APPENDIX N
Laboratory and In-Situ Hydraulic Conductivity Testing Results
HYDRAULIC CONDUCTIVITY TEST
ASTM D 5084 (CONSTANT HEAD)

SAMPLE IDENTIFICATION

<table>
<thead>
<tr>
<th>PROJECT NUMBER</th>
<th>SAMPLE DEPTH, m</th>
<th>12-1125-0045</th>
<th>2.13-2.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT TITLE</td>
<td></td>
<td>SAMPLE</td>
<td>1</td>
</tr>
<tr>
<td>BOREHOLE NUMBER</td>
<td></td>
<td>12-03-03</td>
<td>03/12/2013</td>
</tr>
</tbody>
</table>

SPECIMEN PROPERTIES AND DIMENSIONS (INITIAL)

SAMPLE HEIGHT, cm	7.66	UNIT WEIGHT, kN/m3	15.44
SAMPLE DIAMETER, cm	6.90	DRY UNIT WEIGHT, kN/m3	8.71
SAMPLE AREA, cm2	37.40	SPECIFIC GRAVITY, assumed	2.70
SAMPLE VOLUME, cm3	286.59	VOLUME OF SOLIDS, cm3	94.24
TOTAL MASS, g	451.30	VOLUME OF voidS, cm3	192.34
DRY MASS, g	254.46	VOID RATIO	2.04
WATER CONTENT, %	77.4		

SATURATION STAGE

CELL PRESSURE, kPa	210	EFFECTIVE CONFining STRESS, kPa	5
HEAD PRESSURE, kPa	205	DURATION, min	2790
BACK PRESSURE, kPa	205	β COEFFICIENT	0.89

CONSOLIDATION STAGE

CELL PRESSURE, kPa	226	EFFECTIVE CONFining STRESS, kPa	21
HEAD PRESSURE, kPa	205	DURATION, min	1425
BACK PRESSURE, kPa	205	VOLUME CHANGE, cm3	2.7
DRAINAGE Top and Bottom			

SPECIMEN PROPERTIES AND DIMENSIONS (AFTER CONSOLIDATION)

| SAMPLE HEIGHT, cm | 7.64 | SAMPLE AREA, cm2 | 37.17 |
| SAMPLE DIAMETER, cm | 6.88 | SAMPLE VOLUME, cm3 | 283.89 |

HYDRAULIC CONDUCTIVITY STAGE

CELL PRESSURE, kPa	241	EFFECTIVE CONFining STRESS, kPa	21
HEAD PRESSURE, kPa	220	DURATION, min	4409.0
BACK PRESSURE, kPa	205	HYDRAULIC GRADIENT, i	20

SPECIMEN PROPERTIES AND DIMENSIONS (FINAL)

SAMPLE HEIGHT, cm	7.64	UNIT WEIGHT, kN/m3	15.40
SAMPLE DIAMETER, cm	6.88	DRY UNIT WEIGHT, kN/m3	8.79
SAMPLE AREA, cm2	37.17	SPECIFIC GRAVITY, assumed	2.70
SAMPLE VOLUME, cm3	283.89	VOLUME OF SOLIDS, cm3	94.24
TOTAL MASS, g	445.80	VOLUME OF voidS, cm3	189.65
DRY MASS, g	254.46	VOID RATIO	2.01
WATER CONTENT, %	75.2		

TEST RESULTS

- ELAPSED TIME TO STEADY STATE FLOW (min) 0.0
- DURATION OF STEADY STATE FLOW (min) 4409.0
- INFLOW VOLUME UNDER STEADY STATE FLOW (cm3) 33.6
- OUTFLOW VOLUME UNDER STEADY STATE FLOW (cm3) 37.6
- HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s) 1.71E-07
- HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s) 1.91E-07
- HYDRAULIC CONDUCTIVITY, K, cm/s 1.81E-07

NOTES:

- PERMEANT FLUID Desired tap water

Prepared By: RD
Golder Associates
Checked By: J.M.
HYDRAULIC CONDUCTIVITY TEST

ASTM D 5984 (CONSTANT HEAD)

SAMPLE IDENTIFICATION

<table>
<thead>
<tr>
<th>PROJECT NUMBER</th>
<th>SAMPLE</th>
<th>PROJECT TITLE</th>
<th>SAMPLE DEPTH, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-1125-0045</td>
<td>3</td>
<td>SAMPLE</td>
<td>11.43-12.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOREHOLE NUMBER</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-02-03</td>
<td>03/01/2013</td>
</tr>
</tbody>
</table>

SPECIMEN PROPERTIES AND DIMENSIONS (INITIAL)

<table>
<thead>
<tr>
<th>SAMPLE HEIGHT, cm 7.48</th>
<th>UNIT WEIGHT, kN/m² 16.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE DIAMETER, cm 6.92</td>
<td>DRY UNIT WEIGHT, kN/m³ 9.94</td>
</tr>
<tr>
<td>SAMPLE AREA, cm² 37.61</td>
<td>SPECIFIC GRAVITY, assumed 2.70</td>
</tr>
<tr>
<td>SAMPLE VOLUME, cm³ 281.32</td>
<td>VOLUME OF SOLIDS, cm³ 105.57</td>
</tr>
<tr>
<td>TOTAL MASS, g 460.90</td>
<td>VOLUME OF VOIDS, cm³ 175.75</td>
</tr>
<tr>
<td>DRY MASS, g 285.03</td>
<td>VOID RATIO 1.66</td>
</tr>
</tbody>
</table>

| WATER CONTENT, % 61.7 |

SATURATION STAGE

CELL PRESSURE, kPa 350	EFFECTIVE CONFINING STRESS, kPa 5
HEAD PRESSURE, kPa 345	DURATION, min 4,140
BACK PRESSURE, kPa 345	B COEFFICIENT 0.96

