heron)			Connection	3 (Walkley)			
Grnd Elev	95.62			Grnd Elev	92.24	92.24	
	m H₂O	PSI	kPa		m H₂O	PSI	kPa
Avg. Day	131.5	51.1	352.0	Avg. Day	131	55.1	380.2
Peak Hour	123	39.0	268.6	Peak Hour	123	43.8	301.8
Max Day + FF	120.5	35.4	244.1	Max Day +	122.5	43.1	296.9

Connection 2 (Heron)	
Grnd Elev	93.82

Connection 4	(Walkley)
Grnd Elev	89.58

	m H₂O	PSI	kPa		m H₂O	PSI
Avg. Day	130.5	52.2	359.8	Avg. Day	132	60.4
Peak Hour	122.5	40.8	281.4	Peak Hour	131	58.9
Max Day + FF	120.5	38.0	261.7	Max Day +	122.5	46.8

Alison Gosling

From:	Baker, Adam <adam.baker@ottawa.ca></adam.baker@ottawa.ca>
Sent:	Wednesday, January 30, 2019 3:30 PM
То:	Alison Gosling; Oram, Cody
Subject:	RE: 18-1080 Heron Gate - Boundary Condition Request
Attachments:	1080 Heron Gate Jan 2019.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello,

Please find attached your boundary conditions:

The following are boundary conditions, HGL, for hydraulic analysis at 1080 Heron Gate (zone 2C) assumed to be connected to the 406mm on Walkley and 305mm on Heron Rd

(see attached PDF for location).

Note: Demands assumed split evenly between the four connections. Fire flow of 483 L/s was assigned to a node in the middle of the development.

	Connection 1	Connection 2	Connection 3	Connection 4
Min HGL	123.0m	122.5m	123.0m	123.5m
Max HGL	131.5m	130.5m	131.0m	132.0m
MaxDay + FireFlow (483 L/s)*	120.5m	120.5m	122.5m	123.0m

*Resulting fire flow HGL assuming the fire flow of 483L/s is assigned to a node in the middle of the development

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Thanks,

Adam Baker, EIT Engineering Intern Planning, Infrastructure and Economic Development Department - Services de la planification, de l'infrastructure et du développement économique Development Review - South Branch City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste 26552, <u>Adam.Baker@ottawa.ca</u>

From: Alison Gosling <AGosling@dsel.ca>
Sent: Saturday, January 19, 2019 11:17 AM
To: Oram, Cody <Cody.Oram@ottawa.ca>; Baker, Adam <adam.baker@ottawa.ca>
Subject: 18-1080 Heron Gate - Boundary Condition Request

Good morning Cody and Adam,

We would like to request water boundary conditions for Heron Road/Walkley Road using the following proposed development demands:

1. Location of Service / Street Number: Heron Gate Community including:

Heron Road and Baycrest Drive – 2816 Heron Road / Baycrest Drive / Cedarwood Drive / Sandalwood Drive / Walkley Road (Heron Walkley Park to Sandalwood Park)

- 2. Type of development and the amount of fire flow required for the proposed development:
 - The development would include approximately **314** *townhomes*, and approximately **5109** *units* within multiple low-rise/high-rise condominiums/apartments with underground parking. The existing apartment buildings that are proposed to remain contain **956** *units.* This is a multiple phase development and all site statistics are based on a high level conceptual plan.
 - It is anticipated that the development will have maintain multiple connection to be serviced from the existing 305mm diameter watermain within the Heron Road. right-of-way, as well as maintaining multiple connection to the existing 406mm diameter watermain within Walkley Road shown by the attached map.
 - Fire demand based on Technical Bulletin ISTB-2018-02 has been used to calculate an estimate the max fire demand of **29,000** L/min. Refer to the attached for detailed calculations.

	L/min	L/s
Avg. Daily	2389.7	39.83
Max Day	5974.3	99.57
Peak Hour	13143.5	219.06

If you have any questions, please feel free to contact me.

Thank you,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.542 fax: (613) 836-7183 email: <u>agosling@dsel.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

,

CITY OF OTTAWA - WATER DISTRIBUTION SYSTEM

Hydraulic Capacity and Modeling Analysis Heron Gate Subdivision Redevelopment

Final Report

Prepared for: David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

Prepared by: GeoAdvice Engineering Inc. Unit 203, 2502 St. John's Street Port Moody, BC V3H 2B4

Submission Date: April 10, 2019

Contact: Mr. Werner de Schaetzen, Ph.D., P.Eng. **Project:** 2019-027-DSE

Copyright © 2019 GeoAdvice Engineering Inc.

Document History and Version Control

Revision No.	Date	Document Description	Revised By	Reviewed By
RO	April 5, 2019	Draft	Adrien d'Andrade	Werner de Schaetzen
R1	April 10, 2019	Final	Adrien d'Andrade	Werner de Schaetzen

Confidentiality and Copyright

This document was prepared by GeoAdvice Engineering Inc. for David Schaeffer Engineering Ltd. The material in this document reflects the best judgment of GeoAdvice in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. GeoAdvice accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or actions based on this document. Information in this document is to be considered the intellectual property of GeoAdvice Engineering Inc. in accordance with Canadian copyright law.

Statement of Qualifications and Limitations

This document represents GeoAdvice Engineering Inc. best professional judgment based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by a member of the engineering profession currently practicing under similar conditions. No warranty, express or implied is made.

Project ID: 2019-027-DSE

Page | 2

Contents

1	Intr	oduction4
2	Mo	leling Considerations
	2.1	Water Main Configuration
	2.2	Elevations 6
	2.3	Consumer Demands 6
	2.4	Fire Flow Demand7
	2.5	Boundary Conditions
3	Hyd	raulic Capacity Design Criteria9
	3.1	Pipe Characteristics
	3.2	Pressure Requirements
4	Hyd	raulic Capacity Analysis10
	4.1	Development Pressure Analysis 10
	4.2	Development Fire Flow Analysis 11
5	Oth	er Servicing Considerations12
	5.1	Water Supply Security 12
	5.2	Valves
	5.3	Hydrants
6	Con	clusions14
A	ppendi	x A FUS Fire Flow Calculations
A	ppendi	x B Required Fire Flows
A	ppendi	x C Pipe and Junction Model Inputs
A	ppendi	x D MHD and PHD Model Results
A	ppendi	x E MDD+FF Model Result

1 Introduction

GeoAdvice Engineering Inc. ("GeoAdvice") was retained by David Schaeffer Engineering Ltd. ("DSEL") to size the water main network for the Heron Gate subdivision redevelopment ("Development") in the City of Ottawa, ON ("City").

The Heron Gate subdivision is located between Heron Road and Walkley Road, and between Cedarwood Drive and Sandalwood Drive. To the north of the subdivision there is an existing 300 mm trunk main on Heron Road, and to the south there is an existing 450 mm trunk main on Walkley Road. The subdivision is currently serviced by a network of 200 mm water mains on Baycrest Drive, Cedarwood Dive, and Sandalwood Drive.

Within the subdivision there are currently several residential towers and townhomes that are serviced by the water network. Five (5) of these towers will remain with the redevelopment, and the remaining towers and townhomes will be redeveloped. The redevelopment consists of 315 townhome units and 4,748 apartment units (mid-rise and towers).

The Heron Gate subdivision model will have four (4) connections to the City water distribution system:

- Connection 1: Heron Road at Baycrest Drive
- Connection 2: Heron Road at Sandalwood Drive
- Connection 3: Walkley Road at Baycrest Drive
- Connection 4: Walkley Road at Cedarwood Drive

The development site is shown in **Figure 1.1** with the final recommended pipe diameters.

This report describes the assumptions and results of the hydraulic modeling and capacity analysis using InfoWater (Innovyze), a GIS water distribution system modeling and management software application.

The results presented in this report are based on the analysis of steady state simulations. The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi. No extended period simulations were completed in this analysis to assess the water quality or to assess the hydraulic impact on storage and pumping.

Project ID: 2019-027-DSE

OQM Organizational Quality Management Program

2 Modeling Considerations

2.1 Water Main Configuration

The water main network was modeled based on the pipe network layout provided by DSEL to GeoAdvice on February 21, 2019.

2.2 Elevations

At the time of this report, no grading plan was available for the development site. Elevations of the modeled junctions were assigned based on the highest connection point elevation of 95.66 m, provided by DSEL to GeoAdvice on April 2, 2018. This is a conservative approach and should be updated once a site grading plan is available.

2.3 Consumer Demands

The residential demand rate of 280 L/cap/d was used as per City of Ottawa technical bulletin ISTB 2018-01. Peaking factors were taken from the Ministry of Environment (MOE) Design Guidelines for Drinking-Water Systems *Table 3-1: Peaking Factors* for a population between 10,001-25,000. A summary of the rates and peaking factors relevant for this development is shown in **Table 2.1** below.

Demand Type	Amount	Unit		
Average Day Demand				
Residential	280	L/c/d		
Maximum Daily Demand				
Residential	1.90 x avg. day	L/c/d		
Peak Hour Demand				
Residential	2.85 x max. day	L/c/d		
Minimum Hour Demand				
Residential	0.60 x avg. day	L/c/d		

Table 2.1: City of Ottawa Demand Rate and MOE Peaking Factors

Table 2.2 summarizes the water demand calculations for the Heron Gate subdivision.

Page | 6

Dwelling Type	Number of Units	Persons Per Unit*	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Existing Units							
Apartment	957	1.8	1,723	5.58	10.61	15.91	3.35
Proposed Units							
Townhouse	315	2.7	851	2.76	5.24	7.86	1.65
Apartment	4,748	1.8	8,546	27.70	52.62	78.94	16.62
Total	6,020		11,120	36.04	68.47	102.70	21.62

Table 2.2: Development Residential Population and Demand Calculations

*City of Ottawa Design Guidelines

Demands were uniformly distributed to the model nodes within the subdivision.

2.4 Fire Flow Demand

Fire flow calculations were completed for the worst-case dwelling types in accordance with the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999) and City of Ottawa Technical Bulletin ISTB-2018-02.

FUS fire flow requirements of 300 L/s, 333 L/s, and 367 L/s were calculated at various building groups within the subdivision. Detailed calculations can be found in **Appendix A**. Note that analysis was not completed at the 300 L/s fire flow requirement as the adjacent building had a higher required fire flow of 333 L/s.

Fire flow simulations were completed at each model node in the subdivision. The locations of nodes do not necessarily represent hydrant locations.

The spatial allocation of the required fire flows is shown in **Appendix B**.

2.5 Boundary Conditions

The boundary conditions were provided by the City of Ottawa in the form of Hydraulic Grade Line (HGL) at the following locations:

- Connection 1: Heron Road at Baycrest Drive
- Connection 2: Heron Road at Sandalwood Drive
- Connection 3: Walkley Road at Baycrest Drive
- Connection 4: Walkley Road at Cedarwood Drive

The above connection points are illustrated in Figure 1.1.

Boundary conditions were provided for Peak Hour, Maximum Day plus Fire and Average Day (high pressure check) conditions. It is important to note that boundary conditions were requested by DSEL based on preliminary demand and fire flow calculations that are higher than those presented in this report. Due to time constraints of this submission, and the time to receive updated boundary conditions, analysis was completed with the available boundary conditions. This is a conservative approach as the updated boundary conditions should provide higher connection HGL's due to the reduced development demand.

The table below summarizes the boundary conditions used to size the Heron Gate subdivision redevelopment water network.

Condition	Development Demand (L/s)	Connection 1 HGL (m)	Connection 2 HGL (m)	Connection 3 HGL (m)	Connection 4 HGL (m)
Min Hour (max. pressure)	19.9	131.5	130.5	131.0	132.0
Peak Hour (min. pressure)	219.1	123.0	122.5	123.0	123.5
Max Day + Fire Flow (483 L/s)	582.6	120.5	120.5	122.5	123.0

Table 2.3: Boundary Conditions (Provided by DSEL on February 21, 2019)

Hydraulic Capacity Design Criteria 3

3.1 Pipe Characteristics

Pipe characteristics of internal diameter (ID) and Hazen-Williams C factors were assigned in the model according to the City of Ottawa Design Guidelines for PVC water main material. Pipe characteristics used for the development are outlined in Table 3.1 below.

Nominal Diameter	ID PVC	Hazen Williams
(mm)	(mm)	C-Factor (/)
300	297	120

Table 3.1: Model Pipe Characteristics

3.2 Pressure Requirements

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). Pressure requirements are outlined in Table 3.2.

Table 3.2: Pressure Requirements

Demond Condition	Minimum	Pressure	Maximum Pressure		
Demand Condition	(kPa)	(psi)	(kPa)	(psi)	
Normal Operating Pressure (maximum daily flow)	350	50	480	70	
Peak Hour Demand (minimum allowable pressure)	276	40	-	-	
Maximum Fixture Pressure (Ontario Building Code)	-	-	552	80	
Maximum Distribution Pressure (minimum hour check)	-	-	552	80	
Maximum Day Plus Fire	140	20	-	-	

4 Hydraulic Capacity Analysis

The proposed water mains within the development were sized to the minimum diameter which would satisfy the greater of maximum day plus fire and peak hour demand. Modeling was carried out for minimum hour, peak hour and maximum day plus fire flow using InfoWater. The boundary conditions provide by DSEL on February 21, 2019 were used to size the network, and the results are presented in the following sections.

Detailed pipe and junction model input data can be found in **Appendix C**.

4.1 Development Pressure Analysis

The modeling results indicate that the development can be adequately serviced by the proposed water main layout shown in **Figure 1.1**. Modeled service pressures for the development are summarized in **Table 4.1**.

Table 4.1: Summary of Available Service Pressures

Minimum Hour Demand	Peak Hour Demand
Maximum Pressure	Minimum Pressure
51 psi	38 psi

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 50 psi and 70 psi. The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 80 psi.

Note that under peak hour demand conditions, the development does not meet the pressure requirement of 40 psi (pressures are within 5%). Conservative values for boundary conditions and elevations were used in this analysis. If the development elevations are lower than the assumed value, and updated boundary conditions based on the lower demands are used, the peak hour pressures will likely meet the required pressures (\geq 40 psi).

Detailed pipe and junction result tables and maps can be found in **Appendix D**.

Project ID: 2019-027-DSE

10,000 10. 2010 027 000

4.2 Development Fire Flow Analysis

A summary of the minimum available fire flows in the subdivision is shown below.

Table 4.2. Summary of Minimum Available fire hows					
Required Fire Flow	Minimum Available Flow*	Junction ID			
333 L/s	556 L/s	J-06			
367 L/s	837 L/s	J-03			

Table 4.2: Summary of Minimum Available Fire Flows

*Available flow at 20 psi based on the boundary conditions at 483 L/s. Actual available fire flow should be validated within the City's model.

As shown below, the model predicts that the fire flow requirements can be met throughout the Heron Gate subdivision with the proposed water main layout shown in **Figure 1.1**.

A summary of the residual pressures in the Heron Gate subdivision is shown below in **Table 4.3**. The minimum allowable pressure under fire flow conditions is 20 psi at the location of the fire.

