Report

Project: 135925-6.4.3

BARRETT LANDS - BLOCK 178 SERVICING BRIEF

Table of Contents

1	INTRO	DDUCTION				
	1.1	Guidelin	es and Standards	. 1		
	1.2	Pre-Con	sultation Meeting	. 2		
	1.3	Environr	nental Issues	. 2		
	1.4	Geotech	nical Concerns	. 2		
2	WATE	R DISTRI	BUTION	. 3		
	2.1	Existing	Conditions	. 3		
	2.2	Design (Criteria	. 3		
		2.2.1	Water Demands	. 3		
		2.2.2	System Pressures	. 3		
		2.2.3 I	Fire Flow Rate	. 4		
		2.2.4 I	Boundary Conditions	. 4		
		2.2.5 I	Hydraulic Model	. 4		
	2.3	Propose	d Water Plan	. 4		
		2.3.1 I	Hydraulic Analysis	. 4		
		2.3.2	Summary of Results	. 5		
3	WAST	EWATER		. 6		
	3.1	Existing	Conditions	. 6		
		3.1.1	Verification of Existing Sanitary Sewer Capacity	. 6		
	3.2	Propose	d Sewers	. 6		
		3.2.1 I	Design Flow:	. 6		
		3.2.2 I	Population Density:	. 6		
4	SITE	STORMW	ATER MANAGEMENT	. 7		
	4.1	Objective	e	. 7		
	4.2	Existing	Conditions	. 7		
	4.3	Design (Criteria	. 7		
	4.4	System	Concept	. 8		
		4.4.1 I	Dual Drainage Design	. 8		
		4.4.2 I	Proposed Minor System	. 8		
	4.5	Stormwa	ater Management	. 8		
		4.5.1	Water Quality Control	. 8		

		4.5.3	2 Year Ponding	10
		4.5.4	100 year + 20% Stress Test	10
	4.6	Storm I	Hydraulic Grade Line	11
5	SOUR	CE CON	ITROLS	12
	5.1	Genera	al	12
	5.2	Lot Gra	ading	12
	5.3	Roof Lo	eaders	12
	5.4	Vegeta	tion	12
6	CONV	EYANCI	E CONTROLS	13
	6.1	Genera	al	13
	6.2	Flat Ve	getated Swales	13
	6.3	Catchb	asins	13
	6.4	Perviou	us Landscaped Area Drainage	13
7	SEDIM	IENT AN	ID EROSION CONTROL PLAN	14
	7.1	Genera	al	14
	7.2	Trench	Dewatering	14
	7.3	Bulkhe	ad Barriers	14
	7.4	Seepa	ge Barriers	14
	7.5	Surface	e Structure Filters	14
	7.6	Stockp	ile Management	15
8	ROAD	S AND I	NOISE ATTENUATION	16
	8.1	Aircraft	Sound Levels	16
9	SOILS			17
10	RECO	MMEND	ATIONS	18

List of Appendices

APPENDIX A

AOV Plan of Subdivision for the Barrett Lands Phase 3

Site Plan for Barrett Block 178

135925-001 General Plan of Services

City of Ottawa Pre-Consultation Meeting Notes

APPENDIX B

Water Distribution Model

APPENDIX C

Sanitary Sewer Design Sheet

135925-400 Sanitary Drainage Plan

Barret Lands Phase 3 Sanitary Design Sheet

Barret Lands Phase 3 Sanitary Drainage Area Plan

APPENDIX D

Storm Sewer Design Sheet

135925-500 Storm Drainage Plan

135925-600 Ponding Plan

Barret Lands Phase 3 Storm Design Sheet Barret Lands Phase 3 Storm Drainage Area Plan Modified Rational Method on-site SWM calculations

Storm HGL Calculations

Barret Lands Phase 3 HGL Reference Overflow Depth/Capacity Calculation

Temporary Orifice Sizing

Sample Runoff Coefficient Calculations

APPENDIX E

135925-900 Erosion and Sediment Control Plan

135925-200 Grading Plan

May 2022 iii

1 INTRODUCTION

Barrett Lands Block 178 is located in the northern portion of the Leitrim Development Area (LDA) and is part of the Barrett Lands subdivision. IBI Group Professional Services Inc. (IBI Group) has been retained by Barrett Co-Tenancy to provide professional engineering services for Block 178. The subject site is approximately 1.28 ha and consists of 50 townhouse units. The site consists of freehold frontage onto an 8.5m and a 6.0m wide private lane. There will be a common elements agreement in place for the shared elements of the site.

Block 178 is bounded by Barrett Farm Drive to the North, Barrett Lands Phase 3 lands to the west, Cemetery lands to the south and a future commercial to the east. Refer to key plan below for block location.

The proposed servicing design conforms to current City of Ottawa and MECP design criteria, and no pre-consultation meetings were requested from the South Nation Conservation (SNC) or the Ontario Ministry of Environment, Conservation and Parks (MECP).

1.1 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, and the 2018 Technical Bulleting 2018-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications and drawings.

IBI GROUP REPORT BARRETT LANDS - BLOCK 178 SERVICING BRIEF Submitted to: BARETT CO-TENANCY

1.2 Pre-Consultation Meeting

The City of Ottawa hosted a virtual pre-consultation meeting on August 18th, 2021. Notes of the meeting are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting. The City of Ottawa Servicing Study Checklist has also been included in **Appendix A**.

1.3 Environmental Issues

There are no environmental issues related to this site, as all environmental concerns were dealt with as part of the applicants Barrett Lands Phase 3 subdivision approval.

All existing watercourses or drainage features associated with this site have been addressed through SNCA permit number 2021-GLO-R234.

1.4 Geotechnical Concerns

Golder was retained by Barrett Co-Tenancy to review the grading plan to ensure that the recommendations with its original report for the subject area. There were no particular design concerns for this development.

2 WATER DISTRIBUTION

2.1 Existing Conditions

There is an existing 250mm watermain in Barrett Farm Drive in Barrett Lands Phase 3 to the north of the site, which is proposed to continue east on Barrett Farm Drive in Barrett Phase 3 to the north east of the site. The proposed development was considered in the water model for the Barrett Phase 2 and 3 development.

2.2 Design Criteria

2.2.1 Water Demands

Block 178 consists of 50 townhouse units. Per unit population density and consumption rates are taken from **Tables 4.1** and **4.2** of the Ottawa Design Guidelines – Water Distribution and are summarized as follows:

Semi Detach/Townhouse 2.7 person per unit
 Average Day Demand 280 l/cap/day

Peak Daily Demand
 Peak Hour Demand
 700 l/cap/day
 1,540 l/cap/day

A water demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

Average Day 0.45 l/s
 Maximum Day 1.12 l/s
 Peak Hour 2.45 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall

not be less than 276 kPa (40 psi).

Fire Flow During the period of maximum day demand, the system pressure shall

not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point in the distribution system in

unoccupied areas shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi) in occupied areas. Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rate

A Fire Underwriters Survey has been carried out on a representative block to determine the fire flow for the site. The calculations result in a fire flow of 10,000 l/min; a copy of the FUS calculation is included in **Appendix B**.

2.2.4 Boundary Conditions

The City of Ottawa has provided hydraulic boundary conditions two locations in Barrett Lands Phase 3. The City has provided existing condition and SUC Zone reconfiguration boundary conditions. The existing condition has the highest maximum HGL value and is used in the analysis to determine maximum pressure while the SUC Zone reconfiguration value has the lower values for peak hour and fire and is used in the analysis. A copy of the Boundary Condition is included in **Appendix B** and summarized as follows:

	HYDRAULIC HEAD		
CRITERIA	CONNECTION 1 Private Lane @ Barrett Farm Drive	CONNECTION 2 Private Lane @ Barrett Farm Drive	
Max HGL (Basic Day)	154.6 m	154.6 m	
Peak Hour	144.7 m	144.6 m	
Max Day + Fire (10,000 l/m)	121.8 m	125.3 m	

2.2.5 Hydraulic Model

A computer model for the Block 178 water distribution system has been developed using the InfoWater SA program. The model includes the boundary conditions provided by the City of Ottawa and a portion of Barrett Lands Phase 3 watermains.

2.3 Proposed Water Plan

2.3.1 Hydraulic Analysis

The hydraulic model was run under basic day conditions with the existing boundary condition to determine the maximum pressure for the site. The minimum pressure for the site is determined in the peak hour analysis using the SUC Zone reconfiguration boundary condition. There are two fire hydrants in the site and they are represented by nodes S11-515 and S11-520 in the model; the model was run under the max day plus fire (10,000 l/min) SUC Zone Reconfiguration Boundary condition to determine the design fire flow at the hydrant locations. Results of the analysis for the Block 178 site are summarized in Section 2.3.2 and the water model schematic and model results are included in **Appendix B**.

2.3.2 Summary of Results

Results of the hydraulic analysis for Block 178 are summarized as follows:

SCENARIO	EXISTING	suc
Basic Day Pressure (kPa)	507.6 – 513.48	453.7 – 467.42
Peak Hour Pressure (kPa)	409.63 – 424.27	425.28 – 439.00
Minimum Residual Pressure (kPa)	138.82	298.07

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure All nodes have basic day pressure below 552 kPa for existing

conditions; therefore, pressure reducing control is not required for this

site.

Minimum Pressure All nodes exceed the minimum requirement of 276 kPa during peak

hour conditions for the SUC Zone configuration.

Fire Flow The model was run with a fire flow of 10,000 l/min under the SUC

Zone Reconfiguration. The residual pressures at both nodes exceed

the minimum requirement of 276 kPa.

IBI GROUP REPORT BARRETT LANDS - BLOCK 178 SERVICING BRIEF Submitted to: BARETT CO-TENANCY

3 WASTEWATER

3.1 Existing Conditions

The Leitrim Pump Station is the wastewater outlet for all developed lands within the LDA, including the subject property. In 2002, the City constructed the station, associated forcemains and outlet sewers in Bank Street and Conroy Road. Sewage from the LDA outlets to the Conroy Road Trunk Sewer eventually discharging to a sewage treatment plant located near the Ottawa River. The Barrett Lands Phase 1 report prepared by IBI Group dated March 2017 confirmed that the existing 375mm sewer in Kelly Farm Drive has sufficient capacity for the Barret Lands at Findlay Creek property inclusive of the proposed development.

3.1.1 Verification of Existing Sanitary Sewer Capacity

There is an existing 200mm sanitary sewer in Barrett Farm Drive, which connects to the 375 mm diameter sub-trunk sewer in Kelly Farm Drive. In the previous Barrett Lands Phase 3 report, the design for Block 178 was for 84 apartment units, with an allocated population of 159.6 people, a site area of 1.28 and a total flow of 2.26 L/s, see **Appendix C** for excerpts from the Phase 3 report.

For the subject development, it is proposed to build a total of 50 units – 14 townhomes and 36 back to back townhouse units. The new total proposed population is 135.2 people, area 1.02 Ha and a total flow of 1.99L/s. This represents a total peaking flow decrease of **0.27L/s** when compared to the Phase 3 allocation. The decrease in flow on the existing system from the subject development is considered to have no negative impacts on downstream infrastructure.

3.2 Proposed Sewers

All on-site sewers have been designed to City of Ottawa and MOE design criteria which include but are not limited to the below listed criteria. A copy of the detailed sanitary tributary area plan 400 and the sanitary sewer design sheets are included in **Appendix C** illustrate the population densities and sewers which provide the necessary outlets.

3.2.1 Design Flow:

Average Residential Flow - 280 l/cap/day

Peak Residential Factor - Harmon Formula

Infiltration Allowance - 0.33 l/sec/Ha

Minimum Pipe Size - 200mm diameter

3.2.2 Population Density:

Semi-Detached & Townhouse - 2.7 person/unit

4 SITE STORMWATER MANAGEMENT

4.1 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for the Block 178 development. The design includes the assignment of inlet control devices, on-site storage, maximum depth of surface ponding and hydraulic grade line analysis. The evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01 and the June 2018 Technical Bulletin ISTB-2018-04.

4.2 Existing Conditions

The subject development is tributary to the Barrett Farm Drive storm sewer, which was approved for construction for the Barrett Lands Phase 3 development. Subsequent to the approval of Phase 3, the stormwater management analysis for Barrett Lands Phase 3 included an updated to the subject sites tributary allocation into the Barrett Farm Drive storm sewer. As part of that approval, a 675mm diameter storm sewer was approved for the subject block. The subject block is referenced as "R11304" in the Barrett Lands Phase 3 design. A copy of the design sheet, and approved drainage area plan for Phase 3 have been included in **Appendix D**.

Additionally, the Barrett Lands Phase 3 stormwater management identified a minor system restriction for this site to be the 5-year modelled flow of **234 l/s**. An excerpt from the Phase 3 report has been included in **Appendix D**.

4.3 Design Criteria

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm

1:2-year return (Ottawa)

(It should be noted that the overall Barrett Lands Site utilized 1:5 year return storm for minor system release from the subject site, further details are provided in Section 4.4 and 4.5.2)

Rational Method Sewer Sizing

Initial Time of Concentration
 10 minutes

• Runoff Coefficients

Front Yards
 Rear Yards
 C = 0.57
 C = 0.78

Pipe Velocities
 0.80 m/s to 3.0 m/s

Minimum Pipe Size
 250 mm diameter
 (200 mm CB Leads)

A sample calculation of run-off coefficients has been provided in Appendix D. The runoff coefficients used are based on the actual footprint in the site plan. Zoning setbacks do not apply to the site plan. The values calculated are lower than the values used, thus a conservative approach has been provided in this analysis.

IBI GROUP REPORT BARRETT LANDS - BLOCK 178 SERVICING BRIEF Submitted to: BARETT CO-TENANCY

4.4 System Concept

According to the Barrett Lands Phase 3 report prepared by IBI Group dated April 2022, the development of the adjacent downstream properties included the expected stormwater servicing needs of the subject property. The existing storm sewers constructed adjacent to the site were oversized to provide the needed capacity for minor storm runoff from the subject site. Minor storm runoff from the subject site will connect to the existing 675 mmØ sewer stub that connects to the existing 1050mmØ trunk storm sewer in Barrett Farm Drive.

4.4.1 Dual Drainage Design

The dual drainage system proposed for the subject site will accommodate both major and minor stormwater runoff. Minor flow from the subject site will be conveyed through the storm sewer network and discharge into the existing 675 mmØ sewer stub that connects to the existing 1050mm Ø trunk storm sewer in Barrett Farm Drive.

The balance of the surface flow not captured by the minor system will be conveyed via the major system. Where possible, storage will be provided in surface sags or low points within the roadway. Storage will also be provided within oversized storm pipes. Once the maximum storage is utilized, the excess flow will cascade to the next downstream street sag. Based on Phase 3 information, the 100 year overflow allocation related to the subject development lands is 350 l/s and the 100 year + 20% stress test allocation is 476 l/s. Major flow from street segments will overflow to the major flow block connecting to adjacent Barrett Lands Phase 3 at Delphinium Crescent to the west and to Barrett Farm Drive to the North, once on-site surface ponds have reach capacity.

4.4.2 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan is included in **Appendix D**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

The owner of the site will be responsible for regular maintenance of the on-site sewers, catch basins and inlet control devices (ICDs). Maintenance includes but is not limited to the cost of regular cleaning of the structures and ICDs as necessary. The site owner will also be responsible for replacement of damaged or missing catch basin structures, grates or ICDs as needed.

4.5 Stormwater Management

4.5.1 Water Quality Control

The subject site is part of the larger development referred to as the Leitrim Development Area. The stormwater management strategy was outlined in the following reports:

- Addendum to Leitrim Development Area Stormwater Management Environmental Study Report and Pre-Design Volumes 1 and II (IBI Group, July 2005);
- Design Brief and Amendment to MOE Certificate of Approval Findlay Creek Village Stormwater Facility (IBI Group, July 2005);
- Final Serviceability Report Leitrim Development Area City of Ottawa (IBI Group, March 2007).
- 2016 Final Updated Serviceability Report (Class EA OPA76 Areas 8a, 9a and 9b) Leitrim Development Area (IBI Group, September 2016)

The subject site is part of the drainage area which ultimately discharges into the existing Findlay Creek Village Stormwater Facility. The Findlay Creek Village Stormwater Facility was constructed

in 2006 and provides water quality control to an Enhanced Level of Protection according to MOE Stormwater Management Planning and Design Guidelines (March 2003).

4.5.2 Water Quantity Control

The subject site will be limited to a maximum minor system release rate of **234** L/s based on the Barrett Lands Phase 3 Servicing Brief, reference information is provided within **Appendix D**. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations, surface storage where possible and underground storage in oversized storm pipes where required.

There are 2 small locations where water is left to discharge uncontrolled from the subject property. The uncontrolled release can be calculated as follows;

Uncontrolled Release, where $Q_{uncontrolled} = 2.78(C \times i100_{yr} \times A_{uncontrolled})$

Quncontr	olled	=23.83 L/s
A_{unc}	=Area uncontrolled	=0.06Ha
$i100_{yr}$	=100yr intensity (1735.688 / (Tc + 6.014) ^{0.820}	=178.56
Tc	=Time of Concentration	=10min
С	=Runoff Coefficient	=0.80

The Maximum allowable release rate from the site can be determined by subtracting the Uncontrolled release rate from the minor system restricted flow rate.

$$Q_{max} = Q_{restricted} - Q_{uncontrolled}$$

 $Q_{max} = 234 \text{ L/s} - 23.83 \text{L/s}$
 $Q_{max} = 210.17 \text{ L/s}$

Surface flows in excess of the site's allowable release rate will be stored on site in strategic surface storage areas or oversized underground pipes and gradually released into the minor system to respect the site's allowable release rate. The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100 year event as show on the ponding plan located in **Appendix D** and grading plans located in **Appendix E**. Overland flow routes will be provided in the grading to permit emergency overland flow.

The modified rational method was used to evaluate the on-site stormwater management. There are two uncontrolled areas on this site. The flows are calculated above. Therefore, the total restricted flow rate through the minor system will be the design flow rate of **210.17** I/s. This will be achieved by the used of Inlet Control Devices (ICD's) placed in all on-site catchbasins. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas has been provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	SUB-SURFACE STORAGE PROVIDED (m³)	100yr OVERFLOW (m³)
S20A	15.00	18.68	20.59	0.00	0.00
S10	40.00	16.34	0.32	0.00	16.02*
S4	26.00	30.25	1.16	0.00	29.09
S20B	15.00	3.65	1.41	0.00	2.24
S5	25.00	58.73	1.32	0.00	57.41
S6	55.00	113.37	9.71	0.00	103.66
R6	34.00	129.69	4.38	4.4	120.91*
TOTAL	210.00				136.93

4.5.3 2 Year Ponding

A review of the 2-year ponding has been completed using the modified rational method. A minimum Tc of 10min has been used. Where volumes are calculated as a negative value, 0.0m3 has been shown. A summary of each drainage area has been provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	Comment
S4	0.0	-
S5	0.0	-
S6	0.0	-
S10	0.0	-
S20A	0.22	Negligible volume of ponding during 2-year event
S20B	0.0	-
R6	4.38	This area is controlled at RYCB1, and there is 4.4m3 of subsurface storage provided in this area. The required ponding is provided underground, not on the street. A 50% reduction to the release rate was considered for this area.

Based on the above, there will be no surface ponding in the 2-year event.

4.5.4 100 year + 20% Stress Test

A cursory review of the 100yr event + 20% has been performed using the modified rational method. The Peak flow from each area during a 100-year event has been increased by 20%. The calculations have been included in **Appendix D**.

A summary of the require storage volumes, and overflow balances is provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100yr20 STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	100yr20 OVERFLOW (m³)
S20A	15.00	25.11	20.59	4.52
S10	40.00	26.53	0.32	26.21*
S4	26.00	40.67	1.16	39.51
S20B	15.00	5.46	1.41	4.05
S5	25.00	81.23	1.32	79.91
S6	55.00	158.95	9.71	149.24
R6	34.00	183.54	4.38	174.76*
TOTAL	210.00			200.97

^{*}Overflow from S10 to Barrett Farm Drive, and from R6 to Delphinium Crescent.

^{*}Overflow only during major storm events, directed to Delphinium Crescent and Barrett Farm Drive with no negative impact on downstream storm sewer system

DRAINAGE AREA	100yr20 OVERFLOW (m³)	Time of Concentration	100yr20 OVERFLOW (I/s)	DEPTH (m)
S20A	4.52	15.00	5.02	0.02
S10	26.21*	5.00	87.36*	0.05
S4	39.51	14.00	47.04	0.05
S20B	4.05	6.00	11.24	0.03
S5	79.91	16.00	83.24	0.06
S6	149.24	18.00	138.19	0.05
R6	174.76*	15.00	194.18*	0.09
TOTAL	200.97		281.54	

As noted above, the overland flow from the rear yards (R6) is directed to Barrett Lands Phase 3 lands at Delphinium Crescent to the West. The volume of overflow is 174.76m3. Based on a Tc of 15minutes, this volume can be reverse calculated to 194.18 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

The stress test overflow from S10 will follow the intended overflow route as identified in the Phase 3 grading design drawings. The volume of overflow is 26.21m3. Based on the Tc of 5minutes, this volume can be reverse calculated to 87.36 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

4.6 Storm Hydraulic Grade Line

The Barrett Lands Phase 3 report indicates that the 100-year hydraulic grade line (HGL) in Bulkhead 11307N **93.68**, refer to **Appendix D** for the excerpt from the Barrett Lands Phase 3 HGL analysis. The HGL has been extended through the subject site have been calculated as follows:

LOCATION	MH#	USF ELEV (M)	STORM HGL (M)	FREEBOARD (M)
Unit 1-2	MH10	99.36	98.460	0.90
Unit 3	MH 9	99.53	98.520	1.010
Unit 4-18;23-27	MH 8	99.98	98.520	1.460
Unit 19-22;28-37	MH 5	100.43	99.030	1.400
Unit 38-46	MH 4	100.51	99.050	1.460
Unit 47-50	MH 2	100.65	99.340	1.310

All underside of footing elevations have been designed to provide a minimum of 300mm separation between the greater of governing pipe obvert or governing HGL. A copy of the storm HGL analysis for Block 178 is provided in **Appendix D**.

5 SOURCE CONTROLS

5.1 General

On site level or source control management of runoff will be provided to provide quality control for the subject lands. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- flat lot grading;
- split lot drainage;
- · Roof-leaders to vegetated areas;
- · vegetation planting; and
- groundwater recharge.

5.2 Lot Grading

There is an elevation difference of approximately 2m from southwest to northeast in Block 178. In accordance with local municipal standards, the parking lots will be graded northeast between 1.5% and 5.0%. Most landscaped area drainage will be directed into a swale drainage system, and connects to the storm sewer system. Typically swales will have slopes larger than 1.5% with subdrains. Copies of the grading plans have been included in **Appendix E**.

5.3 Roof Leaders

This development will consist of stacked homes and apartments. It is proposed that roof leaders from these units be constructed such that runoff is directed to grass areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slow release rate to the conveyance network.

5.4 Vegetation

As with most subdivision agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development including planting along roadsides and within public parks provides opportunities to re-create lost natural habitat.

6 CONVEYANCE CONTROLS

6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales;
- catchbasin and maintenance hole sumps; and
- pervious rear yard drainage.

6.2 Flat Vegetated Swales

The development will make use of relatively flat vegetated swales where possible to encourage infiltration and runoff treatment.

6.3 Catchbasins

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be fabricated to OPSD 705.010 or 705.020. All storm sewer maintenance holes servicing local sewers less than 900 mm diameter shall be constructed with a 300 mm sump as per City standards.

6.4 Pervious Landscaped Area Drainage

Some of the landscaped area swales make use of a filter wrapped perforated drainage pipe constructed below the rear yard swale. This perforated system is designed to provide some ground water recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system.

7 SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

7.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows, thus preventing any construction –related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

7.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and build until it is appropriate to remove them.

IBI GROUP
REPORT
BARRETT LANDS - BLOCK 178
SERVICING BRIEF
Submitted to: BARETT CO-TENANCY

7.6 Stockpile Management

During construction of any development similar to that being proposed both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rearyard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern since these materials are quickly used and the mitigative measures stated previously, especially the use of filter fabric in catchbasins and manholes help to manage these concerns.

The roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

The construction of this development will involve a substantial rock blasting, breaking and crushing operation. Given the existing topography, a substantial cut and fill operation is required in order to construction a development that meets City Standards. As part of this operation, materials will be manipulated onsite, and provided the sediment and erosion control measures are in place, are generally inconsequential to the surrounding environment.

IBI GROUP
REPORT
BARRETT LANDS - BLOCK 178
SERVICING BRIEF
Submitted to: BARETT CO-TENANCY

8 ROADS AND NOISE ATTENUATION

Vehicular access to Block 178 is provided by two private entrances from Barrett Farm Drive.

There are no sidewalks or pathways proposed within the development. Pedestrian access to the site will be via the private roadway.

The site has been designed in order to provide curbside municipal waste disposal.

There are no bus routes proposed within Block 178.

There are no collector streets or nearby noise sources that would trigger an environmental noise assessment.

8.1 Aircraft Sound Levels

As stated in Section 2.1, the site is within the Airport Vicinity Development Zone (AVDZ), the limit of the AVCZ is shown on Figure 2. The site however is outside of the 25 NEF/NEP contour line so the building components and ventilation requirements of Part 6 Prescribed Measures for Aircraft Noise of the Guidelines do not apply. A warning clause is required for the residential units inside the AVDZ.

Warning clause for aircraft noise is as follows:

"Purchasers/tenants are advised that due to the proximity of the airport, noise from the airport and individual aircraft may at times interfere with outdoor or indoor activities".

9 SOILS

Golder Associates Ltd. was retained to prepare a geotechnical investigation for the proposed mixed use development for the Barrett Lands Phase 3. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of test pits and boreholes and;
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report 20442530-100 was prepared by Golder Associates Ltd. in February 2022. The report contains recommendations which include but are not limited to the following:

- The maximum permissible grade raise is 3.5m
- In areas where finished grade exceeds grade raise limits, geotechnical reviews are required
- Fill placed below the foundations to meet OPSS Granular 'A' or Granular 'B' Type II placed in 300 mm lifts compacted to 98% SPMDD.
- Fill for roads to be suitable native material in 300mm lifts compared to 95% SPMDD

Pavement Structure:

LOCAL ROAD	THICKNESS
Asphaltic Concrete	90mm
OPSS Granular A Base	150mm
OPSS Granular B Type II Subbase	400mm

Pipe bedding and cover; bedding to be minimum 150 mm OPSS Granular 'A' up to spring line
of pipe. Cover to be 300 mm OPSS A (PUC and concrete pipes) or sand for concrete pipes.
Both bedding and cover to be placed in maximum 225 mm lifts compacted to 95% SPMDD.

In general the grading plan for Block 178 adheres to the grade raise constraints noted above. A copy of the grading plans is included in **Appendix E**. The site does not pose any significant grade raise; thus a grading plan review letter is not required for this development.

IBI GROUP REPORT BARRETT LANDS - BLOCK 178 SERVICING BRIEF Submitted to: BARETT CO-TENANCY

10 RECOMMENDATIONS

Water, wastewater and stormwater systems required to develop Barrett Lands Block 178 will be designed in accordance with MOE and City of Ottawa's current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the proposed sediment and erosion control plan during construction will minimize harmful impacts on surface water.