CONSOLIDATION STAGE

CELL PRESSURE, kPa 416	EFFECTIVE CONFINING STRESS, kPa 71
HEAD PRESSURE, kPa 345	DURATION, min 1,485
BACK PRESSURE, kPa 346	VOLUME CHANGE, cm³ 5.5

| DRAINAGE Top and Bottom |

SPECIMEN PROPERTIES AND DIMENSIONS (AFTER CONSOLIDATION)

<table>
<thead>
<tr>
<th>SAMPLE HEIGHT, cm 7.43</th>
<th>SAMPLE AREA, cm² 37.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE DIAMETER, cm 6.87</td>
<td>SAMPLE VOLUME, cm³ 275.85</td>
</tr>
</tbody>
</table>

HYDRAULIC CONDUCTIVITY STAGE

CELL PRESSURE, kPa 431	EFFECTIVE CONFINING STRESS, kPa 71
HEAD PRESSURE, kPa 360	DURATION, min 4223.0
BACK PRESSURE, kPa 345	HYDRAULIC GRADIENT, i 21

SPECIMEN PROPERTIES AND DIMENSIONS (FINAL)

<table>
<thead>
<tr>
<th>SAMPLE HEIGHT, cm 7.43</th>
<th>UNIT WEIGHT, kN/m² 16.27</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE DIAMETER, cm 6.87</td>
<td>DRY UNIT WEIGHT, kN/m³ 10.13</td>
</tr>
<tr>
<td>SAMPLE AREA, cm² 37.12</td>
<td>SPECIFIC GRAVITY, assumed 2.70</td>
</tr>
<tr>
<td>SAMPLE VOLUME, cm³ 275.85</td>
<td>VOLUME OF SOLIDS, cm³ 105.57</td>
</tr>
<tr>
<td>TOTAL MASS, g 457.60</td>
<td>VOLUME OF VOIDS, cm³ 170.28</td>
</tr>
<tr>
<td>DRY MASS, g 285.03</td>
<td>VOID RATIO 1.61</td>
</tr>
</tbody>
</table>

| WATER CONTENT, % 60.5 |

TEST RESULTS

| ELAPSED TIME TO STEADY STATE FLOW (min) 0.0 |
| DURATION OF STEADY STATE FLOW (min) 4223.0 |
| INFLOW VOLUME UNDER STEADY STATE FLOW (cm³) 17.3 |
| OUTFLOW VOLUME UNDER STEADY STATE FLOW (cm³) 16.0 |
| HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s) 8.91E-08 |
| HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s) 9.30E-08 |
| HYDRAULIC CONDUCTIVITY, K, cm/s 9.16E-08 |

NOTES:

PERMEANT FLUID Desired tap water
HYDRAULIC CONDUCTIVITY TEST

ASTM D 5684 (CONSTANT HEAD)

SAMPLE IDENTIFICATION

<table>
<thead>
<tr>
<th>PROJECT NUMBER</th>
<th>12-1125-0045</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT TITLE</td>
<td>SAMPLE</td>
<td></td>
</tr>
<tr>
<td>BOREHOLE NUMBER</td>
<td>12-01-03</td>
<td>DATE</td>
</tr>
<tr>
<td>SAMPLE IDENTIFICATION</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

SPECIMEN PROPERTIES AND DIMENSIONS (INITIAL)

SAMPLE HEIGHT, cm	6.98
SAMPLE DIAMETER, cm	6.94
SAMPLE AREA, cm²	37.84
SAMPLE VOLUME, cm³	264.26
TOTAL MASS, g	418.60
DRY MASS, g	246.16
WATER CONTENT, %	70.1
UNIT WEIGHT, kN/m³	15.53
DRY UNIT WEIGHT, kN/m³	9.13
SPECIFIC GRAVITY, assumed	2.70
VOLUME OF SOLIDS, cm³	91.17
VOLUME OF VOIDS, cm³	173.09
VOID RATIO	1.90

SATURATION STAGE

CELL PRESSURE, kPa	210	EFFECTIVE CONFINING STRESS, kPa	5
HEAD PRESSURE, kPa	205	DURATION, min	2.520
BACK PRESSURE, kPa	205	B COEFFICIENT	0.99

CONSOLIDATION STAGE

CELL PRESSURE, kPa	322	EFFECTIVE CONFINING STRESS, kPa	117
HEAD PRESSURE, kPa	205	DURATION, min	2.250
BACK PRESSURE, kPa	205	VOLUME CHANGE, cm³	11.5

Top and Bottom Drainage

SPECIMEN PROPERTIES AND DIMENSIONS (AFTER CONSOLIDATION)

SAMPLE HEIGHT, cm	6.88
SAMPLE DIAMETER, cm	6.84
SAMPLE AREA, cm²	36.74
SAMPLE VOLUME, cm³	252.87

HYDRAULIC CONDUCTIVITY STAGE

CELL PRESSURE, kPa	336	EFFECTIVE CONFINING STRESS, kPa	117
HEAD PRESSURE, kPa	219	DURATION, min	3333.0
BACK PRESSURE, kPa	205	HYDRAULIC GRADIENT, i	21

SPECIMEN PROPERTIES AND DIMENSIONS (FINAL)

SAMPLE HEIGHT, cm	6.88
SAMPLE DIAMETER, cm	6.84
SAMPLE AREA, cm²	36.74
SAMPLE VOLUME, cm³	252.87
TOTAL MASS, g	414.66
DRY MASS, g	246.16
WATER CONTENT, %	68.5
UNIT WEIGHT, kN/m³	16.08
DRY UNIT WEIGHT, kN/m³	9.55
SPECIFIC GRAVITY, assumed	2.70
VOLUME OF SOLIDS, cm³	91.17
VOLUME OF VOIDS, cm³	161.70
VOID RATIO	1.77

TEST RESULTS

ELAPSED TIME TO STEADY STATE FLOW (min)	0.0
DURATION OF STEADY STATE FLOW (min)	3333.0
INFLOW VOLUME UNDER STEADY STATE FLOW (cm³)	10.9
OUTFLOW VOLUME UNDER STEADY STATE FLOW (cm³)	11.3
HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s)	7.15E-08
HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s)	7.42E-08
HYDRAULIC CONDUCTIVITY, K, cm/s	7.28E-08

NOTES:

PERMEANT FLUID

Drained tap water

Prepared By: N.D

Golder Associates

Checked By:
HYDRAULIC CONDUCTIVITY TEST

FLOW VOLUME, cm³ vs. ELAPSED TIME, min.