Table 4.3: Summary of Residual Pressures (MDD + FF)

Maximum Residual	Average Residual	Minimum Residual
Pressure (psi)	Pressure (psi)	Pressure (psi)
30	32	33

As show in **Table 4.3**, the model predicts that the residual pressure requirements can be met throughout the Heron Gate subdivision with the proposed water main layout shown in **Figure 1.1**.

Detailed fire flow results and figures illustrating the fire flow results can be found in **Appendix E**.

5 Other Servicing Considerations

5.1 Water Supply Security

The City of Ottawa Design Guidelines allow single feed systems for developments up to a total average day demand of 50 m³/day and require two (2) feeds if the development exceeds 50 m³/day for supply security, according to Technical Bulletin ISDTB-2014-02.

The Heron Gate subdivision redevelopment services a total average day demand of 3,113 m³/day; as such, at least two (2) feeds are required.

5.2 Valves

No comment has been made in this technical memorandum with respect to exact placement of isolation valves within the distribution network for the Heron Drive subdivision redevelopment other than to summarize the City of Ottawa Design Guidelines for number, location, and spacing of isolation valves:

- Tee intersection two (2) valves
- Cross intersection three (3) valves
- Valves shall be located 2 m away from the intersection
- 300 m spacing for 150 mm to 400 mm diameter valves
- Gate valves for 100 mm to 300 mm diameter mains
- Butterfly valves for 400 mm and larger diameter mains

Drain valves are not strictly required under the City of Ottawa Design Guidelines for water mains under 600 mm in diameter. The Guidelines indicate that "small diameter water mains shall be drained through hydrant via pumping if needed."

Air valves are not strictly required under the City of Ottawa Design Guidelines for water mains up to and including 400 mm in diameter. The Guidelines indicate that air removal "can be accomplished by the strategic positioning of hydrant at the high points to remove the air or by installing or utilizing available 50 mm chlorination nozzles in 300 mm and 400 mm chambers."

The detailed engineering drawings for the Heron Drive subdivision redevelopment are expected to identify valves in accordance with the requirements noted above.

Project ID: 2019-027-DSE

OQM Organizational Quality

5.3 Hydrants

No comment has been made in this technical memorandum with respect to exact placement of hydrants within the distribution network for the Heron Drive subdivision redevelopment other than to summarize the City of Ottawa Design Guidelines for maximum hydrant spacing:

- 125 m for single family unit residential areas on lots where frontage at the street line is 15 m or longer
- 110 m for single family unit residential areas on lots where frontage at the street line is less than 15 m and for residential areas zoned for row housing, doubles or duplexes
- 90 m for institutional, commercial, industrial, apartments and high-density areas

The detailed engineering drawings for the Heron Drive subdivision redevelopment are expected to identify hydrants in accordance with the requirements noted above or to meet required fire flows.

6 Conclusions

The hydraulic capacity and modeling analysis of the Heron Drive subdivision redevelopment yielded the following conclusions:

- The proposed water main network can deliver all required domestic and fire flows under the provided boundary conditions.
- Domestic pressures expected to range between 38 psi and 51 psi.
- Residual pressures expected to range between 30 psi and 33 psi.

Hydraulic Capacity and Modeling Analysis Heron Gate Subdivision Redevelopment

Submission

R

Prepared by:

Adrien d'Andrade, E.I.T. Hydraulic Modeler / Project Engineer

FESSIONAL Approved by: A de Schaetgen 16349 1001 de Werner de Schaetzen, Ph.D., P.Eng. Senior Modeling Review / Project Manager

Page | 15

Appendix A FUS Fire Flow Calculations

FUS Required Fire Flow Calculatio	n td.	Calculatio Protection	ns Based c n", Fire Und	on "Water S erwriters Su	upply for I Irvey, 1999	Public Fire		Ge	
Project: 2019-027-DSE									
Development: Heron Gate	Buildings 7.1, 7	.2, 7.3					-		ICE
Zoning: Multi Family Residential									
Date: April 2, 2019									
A. Type of Construction:	Non-Combustik	ole Constru	iction						
B. Ground Floor Area:	2,840 1	m²	Total gro	ound floor	area for F	US study area			
C. Number of Storeys:	15		Building	with the g	reatest nu	Imber of floor	s in FU	S study are	ea
D. Required Fire Flow*: C: Coefficient related to the type A: Effective area The total floor area in m ² in the building	$F = 220C\sqrt{2}$ of construction	Ā	C = A =	0.82	m²	Building type Effective are	e weigh a for th	ted averag	ge dy area
E. Occupancy Occupancy content hazard	Limited Combu	stible	F = -15	25,328 % of D	L/min -3,750	_L/min	D = E =	25,000 21,250	L/min* L/min
F. Sprinkler Protection									
Automatic sprinkler protection	Complete Prote	ection	- 45.5 *Area w	% of E eighted av	-9,659 erage	_L/min	F =	11,591	L/min
G. Exposures									
Side	Distance I	Distance		Exposure	0/				
west	Beyona 45 m	>45		10	% %				
Last	30 1 to 45 m	31 3		5	%				
South	10.1 to 20 m	20.4		15	%				
	Total	30	% of E	+ 6,375	L/min		G =	17,966	L/min
H. Wood Shake Charge For wood shingle or shake roofs	No			0	_L/min		H =	17,966	L/min

Total Fire Flow Required	18,000	L/min*
	300	L/s
Required Duration of Fire Flow	4	Hrs
Required Volume of Fire Flow	4,320	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Heron Gate development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

** Rounded to the nearest 1,000 L/min

Notes to calculations

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-
Occupancy Fire Hazard	Factor	Unit
	25	0/

Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
Complete Protection	-50	%
Complete + Fire Resistive	-70	%
None	0	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Exposures	Factor
0.0 to 3 m	25%
3.1 to 10 m	20%
10.1 to 20 m	15%
20.1 to 30 m	10%
30.1 to 45 m	5%
Beyond 45 m	0%
Fire Wall	10%

Required Duration of Fire Flow				
Fire Flow Required (L/min)	Duration (hours)			
2,000 or less	1.00			
3000	1.25			
4000	1.50			
5000	1.75			
6000	2.00			
7000	2.00			
8000	2.00			
9000	2.00			
10000	2.00			
11000	2.25			
12000	2.50			
13000	2.75			
14000	3.00			
15000	3.25			
16000	3.50			
17000	3.75			
18000	4.00			
19000	4.25			
20000	4.50			
21000	4.75			
22000	5.00			
23000	5.25			
24000	5.50			
25000	5.75			
26000	6.00			
27000	6.25			
28000	6.50			
29000	6.75			
30000	7.00			
31000	7.25			
32000	7.50			
33000	7.75			
34000	8.00			
35000	8.25			
36000	8.50			
37000	8.75			
38000	9.00			
39000	9.25			
40000 and over	9.50			

Notes to calculations

	Length-Height Factor of Exposed Wall of Adjacent Structure	Construction of Exposed Wall of Adjacent Structure			
Separation		Wood Frame or Non-Combustible	Ordinary or Fire-Resistive		
Distance			With Unprotected Openings	With Semi-Protected Openings	Blank Wall
	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
0.0 to 3 m	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
3.1 to 10 m	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
10.1 to 20 m	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	All	5%	5%	5%	0%

Unprotected Openings
Semi-Protected Openings
Blank Wall

Side	Distance	Length-Storey	Range
West	>45	0	N/A
East	FM	0	FM
North	31.3	969	Over 120 m-storeys
South	20.4	298	Over 120 m-storeys

Heron Gate - FUS Required Fire Flow Summary

Heron Gate		
Type of Construction	Non-Combustible Construction	
Construction Coefficient	0.82	
Effective Total Area (m ²)	19,800	
Required Fire Flow (L/min)	25,000	
Occupancy Charge	-15	
Sprinkler Protection Reduction	-45	
Exposure (%)		
North (%)	0	
East (%)	10	
South (%)	5	
West (%)	15	
Total Exposure (%)	30	
Wood Shake Charge (L/min)	0	
Total Required Fire Flow (L/min)	18,000	
Total Required Fire Flow (L/s)	300	
FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-027-DSE

Development: Heron Gate

Zoning: Multi Family Residential

Date: April 2, 2019

l	Calculations Based on "Water Supply for Public Fire
l	Protection", Fire Underwriters Survey, 1999.

A. Type of Construction:	Non-Combustible Construction								
B. Ground Floor Area: 2,740 m ²		Total ground floor area for FUS study area							
C. Number of Storeys:	15	-	Building	g with the	greatest n	umber of floor	s in Fl	JS study a	rea
D. Required Fire Flow*: C: Coefficient related to the type	$F = 220C^{2}$	√ <i>A</i> in	C =	0.8		Building type	weigh	ted avera	ge
A: Effective area			A =	25200) m ²	Effective area	for th	e FUS stu	dy area
The total floor area in m ² in the buildin	g being considere	d	-				_		. / *
			F =	27,939	L/min		D =	28,000	L/min*
Occupancy content hazard	Limited Comb	oustible	-15	% of D	-4,200	L/min	E =	23,800	L/min
F. Sprinkler Protection									
Automatic sprinkler protection	Complete Pro	tection	- 50.0 *Area v	% of E	-11,900	L/min	F =	11,900	L/min
G. Exposures				-	-				
Side	Distance	Length		Exposur	е				
West	10.1 to 20 m	15.6		11	%				
East	10.1 to 20 m	16.5		10	%				
North	30.1 to 45 m	31.3		5	%				
South	20.1 to 30 m	24	% of F	10	=		C -	20.400	
	Iotai	30	% UI E	+ 8,568	L/min		G =	20,468	L/min
H. Wood Shake Charge	No	<u>-</u>		0	L/min		н =	20,468	L/min
For wood shingle or shake roofs									

Buildings 3.4,3.5,3.6

Total Fire Flow Required	20,000	L/min*
	333	L/s
Required Duration of Fire Flow	4.5	Hrs
Required Volume of Fire Flow	5,400	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Heron Gate development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

** Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-
Occupancy Fire Hazard	Factor	Unit
	25	0/

Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
Complete Protection	-50	%
Complete + Fire Resistive	-70	%
None	0	%

Zoning			
Single Family Residential			
Multi Family Residential			
Commercial			
Institutional			
Industrial			

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Exposures	Factor
0.0 to 3 m	25%
3.1 to 10 m	20%
10.1 to 20 m	15%
20.1 to 30 m	10%
30.1 to 45 m	5%
Beyond 45 m	0%
Fire Wall	10%

Required Duration of Fire Flow						
Fire Flow Required (L/min) Duration (hours)						
2,000 or less	1.00					
3000	1.25					
4000	1.50					
5000	1.75					
6000	2.00					
7000	2.00					
8000	2.00					
9000	2.00					
10000	2.00					
11000	2.25					
12000	2.50					
13000	2.75					
14000	3.00					
15000	3.25					
16000	3.50					
17000	3.75					
18000	4.00					
19000	4.25					
20000	4.50					
21000	4.75					
22000	5.00					
23000	5.25					
24000	5.50					
25000	5.75					
26000	6.00					
27000	6.25					
28000	6.50					
29000	6.75					
30000	7.00					
31000	7.25					
32000	7.50					
33000	7.75					
34000	8.00					
35000	8.25					
36000	8.50					
37000	8.75					
38000	9.00					
39000	9.25					
40000 and over	9.50					

	Length-Height		Construction of Exposed Wall of Adjacent Structure			
Separation	eparation Factor of Exposed Distance Wall of Adjacent Structure		Ordinary or Fire-Resistive			
Distance		Non-Combustible	With Unprotected Openings	With Semi-Protected Openings	Blank Wall	
	0-30 m-storeys	22%	21%	16%	0%	
	31-60 m-storeys	23%	22%	17%	0%	
0.0 to 3 m	61-90 m-storeys	24%	23%	18%	0%	
	91-120 m-storeys	25%	24%	19%	0%	
	Over 120 m-storeys	25%	25%	20%	0%	
	0-30 m-storeys	17%	15%	11%	0%	
	31-60 m-storeys	18%	16%	12%	0%	
3.1 to 10 m	61-90 m-storeys	19%	18%	14%	0%	
	91-120 m-storeys	20%	19%	15%	0%	
	Over 120 m-storeys	20%	19%	15%	0%	
	0-30 m-storeys	12%	10%	7%	0%	
	31-60 m-storeys	13%	11%	8%	0%	
10.1 to 20 m	61-90 m-storeys	14%	13%	10%	0%	
	91-120 m-storeys	15%	14%	11%	0%	
	Over 120 m-storeys	15%	15%	12%	0%	
	0-30 m-storeys	8%	6%	4%	0%	
	31-60 m-storeys	8%	7%	5%	0%	
20.1 to 30 m	61-90 m-storeys	9%	8%	6%	0%	
	91-120 m-storeys	10%	9%	7%	0%	
	Over 120 m-storeys	10%	10%	8%	0%	
30.1 to 45 m	All	5%	5%	5%	0%	

-				
	Side	Distance	Length-Storey	Range
	West	15.6	52	31-60 m-storeys
	East	16.5	121	Over 120 m-storeys
	North	31.3	111	91-120 m-storeys
	South	24	279	Over 120 m-storeys
		Side West East North South	Side Distance West 15.6 East 16.5 North 31.3 South 24	Side Distance Length-Storey West 15.6 52 East 16.5 121 North 31.3 111 South 24 279

Heron Gate - FUS Required Fire Flow Summary

llanan Cata			
Heron G	ate		
Type of Construction	Non-Combustible Construction		
Construction Coefficient	0.8		
Effective Total Area (m ²)	25,200		
Required Fire Flow (L/min)	28,000		
Occupancy Charge	-15		
Sprinkler Protection Reduction	-50		
Exposure (%)			
North (%)	11		
East (%)	10		
South (%)	5		
West (%)	10		
Total Exposure (%)	36		
Wood Shake Charge (L/min)	0		
Total Required Fire Flow (L/min)	20,000		
Total Required Fire Flow (L/s)	333		

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-027-DSE

Development: Heron Gate

Zoning: Multi Family Residential

Date: April 2, 2019

Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 1999.