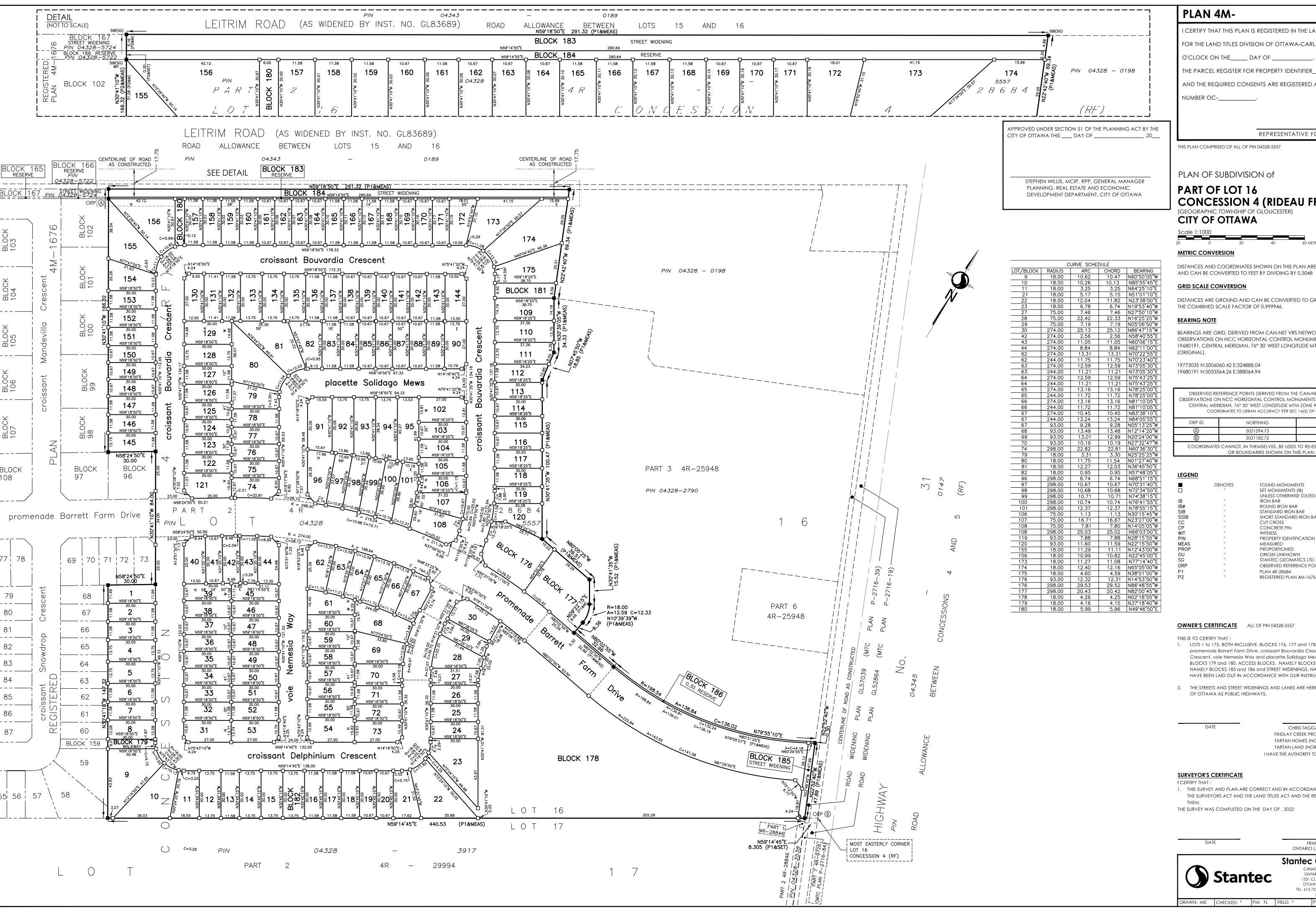
Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

- Block 178 Commence Work Order: City of Ottawa
- ECA for Sewage Works: MOECP Transfer of Review by City of Ottawa
- Block 178 Watermain Approval: City of Ottawa
- Block 178 Commence Work Order (utilities): City of Ottawa

Report prepared by:

PROFESS/OWAL CROSS TO STATE OF ONT PROPERTY OF THE PROPERTY OF

Demetrius Yannoulopoulos, P.Eng. Director


Ryan Magladry, C.E.T. Project Manager

Anton Chetrar, EIT Engineering Intern

https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal Documents/6.0_Technical/6.04_Civil/03_Tech-Reports/Submission #1/CTR-Servicing Brief_2022-05.docx

APPENDIX A

AOV Plan of Subdivision for Barrett Lands Phase 3 Site Plan for Barrett Lands Block 178 135925-001 - General Plan of Services City of Ottawa Pre-Consultation Meeting Notes

I CERTIFY THAT THIS PLAN IS REGISTERED IN THE LAND REGISTRY OFFICE

FOR THE LAND TITLES DIVISION OF OTTAWA-CARLETON No.4 AT___

O'CLOCK ON THE_____ DAY OF ______, 2022 AND ENTERED IN

AND THE REQUIRED CONSENTS ARE REGISTERED AS PLAN DOCUMENT

REPRESENTATIVE FOR LAND REGISTRAF

THIS PLAN COMPRISED OF ALL OF PIN 04328-5557

PART OF LOT 16 CONCESSION 4 (RIDEAU FRONT) (GEOGRAPHIC TOWNSHIP OF GLOUCESTER)

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999946.

BEARINGS ARE GRID, DERIVED FROM CAN-NET VRS NETWORK GPS OBSERVATIONS ON NCC HORIZONTAL CONTROL MONUMENTS 19773035 AND 19680191, CENTRAL MERIDIAN, 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83

19773035 N:5006060.42 E:324888.04

OBSERVED REFERENCE POINTS DERIVED FROM THE CAN-NET VRS NETWORK GPS Observations on NCC Horizontal Control monuments 19773035 and 19680191 CENTRAL MERIDIAN, 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83 (ORIGINAL). COORDINATES TO URBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10

ORP ID	NORTHING	EASTING			
\otimes	5021294.73	374944.42			
B	5021182.72	375523.14			
COORDINATES CANNOT, IN THEMSELVES, BE USED TO RE-ESTABLISH CORNERS OR BOUNDARIES SHOWN ON THIS PLAN.					

	DENOTES "	FOUND MONUMENTS SET MONUMENTS (IB) UNLESS OTHERWISE STATED
IB	11	IRON BAR
ΙΒø	II .	ROUND IRON BAR
SIB	II .	STANDARD IRON BAR
SSIB	II .	SHORT STANDARD IRON BAR
CC	II .	CUT CROSS
CP	II .	CONCRETE PIN
WIT	II .	WITNESS
PIN	II .	PROPERTY IDENTIFICATION NUMBER
MEAS	II .	MEASURED
PROP	II .	PROPORTIONED
OU	II .	ORIGIN UNKNOWN
SG	II .	STANTEC GEOMATICS LTD.
ORP	п	OBSERVED REFERENCE POINT
P1	II .	PLAN 4R-28684
P2	II .	REGISTERED PLAN 4M-1676

OWNER'S CERTIFICATE ALL OF PIN 04328-5557

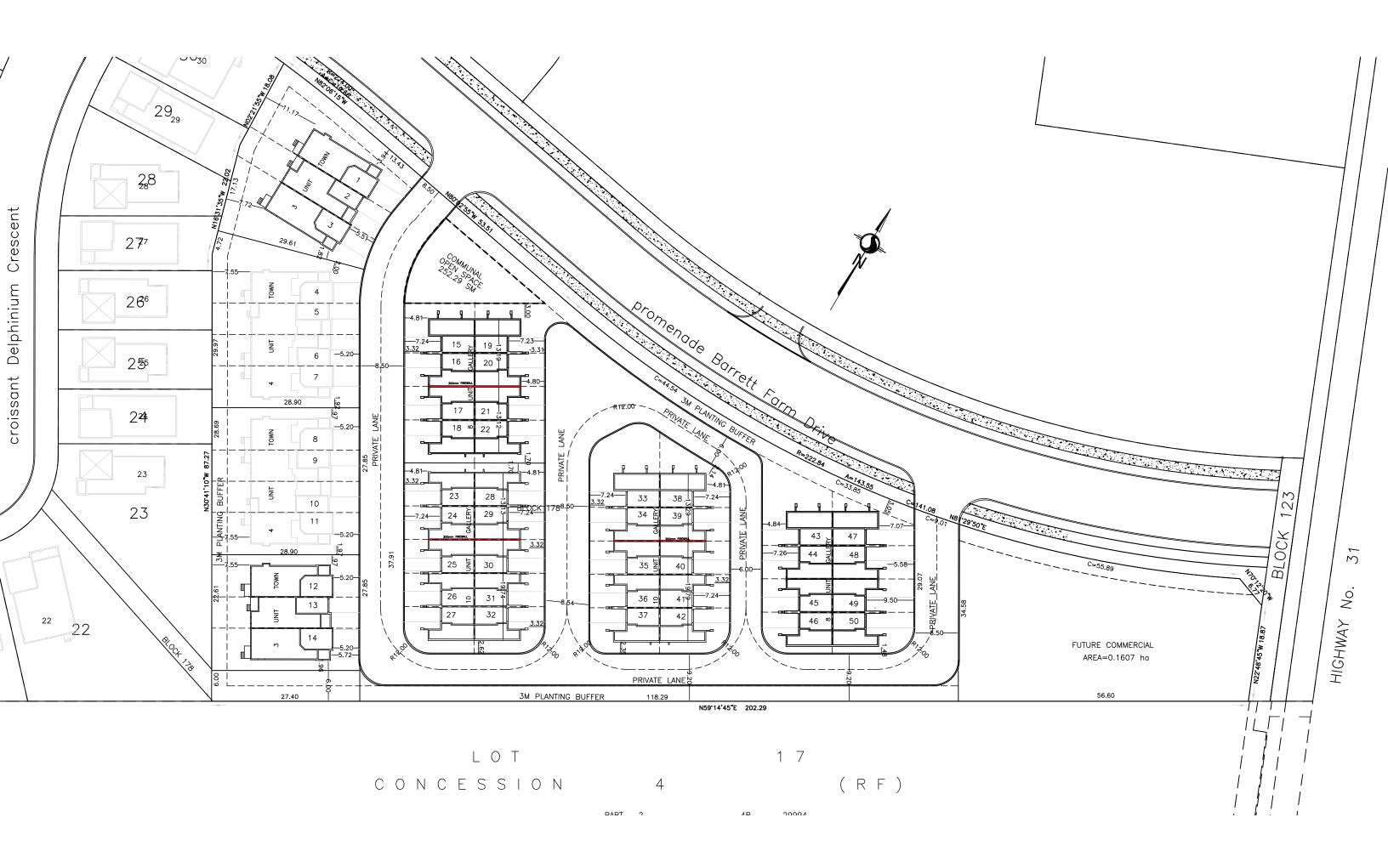
1. LOTS 1 to 175, BOTH INCLUSIVE, BLOCKS 176, 177 and 178, THE STREETS, NAMELY promenade Barrett Farm Drive, croissant Bouvardia Crescent, croissant Delphinium Crescent, voie Nemesia Way and placette Solidago Mews WALKWAYS, NAMELY BLOCKS 179 and 180, ACCESS BLOCKS, NAMELY BLOCKS 181 and 182, RESERVES, NAMELY BLOCKS 183 and 186 and STREET WIDENINGS, NAMELY BLOCKS 184 and 185 HAVE BEEN LAID OUT IN ACCORDANCE WITH OUR INSTRUCTIONS.

2. THE STREETS AND STREET WIDENINGS AND LANES ARE HEREBY DEDICATED TO THE CITY OF OTTAWA AS PUBLIC HIGHWAYS.

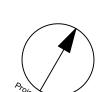
> CHRIS TAGGART, PRESIDENT FINDLAY CREEK PROPERTIES (NORTH) LTD. TARTAN HOMES (NORTH LEITRIM) INC. TARTAN LAND (NORTH LEITRIM) INC. I HAVE THE AUTHORITY TO BIND THE CORPORATION

SURVEYOR'S CERTIFICATE

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER


THE SURVEY WAS COMPLETED ON THE DAY OF, 2022

FRANCIS LAU ONTARIO LAND SURVEYOR


Stantec Geomatics Ltd. CANADA LANDS SURVEYORS

PROJECT No.: 161614242-132

BARRETT CO-TENANCY

COPYRIGHT

CLIENT

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

No.	DESCRIPTION	DATE
1	SUBMISSION NO.1 FOR CITY REVIEW	2022-05-10
2		
3		
4		
5		•
6		
7		
8		

SEE 010, 011, 012 FOR NOTES, LEGEND, CB TABLE, STREET SECTIONS AND DETAILS	
(FY PLAN LEITRIM ROAD	
CEMETERY CEMETERY	STREET
NTS NTS	
CONSULTANTS	

CONSULTANTS

IBI GROUP
Suite 400 – 333 Preston Street
Ottawa ON K1S 5N4 Canada
tel 613 225 1311 / 613 241 3300 fax 613 225 9868
ibigroup.com

BARRETT BLOCK 178

PROJECT NO: 135925	
DRAWN BY: M.M.	CHECKED BY: A.C.
PROJECT MGR: R.M.	APPROVED BY: J.I.M.

GENERAL PLAN

SHEET NUMBER

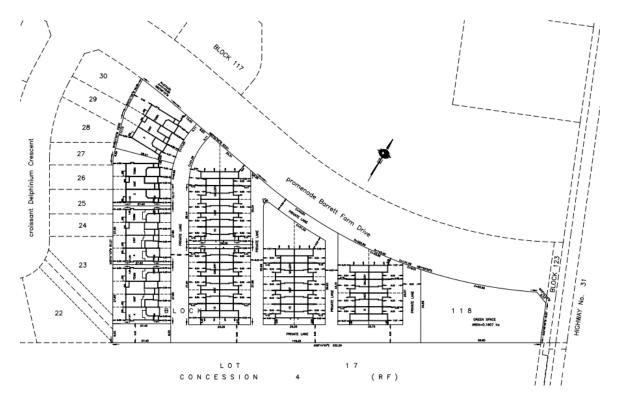
CITY PLAN No. xxxxx

ISSUE

Blk 118, Bank Street at Barrett Farm

Meeting Summary Notes
July 27, 2021, Online Teams Meeting
Revised Aug 18, 2021

Attendees:


- Melissa Cote, Tartan
- Yvonne Mitchell, Planning Student, City of Ottawa
- Tracey Scaramozzino (File Lead, Planner, City of Ottawa)

Not in Attendance:

- Mark Young, Urban Design
- Burl Walker,
- John Sevigny
- Mark Richardson
- Matthew Hayley
- Mike Giampa
- James Holland, SNation

Issue of Discussion:

- Vacant site, within Plan of subdivision, Block 118
- PUD, 14 townhouse units, 38 back to back towns;
- Density of 40units/net ha (only half of CDP recommendation of 80 units/ha). The Developer doesn't have a product that provides the recommended density as they are no longer producing the Java product.
- Private laneways of 6m and 8.5m for servicing, utilities, and municipal garbage
- Site plan, Plan of Condo and Private Road Naming Applications are req'd
- The subdivision contemplated 90 units in this area and only 52 are being proposed. Therefore transportation/services should not be an issue

- 1. Official Plan, Current: General Urban Area
- 2. **Official Plan, Draft:** Suburban Transect, no overlays, no designations, Bank St in this area is a minor corridor
 - a. "Recognize this as suburban pattern, but to support the evolution to 15min n'hood"
- 3. **Leitrim CDP** (from 2005): Mixed Use (intended to be part of core retail along Bank st smaller parcels to provide n'hood uses; larger retail is focused south at existing commercial plaza
 - a. The CDP is not being converted into a secondary plan in the new OP and will remain in effect.

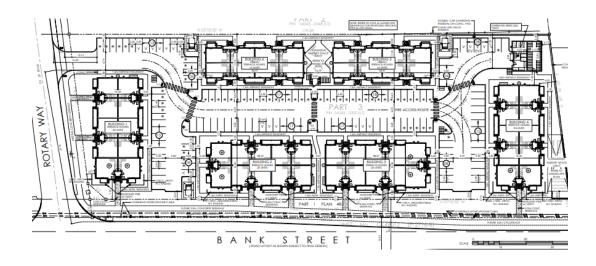
4. Zoning Information: GM12 - General Mixed Use permits residential (apt, PUD, townhouse etc) and non-residential (animal hospital, bank, community centre etc) Subzone 12 permits additional non-residential uses such as bar, cinema, gas bar, theatre, sports arena.

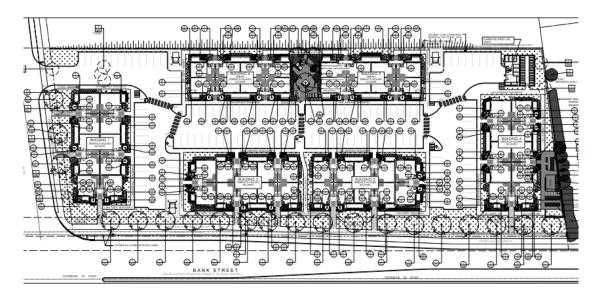
5. Infrastructure/Servicing (John Sevigny):

a. Servicing will be reviewed during Phase 3 of the subdivision, which as of July 26. hasn't been submitted.

6. Initial Planning Comments (Tracey Scaramozzino):

- a. Can density be increased as per the CDP (40u/ha is being provided; 80 u/ha was contemplated in the CDP).
- b. Possibly design open space along Bank St to have sitting area/plantings/soft surfaces, similar to POPS.
- c. Units in general should have higher floor-ceiling hts on ground floor to allow the conversion to commercial units over time.
- d. The 'empty' parcels along Barrett Farm should be nicely designed with trees and perennials and soft surfaces.
- e. The plan of subdivision does not provide guidance for development of this site.
- f. Within Airport Bird Hazard zone
- g. Follow up discussions between Tracey and Melissa:


May 28, 2021, from Melissa: I think there will be a lot of opportunity for trees and other soft landscaping along with a nice sitting area. I will wait to hear what Mark suggests and I'm following up with Tamarack regarding other product type suitable for possible conversion later on.


May 27, 2021 from Tracey: I was also thinking some more about the green spaces on your proposal and am wondering if the green areas fronting Barrett Farm Drive might be nice with a few trees and some perennials - soft surfaces to help with climate change and heat-island effect. The green location on the corner might be nice with a mixture of plantings, sitting areas and soft area - that may or may not be open to the general public like a POPS.....

- h. The almost-approved Glenview project on the east side of Bank St. at Rotary Way has back to back, stacked towns with the ability for future ground floor conversions to commercial (due to higher floor-ceiling hts) and were able to meet the req'd density for 'apts'.
- i. Tracey sent Melissa an example of a design brief, and details from Glenview PUD across the street at Rotary Way that is near approval, as per images below.

Document 7, Elevations sl@wing potential business signage

7. Urban Design Comments (Mark Young):

- 1. A design brief is required. Please see attached terms of reference.
- 2. Early consideration needs to be given to the allowance of street trees, both public and private. The proposed private roadway width of 6.0 m combined with a 4.0 m front yard setback, may present a challenge in the provision of trees. This should be addressed.
- 3. Please provide direction regarding the proposed "Green Space". Is this intended to be public or private?
- 4. Is any visitor parking proposed? Lay-by parking should be considered for visitors within the private development.
- 5. What is the purpose of the 9.0 m block abutting the southern property line? Is this for servicing and a walkway? Please advise.

8. Parks (Burl Walker):

a. Parks issues are being reviewed through the associated subdivision file.

9. Trees (Mark Richardson):

- a. Preserve and protect the healthy trees to create a visual buffer along southern property line.
- b. Tree permit is required prior to any tree removal on site
- c. Submit a TCR with application.

10. Environment (Matthew Hayley): (added August 18, 2021)

- a) They will need to have their TCR address butternut trees (or provide an EIS). Mark R will comment on tree conservation but I would point out that there is an excellent opportunity for tree retention along the southern property line.
- b) Landscaping OP Section 4.9 has some policies addressing energy conservation through design - in partic as ular for this area, I would recommend considering shading along the southern property line adjacent to that lane. This will combat urban heat island and to provide some screening from the adjacent use. Street trees are also important and should be provided.
- c) Integrated Environmental Review (IER) if they are providing a planning rational the IER can be contained within that document as per the TOR for the Planning Rational, otherwise they should have an IER provided.

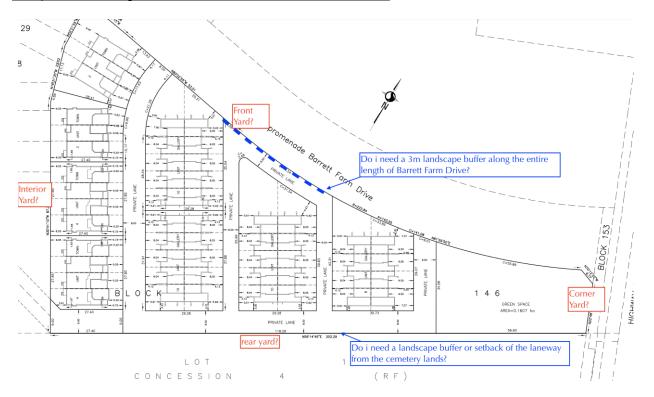
11. Conservation Authority (James Holland, South Nation):

a. All issues are being reviewed through the associated subdivision file.

12. Transportation (Mike Giampa):

a. Comments are outstanding at this time, likely dealt with during the plan of subdivision.

13. Waste Collection


- a. Residential properties will receive City collection on the private streets.
- b. 6m ROW is acceptable for waste collection.

14. General Information

a. Ensure that all plans and studies are prepared as per City guidelines – as available online...

https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans

Response to August 1, 2021 Questions from Melissa:

1. Front yard? Corner yard? Rear yard? Side yard?

Response: Based on my interpretation of the <u>definitions</u> of each in the zoning bylaw:

- Front yard = Bank Street
- Corner yard = Barrett Farm Drive
- Rear yard = empty residential lot
- Side yard = cemetery lands

2. Do I need a landscape buffer along the entire length of Barret Farm Drive?

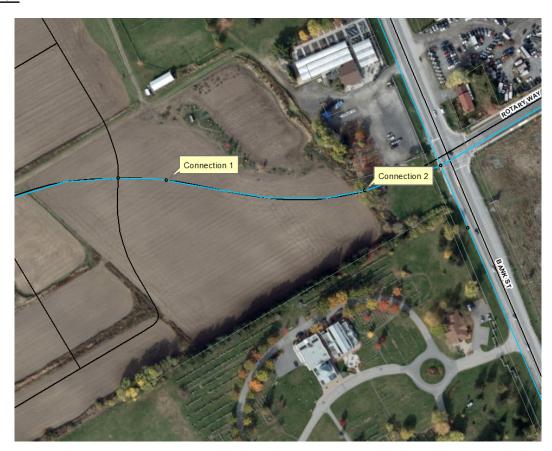
Response: Yes, but this buffer can be <u>passed by</u> driveways or roads. The full landscape buffer requirements under the <u>zoning (GM12)</u> are as follows:

(h) Minimum width of landscaped area	(i) abutting a street	3 m
	(ii) abutting a residential or institutional zone	3 m
	(iii)other cases	No minimum

Based on the above requirement for the GM zone, a 3m landscape buffer would be required around the entire site, as it borders on streets, residential and institutional zones.

- 3. Do I need a landscape buffer or setback of the laneway from the cemetery lands? Response: As per previous question and Table 187 of the applicable zoning (GM12), a landscape buffer of 3m is required abutting an institutional zone. Regarding setbacks, the interior lot line setback would not apply from the lot line to the laneway but from the proposed townhomes as follows:
 - (d) Minimum interior side yard setbacks
 - (iii) For a residential use building
 - 1. For a building equal or lower than 11m in height = 1.2m
 - 2. For a building higher than 11m in height = 3m

APPENDIX B


Water Distribution Model

Boundary Conditions Findlay Creek Stage 5

Provided Information

Scenario	D	Demand	
Scenario	L/min	L/s	
Average Daily Demand	27	0.45	
Maximum Daily Demand	67	1.12	
Peak Hour	147	2.45	
Fire Flow Demand #1	10,000	166.67	

Location

Results – Existing Conditions

Connection 1 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.6	77.1
Peak Hour	144.7	62.9
Max Day plus Fire 1	121.8	30.4

Ground Elevation = 100.4 m

Connection 2 - Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.6	73.4
Peak Hour	144.6	59.2
Max Day plus Fire 1	125.3	31.7

Ground Elevation = 103.0 m

Results - SUC Zone Reconfiguration

Connection 1 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	149.1	69.2
Peak Hour	146.2	65.1
Max Day plus Fire 1	138.1	53.6

Ground Elevation = 100.4 m

Connection 2 - Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	149.1	65.6
Peak Hour	146.2	61.4
Max Day plus Fire 1	141.5	54.7

Ground Elevation = 103.0 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4

WATERMAIN DEMAND CALCULATION SHEET

PROJECT: BLOCK 146

LOCATION: CITY OF OTTAWA

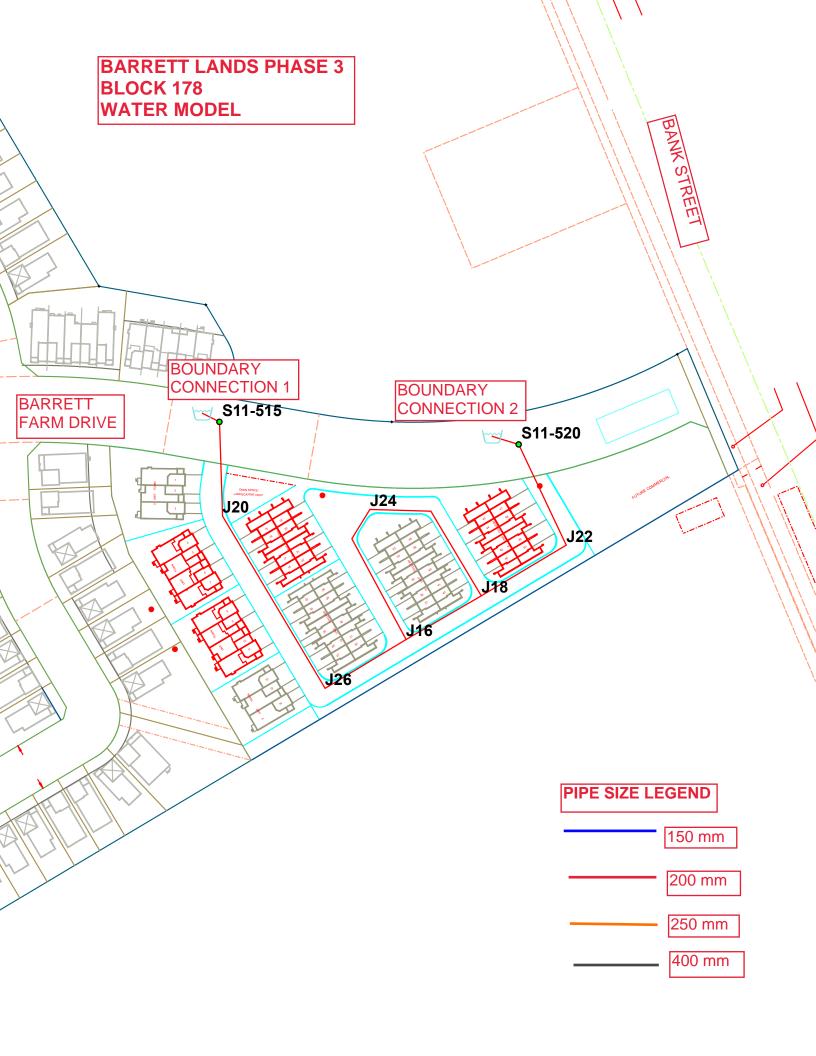
DEVELOPER: TAGGART PAGE:

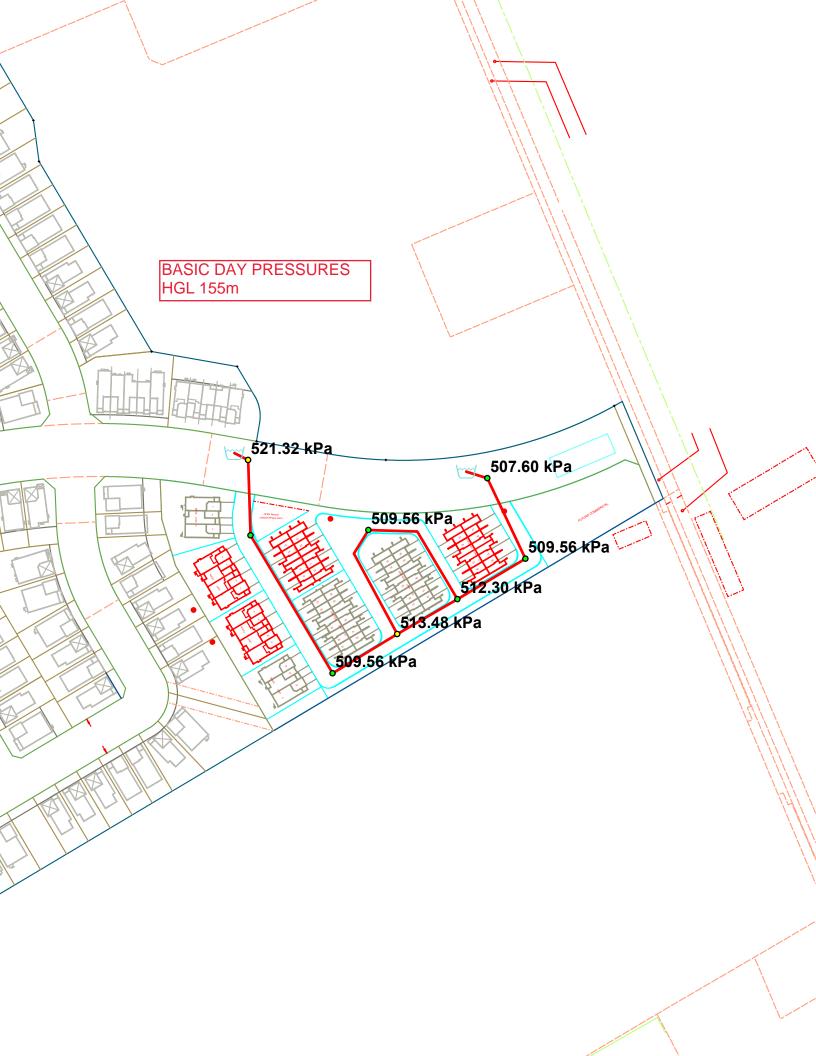
FILE:

DESIGN:

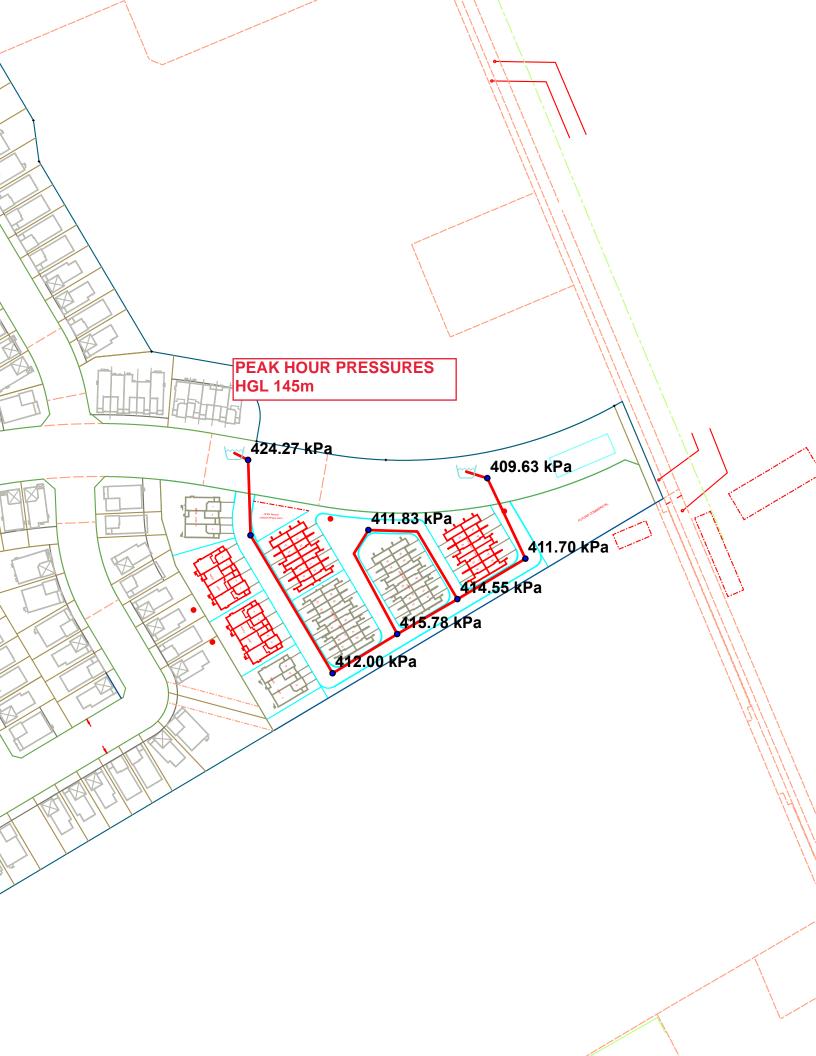
DATE PRINTED:

135925


09-May-22

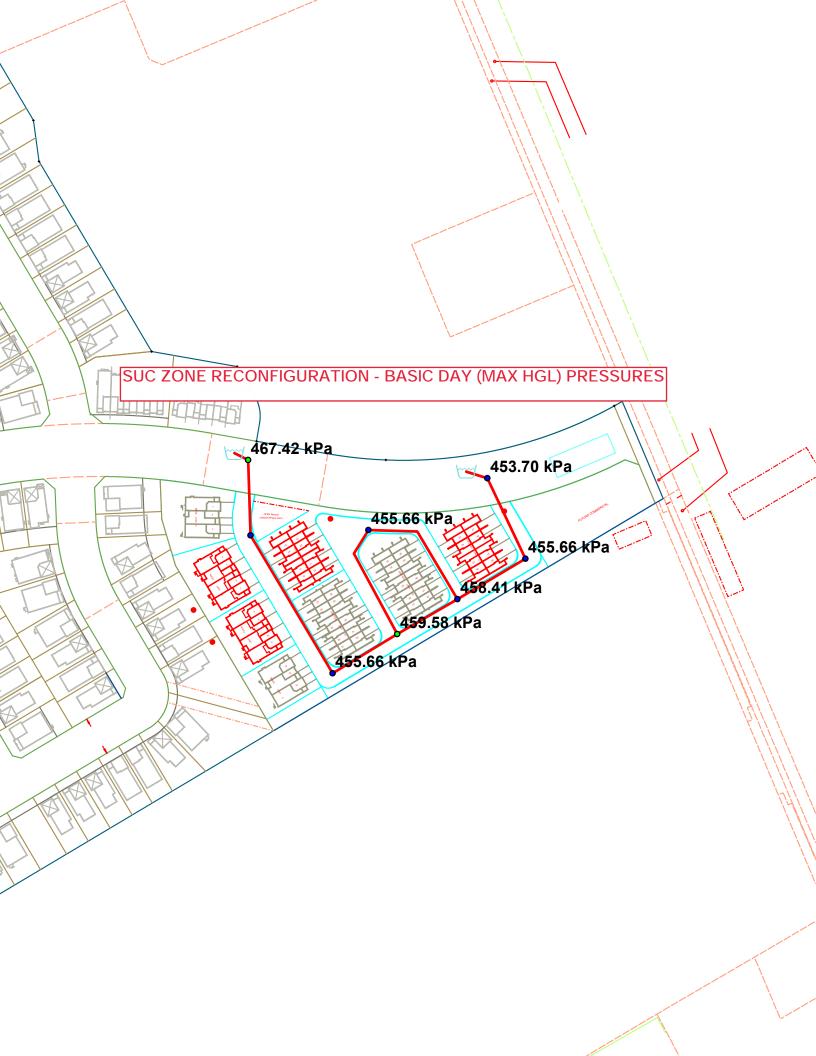

AC

1 OF 1


		RESID	ENTIAL		NON	-RESIDEN	ITIAL		/ERAGE D			XIMUM DA			KIMUM HOL		FIRE
NODE		UNITS			INDTRL COMM. INST.			DEMAND ((l/s)	D	EMAND (I	/s)	D	EMAND (I	/s)	DEMAND	
	SF	SD & TH	OTHER	POP'N	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
Findlay Creek																	
J20		13		35				0.11	0.00	0.11	0.28	0.00	0.28	0.63	0.00	0.63	
J26		10		27				0.09	0.00	0.09	0.22	0.00	0.22	0.48	0.00	0.48	
J16		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J18		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J22		7		19				0.06	0.00	0.06	0.15	0.00	0.15	0.34	0.00	0.34	
J24		4		11				0.04	0.00	0.04	0.09	0.00	0.09	0.19	0.00	0.19	
TOTALS		50		135						0.44		1	1.10			2.42	
											-			-			
	l <u>L</u>										L			L			

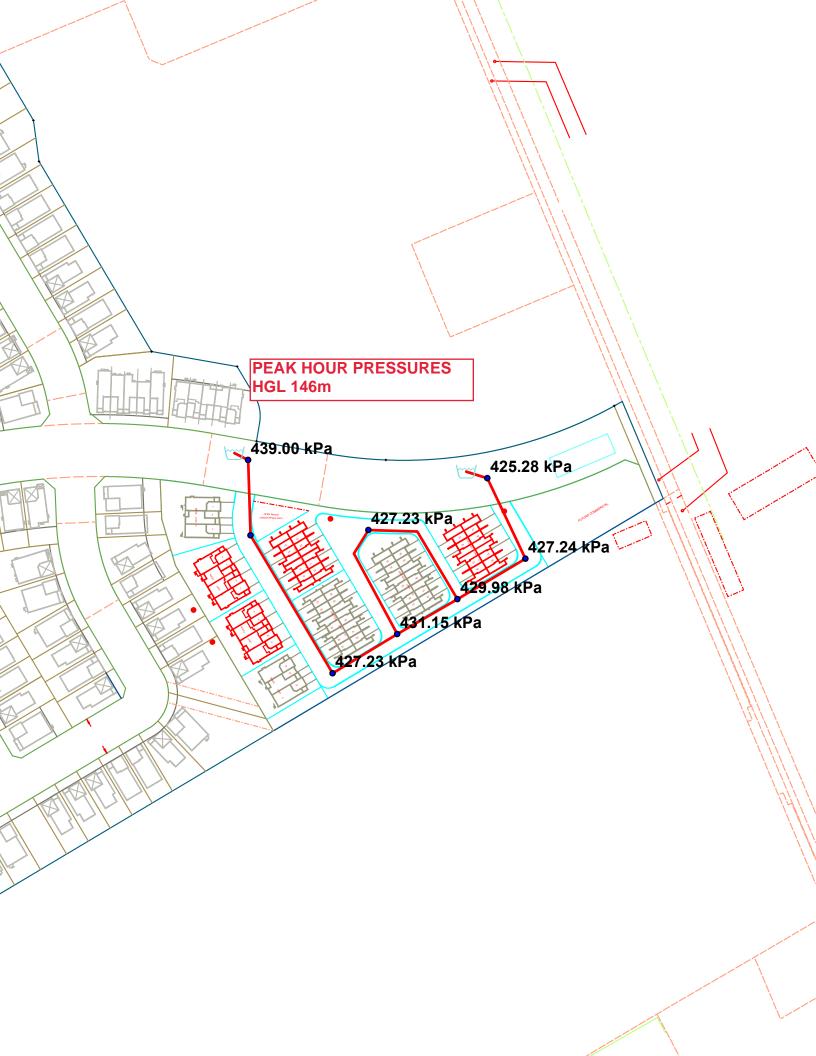
	ASSUMPTIONS			
RESIDENTIAL DENSITIES	AVG. DAILY DEMAND		MAX. HOURLY DEMAND	
- Single Family (SF)	3.4 p / p / u - Residential	<u>280</u> l / cap / day	- Residential	<u>1,540</u> I / cap / day
	- ICI	<u>50,000</u> I / ha / day	- ICI	<u>135,000</u> I / ha / day
- Semi Detached (SD) & Townhouse (Th	l) <u>2.7</u> p/p/u			
			FIRE FLOW	
- Apartment (APT)	1.8 p/p/u MAX. DAILY DEMAND		- SF, SD, TH & ST	<u>10.000</u> I / min
	- Residential	<u>700</u> l / cap / day		I / min
-Other	<u>66</u> u / p / ha - ICI	<u>75.000</u> I / ha / day	- ICI	<u>13,000</u> I / min

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.07	102.20	154.60	513.48	0.00
2	J18	0.07	102.32	154.60	512.30	0.00
3	J20	0.11	102.60	154.60	509.56	0.00
4	J22	0.06	102.60	154.60	509.56	0.00
5	J24	0.04	102.60	154.60	509.56	0.00
6	J26	0.09	102.60	154.60	509.56	0.00
7	S11-515	0.00	101.40	154.60	521.32	0.00
8	S11-520	0.00	102.80	154.60	507.60	0.00



	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.39	102.20	144.63	415.78	0.00
2 [J18	0.39	102.32	144.62	414.55	0.00
3 [J20	0.63	102.60	144.68	412.33	0.00
4	J22	0.40	102.60	144.61	411.70	0.00
5 [J24	0.19	102.60	144.63	411.83	0.00
6	J26	0.48	102.60	144.64	412.00	0.00
7 [S11-515	0.00	101.40	144.70	424.27	0.00
8	S11-520	0.00	102.80	144.60	409.63	0.00

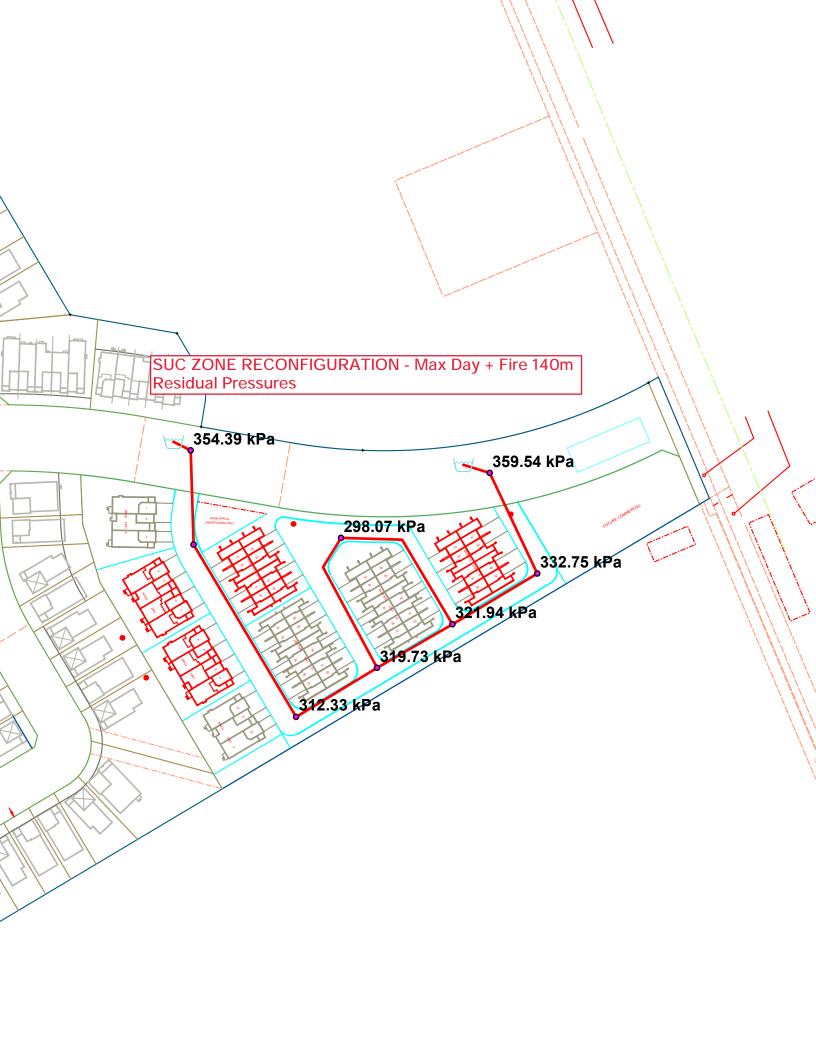
Water Age (hrs)	00.00	00.00	0.00	0.00	0.00	00.0	00.0	00.0	00.0	00.0
Status Flow Reversal Count	0	0	0	0	0	0	0	0	0	0
Status	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open
HL/1000 (m/k-m)	0.54	0.54	0.17	0.31	0.05	0.46	0.27	0.04	0.41	0.27
Headloss (m)	00.00	0.02	0.01	0.01	00.00	0.03	0.01	00.00	0.01	00.00
Velocity (m/s)	0.25	0.25	0.13	0.18	0.07	0.23	0.17	90.0	0.21	0.17
Flow (L/s)	8.03	8.03	4.28	5.95	2.26	7.40	5.55	2.07	6.92	5.55
Roughness	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00
Diameter (mm)	204.00	204.00	204.00	204.00	204.00	204.00	204.00	204.00	204.00	204.00
Length (m)	7.01	34.25	31.72	35.97	54.11	72.93	40.51	28.07	34.42	10.06
To Node	S11-515	J20	J18	J22	J24	126	S11-520	J18	J16	RES9002
ID From Node To Node	P117 RES9000 S11-515	S11-515	J16	918	J16	J20	J22	J24	J26	S11-520 RES9002
Ω	P117	P119	P121	P123	P125	P127	P129	P131	P133	P135
	-	7	က	4	2	9	7	8	6	10



Max Day + Fire HGL - Fireflow Design Report

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.07	102.20	149.10	459.58	0.00
2 [J18	0.07	102.32	149.10	458.41	0.00
3 [J20	0.11	102.60	149.10	455.66	0.00
4	J22	0.06	102.60	149.10	455.66	0.00
5 [J24	0.04	102.60	149.10	455.66	0.00
6	J26	0.09	102.60	149.10	455.66	0.00
7 [S11-515	0.00	101.40	149.10	467.42	0.00
8	S11-520	0.00	102.80	149.10	453.70	0.00

Date: Monday, May 09, 2022, Time: 13:46:17, Page 1



	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1 [J16	0.39	102.20	146.20	431.15	0.00
2 [J18	0.39	102.32	146.20	429.98	0.00
3 [J20	0.63	102.60	146.20	427.24	0.00
4	J22	0.40	102.60	146.20	427.24	0.00
5 [J24	0.19	102.60	146.20	427.23	0.00
6	J26	0.48	102.60	146.20	427.23	0.00
7 [S11-515	0.00	101.40	146.20	439.00	0.00
8	S11-520	0.00	102.80	146.20	425.28	0.00

Date: Monday, May 09, 2022, Time: 13:54:52, Page 1

SUC ZONE RECONFIGURATION - PEAK HOUR PRESSURES - Pipe Report

Water Age (hrs)	00.00	00.00	00.0	00.0	00.0	00.0	00.00	00.0	0.00	00.00
Status Flow Reversal Count	0	0	0	0	0	0	0	0	0	0
Status	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open
HL/1000 (m/k-m)	0.02	0.02	0.00	0.01	0.00	0.01	0.02	0.00	0.00	0.02
Headloss (m)	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00
Velocity (m/s)	0.04	0.04	0.01	0.02	00.00	0.02	0.04	0.01	0.01	0.04
Flow (L/s)	1.27	1.27	-0.24	-0.81	0.01	0.64	-1.21	-0.18	0.16	-1.21
Roughness	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00
Diameter (mm)	204.00	204.00	204.00	204.00	204.00	204.00	204.00	204.00	204.00	204.00
Length (m)	7.01	34.25	31.72	35.97	54.11	72.93	40.51	58.07	34.42	10.06
To Node	S11-515	J20	918	J22	J24	J26	S11-520	918	916	
From Node To Node	RES9000 S11-515	S11-515	J16	J18	J16	J20	J22	J24	J26	10 🔲 P135 S11-520 RES9002
<u>_</u>	P117	P119	P121	P123	P125	P127	P129	P131	P133	P135
	_	7	က	4	2	9	_	ω	တ	10

SUC ZONE RECONFIGURATION - Max Day + Fire HGL- Fireflow Design Report

Hydrant Pressure at Design Flow (kPa)

139.96 139.96 139.96 139.96 139.96 139.97

Barrett Block 146 - 10 unit Gallery

Building Floor Area

18.0 m width depth 13.0 m stories 3 681.0 m² Area

F = 220C√A

С 1.5 C =1.5 wood frame 681 m^2 1.0 ordinary Α 0.8 non-combustile F 8,612 l/min 0.6 fire-resistive 8,500 l/min use

Occupancy Adjustment -25% non-combustile

-15% limited combustile

0% combustile +15% free burning

+25% rapid burning

Use -15%

Adjustment -1275 l/min

Fire flow 7,225 l/min

Sprinkler Adjustment

Use 0%

0 I/min Adjustment

Building	Separation	Adjac	ent Exposed	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	3.3	18.0	3	54	18%
east	18.0	19.5	3	59	13%
south	2 hour rated	firewall			10%
west	19.0	16.0	3	48	13%
Total					54%
Adjustment			3,902	l/min	
Total adjust	ments		3,902	l/min	
Fire flow			11,127	l/min	•
Use			11,500	l/min	
			191.7	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Barrett Block 146 - 10 unit Gallery

Building Floor Area

 $\begin{array}{ccc} \text{width} & 18.0 \text{ m} \\ \text{depth} & 19.3 \text{ m} \\ \text{stories} & 3 \\ \text{Area} & 1,015.3 \text{ m}^2 \end{array}$

F = 220C√A

Use

Occupancy Adjustment -25% non-combustile

-15% limited combustile
-15% 0% combustile

+15% free burning +25% rapid burning

Adjustment -1575 l/min

Fire flow 8,925 I/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min

	1				
Building	Separation	Adjac	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	2 hour rated	firewall			0%
east	18.0	19.0	3	57	13%
south	0.0	0.0	0	0	10%
west	19.0	16.0	3	48	13%
Total					36%
Adjustment			3,213	l/min	
Total adjust	ments		3,213	l/min	
Fire flow			12,138	l/min	
Use			12,000	l/min	
			200.0	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Barrett Block 146 - 8 unit Gallery

Building Floor Area

 $\begin{array}{ccc} \text{width} & 18.0 \text{ m} \\ \text{depth} & 13.0 \text{ m} \\ \text{stories} & 3 \\ \text{Area} & 702.0 \text{ m}^2 \end{array}$

F = 220C√A

C 1.5 C = 1.5 wood frame
A 683 m^2 1.0 ordinary
0.8 non-combustile
F 8,624 l/min 0.6 fire-resistive
use 8,500 l/min

-25% non-combustile

Occupancy Adjustment

Use -15% limited combustile
0% combustile
+15% free burning

Adjustment -1275 l/min +25% rapid burning
Fire flow 7,225 l/min

Sprinkler Adjustment

Use 0%

Adjustment 0 l/min

Building	Separation	Adjace	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	2 hour rated	firewall			10%
east	0.0	0.0	0	0	0%
south	3.3	18.0	3	54	18%
west	19.0	20.0	3	60	13%
					_
Total					41%
Adjustment			2,962	l/min	
Total adjust	ments		2,962	l/min	
Fire flow			10,187	l/min	
Use			10,500	l/min	
			175.0	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Barrett Block 146 - 4 unit Townhome

Building Floor Area

width 15.5 mdepth 12.0 mstories 3Area 558.0 m^2

F = 220C√A

C 1.5 C = 1.5 wood frame
A 558 m^2 1.0 ordinary
0.8 non-combustile
F 7,795 I/min 0.6 fire-resistive
use 8,000 I/min

Occupancy Adjustment -25% non-combustile

Use -15% limited combustile
0% combustile
+15% free burning

Adjustment -1200 l/min +25% rapid burning
Fire flow 6,800 l/min

Sprinkler Adjustment

Use 0%

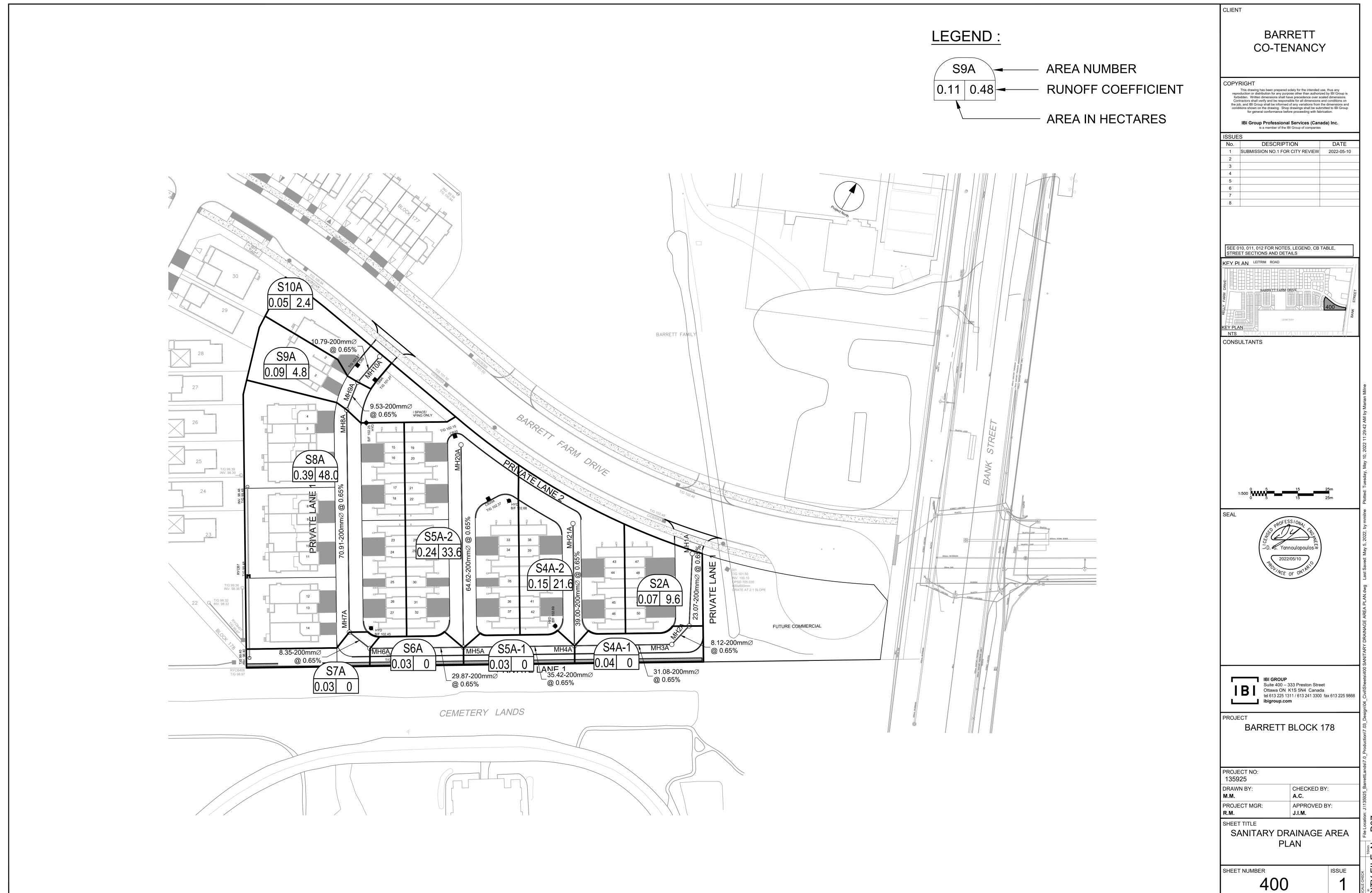
Adjustment 0 l/min

Building	Separation	Adjace	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
					_
north	3.3	15.5	3	47	18%
east	19.0	24.5	3	74	14%
south*	2 hour rated	firewall			10%
west	14.5	24.5	3	74	14%
Total					56%
Adjustment			3,808	l/min	
Total adjust	ments		3,808	l/min	
Fire flow			10,608	l/min	
Use			10,500	l/min	
			175.0	l/s	