BH 12-01-03 Sample 6

Golder Associates

Project No: 12-1125-0045
Prepared By: RD

Checked By:
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-1-3-1

INTERVAL (metres below ground surface)

Top of Interval = 40.1
Bottom of Interval = 45.4

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right) \frac{1}{t} \ln \frac{y_0}{y_t}}{2L_e}
\]

where \(K = \text{m/sec} \)

where:

- \(r_c = \) casing radius (metres);
- \(r_w = \) radial distance to undisturbed aquifer (metres);
- \(R_e = \) effective radius (metres);
- \(y_0 = \) initial drawdown (metres);
- \(L_e = \) length of screened interval (metres);
- \(y_t = \) drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.05</td>
</tr>
<tr>
<td>(L_e)</td>
<td>5.27</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>3.10</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.02</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.01</td>
</tr>
<tr>
<td>(t)</td>
<td>600.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K =) \text{m/sec}</td>
<td>(2E-07)</td>
</tr>
<tr>
<td>(K =) \text{cm/sec}</td>
<td>(2E-05)</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis Date: 1/15/2013

Analysis By: DH
Checked By: BH
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 12-1-4A

INTERVAL (metres below ground surface)

Top of Interval = 36.0
Bottom of Interval = 39.5

\[
K = \frac{r_c^2 ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \frac{1}{y_0 - y_t}
\]

where \(K = \text{m/sec}\)

where:
- \(r_c\) = casing radius (metres);
- \(r_w\) = radial distance to undisturbed aquifer (metres);
- \(R_e\) = effective radius (metres);
- \(L_e\) = length of screened interval (metres);
- \(y_0\) = initial drawdown (metres);
- \(y_t\) = drawdown (metres) at time \(t\) (seconds)

<table>
<thead>
<tr>
<th>INPUT PARAMETERS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c) = 0.02</td>
<td></td>
</tr>
<tr>
<td>(r_w) = 0.06</td>
<td></td>
</tr>
<tr>
<td>(L_e) = 3.50</td>
<td></td>
</tr>
<tr>
<td>(ln(R_e/r_w)) = 2.92</td>
<td>(K = 3E-06) m/sec</td>
</tr>
<tr>
<td>(y_0) = 0.04</td>
<td></td>
</tr>
<tr>
<td>(y_t) = 0.00</td>
<td></td>
</tr>
<tr>
<td>(t) = 90.0</td>
<td></td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis Date: 1/15/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-1-5B

INTERVAL (metres below ground surface)

Top of Interval = 4.8
Bottom of Interval = 5.0

$$K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \left(\frac{1}{t} \ln \frac{y_0}{y_t} \right)$$

where K=m/sec

r_c = casing radius (metres);
r_w = radial distance to undisturbed aquifer (metres);
R_e = effective radius (metres);
L_e = length of screened interval (metres);
y_0 = initial drawdown (metres);
y_t = drawdown (metres) at time t (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_c</td>
<td>0.02</td>
</tr>
<tr>
<td>r_w</td>
<td>0.10</td>
</tr>
<tr>
<td>L_e</td>
<td>0.24</td>
</tr>
<tr>
<td>$\ln(R_e/r_w)$</td>
<td>1.03</td>
</tr>
<tr>
<td>y_0</td>
<td>0.25</td>
</tr>
<tr>
<td>y_t</td>
<td>0.11</td>
</tr>
<tr>
<td>t</td>
<td>980.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>5E-07 m/sec</td>
</tr>
<tr>
<td>K'</td>
<td>5E-05 cm/sec</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis By: DH
Checked By: CHM
Analysis Date: 1/15/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-1-6

INTERVAL (metres below ground surface)
Top of Interval = 0.3
Bottom of Interval = 1.5

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

\(r_c \) = casing radius (metres);
\(r_w \) = radial distance to undisturbed aquifer (metres);
\(R_e \) = effective radius (metres);
\(y_0 \) = initial drawdown (metres);
\(L_e \) = length of screened interval (metres);
\(y_t \) = drawdown (metres) at time \(t \) (seconds)

<table>
<thead>
<tr>
<th>INPUT PARAMETERS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c) = 0.03</td>
<td>(K = 9E-08 \text{ cm/sec})</td>
</tr>
<tr>
<td>(r_w) = 0.10</td>
<td></td>
</tr>
<tr>
<td>(L_e) = 1.20</td>
<td></td>
</tr>
<tr>
<td>(\ln(R_e/r_w)) = 1.84</td>
<td></td>
</tr>
<tr>
<td>(y_0) = 0.15</td>
<td></td>
</tr>
<tr>
<td>(y_t) = 0.13</td>
<td></td>
</tr>
<tr>
<td>(t) = 1000.0</td>
<td></td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis By: DH
Checked By: CHM
Analysis Date: 1/15/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-2-3

INTERVAL (metres below ground surface)

Top of Interval = 37.0
Bottom of Interval = 42.0

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[
\begin{align*}
 r_c &= 0.03 \\
 r_w &= 0.05 \\
 L_e &= 4.95 \\
 \ln \left(\frac{R_e}{r_w} \right) &= 3.05 \\
 y_0 &= 0.80 \\
 y_t &= 0.01 \\
 t &= 100.0
\end{align*}
\]

RESULTS

\[
K = 2 \times 10^{-5} \text{ m/sec}
\]

\[
K = 2 \times 10^{-3} \text{ cm/sec}
\]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1125-0045
Checked By: CHM
Test Date: 01/22/13
Analysis Date: 1/22/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST BH12-2-5B

INTERVAL (metres below ground surface)

