

Pedestrian Level Wind Study

100 Argyle Avenue

Ottawa, Ontario

REPORT: GWE18-108-PLW

Prepared For:

Kelly Rhodenizer
Senior Development Manager
Colonnade BridgePort
16 Concourse Gate, Suite 200
Ottawa, ON K2E 7S8

Prepared By:

Justin Ferraro, Principal Edward Urbanski, M.Eng., Junior Wind Scientist Vincent Ferraro, M.Eng., P.Eng., Managing Principal

November 15, 2018

EXECUTIVE SUMMARY

This report describes a computer-based pedestrian level wind study in support of a Zoning By-law Amendment (ZBA) application for the proposed mixed-use development located at 100 Argyle Avenue in Ottawa, Ontario. The study involves simulation of wind speeds for selected wind directions in a three-dimensional (3D) computer model using the Computational Fluid Dynamics (CFD) technique, combined with meteorological data integration, to assess pedestrian comfort and safety within and surrounding the development site. The results and recommendations derived from these considerations are summarized in the following paragraphs and detailed in the subsequent report.

A complete summary of the predicted wind conditions is presented in Section 5 of this report. Based on CFD test results, interpretation and experience with similar developments, we conclude the following:

- All grade-level areas within and surrounding the development site will be acceptable for the intended pedestrian uses throughout the year, including surrounding sidewalks and building access points.
- 2) The Level 4 rooftop terrace on the west side of the building will require a targeted mitigation strategy to ensure conditions are comfortable for occupants during the typical use period. The common area will be addressed as the design is refined and a detailed wind comfort study required for SPA will confirm that mitigation measures will satisfy the comfort criteria.
- 3) The architectural design of the building has been updated since the completion of our wind study. The changes that are considered important for pedestrian wind comfort include a height increase of a single storey (21-storeys in total) and the introduction of a grade-level inset on the south elevation. The noted changes will not adversely impact pedestrian wind comfort across the site.
- 4) Excluding anomalous localized storm events such as tornadoes and downbursts, no areas over the study site are considered uncomfortable or unsafe.

TABLE OF CONTENTS

1.	INTF	1	
2.	TERI	1	
3.	OBJ	2	
4.	MET	2	
	4.1	Computer-Based Context Modelling	2
	4.2	Wind Speed Measurements	3
	4.3	Meteorological Data Analysis	4
	4.4	Pedestrian Comfort Criteria – City of Ottawa	6
5.	RESULTS AND DISCUSSION		8
6.	SUMMARY AND RECOMMENDATIONS		

FIGURES

APPENDICES

Appendix A – Simulation of the Natural Wind

Appendix B – Pedestrian Level Wind Measurement Methodology

1. INTRODUCTION

Gradient Wind Engineering Inc. (GWE) was retained by Colonnade BridgePort to undertake a computer-based pedestrian level wind (PLW) study for a mixed-use development located at 100 Argyle Avenue in Ottawa, Ontario. Our mandate within this study, as outlined in GWE proposal #18-056P, dated February 27, 2018, is to investigate pedestrian wind comfort within and surrounding the development site, and to identify any areas where wind conditions may interfere with certain pedestrian activities so that mitigation measures may be considered, where necessary.

This study is based on industry standard CFD simulation and data analysis procedures, architectural drawings prepared by RLA Architecture in November 2018, reference to City of Ottawa wind criteria, surrounding street layouts and existing and approved future building massing information, as well as recent site imagery.

2. TERMS OF REFERENCE

The proposed residential development is located at 100 Argyle Avenue in Ottawa, Ontario. The subject site is situated centre north on a rectangular parcel of land bounded by Argyle Avenue to the north, Metcalfe Street to the west, Catherine Street to the south, and Elgin Street to the east.

The proposed development is a 21-storey building modeled as a 20-storey building for this study. The difference of one story will have no significant impact on the study. The proposed development has a two-storey podium comprising one basement level, administration offices, utility space, and a gym at grade, and residential units in above floors. Indoor Amenity areas are provided on the north side of Level 2 and west side of Level 4. The building planform is nearly rectangular with the short axis oriented along Argyle Avenue. The northwest corner of the building planform features a rectangular inset at Ground Level, which the floor above overhangs and allows for access to the below-grade parking by a driveway from Argyle Avenue. Additionally, a loading driveway is located at grade on the east side of the building from Argyle Avenue up to a Parking area at the south side of the building and continuing on the west side of the building returning to Argyle Avenue The south side of the building planform features a rectangular inset at Ground Level, which the floor above overhangs and allows for access to the covered parking spaces. The floorplate also slightly extends from the east and south elevations at Level 2 to overhang the ground floor. Private balconies are located at every level above grade. An outdoor amenity terrace is located atop the podium on the west side of the building.