A. Type of Construction:	Non-Combusti	ble Constru	uction	-					
B. Ground Floor Area:	2,640	m²	Total gr	ound floor	area for F	US study area			
C. Number of Storeys:	27		Building	g with the g	reatest nu	mber of floor	rs in FU	S study are	ea
 D. Required Fire Flow*: C: Coefficient related to the type A: Effective area The total floor area in m² in the build 	$F = 220C_{\rm V}$ be of construction ing being considered	/A n	C = A =	0.8 36,380	_m²	Building type Effective are	e weigh a for th	ted averag	ge dy area
F. Occupancy			F =	33,569) L/min		D =	34,000	L/min*
Occupancy content hazard	Limited Comb	ustible	-15	% of D	-5,100	L/min	E =	28,900	L/min
F. Sprinkler Protection Automatic sprinkler protection	Complete Prot	ection	- 50.0 *Area v	_% of E veighted av	-14,450	L/min	F =	14,450	L/min
G. Exposures	. Distance	Distance		F					
Sid	e Distance			Exposure	9/				
	1 20.1 to 30 m	29.5		10	70 0/				
Ea	b 20.1 to 30 m	27		10	70 0/				
Sout	h Beyond 45 m	51.5		0	70 %				
300	Total	25	% of E	+ 7,225	 L/min		G =	21,675	L/min
H. Wood Shake Charge For wood shingle or shake roo	No S			0	_L/min		H =	21,675	L/min

Buildings 8.8,8.9,8.10

Total Fire Flow Required	22,000	L/min*
	367	L/s
Required Duration of Fire Flow	5	Hrs
Required Volume of Fire Flow	6,600	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Heron Gate development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

** Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit	
Wood Frame Construction	1.5	-	
Ordinary Construction	1	-	
Non-Combustible Construction	0.8	-	
Fire Resistive Construction (< 2 hrs)	0.7	-	
Fire Resistive Construction (> 2 hrs)	0.6	-	
Occupancy Fire Hazard	Factor	Unit	
	25	0/	

Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
Complete Protection	-50	%
Complete + Fire Resistive	-70	%
None	0	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Exposures	Factor
0.0 to 3 m	25%
3.1 to 10 m	20%
10.1 to 20 m	15%
20.1 to 30 m	10%
30.1 to 45 m	5%
Beyond 45 m	0%
Fire Wall	10%

Required Duration of Fire Flow						
Fire Flow Required (L/min)	Fire Flow Required (L/min) Duration (hours)					
2,000 or less	1.00					
3000	1.25					
4000	1.50					
5000	1.75					
6000	2.00					
7000	2.00					
8000	2.00					
9000	2.00					
10000	2.00					
11000	2.25					
12000	2.50					
13000	2.75					
14000	3.00					
15000	3.25					
16000	3.50					
17000	3.75					
18000	4.00					
19000	4.25					
20000	4.50					
21000	4.75					
22000	5.00					
23000	5.25					
24000	5.50					
25000	5.75					
26000	6.00					
27000	6.25					
28000	6.50					
29000	6.75					
30000	7.00					
31000	7.25					
32000	7.50					
33000	7.75					
34000	8.00					
35000	8.25					
36000	8.50					
37000	8.75					
38000	9.00					
39000	9.25					
40000 and over	9.50					

	Length-Height	Construction of Exposed Wall of Adjacent Structure				
Separation	Factor of Exposed		Ordinary or Fire-Resistive			
Distance	Wall of Adjacent Structure	Wood Frame or Non-Combustible	With Unprotected Openings	With Semi-Protected Openings	Blank Wall	
	0-30 m-storeys	22%	21%	16%	0%	
	31-60 m-storeys	23%	22%	17%	0%	
0.0 to 3 m	61-90 m-storeys	24%	23%	18%	0%	
	91-120 m-storeys	25%	24%	19%	0%	
	Over 120 m-storeys	25%	25%	20%	0%	
	0-30 m-storeys	17%	15%	11%	0%	
	31-60 m-storeys	18%	16%	12%	0%	
3.1 to 10 m	61-90 m-storeys	19%	18%	14%	0%	
	91-120 m-storeys	20%	19%	15%	0%	
	Over 120 m-storeys	20%	19%	15%	0%	
	0-30 m-storeys	12%	10%	7%	0%	
	31-60 m-storeys	13%	11%	8%	0%	
10.1 to 20 m	61-90 m-storeys	14%	13%	10%	0%	
	91-120 m-storeys	15%	14%	11%	0%	
	Over 120 m-storeys	15%	15%	12%	0%	
	0-30 m-storeys	8%	6%	4%	0%	
	31-60 m-storeys	8%	7%	5%	0%	
20.1 to 30 m	61-90 m-storeys	9%	8%	6%	0%	
	91-120 m-storeys	10%	9%	7%	0%	
	Over 120 m-storeys	10%	10%	8%	0%	
30.1 to 45 m	All	5%	5%	5%	0%	

Side	Distance	Length-Storey	Range
West	29.5	153	Over 120 m-storeys
East	27	378	Over 120 m-storeys
North	31.3	182	Over 120 m-storeys
South	>45	0	>45

Heron Gate - FUS Required Fire Flow Summary

Heron G	ate		
Type of Construction	Non-Combustible Construction		
Construction Coefficient	0.8		
Effective Total Area (m ²)	36,380		
Required Fire Flow (L/min)	34,000		
Occupancy Charge	-15		
Sprinkler Protection Reduction	-50		
Exposure (%)			
North (%)	10		
East (%)	10		
South (%)	5		
West (%)	0		
Total Exposure (%)	25		
Wood Shake Charge (L/min)	0		
Total Required Fire Flow (L/min)	22,000		
Total Required Fire Flow (L/s)	367		

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-027-DSE

Development: Heron Gate

Zoning: Multi Family Residential

Date: April 2, 2019

Calculations	Based on	"Water Supply	for Public Fire
Protection",	Fire Underv	writers Survey,	1999.

A. Type of Construction:	Non-Combust	tible Constru	uction	_					
B. Ground Floor Area:	1,824	m²	Total gr	ound floor	area for F	US study are	а		
C. Number of Storeys:	25	_	Building	g with the g	reatest nu	mber of floo	ors in FUS	S study ar	ea
 D. Required Fire Flow*: C: Coefficient related to the type A: Effective area The total floor area in m² in the building 	F = 220C e of construction ng being considere	√A on d	C = A =	0.8	_m²	Building typ Effective ar	be weigh ea for th	ted avera	ge dy area
			F =	30,586	6 L/min		D =	31,000	L/min*
E. Occupancy Occupancy content hazard	Limited Comb	oustible	-15	% of D	-4,650	L/min	E =	26,350	L/min
F. Sprinkler Protection									
Automatic sprinkler protection	Complete Pro	tection	- 50.0 *Area v	_% of E veighted av	- 13,175 erage	L/min	F =	13,175	L/min
G. Exposures									
Sid	e Distance	Distance		Exposure	•				
Wes	t 20.1 to 30 m	24		10	%				
Eas	t 20.1 to 30 m	27		10	%				
Nort	h 20.1 to 30 m	24		7	%				
Sout	h Beyond 45 m	>45	0∕ of Γ	0	=		•		
	lotal	27	% Of E	+ 7,115	_L/min		G =	20,290	L/min
H. Wood Shake Charge	No	— '		0	L/min		Н=	20,290	L/min
For wood shingle or shake roof	S								

Buildings 4.3,4.4,4.5

Total Fire Flow Required	20,000	L/min*
	333	L/s
Required Duration of Fire Flow	4.5	Hrs
Required Volume of Fire Flow	5,400	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Heron Gate development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

** Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit	
Wood Frame Construction	1.5	-	
Ordinary Construction	1	-	
Non-Combustible Construction	0.8	-	
Fire Resistive Construction (< 2 hrs)	0.7	-	
Fire Resistive Construction (> 2 hrs)	0.6	-	
Occupancy Fire Hazard	Factor	Unit	
	25	0/	

Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit	
Complete Protection	-50	%	
Complete + Fire Resistive	-70	%	
None	0	%	

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Exposures	Factor
0.0 to 3 m	25%
3.1 to 10 m	20%
10.1 to 20 m	15%
20.1 to 30 m	10%
30.1 to 45 m	5%
Beyond 45 m	0%
Fire Wall	10%

Required Duration of Fire F	low
Fire Flow Required (L/min)	Duration (hours)
2,000 or less	1.00
3000	1.25
4000	1.50
5000	1.75
6000	2.00
7000	2.00
8000	2.00
9000	2.00
10000	2.00
11000	2.25
12000	2.50
13000	2.75
14000	3.00
15000	3.25
16000	3.50
17000	3.75
18000	4.00
19000	4.25
20000	4.50
21000	4.75
22000	5.00
23000	5.25
24000	5.50
25000	5.75
26000	6.00
27000	6.25
28000	6.50
29000	6.75
30000	7.00
31000	7.25
32000	7.50
33000	7.75
34000	8.00
35000	8.25
36000	8.50
37000	8.75
38000	9.00
39000	9.25
40000 and over	9.50

	Length-Height	Co	Construction of Exposed Wall of Adjacent Structure				
Separation	Factor of Exposed		О	dinary or Fire-Resistive			
Distance	Wall of Adjacent Structure	Wood Frame or Non-Combustible	With Unprotected Openings	With Semi-Protected Openings	Blank Wall		
	0-30 m-storeys	22%	21%	16%	0%		
	31-60 m-storeys	23%	22%	17%	0%		
0.0 to 3 m	61-90 m-storeys	24%	23%	18%	0%		
	91-120 m-storeys	25%	24%	19%	0%		
	Over 120 m-storeys	25%	25%	20%	0%		
	0-30 m-storeys	17%	15%	11%	0%		
	31-60 m-storeys	18%	16%	12%	0%		
3.1 to 10 m	61-90 m-storeys	19%	18%	14%	0%		
	91-120 m-storeys	20%	19%	15%	0%		
	Over 120 m-storeys	20%	19%	15%	0%		
	0-30 m-storeys	12%	10%	7%	0%		
	31-60 m-storeys	13%	11%	8%	0%		
10.1 to 20 m	61-90 m-storeys	14%	13%	10%	0%		
	91-120 m-storeys	15%	14%	11%	0%		
	Over 120 m-storeys	15%	15%	12%	0%		
	0-30 m-storeys	8%	6%	4%	0%		
	31-60 m-storeys	8%	7%	5%	0%		
20.1 to 30 m	61-90 m-storeys	9%	8%	6%	0%		
	91-120 m-storeys	10%	9%	7%	0%		
	Over 120 m-storeys	10%	10%	8%	0%		
30.1 to 45 m	All	5%	5%	5%	0%		

Type of Wall
Unprotected Openings
Semi-Protected Openings
Blank Wall

Side	Distance	Length-Storey	Range
West	24	179	Over 120 m-storeys
East	27	90	61-90 m-storeys
North	24	32	31-60 m-storeys
South	>45	0	>45
50411	275	U	240

Heron Gate - FUS Required Fire Flow Summary

Heron G	iate
Type of Construction	Non-Combustible Construction
Construction Coefficient	0.8
Effective Total Area (m ²)	30,200
Required Fire Flow (L/min)	31,000
Occupancy Charge	-15
Sprinkler Protection Reduction	-50
Exposure (%)	
North (%)	10
East (%)	10
South (%)	7
West (%)	0
Total Exposure (%)	27
Wood Shake Charge (L/min)	0
Total Required Fire Flow (L/min)	20,000
Total Required Fire Flow (L/s)	333

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-027-DSE

Development: Heron Gate

Zoning: Multi Family Residential

Date: April 2, 2019

Calculations	Based on	"Water Suppl	y for Public Fire
Protection", I	Fire Under	writers Survey	, 1999.

A. Type of Construction:	Non-Combust	ible Constru	uction	-					
B. Ground Floor Area:	2,040	m²	Total gr	ound floor	area for F	US study area			
C. Number of Storeys:	20	-	Building	g with the g	reatest nu	mber of floor	s in FU	S study are	ea
D. Required Fire Flow*: C: Coefficient related to the type A: Effective area The total floor area in m ² in the buildin	$F = 220C^{-1}$ e of construction g being considered	√ <u>A</u> on d	C = A =	0.8	m ²	Building type Effective area	e weigh a for th	ted averag	ge dy area
E. Occupancy			F =	28,379	L/min		D =	28,000	L/min*
Occupancy content hazard	Limited Comb	oustible	-15	% of D	-4,200	L/min	E =	23,800	L/min
F. Sprinkler Protection Automatic sprinkler protection	Complete Pro	tection	- 50.0 *Area v	_% of E veighted av	_ -11,900 erage	_L/min	F =	11,900	L/min
G. Exposures Side	Distance	Distance		Fynosure					
West	20.1 to 30 m	24		10	%				
East	30.1 to 45 m	27		10	%				
North	20.1 to 30 m	24		10	%				
South	30.1 to 45 m	38		5	%				
	Total	35	% of E	+ 8,330	L/min		G =	20,230	L/min
H. Wood Shake Charge For wood shingle or shake roofs	No	-		0	_L/min		H =	20,230	L/min

Buildings 3.7,3.8,3.9

Total Fire Flow Required	20,000	L/min*
	333	L/s
Required Duration of Fire Flow	4.5	Hrs
Required Volume of Fire Flow	5,400	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Heron Gate development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

** Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-
Occupancy Fire Hazard	Factor	Unit
	25	0/

Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
Complete Protection	-50	%
Complete + Fire Resistive	-70	%
None	0	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Exposures	Factor
0.0 to 3 m	25%
3.1 to 10 m	20%
10.1 to 20 m	15%
20.1 to 30 m	10%
30.1 to 45 m	5%
Beyond 45 m	0%
Fire Wall	10%

Required Duration of Fire Flow						
Fire Flow Required (L/min)	Duration (hours)					
2,000 or less	1.00					
3000	1.25					
4000	1.50					
5000	1.75					
6000	2.00					
7000	2.00					
8000	2.00					
9000	2.00					
10000	2.00					
11000	2.25					
12000	2.50					
13000	2.75					
14000	3.00					
15000	3.25					
16000	3.50					
17000	3.75					
18000	4.00					
19000	4.25					
20000	4.50					
21000	4.75					
22000	5.00					
23000	5.25					
24000	5.50					
25000	5.75					
26000	6.00					
27000	6.25					
28000	6.50					
29000	6.75					
30000	7.00					
31000	7.25					
32000	7.50					
33000	7.75					
34000	8.00					
35000	8.25					
36000	8.50					
37000	8.75					
38000	9.00					
39000	9.25					
40000 and over	9.50					

	Length-Height	Co	nstruction of Exposed	Wall of Adjacent Struct	ure		
Separation	Factor of Exposed		Ordinary or Fire-Resistive				
Distance	Wall of Adjacent Structure	Non-Combustible	With Unprotected Openings	With Semi-Protected Openings	Blank Wall		
	0-30 m-storeys	22%	21%	16%	0%		
	31-60 m-storeys	23%	22%	17%	0%		
0.0 to 3 m	61-90 m-storeys	24%	23%	18%	0%		
	91-120 m-storeys	25%	24%	19%	0%		
	Over 120 m-storeys	25%	25%	20%	0%		
	0-30 m-storeys	17%	15%	11%	0%		
	31-60 m-storeys	18%	16%	12%	0%		
3.1 to 10 m	61-90 m-storeys	19%	18%	14%	0%		
	91-120 m-storeys	20%	19%	15%	0%		
	Over 120 m-storeys	20%	19%	15%	0%		
	0-30 m-storeys	12%	10%	7%	0%		
	31-60 m-storeys	13%	11%	8%	0%		
10.1 to 20 m	61-90 m-storeys	14%	13%	10%	0%		
	91-120 m-storeys	15%	14%	11%	0%		
	Over 120 m-storeys	15%	15%	12%	0%		
	0-30 m-storeys	8%	6%	4%	0%		
	31-60 m-storeys	8%	7%	5%	0%		
20.1 to 30 m	61-90 m-storeys	9%	8%	6%	0%		
	91-120 m-storeys	10%	9%	7%	0%		
	Over 120 m-storeys	10%	10%	8%	0%		
30.1 to 45 m	All	5%	5%	5%	0%		