^{*} Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

APPENDIX C

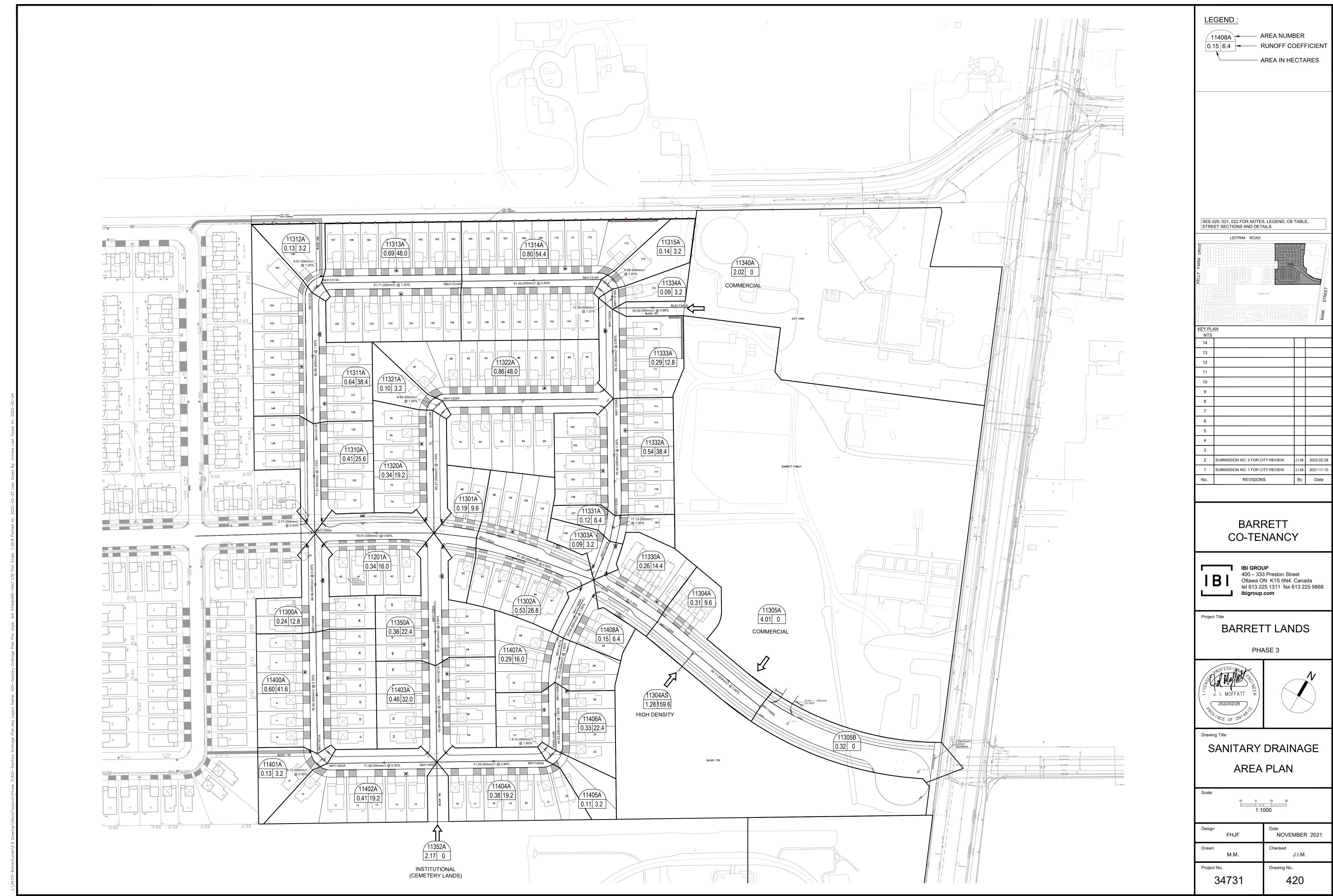
Sanitary Sewer Design Sheet 135925-400 - Sanitary Drainage Plan Barrett Lands Phase 3 Sanitary Design Sheet Barrett Lands Phase 3 Sanitary Drainage Area Plan



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Barrett Lands Block 146 CITY OF OTTAWA Barrett Co-Tenancy

	LOCA	TION						RESIDE	NTIAL							ICI AREAS	i			INFILTI	RATION ALL	OWANCE	FIXED FL	OW (1 /=)	TOTAL			PROPO	SED SEWER	DESIGN		
	LUCA	ITION		AREA		UNIT	TYPES		AREA	POPUL	ATION	RES	PEAK		AREA (H	a)		ICI		ARE	A (Ha)	FLOW	FIXED FL	LOW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	ILABLE
STREET	AREA ID	FROM	TO	w/ Units	SF	SD	TH	APT	w/o Units	IND	CUM	PEAK	FLOW	INSTITUTIONAL	COMMERC	IAL	NDUSTRIAL	PEAR	FLOW	IND	CUM	(1.1-)	IND	сим	(1./-)	(1.7-)	()	((0/)	(full)	CAP	ACITY
SIREEI	AREA ID	MH	MH	(Ha)	ъг	อบ	III	API	(Ha)	IND	COM	FACTOR	(L/s)	IND CUM	IND (CUM I	ID CUI	/ FACTO	R (L/s)	IND	COM	(L/s)	IND	COM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
																																00.500/
Private Lane No.1	S2A	MH1A	MH2A	0.07			4			9.6	9.6	3.73	0.12	0.00		0.00	0.0			0.07	0.07	0.02		0.00	0.14	27.59	23.07	200	0.65	0.851	27.45	
Private Lane No.1		MH2A	MH3A							0.0	9.6	3.73	0.12	0.00		0.00	0.0			0.00	0.07	0.02		0.00	0.14	27.59	8.12	200	0.65	0.851	27.45	99.50%
Private Lane No.1		MH3A	MH4A						0.04	2.4	12.0	3.73	0.14	0.00		0.00	0.0	1.00	0.00	0.04	0.11	0.04		0.00	0.18	27.59	31.08	200	0.65	0.851	27.41	99.34%
Private Lane No. 2	S4A-2	MH21A	MH4A	0.15			9			21.6	21.6	3.70	0.26	0.00		0.00	0.0	1.00	0.00	0.15	0.15	0.05		0.00	0.31	27.59	39.00	200	0.65	0.851	27.28	98.88%
Private Lane No. 2	S5A-2	MH20A	MH5A	0.24			14			33.6	33.6	3.68	0.40	0.00		0.00	0.0	1.00	0.00	0.24	0.24	0.08		0.00	0.48	27.59	64.92	200	0.65	0.851	27.11	98.26%
Private Lane No.1	S5A-1	MH4A	MH5A						0.03	1.8	35.4	3.67	0.42	0.00		0.00	0.0	1.00	0.00	0.03	0.29	0.10		0.00	0.52	27.59	35.42	200	0.65	0.851	27.07	98.13%
Private Lane No.1	S6A	MH5A	MH6A						0.03	1.8	70.8	3.63	0.83	0.00		0.00	0.0			0.03	0.56	0.18		0.00	1.02	27.59	29.87	200	0.65	0.851	26.57	96.31%
Private Lane No.1	S7A	MH6A	MH7A	0.03					1	0.0	70.8	3.63	0.83	0.00		0.00	0.0			0.03	0.59	0.19		0.00	1.03	27.59	8.35	200	0.65	0.851	26.56	96.28%
Private Lane No.1	S8A	MH7A	MH8A	0.39			20			48.0	118.8	3.58	1.38	0.00		0.00	0.0		0.00	0.39	0.98	0.32		0.00	1.70	27.59	70.91	200	0.65	0.851	25.89	93.83%
Private Lane No.1	S9A	MH8A	MH9A	0.09			2			4.8	123.6	3.57	1.43	0.00		0.00	0.0	1.00	0.00	0.09	1.07	0.35		0.00	1.78	27.59	9.53	200	0.65	0.851	25.80	93.53%
Private Lane No.1	S10A	MH9A	MH10A	0.05			1			2.4	126.0	3.57	1.46	0.00		0.00	0.0	1.00	0.00	0.05	1.12	0.37		0.00	1.83	27.59	10.79	200	0.65	0.851	25.76	93.37%
Block 178	11418A	MH10A	MH11305A							0.0	126.0	3.57	1.46	0.00		0.00	0.0	1.00	0.00	0.00	1.12	0.37		0.00	1.83	20.24	16.00	200	0.35	0.624	18.41	90.97%
Design Parameters:				Notes:								Designed:		AC		No.						Revision								Date		
				 Mannings 		. ,		0.013								1.					Submission N	No. 1 for City R	eview							2022-05-09		
Residential		ICI Areas		2. Demand (L/day	200 L	_/day																						
SF 3.2 p/p/u				Infiltration			0.33	L/s/Ha				Checked:		RM																		
TH/SD 2.4 p/p/u		,000 L/Ha/day		Residentia																												
APT 1.9 p/p/u	COM 28	,000 L/Ha/day					+(14/(4+(P/1	000)^0.5))0.	8																							
Other 60 p/p/Ha		,000 L/Ha/day	MOE Chart			= 0.8 Correc						Dwg. Refe	rence:	135925 - 400																		
	17	7000 L/Ha/day		Commerci				sed on total	l area,							File Re							Date:							Sheet No:		
				1.5 if gre	eater than 2	20%, otherw	vise 1.0									1359	25.00						2022-05-09	1						1 of 1		


CITY PLAN No. xxxxx

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

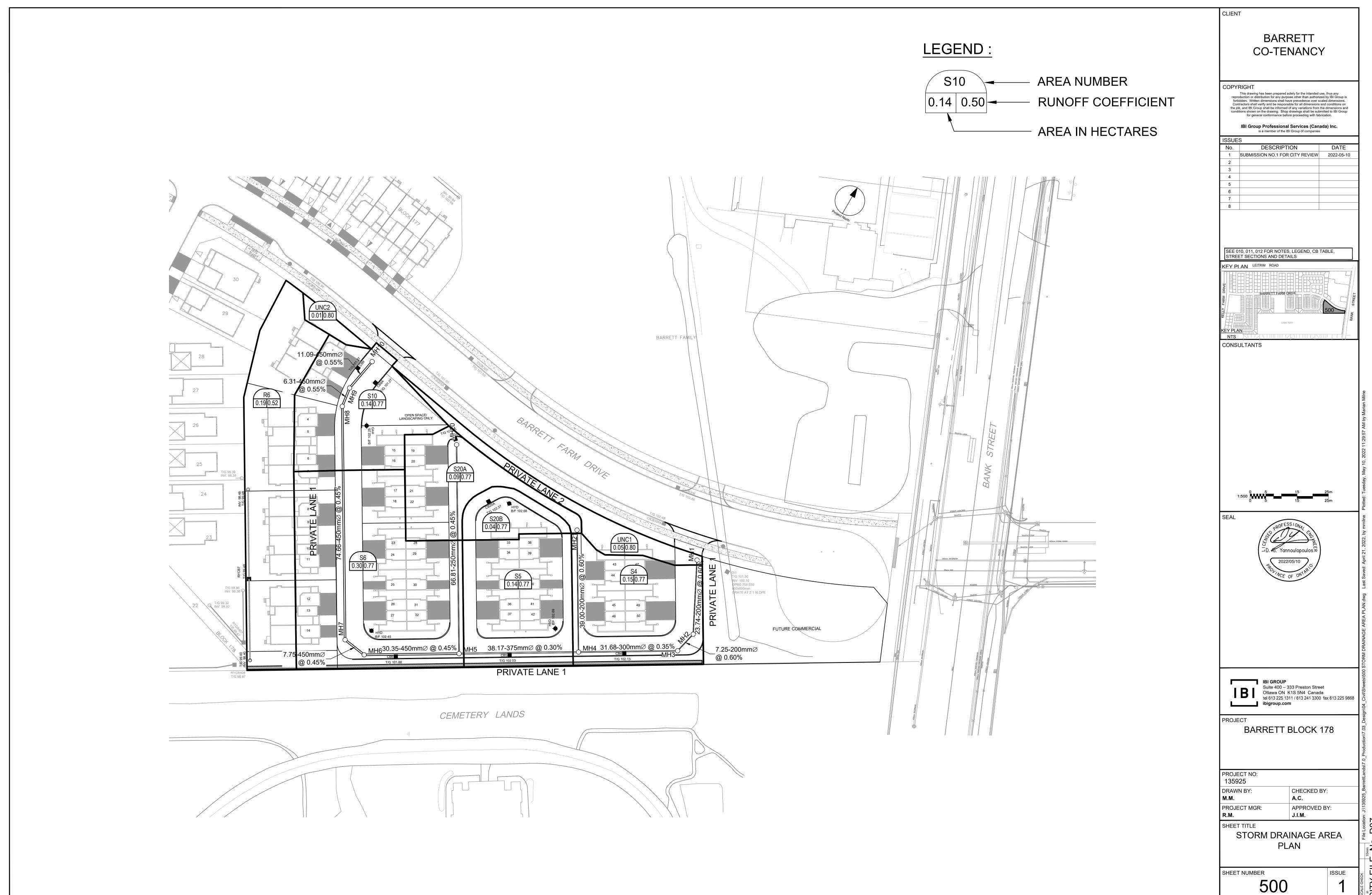
CITY OF OTTAWA Barrett Co-Tenancy

							RESID	ENTIAL				1		ICI AR	EAS				INFILTE	ATION ALL	OWANCE		11	TOTAL			PROP	SED SEWE	R DESIGN		
	LOCATIO	N .		AREA		UNIT TYPES			ULATION	RES	PEAK		ARE	EA (Ha)			ICI	PEAK		A (Ha)	FLOW	KED FLOW (L		FLOW	CAPACITY	LENGTH		SLOPE		/ AV/	AILABLE
STREET	AREA ID	FROM MH	TO MH	w/ Units (Ha)	SF	SD TH	APT	w/o Units IND	CUM	PEAK FACTOR	FLOW	INSTITUTIONAL IND CUM	COM	MERCIAL	INDUSTRI IND (PEAK FACTOR	FLOW	IND	сим		ND CU		(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)		PACITY
				(iia)				(IIa)		TAGTOR	(2/3)	IND COM	III III	00111	IIID (AOTOR	(2/3)								 	+		(111/3)		(70)
Barrett Farm Drive	11305B	MH11306A	MH11305A	0.32				0.0	0.0	3.80	0.00	0.00	4.01	4.01	-	0.00	1.50	1.95	4.33	4.33	1.43	0.0	0	3.38	26.50	56.11	200	0.60	0.817	23.13	87.25%
Block 178	11418A	BLK11305AS	MH11305A	1.28			84	159.6	159.6	3.55	1.83	0.00		0.00	-	0.00	1.00	0.00	1.28	1.28	0.42	0.0	0	2.26	20.24	16.00	200	0.35	0.624	17.99	88.85%
Barrett Farm Drive	11304A	MH11305A	MH11304A	0.31		4		9.6	169.2	3.54	1.94	0.00		4.01		0.00	1.50	1.95	0.31	5.92	1.95	0.0	0	5.84	20.24	29.81	200	0.35	0.624	14.40	71.13%
Barrett Farm Drive	11330A	MH11304A	MH11303A	0.26		6		14.4	183.6	3.53	2.10	0.00		4.01		0.00	1.50	1.95	0.26	6.18	2.04	0.0	0	6.09	20.24	51.17	200	0.35	0.624	14.15	69.92%
Bouvardia Crescent	11334A	MH11316A	MH11334A	0.09	1			3.2	3.2	3.76	0.04	0.00		0.00		0.00	1.00	0.00	0.09	0.09	0.03	0.0		0.07	37.64	12.36	200	1.21	1.161	37.57	
Block 120 (City Yard)	COM2	BLK11120A	MH11334A	0.00				0.0	0.0	3.80	0.00	0.00	2.02			0.00	1.50	0.98	2.02	2.02	0.67	0.0		1.65	32.10	50.00	200	0.88	0.990	30.45	
Bouvardia Crescent Bouvardia Crescent	11333A 11332A	MH11334A MH11333A	MH11333A MH11332A	0.29	4 12			12.8 38.4	16.0 54.4		0.19	0.00		0.00 2.02		0.00	1.00	0.00	0.29 0.54	0.38 2.65	0.13 0.87	0.0		2.17	30.60 39.76	59.23 76.44	200	0.80 1.35	0.944 1.226	30.29 37.58	
Bouvardia Crescent	11332A 11331A	MH11333A	MH11331A	0.12	2			6.4	60.8		0.04	0.00		2.02		0.00	1.00	0.65	0.12	2.03	0.87	0.0		2.17	39.76	17.13	200	1.35	1.226	37.47	
Bouvardia Crescent	11303A	MH11331A	MH11303A	0.09	1			3.2	64.0	3.63	0.75	0.00		2.02		0.00	1.50	0.98	0.09	2.86	0.94	0.0		2.68	54.96	27.28	200	2.58	1.695	52.28	
Delphinium Crescent	11408A	MH11408A	MH11407A	0.15	2			6.4	6.4	3.75	0.08	0.00		0.00	-	0.00	1.00	0.00	0.15	0.15	0.05	0.0	0	0.13	43.28	29.00	200	1.60	1.335	43.15	99.71%
Delphinium Crescent	11407A	MH11407A	MH11406A	0.29	5			16.0	22.4	3.70	0.27	0.00		0.00		0.00	1.00	0.00	0.29	0.44	0.15	0.0	0	0.41	43.28	29.33	200	1.60	1.335	42.87	99.04%
Delphinium Crescent	11406A	MH11406A	MH11405A	0.33	7			22.4			0.53	0.00		0.00		0.00	1.00	0.00	0.33	0.77	0.25	0.0		0.79	43.28	44.63	200	1.60	1.335	42.50	
Delphinium Crescent	11405A	MH11405A	MH11404A	0.11	1			3.2	48.0	3.65	0.57	0.00		0.00	1	0.00	1.00	0.00	0.11	0.88	0.29	0.0	0	0.86	43.28	9.12	200	1.60	1.335	42.42	98.02%
Delphinium Crescent	11404A	MH11404A	MH11403A	0.38	6			19.2	67.2	3.63	0.79	0.00		0.00		0.00	1.00	0.00	0.38	1.26	0.42	0.0	0	1.21	32.46	71.55	200	0.90	1.001	31.25	96.28%
Nemesia Way	11350A	MH11351A	MH11350A	0.38	7			22.4	22.4	3.70	0.27	0.00		0.00	-	0.00	1.00	0.00	0.38	0.38	0.13	0.0	0	0.39	27.59	48.50	200	0.65	0.851	27.19	98.57%
Nemesia Way	11403A	MH11350A	MH11403A	0.46	10			32.0	54.4	3.65	0.64	0.00		0.00	- (0.00	1.00	0.00	0.46	0.84	0.28	0.0	0	0.92	27.59	62.94	200	0.65	0.851	26.67	96.67%
Block 124 (Cemetery)	CEM, 11352A	BLK11352A	MH11403A	0.00				0.0	0.0	3.80	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.00	0.00	0.00	0.0	0	0.00	27.59	42.00	200	0.65	0.851	27.59	100.00%
																										+	+		+	+	_
Delphinium Crescent Delphinium Crescent	11402A 11401A	MH11403A MH11402A	MH11402A MH11401A	0.41 0.13	6			19.2	140.8 144.0		1.62 1.66	0.00		0.00		0.00	1.00	0.00	0.41 0.13	2.51 2.64	0.83 0.87	0.0		2.45	20.24 20.24	71.56 9.12	200 200	0.35 0.35	0.624 0.624	17.79 17.71	
Delphinium Crescent Delphinium Crescent	11400A	MH11401A	MH11400A	0.60	13			41.6	185.6		2.12	0.00		0.00		0.00	1.00	0.00	0.60	3.24	1.07	0.0		3.19	20.24	79.50	200	0.35	0.624	17.05	
Delphinium Crescent	11300A	MH11400A	MH11300A	0.24	4			12.8			2.26	0.00		0.00		0.00	1.00	0.00	0.24	3.48	1.15	0.0		3.41	20.24	64.94	200	0.35	0.624	16.83	
Barrett Farm Drive	11302A	MH11303A	MH11302A	0.53	9			28.8	276.4	3.47	3.11	0.00		6.03		0.00	1.50	2.93	0.53	10.34	3.41	0.0	0	9.46	26.50	81.49	200	0.60	0.817	17.05	64.32%
Barrett Farm Drive	11301A	MH11302A	MH11301A	0.19	3			9.6	286.0	3.47	3.22	0.00		6.03	-	0.00	1.50	2.93	0.19	10.53	3.47	0.0	0	9.62	32.46	27.85	200	0.90	1.001	22.84	70.36%
Solidago Mews	11322A	MH11323A	MH11322A	0.86	15			48.0	48.0	3.65	0.57	0.00		0.00		0.00	1.00	0.00	0.86	0.86	0.28	0.0	0	0.85	49.58	101.40	200	2.10	1.529	48.73	98.28%
Solidago Mews	11321A	MH11322A	MH11321A	0.10	1			3.2	51.2		0.61	0.00		0.00		0.00	1.00	0.00	0.10	0.96	0.32	0.0		0.92	41.91	8.88	200	1.50	1.292	40.98	
Solidago Mews	11320A	MH11321A	MH11301A	0.34	6			19.2	70.4	3.63	0.83	0.00		0.00		0.00	1.00	0.00	0.34	1.30	0.43	0.0	0	1.26	42.60	80.27	200	1.55	1.314	41.34	97.05%
Barrett Farm Drive	11201A	MH11301A	MH11300A	0.34	5			16.0	372.4	3.43	4.14	0.00		6.03		0.00	1.50	2.93	0.34	12.17	4.02	0.0	0	11.09	26.50	78.01	200	0.60	0.817	15.42	58.17%
Bouvardia Crescent	11315A	MH11316A	MH11315A	0.14	1			3.2	3.2	3.76	0.04	0.00		0.00	-	0.00	1.00	0.00	0.14	0.14	0.05	0.0	0	0.09	38.26	9.28	200	1.25	1.180	38.17	99.78%
Bouvardia Crescent	11314A	MH11315A	MH11314A	0.80	17			54.4			0.68	0.00		0.00		0.00	1.00	0.00	0.80	0.94	0.31	0.0		0.99	53.01	91.45	200	2.40	1.635	52.02	
Bouvardia Crescent	11313A	MH11314A	MH11313A	0.69	15			48.0	105.6		1.23	0.00		0.00		0.00	1.00	0.00	0.69	1.63	0.54	0.0		1.77	37.48	91.71	200	1.20	1.156	35.72	
Bouvardia Crescent	11312A	MH11313A	MH11312A	0.13	1			3.2	108.8		1.26	0.00		0.00		0.00	1.00	0.00	0.13	1.76	0.58	0.0		1.85	37.48	8.91	200	1.20	1.156	35.64	
Bouvardia Crescent Bouvardia Crescent	11311A 11310A	MH11312A MH11311A	MH11311A MH11300A	0.64 0.41	12 8			38.4 25.6		3.55 3.54	1.70 1.98	0.00		0.00		0.00	1.00	0.00	0.64 0.41	2.40 2.81	0.79 0.93	0.0		2.49	34.22 42.32	85.85 71.31	200 200	1.00 1.53	1.055 1.305	31.73 39.42	
Barrett Farm Drive	11205A	MH11300A	MH11204A	0.51	5	8		35.2	778.8	3.29	8.31	0.00		6.03		0.00	1 50	2.93	0.51	18.97	6.26	0.0	0	17.50	30.39	2.77	250	0.24	0.600	12.89	42.41%
Darrett ann Drive	TIZOSA	WITTIGOA	WITTIZOGA	0.51	3			33.2	770.0	5.29	0.51	0.00		0.03	'	0.00	1.50	2.93	0.51	10.97	0.20	0.0		17.50	30.39	2.11	250	0.24	0.000	12.09	42.4170
																											-		-	1	1
Design Parameters:				Notes:	1					Designed:		AC		No.							Revision						\vdash		Date		
				Mannings	coefficient	(n) =	0.013				-			1.							No. 1 for City Review	v							2021-11-10		
Residential		ICI Areas		2. Demand () L/day	200 L/day						2.							No. 2 for City Review						1		2022-02-24	4	-
SF 3.2 p/p/u				3. Infiltration	allowance:	0.33	3 L/s/Ha	,		Checked:		JIM		3.							No. 3 for City Review								2022-04-06	ز	
TH/SD 2.4 p/p/u		L/Ha/day		Residentia																											
APT 1.9 p/p/u) L/Ha/day				ormula = 1+(14/(4+(P/1	000)^0.5))0	.8						_													4				
Other 60 p/p/Ha) L/Ha/day	MOE Chart			0.8 Correction Factor	4	.1		Dwg. Refe	erence:	34731 - TBD			. D. /														01		
	17000) L/Ha/day				utional Peak Factors ba	ased on tota	ai area,							e Reference: 34731-5.7							ate: I-11-10							Sheet No: 1 of 1		
				i.b if gre	eater mañ 2	.076, otnerwise 1.0									34131-3.1						202	1-11-10					4		1011		

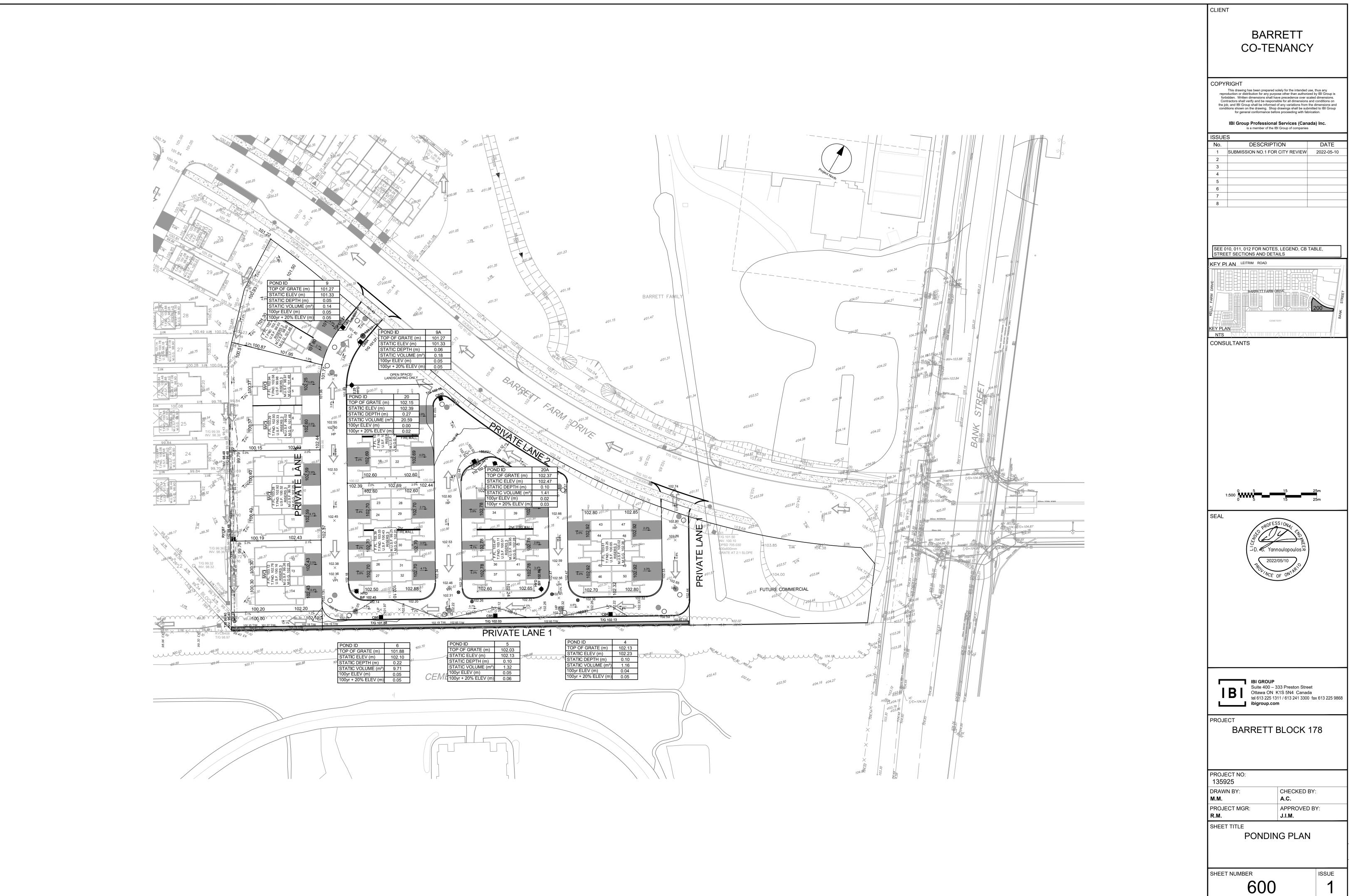
APPENDIX D

Storm Sewer Design Sheet
135925-500 - Storm Drainage Plan
135925-600 - Ponding Plan
Barrett Lands Phase 3 Storm Design Sheet
Barrett Lands Phase 3 Storm Drainage Area Plan
Modified Rational Method on-site SWM calculations
On-site Underground Storage System
Storm HGL Calculations
Barrett Lands Phase 3 HGL Reference
Overflow Depth/Capacity Calculation
Temporary Orifice Sizing
Sample Runoff Coefficient Calculations

IBI GROUP


400-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com

Black text 2 year event curve design
Blue text 5 year event curve design
Green Text 100 year design curve