The immediate surroundings comprise a mix of low- and medium-rise buildings north of the Queensway, and predominantly low-rise buildings to the south. The far-field surroundings are characterized by medium- and high-rise buildings to the northwest clockwise to northeast, and predominantly low-rise buildings for the remaining compass directions. The site is located south of the Canadian Museum of Nature, approximately 150 m north of the Queensway, approximately 300 m west of the Rideau Canal, and approximately 2 kilometers (km) south of the Ottawa River.

Key areas under consideration for pedestrian wind comfort include building access points, the gradelevel outdoor amenity area, and surrounding sidewalks and walkways. A site plan is illustrated in Figure 1, while Figures 2A and 2B illustrate the computational model used to conduct the study.

3. **OBJECTIVES**

The principal objectives of this study are to (i) determine pedestrian level comfort and safety conditions within and surrounding the development site; (ii) identify areas where future wind conditions may interfere with the intended uses of outdoor spaces; and (iii) recommend suitable mitigation measures, where required.

4. **METHODOLOGY**

The approach followed to quantify pedestrian wind conditions over the site is based on Computational Fluid Dynamics (CFD) simulations of wind speeds across the study site within a virtual environment, meteorological analysis of the Ottawa area wind climate, and synthesis of computational data with City of Ottawa wind criteria¹. The following sections describe the analysis procedures, including a discussion of the pedestrian comfort guidelines.

4.1 **Computer-Based Context Modelling**

A computer-based PLW study is performed to determine the influence of the wind environment on pedestrian comfort over the proposed development site. Pedestrian comfort predictions, based on the mechanical effects of wind, are determined by combining measured wind speed data from CFD simulations with statistical weather data obtained from Ottawa's Macdonald-Cartier International Airport. The general concept and approach to CFD modelling is to represent building and topographic details in the immediate vicinity of the study site on the surrounding model, and to create suitable

¹ City of Ottawa Terms of References: Wind Analysis (Undated)

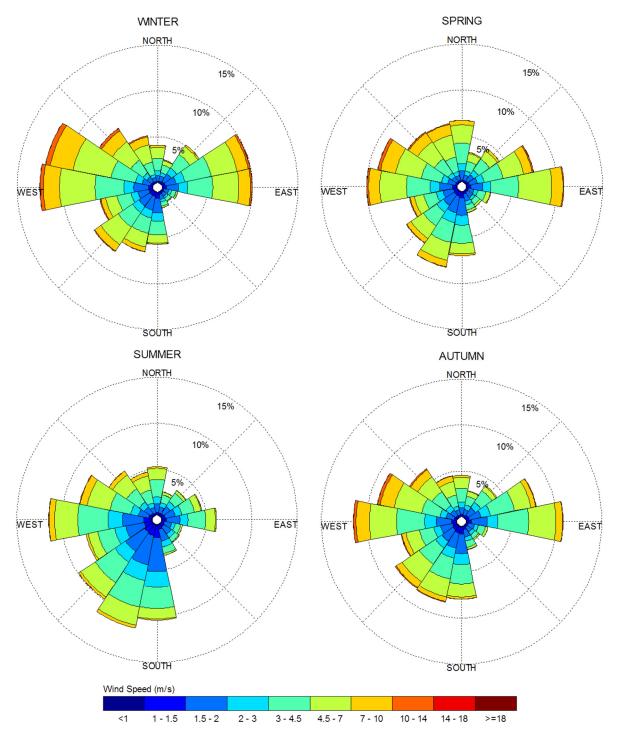
atmospheric wind profiles at the model boundary. The wind profiles are designed to have similar mean and turbulent wind properties consistent with actual site exposures.

An industry standard practice is to omit trees, vegetation, and other existing and planned landscape elements from the wind tunnel model due to the difficulty of providing accurate seasonal representation of vegetation. The omission of trees and other landscaping elements produces slightly more conservative (i.e., windier) wind speed values.

4.2 Wind Speed Measurements

The PLW analysis was performed by simulating wind flows and gathering velocity data over a CFD model of the site for 12 wind directions. The CFD simulation model was centered on the study building, complete with surrounding massing within a diameter of approximately 840 m.

Mean and peak wind speed data obtained over the study site for each wind direction were interpolated to 36 wind directions at 10° intervals, representing the full compass azimuth. Measured wind speeds approximately 1.5 m above local grade were referenced to the wind speed at gradient height to generate mean and peak velocity ratios, which were used to calculate full-scale values. The gradient height represents the theoretical depth of the boundary layer of the Earth's atmosphere, above which the mean wind speed remains constant. Appendices A and B provide greater detail of the theory behind wind speed measurements.