Side	Distance	Length-Storey	Range
West	24	179	Over 120 m-storeys
East	27	90	61-90 m-storeys
North	24	341	Over 120 m-storeys
South	38	610	Over 120 m-storeys
	Side West East North South	SideDistanceWest24East27North24South38	Side Distance Length-Storey West 24 179 East 27 90 North 24 341 South 38 610

Heron Gate - FUS Required Fire Flow Summary

Heron G	ate
Type of Construction	Non-Combustible Construction
Construction Coefficient	0.8
Effective Total Area (m ²)	26,000
Required Fire Flow (L/min)	28,000
Occupancy Charge	-15
Sprinkler Protection Reduction	-50
Exposure (%)	
North (%)	10
East (%)	10
South (%)	10
West (%)	5
Total Exposure (%)	35
Wood Shake Charge (L/min)	0
Total Required Fire Flow (L/min)	20,000
Total Required Fire Flow (L/s)	333

Appendix B Required Fire Flows

Project ID: 2019-027-DSE

Appendix C Pipe and Junction Model Inputs

Project ID: 2019-027-DSE

Model Inputs

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness
P-01	CONNECTION-1	J-01	112.32	297	120
P-02	J-01	J-05	96.35	297	120
P-03	J-05	J-07	71.98	297	120
P-04	J-03	J-07	76.14	297	120
P-05	J-04	J-03	68.90	297	120
P-06	CONNECTION-3	J-04	71.56	297	120
P-07	CONNECTION-2	J-02	181.94	297	120
P-08	J-02	J-03	173.77	297	120
P-09	CONNECTION-4	J-06	229.58	297	120
P-10	J-06	J-05	172.50	297	120

ID	Elevation (m)	ADD (L/s)
J-01	95.66	5.15
J-02	95.66	5.15
J-03	95.66	5.15
J-04	95.66	5.15
J-05	95.66	5.15
J-06	95.66	5.15
J-07	95.66	5.15

Appendix D MHD and PHD Model Results

Project ID: 2019-027-DSE

Minimum Hour Demand Modeling Results

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-01	CONNECTION-1	J-01	112.32	297	120	23.88	0.34	0.06	0.55
P-02	J-01	J-05	96.35	297	120	20.79	0.30	0.04	0.43
P-03	J-05	J-07	71.98	297	120	56.89	0.82	0.20	2.75
P-04	J-03	J-07	76.14	297	120	-53.80	0.78	0.19	2.48
P-05	J-04	J-03	68.90	297	120	-9.18	0.13	0.01	0.09
P-06	CONNECTION-3	J-04	71.56	297	120	-6.09	0.09	0.00	0.04
P-07	CONNECTION-2	J-02	181.94	297	120	-38.44	0.55	0.24	1.33
P-08	J-02	J-03	173.77	297	120	-41.53	0.60	0.27	1.54
P-09	CONNECTION-4	J-06	229.58	297	120	42.28	0.61	0.36	1.59
P-10	J-06	J-05	172.50	297	120	39.19	0.57	0.24	1.38

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-01	3.09	95.66	131	51
J-02	3.09	95.66	131	50
J-03	3.09	95.66	131	50
J-04	3.09	95.66	131	50
J-05	3.09	95.66	131	51
J-06	3.09	95.66	132	51
J-07	3.09	95.66	131	51

Peak Hour Demand Modeling Results

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-01	CONNECTION-1	J-01	112.32	297	120	29.56	0.43	0.09	0.82
P-02	J-01	J-05	96.35	297	120	14.89	0.21	0.02	0.23
P-03	J-05	J-07	71.98	297	120	32.67	0.47	0.07	0.99
P-04	J-03	J-07	76.14	297	120	-18.00	0.26	0.02	0.33
P-05	J-04	J-03	68.90	297	120	32.87	0.47	0.07	1.00
P-06	CONNECTION-3	J-04	71.56	297	120	47.54	0.69	0.14	1.97
P-07	CONNECTION-2	J-02	181.94	297	120	-21.53	0.31	0.08	0.46
P-08	J-02	J-03	173.77	297	120	-36.20	0.52	0.21	1.19
P-09	CONNECTION-4	J-06	229.58	297	120	47.13	0.68	0.45	1.94
P-10	J-06	J-05	172.50	297	120	32.46	0.47	0.17	0.97

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-01	14.67	95.66	123	39
J-02	14.67	95.66	123	38
J-03	14.67	95.66	123	39
J-04	14.67	95.66	123	39
J-05	14.67	95.66	123	39
J-06	14.67	95.66	123	39
J-07	14.67	95.66	123	39

Appendix E MDD+FF Model Results

Project ID: 2019-027-DSE

Fire Flow Modeling Results

ID	Static Demand (L/s)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Available Flow at Hydrant (L/s)	Available Flow Pressure (psi)
J-01	9.78	333	32	704	20
J-02	9.78	333	30	578	20
J-03	9.78	367	33	837	20
J-04	9.78	367	33	869	20
J-05	9.78	333	33	766	20
J-06	9.78	333	30	556	20
J-07	9.78	333	32	699	20

APPENDIX C

Wastewater Collection

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004			DSEL
Site Area		22.80 ha	
Existing Residential Sanitary Design Flows	Itration Rate - Existing Subdivision Flow Rate Total	0.55 L/s/ha 42.09 L/s 42.09 L/s	*Per Coordination with City of Ottawa staff
Existing Towers to Remain (@280 L/person/d):	2850 & 2870 Cedarwood Drive (@ 280 L/person/d) 2840 & 2851 & 2861 Baycrest Drive (@ 280 L/person/d) Total	8.87 L/s 7.49 L/s 16.36 L/s	To Heron Sanitary Sewer To Walkley Sanitary Sewer To Albion Sanitary Sewer
Target Flow Rate (Heron)		35.00 L/s	
Target Flow Rate (Walkley)		62.09 L/s	(20 L/s + 42.1 L/s Existing Subdivision)
Target Flow Rate (Albion)		25.02 L/s	
Target Flow Rate (Total) Target Flow Rate (Available) *		122.12 L/s 105.76 L/s	

*Does not include existing towers that are to remain.

Phase 1:

			Capacity - Hero	n	Capacity - Walkley		Capacity - Albion	
Block 1	10.75 L	L/s	35.00	L/s	62.09	L/s	25.02	L/s
To Heron			24.25	L/s - Available	62.09	L/s	25.02	L/s
Block 2	13.79 L	L/s	24.25	L/s	62.09	L/s	25.02	L/s
To Heron			10.46	L/s - Available	62.09	L/s	25.02	L/s
Baycrest Towers + Cedarwood Towers	16.36 L	L/s	10.46	L/s	62.09	L/s	25.02	L/s
To Walkley			10.46	L/s	45.73	L/s - Available	25.02	L/s

Phase 2:

Phase 2:								
			Capacity - Heron	n	Capacity - Walkley		Capacity - Albion	
Block 3	14.23	L/s			45.73	L/s **		
To Walkley					31.50	L/s - Available		
Block 9	12.48	L/s			31.50	L/s		
To Walkley					19.02	L/s - Available		
Block 8	17.26	L/s			19.02	L/s		
To Walkley					1.75	L/s - Available		

** Includes Baycrest and Cedarwood Existing Tower Flow Rates

Phase 3 (Before Sewer Upgrades): Before Sewer Upgrades

Before Sewer Upgrades								
			Capacity - Heron	n	Capacity - Walkley		Capacity - Albion	
Block 4 + 2840 Baycrest	9.88	L/s			3.68	L/s	25.02	L/s
To Albion					3.68	L/s	15.15	L/s - Available
Block 5 + Cedarwood Towers	10.55	L/s			12.55	L/s	15.15	L/s
To Albion					12.55	L/s	4.59	L/s - Available
Block 6	4.58	L/s			12.55	L/s	4.59	L/s
To Albion					12.55	L/s	0.01	L/s
Block 7	9.40	L/s			12.55	L/s	0.01	L/s
To Albion					12.55	L/s	-9.39	L/s - Available

After Sewer Upgrades

			Capacity - Hero	n	Capacity - Walkley		Capacity - Albion	
Block 4 + 2840 Baycrest	9.88	L/s			12.55	L/s	39.12	L/s
To Albion					12.55	L/s	29.24	L/s - Available
Block 5 + Cedarwood Towers	10.55	L/s			12.55	L/s	29.24	L/s
To Albion					12.55	L/s	18.69	L/s - Available
Block 6	4.58	L/s			12.55	L/s	18.69	L/s
To Albion					12.55	L/s	14.11	L/s - Available
Block 7	9.40	L/s			12.55	L/s	14.11	L/s
To Albion					12.55	L/s	4.71	L/s - Available

Site Area

Timbercreek Herongate Contemplated Site Conditions

22.80 ha

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

	Infiltration /	Inflow (Dry)	12.54 L/s	*0.55 L/s/ha per consultation with City staff
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7	307	829	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4	10	14	
1 Bedroom	1.4	443	621	
2 Bedroom	2.1	712	1496	
3 Bedroom	3.1	44	137	
Average	1.8		0	

Total Pop	3097
Average Domestic Flow	10.04 L/s
Peaking Factor	2.94
Peak Domestic Flow	29.55 L/s

Total Estimated Average Dry Weather Flow Rate	10.04 L/s
Total Estimated Peak Dry Weather Flow Rate	29.55 L/s
Total Estimated Peak Wet Weather Flow Rate	42.09 L/s

Timbercreek Herongate **Contemplated Site Conditions - 2851 Baycrest**

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area			0.93 ha	
Extraneous Flow Allowance	S			
	Infiltration /	Inflow (Dry)	0.05 L/s	
	Infiltration / I	nflow (Wet)	0.26 L/s	
	Infiltration / In	flow (Total)	0.31 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4	2	3	
1 Bedroom	1.4	57	80	
2 Bedroom	2.1	82	173	
3 Bedroom	3.1		0	
Average	1.8		0	

Total Pop 256

0.83 L/s Average Domestic Flow

Peaking Factor

2.52 * Ultimate Peaking Factor

2.09 L/s Peak Domestic Flow

Total Estimated Average Dry Weather Flow Rate	0.88 L/s
Total Estimated Peak Dry Weather Flow Rate	2.14 L/s
Total Estimated Peak Wet Weather Flow Rate	2.40 L/s

Timbercreek Herongate **Contemplated Site Conditions - 2861 Baycrest**

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area			0.93 ha	
Extraneous Flow Allowances				
	Infiltration / Inflow (Dry) Infiltration / Inflow (Wet)		0.05 L/s 0.26 L/s	
	Infiltration / In	flow (Total)	0.31 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4	2	3	
1 Bedroom	1.4	77	108	
2 Bedroom	2.1	113	238	
3 Bedroom	3.1		0	
Average	1.8		0	

Total Pop 349

1.13 L/s Average Domestic Flow

Peaking Factor

2.52 * Ultimate Peaking Factor

2.86 L/s Peak Domestic Flow

Total Estimated Average Dry Weather Flow Rate	1.18 L/s
Total Estimated Peak Dry Weather Flow Rate	2.90 L/s
Total Estimated Peak Wet Weather Flow Rate	3.16 L/s
Timbercreek Herongate Contemplated Site Conditions - 2840 Baycrest

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area	0.06 ha		
Extraneous Flow Allowanc	es		
	Infiltration /	Inflow (Dry)	0.00 L/s
	Infiltration /	Inflow (Wet)	0.02 L/s
	Infiltration / Ir	nflow (Total)	0.02 L/s
Domestic Contributions			
Unit Type	Unit Rate	Units	Рор
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Townhouse	2.7		0
Stacked Townhouse	2.3		0
Apartment			
Bachelor	1.4	4	6
1 Bedroom	1.4	31	44
2 Bedroom	2.1	63	133
3 Bedroom	3.1	16	50
Average	1.8		0

Total Pop 233

Average Domestic Flow 0.76 L/s

Peaking Factor

2.52 * Ultimate Peaking Factor

Peak Domestic Flow 1.91 L/s

Total Estimated Average Dry Weather Flow Rate	0.76 L/s
Total Estimated Peak Dry Weather Flow Rate	1.91 L/s
Total Estimated Peak Wet Weather Flow Rate	1.93 L/s

Timbercreek Herongate Contemplated Site Conditions Cedarwood Towers to Remain

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area			2.80 ha			
Extraneous Flow Allowances						
	Infiltration /	Inflow (Dry)	0.14 L/s			
	Infiltration /	Inflow (Wet)	0.79 L/s			
	Infiltration / Ir	flow (Total)	0.93 L/s			
Domestic Contributions						
Unit Type	Unit Rate	Units	Рор			
Single Family	3.4		0			
Semi-detached and duplex	2.7		0			
Townhouse	2.7		0			
Stacked Townhouse	2.3		0			
Apartment						
Bachelor	1.4	2	3			
1 Bedroom	1.4	182	255			
2 Bedroom	2.1	298	626			
3 Bedroom	3.1	28	87			
Average	1.8		0			

Total Pop 971

Average Domestic Flow 3.15 L/s

Peaking Factor

2.52 * Ultimate Peaking Factor

Peak Domestic Flow 7.94 L/s

Total Estimated Average Dry Weather Flow Rate	3.29 L/s
Total Estimated Peak Dry Weather Flow Rate	8.08 L/s
Total Estimated Peak Wet Weather Flow Rate	8.87 L/s

Timbercreek Herongate **Contemplated Site Conditions**

Site Area			13.833 ha	*Excluding Block 1
Extraneous Flow Allowanc	es			
	Infiltration /	Inflow (Dry)	0.69 L/s	
	Infiltration /	Inflow (Wet)	3.87 L/s	
	Infiltration / Ir	nflow (Total)	4.56 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7	315	851	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4	10	14	
1 Bedroom	1.4	347	486	
2 Bedroom	2.1	556	1168	
3 Bedroom	3.1	44	137	
Average	1.8	4748	8547	
		Total Pop	11203	
	Average Do	mestic Flow	36.31 L/s	
	Pea	aking Factor	2.52	
	Peak Do	mestic Flow	91.65 L/s	

Total Estimated Average Dry Weather Flow Rate	37.00 L/s
Total Estimated Peak Dry Weather Flow Rate	92.34 L/s
Total Estimated Peak Wet Weather Flow Rate	96.22 L/s

es			
Infiltration /	Inflow (Dry)	0.14 L/s	
Infiltration /	Inflow (Wet)	0.78 L/s	
Infiltration / In	flow (Total)	0.92 L/s	
Unit Rate	Units	Рор	
3.4		0	
2.7		0	
2.7	68	184	
2.3		0	
1.4		0	
1.4		0	
2.1		0	
3.1		0	
1.8	772	1390	
	Total Pop	1574	
Average Do	mestic Flow	5.10 L/s	
Pea	king Factor	2.52 * Ultim	nate Peaking Factor
Peak Do	mestic Flow	<u>12.88</u> L/s	
E	S Infiltration / Infiltration / Infiltration / Infi	Infiltration / Inflow (Dry) Infiltration / Inflow (Wet) Infiltration / Inflow (Total) Unit Rate Units 3.4 2.7 2.7 68 2.3 1.4 1.4 2.1 3.1 1.8 772 Total Pop Average Domestic Flow Peaking Factor Peak Domestic Flow	SInfiltration / Inflow (Dry) Infiltration / Inflow (Wet) 0.78 L/s 0.92 L/sUnit RateUnitsPop3.402.7682.7681.401.402.103.101.8772Total Pop1574Average Domestic Flow5.10 L/sPeaking Factor2.52 * UltinPeak Domestic Flow12.88 L/s