Top of Interval = 6.3
Bottom of Interval = 6.6

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

\(r_c = \) casing radius (metres);
\(r_w = \) radial distance to undisturbed aquifer (metres)
\(R_e = \) effective radius (metres);
\(y_0 = \) initial drawdown (metres)
\(L_e = \) length of screened interval (metres);
\(y_t = \) drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\(r_c = 0.02 \)
\(r_w = 0.06 \)
\(L_e = 0.30 \)
\(\ln(\frac{R_e}{r_w}) = 1.13 \)
\(y_0 = 0.44 \)
\(y_t = 0.23 \)
\(t = 200.0 \)

RESULTS

\[K = 2 \times 10^{-6} \ \text{m/sec} \]
\[K = 2 \times 10^{-4} \ \text{cm/sec} \]

<table>
<thead>
<tr>
<th>Change in Head (metres)</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>0.10</td>
<td>100</td>
</tr>
<tr>
<td>0.01</td>
<td>200</td>
</tr>
<tr>
<td>0.01</td>
<td>300</td>
</tr>
<tr>
<td>0.01</td>
<td>400</td>
</tr>
<tr>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>0.01</td>
<td>600</td>
</tr>
<tr>
<td>0.01</td>
<td>700</td>
</tr>
<tr>
<td>0.01</td>
<td>800</td>
</tr>
<tr>
<td>0.01</td>
<td>900</td>
</tr>
<tr>
<td>0.01</td>
<td>1000</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/22/13
Analysis By: DH
Checked By: CHM
Analysis Date: 1/22/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-2-6

INTERVAL (metres below ground surface)

Top of Interval = 0.4
Bottom of Interval = 2.3

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:
\(r_c \) = casing radius (metres);
\(r_w \) = radial distance to undisturbed aquifer (metres);
\(R_e \) = effective radius (metres);
\(y_0 \) = initial drawdown (metres);
\(L_e \) = length of screened interval (metres);
\(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS
\[\begin{align*}
 r_c &= 0.06 \\
 r_w &= 0.10 \\
 L_e &= 1.81 \\
 \ln(R_e/r_w) &= 1.78 \\
 y_0 &= 0.40 \\
 y_t &= 0.21 \\
 t &= 50.0
\end{align*} \]

RESULTS
\[\begin{align*}
 K &= 2 \times 10^{-5} \text{ m/sec} \\
 K &= 2 \times 10^{-3} \text{ cm/sec}
\end{align*} \]
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 12-3-3

INTERVAL (metres below ground surface)
Top of Interval = 40.1
Bottom of Interval = 45.4

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \left(\frac{1}{t} \ln \frac{y_0}{y_t} \right) \]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.05</td>
</tr>
<tr>
<td>(L_e)</td>
<td>5.30</td>
</tr>
<tr>
<td>(\ln \left(\frac{R_e}{r_w} \right))</td>
<td>3.08</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.50</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.04</td>
</tr>
<tr>
<td>(t)</td>
<td>300.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>3E-06 m/sec</td>
</tr>
<tr>
<td>(K)</td>
<td>3E-04 cm/sec</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis Date: 1/15/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-3-4A

INTERVAL (metres below ground surface)

Top of Interval = 35.1
Bottom of Interval = 38.7

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[r_c = 0.02 \]
\[r_w = 0.06 \]
\[L_e = 3.60 \]
\[\ln \left(\frac{R_e}{r_w} \right) = 3.39 \]
\[y_0 = 0.25 \]
\[y_t = 0.01 \]
\[t = 300.0 \]

RESULTS

\[K = 2E-06 \text{ m/sec} \]
\[K = 2E-04 \text{ cm/sec} \]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis By: DH
Checked By: CHM
Analysis Date: 1/16/2013

![Graph showing change in head over time](image-url)
BOUWER AND RICE SLUG TEST ANALYSIS

RISING HEAD TEST 12-3-5B

INTERVAL (metres below ground surface)

Top of Interval = 4.6
Bottom of Interval = 4.9

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \cdot \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

- \(r_c = 0.02 \)
- \(r_w = 0.10 \)
- \(L_e = 0.30 \)
- \(\ln \left(\frac{R_e}{r_w} \right) = 1.00 \)
- \(y_0 = 0.28 \)
- \(y_t = 0.10 \)
- \(t = 600.0 \)

RESULTS

- \(K = 7E-07 \text{ m/sec} \)
- \(K = 7E-05 \text{ cm/sec} \)

![Graph showing change in head over time](image_url)

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1125-0045
Test Date: 01/14/13
Analysis By: DH
Checked By: CHM
Analysis Date: 1/15/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-3-6

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[\begin{align*}
 r_c &= 0.03 \\
r_w &= 0.10 \\
L_e &= 1.20 \\
\ln \left(\frac{R_e}{r_w} \right) &= 1.87 \\
y_0 &= 0.10 \\
y_t &= 0.01 \\
t &= 200.0
\end{align*} \]

RESULTS

\[\begin{align*}
 K &= 5 \times 10^{-6} \text{ m/sec} \\
 K &= 5 \times 10^{-4} \text{ cm/sec}
\end{align*} \]
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-4-3

INTERVAL (metres below ground surface)

Top of Interval = 38.5
Bottom of Interval = 43.6

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \ln \frac{y_0}{y_t} \quad \text{where } K = \text{m/sec}
\]

where:
- \(r_c\) = casing radius (metres);
- \(r_w\) = radial distance to undisturbed aquifer (metres);
- \(R_e\) = effective radius (metres);
- \(L_e\) = length of screened interval (metres);
- \(y_0\) = initial drawdown (metres);
- \(y_t\) = drawdown (metres) at time \(t\) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.05</td>
</tr>
<tr>
<td>(L_e)</td>
<td>5.10</td>
</tr>
<tr>
<td>(\ln(\frac{R_e}{r_w}))</td>
<td>4.13</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.64</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.62</td>
</tr>
<tr>
<td>(t)</td>
<td>500.0</td>
</tr>
</tbody>
</table>