4.3 Meteorological Data Analysis

A statistical model for winds in Ottawa was developed from approximately 40-years of hourly meteorological wind data recorded at Macdonald-Cartier International Airport, and obtained from the local branch of Atmospheric Environment Services of Environment Canada. Wind speed and direction data were analyzed for each month of the year in order to determine the statistically prominent wind directions and corresponding speeds, and to characterize similarities between monthly weather patterns. Based on this portion of the analysis, the four seasons are represented by grouping data from consecutive months based on similarity of weather patterns, and not according to the traditional calendar method.

The statistical model of the Ottawa area wind climate, which indicates the directional character of local winds on a seasonal basis, is illustrated on the following page. The plots illustrate seasonal distribution of measured wind speeds and directions in meters per second (m/s). Probabilities of occurrence of different wind speeds are represented as stacked polar bars in sixteen azimuth divisions. The radial direction represents the percentage of time for various wind speed ranges per wind direction during the measurement period. The preferred wind speeds and directions can be identified by the longer length of the bars. For Ottawa, the most common winds occur for westerly wind directions, followed by those from the east, while the most common wind speeds are below 10 metres per second (m/s). The directional preference and relative magnitude of wind speed changes somewhat from season to season. By convention in microclimate studies, wind direction refers to the wind origin (e.g., a north wind blows from north to south).

SEASONAL DISTRIBUTION OF WINDS FOR VARIOUS PROBABILITIES MACDONALD-CARTIER INTERNATIONAL AIRPORT, OTTAWA, ONTARIO

Notes:

- 1. Radial distances indicate percentage of time of wind events.
- 2. Wind speeds are mean hourly measured at 10 m above the ground.
- 3. Apply a factor of 3.6 to convert m/s to km/h (e.g., 10 m/s is equivalent to 36 km/h).

4.4 Pedestrian Comfort Criteria – City of Ottawa

Pedestrian comfort criteria are based on mechanical wind effects without consideration of other meteorological conditions (i.e., temperature, relative humidity). The guidelines provide an assessment of comfort, assuming that pedestrians are appropriately dressed for a specified outdoor activity during any given season. Five pedestrian comfort classes and corresponding gust wind speed ranges are used to assess pedestrian comfort, which include: (i) Sitting; (ii) Standing; (iii) Walking; (iv) Uncomfortable; and (v) Dangerous. More specifically, the comfort classes, associated wind speed ranges, and limiting criteria are summarized as follows:

- (i) **Sitting:** Mean wind speeds less than or equal to 10 kilometers per hour (km/h), occurring at least 80% of the time. The gust equivalent mean wind speed is approximately 14 km/h.
- (ii) **Standing:** Mean wind speeds less than or equal to 14 km/h, occurring at least 80% of the time. The gust equivalent mean wind speed is approximately 20 km/h.
- (iii) **Strolling:** Mean wind speeds less than or equal to 17 km/h, occurring at least 80% of the time. The gust equivalent mean wind speed is approximately 25 km/h.
- (iv) **Walking:** Mean wind speeds less than or equal to 20 km/h, occurring at least 80% of the time. The gust equivalent mean wind speed is approximately 30 km/h.
- (v) Uncomfortable: Uncomfortable conditions are characterized by predicted values that fall below the 80% target for walking. Brisk walking and exercise, such as jogging, would be acceptable for moderate excesses of this criterion.
- (vi) **Dangerous:** Gust equivalent mean wind speeds greater than or equal to 90 km/h, occurring more often than 0.1% of the time, are classified as dangerous. From calculations of stability, it can be shown that gust wind speeds of 90 km/h would be the approximate threshold wind speed that would cause an average elderly person in good health to fall.

Gust speeds are used in the criteria because people tend to be more sensitive to wind gusts than to steady winds for lower wind speed ranges. For strong winds approaching dangerous levels, this effect is less important because the mean wind can also cause problems for pedestrians. The mean gust speed ranges are selected based on 'The Beaufort Scale', which describes the effect of forces produced by varying wind speeds on levels on objects.

THE BEAUFORT SCALE

Number	Description	Wind Speed (km/h)	Description
2	Light Breeze	4-8	Wind felt on faces.
3	Gentle Breeze	8-15	Leaves and small twigs in constant motion; Wind extends light flags.
4	Moderate Breeze	15-22	Wind raises dust and loose paper; Small branches are moved.
5	Fresh Breeze	22-30	Small trees in leaf begin to sway.
6	Strong Breeze	30-40	Large branches in motion; Whistling heard in electrical wires; Umbrellas used with difficulty.
7	Moderate Gale	40-50	Whole trees in motion; Inconvenient walking against wind.
8	Gale	50-60	Breaks twigs off trees; Generally impedes progress.