Total Estimated Average Dry Weather Flow Rate	5.24 L/s
Total Estimated Peak Dry Weather Flow Rate	13.02 L/s
Total Estimated Peak Wet Weather Flow Rate	13.79 L/s

Site Area			1.090 ha	
Extraneous Flow Allowanc	es			
	Infiltration /	Inflow (Dry)	0.05 L/s	
	Infiltration /	Inflow (Wet)	0.31 L/s	
	Infiltration / Ir	nflow (Total)	0.36 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7	43	117	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8	877	1579	
		Total Pop	1696	
	Average Do	mestic Flow	5.50 L/s	
	Peaking Factor		2.52 * Ultii	mate Peaking Factor
	Peak Do	mestic Flow	<u>13.87</u> L/s	

Total Estimated Average Dry Weather Flow Rate	5.55 L/s
Total Estimated Peak Dry Weather Flow Rate	13.93 L/s
Total Estimated Peak Wet Weather Flow Rate	14.23 L/s

Site Area			1.460	ha
Extraneous Flow Allowanc	es			
	Infiltration /	Inflow (Dry)	0.07	L/s
	Infiltration /	Inflow (Wet)	0.41	L/s
	Infiltration / Ir	flow (Total)	0.48	L/s
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7	35	95	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8	454	818	
		Total Pop	913	
	Average Do	mestic Flow	2.96	L/s
	Pea	king Factor	2.52	* Ultimate Peaking Factor
	Peak Do	mestic Flow	7.47	L/s

Total Estimated Average Dry Weather Flow Rate	3.03 L/s
Total Estimated Peak Dry Weather Flow Rate	7.54 L/s
Total Estimated Peak Wet Weather Flow Rate	7.95 L/s

		0.000 ha	*Accounted for by Baycrest Towers
es			
Infiltration /	Inflow (Dry)	0.00 L/s	
Infiltration /	Inflow (Wet)	0.00 L/s	
Infiltration / Ir	nflow (Total)	0.00 L/s	
Unit Rate	Units	Рор	
3.4		0	
2.7		0	
2.7	76	206	
2.3		0	
1.4		0	
1.4		0	
2.1		0	
3.1		0	
1.8		0	
	Total Pop	206	
Average Do	mestic Flow	0.67 L/s	
Pea	king Factor	2.52 * UI	timate Peaking Factor
Peak Do	mestic Flow	1.69 L/s	
	es Infiltration / Infiltration / In Unit Rate 3.4 2.7 2.7 2.3 1.4 1.4 2.1 3.1 1.8 Average Dou Pea Peak Dou	es Infiltration / Inflow (Dry) Infiltration / Inflow (Wet) Infiltration / Inflow (Total) Unit Rate Units 3.4 2.7 2.7 76 2.3 1.4 1.4 2.1 3.1 1.8 Total Pop Average Domestic Flow Peaking Factor Peak Domestic Flow	0.000 ha es Infiltration / Inflow (Dry) Infiltration / Inflow (Wet) Infiltration / Inflow (Total) Unit Rate Units Pop 3.4 0 2.7 76 206 2.3 0 1.4 0 1.4 0 1.4 0 1.4 0 3.1 0 1.8 0 Total Pop 206 Average Domestic Flow 0.67 L/s Peaking Factor 2.52 * UI Peak Domestic Flow 1.69 L/s

Total Estimated Average Dry Weather Flow Rate	0.67 L/s
Total Estimated Peak Dry Weather Flow Rate	1.69 L/s
Total Estimated Peak Wet Weather Flow Rate	1.69 L/s

Itration / I tration / I ation / In	Inflow (Dry) nflow (Wet) flow (Total)	0.11 L/s 0.64 L/s 0.76 L/s	
tration / tration / ation / In	Inflow (Dry) nflow (Wet) flow (Total)	0.11 L/s 0.64 L/s 0.76 L/s	
tration / I ation / In	nflow (Wet) flow (Total)	0.64 L/s 0.76 L/s	
ation / In	flow (Total)	0.76 L/s	
1.4.			
late	Units	Рор	
3.4		0	
2.7		0	
2.7		0	
2.3		0	
1.4		0	
1.4		0	
2.1		0	
3.1		0	
1.8	259	467	
	Total Pop	467	
rage Don	nestic Flow	1.51 L/s	
Pea	king Factor	2.52 * Ultimate Peaking Factor	
Peak Don	nestic Flow	3.82 L/s	
	tate 3.4 2.7 2.3 1.4 1.4 2.1 3.1 1.8 rage Dor Peak Dor	tate Units 3.4 2.7 2.7 2.3 1.4 1.4 1.4 2.1 3.1 1.8 259 Total Pop rage Domestic Flow Peaking Factor Peak Domestic Flow	Units Pop 3.4 0 2.7 0 2.7 0 2.7 0 2.7 0 2.7 0 2.3 0 1.4 0 1.4 0 2.1 0 3.1 0 1.8 259 467 rage Domestic Flow 1.51 L/s Peaking Factor 2.52 * Ultimate Peaking Factor Peak Domestic Flow 3.82

Total Estimated Average Dry Weather Flow Rate	1.63 L/s
Total Estimated Peak Dry Weather Flow Rate	3.94 L/s
Total Estimated Peak Wet Weather Flow Rate	4.58 L/s

		1.221 ha	
es			
Infiltration / Infiltration / Infiltration / Ir	Inflow (Dry) Inflow (Wet) nflow (Total)	0.06 L/s 0.34 L/s 0.40 L/s	
Unit Rate	Units	Рор	
3.4		0	
2.7		0	
2.7	19	52	
2.3		0	
1.4		0	
1.4		0	
2.1		0	
3.1		0	
1.8	582	1048	
	Total Pop	1100	
Average Do	mestic Flow	3.56 L/s	
Pea	aking Factor	2.52 * UI	Itimate Peaking Factor
Peak Do	mestic Flow	9.00 L/s	
	Infiltration / Infiltration / Infiltration / Ir Unit Rate 3.4 2.7 2.7 2.3 1.4 1.4 2.1 3.1 1.8 Average Dot Peak Dot	Infiltration / Inflow (Dry) Infiltration / Inflow (Wet) Infiltration / Inflow (Total) Unit Rate Units 3.4 2.7 2.7 19 2.3 1.4 1.4 2.1 3.1 1.8 582 Total Pop Average Domestic Flow Peaking Factor Peak Domestic Flow	1.221 ha Infiltration / Inflow (Dry) 0.06 L/s Infiltration / Inflow (Wet) 0.34 L/s Infiltration / Inflow (Total) 0.40 L/s Unit Rate Units Pop 3.4 0 2.7 0 2.7 19 2.7 0 2.7 19 2.3 0 1.4 0 2.1 0 3.1 0 1.8 582 1048 Total Pop Average Domestic Flow 3.56 L/s Peaking Factor 2.52 * U Peak Domestic Flow 9.00 L/s

Total Estimated Average Dry Weather Flow Rate	3.63 L/s
Total Estimated Peak Dry Weather Flow Rate	9.06 L/s
Total Estimated Peak Wet Weather Flow Rate	9.40 L/s

Site Area			2.683	ha
Extraneous Flow Allowanc	es			
	Infiltration /	Inflow (Dry)	0.13	L/s
	Infiltration /	Inflow (Wet)	0.75	L/s
	Infiltration / Ir	nflow (Total)	0.89	L/s
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7	74	200	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8	1001	1802	
		Total Pop	2002	
	Average Do	mestic Flow	6.49	L/s
	Pea	aking Factor	2.52	* Ultimate Peaking Factor
	Peak Do	mestic Flow	16.38	L/s

Total Estimated Average Dry Weather Flow Rate	6.62 L/s
Total Estimated Peak Dry Weather Flow Rate	16.51 L/s
Total Estimated Peak Wet Weather Flow Rate	17.26 L/s

Site Area			1.978 ha	
Extraneous Flow Allowanc	es			
	Infiltration /	Inflow (Dry)	0.10 L/s	
	Infiltration /	Inflow (Wet)	0.55 L/s	
	Infiltration / Ir	nflow (Total)	0.65 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8	803	1446	
		Total Pop	1446	
	Average Do	mestic Flow	4.69 L/s	
	Pea	aking Factor	2.52 * Ul	timate Peaking Factor
	Peak Do	mestic Flow	<u>11.83</u> L/s	

Total Estimated Average Dry Weather Flow Rate	4.79 L/s
Total Estimated Peak Dry Weather Flow Rate	11.93 L/s
Total Estimated Peak Wet Weather Flow Rate	12.48 L/s

SANITARY SEWER CALCULATION SHEET

CLIENT:	TIMBERCREEK	DESIGN PARAMETERS												
LOCATION:	HERON GATE COMMUNITY	Avg. Daily Flow Res. 280 L/p/d	Peak Fact Res. Per Harmons: Min = 2.0, Max = 4.0	Infiltration / Inflow	0.55 L/s/ha									
FILE REF:	18-1080	Avg. Daily Flow Comm. 28,000 L/ha/d	Peak Fact. Comm. 1.5	Min. Pipe Velocity	0.60 m/s full flowing									
DATE:	03-Apr-19	Avg. Daily Flow Instit. 28,000 L/ha/d	Peak Fact. Instit. 1.5	Max. Pipe Velocity	3.00 m/s full flowing									
		Avg. Daily Flow Indust. 35,000 L/ha/d	Peak Fact. Indust. per MOE graph	Mannings N	0.013									

Existing Site Conditions

	Location				Re	esidential	Area	and Pop	ulation				Comn	nercial	Instit	utional	Indu	Istrial			Infiltrati	on			Pipe Data						
Area ID	Up	Down	Area	1	lumber of l	Jnits		Pop.	Cumu	lative	Peak.	Q _{res}	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+1+1}	Total	Accu.	Infiltration *	Total	DIA	Slope	Length	Ahydraulic	R	Velocity	Q _{cap}	Q / Q full
					by type				Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow			-					
			(ha)	Singles	Semi's To	wn's A	pt's		(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(-)
Sandalwood	Herop		11.400	0		154	605	1503.0	11 400	1503	3.69	17.02		0.00		0.00		0.00	0.0	11 400	11 400	6 270	24.10	250	0.63	73.2	0.040	0.063	0.06	47	2 0.51
Gandanwood	TICTOT		0.000	0		104	000	0.0	11.400	1503	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11 400	6 270	24.10	250	0.63	73.2	0.049	0.063	0.96	47.	2 0.51
			0.000	0				0.0	11.400	1503	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.63	42.7	0.049	0.063	0.96	47	3 0.51
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.63	73.2	0.049	0.063	0.96	47.	2 0.51
		Baycrest	0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.65	73.9	0.049	0.063	0.98	47.	9 0.50
																															-
Baycrest	Cedarwood		0.000	0				0.0	0.000	0.	4.00	0.00		0.00		0.00		0.00	0.0	0.000	0.000	0.000	0.00	250	2.81	61.0	0.049	0.063	2.03	99.	6 0.00
		Sandalwood	0.000	0				0.0	0.000	0.	4.00	0.00		0.00		0.00		0.00	0.0	0.000	0.000	0.000	0.00	250	1.52	67.1	0.049	0.063	1.49	73.	3 0.00
	Sandalwood		0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	0.000	0.000	17.92	250	0.61	68.9	0.049	0.063	0.95	46.	4 0.39
		Walkley	0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	0.000	0.000	17.92	250	0.51	66.5	0.049	0.063	0.87	42.	5 0.42
Baycrest	Heron		11 400	0		154	605	1503.0	11 400	1503	3.68	17 92		0.00		0.00		0.00	0.0	11 400	11 400	7 169	25.09	250	1.02	30.5	0.049	0.063	1 22	60	0 0.42
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	1.00	80.2	0.049	0.063	1.21	59.	4 0.41
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	1.00	76.2	0.049	0.063	1.21	59.	4 0.41
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.40	67.1	0.049	0.063	0.77	37.	.7 0.64
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.40	67.1	0.049	0.063	0.77	37.	7 0.64
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.41	32.0	0.049	0.063	0.77	37.	9 0.64
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.38	49.7	0.049	0.063	0.75	36.	8 0.66
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.41	48.8	0.049	0.063	0.78	38.	1 0.64
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.15	66.5	0.049	0.063	0.47	23.	1 1.05
			0.000	0				0.0	11.400	1503.	3.68	17.92		0.00		0.00		0.00	0.0	0.000	11.400	6.270	24.19	250	0.71	67.8	0.049	0.063	1.02	50.	0 0.48
L																															

	Location Residential Area and Population				Commercial Institutional Industrial			Infiltration				Pipe Data																		
Area ID	Up	Down	Area		Numbe	r of Units	Pop.	Cumu	lative	Peak.	Q _{res}	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+I+I}	Total	Accu.	Infiltration *	Total	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Q _{cap}	Q / Q full
					by	type		Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow								
			(ha)	Singles	Semi's	Town's	Apt's	(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(-)
Albion		Albion	14.720	68		195	758.0	14.720	758.0	3.87	9.52		0.00	11.16	11.16		0.00	9.7	25.880	25.880	14.234	33.44	300	0.37	120.4	0.071	0.075	0.83	58	.5 0.57
			0.000				0.0	14.720	758.0	3.87	9.52		0.00		11.16		0.00	9.7	0.000	25.880	14.234	33.44	300	0.73	288.6	0.071	0.075	1.17	82	.9 0.40

SANITARY SEWER CALCULATION SHEET

CLIENT:	TIMBERCREEK	DESIGN PARAMETER	RS					
LOCATION:	HERON GATE COMMUNITY	Avg. Daily Flow Res.	280 L/p/d	Peak Fact Res. Per Harmons:	Min = 2.0, Max = 4.0	Infiltration / Inflow	0.33 L/s/ha *	
FILE REF:	18-1080	Avg. Daily Flow Comm.	28,000 L/ha/d	Peak Fact. Comm.	1.5	Min. Pipe Velocity	0.60 m/s full flowing	
DATE:	03-Apr-19	Avg. Daily Flow Instit.	28,000 L/ha/d	Peak Fact. Instit.	1.5	Max. Pipe Velocity	3.00 m/s full flowing	
		Avg. Daily Flow Indust.	35,000 L/ha/d	Peak Fact. Indust. per MOE gr	raph	Mannings N	0.013	