RESULTS

\[
K = 2E-08 \quad \text{m/sec} \quad \text{or} \quad K = 2E-06 \quad \text{cm/sec}
\]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/18/13
Analysis Date: 5/2/2013
Analysis By: DH
Checked By: BH
WELL TEST ANALYSIS

Data Set: \..\BH12-4-4A RHT-1_BH.aqt
Date: 12/05/13 Time: 16:41:56

PROJECT INFORMATION

Company: Golder Associate Ltd.
Client: CRRRC/Eastern EA ON/Boundary R
Project: 12-1125-0045/1000/0120
Test Well: 12-4-4A
Test Date: 4/18/2013

AQUIFER DATA

Saturated Thickness: 4.36 m Anisotropy Ratio (Kz/Kr): 1

WELL DATA (12-4-4A)

Initial Displacement: 0.6458 m Static Water Column Height: 35.28 m
Total Well Penetration Depth: 2.89 m Screen Length: 1.85 m
Casing Radius: 0.016 m Well Radius: 0.05 m

SOLUTION

Aquifer Model: Confined Solution Method: Butler
K = 0.0001774 m/sec Le = 31.97 m
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 12-4-5B

INTERVAL (metres below ground surface)
Top of Interval = 4.7
Bottom of Interval = 5.0

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \cdot \frac{1}{t} \ln \frac{y_0}{y_f} \]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_f \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS
\begin{tabular}{ll}
\(r_c \) & 0.02 \\
\(r_w \) & 0.06 \\
\(L_e \) & 0.23 \\
\(\ln \left(\frac{R_e}{r_w} \right) \) & 1.06 \\
y_0 & 0.42 \\
y_f & 0.06 \\
t & 400.0 \\
\end{tabular}

RESULTS
\begin{tabular}{cc}
K & 3E-06 m/sec \\
K & 3E-04 cm/sec \\
\end{tabular}

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/18/13
Analysis By: DH
Checked By: BH
Analysis Date: 5/2/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 12-4-6

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.6

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \cdot \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:

\(r_c \) = casing radius (metres);
\(r_w \) = radial distance to undisturbed aquifer (metres);
\(R_e \) = effective radius (metres);
\(y_0 \) = initial drawdown (metres);
\(L_e \) = length of screened interval (metres);
\(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>1.30</td>
</tr>
<tr>
<td>(\ln\left(\frac{R_e}{r_w}\right))</td>
<td>2.05</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.06</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.01</td>
</tr>
<tr>
<td>(t)</td>
<td>300.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>(K)</th>
<th>3E-06 m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>3E-04 cm/sec</td>
</tr>
</tbody>
</table>

![Graph showing change in head over time]
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-10-2

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS
- \(r_c = 0.03 \)
- \(r_w = 0.06 \)
- \(L_e = 1.13 \)
- \(\ln(R_e/r_w) = 1.92 \)
- \(y_0 = 0.13 \)
- \(y_t = 0.02 \)
- \(t = 800.0 \)

RESULTS
- \(K = 2 \times 10^{-06} \text{ m/sec} \)
- \(K = 2 \times 10^{-04} \text{ cm/sec} \)

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/22/13
Analysis Date: 5/6/2013
Analysis By: DH
Checked By: BH
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-10-3

INTERVAL (metres below ground surface)

Top of Interval = 5.87
Bottom of Interval = 6.15

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \left(\frac{1}{t} \right) \ln \frac{y_0}{y_t} \]

where \(K \) = m/sec

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[\begin{align*}
 r_c &= 0.02 \\
 r_w &= 0.06 \\
 L_e &= 0.28 \\
 \ln \left(\frac{R_e}{r_w} \right) &= 1.15 \\
 y_0 &= 0.56 \\
 y_t &= 0.30 \\
 t &= 300.0
\end{align*} \]

RESULTS

\[\begin{align*}
 K &= 1E-06 \text{ m/sec} \\
 K &= 1E-04 \text{ cm/sec}
\end{align*} \]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/18/13
Analysis Date: 7/23/2013
Analysis By: DH
Checked By: BH
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-12-2

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K = \text{m/sec} \)

where:

\(r_c = \text{casing radius (metres)} \)
\(r_w = \text{radial distance to undisturbed aquifer (metres)} \)
\(R_e = \text{effective radius (metres)} \)
\(y_0 = \text{initial drawdown (metres)} \)
\(L_e = \text{length of screened interval (metres)} \)
\(y_t = \text{drawdown (metres) at time } t \text{ (seconds)} \)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>1.22</td>
</tr>
<tr>
<td>(\ln \left(\frac{R_e}{r_w} \right))</td>
<td>2.43</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.10</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.01</td>
</tr>
<tr>
<td>(t)</td>
<td>600.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K = \text{m/sec})</td>
<td>4E-06</td>
</tr>
<tr>
<td>(K = \text{cm/sec})</td>
<td>4E-04</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/24/13
Analysis By: DH
Checked By: BH
Analysis Date: 5/6/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-12-3

INTERVAL (metres below ground surface)

Top of Interval = 4.8
Bottom of Interval = 5.4

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K \) = m/sec

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\begin{align*}
 r_c &= 0.02 \\
 r_w &= 0.06 \\
 L_e &= 0.61 \\
 \ln(\frac{R_e}{r_w}) &= 1.71 \\
 y_0 &= 0.45 \\
 y_t &= 0.20 \\
 t &= 200.0
\end{align*}

RESULTS

\begin{align*}
 K &= 1E-06 \text{ m/sec} \\
 K &= 1E-04 \text{ cm/sec}
\end{align*}

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1127-00125/1000/0120
Checked By: BH
Test Date: 04/18/13
Analysis Date: 5/9/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-17-2

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{t}{y_0} \ln \frac{y_0}{y_t}
\]

where \(K = \text{m/sec} \)