Experience and research on people's perception of mechanical wind effects has shown that if the wind speed levels are exceeded for more than 20% of the time, the activity level would be judged to be uncomfortable by most people. For instance, if mean wind speeds of 10 km/h were exceeded for more than 20% of the time, most pedestrians would judge that location to be too windy for sitting or more sedentary activities. Similarly, if 20 km/h at a location were exceeded for more than 20% of the time, walking or less vigorous activities would be considered uncomfortable. As most of these criteria are based on subjective reactions of a population to wind forces, their application is partly based on experience and judgment.

Once the pedestrian wind speed predictions have been established across the study site, the assessment of pedestrian comfort involves determining the suitability of the predicted wind conditions for their associated spaces. This step involves comparing the predicted comfort class to the desired comfort class, which is dictated by the location type. An overview of common pedestrian location types and their desired comfort classes are summarized on the following page.

DESIRED PEDESTRIAN COMFORT CLASSES FOR VARIOUS LOCATION TYPES

Location Types	Desired Comfort Classes
Major Building Entrances	Standing
Secondary Building Access Points	Walking
Primary Public Sidewalks	Strolling
Secondary Public Sidewalks / Bicycle Paths	Walking
Outdoor Amenity Spaces	Sitting
Cafés / Patios / Benches / Gardens	Sitting
Transit Shelters	Standing
Public Parks / Plazas	Strolling
Garage / Service Entrances	Walking
Parking Lots	Walking
Vehicular Drop-Off Zones	Walking

5. RESULTS AND DISCUSSION

The foregoing discussion of predicted pedestrian wind conditions for the study site is accompanied by Figures 3A through 6B (following the main text) illustrating the seasonal wind conditions at grade level and on the roof patio. The colour contours indicate predicted regions of the various comfort classes. Wind conditions comfortable for sitting or more sedentary activities are represented by the colour green, standing are represented by yellow, strolling by orange, and conditions suitable for walking are represented by blue.

Argyle Avenue Sidewalk and Building Entrance (Tags A & B): The sidewalk along Argyle Avenue (Tag A) will be comfortable for standing, or better, during the summer season, becoming suitable for strolling, or better, for the remainder of the year. The main building entrance (Tag B) on the north elevation will experience conditions suitable for standing, or better, throughout the year. The noted conditions are acceptable for the intended pedestrian uses of the spaces.

East Loading Driveway and Building Entrances (Tags C & D): The loading driveway along the east elevation (Tag C) will be comfortable for standing, or better, during the summer and autumn seasons, becoming suitable for strolling, or better, during the spring and winter seasons. The building entrance (Tag D) on the east elevation will experience conditions suitable for standing, or better, throughout the year. The noted conditions are acceptable for the intended pedestrian uses of the spaces.

Colonnade BridgePort - RLA Architecture

G W E

Parking Garage Driveway, Parking Entrance and West Driveway (Tags E-G): The parking garage driveway along the west elevation (Tag E) will experience conditions suitable for sitting throughout the year. The parking entrance (Tag F) located at the end of the driveway will also experience conditions suitable for sitting throughout the year. The adjacent driveway along the west side of the building (Tag G), will experience conditions suitable for standing throughout the year. The noted conditions are

South Parking Area and Building Entrances (Tags H-I): The south parking area (Tag H) located at the rear of the building will experience conditions suitable strolling or better, during the year. The building entrance (Tag I) on the south elevation will experience conditions suitable for standing, or better, throughout the year. The noted conditions are acceptable for the intended pedestrian uses of the spaces.

Level 4 Outdoor Amenity Terrace (Tag J): The outdoor amenity terrace (Tag J) will experience conditions suitable for a mix of sitting and standing during the summer season. Mitigation measures will be required to provide conditions suitable for sitting during the typical use period, defined as late spring through early autumn. The common area will be addressed as the design is refined and a detailed wind comfort study required for SPA will confirm that mitigation measures will satisfy the comfort criteria.

Influence of the Proposed Development on Existing Wind Conditions near the Study Site: Wind conditions over surrounding sidewalks beyond the development site, as well as at nearby building entrances, will be comfortable for their intended pedestrian uses during each seasonal period upon the introduction of the proposed development at 100 Argyle Avenue.