Proposed Site Conditions

Location					Residential Area and Population			Comme	rcial	Institu	utional	Ind	ustrial			Infiltratio	on	Pipe Data											
Area ID Up	Down	Area		Numbe	r of Units	s	Pop.	Cumulative	Peak.	Qres	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+I+I}	Total	Accu.	Infiltration *	Total	EX.DIA	PROP.DIA	Slope	Length	A _{hydraulic}	R	Velocity	Q _{cap}
				by	type			Area Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow								
		(ha)	Singles	s Semi's	Town's	s Apt's		(ha)	(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)
Sandalwood/Heron		0.000	0				0.0	0.000 0.0	4.00	0.00		0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	0.63	73.2	0.049	0.063	0.96	47.2
		0.000	0				0.0	0.000 0.0	4.00	0.00		0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	0.63	73.2	0.049	0.063	0.96	47.2
		0.000	0				0.0	0.000 0.0	4.00	0.00)	0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	0.63	42.7	0.049	0.063	0.96	47.3
Block 3 + PH1 Tributary to Walkley		2.948	В		43	3 1210	0 2294.0	2.948 2294.0	3.54	4 26.31		0.00		0.00)	0.00	0.0	2.948	2.948	0.973	27.28	250	250	0.63	73.2	0.049	0.063	0.96	47.2
	Sandalwood/Baycrest	0.000	0				0.0	2.948 2294.0	3.54	4 26.31		0.00		0.00)	0.00	0.0	0.000	2.948	0.973	27.28	250	250	0.65	73.9	0.049	0.063	0.98	47.9
Cedarwood/Baycres	st	0.000	0				0.0	0.000 0.0	4.00	0.00)	0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	2.81	61.0	0.049	0.063	2.03	99.6
	Sandalwood	0.000	0				0.0	0.000 0.0	4.00	0.00)	0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	1.52	67.1	0.049	0.063	1.49	73.3
Block 8 & 9 Sandalwood		4.661	1		74	4 1804	4 3447.0	7.609 5741.0	3.19	9 59.33	5	0.00		0.00)	0.00	0.0	4.661	4.661	1.538	60.87	250	300	0.61	68.9	0.049	0.075	1.07	52.4
	Baycrest/Walkley	0.000	0				0.0	7.609 5741.0	3.19	9 59.33	5	0.00		0.00)	0.00	0.0	0.000	4.661	1.538	60.87	250	300	0.51	66.5	0.049	0.075	0.98	48.0
Baycrest/Heron		0.000	0				0.0	0.000 0.0	4.00	0.00)	0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	1.02	30.5	0.049	0.063	1.22	60.0
		0.000	0				0.0	0.000 0.0	4.00	0.00)	0.00		0.00)	0.00	0.0	0.000	0.000	0.000	0.00	250	250	1.00	80.2	0.049	0.063	1.21	59.4
2840 Baycrest		0.065	5			114	4 205.0	0.065 205.0	4.00	0 2.66	5	0.00		0.00)	0.00	0.0	0.065	0.065	0.021	2.68	250	250	1.00	76.2	0.049	0.063	1.21	59.4
		0.000	0				0.0	0.065 205.0	4.00	0 2.66	5	0.00		0.00)	0.00	0.0	0.000	0.065	0.021	2.68	250	250	0.40	67.1	0.049	0.063	0.77	37.7
Block 4		1.460	0		3	5 45	4 912.0	1.524 1117.0	3.77	7 13.64	L .	0.00		0.00)	0.00	0.0	1.460	1.524	0.503	14.14	250	250	0.40	67.1	0.049	0.063	0.77	37.7
		0.000	0				0.0	1.524 1117.0	3.77	7 13.64	L .	0.00		0.00)	0.00	0.0	0.000	1.524	0.503	14.14	250	250	0.41	32.0	0.049	0.063	0.77	37.9
Block 5 (Cedarwood Towers)		2.804	4		70	6 51	0 1123.0	4.329 2240.0	3.55	5 25.75	5	0.00		0.00)	0.00	0.0	2.804	4.329	1.428	27.18	250	250	0.38	49.7	0.049	0.063	0.75	36.8
Block 6		2.292	2			25	9 466.0	6.620 2706.0	3.48	8 30.52		0.00		0.00)	0.00	0.0	2.292	6.620	2.185	32.70	250	250	0.41	48.8	0.049	0.063	0.78	38.1
		0.000	0				0.0	6.620 2706.0	3.48	8 30.52		0.00		0.00)	0.00	0.0	0.000	6.620	2.185	32.70	250	300	0.15	66.5	0.049	0.075	0.53	26.1
	Baycrest/Walkley	0.000	0				0.0	6.620 2706.0	3.48	8 30.52		0.00		0.00)	0.00	0.0	0.000	6.620	2.185	32.70	250	300	0.71	67.8	0.049	0.075	1.15	56.5
Baycrest/Walkley		0.000	0				0.0	6.620 2706.0	3.48	8 30.52		0.00		0.00)	0.00	0.0	0.000	6.620	2.185	32.70	250	300	0.35	39.9	0.049	0.075	0.81	39.8
Block 7		1.221	1		19	9 58	2 1099.0	7.841 3805.0	3.35	5 41.34	L .	0.00		0.00)	0.00	0.0	1.221	7.841	2.588	43.93	250	300	0.34	84.8	0.049	0.075	0.80	39.3
	Walkley/Albion	0.000	0				0.0	7.841 3805.0	3.35	5 41.34	l l	0.00		0.00)	0.00	0.0	0.000	7.841	2.588	43.93	250	300	0.34	65.6	0.049	0.075	0.79	38.9
Walkley/Albion		0.000	0				0.0	7.841 3805.0	3.35	5 41.34	l l	0.00		0.00)	0.00	0.0	0.000	7.841	2.588	43.93	250	300	0.34	120.0	0.049	0.075	0.80	39.3
		0.000	0				0.0	7.841 3805.0	3.35	5 41.34	l l	0.00		0.00)	0.00	0.0	0.000	7.841	2.588	43.93	250	300	0.38	120.0	0.049	0.075	0.84	41.1
*		14.720	0 68	8	19	5	758.0	22.561 4563.0	3.28	8 48.53	5	0.00	11.16	11.16	6	0.00	9.7	25.880	33.721	16.822	75.04	300	375	0.37	120.4	0.071	0.094	0.96	67.8
	South Ottawa Trunk	0.000	0				0.0	22.561 4563.0	3.28	8 48.53	6	0.00		11.16	6	0.00	9.7	0.000	33.721	16.822	75.04	300	375	0.73	288.6	0.071	0.094	1.36	96.2
																													1

* Infiltration Rate of 0.55 L/s/ha applied to Existing Subdivisions based on consultation with City staff.

Alison Gosling

From:	Oram, Cody <cody.oram@ottawa.ca></cody.oram@ottawa.ca>
Sent:	Thursday, February 7, 2019 8:49 AM
То:	Alison Gosling
Cc:	Baker, Adam
Subject:	RE: 18-1080 Heron Gate - Sanitary Sewer Capacity
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Alison,

The City's Water Resources group did a hydraulic assessment of the sanitary system using XP-SWMM and found that there is limited capacity in both the Heron and Walkley systems. Please find below additional information provided by their group.

Below is the HGL along Walkley and Heron under existing conditions using the new Sewer Design flows and an critical I/I of 0.55 I/s/ha (which we have experienced in these older separated systems). As you can see, we currently have the capacity to convey existing flows without causing basement flooding.

The consultant is asking for an increase in flow of 100 L/s and would wishes to split the flow between Walkly and Heron. What we found is that we can only add 55 L/s to this system before the HGL reaches basement elevations during a critical rainfall event. The following figures show the HGL with 35 L/s added to Heron and 20 L/s added to Walkley (over and above existing flows).

Walkley with 20 L/s added

The following graphs shows the impact of adding the full 100 L/s of additional flow requested (50 L/s on Heron and 50 L/s on Walkley).

Walkley with 50 L/s added

Even if we upgrade the pipes on either Heron or Walkley, we would still have a problem further downstream. Their best bet may be to go South to the South Ottawa Collector, but this will most likely need new sanitary infrastructure.

When you've had a chance to review the information, let's connect to discuss potential solutions to address the capacity constraints.

Cody Oram, P.Eng. Senior Engineer

Development Review, South Services Planning, Infrastructure and Economic Development Department | Services de planification, d'infrastructure et de développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West. Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste **13422**, fax/téléc:613-580-2576, cody.oram@ottawa.ca

From: Oram, Cody
Sent: Thursday, January 31, 2019 10:57 AM
To: 'Alison Gosling' <AGosling@dsel.ca>
Cc: Baker, Adam <Adam.Baker@ottawa.ca>
Subject: RE: 18-1080 Heron Gate - Sanitary Sewer Capacity

Hi Alison,

I've reviewed your sanitary flow rate calculations and have sent them to our Water Resources group for review and comments regarding the downstream capacity. We typically receive comments within 10 business days. I will share the comments when received.

I've attached the pre-consult notes from the 2015 meeting. Please note this area is fully separated but uncontrolled (i.e. no ICD's). We would be looking to implement ICD's in the public roadways in the future, so private roads would also need to consider dual drainage.

If you have any questions, please let me know. Cody

Cody Oram, P.Eng. Senior Engineer

Development Review, South Services Planning, Infrastructure and Economic Development Department | Services de planification, d'infrastructure et de développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West. Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste **13422**, fax/téléc:613-580-2576, <u>cody.oram@ottawa.ca</u>

From: Alison Gosling <<u>AGosling@dsel.ca</u>>
Sent: Wednesday, January 30, 2019 3:37 PM
To: Oram, Cody <<u>Cody.Oram@ottawa.ca</u>>
Cc: Baker, Adam <<u>adam.baker@ottawa.ca</u>>
Subject: RE: 18-1080 Heron Gate - Sanitary Sewer Capacity

Good afternoon Cody,

Can you please confirm when you will be able to confirm capacity within the local sanitary sewers?

As discussed earlier this month, can you please forward any pre-consultation notes you have for this development? Please see attached correspondence for reference.

Please feel free to call to discuss.

Thanks in advance,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.542 fax: (613) 836-7183 email: <u>agosling@dsel.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Alison Gosling
Sent: Tuesday, January 22, 2019 5:23 PM
To: 'Oram, Cody' <<u>Cody.Oram@ottawa.ca</u>>
Cc: 'Steve Pichette' <<u>spichette@dsel.ca</u>>
Subject: 18-1080 Heron Gate - Sanitary Sewer Capacity

Good afternoon Cody,

As discussed, we would like to request a sanitary capacity analysis for Heron Road and Walkley Road using the following contemplated post-development demands:

- 1. Location of Service / Street Number: The Heron Gate Community is bound by Heron Road to the North and Walkley Road to the South.
- 2. Existing Development:
 - The subject site measures **25.5** *ha* and currently consists of **1516** *residential units*. Please refer to the existing wastewater calculations attached for a detailed unit breakdown.
 - Based on available City mapping, sanitary flow from the subject site currently travels to the existing 300mm diameter sanitary sewer within Walkley Road via an existing 250mm diameter internal network. Please refer to the map below for the existing sanitary sewer network.
- 3. Contemplated Development:
 - The phased development proposes to retain seven existing apartment buildings, consisting of **957** apartment units.
 - The contemplated development would include approximately **314** *townhomes* and approximately **5109** *apartment units*, including the **957** *apartment units* retained via the existing apartment buildings.
 - It is contemplated to service the development via the existing 300mm diameter sanitary sewer within Walkley Road and the existing 300mm diameter sanitary sewer within Heron Road.

Table 1, below, estimates the existing and completed wastewater flows from the development.

	Existing Flow	Contemplated Flow
	(L/s)	(L/s)
Total Estimated Average Dry Weather Flow Rate	13.91	51.40

Total Estimated Peak Dry Weather Flow Rate	50.46	150.62
Total Estimated Peak Wet Weather Flow Rate	51.74	151.89

Please let us know if you have any questions.

Thank you,

Alison Gosling, E.I.T. Project Coordinator / Junior Designer

DSEL david schaeffer engineering Itd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.542

 fax:
 (613) 836-7183

 email:
 agosling@dsel.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

۲

۲

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

APPENDIX D

Stormwater Management

Target Flow Rate

 Area
 18.81 ha

 C
 0.50 Rational Method runoff coefficient

 t_c
 16.7 min

2-year

i	58.1	mm/hr
Q	1517.5	L/s
Q	80.7	L/s/ha

Estimated Post Development Peak Flow from Unattenuated Areas

 Total Area
 1.88 ha

 C
 0.85 Rat

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	348.7	348.7	0.0	0.0	134.2	701.2	701.2	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Total Area 16.93 ha

C 0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	4164.3	404.9	3759.4	2255.6	178.6	8395.8	816.3	7579.6	4547.7
15	83.6	3339.5	405.7	2933.8	2640.4	142.9	6718.9	816.3	5902.6	5312.3
20	70.3	2807.7	406.4	2401.4	2881.6	120.0	5640.1	816.3	4823.8	5788.5
25	60.9	2433.8	406.9	2027.0	3040.4	103.8	4882.9	816.3	4066.6	6099.9
30	53.9	2155.3	407.3	1748.0	3146.5	91.9	4319.6	816.3	3503.4	6306.0
35	48.5	1939.1	407.6	1531.4	3216.0	82.6	3882.8	816.3	3066.6	6439.8
40	44.2	1765.9	408.0	1358.0	3259.1	75.1	3533.3	816.3	2717.1	6520.9
45	40.6	1623.8	408.2	1215.6	3282.0	69.1	3246.7	816.3	2430.5	6562.3
50	37.7	1504.9	408.5	1096.4	3289.2	64.0	3007.1	816.3	2190.8	6572.5
55	35.1	1403.8	408.7	995.0	3283.7	59.6	2803.5	816.3	1987.2	6557.9
60	32.9	1316.6	408.9	907.7	3267.8	55.9	2628.2	816.3	1811.9	6522.8
65	31.0	1240.7	409.1	831.6	3243.2	52.6	2475.4	816.3	1659.2	6470.7
70	29.4	1173.9	409.3	764.6	3211.3	49.8	2341.1	816.3	1524.8	6404.3
75	27.9	1114.6	409.5	705.1	3173.1	47.3	2221.9	816.3	1405.7	6325.5
80	26.6	1061.6	409.6	652.0	3129.5	45.0	2115.5	816.3	1299.2	6236.1
85	25.4	1013.9	409.8	604.1	3081.0	43.0	2019.7	816.3	1203.4	6137.4
90	24.3	970.7	409.9	560.8	3028.4	41.1	1933.0	816.3	1116.8	6030.5
95	23.3	931.4	410.0	521.4	2972.0	39.4	1854.2	816.3	1037.9	5916.3
100	22.4	895.5	410.2	485.4	2912.2	37.9	1782.2	816.3	965.9	5795.5
105	21.6	862.6	410.3	452.3	2849.4	36.5	1716.1	816.3	899.8	5668.9
110	20.8	832.2	410.4	421.8	2783.9	35.2	1655.2	816.3	838.9	5537.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Q _{attenuated}	408.50 L/s	100-year Q _{attenuated}	816.27 L/s
5-year Max. Storage Required	3289.2 m ³	100-year Max. Storage Required	6572.5 m ³

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Storage
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated Areas	348.73	0.0	701.22	0.0
Attenutated Areas	408.50	3289.2	816.27	6572.5
Total	757.2	3289.16	1517.49	6572.5

Target Flow Rate

Area	2.78 ha
С	0.50 Rational Method runoff coefficient
t _c	16.7 min

2-year

i 58.1 mm/hr Q 223.9 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

0.28 ha

Total Area C

0.85 Rational Method runoff coefficient

 Ī	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	51.5	51.5	0.0	0.0	134.2	103.5	103.5	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Total Area 2.50 ha