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[
\begin{align*}
& r_c = 0.02 \\
& r_w = 0.06 \\
& L_e = 1.22 \\
& \ln(R_e/r_w) = 2.16 \\
& y_0 = 0.12 \\
& y_t = 0.01 \\
& t = 400.0
\end{align*}
\]

RESULTS

\[
\begin{align*}
& K = 1 \times 10^{-6} \text{ m/sec} \\
& K = 1 \times 10^{-4} \text{ cm/sec}
\end{align*}
\]
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-17-3

INTERVAL (metres below ground surface)

Top of Interval = 4.4
Bottom of Interval = 5.0

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\begin{array}{l}
\begin{align*}
rc & = 0.02 \\
rw & = 0.06 \\
Le & = 0.58 \\
\ln(R_e/r_w) & = 1.67 \\
y_0 & = 0.53 \\
y_t & = 0.21 \\
t & = 300.0
\end{align*}
\end{array}

RESULTS

\begin{array}{l}
\begin{align*}
K & = 1E-06 \text{ m/sec} \\
K & = 1E-04 \text{ cm/sec}
\end{align*}
\end{array}

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/17/13
Analysis By: DH
Checked By: BH
Analysis Date: 5/2/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-18-2

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

where:

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where: $K = \text{m/sec}$

- r_c = casing radius (metres);
- r_w = radial distance to undisturbed aquifer (metres);
- R_e = effective radius (metres);
- L_e = length of screened interval (metres);
- y_0 = initial drawdown (metres);
- y_t = drawdown (metres) at time t (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_c</td>
<td>0.03</td>
</tr>
<tr>
<td>r_w</td>
<td>0.06</td>
</tr>
<tr>
<td>L_e</td>
<td>1.22</td>
</tr>
<tr>
<td>$\ln(R_e/r_w)$</td>
<td>2.16</td>
</tr>
<tr>
<td>y_0</td>
<td>0.55</td>
</tr>
<tr>
<td>y_t</td>
<td>0.02</td>
</tr>
<tr>
<td>t</td>
<td>300.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1E-05 m/sec</td>
</tr>
<tr>
<td>K</td>
<td>1E-03 cm/sec</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/22/13

Analysis By: DH
Checked By: BH
Analysis Date: 5/6/2013

Change in Head (metres) vs. Time (seconds) chart.
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-18-3

INTERVAL (metres below ground surface)
Top of Interval = 5.7
Bottom of Interval = 6.2

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K = \text{m/sec}\)

where:
\(r_c = \) casing radius (metres);
\(r_w = \) radial distance to undisturbed aquifer (metres);
\(R_e = \) effective radius (metres);
\(L_e = \) length of screened interval (metres);
\(y_0 = \) initial drawdown (metres);
\(y_t = \) drawdown (metres) at time \(t\) (seconds)

INPUT PARAMETERS
\(r_c = 0.02\)
\(r_w = 0.06\)
\(L_e = 0.43\)
\(\ln \left(\frac{R_e}{r_w} \right) = 1.43\)
\(y_0 = 0.43\)
\(y_t = 0.06\)
\(t = 1000.0\)

RESULTS
\(K = 8E-07 \text{ m/sec}\)
\(K = 8E-05 \text{ cm/sec}\)
BOUWER AND RICE SLUG TEST ANALYSIS

RISING HEAD TEST 13-21-2

INTerval (metres below ground surface)

- Top of Interval = 0.3
- Bottom of Interval = 1.5

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \frac{y_0}{y_t}
\]

where \(K = \text{m/sec} \)

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>0.94</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>1.77</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.16</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.03</td>
</tr>
<tr>
<td>(t)</td>
<td>600.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>3E-06 m/sec</td>
</tr>
<tr>
<td>(K)</td>
<td>3E-04 cm/sec</td>
</tr>
</tbody>
</table>

Graph

-**x-axis:** Time (seconds)
-**y-axis:** Change in Head (metres)

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/22/13
Analysis By: DH
Checked By: BH
Analysis Date: 5/3/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISEING HEAD TEST 13-24-2

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

\[
K = \frac{r_e^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K \) = m/sec

where:

- \(r_c \) = casing radius (metres)
- \(r_w \) = radial distance to undisturbed aquifer (metres)
- \(R_e \) = effective radius (metres)
- \(y_0 \) = initial drawdown (metres)
- \(L_e \) = length of screened interval (metres)
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[
\begin{align*}
 r_c & = 0.02 \\
 r_w & = 0.06 \\
 L_e & = 1.22 \\
 \ln(R_e/r_w) & = 2.14 \\
 y_0 & = 0.63 \\
 y_t & = 0.01 \\
 t & = 400.0
\end{align*}
\]

RESULTS

\[
\begin{align*}
 K & = 2E-06 \text{ m/sec} \\
 K & = 2E-04 \text{ cm/sec}
\end{align*}
\]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/22/13
Analysis By: DH
Checked By: BH
Analysis Date: 5/6/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-5-3

INTERVAL (metres below ground surface)
Top of Interval = 35.3
Bottom of Interval = 40.3

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.02</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.04</td>
</tr>
<tr>
<td>(L_e)</td>
<td>5.08</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>4.24</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.63</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.06</td>
</tr>
<tr>
<td>(t)</td>
<td>50.0</td>
</tr>
</tbody>
</table>

RESULTS

\[
K = \text{5E-06 m/sec}
\]

\[
K = \text{5E-04 cm/sec}
\]

![Graph showing change in head (metres) versus time (seconds)]

Project Name: CRRRC/EA Eastern ON/Boundary Rd Analysis By: DH
Project No.: 12-1127-00125/1000/0120 Checked By: BH
Test Date: 07/09/13 Analysis Date: 7/12/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-5-4A

INTERVAL (metres below ground surface)

Top of Interval = 28.7
Bottom of Interval = 31.1

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right) 1}{2L_e} \ln \left(\frac{y_0}{y_t} \right)
\]

where \(K = \text{m/sec} \)

where:

\(r_c \) = casing radius (metres);
\(r_w \) = radial distance to undisturbed aquifer (metres);
\(R_e \) = effective radius (metres);
\(y_0 \) = initial drawdown (metres);
\(L_e \) = length of screened interval (metres);
\(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.02</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>2.44</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>2.65</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.40</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.05</td>
</tr>
<tr>
<td>(t)</td>
<td>200.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>2E-06 m/sec</td>
</tr>
<tr>
<td>(K)</td>
<td>2E-04 cm/sec</td>
</tr>
</tbody>
</table>

![Graph of Change in Head vs Time](image-url)
BOUWER AND RICE SLUG TEST ANALYSIS

FALLING HEAD TEST 13-5-5

INTERVAL (metres below ground surface)

- Top of Interval = 4.3
- Bottom of Interval = 4.9

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \left(\frac{1}{t} \right) \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

Input Parameters:

- \(r_c = 0.03 \) m
- \(r_w = 0.10 \) m
- \(L_e = 0.60 \) m
- \(\ln \left(\frac{R_e}{r_w} \right) = 1.23 \)
- \(y_0 = 0.70 \) m
- \(y_t = 0.06 \) m
- \(t = 1200.0 \) s

Output Parameters:

- \(K = 1E-06 \) m/sec
- \(K = 1E-04 \) cm/sec

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1127-00125/1000/0120
Checked By: BH
Test Date: 04/24/13
Analysis Date: 5/7/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-5-6

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{t}{\ln \frac{y_0}{y_t}} \]

where \(K = \text{m/sec} \)

where:

- \(r_c = \) casing radius (metres);
- \(r_w = \) radial distance to undisturbed aquifer (metres);
- \(R_e = \) effective radius (metres);
- \(y_0 = \) initial drawdown (metres);
- \(L_e = \) length of screened interval (metres);
- \(y_t = \) drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.10</td>
</tr>
<tr>
<td>(L_e)</td>
<td>1.22</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>1.81</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.18</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.01</td>
</tr>
<tr>
<td>(t)</td>
<td>150.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K =) (m/sec)</td>
<td>9E-06</td>
</tr>
<tr>
<td>(K =) (cm/sec)</td>
<td>9E-04</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/25/13
Analysis Date: 5/7/2013

Analysis By: DH
Checked By: BH
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-6-3

INTERVAL (metres below ground surface)

Top of Interval = 41.4
Bottom of Interval = 44.7

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[
\begin{array}{ll}
 r_c &= 0.03 \\
 r_w &= 0.05 \\
 L_e &= 3.34 \\
 \ln(R_e/r_w) &= 3.15 \\
 y_0 &= 0.88 \\
 y_t &= 0.30 \\
 t &= 2000.0
\end{array}
\]

RESULTS

\[
\begin{array}{ll}
 K &= 2 \times 10^{-7} \text{ m/sec} \\
 K &= 2 \times 10^{-5} \text{ cm/sec}
\end{array}
\]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1127-00125/1000/0120
Checked By: BH
Test Date: 04/22/13
Analysis Date: 5/3/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-6-4A

INTERVAL (metres below ground surface)

Top of Interval = 33.0
Bottom of Interval = 35.6

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \left(\frac{1}{t} \right) \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

\(r_c = \) casing radius (metres);
\(r_w = \) radial distance to undisturbed aquifer (metres);
\(R_e = \) effective radius (metres);
\(y_0 = \) initial drawdown (metres);
\(L_e = \) length of screened interval (metres);
\(y_t = \) drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.02</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>2.58</td>
</tr>
<tr>
<td>(\ln \left(\frac{R_e}{r_w} \right))</td>
<td>2.69</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.74</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.11</td>
</tr>
<tr>
<td>(t)</td>
<td>400.0</td>
</tr>
</tbody>
</table>

RESULTS

\(K = 6 \times 10^{-7} \text{ m/sec} \)
\(K = 6 \times 10^{-5} \text{ cm/sec} \)

![Graph showing change in head over time](image_url)
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-6-5B

INTERVAL (metres below ground surface)

Top of Interval = 5.2
Bottom of Interval = 5.6

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \]

where \(K = \text{m/sec} \)

\(r_c \) = casing radius (metres);
\(r_w \) = radial distance to undisturbed aquifer (metres);
\(R_e \) = effective radius (metres);
\(y_0 \) = initial drawdown (metres);
\(L_e \) = length of screened interval (metres);
\(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.02</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>0.38</td>
</tr>
<tr>
<td>(\ln \left(\frac{R_e}{r_w} \right))</td>
<td>1.34</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.48</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.07</td>
</tr>
<tr>
<td>(t)</td>
<td>400.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>2E-06 m/sec</td>
</tr>
<tr>
<td>(K)</td>
<td>2E-04 cm/sec</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/17/13
Analysis By: DH
Checked By: BH
Analysis Date: 5/3/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-6-6

INTERVAL (metres below ground surface)

Top of Interval = 0.6
Bottom of Interval = 1.6

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{t}{y_0} \ln \left(\frac{y_0}{y_t} \right)
\]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>1.00</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>2.16</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.72</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.03</td>
</tr>
<tr>
<td>(t)</td>
<td>300.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>8E-06 m/sec</td>
</tr>
<tr>
<td>(K)</td>
<td>8E-04 cm/sec</td>
</tr>
</tbody>
</table>

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/17/13
Analysis Date: 4/22/2013
Analysis By: DH
Checked By: BH
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-7-2

INTERVAL (metres below ground surface)
Top of Interval = 34.6
Bottom of Interval = 39.5

where \(K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS
\(r_c = 0.02 \)
\(r_w = 0.04 \)
\(L_e = 4.87 \)
\(\ln \left(\frac{R_e}{r_w} \right) = 4.21 \)
\(y_0 = 0.11 \)
\(y_t = 0.04 \)
\(t = 500.0 \)

RESULTS
\(K = 2E-07 \) m/sec
\(K = 2E-05 \) cm/sec

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1127-00125/1000/0120
Checked By: BH
Test Date: 07/09/13
Analysis Date: 7/9/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-7-3