Wind Safety: Within the context of typical weather patterns, which exclude anomalous localized storm events such as tornadoes and downbursts, no areas over the study site were found to experience wind conditions that are considered unsafe.

considered acceptable.

6. SUMMARY AND RECOMMENDATIONS

This document summarizes the results of a pedestrian level wind study undertaken to assess wind conditions for the proposed mixed-use development located at 100 Argyle Avenue in Ottawa, Ontario. This work is based on industry standard CFD simulation and data analysis procedures, architectural drawings prepared by RLA Architecture in July 2018, reference to City of Ottawa wind criteria, surrounding street layouts and existing and approved future building massing information, as well as recent site imagery. Based on CFD test results, interpretation, and experience with similar developments, we conclude the following:

- All grade-level areas within and surrounding the development site will be acceptable for the intended pedestrian uses throughout the year, including surrounding sidewalks and building access points.
- 2) The Level 4 rooftop terrace on the west side of the building will require a targeted mitigation strategy to ensure conditions are comfortable for occupants during the typical use period. The common area will be addressed as the design is refined and a detailed wind comfort study required for SPA will confirm that mitigation measures will satisfy the comfort criteria.
- 3) The architectural design of the building has been updated since the completion of our wind study. The changes that are considered important for pedestrian wind comfort include a height increase of a single storey (21-storeys in total) and the introduction of a grade-level inset on the south elevation. The noted changes will not adversely impact pedestrian wind comfort across the site.
- 4) Excluding anomalous localized storm events such as tornadoes and downbursts, no areas over the study site are considered uncomfortable or unsafe.

This concludes our pedestrian level wind report. Please advise the undersigned of any questions or comments.

Sincerely,

Gradient Wind Engineering Inc.

Justin Ferraro Principal Vincent Ferraro, M.Eng., P.Eng. Managing Principal

Edward Urbanski, M.Eng. Junior Wind Scientist

E. Melsonsli

GWE18-108-PLW

PROJECT		ENUE, OTTAWA /EL WIND STUDY
SCALE	1:2500 (APPROX.)	GWE18-108-PLW-1
DATE	NOVEMBER 15, 2018	DRAWN BY B.J.

FIGURE 1: SITE PLAN AND SURROUNDING CONTEXT

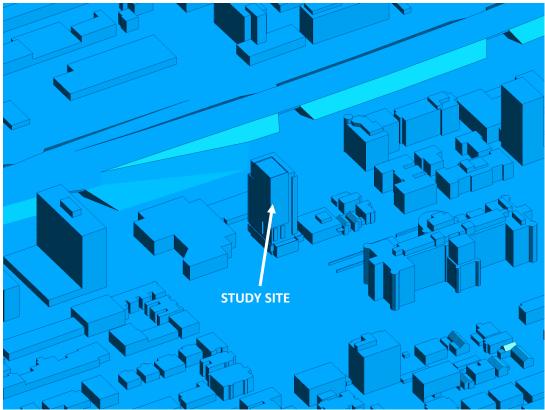


FIGURE 2A: COMPUTATIONAL MODEL, NORTH PERSPECTIVE

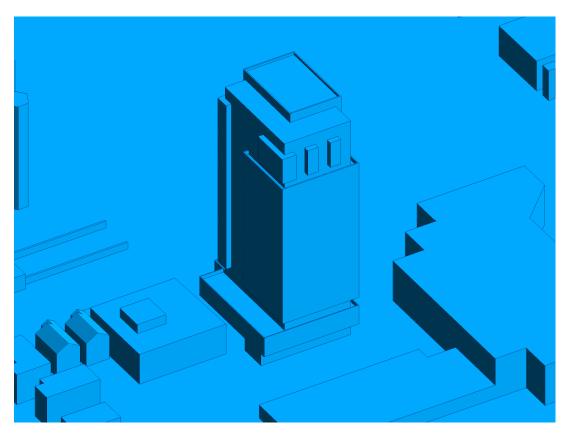
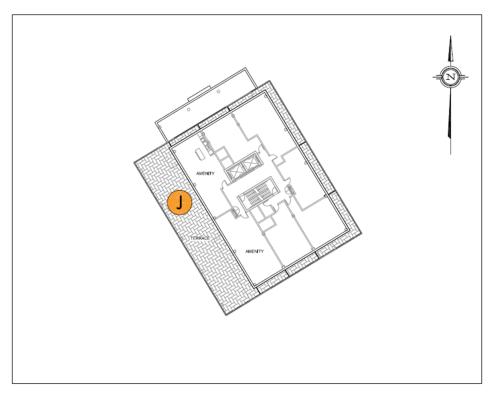