STORM SEWER DESIGN SHEET

Barrett Lands Block 146 City of Ottawa Barrett Co-Tenancy

	LOCATION							AREA (H													ESIGN FLOW							S	EWER DATA	1			•
OTDEET	ADEAID	FDOM		C=	C=	C=	C=	C=	C= C=	- C=	C= C	C= IND	CUM	INLET	TIME	TOT	ΓAL	i (2)	i (5)	i (10)	i (100) 2yr PEAK 5yr PEAK 10yr PEA	K 100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH	Р	PIPE SIZE (m	m)	SLOPE	VELOCITY	AVAII	IL CAP
STREET	AREA ID	FROM	то	0.20	0.30	0.42	0.50	0.52 0	.72 0.7	3 0.77 (0.85 1.0	.00 2.78AC	2.78AC	(min)	IN PIP	E (mi	in) (r	mm/hr)	(mm/hr)	(mm/hr)	i (100) 2yr PEAK 5yr PEAK 10yr PEA (mm/hr) FLOW (L/s) FLOW (L/s) FLOW (L/s)	s) FLOW (L/s)	FLOW (L/s	FLOW (L/s)	(L/s)	(m)	DIA	W \	Н	(%)	(m/s)	(L/s)	(%)
Private Lane No.1		MH1	MH2										0.00		0.48	10.	48	76.81			0.00		0.00	0.00	26.50	23.74	200			0.60	0.817	26.50	100.00%
Private Lane No.1		MH2	MH3									0.00	0.00	10.48	0.15			74.99			0.00		0.00	0.00	26.50		200			0.60	0.817	26.50	100.00%
Private Lane No.1	S4	MH3	MH4							0.15		0.32	0.32	10.63	0.65	11.	28	74.46			23.91		26.00	26.00	59.68	31.68	300			0.35	0.818	33.68	56.44%
Private Lane No. 2		MH21	MH4										0.00		0.80			76.81			0.00		0.00	0.00	26.50		200			0.60	0.817		100.00%
Private Lane No. 2	S20A, S20B	MH20	MH5							0.13		0.28	0.28	10.00	1.36	11.	36	76.81			21.37		30.00	30.00	41.62	66.81	250			0.45	0.821	11.62	27.91%
Private Lane No.1	S5	MH4	MH5							0.14				11.28	0.72			72.22			44.84		51.00	51.00	100.18		375			0.30	0.879		49.09%
Private Lane No.1	S6	MH5	MH6							0.30			1.54		0.42			69.89			107.72		136.00	136.00	199.52		450			0.45	1.215		31.84%
Private Lane No.1	R6	MH6	MH7					0.19					1.82		0.11			68.62			124.61		170.00	170.00	199.52		450			0.45	1.215	29.52	
Private Lane No.1		MH7	MH8									0.00	1.82	12.52				68.30			124.03		170.00	170.00		74.66	450			0.45	1.215		14.80%
Private Lane No.1		MH8	MH9									0.00	1.82	13.55	0.08			65.42			118.80		170.00	170.00	220.58	6.31	450			0.55	1.344		22.93%
Private Lane No.1	S10	MH9	MH10							0.14		0.30	2.12	13.63	0.14	13.	76	65.21			137.96		210.00	210.00	220.58	11.09	450			0.55	1.344	10.58	4.80%
													<u> </u>		1																		4
Private Lane No.1		MH10	MH11305A									0.00	2.12	13.76	0.19	13.	95	64.85			137.19		210.00	210.00	518.80	16.00	675			0.35	1.404	308.80	59.52%
																																	+
Definitions:				Notes										Decimand	<u> </u>						No			Revision							Date		
				Notes		cc: . :	4 ()		040					Designed		AC					No.	Ovel											
Q = 2.78CiA, where:	(1. Ma	annings c	coefficien	it (n) =		.013												1.	Sub	mission ino.	.1 for City Revi	ew						2022-05-09		
Q = Peak Flow in Litres per Se	econa (L/S)							C	.024					01 1 1		DNA																	
A = Area in Hectares (Ha)														Checked:		RM																	
i = Rainfall intensity in millimet		0.7.4.5																															
$[i = 732.951 / (TC+6.199)^{0.8}]$	-	2 YEAR																															
[i = 998.071 / (TC+6.053)^0.	-	5 YEAR												Dwg. Refe	erence:	13592	25-500																
[i = 1174.184 / (TC+6.014) [^] C		10 YEAR																			File Reference:				Date:						Sheet No:		
[i = 1735.688 / (TC+6.014) [^] C	`0.820]	100 YEAR																			135925.00				2022-05-09						1 of 1		

CITY PLAN No. xxxxx

CITY PLAN No. xxxxx

ALE CHECK

TY FILE No. D07- - -

IBI

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Black text 2 year event curve design
Blue text 5 year event curve design (Barrett Farm Drive)
Green Text 100 year design curve

(Barrett Farm Drive)

City of Ottawa

Barrett Co-Tenancy

	LOCATION					AREA (Ha)							R	ATIONAL DES	SIGN FLOW							S	SEWER DATA				
STREET	AREA ID	FROM	то	C=	C= C= C=	C= C= C=	C= C= C=	IND CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100) 2yr P	EAK 5yr	PEAK 1	0yr PEAK 100yr PEAK FIXED	DESIGN	CAPACITY	LENGTH	PIPE SIZE (m	ım)	SLOPE	/ELOCITY (m/s)	AVAIL CA	AP (2yr)
SIREEI	AREA ID	FROW	10	0.20	0.30 0.42 0.57	0.68 0.72 0.73	0.78 0.80 1.00	2.78AC 2.78AC	C (min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr) FLOW	(L/s) FLO	W (L/s) FI	LOW (L/s) FLOW (L/s) FLOW (L/s)	FLOW (L/s	(L/s)	(m)	DIA W	Н	(%)	(m/s)	(L/s)	(%)
				+				1						 													
Temporary	Area 9	DI1	MH11307		0.24			0.28 0.28	12.00	0.21	12.21	69.89	94.70	110.96	162.13			45.43	45.43	62.04	15.50	250		1.00	1.224	16.61	26.77%
Barrett Farm Drive	S11306	MH11307	MH11306		0.2.	0.19		0.38 0.66		0.89	10.89	76.81	104.19		178.56	68	8.82	.0.10	114.26	158.41		375		0.75	1.389		27.87%
Barrett Family	R11305	DI2	MH11306				4.01	8.92 8.92		*		69.89	94.70	110.96	162.13 623	.33			623.33	821.24	14.66	750		0.50	1.801	197.92	
Temporary	Culvert	DI2	MH11306					See Barrett Fam			dix D								348.22	530.86	14.66	525 300		1.40	2.376		34.40%
Temporary	Culvert	Ditch	Ditch					See culvert desi	gri iri Appendi	IX D									34.08	109.29	20.00	300		4.00	1.498	75.21	68.82%
Barrett Farm Drive		MH11306	MH11305					0.00 8.92	12.14	0.43	12.57	69.47	94.12	110.28	161.14 619	.59			698.95	1,159.96	54.50	825		0.60	2.102	461.01	39.74%
Barrett Farm Drive	S11305	MH11306	MH11305			0.09		0.18 0.84	_	0.43	12.57	69.47	94.12		161.14		9.36		698.95	1,159.96		825		0.60			39.74%
Barrett Farm Drive	R11304	BLK11305	MH11305				1.28	2.85 2.85	12.00	0.25	12.25	69.89	94.70	110.96	162.13 198	.97			198.97	438.47	18.00	675		0.25	1.187	239.50	54.62%
Barrett Farm Drive		MH11305	MH11304					0.00 11.76	12.57	0.36	12.92	68.18	92.34	108.18	158.06 802	08			820.82	1,274.02	30.40	1050		0.20	1.425	453.20	35.57%
Barrett Farm Drive	S11305	MH11305	MH11304			0.10		0.20 0.20		0.36	12.92	68.18	92.34		158.06		8.74		820.82	1,274.02		1050	1	0.20			35.57%
Barrett Farm Drive		MH11304	MH11303					0.00 11.76	12.92	0.51	13.43	67.15	90.93		155.62 789				917.90	1,424.40		1050		0.25	1.594		35.56%
Barrett Farm Drive	S11304A	MH11304	MH11303				0.25	0.54 1.39	12.57	0.51	13.08	68.18	92.34	108.18	158.06	12	27.91		917.90	1,424.40	48.54	1050		0.25	1.594	506.50	35.56%
Bouvardia Crescent	R11334	MH11316	MH11334	+ +	0.03			0.05 0.05	10.00	0.17	10.17	76.81	104.19	122.14	178.56 3.6	35			3.65	62.04	12.72	250		1.00	1.224	58.39	94.11%
Block 120	R11340	BLK11340	MH11334	+ +	0.03	 	1.98	4.40 4.40		0.17	12.45	69.89	94.70		162.13 307			 	307.78	524.32	48.00	600	+	0.67	1.796	216.54	-
Bouvardia Crescent	S11334, R11333	MH11334	MH11333	 	0.08	0.27	1.55	0.67 5.12		0.54	12.98	68.54	92.84		158.92 350	_			350.80	535.93	59.22	600		0.70	1.836		34.54%
Bouvardia Crescent	R11332, S11333	MH11333	MH11332		0.12	0.20		0.59 5.71	12.98	0.51	13.49	66.98	90.70	106.25	155.22 382	.36			382.36	744.26	78.11	600		1.35		361.90	48.63%
Bouvardia Crescent	R11331, S11331	MH11332	MH11331			0.24 0.25		0.95 6.66	13.49	0.11	13.60	65.57	88.76		151.88 436				436.87	744.26	16.85	600		1.35	2.550	307.39	
Bouvardia Crescent		MH11331	MH11303					0.00 6.66	13.60	0.16	13.77	65.27	88.36	103.50	151.18 434	.90			434.90	744.26	25.07	600		1.35	2.550	309.36	41.57%
Barrett Farm Drive		MH11303	MH11302	+ +				0.00 18.43	13.77	0.57	14.33	64.84	87.76	102.80	150.16 1,19	1.83			1,360.93	2,206.67	83.97	1050	-	0.60	2.469	845.73	38.33%
Barrett Farm Drive	S11303A, S11303B	MH11303	MH11302			0.25		0.51 1.89	13.77	0.57	14.33	64.84	87.76	102.80	150.16		66.10			2,206.67	83.97			0.60	2.469	845.73	38.33%
														100100					1,000100			1000					
Barrett Farm Drive		MH11302	MH11301					0.00 18.43	14.33	0.20	14.54	63.38	85.77	100.46	146.72 1,16				1,330.37	2,206.67	30.00	1050		0.60		876.29	
Barrett Farm Drive		MH11302	MH11301					0.00 1.89	14.33	0.20	14.54	63.38	85.77	100.46	146.72	16	32.33		1,330.37	2,206.67	30.00	1050		0.60	2.469	876.29	39.71%
Calida ya Mayya	D44000 C44000	M1144202	M1144000		0.00	0.05		0.04	10.00	0.07	40.07	70.04	404.40	400.44	170.50 70	00			70.00	140.40	404.00	200	 	0.40	0.004	70.40	50.070/
Solidago Mews Solidago Mews	R11323, S11323	MH11323 MH11322	MH11322 MH11321		0.26	0.25		0.91 0.91 0.00 0.91		0.87 0.09	10.87 10.96	76.81 73.62	104.19 99.82		178.56 70. 170.99 67.				70.08 67.17	123.55	104.38 8.91	300		2.10 1.50	2.004 1.693		52.07% 45.63%
Solidago Mews	R11321, S11321, S11301	MH11321	MH11301	+ +	0.53	0.22 0.15			10.96	0.83	+	73.32	99.40		170.99 07.				183.08	347.53				0.60	1.555	164.45	
o and a go mono					1 1 1	0.22 0.10		1100 2100	19199	0.00		. 5.52	00110	110100								020		0.00			
Barrett Farm Drive		MH11301	MH11300					0.00 20.92	_	0.53	15.07	62.88	85.08	99.65	145.53 1,31				1,569.35	2,206.67	79.16	1050		0.60		637.32	
Barrett Farm Drive	R11301, S11301A, S11301B	MH11301	MH11300		0.43	0.20		1.09 2.98	14.54	0.53	15.07	62.88	85.08	99.65	145.53	25	53.54		1,569.35	2,206.67	79.16	1050		0.60	2.469	637.32	28.88%
Daywardia Craasant	R11315	MH11316	MH11315		0.14			0.22 0.22	10.00	0.11	10.11	76.81	104.19	100.14	178.56 17.	0.4			17.04	69 36	9.12	250	1	1.05	1.369	F0 00	75.43%
Bouvardia Crescent Bouvardia Crescent	S11314	MH11315	MH11314		0.14	0.30		0.22 0.22 0.60 0.82		0.11	10.11	76.01	104.19	122.14 121.46	177.55 62.				62.81	96.11	89.59	250	+	1.25 2.40	1.897		34.65%
Bouvardia Crescent	R11313A, R11313B, S11313	MH11314	MH11313		0.44	0.26		1.22 2.04		0.81	11.71	73.52	99.68		170.74 149				149.98	325.82	96.25	450	1	1.20	1.985		53.97%
Bouvardia Crescent	R11313C	MH11313	MH11312		0.10			0.16 2.20		0.08	11.78	70.82	95.97		164.33 155				155.69	325.82	9.33	450		1.20	1.985		52.22%
Bouvardia Crescent	R11311, S11312, S11311B	MH11312	MH11311		0.48	0.37		1.51 3.71		0.74	12.53	70.57	95.62		163.74 261				261.81	448.66	89.18	525		1.00	2.008	186.85	
Bouvardia Crescent	S11311, S11311A	MH11311	MH11300			0.25		0.51 4.22	12.53	0.55	13.07	68.30	92.51	108.39	158.36 288	.04			288.04	590.57	66.44	600		0.85	2.023	302.52	51.23%
Delphinium Crescent		MH11408	MH11407					0.00 0.00	10.00	0.27	10.27	76.81	104.19	122.14	178.56 0.0	00			0.00	78.47	25.01	250		1.60	1 5/10	78.47	100.00%
Delphinium Crescent Delphinium Crescent	S11407	MH11408 MH11407	MH11407 MH11406	+	++++	0.18	+ + + + + + + + + + + + + + + + + + + +	0.00 0.00 0.36 0.36		0.27 0.31	10.27	75.79	104.19		176.14 27.			 	0.00 27.31	78.47	28.74		+	1.60 1.60	1.549 1.549		65.20%
Delphinium Crescent	R11406	MH11406	MH11405	+ +	0.17	1 3.10		0.27 0.63		0.51	11.09	74.65	101.23		173.44 47.				47.01	78.47	47.61	250		1.60	1.549		40.10%
Delphinium Crescent		MH11405	MH11404					0.00 0.63	11.09	0.10	11.19	72.86	98.76	115.75	169.17 45.	88			45.88	78.47	9.35	250		1.60	1.549	32.60	41.54%
Delphinium Crescent	S11404	MH11404	MH11403		0.48	0.49		1.74 2.37	11.19	0.72	11.91	72.51	98.29	115.19	168.35 171	.94			171.94	282.17	74.37	450		0.90	1.719	110.23	39.07%
Nomesia Way	S11350, R11350A, R11350B	MH11350	MH11351	+	0.28	0.24		0.02	10.00	0.64	10.61	76 04	104.19	100 14	178.56 70.	07			70.97	1/11/00	45.20	275		0.60	1 2/12	70.74	49.91%
Nemesia Way Nemesia Way	S11350, R11350A, R11350B S11351	MH11350 MH11351	MH11351 MH11403	+ +	0.28	0.24		0.92 0.92 0.50 1.42	10.00 10.61	0.61 0.79	10.61 11.39	76.81 74.55	104.19		178.56 70. 173.20 106				106.20	141.68 230.39		375 450		0.60 0.60	1.243 1.403	70.71 124.19	
Transola VVay	011001			+ +	+ +	J.20	+ +	0.00 1.42	10.01	3.70	11.00	, ,,,,,,		. 10.40	5.25				.55.20	200.00	50.71	.55		0.00		10	55.5570
Delphinium Crescent	S11401A, R11402	MH11403	MH11402		0.27	0.24		0.91 4.70	11.91	0.93	12.85	70.17	95.07	111.40	162.78 330	.05			330.05	580.71	71.43	750		0.25	1.273	250.66	43.16%
Delphinium Crescent		MH11402	MH11401					0.00 4.70	12.85	0.12	12.97	67.36	91.22		156.13 316				316.86	580.71	9.06	750		0.25	1.273		45.44%
Delphinium Crescent	S11401B, R11401	MH11401	MH11400		0.31	0.18		0.85 5.56		1.05	14.02	67.03	90.76		155.33 372				372.35	580.71		750		0.25		208.36	
Delphinium Crescent	S11400, R11400A, R11400B	MH11400	MH11300		0.22	0.26		0.87 6.42	14.02	0.95	14.96	64.19	86.88	101.76	148.63 412	.39			412.39	669.70	68.90	825		0.20	1.214	257.31	38.42%
Barrett Farm Drive		MH11300	EX Blkhd	+ +				0.00 31.57	15.07	0.02	15.09	61.60	83.33	97.58	142.50 1.94	4.49			2.192.79	4.658.21	2.51	1650		0.24	2.110	2465.42	52.93%
Barrett Farm Drive		MH11300	EX Blkhd					0.00 31.57 0.00 2.98	15.07	0.02	15.09	61.60	83.33	97.58	142.50	24	18.31		2,192.79	4,658.21 4,658.21	2.51	1650		0.24	2.110 2.110	2465.42	52.93%
Definitions:				Notes:		0.040			Designed:		AC			L	No.				Revision						Date		
Q = 2.78CiA, where: Q = Peak Flow in Litres pe	er Second (L/s)			1. Mannin	ngs coefficient (n) =	0.013 0.024								 	1.			Submission No.1 Submission No.2							2021-11-10 2022-02-24		
A = Area in Hectares (Ha)	, ,					U.UZ 4			Checked:		JIM				3			Submission No.2 Submission No.3							2022-02-24		
	llimeters per hour (mm/hr)								OHECKEU.		OTIVI			 	<u> </u>			GUNITIOISSINI NU.3	, ioi oity ixev	, 10 VV					-0 <u>-</u> 2-0 1- 00		
[i = 732.951 / (TC+6.199		2 YEAR							L						<u> </u>												
[i = 998.071 / (TC+6.053	3)^0.814]	5 YEAR							Dwg. Refer	rence:	34731-520																
[i = 1174.184 / (TC+6.0		10 YEAR													F	ile Referen				Date:					Sheet No:		
[i = 1735.688 / (TC+6.0	14)^0.820]	100 YEAR														34731-5.7	1			2021-11-10					1 of 1		

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

PROJECT: 3arrett Block 146 **DATE:** 2022-04-30 FILE: 135925-6.4.4 REV #: DESIGNED BY:

RM

CHECKED BY:

STORMWATER MANAGEMENT

Formulas and Descriptions

 i_{2yr} = 1:2 year Intensity = 732.951 / $(T_c+6.199)^{0.810}$ i_{5yr} = 1:5 year Intensity = 998.071 / $(T_c+6.053)^{0.814}$ i_{100yr} = 1:100 year Intensity = 1735.688 / $(T_c+6.014)^{0.820}$ T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (based on 85 L/s/Ha)

234.000 l/s From Barrett Phase 3 234.00 L/s Uncontrolled Release (Q_{uncontrolled} = 2.78*C*i_{100yr}*A_{uncontrolled})

> 8.0 $T_c =$ 10 min 178.56 mm/hr i _{100yr} = 0.06 Ha 23.83 L/s

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

210.17 L/s Q max allowable =

OVERFLOW SUMMARY TABLE Overflow to Barrett Farm Drive 53.39 134.35 194.1 Delphinium Cres. 187.74 Total 281.54 Barrett Phase 3 allowance 350

S20A

i _{2yr}

(mm/hour

0.80 Restricted Flow Q_r (L/s)= 2-Year Ponding Peak Flow

 $Q_p = 2.78xCi_{2yr}A$

(L/s)

MODIFIED RATIONAL METHOD (100-Year, 100-Year +20% & 2-Year Ponding)

Drainage Area	S20A							
Area (Ha)	0.090				_			
C =	1.00	Restricted Flow Q _r (L	/s)=	15.00				
		100-Year Pondin	ıg				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
5	242.70	60.72	15.00	45.72	13.72			
10	178.56	44.68	15.00	29.68	17.81			
15	142.89	35.75	15.00	20.75	18.68	42.90	27.90	25.11
20	119.95	30.01	15.00	15.01	18.01			
25	103.85	25.98	15.00	10.98	16.47			

overflows to: S10

(IIIIII/IIOUI)	(2/3)	(2/3)	(2/3)	(111)	(23)	(2/3)	(1113)	(111111)	(IIIIII/IIOUI)	(L/3)	(2/3)	(2/3)	(/
242.70	60.72	15.00	45.72	13.72				8	85.46	17.11	15.00	2.11	1.01
178.56	44.68	15.00	29.68	17.81				9	80.87	16.19	15.00	1.19	0.64
142.89	35.75	15.00	20.75	18.68	42.90	27.90	25.11	10	76.81	15.37	15.00	0.37	0.22
119.95	30.01	15.00	15.01	18.01				11	73.17	14.65	15.00	-0.35	-0.23
103.85	25.98	15.00	10.98	16.47				12	69.89	13.99	15.00	-1.01	-0.73
					='								
	Sto	rage (m3)				100+20				St	torage (m³)		
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance		Overflow	Required	Surface	Sub-surface	Balance
0.00	18.68	20.59	0	0.00	0.00	25.11	4.52		0.00	0.22	20.59	0	0.00
				0.00			F 00						
			L/s =	0.00			5.02						

Drainage Area

Variable

Area (Ha)

overflows to: S10

 $Q_p - Q_r$

Volume

2yr (m³)

Drainage Area	S10							
Area (Ha)	0.140	Ī						
C =	1.00	Restricted Flow Q _r (L	/s)=	40.00	1			
		100-Year Pondir	ıg				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow Qp=2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
-5	1716.01	667.87	40.00	627.87	-188.36			
0	398.62	155.14	40.00	115.14	0.00			
5	242.70	94.46	40.00	54.46	16.34	113.35	73.35	22.01
10	178.56	69.50	40.00	29.50	17.70			
15	142.89	55.61	40.00	15.61	14.05	1		

	St	orage (m³)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	16.34	0.32	0	16.02	4.52	26.53	26.21
			L/s =	53.39		L/s =	87.36

Volume 100+20 (m3)

L/s = 53.39 L/s = 87.36 overflows to: Barrett Farm Drive

Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4
Area (Ha)	0.150
Drainage Area	S4

C =		1.00	Restricted Flow Q _r (L	./s)=	26.00			
			100-Year Pondir	ng				100Yr +20%
T _c Varial		i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr
(min	1)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)
4		262.41	109.42	26.00	83.42	20.02	1	
9		188.25	78.50	26.00	52.50	28.35	1	
14		148.72	62.02	26.00	36.02	30.25	74.42	48.42
19		123.87	51.65	26.00	25.65	29.24		
24		106.68	44.48	26.00	18.48	26.62	1	

	St	orage (m3)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	30.25	1.16	0	29.09	0.00	40.67	39.51
			L/s =	34.64		L/s =	47.04
			overflows to: S	35			

Drainage Area	S20B	1						
Area (Ha)	0.040	Ī			_			
C =	1.00	Restricted Flow Q _r (L	_/s)=	15.00				
		100-Year Pondir	ng				100Yr +20%	
T _c Variable	i _{100yr}	Peak Flow $Q_p = 2.78xCi_{100yr}A$	Q_r	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
-4	977.56	108.70	15.00	93.70	-22.49	1		
1	351.38	39.07	15.00	24.07	1.44	1		
6	226.01	25.13	15.00	10.13	3.65	30.16	15.16	5.46
11	169.91	18.89	15.00	3.89	2.57			
16	137.55	15.30	15.00	0.30	0.28			

	St	orage (m3)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	3.65	1.41	0	2.24	0.00	5.46	4.05
			L/s =	6.22		L/s =	11.24
			avarflavia tav	DE .			

Drainage Area	S10				
Area (Ha)	0.140				
C =	0.80	Restricted Flow Q _r (I	_/s)=	40.00	
		2-Year Pondi	ng		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	26.61	40.00	-13.39	-6.43
9	80.87	25.18	40.00	-14.82	-8.00
10	76.81	23.91	40.00	-16.09	-9.65
11	73.17	22.78	40.00	-17.22	-11.36
12	69.89	21.76	40.00	-18.24	-13.13

	Storage (m ³)							
0	verflow	Required	Surface	Sub-surface	Balance			
	0.00	-9.65	0.32	0	0.00			

overflows to: Barrett Farm Dr

Drainage Area	54				
Area (Ha)	0.150				
C =	0.80	Restricted Flow Q _r (L	_/s)=	26.00)
		2-Year Pondir	ng		•
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	28.51	26.00	2.51	1.20
9	80.87	26.98	26.00	0.98	0.53
10	76.81	25.62	26.00	-0.38	-0.23
11	73.17	24.41	26.00	-1.59	-1.05
12	69.89	23.32	26.00	-2.68	-1.93

	s	torage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance
0.00	-0.23	1.16	0	0.00

overflows to: S5

Diamage Area	0200						
Area (Ha)	0.040				_		
C =	0.80	Restricted Flow Q _r (L	_/s)=	15.00)		
2-Year Ponding							
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q_p - Q_r	Volume 2yr		
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)		
8	85.46	7.60	15.00	-7.40	-3.55		
9	80.87	7.19	15.00	-7.81	-4.21		
10	76.81	6.83	15.00	-8.17	-4.90		
11	73.17	6.51	15.00	-8.49	-5.60		
12	69.89	6.22	15.00	-8.78	-6.32		

 Overflow
 Required
 Surface
 Sub-surface
 Balance

 0.00
 -4.90
 1.41
 0
 0.00

overflows to: S5

Drainage Area	55							
Area (Ha)	0.140							
C =	1.00	Restricted Flow Q _r (L	_/s)=	25.00				
				100Yr +20%				
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
6	226.01	87.96	25.00	62.96	22.67			
11	169.91	66.13	25.00	41.13	27.14			
16	137.55	53.53	25.00	28.53	27.39	64.24	39.24	37.67
21	116.30	45.26	25.00	20.26	25.53			
26	101.18	39.38	25.00	14.38	22.43			

	Storage (m ³)					100+20			
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance		
31.33	58.73	1.32	0	57.41	43.56	81.23	79.91		
			L/s =	59.80		L/s =	83.24		
			overflows to: S	66					

Drainage Area	S5	1			
Area (Ha)	0.140				
C =	0.80	Restricted Flow Q _r (I	_/s)=	25.00	
		2-Year Pondii	ng		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q_r	Q_p - Q_r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
8	85.46	26.61	25.00	1.61	0.77
9	80.87	25.18	25.00	0.18	0.10

		3\		
	S	torage (m3)		
Overflow	Required	Surface	Sub-surface	Balance
0.00	0.65	70 75	0	0.00

overflows to: S6

Drainage Area	S6							
Area (Ha)	0.300				<u></u>			
C =	1.00	Restricted Flow Q _r (L	./s)=	55.00				
			100Yr +20%					
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q_r	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
8	199.20	166.13	55.00	111.13	53.34			
13	155.11	129.36	55.00	74.36	58.00			
18	128.08	106.82	55.00	51.82	55.97	128.19	73.19	79.04
23	109.68	91.47	55.00	36.47	50.33			
28	96.27	80.29	55.00	25.29	42.49			

	Storage (m ³)					100+20			
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance		
57.41	113.37	9.71	0	103.66	79.91	158.95	149.24		
			L/s =	95.98		L/s =	138.19		
			overflows to: I	₹6					

Area (Ha)	0.300								
C =	0.80	Restricted Flow Q _r (I	55.00						
2-Year Ponding									
T _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume				
Variable	-5,	$Q_p = 2.78xCi_{2yr}A$, r	2yr				
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)				
8	85.46	57.02	55.00	2.02	0.97				
9	80.87	53.96	55.00	-1.04	-0.56				
10	76.81	51.24	55.00	-3.76	-2.25				
11	73.17	48.82	55.00	-6.18	-4.08				
12	69.89	46.63	55.00	-8.37	-6.02				

Drainage Area

Drainage Area

_	Storage (m ³)									
	Overflow	Required	Surface	Sub-surface	Balance					
	0.00	-2.25	9.71	0	0.00					

overflows to: R6

Drainage Area	R6							
Area (Ha)	0.170	Restricted Flow Q _r (L	/s)=	34.00				
C =	0.68	50% Restricted Flow	$Q_r(L/s)=$	17.00				
				100Yr +20%				
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q _r	Q_p - Q_r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)
5	242.70	78.00	17.00	61.00	18.30	1		
10	178.56	57.38	17.00	40.38	24.23			
15	142.89	45.92	17.00	28.92	26.03	55.11	38.11	34.30
20	119.95	38.55	17.00	21.55	25.86	1		
25	103.85	33.37	17.00	16.37	24.56	1		

	St		100+20					
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance	
103.66	129.69	4.38	4.4	120.91	149.24	183.54	174.76	
			L/s =	134.35		L/s =	194.18	
			overflows to: [Delphinium Cre	es.			