INTERVAL (metres below ground surface)

Top of Interval = 28.0
Bottom of Interval = 30.3

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right) \frac{1}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}}{y_t}
\]

where \(K = \text{m/sec} \)

where:

\(r_c = \) casing radius (metres); \(r_w = \) radial distance to undisturbed aquifer (metres)
\(R_e = \) effective radius (metres); \(y_0 = \) initial drawdown (metres)
\(L_e = \) length of screened interval (metres); \(y_t = \) drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.02</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.06</td>
</tr>
<tr>
<td>(L_e)</td>
<td>2.27</td>
</tr>
<tr>
<td>(\ln(R_e/r_w))</td>
<td>2.62</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.40</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.30</td>
</tr>
<tr>
<td>(t)</td>
<td>5000.0</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8 \times 10^{-9}) m/sec</td>
</tr>
<tr>
<td>(8 \times 10^{-7}) cm/sec</td>
</tr>
</tbody>
</table>

--

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/25/13
Analysis Date: 5/7/2013
Analysis By: DH
Checked By: BH
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-7-4-2

INTERVAL (metres below ground surface)

Top of Interval = 5.8
Bottom of Interval = 5.9

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \ln \frac{Y_0}{Y_t} \]

where \(K = \text{m/sec} \)

where:

- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[r_c = 0.02 \]
\[R_e = 0.10 \]
\[L_e = 0.15 \]
\[\ln \left(R_e/r_w \right) = 1.36 \]
\[y_0 = 0.30 \]
\[y_t = 0.03 \]
\[t = 4000.0 \]

RESULTS

\[K = 7 \times 10^{-7} \text{ m/sec} \]

\[K = 7 \times 10^{-5} \text{ cm/sec} \]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1127-00125/1000/0120
Checked By: BH
Test Date: 04/25/13
Analysis Date: 5/8/2013
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-7-5

INTERVAL (metres below ground surface)

<table>
<thead>
<tr>
<th>Top of Interval</th>
<th>Bottom of Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>

\[
K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \ln \frac{y_0}{y_t}
\]

where \(K = \text{m/sec}\)

where:
- \(r_c\) = casing radius (metres);
- \(r_w\) = radial distance to undisturbed aquifer (metres);
- \(R_e\) = effective radius (metres);
- \(L_e\) = length of screened interval (metres);
- \(y_0\) = initial drawdown (metres);
- \(y_t\) = drawdown (metres) at time \(t\) (seconds)

INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_c)</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_w)</td>
<td>0.10</td>
</tr>
<tr>
<td>(L_e)</td>
<td>1.18</td>
</tr>
<tr>
<td>(\ln \left(\frac{R_e}{r_w} \right))</td>
<td>1.46</td>
</tr>
<tr>
<td>(y_0)</td>
<td>0.25</td>
</tr>
<tr>
<td>(y_t)</td>
<td>0.01</td>
</tr>
<tr>
<td>(t)</td>
<td>600.0</td>
</tr>
</tbody>
</table>

RESULTS

\[
\begin{array}{c|c|c}
\hline
& K = & 2E-06 \text{ m/sec} \\
\hline
\ln \left(\frac{R_e}{r_w} \right) & K = & 2E-04 \text{ cm/sec} \\
\hline
\end{array}
\]

Change in Head (metres) vs. Time (seconds)

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Analysis By: DH
Project No.: 12-1127-00125/1000/0120
Checked By: BH
Test Date: 04/25/13
Analysis Date: 5/7/2013
BOUWER AND RICE SLUG TEST ANALYSIS
RISING HEAD TEST 13-8-2

INTERVAL (metres below ground surface)

Top of Interval = 0.3
Bottom of Interval = 1.5

where \(K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \frac{y_0}{y_t} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres);
- \(R_e \) = effective radius (metres);
- \(L_e \) = length of screened interval (metres);
- \(y_0 \) = initial drawdown (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds).

INPUT PARAMETERS

\(r_c = 0.02 \)
\(r_w = 0.06 \)
\(L_e = 1.22 \)
\(\ln \left(\frac{R_e}{r_w} \right) = 2.31 \)
\(y_0 = 0.09 \)
\(y_t = 0.01 \)
\(t = 600.0 \)

RESULTS

\(K = 1E-06 \) m/sec
\(K = 1E-04 \) cm/sec

![Graph showing change in head over time]
BOUWER AND RICE SLUG TEST ANALYSIS
FALLING HEAD TEST 13-8-3

INTERVAL (metres below ground surface)

Top of Interval = 4.4
Bottom of Interval = 4.7

\[K = \frac{r_c^2 \ln \left(\frac{R_e}{r_w} \right)}{2L_e} \frac{1}{t} \frac{\ln y_0}{y_t} \]

where \(K = \text{m/sec} \)

where:
- \(r_c \) = casing radius (metres);
- \(r_w \) = radial distance to undisturbed aquifer (metres)
- \(R_e \) = effective radius (metres);
- \(y_0 \) = initial drawdown (metres)
- \(L_e \) = length of screened interval (metres);
- \(y_t \) = drawdown (metres) at time \(t \) (seconds)

INPUT PARAMETERS

\[\begin{align*}
 r_c &= 0.02 \\
 r_w &= 0.06 \\
 L_e &= 0.30 \\
 \ln \left(\frac{R_e}{r_w} \right) &= 1.19 \\
 y_0 &= 0.40 \\
 y_t &= 0.32 \\
 t &= 4000.0
\end{align*} \]

RESULTS

\[\begin{align*}
 K &= 3 \times 10^{-08} \text{ m/sec} \\
 K &= 3 \times 10^{-06} \text{ cm/sec}
\end{align*} \]

Project Name: CRRRC/EA Eastern ON/Boundary Rd
Project No.: 12-1127-00125/1000/0120
Test Date: 04/24/13
Analysis By: DH
Analysis Date: 5/7/2013

Check Analysis:

Change in Head (metres)

Time (seconds)