FIGURE 2B: STUDY SITE, NORTH PERSPECTIVE

FIGURE 3A: SPRING - GRADE-LEVEL PEDESTRIAN WIND CONDITIONS



100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

FIGURE 3B: SPRING - OUTDOOR AMENITY AREA WIND CONDITIONS

100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

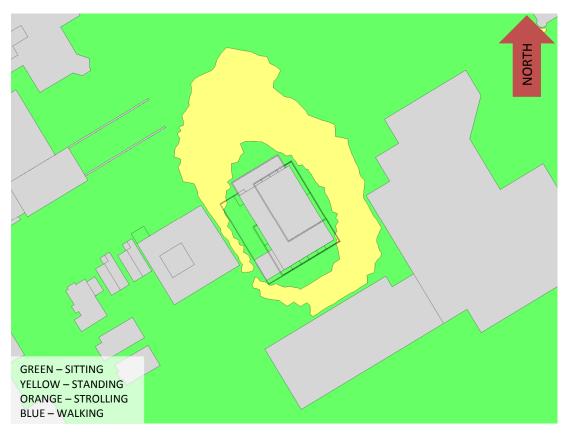



FIGURE 4A: SUMMER – GRADE-LEVEL PEDESTRIAN WIND CONDITIONS

100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

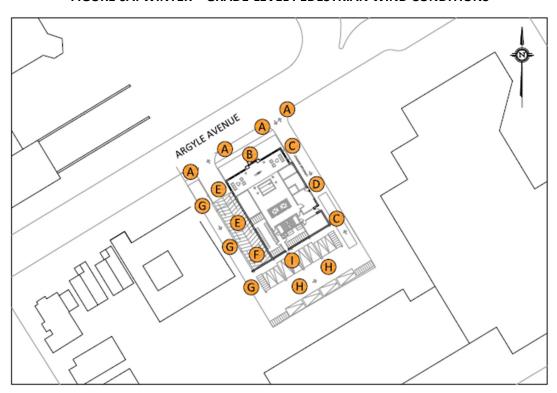
FIGURE 4B: SUMMER – OUTDOOR AMENITY AREA WIND CONDITIONS

100 ARGYLE AVENUE – GRADE REFERENCE MARKER LOCATIONS

FIGURE 5A: AUTUMN – GRADE-LEVEL PEDESTRIAN WIND CONDITIONS

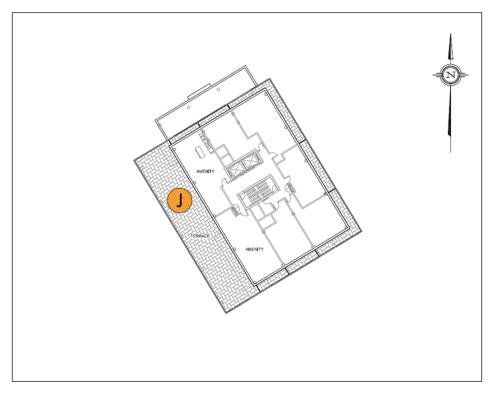
100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

FIGURE 5B: AUTUMN – OUTDOOR AMENITY AREA WIND CONDITIONS



100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

FIGURE 6A: WINTER - GRADE-LEVEL PEDESTRIAN WIND CONDITIONS



100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

FIGURE 6B: WINTER - OUTDOOR AMENITY AREA WIND CONDITIONS

100 ARGYLE AVENUE - GRADE REFERENCE MARKER LOCATIONS

APPENDIX A

SIMULATION OF THE NATURAL WIND

The information contained within this appendix is offered to provide a greater understanding of the relationship between the physical wind tunnel testing method and virtual computer-based simulations

WIND TUNNEL SIMULATION OF THE NATURAL WIND

Wind flowing over the surface of the earth develops a boundary layer due to the drag produced by surface features such as vegetation and man-made structures. Within this boundary layer, the mean wind speed varies from zero at the surface to the gradient wind speed at the top of the layer. The height of the top of the boundary layer is referred to as the gradient height, above which the velocity remains more-or-less constant for a given synoptic weather system. The mean wind speed is taken to be the average value over one hour. Superimposed on the mean wind speed are fluctuating (or turbulent) components in the longitudinal (i.e. along wind), vertical and lateral directions. Although turbulence varies according to the roughness of the surface, the turbulence level generally increases from nearly zero (smooth flow) at gradient height to maximum values near the ground. While for a calm ocean the maximum could be 20%, the maximum for a very rough surface such as the center of a city could be 100%, or equal to the local mean wind speed. The height of the boundary layer varies in time and over different terrain roughness within the range of 400 metres (m) to 600 m.