C =	0.68	Restricted Flow Q _r (L		17.00)							
2-Year Ponding												
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q_p - Q_r	Volume 2yr							
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)							
8	85.46	27.46	17.00	10.46	5.02							
9	80.87	25.99	17.00	8.99	4.85							
10	76.81	24.68	17.00	7.68	4.61							
11	73.17	23.51	17.00	6.51	4.30							
12	69.89	22.46	17.00	5.46	3.93							

 Storage (m ³)										
 Overflow	Required	Surface	Sub-surface	Balance						
0.00	4.61	4.38	4.4	0.00						

overflows to: Delphinium Cre

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 Barrett Block 146

 DATE:
 2022-05-09

 FILE:
 135925-6.4.4

 REV #:
 1

 DESIGNED BY:
 AC

 CHECKED BY:
 RM

UNDERGROUND STORAGE CALCULATIONS - BARRETT BLOCK 146

Pipe Storage	Area R6				
From	То	Length	Diameter	X-sec Area	Volume
ECB1	RYCB1	28.60	250	0.049	1.40
RYCB1	ECB2	26.01	250	0.049	1.28
				Total	2.68

Structure S	torage	Area 3	1			
	Base	Тор	Height	diameter	X-sec Area	Volume
ECB 1	98.48	0 99.48	1.00	300	0.071	0.07
ECB2	98.40	0 99.40	1.00	300	0.071	0.07
RYCB1	98.08	0 99.48	1.40	1200	1.131	1.58
					Total	1.72

	4 44
TOTAL AREA 2	4.41

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER JOB #: 352925 - 6.04
DATE: 2022-05-09
DESIGN: AC
CHECKED: RM
REV #: 1

				7						
FRICTION LOSS	FROM	TO	PIPE	MANNING F	FORMULA - FI	LOWING FULL				
	MH	MH	ID				-			
Block 146	10	9	4	DIA (m)	Area (m2)	Perim.	Slope	Hyd.R.	Vel.	Q
INVERT ELEVATION (m)	98.030	98.091		(m) 0.45	0.16	(m) 1.41	(%) 0.550	(m) 0.11	(m/s) 1.33	(l/s) 211.34
OBVERT ELEVATION (m)	98.480	98.541			C SLOPE =	18.26		0.11	1.55	211.04
DIAMETER (mm)	90.400	30.341	450			FLOW RATIO (C		! 		
LENGTH (m)	l 		11.1		OW DEPTH =	TEOW TATIO (C	0.365			
FLOW (I/s)			210.00	DEGIGITIE	OW BEI III		0.000	J		
` ′	<u> </u>			4						
HGL (m) ***	96.430	96.490	0.060		Head loss in	manhole simplifie	ed method p. 7	'1 (MWDM)		
					fig1.7.1, Krat	io = 0.75 for 45 b	ends		K∟=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.067			Velocity = Flo	ow / Area =		1.32	m/s	
			Ī		HL = K∟ * \	/^2/ 2g				
TOTAL HGL (m)		98.456	1							•
MAX. SURCHARGE (mm)		-85	1							
			.,,							
FRICTION LOSS	FROM	TO	PIPE	MANNING I	FORMULA - FI	LOWING FULL				
	MH	MH	ID							
Block 146	9	8		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	98.121	98.156		0.45	0.16	1.41	0.550	0.11	1.34	212.23
OBVERT ELEVATION (m)	98.571	98.606	<u> </u>		C SLOPE =	1.05				
DIAMETER (mm)			450			FLOW RATIO (C				
LENGTH (m)			6.3	DESIGN FL	OW DEPTH =		0.302			
FLOW (I/s)			170.00							
HGL (m) ***	98.456	98.478	0.022	1	Head loss in	manhole simplifie	ed method p. 7	1 (MWDM)		
			=			io = 0.75 for 45 b		,	KL=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.044	╣		Velocity = Flo		Citab	1.07		
MANHOLE COEF R= 0.75	LO33 (III)	0.044	╣		HL = KL * \			1.07	111/5	
TOTAL LIOL (m)	<u> </u>	00.500	4		TIL - KL	/*2/ 2y				
TOTAL HGL (m)		98.522	4							
MAX. SURCHARGE (mm)		-84								
				_						
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING I	FORMULA - FI	LOWING FULL				
Block 146	8	7	ID ID	DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
BIOCK 140	 			(m)	(m2)	(m)	(%)	(m)	(m/s)	(I/s)
INVERT ELEVATION (m)	98.186	98.522		0.45	0.16	1.41	0.450	0.11	1.20	191.17
OBVERT ELEVATION (m)	98.636	98.972			C SLOPE =	0.44		0	1.20	
DIAMETER (mm)	1		450			FLOW RATIO (C		ì		
LENGTH (m)			74.7		OW DEPTH =		0.329			
FLOW (I/s)			170.00	1				1		
	00.500	00 707	0.266	=						Ī
HGL (m) ***	98.522	98.787			I land lane in	manhala ainmlifia				
			- 0.200			manhole simplifie	ed method p. 7	′1 (MWDM)	K =0.05	
			0.200		straight throu	ıgh	ed method p. 7	, ,	KL=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.003] 0.200]		straight throu Velocity = Flo	ugh ow / Area =	ed method p. ī	1.07		
MANHOLE COEF K= 0.05	LOSS (m)	0.003] 0.200]		straight throu	ugh ow / Area =	ed method p. 7	, ,		
MANHOLE COEF K= 0.05 TOTAL HGL (m)	LOSS (m)	0.003 98.851] 0.200]		straight throu Velocity = Flo	ugh ow / Area =	ed method p. 7	, ,		
	LOSS (m)		0.200		straight throu Velocity = Flo	ugh ow / Area =	ed method p. 7	, ,		
TOTAL HGL (m)	LOSS (m)	98.851	0.250		straight throu Velocity = Flo	ugh ow / Area =	ed method p. 7	, ,		
TOTAL HGL (m)	LOSS (m)	98.851	0.250		straight throu Velocity = Flo	ugh ow / Area =	ed method p. 7	, ,		
TOTAL HGL (m) MAX. SURCHARGE (mm)	FROM	98.851 -121	PIPE	MANNING F	straight throu Velocity = Fl HL = K _L * \	ugh ow / Area =	ed method p. 7	, ,		
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS	FROM	98.851 -121 TO MH			straight throu Velocity = Flo HL = KL * \	igh bw / Area = //2/ 2g LOWING FULL		1.07	m/s	
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS	FROM	98.851 -121	PIPE	DIA	straight throu Velocity = FI HL = KL * \	ow / Area = //^2/ 2g LOWING FULL Perim.	Slope	1.07	m/s	Q
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146	FROM MH	98.851 -121 TO MH 6	PIPE	DIA (m)	straight throu Velocity = Fli HL = KL * \ FORMULA - Fl Area (m2)	ow / Area = //^2/ 2g LOWING FULL Perim. (m)	Slope (%)	1.07 Hyd.R.	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m)	FROM MH 7 98.552	98.851 -121 TO MH 6	PIPE	DIA (m) 0.45	straight throuvelocity = File HL = KL * V	pigh bw / Area = //2/ 2g LOWING FULL Perim. (m) 1.41	Slope (%) 0.450	1.07	m/s	
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m)	FROM MH	98.851 -121 TO MH 6	PIPE	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = Fit HL = KL * \ HC = KL * \ Area (m2) 0.16 C SLOPE =	pigh bw / Area = //2/ 2g LOWING FULL Perim. (m) 1.41 0.25	Slope (%) 0.450 5 %	1.07 Hyd.R.	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	FROM MH 7 98.552	98.851 -121 TO MH 6	PIPE ID 450	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = File HL = KL * \ FORMULA - File Area (m2) 0.16 C SLOPE = OW TO FULL	LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	Slope (%) 0.450 5 %	1.07 Hyd.R.	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	FROM MH 7 98.552	98.851 -121 TO MH 6	PIPE ID 450 7.8	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = Fit HL = KL * \ HC = KL * \ Area (m2) 0.16 C SLOPE =	LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	Slope (%) 0.450 5 %	1.07 Hyd.R.	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	FROM MH 7 98.552	98.851 -121 TO MH 6	PIPE ID 450	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = File HL = KL * \ FORMULA - File Area (m2) 0.16 C SLOPE = OW TO FULL	LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	Slope (%) 0.450 5 %	1.07 Hyd.R.	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/S)	FROM MH 7 98.552	98.851 -121 TO MH 6	PIPE ID 450 7.8	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = File HL = KL * \ HL = KL * \ FORMULA - File Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	Slope (%) 0.450 5 % \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\tex{\tex	Hyd.R. (m)	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/S)	FROM MH 7 98.552 99.002	98.851 -121 TO MH 6 98.587 99.037	PIPE ID 450 7.8 136.00	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = Fit HL = KL * \ HL = KL * \ FORMULA - Fit Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	Slope (%) 0.450 5 % \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\tex{\tex	Hyd.R. (m)	Vel. (m/s)	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ****	FROM MH 7 98.552 99.002	98.851 -121 TO MH 6 98.587 99.037	PIPE ID 450 7.8 136.00	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = FIL HL = KL * \ HL = KL * \ FORMULA - FI Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	John John John John John John John John	Slope (%) 0.450 5 % \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\tex{\tex	1.07 Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	FROM MH 7 98.552 99.002	98.851 -121 TO MH 6 98.587 99.037	PIPE ID 450 7.8 136.00	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = Fluid HL = KL * \ HL = KL * \ Area (m2) OW TO FULL OW DEPTH = Head loss in straight throuvelocity = Fluid Hrouvelocity = Fluid Head Indicates the straight throuvelocity = Fluid Head Indicates the straight through t	Dow / Area = //2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C) manhole simplified agh pow / Area =	Slope (%) 0.450 5 % \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\tex{\tex	Hyd.R. (m)	Vel. (m/s) 1.20	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05	FROM MH 7 98.552 99.002	98.851 -121 TO MH 6 98.587 99.037	PIPE ID 450 7.8 136.00	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = FIL HL = KL * \ HL = KL * \ FORMULA - FI Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	Dow / Area = //2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C) manhole simplified agh pow / Area =	Slope (%) 0.450 5 % \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\tex{\tex	1.07 Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)
TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ****	FROM MH 7 98.552 99.002	98.851 -121 TO MH 6 98.587 99.037	PIPE ID 450 7.8 136.00	DIA (m) 0.45 HYDRAULIO	straight throuvelocity = Fluid HL = KL * \ HL = KL * \ Area (m2) OW TO FULL OW DEPTH = Head loss in straight throuvelocity = Fluid Hrouvelocity = Fluid Head Indicates the straight throuvelocity = Fluid Head Indicates the straight through t	Dow / Area = //2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C) manhole simplified agh pow / Area =	Slope (%) 0.450 5 % \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\text{\tex{\tex	1.07 Hyd.R. (m) 0.11	Vel. (m/s) 1.20	(l/s)

TOTAL HGL (m)

MAX. SURCHARGE (mm)

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER

DATE: 2022-05-09 DESIGN: CHECKED: REV #:

AC RM

JOB #: 352925 - 6.04

EDICTION LOSS	FROM	TO	PIPE	MANNING FORMULA	ELOWING FULL				
FRICTION LOSS	FROM MH	TO MH	ID	MANNING FORMULA	- FLOWING FULL				
Block 146	6	5		DIA Area	Perim.	Slope	Hyd.R.	Vel.	Q
]	(m) (m2)	(m)	(%)	(m)	(m/s)	(l/s)
NVERT ELEVATION (m)	98.617	98.753	_∥	0.45 0.16	1.41	0.450	0.11	1.20	190.76
DBVERT ELEVATION (m)	99.067	99.203		HYDRAULIC SLOPE					
DIAMETER (mm)	 		450	DESIGN FLOW TO F					
ENGTH (m)	 		30.4	DESIGN FLOW DEP	H =	0.279	<u>l</u>		
FLOW (I/s)	<u> </u>		136.00					-	ı
HGL (m) ***	98.870	98.939	0.069	Head los	s in manhole simplifie	ed method p. 7	71 (MWDM)		
				straight	rrough			K∟=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.002		Velocity	Flow / Area =		0.86	m/s	
				HL = K	* V^2/ 2g				
TOTAL HGL (m)		99.032	7	<u></u>					JI
MAX. SURCHARGE (mm)		-171							
			•						
FRICTION LOSS	FROM	ТО	PIPE	MANNING FORMULA	- FLOWING FULL				
	MH	MH	ID						
Block 146	5	4	4	DIA Area	Perim.	Slope	Hyd.R.	Vel.	Q
NIVERT ELEVATION ()	00.040	00.000	-	(m) (m2) 0.375 0.11	(m) 1.18	(%)	(m) 0.09	(m/s) 0.87	(l/s) 96.19
NVERT ELEVATION (m) OBVERT ELEVATION (m)	98.848 99.223	98.963 99.338	-	0.375 0.11 HYDRAULIC SLOPE			0.09	U.0 <i>1</i>	90.18
DIAMETER (mm)	33.223	aa.330	375	DESIGN FLOW TO F]]]]		
LENGTH (m)	1		38.2	DESIGN FLOW DEP	1	0.191	21		
FLOW (I/s)	1		51.00		••	0.101	1		
	99.032	99.064	0.032	Handle	s in manhole simplifie	ad mathad = "	71 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1		
HGL (m) ***	99.032	99.064	0.032			ea memoa p. 1	/ I (IVIVV DIVI)	K. =0.05	
			-	straight t	-			K∟=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.001			Flow / Area =		0.46	m/s	
			_	HL = K	.* V^2/ 2g				
TOTAL HGL (m)		99.154	<u> </u>						
MAX. SURCHARGE (mm)		-184							
EDICTION LOCC	L LDCM	Τ^	PIDE	MANINING TODAY II	ELOWING ELIL				
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FORMULA	- FLOWING FULL				
Block 146	5								
			טו	DIA Area	Perim	Slone	Hvd R	Vel	Ω
		20		DIA Area (m) (m2)	Perim. (m)	Slope (%)	Hyd.R. (m)	Vel. (m/s)	Q (l/s)
INVERT ELEVATION (m)	99.013								(l/s)
. ,		20		(m) (m2)	(m) 0.79	(%) 0.450	(m)	(m/s)	(l/s)
	99.013	20 99.314	250	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F	(m) 0.79 = 0.66	(%) 0.450 3 % 0 0.752	(m) 0.06	(m/s)	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm)	99.013	20 99.314		(m) (m2) 0.25 0.05 HYDRAULIC SLOPE	(m) 0.79 = 0.66	(%) 0.450	(m) 0.06	(m/s)	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	99.013	20 99.314	250	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F	(m) 0.79 = 0.66	(%) 0.450 3 % 0 0.752	(m) 0.06	(m/s)	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm)	99.013	20 99.314	250 66.8	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP	(m) 0.79 = 0.66	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s)	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	99.013 99.263	99.314 99.564	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP	(m) 0.79 = 0.66 JLL FLOW RATIO (CH) H = s in manhole simplifies	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s)	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	99.013 99.263 99.032	99.314 99.564 99.202	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight ((m) 0.79 = 0.66 JLL FLOW RATIO (CH = Sin manhole simplification)	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	99.013 99.263 99.032	99.314 99.564	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP DESIGN FLOW DEP Head los straight Velocity	(m) 0.79 = 0.66 ULL FLOW RATIO (0 H = s in manhole simplified prough = Flow / Area =	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05	99.013 99.263 99.032	99.314 99.564 99.202	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP DESIGN FLOW DEP Head los straight Velocity	(m) 0.79 = 0.66 JLL FLOW RATIO (CH = Sin manhole simplification)	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05	99.013 99.263 99.032	99.314 99.564 99.202 0.001	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP DESIGN FLOW DEP Head los straight Velocity	(m) 0.79 = 0.66 ULL FLOW RATIO (0 H = s in manhole simplified prough = Flow / Area =	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05	99.013 99.263 99.032	99.314 99.564 99.202	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP DESIGN FLOW DEP Head los straight Velocity	(m) 0.79 = 0.66 ULL FLOW RATIO (0 H = s in manhole simplified prough = Flow / Area =	(%) 0.450 3 % 0.0752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm)	99.013 99.263 99.032	99.314 99.564 99.202 0.001	250 66.8 30.00	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP DESIGN FLOW DEP Head los straight Velocity	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplified prough = Flow / Area = * V^2/ 2g	(%) 0.450 3 % 0.0.752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm)	99.013 99.263 99.032 LOSS (m)	99.314 99.564 99.202 0.001 99.474 -90	250 66.8 30.00 0.170	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP Head los straight to Velocity HL = K	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplified prough = Flow / Area = * V^2/ 2g	(%) 0.450 3 % 0.0.752 0.160	(m) 0.06	(m/s) 0.81 KL=0.05	(l/s)
DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) FLOW (l/s) HGL (m) WANHOLE COEF K= 0.05 FOTAL HGL (m) WAX. SURCHARGE (mm) FRICTION LOSS	99.013 99.263 99.032 LOSS (m)	99.314 99.564 99.502 0.001 99.474 -90	250 66.8 30.00 0.170	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight I Velocity HL = K MANNING FORMULA	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplified prough = Flow / Area = * V^2/ 2g	(%) 0.450 3 % 20 0.752 0.160 ed method p. 7	(m) 0.06	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05 FOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146	99.013 99.263 99.032 LOSS (m) FROM MH	99.314 99.564 99.202 0.001 99.474 -90 TO MH 21	250 66.8 30.00 0.170	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP Head los straight to Velocity HL = K MANNING FORMULA DIA Area (m) (m2)	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplification of the composition o	(%) 0.450 3 % 0.752 0.160 ed method p. 7	(m) 0.06 71 (MWDM) 0.61	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90 Q (l/s)
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05 FOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 NVERT ELEVATION (m)	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21	250 66.8 30.00 0.170	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP Head los straight to Velocity HL = K MANNING FORMULA DIA Area (m) (m2) 0.2 0.03	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplification of the composition of	(%) 0.450 3 % 0.752 0.160 ed method p. 7	(m) 0.06 71 (MWDM) 0.61	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90 Q (l/s)
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) WANHOLE COEF K= 0.05 FOTAL HGL (m) WAX. SURCHARGE (mm) FRICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m)	99.013 99.263 99.032 LOSS (m) FROM MH	99.314 99.564 99.202 0.001 99.474 -90 TO MH 21	250 66.8 30.00 0.170	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP Head los straight Velocity HL = K MANNING FORMULA DIA Area (m2) 0.2 0.03 HYDRAULIC SLOPE	(m) 0.79 = 0.66 ULL FLOW RATIO (0 H =	(%) 0.450 3 % 0.150 0.160 ed method p. 7	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90 Q (l/s)
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) WANHOLE COEF K= 0.05 FOTAL HGL (m) WAX. SURCHARGE (mm) FRICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm)	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21	250 66.8 30.00 0.170	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight I Velocity HL = K MANNING FORMULA DIA Area (m2) 0.2 0.03 HYDRAULIC SLOPE DESIGN FLOW TO F	(m) 0.79 0.66 H = 0.66 ILL FLOW RATIO (C H = 0.66 IN I	(%) 0.450 3 % 0.160 0.160 Slope (%) (%) 0.600 0 % 0.000	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) WANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21	250 66.8 30.00 0.170 PIPE ID	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW DEP Head los straight Velocity HL = K MANNING FORMULA DIA Area (m2) 0.2 0.03 HYDRAULIC SLOPE	(m) 0.79 0.66 H = 0.66 ILL FLOW RATIO (C H = 0.66 IN I	(%) 0.450 3 % 0.150 0.160 ed method p. 7	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s)	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198 99.398	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632	250 66.8 30.00 0.170 PIPE ID	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight I Velocity HL = K MANNING FORMULA DIA Area (m) (m2) 0.2 0.03 HYDRAULIC SLOPE DESIGN FLOW DEP	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplifications of the control of the cont	(%) 0.450 3 % 0.752 0.160 ed method p. 7 Slope (%) 0.600 0.000 0.000	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21	250 66.8 30.00 0.170 PIPE ID	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight I Velocity HL = K MANNING FORMULA DIA Area (m) (m2) 0.2 0.03 HYDRAULIC SLOPE DESIGN FLOW DEP	(m) 0.79 0.66 H = 0.66 ILL FLOW RATIO (C H = 0.66 IN I	(%) 0.450 3 % 0.752 0.160 ed method p. 7 Slope (%) 0.600 0.000 0.000	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s Vel. (m/s) 0.81	(l/s) 39.90
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) WANHOLE COEF K= 0.05 FOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198 99.398	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632	250 66.8 30.00 0.170 PIPE ID	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight I Velocity HL = K MANNING FORMULA DIA Area (m) (m2) 0.2 0.03 HYDRAULIC SLOPE DESIGN FLOW DEP	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplifications of the control of the cont	(%) 0.450 3 % 0.752 0.160 ed method p. 7 Slope (%) 0.600 0.000 0.000	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ****	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198 99.398	99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632	250 66.8 30.00 0.170 PIPE ID	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP Head los straight i Velocity HL = K MANNING FORMULA DIA Area (m) (m2) 0.2 0.03 HYDRAULIC SLOPE DESIGN FLOW DEP Head los straight i	(m) 0.79 = 0.66 JLL FLOW RATIO (C H = s in manhole simplifications of the control of the cont	(%) 0.450 3 % 0.752 0.160 ed method p. 7 Slope (%) 0.600 0.000 0.000	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ****	99.013 99.263 99.032 LOSS (m) FROM MH 4 99.198 99.398	20 99.314 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632	250 66.8 30.00 0.170 PIPE ID	(m) (m2) 0.25 0.05 HYDRAULIC SLOPE DESIGN FLOW TO F DESIGN FLOW DEP' Head los straight i Velocity HL = K MANNING FORMULA DIA Area (m) (m2) 0.2 0.03 HYDRAULIC SLOPE DESIGN FLOW DEP' Head los straight i Velocity Velocity Velocity	(m) 0.79 0.66 ULL FLOW RATIO (C H = S in manhole simplification of the control	(%) 0.450 3 % 0.752 0.160 ed method p. 7 Slope (%) 0.600 0.000 0.000	(m) 0.06 71 (MWDM) 0.61 Hyd.R. (m) 0.05	(m/s) 0.81 KL=0.05 m/s	(l/s) 39.90

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA

DEVELOPPER

JOB #: 352925 - 6.04 DATE: 2022-05-09 DESIGN: AC CHECKED: RM REV #:

Q (l/s)

Q (l/s)

FRICTION LOSS	FROM	TO	PIPE	MANNING F	MANNING FORMULA - FLOWING FULL								
	MH	MH	ID										
Block 146	4	3		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q			
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)			
INVERT ELEVATION (m)	99.058	99.168		0.3	0.07	0.94	0.350	0.08	0.81	56.95			
OBVERT ELEVATION (m)	99.358	99.468		HYDRAULIC	SLOPE =	0.49	%						
DIAMETER (mm)			300	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.457	ĺ					
LENGTH (m)			31.7	DESIGN FLO	OW DEPTH =	:	0.141						
FLOW (I/s)			26.00					1					
HGL (m) ***	99.154	99.177	0.023		Head loss in	manhole simplifie	d method p. 7	'1 (MWDM)					
					straight throu	ıgh			KL=0.05				
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = Flo	ow / Area =		0.37	m/s				
					HL = K∟ * \	/^2/ 2g							
TOTAL HGL (m)		99.309											
MAX. SURCHARGE (mm)		-159											

FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING F					
Block 146	3	2		DIA (m)	Area (m2)	Slope (%)	Hyd.R. (m)	Vel. (m/s)	
INVERT ELEVATION (m)	99.298	99.342		0.2	0.03	0.600	0.05	0.81	
OBVERT ELEVATION (m)	99.498	99.542		HYDRAULI	SLOPE =	0.48	%		
DIAMETER (mm)			200	DESIGN FL	OW TO FULL	. FLOW RATIO (Q	0.000	I	
LENGTH (m)			7.3	DESIGN FL	OW DEPTH =		0.002		
FLOW (I/s)			0.00						
HGL (m) ***	99.309	99.309	0.000	1	Head loss in	manhole simplifie	d method p. 7	'1 (MWDM)	
					straight thro	ugh			KL=0.05
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = F	low / Area =		0.00	m/s
					HL = KL *	V^2/ 2g			
TOTAL HGL (m)		99.344	İ						
MAX. SURCHARGE (mm)		-198	Ī						

Slope (%)

0.000 0.002 Hyd.R. (m)

Vel. (m/s)

FROM MH	TO MH	PIPE ID	MANNING F	ORMULA - F	LOWING FULL		
2	1		DIA	Area	Perim.	Γ	
			(m)	(m2)	(m)		
99.372	99.514		0.2	0.03	0.63	Γ	
99.572	99.714		HYDRAULIC	SLOPE =	0.72	9	
		200	DESIGN FLO	OW TO FULL	FLOW RATIO (Q.)	
		23.7	DESIGN FLO	DESIGN FLOW DEPTH =			
		0.00					
99.344	99.344	0.000		Head loss in	manhole simplifie	d	
				straight thro	ugh		
LOSS (m)	0.000			Velocity = FI	.ow / Area =		
				HL = K _L * '	V^2/ 2g		
	99.516					Τ	
	-198	7[
	99.372 99.572 99.344	MH MH 2 1 99.372 99.514 99.572 99.714 99.344 99.344 LOSS (m) 0.000 99.516	MH MH ID 2 1 99.372 99.514 99.572 99.714 200 23.7 0.00 99.344 99.344 LOSS (m) 0.000 99.516	MH MH ID 2 1	MH	MH	

Head loss in manhole simplified method p. 71 (MWDM) KL=0.05 straight through Velocity = Flow / Area = HL = K_L * V^2/ 2g 0.00 m/s

IBI GROUP REPORT
PROJECT: 34731-5.2.2
DESIGN BRIEF
BARRETT LANDS - PHASE 3
3100 LEITRIM ROAD
LEITRIM DEVELOPMENT AREA
Prepared for BARRETT CO-TENANCY

Table 5.10 Storm Hydraulic Grade Line - Local Sewers within Barrett Lands Phase 3 for the 100 Year 3 Hour Chicago and 100 Year 3 Hour Chicago increased by 20% Storm Events

		STORM HYDRAULIC GRADE LINE (1)										
			100 YEAR 3 H	OUR CHICAG	0	100 YEAR 3 HOUR CHICAGO + 20%						
XPSWMM NODE	USF (M)	RARE EVE	NT SANITARY	ANNUAL EV	ENT SANITARY	RARE EVE	NT SANITARY	ANNUAL EVENT SANITARY FLOW				
			LOW USF-HGL		LOW		LOW USF-HGL					
		HGL (M)*	(M)	HGL (M)*	USF-HGL (M)	HGL (M)*	(M)	HGL (M)*	USF-HGL (M)			
MH11300	95.63	93.91	1.72	93.91	1.72	93.96	1.67	93.96	1.67			
MH11301	96.58	94.96	1.62	94.96	1.62	94.96	1.62	94.96	1.62			
MH11302	97.98	95.70	2.28	95.70	2.28	95.71	2.27	95.71	2.27			
MH11303	98.67	96.23 2.44		96.23	2.44 96.23		2.44	96.23	2.44			
MH11304	99.23	96.36	2.87	96.36	96.36 2.87		2.87	96.36	2.87			
MH11305	99.28	96.43	2.85	96.43	2.85	96.43	2.85	96.43	2.85			
MH11311	96.38	94.90	1.48	94.90	1.48	94.90	1.48	94.90	1.48			
MH11312	97.28	95.85	1.43	95.85	1.43	95.85	1.43	95.85	1.43			
MH11313	97.48	96.13	1.35	96.13	1.35	96.13	1.35	96.13	1.35			
MH11314	98.63	97.27	1.36	97.27	1.36	97.27	1.36	97.27	1.36			
MH11315	100.93	99.51	1.42	99.51	1.42	99.51	1.42	99.51	1.42			
MH11316	100.93	99.60	1.33	99.60	1.33	99.60	1.33	99.60	1.33			
MH11321	97.63	96.11	1.52	96.11	1.52	96.11	1.52	96.11	1.52			
MH11322	97.88	96.61	1.27	96.61	1.27	96.61	1.27	96.61	1.27			
MH11323	100.08	98.80	1.28	98.80	1.28	98.80	1.28	98.80	1.28			
MH11331	98.93	97.60	1.33	97.60	1.33	97.60	1.33	97.60	1.33			
MH11332	98.93	97.73	1.21	97.73	1.21	97.73	1.21	97.73	1.21			
MH11333	100.38	98.71	1.67	98.71	1.67	98.71	1.67	98.71	1.67			
MH11334	100.88	99.24	1.64	99.24	1.64	99.24	1.64	99.24	1.64			
MH11350	96.48	95.77	0.71	95.77	0.71	95.77	0.71	95.77	0.71			
MH11351	96.63	95.42	1.21	95.42	1.21	95.42	1.21	95.42	1.21			
MH11400	95.43	94.56	0.87	94.56	0.87	94.59	0.84	94.59	0.84			
MH11401	96.03	94.85	1.18	94.85	1.18	94.89	1.14	94.89	1.14			
MH11402	95.78	94.89	0.89	94.89	0.89	94.94	0.84	94.94	0.84			
MH11403	96.01	95.06	0.95	95.06	0.95	95.11	0.90	95.11	0.90			
MH11404	96.73	95.62	1.11	95.62	1.11	95.63	1.10	95.63	1.10			
MH11405	97.13	96.03	1.10	96.03	1.10	96.03	1.10	96.03	1.10			
MH11406	97.68	96.77	0.91	96.77	0.91	96.77	0.91	96.77	0.91			
MH11407	98.08	97.23	0.85	97.23	0.85	97.23	0.85	97.23	0.85			
MH11408	98.73	97.49	1.24	97.49	1.24	97.49	1.24	97.49	1.24			
	1			1								

⁽¹⁾ HGL results were obtained from the XPSWMM models entitled 34738-202002-RARE-3CHI100.out, 34738-202002-ANN-3CHI100.out, 34738-202002-RARE-3CHI120.out or 34738-202002-ANN-3CHI120.out and enclosed as part of the digital submission.