C 0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
10	104.2	614.4	59.7	554.7	332.8	178.6	1238.8	120.4	1118.3	671.0
15	83.6	492.7	59.9	432.9	389.6	142.9	991.4	120.4	870.9	783.8
20	70.3	414.3	60.0	354.3	425.2	120.0	832.2	120.4	711.7	854.1
25	60.9	359.1	60.0	299.1	448.6	103.8	720.5	120.4	600.0	900.0
30	53.9	318.0	60.1	257.9	464.3	91.9	637.4	120.4	516.9	930.4
35	48.5	286.1	60.1	226.0	474.5	82.6	572.9	120.4	452.5	950.2
40	44.2	260.6	60.2	200.4	480.9	75.1	521.3	120.4	400.9	962.1
45	40.6	239.6	60.2	179.4	484.3	69.1	479.1	120.4	358.6	968.2
50	37.7	222.0	60.3	161.8	485.3	64.0	443.7	120.4	323.3	969.8
55	35.1	207.1	60.3	146.8	484.5	59.6	413.7	120.4	293.2	967.6
60	32.9	194.3	60.3	133.9	482.2	55.9	387.8	120.4	267.3	962.4
65	31.0	183.1	60.4	122.7	478.5	52.6	365.2	120.4	244.8	954.7
70	29.4	173.2	60.4	112.8	473.8	49.8	345.4	120.4	225.0	944.9
75	27.9	164.5	60.4	104.0	468.2	47.3	327.8	120.4	207.4	933.3
80	26.6	156.6	60.4	96.2	461.7	45.0	312.1	120.4	191.7	920.1
85	25.4	149.6	60.5	89.1	454.6	43.0	298.0	120.4	177.6	905.6
90	24.3	143.2	60.5	82.7	446.8	41.1	285.2	120.4	164.8	889.8
95	23.3	137.4	60.5	76.9	438.5	39.4	273.6	120.4	153.1	872.9
100	22.4	132.1	60.5	71.6	429.7	37.9	263.0	120.4	142.5	855.1
105	21.6	127.3	60.5	66.7	420.4	36.5	253.2	120.4	132.8	836.4
110	20.8	122.8	60.6	62.2	410.8	35.2	244.2	120.4	123.8	817.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Q _{attenuated}	60.27 L/s	100-year Q _{attenuated}	120.44 L/s
5-year Max. Storage Required	485.3 m ³	100-year Max. Storage Required	969.8 m ³

Control Area	5-Year	5-Year	100-Year	100-Year
	Release	Storage	Release	Storage
	Rate		Rate	
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated	51.45	0.0	103.46	0.0
Areas				
Attenutated Areas	60.27	485.3	120.44	969.8
Total	111.7	485.31	223.90	969.8

Target Flow Rate

Area	2.95 ha
С	0.50 Rational Method runoff coefficient
t _c	16.7 min

2-year

i 58.1 mm/hr Q 237.9 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

0.29 ha

Total Area C

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	54.7	54.7	0.0	0.0	134.2	109.9	109.9	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Total Area 2.65 ha

C 0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
10	104.2	652.8	63.5	589.3	353.6	178.6	1316.2	128.0	1188.2	712.9
15	83.6	523.5	63.6	459.9	413.9	142.9	1053.3	128.0	925.3	832.8
20	70.3	440.1	63.7	376.4	451.7	120.0	884.2	128.0	756.2	907.4
25	60.9	381.5	63.8	317.8	476.6	103.8	765.5	128.0	637.5	956.2
30	53.9	337.9	63.8	274.0	493.2	91.9	677.2	128.0	549.2	988.6
35	48.5	304.0	63.9	240.1	504.2	82.6	608.7	128.0	480.7	1009.5
40	44.2	276.8	64.0	212.9	510.9	75.1	553.9	128.0	425.9	1022.2
45	40.6	254.6	64.0	190.6	514.5	69.1	509.0	128.0	381.0	1028.7
50	37.7	235.9	64.0	171.9	515.6	64.0	471.4	128.0	343.4	1030.3
55	35.1	220.1	64.1	156.0	514.8	59.6	439.5	128.0	311.5	1028.0
60	32.9	206.4	64.1	142.3	512.3	55.9	412.0	128.0	284.0	1022.5
65	31.0	194.5	64.1	130.4	508.4	52.6	388.1	128.0	260.1	1014.4
70	29.4	184.0	64.2	119.9	503.4	49.8	367.0	128.0	239.0	1004.0
75	27.9	174.7	64.2	110.5	497.4	47.3	348.3	128.0	220.4	991.6
80	26.6	166.4	64.2	102.2	490.6	45.0	331.6	128.0	203.7	977.6
85	25.4	158.9	64.2	94.7	483.0	43.0	316.6	128.0	188.7	962.1
90	24.3	152.2	64.3	87.9	474.7	41.1	303.0	128.0	175.1	945.4
95	23.3	146.0	64.3	81.7	465.9	39.4	290.7	128.0	162.7	927.5
100	22.4	140.4	64.3	76.1	456.5	37.9	279.4	128.0	151.4	908.5
105	21.6	135.2	64.3	70.9	446.7	36.5	269.0	128.0	141.1	888.7
110	20.8	130.5	64.3	66.1	436.4	35.2	259.5	128.0	131.5	868.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Q _{attenuated}	64.04 L/s	100-year Q _{attenuated}	127.96 L/s
5-year Max. Storage Required	515.6 m ³	100-year Max. Storage Required	1030.3 m ³

Control Area	5-Year Release	5-Year Storage	100-Year Release Rate	100-Year Storage	
		(3)		, 3,	
	(L/S)	(m°)	(L/S)	(m°)	
Unattenuated	54.67	0.0	109.93	0.0	
Areas					
Attenutated Areas	64.04	515.6	127.96	1030.3	
Total	118.7	515.62	237.89	1030.3	

Target Flow Rate

Area	2.11 ł	ha
С	0.50 F	Rational Method runoff coefficient
t _c	16.7 r	min

2-year

i 58.1 mm/hr Q 170.2 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

0.21 ha

Total Area C

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	39.1	39.1	0.0	0.0	134.2	78.7	78.7	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Total Area 1.90 ha

C 0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	467.2	45.4	421.8	253.1	178.6	941.9	91.6	850.3	510.2
15	83.6	374.6	45.5	329.1	296.2	142.9	753.8	91.6	662.2	596.0
20	70.3	315.0	45.6	269.4	323.3	120.0	632.7	91.6	541.2	649.4
25	60.9	273.0	45.6	227.4	341.1	103.8	547.8	91.6	456.2	684.3
30	53.9	241.8	45.7	196.1	353.0	91.9	484.6	91.6	393.0	707.5
35	48.5	217.5	45.7	171.8	360.8	82.6	435.6	91.6	344.0	722.5
40	44.2	198.1	45.8	152.3	365.6	75.1	396.4	91.6	304.8	731.6
45	40.6	182.2	45.8	136.4	368.2	69.1	364.2	91.6	272.7	736.2
50	37.7	168.8	45.8	123.0	369.0	64.0	337.4	91.6	245.8	737.3
55	35.1	157.5	45.9	111.6	368.4	59.6	314.5	91.6	222.9	735.7
60	32.9	147.7	45.9	101.8	366.6	55.9	294.8	91.6	203.3	731.8
65	31.0	139.2	45.9	93.3	363.8	52.6	277.7	91.6	186.1	725.9
70	29.4	131.7	45.9	85.8	360.3	49.8	262.6	91.6	171.1	718.5
75	27.9	125.0	45.9	79.1	356.0	47.3	249.3	91.6	157.7	709.6
80	26.6	119.1	46.0	73.1	351.1	45.0	237.3	91.6	145.8	699.6
85	25.4	113.7	46.0	67.8	345.7	43.0	226.6	91.6	135.0	688.5
90	24.3	108.9	46.0	62.9	339.7	41.1	216.9	91.6	125.3	676.5
95	23.3	104.5	46.0	58.5	333.4	39.4	208.0	91.6	116.4	663.7
100	22.4	100.5	46.0	54.5	326.7	37.9	199.9	91.6	108.4	650.2
105	21.6	96.8	46.0	50.7	319.7	36.5	192.5	91.6	100.9	636.0
110	20.8	93.4	46.0	47.3	312.3	35.2	185.7	91.6	94.1	621.2

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Qattenuated	45.83 L/s	100-year Q _{attenuated}	91.57 L/s
5-year Max. Storage Required	369.0 m ³	100-year Max. Storage Required	737.3 m ³

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Storage
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated Areas	39.12	0.0	78.67	0.0
Attenutated Areas	45.83	369.0	91.57	737.3
Total	85.0	369.00	170.24	737.3

Target Flow Rate

Area 2.80 ha С 0.50 Rational Method runoff coefficient 16.7 min tc

2-year

- i 58.1 mm/hr Q
 - 226.3 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Total Area 0.28 ha С

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	52.0	52.0	0.0	0.0	134.2	104.6	104.6	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas 2.52 ha

Total Area С

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Qactual	Qrelease	Q _{stored}	V _{stored}	i	Qactual	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	620.9	60.4	560.5	336.3	178.6	1251.9	121.7	1130.2	678.1
15	83.6	497.9	60.5	437.4	393.7	142.9	1001.8	121.7	880.1	792.1
20	70.3	418.6	60.6	358.1	429.7	120.0	841.0	121.7	719.3	863.1
25	60.9	362.9	60.7	302.2	453.3	103.8	728.1	121.7	606.4	909.5
30	53.9	321.4	60.7	260.6	469.2	91.9	644.1	121.7	522.4	940.3
35	48.5	289.1	60.8	228.3	479.5	82.6	579.0	121.7	457.2	960.2
40	44.2	263.3	60.8	202.5	485.9	75.1	526.8	121.7	405.1	972.3
45	40.6	242.1	60.9	181.2	489.4	69.1	484.1	121.7	362.4	978.5
50	37.7	224.4	60.9	163.5	490.4	64.0	448.4	121.7	326.7	980.0
55	35.1	209.3	60.9	148.4	489.6	59.6	418.0	121.7	296.3	977.8
60	32.9	196.3	61.0	135.3	487.2	55.9	391.9	121.7	270.2	972.6
65	31.0	185.0	61.0	124.0	483.6	52.6	369.1	121.7	247.4	964.8
70	29.4	175.0	61.0	114.0	478.8	49.8	349.1	121.7	227.4	954.9
75	27.9	166.2	61.1	105.1	473.1	47.3	331.3	121.7	209.6	943.2
80	26.6	158.3	61.1	97.2	466.6	45.0	315.4	121.7	193.7	929.8
85	25.4	151.2	61.1	90.1	459.4	43.0	301.1	121.7	179.4	915.1
90	24.3	144.7	61.1	83.6	451.6	41.1	288.2	121.7	166.5	899.2
95	23.3	138.9	61.1	77.7	443.1	39.4	276.5	121.7	154.8	882.2
100	22.4	133.5	61.2	72.4	434.2	37.9	265.7	121.7	144.0	864.1
105	21.6	128.6	61.2	67.4	424.9	36.5	255.9	121.7	134.2	845.3
110	20.8	124.1	61.2	62.9	415.1	35.2	246.8	121.7	125.1	825.6

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Qattenuated	60.91 L/s	100-year Qattenuated	121.71 L/s
5-year Max. Storage Required	490.4 m ³	100-year Max. Storage Required	980.0 m ³

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Storage
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated Areas	52.00	0.0	104.56	0.0
Attenutated Areas	60.91	490.4	121.71	980.0
Total	112.9	490.43	226.27	980.0

Target Flow Rate

Area 2.29 ha С 0.50 Rational Method runoff coefficient 16.7 min tc

2-year

- i 58.1 mm/hr Q
 - 184.9 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Total Area 0.23 ha С

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	42.5	42.5	0.0	0.0	134.2	85.4	85.4	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

2.06 ha Total Area С

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Qactual	Q _{release}	Q _{stored}	V _{stored}	i	Qactual	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	507.4	49.3	458.1	274.8	178.6	1023.0	99.5	923.5	554.1
15	83.6	406.9	49.4	357.5	321.7	142.9	818.7	99.5	719.2	647.3
20	70.3	342.1	49.5	292.6	351.1	120.0	687.2	99.5	587.8	705.3
25	60.9	296.6	49.6	247.0	370.5	103.8	595.0	99.5	495.5	743.3
30	53.9	262.6	49.6	213.0	383.4	91.9	526.3	99.5	426.9	768.4
35	48.5	236.3	49.7	186.6	391.9	82.6	473.1	99.5	373.7	784.7
40	44.2	215.2	49.7	165.5	397.1	75.1	430.5	99.5	331.1	794.6
45	40.6	197.9	49.7	148.1	399.9	69.1	395.6	99.5	296.1	799.6
50	37.7	183.4	49.8	133.6	400.8	64.0	366.4	99.5	266.9	800.8
55	35.1	171.0	49.8	121.2	400.1	59.6	341.6	99.5	242.1	799.1
60	32.9	160.4	49.8	110.6	398.2	55.9	320.2	99.5	220.8	794.8
65	31.0	151.2	49.9	101.3	395.2	52.6	301.6	99.5	202.2	788.4
70	29.4	143.0	49.9	93.2	391.3	49.8	285.3	99.5	185.8	780.3
75	27.9	135.8	49.9	85.9	386.6	47.3	270.7	99.5	171.3	770.7
80	26.6	129.4	49.9	79.4	381.3	45.0	257.8	99.5	158.3	759.9
85	25.4	123.5	49.9	73.6	375.4	43.0	246.1	99.5	146.6	747.8
90	24.3	118.3	49.9	68.3	369.0	41.1	235.5	99.5	136.1	734.8
95	23.3	113.5	50.0	63.5	362.1	39.4	225.9	99.5	126.5	720.9
100	22.4	109.1	50.0	59.1	354.8	37.9	217.2	99.5	117.7	706.2
105	21.6	105.1	50.0	55.1	347.2	36.5	209.1	99.5	109.6	690.7
110	20.8	101.4	50.0	51.4	339.2	35.2	201.7	99.5	102.2	674.7

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Q _{attenuated}	49.77 L/s	100-year Q _{attenuated}	99.46 L/s
5-year Max. Storage Required	400.8 m ³	100-year Max. Storage Required	800.8 m ³

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Storage
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated Areas	42.49	0.0	85.44	0.0
Attenutated Areas	49.77	400.8	99.46	800.8
Total	92.3	400.77	184.90	800.8

Target Flow Rate

Area	1.22 ha
С	0.50 Rational Method runoff coefficien
t _c	16.7 min

2-year

i	58.1	mm/hr
Q	98.5	L/s

Estimated Post Development Peak Flow from Unattenuated Areas

0.12 ha

Total Area C

0.85 Rational Method runoff coefficient

	5-year					100-year)0-year			
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	22.6	22.6	0.0	0.0	134.2	45.5	45.5	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Total Area 1.10 ha