Simulating real wind behaviour in a wind tunnel, or by computer models (CFD), requires simulating the variation of mean wind speed with height, simulating the turbulence intensity, and matching the typical length scales of turbulence. It is the ratio between wind tunnel turbulence length scales and turbulence scales in the atmosphere that determines the geometric scales that models can assume in a wind tunnel. Hence, when a 1:200 scale model is quoted, this implies that the turbulence scales in the wind tunnel and the atmosphere have the same ratios. Some flexibility in this requirement has been shown to produce reasonable wind tunnel predictions compared to full scale. In model scale the mean and turbulence characteristics of the wind are obtained with the use of spires at one end of the tunnel and roughness elements along the floor of the tunnel. The fan is located at the model end and wind is pulled over the spires, roughness elements and model. It has been found that, to a good approximation, the mean wind profile can be represented by a power law relation, shown below, giving height above ground versus wind speed.

$$U = U_g \left(\frac{Z}{Z_g}\right)^{\alpha}$$

Where; U = mean wind speed, U_g = gradient wind speed, Z = height above ground, Z_g = depth of the boundary layer (gradient height) and α is the power law exponent.

Figure A1 plots three such profiles for the open country, suburban and urban exposures. The exponent α varies according to the type of terrain; α = 0.14, 0.25 and 0.33 for open country, suburban and urban exposures respectively. Figure A2 illustrates the theoretical variation of turbulence in full scale and some wind tunnel measurement for comparison.

The integral length scale of turbulence can be thought of as an average size of gust in the atmosphere. Although it varies with height and ground roughness, it has been found to generally be in the range of 100 m to 200 m in the upper half of the boundary layer. For a 1:300 scale, for example, the model value should be between 1/3 and 2/3 of a metre. Integral length scales are derived from power spectra, which describe the energy content of wind as a function of frequency. There are several ways of determining integral length scales of turbulence. One way is by comparison of a measured power spectrum in model scale to a non-dimensional theoretical spectrum such as the Davenport spectrum of longitudinal turbulence. Using the Davenport spectrum, which agrees well with full-scale spectra, one can estimate the integral scale by plotting the theoretical spectrum with varying L until it matches as closely as possible the measured spectrum:

$$f \times S(f) = \frac{\frac{4(Lf)^2}{U_{10}^2}}{\left[1 + \frac{4(Lf)^2}{U_{10}^2}\right]^{\frac{4}{3}}}$$

Where, f is frequency, S(f) is the spectrum value at frequency f, U_{10} is the wind speed 10 m above ground level, and L is the characteristic length of turbulence.

Once the wind simulation is correct, the model, constructed to a suitable scale, is installed at the center of the working section of the wind tunnel. Different wind directions are represented by rotating the model to align with the wind tunnel center-line axis.

REFERENCES

- 1. Teunissen, H.W., 'Characteristics Of The Mean Wind And Turbulence In The Planetary Boundary Layer', Institute For Aerospace Studies, University Of Toronto, UTIAS # 32, Oct. 1970
- 2. Flay, R.G., Stevenson, D.C., 'Integral Length Scales In An Atmospheric Boundary Layer Near The Ground', 9th Australian Fluid Mechanics Conference, Auckland, Dec. 1966
- 3. ESDU, 'Characteristics of Atmospheric Turbulence Near the Ground', 74030
- 4. Bradley, E.F., Coppin, P.A., Katen, P.C., *'Turbulent Wind Structure Above Very Rugged Terrain'*, 9th
 Australian Fluid Mechanics Conference, Auckland, Dec. 1966

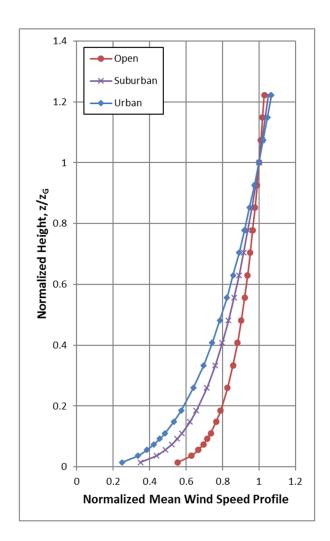


Figure A1: Mean Wind Speed Profiles

Figure A2: Turbulence Intensity Profile

APPENDIX B

PEDESTRIAN LEVEL WIND MEASUREMENT METHODOLOGY

The information contained within this appendix is offered to provide a greater understanding of the relationship between the physical wind tunnel testing method and virtual computer-based simulations

PEDESTRIAN LEVEL WIND MEASUREMENT METHODOLOGY

Pedestrian level wind studies are performed in a wind tunnel on a physical model of the study buildings at a suitable scale. Instantaneous wind speed measurements are recorded at a model height corresponding to 1.5 metres (m) full scale using either a hot wire anemometer or a pressure-based transducer. Measurements are performed at any number of locations on the model and usually for 36 wind directions. For each wind direction, the roughness of the upwind terrain is matched in the wind tunnel to generate the correct mean and turbulent wind profiles approaching the model.