APRIL 2022 34

Barrett Block 146 2022-05-06 Barrett Co-Tenancy

Ditch S6 New Ditch Section Required 1:1	100 yr. flow = 95.98 l/s	Length = 17.26 m 0.096 Cu m/sec		
From Seelye use n = choose: slope S =	0.013 (Channels) 12.17 %	Up Stream Ditch btm=	area= 102.10 wp=	0.04
Ditch Bottom	0.00 metres	Dn Stream Ditch Btm =	100.00	1.00
Ditch slopes Water depth	20.00 :1 0.047 metres (depth needs	Difference = ed to carry 0.13 Cu. M/sec)	2.10 Top Bank = 100.15	
Check Ditch Capacity (Q) Q =	0.097 Cu M/sec	and Velocity = 2.20 M/s	Free Board = 0.10	
	0.097 Cd Misec			
Ditch S6 New Ditch Section Required 1:1	100 vr. +20% flow = 138.19 l/s	Length = 17.26 m 0.138 Cu m/sec		
From Seelye use n =	0.013 (Channels)		area=	0.06
choose: slope S = Ditch Bottom	12.17 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.10 wp= 100.00	2.16
Ditch slopes Water depth	20.00 :1	Difference =	2.10 Top Bank = 100.15	
Check Ditch Capacity (Q)	0.054 metres (depth needs		Free Board = 0.10	
Q =	0.141 Cu M/sec	and Velocity = 2.41 M/s		
Ditch S10		Length = 38.00 m		
New Ditch Section Required 1:1 From Seelye use n =	100 yr. flow = 53.39 l/s 0.013 (Channels)	0.053 Cu m/sec	area=	0.09
choose: slope S =	0.89 %	Up Stream Ditch btm= Dn Stream Ditch Btm =	101.44 wp=	3.37
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	101.10 0.34	
Water depth Check Ditch Capacity (Q)	0.051 metres (depth needs	ed to carry 0.13 Cu. M/sec)	Top Bank = 101.25 Free Board = 0.10	
Q =	0.054 Cu M/sec	and Velocity = 0.63 M/s	1100 00000 - 0.10	
Ditch S10		Length = 38.00 m		
New Ditch Section Required 1:1		0.047 Cu m/sec		
From Seelye use n = choose: slope S =	0.013 (Channels) 0.89 %	Up Stream Ditch btm=	area= 101.44 wp=	0.08 3.24
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	101.10 0.34	
Water depth	0.049 metres (depth needs		Top Bank = 101.25	
Check Ditch Capacity (Q) Q =	0.049 Cu M/sec	and Velocity = 0.61 M/s	Free Board = 0.10	
		*		
Ditch S20 New Ditch Section Required 1:1	100 yr. flow = 0 l/s	Length = 26.64 m 0.000 Cu m/sec		
From Seelye use n =	0.013 (Channels)		area=	0.00
choose: slope S = Ditch Bottom	3.72 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.39 wp= 101.40	0.01
Ditch slopes Water depth	33.00 :1	Difference =	0.99 Top Bank = 101.55	
Check Ditch Capacity (Q)	0.000 metres (depth needs		Top Bank = 101.55 Free Board = 0.15	
Q =	0.000 Cu M/sec	and Velocity = 0.02 M/s		
Ditch S20		Length = 26.64 m		
New Ditch Section Required 1:1 From Seelye use n =	100 yr. +20% flow = 5.02 l/s 0.013 (Channels)	0.005 Cu m/sec	area=	0.01
choose: slope S = Ditch Bottom	3.72 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.39 wp=	1.06
Ditch slopes	33.00 :1	Difference =	0.99	
Water depth Check Ditch Capacity (Q)	0.016 metres (depth needs	ed to carry 0.13 Cu. M/sec)	Top Bank = 101.55 Free Board = 0.13	
Q =	0.005 Cu M/sec	and Velocity = 0.59 M/s	1100 DOMO - 0.10	
Ditch S20B		Length = 37.00 m		
New Ditch Section Required 1:1	00 yr. flow = 6.22 l/s	0.006 Cu m/sec		
From Seelye use n = choose: slope S =	0.013 (Channels) 0.86 %	Up Stream Ditch btm=	area= 102.47 wp=	0.02 1.52
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	102.15	
Water depth	0.023 metres (depth needs	ed to carry 0.13 Cu. M/sec)	Top Bank = 102.3	
Check Ditch Capacity (Q) Q =	0.006 Cu M/sec		Free Board = 0.13	
	0.000 Ca Misec	and Velocity = 0.36 M/s		
Ditch S20B New Ditch Section Required 1:1	100 yr. +20% flow = 11.24 l/s	and Velocity = 0.36 M/s Length = 37.00 m 0.011 Cu m/sec		
New Ditch Section Required 1:1 From Seelye use n =	100 yr. +20% flow = 11.24 l/s 0.013 (Channels)	Length = 37.00 m 0.011 Cu m/sec	area=	0.03
New Ditch Section Required 1:1 From Seelye use n = choose: slope S = Ditch Bottom	100 yr. +20% flow = 11.24 l/s 0.013 (Channels) 0.86 % 0.00 metres	Length = 37.00 m 0.011 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm =	102.47 wp= 102.15	0.03 1.85
New Ditch Section Required 1:1 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes	100 yr. +20% flow = 11.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 33.00 :1	Length = 37.00 m 0.011 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm = Difference =	102.47 wp= 102.15 0.32	0.03 1.85
New Ditch Section Required 1:1 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q)	100 yr: +20% flow = 11.24 l/s 0.013 (Channels) 0.66 % 0.00 metres 33.00 :1 0.028 metres (depth needs	Length = 37.00 m 0.011 Cu m/sec Up Stream Ditch birn= Dn Stream Ditch Birn = Difference = ed to carry 0.13 Cu. M/sec)	102.47 wp= 102.15	0.03 1.85
New Ditch Section Required 1:1 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth	100 yr. +20% flow = 11.24 l/s 0.013 (Channels) 0.86 % 0.00 metres 33.00 :1	Length = 37.00 m 0.011 Cu m/sec Up Stream Ditch btm= Dn Stream Ditch Btm = Difference =	102.47 wp= 102.15 0.32 Top Bank = 102.3	0.03 1.85
New Ditch Section Required 1:1 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q = Ditch S5	100 yr. +20% flow = 11.24 l/s 0.013 (Channels) 0.85 % 0.00 metres 3.300 :1 0.028 metres (depth neede	Length = 37.00 m	102.47 wp= 102.15 0.32 Top Bank = 102.3	0.03 1.85
New Ditch Section Required 1:1 From Seelye use n = choose: slope S = Ditch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q = Ditch S5 New Ditch Section Required 1:1 From Seelye use n =	100 yr. +20% flow = 11.24 lis 0.013 (Channels) 0.86 % 0.00 metes 3.3.00 :1 0.028 metres (depth needs 0.011 Cu M/sec 0.013 (Channels)	Length = 37.00 m 0.011 Cu milesc Up Stream Dicth btms Dis Stream Dicth Btm = Difference = Difference = de to carry 0.13 Cu. Misec) and Velocity = 0.42 Mis Length = 2130 m 0.000 Cu misec	102.47 kp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12	0.09
New Ditch Section Required 1:1 From Seelye use n = slope S = bitch Bottom Ditch slopes Water depth Check Ditch Capacity (Q) Q = Ditch S5 New Ditch Section Required 1:1 From Seelye use n = choose: slope S =	100 yr. +20% flow = 11 24 l/s 0.013 (Channels) 0.85 % 0.00 metres 33.00 :1 0.025 metres (depth needs 0.011 Cu M/rec 100 yr. flow = 59.8 l/s 0.013 (Channels) 1.20 %	Length = 37.00 m 0.011 Cu m/sec Up Stream Dich bem= Dos Stream Dich bem= Dos Stream Dich bem = do to carry 0.13 Cu. Misec) and Velocity = 0.42 M/s Length = 21.30 m 0.000 Cu m/sec Up Stream Dich bem=	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 area= 102.47 wp=	1.85
New Dish Section Required 1:1 From Seelye use 1: choose: slope S = choose: slope S = choose: slope S = Dish Bettom Dish slopes Water depth Check Dish Capacity (Q) Q = Dish SS New Dish Section Required 1:1 From Seelye use n = choose: slope S = Dish Bottom Dish slope S	100 yr. +20% flow = 11.24 l/s 0.013 (Channels) 0.05 (Channels) 0.05 metres 33.00 :1 0.023 metres (depth needs 0.011 Cu M/trec 100 yr. flow = 59.8 l/s 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1	Length = 37.00 m	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 area= 102.47 wp= 102.15 0.32	0.09
New Dish Section Required 1:1 From Seelye use 1:1 Choose: slope S = Choose: slope S = Dich Bottom Dich slopes Water depth Check Disch Capacity (Q) Q = Disch SS New Disch Section Required 1:1 From Seelye use n = choose: slope S = Dich Bottom	100 yr. +20% flow = 11.24 Us 0.013 (Channels) 0.86 % 0.00 metes 33.00 :1 0.028 metes (depth needs 0.011 Cu M/sec 0.015 (Channels) 1.20 % 0.054 metes (depth needs	Length = 37.00 m D011 Cu miles Up Stream Dich them: Do Steam Dich Bits = Difference = Difference = del to carry of 13 Cu Miles and Votaloty = 0.42 Mile Length = 21.00 m D005 Cu miles Up Stream Dich Bits = Difference = Differen	102.47 wp= 102.19 0.32 Top Blank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Blank = 102.3	0.09
New Disk Section Required 1:1 From Seelye use 1: Erhom Seelye use 1: Erhom Seelye use 1: Erhom Seelye use 1: Erhom Seelye use 1: Disk stopes Water depth Check Disch Capacity (Q) Q = Disch SS New Disk Section Required 1:1 Erhom Seelye use n = Erhoose: slope S = Disk stopes Disk stopes Use 1: Erho Bettern Disk stopes Water depth	100 yr. +20% flow = 11.24 l/s 0.013 (Channels) 0.05 (Channels) 0.05 metres 33.00 :1 0.023 metres (depth needs 0.011 Cu M/trec 100 yr. flow = 59.8 l/s 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1	Length = 37.00 m	102.47 wp= 102.19 0.32 Top Blank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Blank = 102.3	0.09
New Dish Section Required 1:1 From Seelye use 1: choose: slope 8 - choose: slope 8 - Dish Bottom Dish slopes Grade repth Grade Required 1:1 From Seelye use n = Dish Bottom Dish slopes Water depth Check Dish Capacity Grade	100 yr. +20% flow = 11.24 lip 0.013 (Channels) 0.08 % 0.00 mstes 3.30.0 1 0.00 mstes 0.021 mstes (depth needs 0.011 Ca Misec 100 yr flow = 90.8 lis 0.013 (Channels) 0.00 mstes 3.30.0 1 0.00 mstes	Length = 37 00 m 0.011 Cur misse: Up Stream Dich bitms Dn Steven Dich Stills = 1 card Velocity = 0.42 Mis Length = 2.00 Cur misse: Up Stream Dich bitms Dn Steven Dich Stills = 0 Difference = 0 Difference = 0 and Velocity = 0.73 Mis Length = 2130 m	102.47 wp= 102.19 0.32 Top Blank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Blank = 102.3	0.09
New Disk Section Required 1:1 From Seelye use 1 stope 5 = choose: stope 5 = choose: stope 5 = Choose: Disk Button Disk Button Disk Button Disk Button Check Disk Capacity (2) Disk 55 Arew Disk Section Required 1:1 dhoose: Stope 5 = choose: Stope 5 = choose: Disk Button Required 1:1	100 yr. +2016 flow = 11 24 lib. 0.013 (Channels) 0.05 M es 0.05 M es 0.05 Channels 1.00 M es 0.05 Channels 1.00 M es 0.05 Channels 1.00 M es 0.05 Channels 0.05 Channels 0.05 Channels 0.05 Channels 0.05 Channels 0.05 Channels	Length = 37 00 m D011 Cur share Up Bream Dath them: Dn Bream Dath them: Dn Bream Dath them: Difference = 60 to carry 0.13 Oz. Mixes) and Volstody = 0.42 Mix. Length = 21 30 m D000 Cur share Up Bream Dath them: Dn Bream Dath them: Dn Bream Dath them: Dn Bream Dath them: Dn Bream Dath them: And Volstody = 0.73 Mix. and Volstody = 0.73 Mix.	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10	0.09
New Dath Section Required 11 from Seeling use or shores Seeling See of the Color Seeling See of the Color Seeling See of the Color Seeling See	100 yr. +20% flow = 11.24 lis 0.013 (Chameris) 0.06 % 10.00 %	Length = 37.00 m 0.011 Cur misse Up Sheam Dath beam Do Seeun Dath Bles = Difference = Officer = 0.013 Cut Misse) and Velschip = 0.42 Miss Length = 21.30 m	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.45 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10	0.09
New Duth Section Required 11 in From Seeley use or sign 58 = Date Bedown 12 bits older of Date Bedown 12 bits older older older Date Bedown 12 bits older older Date SS 10 bits older older older older older Date SS 10 bits older older older older older Date SS 10 bits older ol	100 yr. +20% flow = 11.24 lip. 0.103 (Channels) 0.80 %. 0.00 notes 3.30.0 1. 0.028 notes (6.028	Levgh = 37.00 m 0.011 Cu milesc Up Bream Dish bere Do Bream Dish Bite = Difference = Difference = et la carry 13 1.0 is Milesc) and Visiolay = 0.42 M/s 0.000 Cu milesc Up Stream Dish bere Up Stream Dish bere Up Stream Dish bere Difference = 21.30 m 0.000 cu milesc Up Stream Dish bere U	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.55 Top Bank = 102.3 Free Board = 0.10 32 Top Bank = 102.3 Free Board = 0.10	0.09 3.37
New Duth Section Required 11 From Seeling use or a choose: Single	100 yr. +20% flow = 11.24 lip. 10.013 (Channels) 10.013 (Channels) 10.00 netes 13.300.11 10.028 metes (depth need 10.014 (Channels) 1.20 % 10.013 (Channels) 1.20 % 10.00 metes 1.00 % 10.00 metes 10.00 metes	Length = 37.00 m 0.011 Cur misse: Up Sheam Doth belton Do Secun Doth Bles = Difference = Difference = 0.014 Cut Misse) and Velocity = 0.42 Miss 0.000 Cur misse: Up Sheam Doth Bles = Difference = 0.000 Cur misse Up Sheam Doth Bles = Difference = 0.000 Cur misse Length = 2.130 m 0.000 Cur misse Length = 2.130 m 0.000 Cur misse Up Sheam Doth Bles = Difference = 0.000 Cur misse Up Sheam Doth Bles = Difference = 0.000 Cur misse	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.47 sp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 vp= 102.47 Top Bank = 102.3 Top Bank = 102.3 Top Bank = 102.3	0.09 3.37
New Dath Section Required 11 From Seeling use or a choose: siege 5 = choose: siege 5	100 yr. +2016 flow = 11.24 lis 0.13 (Chameris) 0.65 % 0.00 metes 0.00 metes 0.00 metes 0.002 metes (depth needs 0.011 Co Minesc 0.011 Co Minesc 0.012 (Chameris) 0.005 metes 0.005 metes 0.005 (Chameris) 0.005 (Chameris)	Length = 37.00 m 0.011 Cur misse: Up Sheam Doth belton Do Secun Doth Bles = Difference = Difference = 0.014 Cut Misse) and Velocity = 0.42 Miss 0.000 Cur misse: Up Sheam Doth Bles = Difference = 0.000 Cur misse Up Sheam Doth Bles = Difference = 0.000 Cur misse Length = 2.130 m 0.000 Cur misse Length = 2.130 m 0.000 Cur misse Up Sheam Doth Bles = Difference = 0.000 Cur misse Up Sheam Doth Bles = Difference = 0.000 Cur misse	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.55 Top Bank = 102.3 Free Board = 0.10 32 Top Bank = 102.3 Free Board = 0.10	0.09 3.37
New Duth Section Required 11 from Seeling use or sings 8 = choose: sings 8 = Duth Bedom Buth Seeling 10 florth sings or Duth Seeling 10 florth Seeling 10 fl	100 yr. +20% flow = 11.24 lis 10.13 (Channels) 0.05 % 10.13 (Channels) 0.05 % 10.10 metes 10.00 metes 10.00 metes 10.00 metes 10.00 metes 10.00 yr. flow = 95.8 lis 10.13 (Channels) 1.00 yr. flow = 95.8 lis 10.13 (Channels) 1.00 yr. 10.00 metes 10.00 lis 10.00 metes 10.00 lis 10.00 metes 10.00 metes 10.00 yr. +20% flow = 53.24 lis 10.00 yr. +20% flo	Levgth = 37.00 m 0.011 Cu milesc Up Bream Dish them Do Seam Dish Bits = Difference = Difference = et la carry 13.10 a Milesc) and Visiolay = 0.42 M/s 0.000 Cu milesc Up Stream Dish them = Do Bream Dish them = Do Bream Dish them = 0.000 Cu milesc Up Stream Dish them = 0.000 Cu milesc Up Stream Dish them 0.000 Cu milesc 0.000 Cu milesc Up Stream Dish them 0.000 Cu milesc	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.47 sp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 vp= 102.47 Top Bank = 102.3 Top Bank = 102.3 Top Bank = 102.3	0.09 3.37
New Duth Section Required 11 Form Seeling use or subcose: Single SE and Duth Seeling S	100 yr. +20% flow = 11.24 lip. 10.013 (Channels) 10.013 (Channels) 10.00 metes 13.00 of 1 10.028 metes (depth need 10.014 (Challace 10.014 (Challace 10.014 (Channels) 1.20 % 1.00 % 1.00 % 1.00 % 1.00 Metes 1.00 % 1.00 % 1.00 % 1.00 % 1.00 % 1.00 metes 1.00 %	Length = 37.00 m 0.011 Cu milesc Up Bream Dish them Do Seam Dish Bits = Difference = eld scarry 13 Cu Milesc) and Viciolay = 0.42 M/s 0.000 Cu milesc Up Seam Dish Bits = Difference = 0.42 M/s 0.000 Cu milesc Up Seam Dish Bits = Difference = 0.73 M/s Length = 2.130 m 0.000 Cu milesc Up Seam Dish Bits = Difference = 0.73 M/s Length = 2.130 m 0.003 Cu milesc Up Seam Dish Bits = Difference = 0.74 M/s Control of the seam Cu Milesc Length = 0.74 M/s	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.15 Top Bank = 102.3 Free Board = 0.00	0.09 3.37 0.11 3.76
New Dath Section Required 11 From Seeling use or a choose: single SE of the Control of the Contr	100 yr. +2016 flow = 11 24 lis 0.013 (Chameris) 0.05 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0	Length = 37.00 m 0.011 Cur share Up Stream Dath them: Do Stream Dath them: Do Stream Dath them: Do Stream Dath them: Difference = ed to carry 0.13 Cu. Mines) amed Veloticity = 0.42 Min. Length = 21.30 m 0.000 Cur share Up Stream Dath bette: Do Stream Dath bette: Do Stream Dath Stream Difference = ed to carry 0.13 Cu. Mines) Difference = ed to carry 0.13 Cu. Mines Dath Stream Dath St	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 sp= 102.47 sp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 vp= 102.47 Top Bank = 102.3 Top Bank = 102.3 Top Bank = 102.3	0.09 3.37
New Dath Section Required 11 From Seleyie use n = shoose: siege 5 = Dath Seleyie 11 From Seleyie use n = shoose: Siege 5 = Dath Seleyie 12 From Seleyie use n = shoose: Siege 5 = Seleyie 12 From Seleyie use n = shoose: Siege 5 = shoose: Siege 6 =	100 yr. +20% flow = 11.24 lib. 10.013 (Channels) 10.013 (Channels) 10.00 netes 13.300.1 10.028 metes (depth needs 10.011 (Channels) 1.00 lib. 10.013 (Channels) 1.20 lib. 1.20 l	Length = 37.00 m OB11 Cu miles Up Bream Dish ber= Difference = eld scary 13 Cu Miles eld scary 13 Cu Miles and Velocity = 0.42 Mis Length = 21.30 m OB00 Cu miles Up Bream Dish ber= Difference = 0.02 Mis Bream Dish Bre = 0.02 Mis Bream Dish Bre = 0.02 Mis Difference = 0.000 Cu miles Length = 0.073 Mis Length = 21.30 m OB03 Cu miles Up Bream Dish bream Difference = 0.000 Cu miles Up Bream Dish bream Difference = 0.000 Mis Length = 0.073 Mis Length = 0.074 Mis Length = 0.075 Mis Leng	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 up=	0.09 3.37 0.11 3.76
New Duth Section Required 11 From Seeling use or a choose: single Se and the control of the cont	100 yr. +2016 flow = 1124 lib 10213 (Chamerels) 10213 (Chamerels) 1020 meters 1330.00 rl 1028 meters (depth needs 10310 flow = 10310 fl	Length = 37 00 m 0011 Cur wines Up Bream Dath bers Do Seven Dath Bers Do Seven Dath Bers = Difference = ed to carry 0.13 Cu. Mixes) and Velocity = 0.42 Mix 0.000 Cur where Up Bream Dath bers Do Seven Dath Bers = Difference = ed to carry 0.13 Cu. Mixes) and Velocity = 0.73 Mix Length = 21.00 m 0.000 Cur where Up Bream Dath bers Do Seven Dath Bers = Difference = ed to carry 0.13 Cu. Mixes) Length = 21.00 m 0.000 Cur where Up Seven Dath bers Do Seven Dath Bers = Difference = ed to carry 0.13 Cu. Mixes) Length = 0.000 Cur where Up Seven Dath Bers = 0.000 Cur where	102.47 wp= 102.15 0.32 Top Blank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 up= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 up= 102.47	0.09 3.37 0.11 3.76
New Dath Section Required 11 from Seeling use or shores Seeling SE of the Seeling SE	100 yr. +20% flow = 1124 list 1013 (Chameris) 1.0.05 % No. 1013 (Chameris) 1.0.05 % No. 1013 (Chameris) 1.0.05 % No. 1015 (Chameris) 1.0.05 % No. 1015 (Chameris) 1.0.07 % No. 1015 (Chameris) 1.0.07 metes 1.0.00 me	Length = 37.00 m 0.011 Cur wises Up Stream Dath them: Do Stream Dath them: Do Stream Dath them: Do Stream Dath them: Do Stream Dath them: Difference = ed to carry 0.13 Cu. Mines) and Videoloty = 0.42 Min. 0.000 Cur mines Up Stream Dath bette: Do Stream Dath Bette: Difference = ed to carry 0.13 Cu. Mines 0.035 Cu mines Up Stream Dath Deter Do Stream Dath Bette: Do S	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.48 mp= 102.49 mp= 102.49 mp= 102.49 mp= 102.49 mp= 102.41 mp= 102.41 mp= 102.41 mp= 102.41 mp= 102.41 mp= 102.41 mp= 102.42 mp= 102.43 mp= 102.44 mp= 102.44 mp= 102.45 mp= 102.47	0.09 3.37 0.11 3.76
New Duth Section Required 11 from Seeling use or shores seeling 18 en droses in significant from Seeling 18 en droses in significant from Seeling 18 en droses in Seeling 18 e	100 yr. +2016 flow = 1124 lib. 0.013 (Chamelel) 0.05 M less 0.05 M	Length = 37.00 m OI11 Cu miles Up Stream Dish bere Do Stream Dish Bere Difference = eld Leary 13 Cu Milesce) and Velocity = 0.42 Mis Length = 21.30 m OI000 Cu milesc Up Stream Dish bere Difference = eld Leary 13 Cu Milesce) Length = 21.30 m OI000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu milesc Up Stream Dish bere Difference = 0.000 Cu Milesc Up Stream Dish bere Difference = 0.000 Milesce and Velocity = 0.000 M	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.09	0.09 3.37 0.11 3.76
New Duth Section Required 11 From Series use a stope 5 is a choose: stope 5 is a choose 5 is a choos	100 yr. +2016 flow = 1124 lib 10013 (Charmels) 100 meters 133.00 :1 10.028 meters (depth needs 10.01 flow = 10.01 lib 10.00 meters 133.00 :1 10.00 meters 133.00 :1 10.00 meters 130.01 flow = 10.01 lib 10013 (Charmels) 1.00 flow = 10.01 lib 10013 (Charmels) 1.00 flow = 10.01 lib 10013 (Charmels) 1.00 meters 133.00 il 10.01 flow = 10.01 lib 10.01 flow = 10	Length = 37.00 m 0.011 Cur wises Up Stream Dath them: Do Stream Dath them: Do Stream Dath them: Do Stream Dath them: Do Stream Dath them: Difference = ed to carry 0.13 Cu. Mines) and Videoloty = 0.42 Min. 0.000 Cur mines Up Stream Dath bette: Do Stream Dath Bette: Difference = ed to carry 0.13 Cu. Mines 0.035 Cu mines Up Stream Dath Deter Do Stream Dath Bette: Do S	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.09	0.09 3.37 0.11 3.76
New Duth Section Required 11 from Seeling use or shores seeling the section Seeling See of the seeling Seeling See of the seeling Seel	100 yr. +2016 flow = 1124 lib. 0.1013 (Channels) 0.05 M. 0.05	Length = 37.00 m 0.011 Cur share Up Bream Dath them: Do Bream Dath Brea	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 up= 102.47 rp= 102.5 ree Board = 0.10	0.09 3.37 0.11 3.76
New Dath Section Required 11 from Seeling use or a choose: single SE of the Control of the Contr	100 yr. +20% flow = 11.24 lis 10.013 (Chameles) 10.05 % November 10.013 (Chameles) 10.05 % November 10.014 (Chameles) 10.05 % November 10.011 Ca Milese 10.013 (Chameles) 10.01 (Chameles) 10.00 metes 10.013 (Chameles) 10.00 metes 10.013 (Chameles) 10.00 metes 10.013 (Chameles) 10.00 metes 10.013 (Chameles) 10.00 metes 10.013 (Chameles) 10.0013 (Chamele	Length = 37.00 m 0.011 Curvines Up Bream Dath bere Do Steam Dath Bere	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 rop Bank = 0.10 102.47 rop Bank = 102.3 Free Board = 0.00 102.47 wp= 102.47 wp= 102.47 wp= 102.47 rop Bank = 102.3 Free Board = 0.00	0.09 3.37 0.11 3.76
New Dahi Sedico Required 11 from Seeling use or suppose to the control of the con	100 yr. +2016 flow = 1124 lis 1013 (Channels) 1013 (Channels) 1013 (Channels) 1014 (Channels) 1015 (Channels) 1015 (Channels) 1015 (Channels) 1015 (Channels) 1105 (Channels)	Longth = 37.00 m	102.47 wp= 102.15 0.32 Free Board = 102.3 Free Board = 0.12 102.47 wp= 102.48 wp= 102.49 wp= 102.40 wp= 102.4	0.09 3.37 0.11 3.76
New Dahh Section Required 11 from Seeling use or a choose: single SE and SEELING SEELI	100 yr. +201% flour = 11 24 lib. 10-13 (Charmels) 10-10 meters 10-10 m	Length = 37.00 m D011 Cu miles Up Bream Dath them Do Steam Dish Bits = D08ence = 6 to carry 0.13 Cu Miles end Voticolly = 0.42 Mile Length = 21.30 m 0.000 Cu miles Up Bream Dish bers Do Steam Dish Bits = D08ence = 0.000 Cu miles Up Bream Dish bers Do Steam Dish Bits = D08ence = 0.000 Cu miles Up Bream Dish bers Do Steam Dish Bits = 0.000 Cu miles Length = 21.30 m 0.001 Cu miles Length = 21.00 m 0.003 Cu miles Length = 21.00 m 0.003 Cu miles Up Bream Dish bers Do Steam Dish Bits = D08ence Dish Bits = D0.000 Cu miles Up Bream Dish Bits = D0.0000 Cu miles Up Bream Dish Bits = D0.0000 Cu miles Up Bream Dish Bits = D0.0000 Dish Bits = D0.00000000000000000000000000000000000	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 wp= 102.47 rop Bank = 0.10 102.47 rop Bank = 102.3 Free Board = 0.00 102.47 wp= 102.47 wp= 102.47 wp= 102.47 rop Bank = 102.3 Free Board = 0.00	0.09 3.37 0.11 3.76
New Dath Section Required 11 from Seeling use or a choose: single 5 = choose: single 6 = choose: single 5 = choose: single 6 =	100 yr. +2016 flow = 1124 lis 1013 (Channels) 1013 (Channels) 1013 (Channels) 1014 (Channels) 1015 (Channels) 1015 (Channels) 1015 (Channels) 1015 (Channels) 1100 yr. flow = 58 lis 1013 (Channels) 1.20 % 10	Longth = 37.00 m	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47	0.09 3.37 0.11 3.76
New Dath Section Required 11 From Seley us on a Selection Section Selection	100 yr. +2016 flow = 1124 list 10013 (Channels) 10013 (Channels) 10013 (Channels) 1000 on tests 13300 11 10028 metres (depth need 10014 (Channels) 1.20 % 1.	Length = 37.00 m D011 Cur miles Up Stream Dish them Do Steam Dish Bits = Difference = of to carry 13.10 to Miles Length = 21.30 m D050 Cur miles Up Stream Dish bits = D050 Cur miles Up Stream Dish bits = D150 Cur miles Up Stream Dish bits =	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47	0.09 3.37 0.11 3.76
New Dath Section Required 11 from Seeling use or a choose: single Se and the choice of	100 yr. +2016 flow = 1124 lib 10213 (Channels) 10213 (Channels) 10213 (Channels) 1020 on testes 13300 of 10288 metres (depth needs 10214 lib 10214 (Channels) 1200 yr. flow = 56 fl bis 105 (Channels) 1.20 % 10213 (Channels) 1.30 0.1 10213 (Channels) 1.30 0.1 10213 (Channels) 1.30 0.1 10213 (Channels) 1.30 0.1 103 (Channels) 1.30 0.0 metes 1.33 0.0 1 103 (Channels) 1.30 0.0 metes 1.33 0.0 1 103 (Channels) 1.00 yr. +2016 flow = 47 fl 4 lib 103 (Channels) 1.00 yr. +2016 flow = 47 fl 4 lib 103 (Channels) 1.00 yr. +2016 flow = 47 fl 4 lib 103 (Channels) 1.00 yr. +2016 flow = 47 fl 4 lib 103 (Channels) 1.00 yr. +2016 flow = 47 fl 4 lib 103 (Channels) 1.00 yr. +2016 flow = 47 fl 4 lib 103 (Channels) 1.00 yr. flow = 14 33 lib 103 (Channels) 1.00 yr. flo	Longth = 37.00 m	102.47 wp= 102.15 0.32 Free Board = 102.3 Free Board = 0.12 102.47 wp= 102.48 wp= 102.49 wp= 102.40 wp= 102.40 wp= 102.41 wp= 102.4	0.09 3.37 0.11 3.76 0.06 2.84
New Dahn Section Required 11 From Seeling use or a choose: slope 58 - time of the control of the	100 yr. +2016 flow = 11.24 lis .0.013 (Channels) .0.013 (Channels) .0.013 (Channels) .0.00 notes .3.30.0.1 .0.028 metres (depth need .0.011 (Channels) .1.00 .0.013 (Channels) .0.	Length = 37.00 m OB11 Curvinise Up Bream Dish them Do Seam Dish Bits = Difference = Difference = et la carry 13 To & Mixes Length = 21.30 m OB05 Curvine Up Seam Dish Bits = Difference = et la carry 13 To & Mixes Length = 21.30 m OB05 Curvine Up Seam Dish Bits = Difference = et la carry 13 To & Mixes Length = 21.30 m OB05 Curvine Up Seam Dish bits = Difference = et la carry 13 To & Mixes Length = 21.00 m OB05 Curvine Up Seam Dish bits = Difference = et la carry 13 To & Mixes Length = 20.10 m OB05 Curvine Up Seam Dish bits = Difference = et la carry 13 To & Mixes Length = 20.10 m OB05 Curvine Up Seam Dish bits = Do Seam Dish bits = Dish Curvine Up Seam Dish bits = Dish C	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp=	0.09 3.37 0.11 3.76 0.06 2.84
New Dath Section Required 11 from Seeling use or a choose: single SE and	100 yr. +2016 flow = 11.24 lis 10.013 (Channels) 10.013 (Channels) 10.013 (Channels) 10.00 netes 13.00 11 10.028 netes (depth need 10.013 (Channels) 1.20 14 10.013 (Channels) 1.20 15 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 17 1.20 18 1	Length = 37.00 m D011 Cu milesc Up Bream Dish there Do Seram Dish Ber = Difference = ed to carry 13.10 a. Milesc) and Violody = 0.42 M/s 0.000 Cu milesc Up Bream Dish Ber = 0.42 M/s 0.000 Cu milesc Up Bream Dish Ber = 0.47 M/s ed to carry 0.13 Cu. Milesc) and Violody = 0.73 M/s Length = 0.73 M/s cut mileschipt = 0.73 M/s Length = 0.73 M/s Length = 0.74 M/s Length = 0.79 M/s Length = 20.10 m 0.000 Cu milesc Up Bream Dish Ber = D0 Bream Dish Ber = D1 Bream Dish Ber = D1 Bream Dish Ber = D1 Bream Dish Length = 0.00 M/s Length = 20.10 m 0.000 Cu milesc Up Bream Dish Length = 0.00 M/s Length = 0	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47 mp= 102.47 mp= 102.47 mp= 102.47 mp= 102.47 mp= 102.47 wp= 102.47 mp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.47 wp= 102.47 mp= 102.47	0.09 3.37 0.11 3.76 0.06 2.84
New Duth Section Required 11 from Seeple use a stope 5 is a choose: siege 5 is a choose: sieg	100 yr. +2016 flow = 1124 lis 1013 (Chameles) 1021 (Chameles) 1021 (Chameles) 1020 (Chameles) 1020 (Chameles) 1020 (Chameles) 1020 (Chameles) 1220 (Chameles)	Length = 37 00 m D011 Cur sinker Up Stream Dish there Do Steam Dish Bits = D016mence = D016mence = D016mence = D016mence = D016mence = D0105 Cur sinker Length = 21 30 m D0105 Cur sinker Up Stream Dish bits = D016mence	102.47 wp= 102.15 0.32 Free Board = 102.3	0.09 3.37 0.11 3.76 0.06 2.84
New Dath Section Required 11 from Seeling use or a choose: siege 5 is	100 yr. +2016 flow = 11.24 lis 10.013 (Channels) 10.013 (Channels) 10.013 (Channels) 10.00 netes 13.00 11 10.028 netes (depth need 10.013 (Channels) 1.20 14 10.013 (Channels) 1.20 15 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 17 1.20 18 1	Length = 37.00 m D011 Cu milesc Up Bream Dish there Do Seram Dish Ber = Difference = ed to carry 13.10 a. Milesc) and Violody = 0.42 M/s 0.000 Cu milesc Up Bream Dish Ber = 0.42 M/s 0.000 Cu milesc Up Bream Dish Ber = 0.47 M/s ed to carry 0.13 Cu. Milesc) and Violody = 0.73 M/s Length = 0.73 M/s cut mileschipt = 0.73 M/s Length = 0.73 M/s Length = 0.74 M/s Length = 0.79 M/s Length = 20.10 m 0.000 Cu milesc Up Bream Dish Ber = D0 Bream Dish Ber = D1 Bream Dish Ber = D1 Bream Dish Ber = D1 Bream Dish Length = 0.00 M/s Length = 20.10 m 0.000 Cu milesc Up Bream Dish Length = 0.00 M/s Length = 0	102.47 wp= 102.15 0.32 Free Board = 102.3	0.09 3.37 0.11 3.76 0.06 2.84
New Dath Section Required 11 From Seeling use in a shore Section Required 12 From Seeling use in a shore Section Seeling Seeli	100 yr. +2016 flow = 11.24 lis .0.013 (Channels) .0.013 (Channels) .0.013 (Channels) .0.00 notes .3.30.0.1 .0.028 metres (depth need .0.011 (Channels) .1.00 lis .0.013 (Channels) .1.00 lis .1.00 l	Length = 37.00 m OB11 Cur milesc Up Bream Dish here Do Seam Dish Bits = Difference = Difference = et la carry 13 To & Milesc) and Videolay = 0.42 M/s 0.000 Cur milesc Up Stream Dish bits = Difference = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = 0.000 Cur miles	102.47 wp= 102.15 0.32 Free Board = 102.3	0.09 3.37 0.11 3.76 0.06 2.84
New Duth Section Required 11 from Seeling use or a choose: single SE or Duth SE or Duth Section Seeling SE or Duth SE or Duth SE or Duth Section Required SE or Duth	100 yr. +2016 flow = 1124 lis 1013 (Chamnels) 10.013 (Chamnels) 10.00 meters 13.30.01 10.028 meters (depth needs 10.014 (Chamnels) 1.00 % 10.013 (Chamnels) 1.20 % 10.00 meters 13.30.01 10.00 meters 13.30.01 10.00 meters 13.30.01 10.00 meters 13.30.01 10.00 meters 10.00 yr. +2016 flow = 83.24 lis 10.013 (Chamnels) 1.00 % 10.00 meters 10.00 yr. +2016 flow = 83.24 lis 10.013 (Chamnels) 1.00 % 10.00 meters 13.30.01 10.00 % 10.00 meters 13.30.01 10.00 % 10.00 meters 13.30.01 % 10.00 % 1	Length = 37.00 m OB11 Cur milesc Up Bream Dish here Do Seam Dish Bits = Difference = Difference = et la carry 13 To & Milesc) and Videolay = 0.42 M/s 0.000 Cur milesc Up Stream Dish bits = Difference = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = Difference = 0.000 Cur milesc Up Stream Dish bits = 0.000 Cur miles	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.30 wp= 102.47 w	0.09 3.37 0.06 2.84 0.08 3.17
New Dahn Section Required 11 From Seleyie use n = shoose: siege 5 = shoose: shoose 5 = shoose 5 = sh	100 yr. +2016 flow = 1124 lib 1013 (Channels) 10.05 (America) 10.07 (America)	Length = 27 00 m D011 Cur misses Up Bream Dish there Do Stevan Dish Ber = D Difference = 6 to carry 0.13 Cu Misses) seed Voicity = 0.42 Mis Length = 21 30 m D000 Cu misses Up Bream Dish berre Do Stevan Dish Bits = D Difference = 6 to carry 0.13 Cu Misses) and Velocity = 0.73 Mis Length = 0.75 Misses Difference = 6 to carry 0.13 Cu Misses) and Velocity = 0.79 Mis Length = 0.035 Cu misses Up Bream Dish berre Do Bream Dish Bits = D Difference = 6 to carry 0.13 Cu Misses) Length = 0.059 Misses Difference = 6 to carry 0.13 Cu Misses) Length = 0.050 Misses Up Bream Dish Bits = D Difference = 6 to carry 0.13 Cu Misses Up Bream Dish Bits = D Difference = 0.047 Cu misses Up Bream Dish Bits = D Difference = 0.047 Misses Length = 0.050 Misses and Velocity = 0.72 Mis Length = 0.050 Misses Leng	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.12 102.47 wp= 102.47	0.09 3.37 0.11 3.76 0.06 2.84
New Dath Section Required 11 from Seeple use a section of the Section Required 12 from Seeple use a section Seeple seeple of the Seeple	100 yr. +2016 flow = 11.24 lis 10.013 (Channels) 10.013 (Channels) 10.013 (Channels) 10.00 netes 13.00 11 10.028 metes (depth need 10.013 (Channels) 1.20 14 10.013 (Channels) 1.20 15 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 16 1.20 17 1.20 16 1.20 17 1.20 18 1	Length = 37.00 m D011 Cu milesc Up Bitman Dish bitman Dn Steam Dn Stea	102.47 wp= 102.15 0.32 Free Board = 102.3 Free Board = 0.12 102.47 wp= 102.47 up= 102.4	0.09 3.37 0.11 3.76 0.00 2.84
New Duth Section Required 11 from Seeple use n = shorous: slege 8 is not never to the seeple of the	100 yr. +2016 flow = 1124 lis 1013 (Channels) 1021 (Channels) 1021 (Channels) 1021 (Channels) 1020 yr. flow = 58 lis 1021 (Channels) 1020 yr. flow = 58 lis 1021 (Channels) 1.20 % 1021	Length = 37.00 m OB11 Curvinion Up Bitman Dish bitman Do Boram Dish Bitman Do Boram Dish Bitman Do Boram Dish Bitman OB05 Curvinion Length = 21.30 m OB05 Curvinion Di Boram Dish Bitman Di	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.47 wp= 102.47	0.09 3.37 0.11 3.76 0.00 2.84
New Dath Section Required 11 from Seeple use on a choose: siege 5 in Dath State of the Control o	100 yr. +2016 flow = 1124 lib 10013 (Chamnels) 10013 (Chamnels) 1000 meters 13300 rl 10028 meters (depth needs 10013 (Chamnels) 1000 meters 13300 rl 10013 (Chamnels) 1.20 % 1	Length = 37.00 m D011 Cur misses Up Bream Dath them: Do Steam Dish Bits = D016mence = 0 D016mence = 0 Early 1.30 to Misses) and Violately = 0.42 Mis Length = 21.30 m D000 Cur misses Up Bream Dish berse Do Steam Dish Bits = D D016mence = 0 Early 1.30 to Misses) and Violately = 0.73 Mis Length = 21.30 m 0.002 Cur misses Up Bream Dish berse Do Steam Dish Bits = D D016mence = 0 D018 Cur misses Up Bream Dish berse Do Steam Dish Bits = D D018 Cur misses Up Bream Dish berse Do Steam Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D018 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses Up Bream Dish Bits = D D019 Cur misses	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.47 mp= 102.47 mp= 102.47 mp= 102.47 mp= 102.47 up= 102.47	0.09 3.37 0.11 3.76 0.06 2.84
New Dath Section Required 11 From Seleyie use n 2 shoose: Seleyie SE = 1 shoose: Seleyie SE	100 yr. +20% flow = 1124 lis 0 yr. +20% flow = 1124 lis 0 100 metes 3 300 of 1 0 028 metes (depth needs 3 300 of 1 0 028 metes (depth needs 0 0313 (Chamels) 1.20 % 0.00 metes 3 300 of 1 0.003 Chamels 1.20 % 0.00 metes 0.003 Co Mines 0.003 Co Mines 0.004 flow = 1324 lis 0.00 metes 0.005 Co Mines 0.006 Co Mines 0.007 metes 0.008 Co Mines 0.007 metes 0.008 Co Mines 0.009 pr. +20% flow = 15.4 lis 0.013 (Chamels) 0.00 metes 0.008 Co Mines 0.009 flow = 14.64 lis 0.013 (Chamels) 0.00 metes 0.008 Co Mines 0.009 flow = 15.4 lis 0.013 (Chamels) 0.00 metes 0.008 Co Mines 0.009 flow = 15.4 lis 0.013 (Chamels) 0.00 metes 0.009 flow = 15.4 lis 0.00 metes 0.009 flow = 15.4 lis 0.009 flow = 15.4	Length = 37.00 m 0.011 Cu miles Up Bream Dish there Do Seam Dish Bits = Difference = 6 to carry 13.10 to Milescy and Visitority = 0.42 M/s 0.000 Cu miles Up Bream Dish Bits = 0.42 M/s 0.000 Cu miles Up Bream Dish Bits = 1.43 m 0.000 Cu miles Up Bream Dish Bits = 1.43 m 0.000 Cu miles 0.13 Milescy and Visitority = 0.73 M/s Length = 21.30 m 0.000 Cu miles Up Bream Dish Bits = 0.000 Milescy and Visitority = 0.79 M/s Length = 20.10 m 0.000 Cu milescy Up Bream Dish Bream Dish Bits = 0.000 Milescy and Visitority = 0.99 M/s Length = 20.10 m 0.000 Cu milescy Up Bream Dish Bream Dish Bits = 0.000 Milescy and Visitority = 0.90 M/s Length = 20.10 m 0.000 Cu milescy Up Bream Dish	102.47 wp= 102.15 0.32 Top Bank = 102.3 Free Board = 0.10 102.47 wp= 102.47 wp= 102.47 wp= 102.47 wp= 102.47 mp= 102.47 wp= 102.47	0.09 3.37 0.11 3.76 0.00 2.84