C 0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	270.3	26.3	244.0	146.4	178.6	544.9	53.0	492.0	295.2
15	83.6	216.8	26.3	190.4	171.4	142.9	436.1	53.0	383.1	344.8
20	70.3	182.2	26.4	155.9	187.0	120.0	366.1	53.0	313.1	375.7
25	60.9	158.0	26.4	131.6	197.3	103.8	316.9	53.0	263.9	395.9
30	53.9	139.9	26.4	113.5	204.2	91.9	280.4	53.0	227.4	409.3
35	48.5	125.9	26.5	99.4	208.7	82.6	252.0	53.0	199.0	418.0
40	44.2	114.6	26.5	88.1	211.5	75.1	229.3	53.0	176.4	423.2
45	40.6	105.4	26.5	78.9	213.0	69.1	210.7	53.0	157.8	425.9
50	37.7	97.7	26.5	71.2	213.5	64.0	195.2	53.0	142.2	426.6
55	35.1	91.1	26.5	64.6	213.1	59.6	182.0	53.0	129.0	425.6
60	32.9	85.5	26.5	58.9	212.1	55.9	170.6	53.0	117.6	423.4
65	31.0	80.5	26.6	54.0	210.5	52.6	160.7	53.0	107.7	420.0
70	29.4	76.2	26.6	49.6	208.4	49.8	151.9	53.0	99.0	415.7
75	27.9	72.3	26.6	45.8	206.0	47.3	144.2	53.0	91.2	410.6
80	26.6	68.9	26.6	42.3	203.1	45.0	137.3	53.0	84.3	404.8
85	25.4	65.8	26.6	39.2	200.0	43.0	131.1	53.0	78.1	398.4
90	24.3	63.0	26.6	36.4	196.6	41.1	125.5	53.0	72.5	391.4
95	23.3	60.5	26.6	33.8	192.9	39.4	120.3	53.0	67.4	384.0
100	22.4	58.1	26.6	31.5	189.0	37.9	115.7	53.0	62.7	376.2
105	21.6	56.0	26.6	29.4	184.9	36.5	111.4	53.0	58.4	367.9
110	20.8	54.0	26.6	27.4	180.7	35.2	107.4	53.0	54.5	359.4

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Q _{attenuated}	26.51 L/s	100-year Q _{attenuated}	52.98 L/s
5-year Max. Storage Required	213.5 m ³	100-year Max. Storage Required	426.6 m ³

Control Area	5-Year	5-Year	100-Year	100-Year
	Release	Storage	Release	Storage
	Rate		Rate	
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated	22.63	0.0	45.51	0.0
Areas				
Attenutated Areas	26.51	213.5	52.98	426.6
Total	49.1	213.48	98.49	426.6

Target Flow Rate

Area	2.68 ha
С	0.50 Rational Method runoff coefficient
t _c	16.7 min

2-year

i 58.1 mm/hr Q 216.5 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

0.27 ha

Total Area C

0.85 Rational Method runoff coefficient

	5-year				100-year	year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	49.8	49.8	0.0	0.0	134.2	100.0	100.0	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Total Area 2.41 ha

C 0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	594.1	57.8	536.3	321.8	178.6	1197.8	116.5	1081.3	648.8
15	83.6	476.4	57.9	418.5	376.7	142.9	958.5	116.5	842.1	757.9
20	70.3	400.6	58.0	342.6	411.1	120.0	804.6	116.5	688.2	825.8
25	60.9	347.2	58.0	289.2	433.8	103.8	696.6	116.5	580.2	870.2
30	53.9	307.5	58.1	249.4	448.9	91.9	616.3	116.5	499.8	899.6
35	48.5	276.6	58.2	218.5	458.8	82.6	553.9	116.5	437.5	918.7
40	44.2	251.9	58.2	193.7	465.0	75.1	504.1	116.5	387.6	930.3
45	40.6	231.7	58.2	173.4	468.2	69.1	463.2	116.5	346.7	936.2
50	37.7	214.7	58.3	156.4	469.2	64.0	429.0	116.5	312.6	937.7
55	35.1	200.3	58.3	142.0	468.5	59.6	400.0	116.5	283.5	935.6
60	32.9	187.8	58.3	129.5	466.2	55.9	374.9	116.5	258.5	930.6
65	31.0	177.0	58.4	118.6	462.7	52.6	353.2	116.5	236.7	923.1
70	29.4	167.5	58.4	109.1	458.1	49.8	334.0	116.5	217.5	913.7
75	27.9	159.0	58.4	100.6	452.7	47.3	317.0	116.5	200.5	902.4
80	26.6	151.5	58.4	93.0	446.5	45.0	301.8	116.5	185.3	889.7
85	25.4	144.6	58.5	86.2	439.6	43.0	288.1	116.5	171.7	875.6
90	24.3	138.5	58.5	80.0	432.0	41.1	275.8	116.5	159.3	860.3
95	23.3	132.9	58.5	74.4	424.0	39.4	264.5	116.5	148.1	844.0
100	22.4	127.8	58.5	69.2	415.5	37.9	254.3	116.5	137.8	826.8
105	21.6	123.1	58.5	64.5	406.5	36.5	244.8	116.5	128.4	808.8
110	20.8	118.7	58.5	60.2	397.2	35.2	236.1	116.5	119.7	789.9

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Qattenuated	58.28 L/s	100-year Q _{attenuated}	116.45 L/s
5-year Max. Storage Required	469.2 m ³	100-year Max. Storage Required	937.7 m ³

Control Area	5-Year	5-Year	100-Year	100-Year
	Release	Storage	Release	Storage
	Rate		Rate	
	(L/s)	(m ³)	(L/s)	(m ³)
Unattenuated	49.75	0.0	100.04	0.0
Areas				
Attenutated Areas	58.28	469.2	116.45	937.7
Total	108.0	469.24	216.49	937.7

Target Flow Rate

Area 1.98 ha С 0.50 Rational Method runoff coefficient 16.7 min tc

2-year

- i 58.1 mm/hr Q
 - 159.6 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Total Area 0.20 ha С

0.85 Rational Method runoff coefficient

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
16.7	78.5	36.7	36.7	0.0	0.0	134.2	73.8	73.8	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas 1.78 ha

Total Area С

0.85 Rational Method runoff coefficient

]	5-year					100-year				
t _c	i	Qactual	Q _{release}	Q _{stored}	V _{stored}	i	Qactual	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	438.0	42.6	395.4	237.3	178.6	883.1	85.9	797.2	478.3
15	83.6	351.3	42.7	308.6	277.7	142.9	706.7	85.9	620.8	558.8
20	70.3	295.3	42.7	252.6	303.1	120.0	593.2	85.9	507.4	608.9
25	60.9	256.0	42.8	213.2	319.8	103.8	513.6	85.9	427.7	641.6
30	53.9	226.7	42.8	183.9	331.0	91.9	454.3	85.9	368.5	663.3
35	48.5	204.0	42.9	161.1	338.3	82.6	408.4	85.9	322.5	677.4
40	44.2	185.7	42.9	142.8	342.8	75.1	371.6	85.9	285.8	685.9
45	40.6	170.8	42.9	127.9	345.2	69.1	341.5	85.9	255.6	690.2
50	37.7	158.3	43.0	115.3	346.0	64.0	316.3	85.9	230.4	691.3
55	35.1	147.7	43.0	104.7	345.4	59.6	294.9	85.9	209.0	689.8
60	32.9	138.5	43.0	95.5	343.7	55.9	276.4	85.9	190.6	686.1
65	31.0	130.5	43.0	87.5	341.1	52.6	260.4	85.9	174.5	680.6
70	29.4	123.5	43.1	80.4	337.8	49.8	246.2	85.9	160.4	673.6
75	27.9	117.2	43.1	74.2	333.8	47.3	233.7	85.9	147.9	665.3
80	26.6	111.7	43.1	68.6	329.2	45.0	222.5	85.9	136.7	655.9
85	25.4	106.6	43.1	63.5	324.1	43.0	212.4	85.9	126.6	645.5
90	24.3	102.1	43.1	59.0	318.5	41.1	203.3	85.9	117.5	634.3
95	23.3	98.0	43.1	54.8	312.6	39.4	195.0	85.9	109.2	622.3
100	22.4	94.2	43.1	51.1	306.3	37.9	187.5	85.9	101.6	609.6
105	21.6	90.7	43.2	47.6	299.7	36.5	180.5	85.9	94.6	596.3
110	20.8	87.5	43.2	44.4	292.8	35.2	174.1	85.9	88.2	582.4

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

5-year Q _{attenuated}	42.97 L/s	100-year Q _{attenuated}	85.86 L/s
5-year Max. Storage Required	346.0 m ³	100-year Max. Storage Required	691.3 m ³

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Storage			
	(L/s)	(m ³)	(L/s)	(m ³)			
Unattenuated Areas	36.68	0.0	73.76	0.0			
Attenutated Areas	42.97	346.0	85.86	691.3			
Total	79.6	345.96	159.61	691.3			

Existing Flow Rate

									Sewer Data									
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	I*	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q full
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)
Baycrest - Block 2 H	Heron		2.775	0.85	2.36	2.36	10.0	76.8	503.2	300	1.18	27.2	0.071	0.075	1.48	104.9	0.3	4.80
		Baycrest			0.00	2.36	10.3	102.6	672.3	300	0.94	83	0.071	0.075	1.33	93.7	1.0	7.17
	Baycrest			0.85	0.00	2.36	11.3	97.6	639.3	450	1.11	74	0.159	0.113	1.89	300.1	0.7	2.13
Cedarwood - Block 4			2.110	0.85	1.79	4.15	12.0	94.7	1092.1	525	0.33	69	0.216	0.131	1.15	248.3	1.0	4.40
					0.00	4.15	13.0	90.6	1045.1	600	0.29	65	0.283	0.150	1.17	332.0	0.9	3.15
					0.00	4.15	13.9	87.2	1005.7	600	0.67	33	0.283	0.150	1.77	501.3	0.3	2.01
Block 6			2.292	0.85	1.95	6.10	14.2	86.1	1459.0	750	0.40	50	0.442	0.188	1.59	704.1	0.5	2.07
Block 5			2.804	0.85	2.38	8.48	14.8	84.3	1987.6	750	0.36	53	0.442	0.188	1.51	666.6	0.6	2.98
Block 7			1.221	0.85	1.04	9.52	15.3	82.5	2180.9	750	0.47	58	0.442	0.188	1.72	759.6	0.6	2.87
		Walkley			0.00	9.52	15.9	80.7	2135.3	750	0.37	70	0.442	0.188	1.54	678.5	0.8	3.15
							16.7											
Baycrest - Block 3	Cedarwood		2.948	0.85	2.51	2.51	10.0	76.8	534.7	300	1.44	64	0.071	0.075	1.64	116.1	0.6	4.60
					0.00	2.51	10.6	100.9	702.3	300	1.41	65	0.071	0.075	1.62	114.9	0.7	6.11
Block 8			2.683	0.85	2.28	4.79	11.3	97.7	1299.4	750	0.72	67	0.442	0.188	2.13	942.3	0.5	1.38
Block 9		Walkley	1.978	0.85	1.68	6.47	11.8	95.4	1713.9	750	1.22	68	0.442	0.188	2.78	1230.0	0.4	1.39
							12.2											

* 2-Year Storm Event

Rational Method Coefficient of 0.85 estimated for Existing Subdivision
Future - Controlled Flow + Increase Pipe Diameter/Adjust Existing Inverts

				-						Sewer Data								
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	I *	Q*	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q full
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(min)	(-)
Phase I																		
Baycrest	Heron						10.0	76.8		300	1.18	27.2	0.071	0.075	1.48	104.9	0.3	0.00
		Baycrest					10.3	76.8		300	0.94	83	0.071	0.075	1.33	93.7	1.0	0.00
Block 2	Baycrest		2.775				11.3	97.6	225.3	450	1.11	74	0.159	0.113	1.89	300.1	0.7	0.75
							12.0	94.7	1092.1	525	0.33	69	0.216	0.131	1.15	248.3	1.0	4.40
							13.0	90.6	1045.1	600	0.45	65	0.283	0.150	1.45	410.1	0.7	2.55
							13.8	87.8	1005.7	600	0.67	33	0.283	0.150	1.77	501.3	0.3	2.01
							14.1	86.7	1459.0	750	0.40	50	0.442	0.188	1.59	704.1	0.5	2.07
Cedarwood Towers			2.804				14.6	84.9	1987.6	750	0.36	53	0.442	0.188	1.51	666.6	0.6	2.98
							15.2	83.0	2180.9	750	0.47	58	0.442	0.188	1.72	759.6	0.6	2.87
		Walkley					15.7	81.3	2135.3	750	0.37	70	0.442	0.188	1.54	678.5	0.8	3.15
Phase III																		
Deverent	Lleven						10.0	70.0		200	1 10	07.0	0.071	0.075	1 40	104.0	0.2	0.00
Baycrest	Heron	Deverant					10.0	70.0		300	1.10	21.2	0.071	0.075	1.48	104.9	0.3	0.00
Plack 2	Reverset	Baycrest	0.775				10.3	/0.8	20E 2	300	0.94	03 74	0.071	0.075	1.33	93.7	1.0	0.00
Codanwood	Dayciest		2.115				11.3	97.0	220.0	430	0.51	60	0.159	0.113	1.09	300.1	0.7	0.75
Plack 4			2 1 1 0				12.0	94.7	223.3	750	0.01	09	0.210	0.131	1.41	407.0	0.0	0.74
BIOCK 4			2.110				12.0	91.4	392.7	750	0.20	33	0.442	0.100	1.13	497.9 510.7	1.0	0.79
Block 6			2 202				1/ 3	86.1	578.8	750	0.21	50	0.442	0.100	1.10	721.5	0.5	0.77
Block 5 + Cedarwood Towers			2.202				14.8	84.3	806.4	825	0.51	53	0.535	0.100	1.00	1024.5	0.5	0.00
Block 7			1 221				15.2	82.8	905.4	900	0.01	58	0.636	0.200	1.52	1140.0	0.5	0.75
DIOGRA		Walkley	1.221				15.2	81.2	905.6	900	0.40	70	0.636	0.225	1.70	1144.9	0.0	0.79
		Wandoy					16.4	01.2	000.0		0.40	10	0.000	0.220	1.00	1111.0	0.0	0.10
Phase II							10.1											
Sandalwood	Heron						10.0	76.8	0.0	300	0.52	71	0.071	0.075	0.99	69.8	1.2	0.00
							11.2	98.3	0.0	375	0.29	76	0.110	0.094	0.85	94.3	1.5	0.00
Block 3 + Baycrest Towers			2.948				12.7	91.9	239.4	525	1.30	40	0.216	0.131	2.27	490.3	0.3	0.49
		Baycrest					13.0	90.7	239.4	600	0.62	149	0.283	0.150	1.72	485.1	1.4	0.49
Block 8	Baycrest	ĺ.	2.683				14.4	85.5	457.2	750	0.72	67	0.442	0.188	2.13	942.3	0.5	0.49
Block 9		Walkley	1.978				14.9	83.7	617.8	750	1.22	68	0.442	0.188	2.78	1230.0	0.4	0.50
		,					15.4											

* 2-Year Storm Event Target Release Rate

Proposed change from existing conditions

DRAWINGS / FIGURES

Heron Gate Concept Plan | April 1, 2019 |