The hot wire anemometer is an instrument consisting of a thin metallic wire conducting an electric current. It is an omni-directional device equally sensitive to wind approaching from any direction in the horizontal plane. By compensating for the cooling effect of wind flowing over the wire, the associated electronics produce an analog voltage signal that can be calibrated against velocity of the air stream. For all measurements, the wire is oriented vertically so as to be sensitive to wind approaching from all directions in a horizontal plane.

The pressure sensor is a small cylindrical device that measures instantaneous pressure differences over a small area. The sensor is connected via tubing to a transducer that translates the pressure to a voltage signal that is recorded by computer. With appropriately designed tubing, the sensor is sensitive to a suitable range of fluctuating velocities.

For a given wind direction and location on the model, a time history of the wind speed is recorded for a period of time equal to one hour in full-scale. The analog signal produced by the hot wire or pressure sensor is digitized at a rate of 400 samples per second. A sample recording for several seconds is illustrated in Figure B. This data is analyzed to extract the mean, root-mean-square (rms) and the peak of the signal. The peak value, or gust wind speed, is formed by averaging a number of peaks obtained from sub-intervals of the sampling period. The mean and gust speeds are then normalized by the wind tunnel gradient wind speed, which is the speed at the top of the model boundary layer, to obtain mean and gust ratios. At each location, the measurements are repeated for 36 wind directions to produce normalized polar plots, which will be provided upon request.

In order to determine the duration of various wind speeds at full scale for a given measurement location the gust ratios are combined with a statistical (mathematical) model of the wind climate for the project site. This mathematical model is based on hourly wind data obtained from one or more meteorological

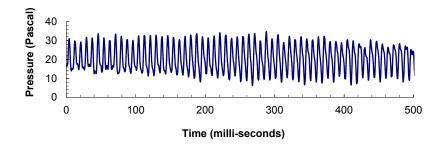
stations (usually airports) close to the project location. The probability model used to represent the data is the Weibull distribution expressed as:

$$P(>U_g) = A_{\theta} \cdot \exp\left[\left(-\frac{U_g}{C_{\theta}}\right)^{K_{\theta}}\right]$$

Where,

 $P(>U_g)$ is the probability, fraction of time, that the gradient wind speed U_g is exceeded; θ is the wind direction measured clockwise from true north, A, C, K are the Weibull coefficients, (Units: A - dimensionless, C - wind speed units [km/h] for instance, K - dimensionless). A_θ is the fraction of time wind blows from a 10° sector centered on θ .

Analysis of the hourly wind data recorded for a length of time, on the order of 10 to 30 years, yields the \mathbf{A}_{θ} \mathbf{C}_{θ} and \mathbf{K}_{θ} values. The probability of exceeding a chosen wind speed level, say 20 km/h, at sensor N is given by the following expression:


$$P_{N} \left(> 20 \right) = \Sigma_{\theta} P \left[\frac{\left(> 20 \right)}{\left(\frac{U_{N}}{U_{g}} \right)} \right]$$

$$P_N(>20) = \Sigma_{\theta} P \{> 20/(U_N/U_g)\}$$

Where, U_N/U_g is the aforementioned normalized gust velocity ratios where the summation is taken over all 36 wind directions at 10° intervals. If there are significant seasonal variations in the weather data, as determined by inspection of the C_θ and K_θ values, then the analysis is performed separately for two or more times corresponding to the groupings of seasonal wind data. Wind speed levels of interest for predicting pedestrian comfort are based on the comfort guidelines chosen to represent various pedestrian activity levels as discussed in the main text.

FIGURE B: TIME VERSUS VELOCITY TRACE FOR A TYPICAL WIND SENSOR

REFERENCES

- 1. Davenport, A.G., 'The Dependence of Wind Loading on Meteorological Parameters', Proc. of Int. Res. Seminar, Wind Effects On Buildings & Structures, NRC, Ottawa, 1967, University of Toronto Press.
- 2. Wu, S., Bose, N., 'An extended power law model for the calibration of hot-wire/hot-film constant temperature probes', Int. J. of Heat Mass Transfer, Vol.17, No.3, pp.437-442, Pergamon Press.