n = friction coefficient R = hydraulic radius = A/wetted perimetre (wp) in m

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 BARRETT BLOCK 146

 DATE:
 2022-04-28

 FILE:
 135925.6.04

 REV #:
 1

 DESIGNED BY:
 Anton Chetrar

 CHECKED BY:
 Ryan Magladry

TEMPORARY ICD ORIFICE SIZING

Orifice coefficients									
Cv =	0.60								
Cv =	0.65								

						Theo	oretical	Recommended		
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Max. Pond Elevation Hydraulic Slope Target F		Orifice	Actual Flow	Orifice	Actual Flow
	(m)	(mm)	(m)	(m)	(m)	(l/s)	(m)	(I/s)	(m)	(I/s)
SANITARY MH	95.810	200	95.910	101.40	2.000	1.99	0.0230	1.99	0.075	21.14
STORM MH	96.180	675	96.518	101.40	2.000	136.00	0.1905	136.40	0.190	135.68

^{*} minimum orifice size to be 0.075m

Runoff Coefficient Used(C):

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

Run-off Coefficients

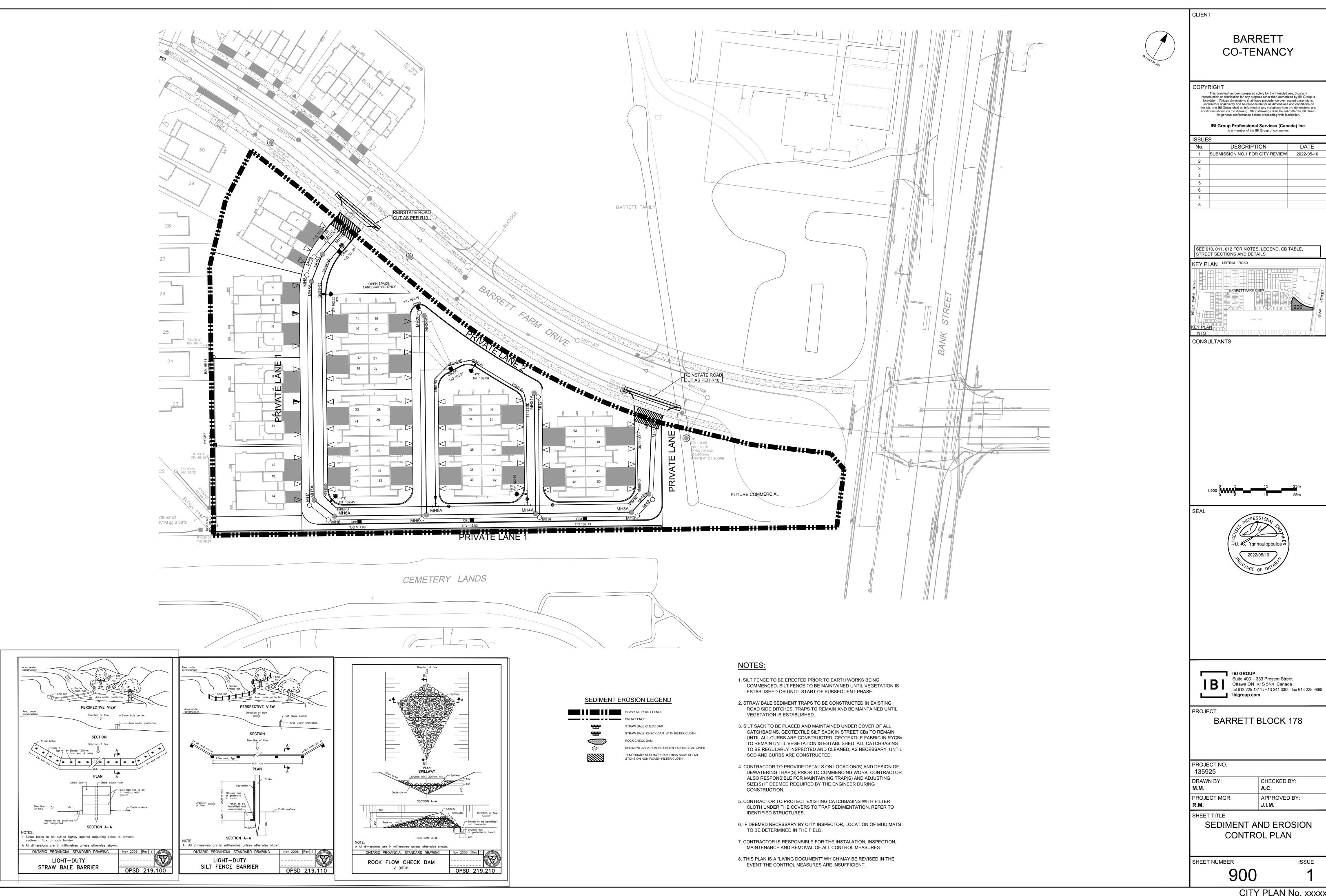
PROJECT: Barrett Block 146

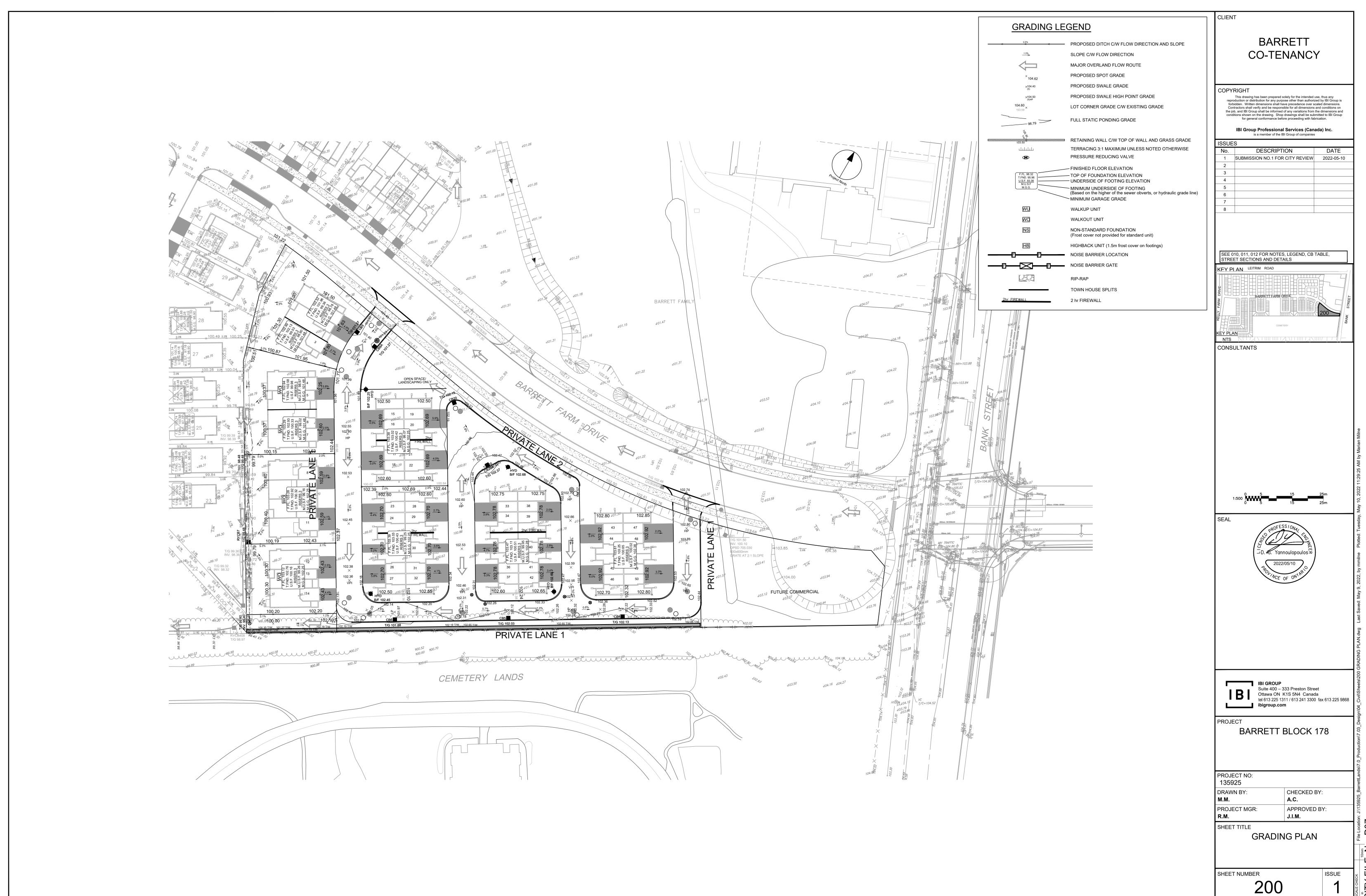
DATE: 2022-04-22

CLIENT: Barrett Co-Tennancy

0.77

FILE: 135925.6.4


								S2&R3						
					В	ACK TO BAC	CK	TOWNS - REAR			TOWNS - FRONT			
					GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT	
					255.00	1121.00		492.00	400.00		380.00	1601.00		
	L													
	L													
	_													
	L													
	L													
	L													
	L													
	H													
	H													
	F													
	H													
	H													
	H													
	-													
					255.00	1121.00		492.00	400.00		380.00	1601.00		
TOTAL	(m²)				233.00	1376.00		432.00	892.00			1981.00		
						1370.00			032.00			1301.00		
Runoff Coefficien	t (C) :				0.2	0.9	0.9	0.2	0.9	0.9	0.2	0.9	0.9	
Ave. Runoff Coefficier				1		0.77			0.51			0.77		
	` '													


0.52

0.77

APPENDIX E

135925-900 - Erosion and Sediment Control Plan 135925-200 - Grading Plan

CITY PLAN No. xxxxx